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PRZEDMOWA.
K ied y  prawie przed dziesiątkiem lat Towarzystwo 
Naukowe Krakowskie wówczas z. Uniwersytetem Jagiel­
lońskim połączone, pomiędzy swemi celami wytknęło 
sobie także wy dawanie.A&iblioteki Naukowój mającej 
obejmować szczególniej dzieła do wykładu uniwersy­
teckiego służące, odłożywszy inne prace, zatrudniłem 
się napisaniem książki w moim przedmiocie, której
dałem tytuł Elementarny wykład Mate­
matyki. Tego icykładu toydało Towarzystwo N au­
kowe dwie części, mianowicie: Arytmetykę w r. 1851 
i Algebrę w r. 1852. A  że z istoty rzeczy do zupeł­
ności tytułem zapoiciedzianego wykładu należy rów­
nież Geometry ja,, więc też nad tą bez przerwy praco­
wałem. Tę już prawie od roku ukończywszy, oddaję 
pod sąd moich współpracowmików. Wypada mi tu 
atoli nadmienić nieco o je j  treści i układzie.

Lubo przymiotnik „elementarny4' wyklucza nie­
jako z Geometryi, według dawniejszych autorów, Try- 
gonometryją sferyczną i Geometryją analityczną, to 
przecież obie te części w moim wykładzie zamieściłem. 
Nie dość na tern, pisząc Geometryją analityczną w dwóch 
i trzech wymiarach, nie podobna było wstrzymać się



od wykładu teoryi linij i powierzchni krzywych dru­
giego stopnia, ho ta jest tylko zastósowaniem pierwszej. 
Nie pomahi też znaglała mnie do tego uwaga, że w te­
raźniejszym stanie nauk przyrodniczych, dzięki pracom 
najsławniejszych Matematyków, każda prawie w tej 
dziedzinie prawda, może hyc tak elementarnie, jako też 
i wyższym sposobem dowiedziona. Zważywszy wreszcie, 
że udający się na nauki Wyższego Rachunku, Astrono­
mii, Fizyki, Mechaniki i Mineralogii, jeźli nauczyciel 
nie chce przestawać na mnićj ścisłym wykładzie, tak 
bez Trygonometryi sferycznej, jako też i wspomnionej 
teoryi linij i powierzchni krzywych drugiego s >pnin 
obejść się nie mogą, uznałem za stósowne i korzystni 
objąć wykładem moim następujące przedmioty: 

Planimetr y  ją ,
Sterometryją,
Trygonometryją p  łaską,
Trygonometryją sferyczną,
Geometryją analityczną w dwóch wymiarach, 

z teoryją linij krzywych drugiego stop­
nia znanych pod nazwą przecięć ostro- 
kręgowych (sectiones conicae) 

i Geometryją analityczną w trzech wymia­
rach z teoryją powierzchni krzywych 
drugiego stopnia.

Tym sposobem taż Geometryją składa się z trzech części:
1. Planimetryi z Stereometryją,
2. Trygonometryi płaskiej i sferycznej,
3. Geometryi analitycznej w dwóch i trzech 

wymiarach, wraz z teoryją linij i po- 
wierzchni krzywych drugiego stopnia.



Układ Planimetry i i Stereometryi tak się stara­
łem urządzić, izby uczących się zapoznać li z najpo- 
trzebniejszemi twierdzeniami i zagadnieniami, w róż­
nych zastosowaniach swój użytek mającemi; opuściłem 
zaś wszystkie, które każdy, pojąwszy i strawiwszy pierw­
sze, łatwo przy pilności, ic innych autorach napotkane, 
zrozumieć potrafi. Dlatego to nie dotknąłem w tój części 
tak w tych czasach bogatej teoryi transwersalnych, 
symetryi i innych nową Geometryją stanowiących; 
sądzę bowiem, iż tu nie może znaleść trudności, kto 
przejął się należycie zasadami Geometryi Euklideso- 
wej. Zresztą myślę, iż nie daleko jest ten czas, gdzie 
równie dzielny jak Euklidesa geniusz, zebrawszy w ca­
łość liczne już dotąd przygotowane materyjaly nowej 
Geometryi i takowe uporządkowawszy, obdarzy uczony 
świat Geometryją zbudowaną na nowych zasadach, 
która w edukacyi zajmie miejsce przeszło przez 20 
wieków używanej Euklidesa Geometryi.

Jak Plcmimetryja z Stereometryją, tak równie obie 
Trygonometryje stanowią i stanowić powinny nierozer- 
waną całość, bo dowody twierdzeń sferycznej, całkiem 
się opierają na Trygonometryi płaskiej tak dalece, że 
nawet wszystkie wzory pierwszej, z płaskiego czyli pro- 
stokreślnego trójkąta otrzymać można.

Gdy inni autorowie najczęściej uważają linije 
trygonometryczne w kole, a rzadziej wyprowadzają je  
z uważania prostopadłych, to ja  poszedłem cokolwiek 
odmienną w tym iczględzie drogą; a czyli zdążając 
tędy do celu, nie postawiłem jakiego fałszywego kro­
ku, znawcy to dopatrzą.



W  układzie Geometryi analitycznej, szczególnemi 
przewodnikami byli mi Bourdon i Etingshausen; przy 
tern jednak korzystałem i z innych w tym przedmiocie 
pisanych dzieł jako też z pism czasowych a szczegól­
niej z „ Ar cli i v. der Mathematik und Physik von A. 
Grunert “ i „ Nouvelles annales de Matbematiąues 
par T erquem et G ekono.“

Jeżeli tą moją pracą zdołałem naszej młodzieży, 
dla której pracować jest calem i jedynem zadaniem 
mego życia, ułatwić wstęp do przybytku nauk przyro­
dniczych, będzie to dla mnie, przy schyłku mego a 
wodu i bliskości wieczora, sowitą nagroda.

Pisałem w Krakowie dnia 23. Kwietnia 1857 r.
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WiTĘP.

Otaczające nas przedmioty zmysłowego świata, zewnętrznie 
i ogólnie uważane, przedstawiają nam tylko tożsamość albo 
różność, t.j. przedmioty te albo noszą jednę i tęż sarnę, albo 
tóż różne nazwy. Przedmioty tejże samej nazwy prowadzą 
nas do wyobrażenia liczby, różnej zaś nazwy, do wyobraże­
nia kształtu.

Kształt jest to odgraniczenie każdego przedmiotu od 
reszty przestrzeni. Każdy z tych przedmiotów zajmuje w o- 
gólnej przestrzeni pewne miejsce (spatium) co jego rozcią­
głością (extensio) nazywamy. Rozciągłość jest wszystkim przed­
miotom zmysłowego świata spoiną własnością tak dalece, że 
gdyby też przedmioty nie były rozciągłe, t. j . nie zajmowa­
ły żadnej przestrzeni, nie moglibyśmy sobie zrobić żadnego 
o nich pojęcia; same zaś przedmioty przestałyby być rzeczy - 
wistemi i zamieniłyby się w utwory wyobraźni na wzór du­
chów, każde i żadnego miejsca nie zajmujących, t. j . zamie­
niłyby się na istoty przenikliwe, jakich w rzeczywistym świę­
cie nie znamy.

Gdyby nie ciała zajmujące różne miejsca ogólnej prze­
strzeni, nie moglibyśmy mieć żadnego o niej wyobrażenia.

Każdy przedmiot naszemi zmysłami ująć się dający, na­
zywamy pospolicie ciałem fizycznem (corpus v. solidum). Sko­
ro więc każde ciało zajmuje pewną przestrzeń, która z tego 
powodu musi być rozciągłą t. j .  mieć musi swoje wymiary, 
czyli być musi długą, szeroką i wysoką lub grubą, przeto 
każde także ciało ma też same trzy wymiary. Chcąc ciało 
jakie bliżej poznać czyli opisać, wskazać potrzeba dokładnie 
trzy co dopiero wspomnione wymiary, przez toż ciało zajętćj 
przestrzeni.

1
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Jakim sposobem przychodzi człowiek do pojęcia prze­
strzeni, jest rzeczą Psychologii; my tyle tylko tu powiemy, 
że wypadek tego pojęcia jest tenże sam u każdego człowieka, 
t. j. że każdy tym tylko sposobem pojmuje przytomność ciał, 
•że są rozciągłe, czyli że zajmują pewną przestrzeń. Poniekąd 
atoli przyjść możemy do wyobrażenia przestrzeni następują­
cym sposobem: wystawiwszy sobie jaki przedmiot w ruchu, 
miejsce jakie tenże w każdćj chwili zajmuje, będzie coraz 
inne, bo otoczenia jego będą coraz inne a inne; jeżeli więc 
te szczególne pojęcia miejsca ruchomego ciała zbierzemy w je ­
dno, takowe niczem innem być nie może, jak porządkiem 
pośrednich miejsc w jakim też po sobie następują, te zaś 
pośrednie miejsca są rzeczywiście przestrzenią. Stąd wnios­
kować można, że pojęcie przestrzeni bez ruchu byłoby albo 
zbyt trudne, albo niepodobne. Danego tu pojęcia przestrzeni 
nie należy uważać za jój definicyją, ale raczej za skazówkę 
cechującą przestrzeń; Geometryja bowiem nie definijuje, ale 
już przypuszcza w każdym pojęcie przestrzeni, nie mogąc go 
nikomu wlać, jeżeli go nie posiada.

Przestrzeń zajętą przez ciało fizyczne, nazywamy ciałem 
yeometrycznem. Pojęcie więc ciała geometrycznego, jest oder- 
wanem od ciała fizycznego. Geometryja czysta (pura) wszyst­
kie swe prawdy odnosi do ciał geometrycznych, skoro zaś 
ma na celu ciała fizyczne, nazywa się wtenczas Geometryją 
zastosowaną (applicata).

Każde ciało ma ze wszech stron granice, bo ciała bez 
granic pojąćbyśmy nie mogli; te też granice stanowią jego 
kształt, jak na początku powiedzieliśmy. Granice te nazywa­
my w Geometryi powierzchniami (superficies); powierzchnie 
zatem nic mogą być niczem rzeczywistem, bo bez ciał istnieć 
nie mogą. Każdą znowu powierzchnią ograniczają linije (li- 
nea), a nareszcie granicami tych ostatnich są punkta. Punkt 
zatem geometryczny będąc tylko początkiem lub końcem li­
nii, nie może mieć żadnej rozciągłości, jest więc w Geome­
tryi tćm, czćm zero w Arytmetyce.
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Linija geometryczna jest długość bez szćrokości i gru­
bości. Taką liniją mieć tylko można w myśli, ale jć j ani wi­
dzieć, ani narysować nic można. Wszystkie linijc jakie na 
papierze i tablicach kreślimy, są linijami fizyczncmi; służą 
one jedynie do łatwiejszego pojęcia i zatrzymania w pamięci 
linij geometrycznych.

Lubo powiedzieliśmy wyżej, że punkt jest zerem geo- 
metrycznem, nie idzie zatem iżbyśmy sobie nie mogli zmy­
słowo wystawić linii ja kg złożonćj z punktów, albo raczćj 
utworzonej ruchem punktu. Ten ruch jeżeli ciągle będzie 
wjednymże kierunku, rzeczony punkt zrodzi nam liniją pro­
stej, (linea recta), jaką Fig. 1 pokazuje, jeżeli zaś kierunek 
tego ruchu w każdej chwili czyli ciągle zmieniać się będzie, 
pomyślany punkt zrodzi nam liniją krzywą (linea eurva), jak 
na Fig. 2. Linii prostej wszystkie części, albo lepiej wszyst­
kie punkta leżą w jednym i tymże samym kierunku; w linii 
zaś krzywej dwie obok siebie leżące cząstki mają różne kie­
runki; dlatego tćż każda cząstka linii prostej, jest także pro­
stą; gdy przeciwnie najmniejsza cząstka linii krzywej, ściśle 
mówiąc, nie może być prostą, ale krzywą; bo inaczej kieru­
nek ruchu, tęż liniją tworzącego punktu, zmieniałby się nie 
ciągle, lecz przeskokiem. A  że punkt w ruchu będący zmie­
niać może w bardzo różny sposób swój kierunek, przeto 
krzywych linij jest nieskończona liczba, kiedy prosta linija 
jest zawsze jedna i taż sama.

Ponieważ wszystkie punkta linii prostćj leżą w tymże 
samym kierunku, wypada więc z tego, iż każdą taką liniją 
wystawić sobie możemy przedłużoną dowolnie tak w jednę, 
jako też i drugą stronę, przez to bowiem przedłużenie, natury 
jój całkiem nie zmieniamy. Z takiego pojęcia linii prostej 
wypada również, iż ona jest najkrótszą odległością między 
dwoma danemi punktami, a następnie, że między dwoma punk­
tami jedna tylko prosta (tak w dalszym ciągu zwać będzie­
my najczęściej liniją prostą) przechodzić może; wszystkie bo­
wiem inne linije, jakie od jednego do drugiego punktu po­
prowadzić można, zbaczać będą mniej lub więcćj od kierun-
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ku prostej i z tego powodu będą albo linijami krzywemi, 
albo też z prostych złoźonemi czyli łamanemi, jak nam to 
przedstawia Fig. 3. Z  jednego punktu nieskończona jest licz­
ba moźebnych kierunków, dlatego też przez jeden punkt nie­
skończona liczba prostych przechodzić może. Z pojęcia ro­
dzenia się prostej wypada i ta prawda, że ponieważ na pro­
stej pomyśleć sobie można dowolnie jeden lub ilekolwiek 
punktów, każdą zatem prostą dzielić można na tyle i takich 
części, na ile i jakich się podoba.

Z linij krzywych najważniejszą, a zarazem najznajom- 
szą jest linija kołowa czyli jak zwyczajnie mówimy okrąg 
koła (periphaeria v. circumferentia circuli). Ma ona tę naj- 
walniejszą własność, iż każdy jej punkt jest w równej odległości 
od pewnego wśród niej leżącego punktu, a który z tego po­
wodu środkiem (centrum) nazywamy. Odległość każdego punk­
tu linii kołowej od środka, czyli co na jedno wychodzi, każ­
da prosta łącząca środek z którymkolwiek punktem okręgu, 
jak są proste SA, SB, SC i t. d. Fig. 4 zowie się promieniem 
(radius). Wszystkie zatem promienie jednejże linii kołowój 
są sobie równe. Z własności linii kołowej w jej definicyi wy­
rażonej, nastręcza się zaraz bardzo łatwy sposób jej wykre­
ślenia. Jeżeli bowiem otworzymy każdemu znane narzędzie 
cyrkiel i jednę jego nóżkę postawimy w punkcie, w którym 
ma być środek, jak tu w S, drugą zaś oprowadzać bę­
dziemy naokoło kreśląc nią na papierze lub stole liniją, 
dopóki nie powrócimy do punktu skąd kreślenie rozpoczęliś­
my, krzywa tym sposobem zakreślona, będzie liniją kołową; 
w każdem bowiem położeniu cyrkla koniec nóżki kreślącej, 
jest ciągle w jednejże odległości od punktu w którym druga 
stoi, a zatem według definicyi, każdy punkt zakreślonój krzy­
wej, jest w tejże samej odległości od środka. Odległość 
końców nóżek cyrkla, która mierzy w każdej chwili od­
ległość punktów krzywej od środka, jest właśnie to co wy­
żej promieniem nazwaliśmy.

Prostą przez środek przechodzącą i kończącą się w obu 
kierunkach na okręgu koła, nazywamy średnicą (diameter).
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Tak proste D E, FG, HI i t. d. są średnicami. Każda taka 
średnica co do swój długości równa się naturalnie dwom pro­
mieniom. A jako wszystkie promienie, których być może nie­
skończona liczba, są sobie równe, tak też i średnice są so­
bie równe, bo każda z nich równa się dwom promieniom. 
.Średnic także może być nieskończona liczba jako prostych 
przez jeden punkt przechodzących.

Każde ciało, według tego co wyżej powiedzieliśmy, ma 
koniecznie trzy wymiary, długość, szerokość i wysokość, 
czyli grubość, inaczej bowiem przestałoby być ciałem. Jeżeli 
w ciele nie uważamy na jego grubość, ale tylko mamy na 
celu jego długość i szerokość, t. j . jeżeli nas tylko jego kształt 
zajmuje, nie mając względu na grubość, ciało zniknąć musi 
a pozostaną w naszój myśli jedynie jego granice, które wy­
żej powierzchnią nazwaliśmy. Powierzchnia więc geometry­
czna jest to rozciągłość wzdłuż i wszerz. Te powierzchnie 
tak jak linije są albo proste czyli raczój płaskie (superficies 
piana) albo krzywe (superficies curva). Jak liniją tak rów­
nież powierzchnią mieć tylko można w myśli, ale jej ani 
widzieć a tem mniej nakreślić można.

' Płaskiej powierzchni czyli płasczyzny (planum) [tak 
bowiem w dalszym ciągu powierzchnią płaską nazywać będzie­
my] nie można także dać definicyi, można tylko podać nie­
które znamiona, po których ją  zawsze poznamy. Pierwszem 
i najwybitniejszem takiem znamieniem jest, że prosta przez 
dwa którekolwiek jej punkta poprowadzona, całkiem i wszyst- 
kiemi swemi punktami leży na płaszczyźnie. Drugióm zna­
mieniem płaszczyzny, lubo może potrzebującem dowodu, jest, 
że trzy punkta nie w jednym kierunku leżące, dokładnie 
wyznaczają położenie płaszczyzny, tak, że przez takie trzy 
punkta jedna tylko płaszczyzna przechodzić może; wszystkie 
bowiem inne przez też punkta poprowadzone, zmieszać się 
z pierwszą muszą, i stanowić jednę tylko płaszczyznę. Z po­
wodu że prosta mająca z płaszczyzną dwa punkta spólne, 
całkiem na niej leży, stolarze i inni rękodzielnicy próbując 
czyli deska, kamień lub inny przedmiot jest dokładnie płas-
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ko obrobiony, przykładają do tej powierzchni we wszystkich 
kierunkach linijał (znane narzędzie do prowadzenia czyli 
kreślenia linij prostych), a skoro tenże wszystkieini swemi 
częściami i w każdym kierunku przylega zupełnie do po­
wierzchni, mówią że jest dokładnie •płaską t. j. płaszczyzną. 
Wyobrażenie płaszczyzny może nam jeszcze dać powierzch­
nia wody w stawie spokojnie stojącej i najmniejszym wiatrem 
niezmarszczonej.

Tak poznawszy płaszczyznę po jej znamionach, każdą 
inną powierzchnią tych znamion nie mającą, nazywać będzie­
my powierzchnią krzywą. Ta znowu być może albo zupełnie 
albo po części krzywą, a po części płaską lub nareszcie z 
płaskich złożoną.

Jeżeli przy powierzchni nie mamy względu na jej dłu­
gość lub jej szerokość, ale tylko na jeden z tych wymiarów, 
pozostanie naturalnie w myśli naszej tylko granica powierzch­
ni w jednym z tychże kierunków. Granica ta jak już wiemy 
jest łiniją prostą lub krzywą.

Miejsce na płaszczyźnie lub w przestrzeni ze wszech 
stron ograniczone, nazywamy pospolicie figurą. A że takie 
miejsce, jak widzieliśmy, jest rozciągłe wzdłuż, szerz i gląbsz 
i jest przedmiotem Geometryi, zadaniem więc tej nauki bę­
dzie: znaleźć wielkość, położenie, kształt i kierunek figur geo­
metrycznych, tudzież figur zrodzonych ruchem lub obrotem 
pierwszych.

Miejsce na płaszczyźnie ograniczyć można linijami pro- 
stemi lub krzywemi, z tego powodu wszystkie takie figury 
nazywać będziemy płaskiemi (planae), pierwsze prostokreśl- 
nemi (rectilineae), drugie krzywokreślncmi (curvilineae). Prze­
strzeni nie można ograniczyć tylko powierzchniami, które 
także są jak widzieliśmy płaskie lub krzywe, a stąd powsta­
ją  ciała graniaste (polyedra) i okrągłe (rotunda).

Ponieważ położenie figury a w szczególności ciała, znajdu­
je  się szukając jego odległości od wiadomych punktów lub 
płaszczyzn,—  kształt zaś figury lub ciała zależy od położe­
nia szczególnych jego części,—  a ruch jest to zmiana poło-



7

żenią czyli miejsca,—  obrot nareszcie jest zmiana kierunku;— 
wszystkie zaś te wymogi mają za cel wyznaczenie wielkości 
w przestrzeni, przeto i zadanie Geometryi zwraca się do zna­
lezienia w każdym razie wielkości ilości ciągłćj w przestrzeni.

Dokładne poznanie ciała i jego właśności, rozumie się 
pod względem rozciągłości, zależy od poznanin jego granic 
czyli powierzchni, poznanie zaś tych ostatnich wymaga zno­
wu znajomości ich granic czyli linij; nie od ciał zatem po­
czynać musi Geometryja, ale od ilości najmniej złożonych 
t. j. od linij, potem przejść do powierzchni, a nakoniec od 
tych do samycliże ciał. Lecz widzieliśmy że linij a jest albo 
prosta, albo krzywa, uważając liniją łamaną, jak jest rzeczy­
wiście, za złożoną z prostych, a zatćm osobnego gatunku nie 
stanowiącą, Geometryja przeto zatrudnić się naprzód musi 
linijami prostemi. A  że powierzchnie ograniczone być mogą 
pierwszemi lub drugiemi linijami, przeto od prostych linij na­
turalne jest przejście do powićrzchni czyli figur prostemi o- 
graniczonych czyli do powićrzchni prostokreślnych, a potóm 
do powierzchni krzywemi linijami zamkniętych. Poznawszy 
własności tak pierwszych jako i drugich powićrzchni, zatru­
dnia się dopiero Geometryja ostatecznie ciałami. Nauka o li- 
nijach i powierzchniach płaskich t. j. na płaszczyźnie uwa­
żanych, stanowi Epifaneometryją (epiphaneometria) zwyczaj­
nie Planimetryją nazwana, nauka zaś o ciałach bądźto płas- 
kiemi, bądź krzywemi powierzchniami ograniczonych, Stereo- 
metryją. Dwie więc główne części ma Geometryja, z których 
każda ma swe poddziały. I tak Planimetryja mówi o linijach 
prostych i figurach takiemiż linijami ograniczonych, potćm 
o linijach krzywych i powierzchniach, również krzywemi li­
nijami zamkniętych. Stereometryja mówi naprzód o ciałach 
płaskiemi, a potćm krzywemi powierzchniami ograniczonych. 
W  tym ostatnim poddziale mówi tylko o trzech ciałach o- 
krągłych, które jak to na swojem miejscu zobaczymy, do 
elementarnej Geometryi należą.

W  każdej z tych części mówić najprzód będziemy o 
prawach, według których te ciągłe ilości powstają, a potćm o
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ich wzajemnych stosunkach pochodzących z ich między sohą 
połączenia. Łącząc ilości ciągłe między sobą, starać się bę­
dziemy wyznaczać nietylko ich wielkość, ale też ich poło­
żenie i kierunek.

Do dowiedzenia prawd wynikających z uważania ilości 
ciągłej, używa Geometryja albo wykreślenia (constructio) albo 
rachunku (calculus), albo jednego i drugiego razem. Ponie­
waż w pierwszym sposobie każda prawda przedstawiona jest 
zmysłom w osobnym rysunku, dla czego w wysokim stopniu 
działa na przekonanie nasze, zatem sposób ten jest najwła­
ściwszym do rozwinięcia zasadniczych twierdzeń Geometryi. 
Chcąc zaś ogarnąć wszystkie z dowodzoną spokrewnione praw­
dy, użyć musimy sposobu rachunkowego. A  że Geometryja 
wyprowadza każdą następną prawdę z poprzedzających, na 
jej przeto wydobycie łączyć musi z sobą już dowiedzone 
twierdzenia. W  tern zatrudnieniu postępuje się albo sposobem 
zbiorowym (synthesis), albo rozbiorowym (analysis). Zbiorowym 
sposobem postępuje się wtedy, gdy na udowodnienie jakiego 
twierdzenia zbiera się już poprzednio dowiedzione a tu swe 
zastosowanie mające i te się tak z sobą łączy, że twier­
dzenie będące przedmiotem dowodzenia, jest rzeczywiście wy­
padkiem tego połączenia. Postępuje się zaś sposobem roz­
biorowym (analitycznym), rozkładając rzeczone twierdzenie 
na części, każdą z tych udowodniając i nareszcie na całość 
wnioskując, że jeżeli części są prawdziwe i całe twierdzenie 
takiem być musi, a przeciwnie gdyby części były fałszywe, 
twierdzenie tćż fałszywem być musi.

Z tego opisania tak pomocy jako i sposobów w Geo­
metryi używanych jasno się pokazuje, że do wyłożenia po­
czątków, wykrćślenie ma niezaprzeczoną wyższość nad ra­
chunkiem; ale ten ostatni tak w dokładności jako tóż i w o- 
gólności przewyższa tamten; do wyższych więc prawd geo­
metrycznych, należy koniecznie z wykróśleniem łączyć ra­
chunek.

Co do sposobów wykładania prawd geometrycznych tak 
jeden jako też i drugi ma swoje zalety, i często jeden bez
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drugiego obejść się nie może; sądzę jednak, że na sposobie 
syntetycznym ksztaltci się umysł do analitycznego, który Geo- 
m et ryją posuwa do najwyższego ogólności stopnia, przedsta­
wiając zależność ilości ciągłych między sobą.

W  obecnem dziełku używać będziemy obu tych sposo­
bów, stosując nabyte w dwóch pierwszych częściach wiado­
mości rachunkowe do Geometryi. Dla nieprzerywania atoli 
ciągu naszych rozumowań, wyłożymy naprzód sposobem 
rysunkowym obie części t. j. Planimetryją i Stereometryją, 
czyli rozwiążemy pićrwsze zadanie Geometryi, jak się wyzna­
cza wielkość ilości rozciągłych. Potem przejdziemy do spo­
sobu rachunkowego, pokazując jak się wyznacza położenie 
i kierunek tychże ilości.

— emm— -



C Z Ę Ś Ć  I.

Epifaneometryj a (Planimetryj a).
r o z d z i a ł  i.

O linijach prostych i luzajemnem icli względem siebie położeniu.

§. Ł
Jak o każdej ilości samej w sobie uważanej nic więcej 

powiedzieć nie można, tylko że jest tem i taką, tak też o 
jednej linii prostćj więcej nad to co we wstępie powiedzie­
liśmy, ani wićmy ani powiedzieć możemy; chyba że obrawszy 
na jej kierunku dwa punkta, już tym sposobem z nieskoń­
czonej długość jej ograniczamy. Oznaczoną długość zwykliśmy 
mianować przez wymienienie jćj końców, na których zwyczaj­
nie głoski abecadła kładziemy. A tak zwyczajnie mówimy: 
prosta AB, Aa, Ab, ab, bB, i t. d. fig. 5 albo, długość AB, 
Aa, Ab, i t. d. Aby oznaczyć kierunek prostej, dosyć jest 
wymienić dwa którekolwiek na niej leżące punkta. Według 
tego Aa, A b, AB , ab, aB, bB, oznaczają jednę i tęź sarnę 
prostą AB.

Przy wyznaczaniu długości linii prostej nie dość jest 
mieć wzgląd na jej stosunek do innój długości, którą je­
dnostką albo miarą zwać będziemy, ale jeszcze uważać po­
trzeba i na jćj kierunek. Ponieważ kierunki są nieskończe­
nie różne, a każdy ma sobie wprost przeciwny, przeci­
wieństwo to koniecznie być musi względem jakiegoś pun­
ktu od którego iść można na tćjże samćj prostćj w jednym 
lub drugim kierunku, w prawo lub w lewo, naprzód lub w tył, 
które kierunki są rzeczywiście wprost sobie przeciwnemi. 
Punkt ze względu którego przeciwne sobie kierunki uważa­
my, nazywać zwykliśmy początkiem (origo). Jeżeli na tymże
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samym kierunku znajduje się jaki przedmiot np. po prawej 
ręce albo naprzód, tedy postępując w prawo lub naprzód, 
zbliżać się, idąc zaś w lewo lub wtył, oddalać się będziemy 
od tegoż przedmiotu; zbliżanie się więc i oddalanie od jakie­
go przedmiotu, są kierunkami wprost sobie przeciwnemu i 
dają ile mi się zdaje, wraz z powyższem w prawo i lewo 
bardzo naturalne pojęcie kierunków sobie przeciwnych. Ozna­
czywszy kierunek w prawo albo naprzód znakiem ( + ) ,  kie­
runek w lewo lub wtył znakiem ( — ) oznaczyć musimy i 
przeciwnie; temi bowiem dwoma znakami oznaczaliśmy także 
w Arytmetyce dwie sobie przeciwne ilości. Mieć więc bę­
dziemy i w Geometryi ilości dodatne i odjemne, wyrażające 
dwa wprost sobie przeciwne kierunki, jak to już wc wstępie 
do Arytmetyki widzieliśmy, a w ciągu obecnej części liczne 
przykłady różnych kierunków napotkamy.

§• 2-
Porównywając dwie proste między sobą, ponieważ każda 

z nich jest tylko długością i kierunkiem, więc też w tych 
tylko cechach różnić się od siebie mogą. Co dopiero po­
wiedzieliśmy, źc długość prostej wtedy tylko zajmować może 
naszą uwagę, kiedy ją  dwoma punktami ograniczamy, inaczój 
bowiem w obu kierunkach dowolnie przedłużoną być może. 
Wszelkie mierzenie jest porównywanie znanej ilości z nie­
znaną; jeżeli więc chcemy zmierzyć czyli poznać długość pro­
stej ograniczonej, do tego inaczej przyjść nie możemy, tylko 
biorąc dobrze nam znajomą lub też dowolną długość czyli 
inną prostą i tę przykładając do prostej mierzyć się mającej. 
Tym więc sposobem mamy do czynienia z dwiema prostemi. 
Chcąc porównać dwie proste AB i CD fig. 6 między sobą 
we względzie ich długości, co nie znaczy co innego, tylko 
że chcemy podać ile razy jedna jest dłuższą od drugiej, czyli 
wiele razy dłuższa AB mieści w sobie krótszą CD, tak po­
stępujemy: krótszą liniją za pomocą cyrkla przenosimy i od­
cinamy na dłuższej tyle razy ile się da np. 3razy; jeżeli z 
dłuższej prostój nic się nie zostaje, czyli jeżeli CD mieści 
się w AB zupełnie 3razy, powiemy wtedy że prosta AB jest
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3razy dłuższą niż CD, a w takim razie krótsza CD może 
służyć za miarę dla AB, i jeżeli CD jest znajomą długością 
np. sążniem, łokciem, stopą i t. d., długość AB znajdziemy 
też w znajomych miarach czyli jednostkach. Jeżeli zaś Cl) 
nie jest żadną znajomą miarą ale długością dowolną, tędy 
chociaż CD nie przestaje w obecnym przypadku być miarą 
prostej AB, wszelako tyle tylko z tego porównania wnieść 
możemy, że AB jest 3razy dłuższą niż CD, nie wiedząc nic 
o jć j długości.

Gdyby po odcięciu prostćj CD na AB 3razy, pozostał 
się jeszcze kawałek EB, powiedzielibyśmy że AB=z3CD -j-EB. 
Tę pozostałą długość EB przenosimy na CD znowu tyle razy 
ile się da, np. raz i zostaje kawałekFD, zatóm C D = E B -)-F D . 
Dalej ten ostatni kawałek FD przenosi się na poprzednią 
resztę EB tyle razy ile się znowu da, np. 3razy i zostaje GB, 
tedy podobnież powićmy że EB — 3FD -j- GB.
Postąpiwszy nareszcie z pozostałym kawałkiem GB wzglę­
dem FD tymże samym sposobem, przypuśćmy że się zupeł­
nie mieści 2razy, tedy nasze porównywanie tym sposobem 
już skończone, bo mamy: FD=z2GB
A że

E B = 3 F D  +  GB więc EB =  6GB +  GB czyli EB =  7GB 
Lecz

CD zzEB +  FD więc CD = 7 G B -f 2GB czyli CD =  9GB 
Nareszcie
A B = 3 C D  +  EB więc AB =  27GB +  7GB czyli AB — 34GB 
Wyrażenie to dwóch długości AB i CD znaczy, iż dłuższa 
AB mieści w sobie prostą GB 34, a krótsza CD 9razy. Je­
żeliby więc GB było np. calem albo inną znajomą miarą, 
powiedzielibyśmy że prosta AB zamyka 34, zaś CD 9 cali 
lub innych miar. Jeżeli zaś GB żadnej ze znajomych miar 
nie znaczy, uważaną tu wszelako będzie zawsze jako taka 
która dokładnie t. j. bez pozostawienia reszty, mierzy tak 
AB jako i CD. Taką długość spólną dwom lub więcej pro­
stym nazywać będziemy jednostką lub spólną miarą, a mia­
nowicie spólną największą miarą (maxima communis mensura).
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Same proste w takim razie nazywać się będą spótrniememi 
(commensurabiles), a powyższe postępowanie szukaniem spól- 
nej największej miary. Źe ta spoina miara jest największą 
jaką proste AB i CD mają, przekonywa nas o tern samo 
postępowanie. Chcąc poznać stosunek dwóch długości AB i 
CD mamy:

AB _  34GB _  34 
C U -  9GB “ IT

t. j. stosunek tych długości jest wyrażony w liczbach, jak 
też natura rzeczy wymaga.

Uważać tu potrzeba, że otrzymany stosunek w liczbie 
ułamkowej jest zawsze takim, iż dwa jego wyrazy są liczbami 
pierwszemi między sobą. Gdyby bowiem było inaczej t. j. 
gdyby licznik i mianownik znalezionego stosunku, miały ja ­
kiego spólnego dzielnika, tedy wyraziwszy ogólnie ów sto­

sunek przez — a spólną największą miarę przez d mielibyś­

my w naszym przypadku J = G B , ABz=pd , CDzrq,i a na- 
AB _  p j __p

q<f
stępnie . Gdyby więc p i q miały jakiego

CD q j q
spólnego dzielnika m, mielibyśmy też AB— pmrf, CD=qmrJ 
a w takim razie nie d ale md byłoby spólną największą mia­
rą dwóch prostych AB i CD, co się sprzeciwia tak definicyi 
jako tóż i postępowaniu naszemu w szukaniu tej spólnej naj­
większej miary. Często wyrażając długość prostej piszemy 
ją przez skrócenie w liczbach tak np. A B —34, CD— 9; sko­
ro się jednak z uwagą nad temi wyrażeniami zastanowimy, 
dostrzeżemy iż są niedorzeczne chociaż prawdziwe. Lubo bo­
wiem prosta AB zamyka rzeczywiście 34 takich części ja ­
kich CD zamyka 9, pisząc atoli w ten sposób, wyrażamy, 
że linija AB równa się liczbie 34, co jest wielką niedorzecz­
nością, bo różnorodne ilości nie tylko równe, ale nawet ża­
dnego stosunku między sobą mieć nie mogą. Dla tego też 
jeżeli się kiedy tego sposobu pisania używa, pamiętać zawsze 
potrzeba, że przy liczbie domyślna jest długość wzięta za 
miarę czyli jednostkę.
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Jeszcze i na to nie zawadzi zwrócić uwagę, że przez 
mierzenie, zamieniliśmy każdą z powyższych dwóch prostych 
na ilość krotną, co nas dowodnie przekonać może, iż każda 
ilość ciągła sposobem poprzedzającemu podobnym lub innym 
mierzona, przechodzi na ilość krotną, kiedy odwrotny przy­
padek nigdy miejsca mieć nie może.

§• 3.
Jeżeli postępowanie w szukaniu spólnej największej 

miary dwóch prostych dobrze rozważymy, dostrzeżemy bez 
trudności, że zupełnie odpowiada szukaniu spólnego najwięk­
szego dzielnika dwóch liczb całkowitych w Arytmetyce. Je­
dyna tylko zachodzi różnica w wypadku, iż działanie aryt­
metyczne jakkolwiekby było długiem, kończy się nareszcie 
w każdym przypadku, gdy przeciwnie w szukaniu spólnój 
największej miary dwóch prostych, nie rzadko wydarzyć się 
może, iż działanie przenoszenia pozostałego kawałka na po­
przedzający, nigdy się nie skończy (rozumie się nie mecha­
niczne ale umysłowe działanie). W  Arytmetyce bowiem ko­
niecznie przyjdziemy kiedyś do reszty zero, gdy w działa­
niu geometrycznem może być przypadek iż nigdy takiej 
reszty nie otrzymamy. Cóż za przyczyna tej osobliwości? 
Nie inna zaiste tylko ta, że, jak wiadomo, w działaniu aryt- 
metycznem t. j. w dzieleniu, zawsze większej przez mniejszą 
liczbę, konieczny warunek dobrego ilorazu jest, iżby reszta 
z odjęcia cząstkowego iloczynu z ilorazu przez dzielnik otrzy­
manego, wypadła przynajmniej o 1 mniejsza od dzielnika; 
tu więc reszty mają swoje granice oznaczone, których nigdy 
przestąpić nie mogą; w działaniu zaś geometrycznem nie 
masz takich granic, bo .się oznaczyć nie dadzą; tu bowiem 
tak dzielnik jako też i dzielna są ilościami ciągłemi a zatem 
bez końca podzielnemi. Z tego powodu, lubo tak w postę­
powaniu geometrycznem jak i w arytmetycznem, każda na­
stępna reszta będzie rzeczywiście mniejszą od poprzedzają- 
cój, atoli w Arytmetyce dojdziemy kiedyś do reszty 1, na­
stępna zaś koniecznie musi być zero, bo 1 jest spoiną miarą 
wszystkich liczb całkowitych, sama nie będąc przez żadną
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podzielna, gdy tym czasem przy linijaeh nie przyjdziemy 
nigdy do reszty którejby już dalej dzielić nie można; jest to 
bowiem własnością ilości ciągłych, iż bez końca dzielone być 
mogą, gdyż nie mają jednostki zasadniczej jak liczby cał­
kowite. Jeżeli się więc taki przypadek wydarzy, nie będzie­
my mogli podać dokładnie stósunku dwóch długości jak nam 
się wyżej udało. Gdy jednak posuwając coraz dalej działa­
nie, każda następna reszta staje się mniejsza od poprzedza­
jącej, zatem możemy się tym sposobem dowolnie zbliżyć do 
prawdziwego stósunku; bo ostatecznie spoina największa miara 
mniej się będzie różnić od prawdziwej, niż wszelka jakkol­
wiek mała ilość. Możemy nawet, używając ułamków cią­
głych, ocenić błąd jaki popełniamy biorąc jednę z reszt za 
spoiną największą miarę. Taki stosunek nazywamy w Aryt­
metyce jak wiadomo nieioyviiernym (irrationalis), w Geome- 
tryi zaś dwie podobne proste, nazywają się pospolicie nie- 
spółmiernemi (incommensurabiles), bo rzeczywiście nie mają 
żadnej spólnej miary.

Wszystko dotąd o dwóch prostych powiedziane, pro­
wadzi nas do tej prawdy, iż aby długości pod rachunek pod­
ciągnąć można, wyrazić je  potrzeba w liczbach, czyli przez 
mierzenie zamienić na ilości krotne. Ze na ten koniec obiera 
się pewną znaną lub dowolną długość za jednostkę i z tą 
porównywa się długości pod rachnek podciągnąć się mające, 
a w takim przypadku mieć będziemy do czynienia z samemi 
stos tnkami czyli liczbami; bo każda liczba wryrażać nam bę­
dzie stosunek długości do obranej jednostki. Tak w §. 2. 
Gdyby CD mieściła się zupełnie w AB np. m razy, mogli­
byśmy napisać AB — m.CD =  m .l, biorąc CD za jednostkę,

albo krócej AB =  m t. j. AB
CD

AB
- r = m>

gdzie liczba m,

jak naocznie widzimy, wyraża stosunek długości AB do CD 
za jednostkę obranej. Jeszcze atoli raz powtarzam, iż pisząc 
AB =  m, pamiętać potrzeba iż to tylko jest sposób skrócony 
pisania, inaczej bowiem wpadlibyśmy na tę niedorzeczność, 
iż długość równać się może liczbie.
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Ponieważ o dwóch prostych razem uważanych, we wzglę­
dzie ich długości nic więcej powiedzieć nie można, przeto 
przystąpmy do drugiej cechy, mogącćj proste od siebie róż­
nić t. j . do kierunku; w tej atoli części Geometryi rozumieć 
zawsze będziemy proste na jednćjże płaszczyźnie leżące.

Dwie proste mogą tylko mieć albo tenże sam kierunek, 
albo mniej lub więcej od niego zbaczać. Dwie proste na 
jednej płaszczyźnie leżące i mające tenże sam kierunek, na­
zwiemy równoległemi (parallelae); a że proste, skoro ich dłu­
gości nie oznaczamy, czyli nie ograniczamy, uważamy w obu 
kierunkach do nieskończoności ciągnące się, przeto będąc 
w całym swym ciągu jednegoż kierunku, nigdzie się z sobą 
spotkać nie mogą. Jeżeli zaś dwie proste mają różne kie­
runki, te w nieskończenie rozmaity sposób zmieniać mogą. 
O takich prostych mówić będziemy że do siebie są nachy­
lone. Pod wyrazem nachylenie, nie co innego wystawić sobie 
możemy, jak zbliżanie się (convergentia) do spotkania czyli 
przecięcia się z sobą w jednym kierunku; W  przeciwnym 
więc kierunku musi być naturalnie ich oddalanie się od sie­
bie (divergentia). Nachylenie do siebie dwóch prostych jest 
rzeczywiście większem lub mniej szem ich zboczeniem od te­
goż samego kierunku; wyrażenia więc: różność kierunków, 
nachylenie i przecięcie się dwóch prostych, jedno i toż samo 
znaczą.

Skoro dwie proste AB i AC fig. 7. zbaczają od jedne­
goż kierunku, a jeszcze kierunek jednej z nich np. AB weź­
miemy za stały, tedy druga AC różnić się koniecznie musi 
o pewną ilość od kierunku prostej AB. Tę tedy różnicę ich 
kierunków nazywamy kątem (angulus). Takie dwie proste 
nieskończonej długości pomyślane, przetną się z sobą i to 
w jednym tylko punkcie; gdyby bowiem miały dwa przynaj­
mniej punkta spólne, jużby, według tego co we wstępie 
powiedzieliśmy, były jedną i tąż samą prostą. Otwartość 
więc prostych AB i AC która różnicę ich kierunków oznacza, 
daje nam jaśniejsze pojęcie kąta, jaki te proste czynią między

§• 4.
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sobą. Samo proste AB i AC zowiemy ramionami (crura), a 
punkt A w którym się przecinają, wierzchołkiem kąta (ver- 
tex anguli). A że kierunki prostych kąt czyniących nie za­
leżą od ich wielkości czyli długości, bo te tak w najmniej­
szych cząstkach, jako też i w nieskończonych prostych są 
zawsze jednakowe, przeto wypada stąd, iż wielkość kąta cał­
kiem nie żależy od długości jego ramion, i że jedynie za zmia­
ną kierunku prostych kąt tworzących zmienia się też kąt. 
Kąt oznacza -się i czyta trzema głoskami kładąc dwie na kie­
runkach ramion a trzecią w wierzchołku. W  czytaniu, głos­
ka u wierzchołka stojąca kładzie się zawsze w środku, tak 
np. czyta się kąt BAC lub CAB. Jeżeli przy punkcie A nie 
masz więcej kątów oprócz kąta BAC, można go też prze­
czytać wymawiając tylko głoskę stojącą w wierzchołku; jeżeli 
zaś przy tymże samym punkcie jestwięcćj kątów, można jednak 
i w takim przypadku kąt oznaczyć jedną głoską kładąc ta­
kową między jego ramionami w bliskości wierzchołka. Tak 
np. powyższy kąt można naznaczyć i przeczytać jak wyżej 
BAC, albo A, albo nareszcie « .

§. 5.
Przypuściwszy że ramię AC Fig. 8 ma położenie ra­

mienia AB, w takim razie dwie te proste stanowić będą je- 
dnę AB i żadnego kąta tworzyć nie będą, albo jak często 
mówimy czynią między sobą kąt zero. A skoro pomyślimy 
że prosta AC, obracając się około punktu A, zacznie coraz 
więcćj zbaczać od kierunku prostej AB, kąt jaki tworzą mię­
dzy sobą coraz bardziej rosnąć będzie. Tak np. jeżeli pro­
sta AC weźmie położenie względem AB takie jak jest na 
figurze, kąt jaki czynią między sobą jest BAC; przyszedłszy 
w swym obrocie do położenia AC', AC", AC’", i t. d. po­
nieważ przez te nowe położenia prostej AC, zmienił się jśj 
kierunek względem AB, zmienił się więc i kąt jaki czynią 
między sobą, bo ten jest różnicą ich kierunków. Tak kąt 
BAC' >  BAC, bo różnica kierunków prostych AB i AC' jest 
większą niż różnica kierunków AB i AC. Podobnież kąt
BAC" >  BAC a tern bardziej BAC” >  BAC, bo różnica

2
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kierunków AB i AC" jest większą niż AB i AC' a tćm bar­
dziej większą niż AB i AC i t. d. Przypuszczając iż prosta 
AC obraca się w przeciwnym kierunku około punktu A t. 
j.  w stronę ku B i bierze położenie AD, A D ’, w takim razie 
kąt BAC zmieniać się także będzie, ale w przeciwnóm pierw­
szemu rozumieniu t. j. jak w pierwszym razie zmieniając się 
rósł, tak tu maleć będzie. Skoro więc kąt, jaki dwie proste 
czynią z sobą, może się powiększać lub zmniejszać nie tra­
cąc nic z swej natury, zatem przekonywamy się, że kąt jest ilo­
ścią. A  jeżeli jeszcze zgodzimy się przyjąć prostą AB za 
kierunek względem którego inne kierunki uważamy, tudzież 
kierunek obrotu prostej AC od AB w stronę ku C, C', C", 
i t. d. przyjmiemy za kierunek w którym kąty rosną, prze­
ciwny temu t. j.  w stronę ku C ,, C „, C ,„ , i t. d. będzie 
kierunkiem w którym kąty maleją. Naocznie bowiem widzi­
m y, iż jeżeli ramię AC weźmie położenie jak AD, AD', it. d. 
kąt BAD<c.BAC, kąt BAD'<^BA D a tern bardziej BAD'*cBAC. 
Gdy ramię AC w obrocie swoim przyjdzie do położenia AB, 
kąt będzie =: 0. Niech prosta AC nie wstrzymując się w swo­
im obrocie, przyjdzie do położenia AC,, tedy kąt BAC,, ze 
względu prostej AB, którą zupełnie tak sobie wystawić na­
leży jak ów punkt na prostćj któryśmy początkiem nazwali, 
jest rzeczywiście kątem w przeciwnym pierwszemu kierun­
kowi uważanym. A że przeciwne kierunki zgodziliśmy się 
wyrażać dwoma znakami (-+-) i ( —), przeto jeżeli pićrwszym 
kątom przyznamy znak ( + ) ,  drugie jako leżące z przeci­
wnej strony prostćj A B , oznaczymy drugim z rzeczonych 
znaków t. j. (— ) i tym sposobem mieć będziemy kąty do- 
datne i odjemne jako ilości.

§ . 6.
Jeżeli dwie różnego kierunku proste AB i CD Fig. 9, 

uważać będziemy jako ciągnące się bez końca, te przeciąw- 
szy się z sobą w punkcie E , uczynią naturalnie dwa kąty 
BEC i AEC po jednej, a dwa inne BED i AED po dru­
giej stronie prostej AB. Zastanówmy się tylko nad dwoma 
pićrwszemi. Ponieważ te kąty powstają z różnicy kierunku
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prostćj EC względem AB, wniesiemy stąd, że ile razy się 
dwie proste przecinają, powstają nam zawsze dwa różne ką­
ty, między któremi z tego powodu zachodzić koniecznie mu­
si pewien związek; związek ten odnosić się jedynie może do 
ich wielkości. Jakoż dwa te kąty mogą tylko być równe lub 
nie równe. W  przypadku nierówności, zawsze jeden jest na­
turalnie mniejszy, drugi większy; mniejszy nazywa się kątem 
ostrym (angulus acutus), większy zaś rozwartym (obtusus). 
Ale widzieliśmy wyżej, że odsuwając czyli raczćj obracając 
ramię EC koło punktu E , czyli co na jedno wychodzi roz­
wierając coraz bardziej ramiona kąta BEC, kąt ten rosnąć, 
a w naturalnćm następstwie kąt AEC maleć będzie, bo jak 
powiedzieliśmy z tamtym jest w związku. Jest więc konie­
cznie jedno położenie, ale tylko jedno, dla ramienia EC ta­
kie jak E F , żc oba kąty BEF i AEF są między sobą ró­
wne. Takie kąty nazywają się prostemi (recti), a położenie 
prostej EF względem Ali prostopadłe lub pionowe; sarnę zaś 
prostą EF takie położenio względem AB mającą, nazywać 
będziemy prostopadłą lub pionową (perpendicularis), a punkt 
E w którym spotyka prostą AB, nazwiemy spodkiem prosto­
padłej. Ogólniej nazywamy punkt E rzutem (projectio) któ­
regokolwiek punktu na prostopadłej EF wziętego, jak jest 
np. punkt F. Nawzajem też prosta AB jest prostopadłą do 
EF, bo czyni z nią dwa kąty po jednejże jej stronie leżące 
równe. Każdą inną prostą, różne od tej ostatniej położenie 
względem AB mającą, nazwiemy pochyłą (obliąua). Gdyby 
ramię EC jeszcze dalej swój obrót odbywało i przyszło do 
położenia EG, znowu kąty staną się nierówne ale przeciwnie 
bo kąt BEC będąc mniejszym od kąta AEC, przeszedłszy 
na kąt BEG, stał się teraz większym niż kąt AEG, który 
taż sama prosta EG tworzy z prostą AB. Skąd się poka­
zuje, że kąt ostry zawsze jest mniejszy od prostego, a roz­
warty większy. Jeżeli się dwom takim kątom jak BEC i 
AEC, albo BEF i AEF, lub nareszcie BEG i AEG z uwagą 
przypatrzymy, dostrzeżemy zaraz, że jedno ramię (EC, EF, 
EG) mają spólne, drugie zaś ich ramiona (EB, EA) leżą w

2.
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w jednymże kierunku; oprócz tego mają oba wićrzchołek w 
tymże samym punkcie. Takie to dwa kąty nazywać będzie­
my przyległemi (anguli adjacentes v. deinceps positi). Kąty 
więc przyległe są te, które mają wierzchołek spoiny 10  jednym­
że punkcie, ramię jedno spoinę, a drugie ramię jednego, jest 
przedłużeniem drugiego ramienia kąta drugiego czyli oba te 
ramiona leżą na jednej prostej.

Z tego co się o kątach przyległych powiedziało, łatwo 
sobie utworzyć wniosek, że tylko kąty proste są zawsze je ­
dne i też same t. j. sobie równe, kąty zaś tak ostre jako i 
rozwarte nieskończenie być mogą różne.

Samo spojrzenie na figurę daje nam poznać, że cokol­
wiek powiedzieliśmy o kątach BEC i AEC, wszystko to ro­
zumie się także o kątach BED i AED z drugiej strony pro­
stej AB leżących. Przypatrzywszy się dobrze tym eztćrem 
kątom, zaraz dostrzeżemy, żo ramiona każdego z nich są 
przedłużeniami ramion jednego z trzech pozostałych kątów. 
I tak: ramię EA jest przedłużeniem ramienia BE, ramię ED 
przedłużeniem ramienia CE, a nareszcie E B , przedłużeniem 
ramienia AE, a EC przedłużeniem ramienia DE. Skoro się więc 
dwie proste przecinają, tworzą zawsze cztery kąty, z których 
dwa a dwa takie, iż ramiona jednego są przedłużeniami ra­
mion drugiego kąta, jak są kąty BEC i AED, tudzież AEC 
i BED, nazywać będziemy kątami wierzchołkiem przeciwle- 
głemi (anguli ad yerticem oppositi), albo krócćj: kątami wierz- 
chołkotcemi (a. verticales). Tak tedy dwie proste przecinające 
się, tworzą dwie pary kątów przyległych i dwie pary kątów 
wićrzchołko wy cli.

§• 7.
Widzieliśmy że kąty przyległe są w takim z sobą związ­

ku, że zawsze jeden jest mniejszy drugi większy. Związek 
ten może mieć nieskończenie wiele zmian, nie co do istoty 
ale co do wielkości każdego z kątów; jeden tylko jest przy­
padek, jak to już także widzieliśmy, gdzie te kąty są mię­
dzy sobą równe t. j. proste. Pomimo tak licznych zmian 
jakim oba kąty podlegać mogą, jest wszelako jedno znamię
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z którego znając jeden z nich, drugi zaraz poznamy. Tem 
łatwo dostrzeżonem znamieniem jest to, że oba kąty przyle­
głe czynią razem dwa kąty proste. Skąd wypada, że jeżeli 
dwa kąty, mając jedno ramię spólne, czynią razem dwa kąty 
proste, drugie ich ramiona muszą być w linii prostej; tudzież 
że dwa kąty są sobie równe, jeżeli im przyległe są także 
między sobą równe, bo każdy z przyległym sobie, czyni dwa 
kąty proste. Dlatego to dwa kąty wierzchołkowe są sobie 
równe, gdyż na figurze poprzedzającej kąt BEC ma sobie 
przyległy CE A , jak równie kąt AED ma sobie przyległy 
tenże sam kąt CEA. Co do drugiej pary kątów wierzchoł­
kowych t. j. kątów AEC i BED, mamy tenże sam przypa­
dek, że kąt AEC ma sobie przyległy kąt BEC i tenże sam 
kąt jest przyległym kąta BED; przeto AEC musi być rów­
nym kątowi BED, bo każdy z nich czyni z tymże samym 
kątem dwa kąty proste. Kąty przeto wierzchołkowe zaiosze 
sobie są równe.

Z tego co w tym §. powiedzieliśmy o kątach przyle­
głych i wierzchołkowych, wypada naturalny wniosek, iż na­
rysowawszy ilekolwiek kątów po jednej stronie prostej AB 
lecz tak, iżby wszystkie miały wierzchołek spólny w jednym- 
że punkcie E , kąty te razem wzięte nie więcej uczynią jak 
dwa kąty proste. A że po drugiej stronie tejże prostćj jest 
toż samo, -więc około jednego punktu jest nie więcej, ani 
mniej, jak cztery kąty proste, t. j. narysowawszy tyle kątów 
ile się podoba, lecz tak iżby wszystkie miały wierzchołek 
spólny, summa ich koniecznie czyni cztery kąty proste. Bo 
przedłużywszy którekolwiek ramię nieograniczenie, znajdzie­
my się zawsze w tym przypadku, że po jednej stronie tak 
przedłużonego ramienia summa wszystkich kątów czynić bę­
dzie dwa, a po drugiej znowu dwa kąty proste.

§• 8.
Przekonajmy się teraz, że z kątami tak jak z ilościami 

wszystkie działania arytmetyczne odbywać można. Niech 
kąty AOB, BOC, COD, DOE i EOF Fig. 10 będą między 
sobą równe, tedy ponieważ
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AOC =  AOB - f  BOC -  2AOB 
A O D = AOC - f  COD -  2AOB - f  COD =  3 AOB 
AOE =  AOD -j- DO E= 3AOB - f  D O E= 4  AOB 
AOF =  AOE 4 -  EOF =  4 A O B -fE O F  =  5 AOB 

i t. d.
przeto widzimy że każde dwa kąty mające jedno ramię spoi­
nę i wierzchołek w jednymże punkcie, jak np. dwa kąty 
AOB i BOC, mające ramię OB spólne i wierzchołek w punk­
cie O, można do siebie dodać. Można tćż podobne kąty od 
siebie odjąć; bo wziąwszy dwa 'kąty AOC i BOC mające 
ramię OC spólne, jeżeli sobie wystawimy że toż spólne ra­
mię OC obraca się około punktu O zbliżając się do OA, 
skoro w obrocie swoim weźmie położenie prostćj OB czyli 
spólnego ich ramienia, kąt AOC zamieni się na AOB czyli 
stanie się różnicą między AOC i BOC. Dalćj widzimy że 
np. kąt AOE jest cztćry razy większy od kąta AOB, i że 
tenże kąt AOB jest */5 kąta AOF czyli AOE —  4 X  A O B , 

AOFzaś A O B ~ ---------Stąd wypada, że kiedy sobie zawsze po-
5

myśleć można kąt 2, 3, 4 . . . razy większy niż kąt dany, 
można też wzajemnie pomyślić sobie kąt 2, 3, 4 . . . razy 
mniejszy, t. j. że każdy kąt można tak mnożyć, jako też i 
dzielić.

Jeżeli dwóch kątów chcemy znaleść stósunek, postępo­
wanie jest zupełnie podobne, jak przy linijach prostych, t. 
j. chcąc znaleść stosunek dwóch kątów AOB i aob, Fig 11. 
Kąt mniejszy aob przenosimy na większy układając go w 
ten sposób, iżby wierzchołki o i O przypadły na siebie, tu­
dzież ramię o a padło na ramię O A ; w takim razie ramię 
ob weźmie położenie O //; a zdjąwszy ten kąt i położywszy 
go drugi raz tak, iżby zachowując tenże sam wierzchołek, 
ramię oa padło na Ob', ramię ob w tćm nowem położeniu 
weźmie kierunek prostej Ob"; powtórzywszy takież samo 
przeniesienie, ramię ob pójdzie w kierunku Ob"'; kąt więc 
AOB zamyka kąt mniejszy aob trzy razy i pozostawia resz­
tę h’"OB. Z tą resztą postąpiwszy tymże samym sposobem,
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przenosząc ją  podobnież na kąt aob i układając tak, żeby 
Ob'" przypadło na o a i punkt O na o, ramię OB niech weź­
mie położenie prostej ob,, a przeniósłszy jeszcze raz tenże 
kąt, niecli w tern drugiem położeniu ramię OB padnie na 
ramię ob; w takim razie, według tego co było wyżej, będzie 

aob —  2//"OB
AOB 3aob-f- ó " ’O B = 6 ó '"O B  -j- ó"'OB =  7ó'"OB 

skąd wniesiemy że kąt //"O B  jest spoiną największą miarą
AOB 7b” 'OB 7_

~2
kątów AOB i aob, a ich stosunek jest- _

aob 2b' OB
Kąt ten ó'"OB uważać tu można za jednostkę kątową. Gdy­
by aob mieścił się był dokładnie w AOB np. cztery razy, 
kąt ten aob byłby sam spoiną miarą. Kąty takie jak tu 
AOB i aob, nazywają się także spółmiememi; być bowiem 
może przypadek, że posuwając jak najdalej powyższe postę­
powanie, nie dojdziemy do spólnej miary, a wtedy dwa kąty 
będą niespólmierne.

Uwaya. Skoro się w dalszym ciągu przekonamy, że lu­
ki okręgu koła są miarami kątów, poznamy także żc działa­
lne z kątami przenoszenia jednych na drugie zastąpionem 
być może przez daleko łatwiejsze działanie z lukami też ką­
ty mierzącemi.

§• 9-
W  pićrwszych trzech §§. poznaliśmy jeden gatunek ilo­

ści ciągłych t. j . długości czyli linije i widzieliśmy iż chcąc 
takowe pod rachunek podciągnąć, potrzeba było pewną zna­
jomą lub dowolną długość obrać za jednostkę i z tą poró­
wnać wszystkie inne długości, skąd nam wypadły ich sto­
sunki do jednostki czyli liczby,*z któremi wszystkie rachun­
ki wykonać możemy. W  następnych §§. poznaliśmy znowu 
nowy gatunek ilości t. j . kąty. Aby kąty pod rachunek pod­
ciągnąć, należy je także wyrazić w liczbach. Na ten koniec 
obrać potrzeba jednostkę, i z tą wszystkie kąty porównać, 
z czego otrzymamy icli stosunki do jednostki czyli liczby. 
A jako przy mierzeniu długości jednostka była także długą 
czyli liniją, tak tćż do mierzenia kątów jednostka być musi
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tegoż samego gatunku t. j. kątową czyli kątem. A że w §. 
6 przekonaliśmy się, że tak kąty ostre, jako też i rozwarte 
mogą być nieskończenie różne, i że tylko kąty proste są 
stale między sobą równe, zatem najnaturalniejszą jest rzeczą 
taki kąt stały a nie inny obrać za jednostkę kątową. Poró- 
wnywając więc kąty ostre i rozwarte z prostym, starać się 
potrzeba podać w liczbach jaką częścią jest każdy z nich 
względem kąta prostego. Dla tćm łatwiejszego atoli porów­
nywania i prędkiego dostrzeżenia stosunku dwóch lub wię­
cej kątów, podzielono kąt prosty na 90 części równych na­
zwanych stopniami; każdy stopień na 60 części równych i 
te nazwano minutami a nareszcie każdą minutę na 60 części 
także równych, które się sekundami nazywają. Dalsze jesz­
cze drobniejsze podziały, które jako w ilości ciągłej, do nie­
skończoności posunąć można, dla nadzwyczajnej swej dro- 
bności nie są w używaniu. Chcąc według tej ugody ozna­
czyć wielkość kąta, dosyć jest wyrazić go w stopniach, mi­
nutach i sekundach, a czasem dziesiętnych i setnych czę­
ściach sekundy. Z takiego wyrażenia kąta przez liczbę sto­
pni, minut i sekund, zaraz sądzić można o jego wielkości 
czyli stosunku do jednostki t. j. do kąta prostego. Dla osz­
czędzenia tak miejsca, jako też i czasu w pisaniu, znaczymy 
stopnie przez (°), minuty (') a sekundy (") u góry z prawej 
strony tak stopni, jako tćż minut i sekund położone. Tak 
47°, 53', 25" czyta się 47 stopni, 53 minuty i 25 sekund. 
Według tejże ugody kąty przyległe czynią 180°, w około je ­
dnego punktu jest 360°. Kąt prosty często i pospolicie zna­
czą autorowie przez głoskę R (rectus) więc R —90°, i80°=:2R, 
360°=4R.

Każdy kąt miejszy od 2R czyli od 180° nazywa się 
wklęsłym (concavus), większy zaś wypukłym (convexus). 
Z dwóch kątów przyległych, każdy nazywa się spełnieniem 
drugiego (supplementum) do dwóch kątów prostych, a w o- 
gólności dwa kąty są spełnieniem jeden drugiego, jeżeli w 
summę wzięte czynią i 80° czyli 2R. Jeżeli zaś dwa kąty
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w summę wzięte czynią 90° czyli kąt prosty, natenczas jeden 
drugiego nazywa się dopełnieniem (eomplcmentum).

§ .  10.
Kiedy dwie proste przecinające się czynią kąt, który 

jest różnicą ich kierunków, zatem proste równoległe czyli 
mające tenże sam kierunek nigdzie się z sobą przecinać a 
następnie tworzyć kąta nie mogą, jak to już w §. 4 wspo­
mnieliśmy.

Jeżeli dwie taki o proste AB i CD Fig. 12 przetniemy 
trzecią EF, którą sieczną (secans) zwać będziemy, powstają 
nam z tego przecięcia różne a bardzo ważne kąty, które dla 
tój ważności mają nawet szczególne swe nazwy. A naprzód 
wszystkie kąty po jcdnćj stronie siecznej leżące, jak są kąty 
FHB, BHE, FGD i DGE, nazywają się jednostronne (anguli 
ad eandem partem positi); toż samo ma się rozumieć o ką­
tach z drugiej strony siecznej. 2°. Takie kąty jak BHE i 
D G F , tudzież AHE i CGF, nazywają się wewnętrznemi (a. 
interni) jako leżące wewnątrz równoległych. 3°. Kąty FHB 
i DGE, jako też AHF i CGE nazywamy zewnętrznemi (a. 
externi) bo leżą zewnątrz równoległych. 4°. Dwa kąty we­
wnętrzne lub zewnętrzne, jeden z jednej a drugi z drugiej 
strony siecznej, jak są kąty BHE i CGF, albo AHE i DGF, 
tudzież BHF i CGE lub AIIF i DGE, zowiemy kątami na- 
przemianległemi (a. alterui) a mianowicie pićrwsze dwie pa­
ry są naprzemianległe wewnętrzne (alterni interni), drugie zaś 
dwie pary naprzemianległe zewnętrzne (alterni externi). 5°. 
Dwa kąty jednostronne, jeden wewnętrzny a drugi zewnętrz­
ny naprzeciwko siebie położone, jak są kąty BHF i DGF, 
albo BHE i DGE, jak również kąty AHF i CGF albo AHE 
i CGE, zowią się kątami odpowiadającemi sobie (a. corres- 
pondentes v. oppositi).

T w ie r d z e n ie . Jeżeli dwie proste równoległe przecina 
trzecia, tedy czyni z niemi 1° kąty jednostronne odpowiadają­
ce sobie równe; 2" kąty naprzemianległe tak wewnętrzne mię­
dzy sobą, jako i zewnętrzne także między sobą równe; 3° sum­
mę kątów jednostronnych wewnętrznych, jako też summę kątów
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jednostronnych zewnętrznych, każdej, równą dwom kątom pro­
stym. I  nawzajem, jeżeli którakolwiek z trzech tych własności 
będzie dowiedziona, dwie proste będą równoległe.

Niech prosta EF przecina dwie równoległe AB i CD 
w punktach II i G, tedy z tego przecięcia powstają kąty jak 
je  co dopiero wymieniliśmy; mamy naprzód dowieść że któ­
rekolwiek dwa kąty jednostronne odpowiadające sobie są 
równe.

Ponieważ proste AB i CD mają tenże sam kierunek, 
bo z założenia są równoległe, przeto z trzecią EF mając tęż 
sarnę różnicę kierunków, czynić muszą kąty równe, miano­
wicie zaś kąty zawarte między jednoimiennemi kierunkami. 
A  tak kąty jednostronne odpowiadające sobie są równe t. j. 
kąt B H F m D G F ; ramiona bowiem tych kątów są jednokie­
runkowe. Z  równości kątów BUF i DGF wypada, że też dwa 
kąty im przyległe BIIE i DGE jak równie i inne dwa przy­
legło AHF i CGH są sobie równe, a nareszcie ich kąty 
wierzchołkowe AIIE i CGE są także równe według §. 7. 
Każda z trzech tych ostatnich par, są również kątami odpo- 
wiadającemi sobie i także między jednoimiennemi kierun­
kami zawarte. W  każdym więc przypadku gdy dwie proste 
równoległe przecina trzecia, kąty jednostronne odpowiadające 
sobie są równe i nawzajem, skoro kąty jednostronne odpo­
wiadające sobie są równe, proste są równoległe; za równo­
ścią bowiem kątów idzie różnica kierunków: a kiedy jaka 
prosta ma z dwiema innemi tęż sarnę różnicę kierunku, dwie 
ostatnie mieć muszą koniecznie tenże sam kierunek t. j . mu­
szą być równoległemi.

Co do drugiego. Za równością kątów jednostronnych 
odpowiadających sobie, idzie też równość kątów naprzemian- 
ległych tak wewnętrznych jako i zewnętrznych. Jeżeli bo­
wiem BHFizDGF, tedy ponieważ BUF AHE jako wierz­
chołkowe, więc też AIIE— DGF; tudzież, kiedy BIIE =  DGE 
zaś D G E = O G F  jako wierzchołkowe, zatem BIIE =  CGF. 
Podobnież B H F=D G  F = C G E  i nareszcie D GE—BH E=AIIF. 
Równość więc kątów odpowiadających, sprowadza równość
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kątów naprzemianległyeh tak wewnętrznych jako i zewnętrz­
nych. A że za równością kątów jednostronnych odpowiada­
jących idzie równoległość prostych AB i CD według powyż­
szego, przeto gdy proste AB i CD są równoległe, kąty na- 
przcmianległe tak wewnętrzne jako i zewnętrzne są sobie 
równe. Odwrotnie: skoro kąty naprzemianległe czy wewnętrz­
ne czy zewnętrzne są sobie równe, proste AB i CD są rów­
noległe ; kąty bowiem te są równe kątom odpowiadającym, 
a za równością tych ostatnich idzie równoległość prostych.

Co do trzeciego. Ponieważ B H E +BIIF=:2R  jako przy­
ległe, zaś BHF =  D G F, więc DGF +  BHE =  2R t. j. jeżeli 
proste AB i CD są równoległe, summa kątów jednostronnych 
wewnętrznych równa jest dwom kątom prostym. Toż samo 
rozumie się o dwóch drugich kątach jednostronnych we­
wnętrznych z drugiej strony siecznej t. j. że AIIE-(-CGF=:2R. 
Również, ponieważ DGE -j- DGF —  2R jako przyległe, a 
DGF — BHF, więc też BUF -f- DGE ~  2R t. j. skoro prosto 
AB i CD są równoległe, kąty jednostronne zewnętrzne w 
summę wzięte czynią także dwa kąty proste. Tym samym 
sposobem dowiedzie się że summa kątów zewnętrznych z dru­
giej strony siecznej, czyni dwa kąty proste. Jeżeli więc pro­
ste AB i CD są równoległe, tak summa kątów jednostron­
nych wewnętrznych jako tćż i summa kątów jednostronnych 
zewnętrznych równa się dwom kątom prostym. Wzajemnie 
gdy dwie proste przecina trzecia tak, że summa kątów czy 
wewnętrznych, czy zewnętrznych jednostronnych jest równa 
dwom kątom prostym, dwie pierwsze proste są równoległo.

§• H .
Co dopiero dowiedzione własności kątów powstających 

z przecięcia się dwóch prostych równoległych z trzecią sieczną, 
w tak ścisłym są związku z równoległością prostych, iż sko­
ro jedna którakolwiek jest dana lub dowiedziona, wszystkie 
inne są prostym jej wypadkiem i proste są równoległe. Na­
wzajem, jeżeli którakolwiek z trzech rzeczonych własności 
nie ma miejsca, dwie inne ostać się także nie mogą i proste 
nie są równoległe.
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Dla pokazania jak z którejkolwiek własności dowieść 
inne, przyjmijmy za dowiedzione, że dwa kąty naprzemian- 
ległe wewnętrzne BHE i CGF fig. poprzedzająca, są sobie 
równe, a starajmy się dowieść własności innych kątów. 
u) Ponieważ BH F-f-BH E=2R i podobnież C G F -f CGE:n2R 

§. 7, zatem B H F f  BHE =  C G F-fC G E . A że z zało­
żenia BHE =  CGF, przeto od dwóch ilości równych od- 
jąwszy równe reszty pozostałe będą równe t. j. BHFr=CGE 
t. j. kąty naprzeinianległe zewnętrzne są sobie równe.

Dwa inne kąty naprzeinianległe zewnętrzne t. j .  AHF 
i DGE są wierzchołkowemi kątów z założenia równych, 
przeto także są równe.

b) Według §. 7 jestB H F -f BHE=:2R, tudzież D G F f  CG F=2R, 
zatem BIIF f  BHE =  DGF f  C G F; odjąwszy tu od 
pierwszej strony BHE a od drugiej CGF jako równe, 
pozostanie BHF =  DGF t. j.  kąty jednostronne odpowia­
dające sobie są równe. Podobnież AHE+BHEz=2R jako 
też CGF-f- CGEr=2R, przeto A H E -f B H E = C G F -f CGE. 
Lecz BHE ~  CGF zatem AI1E zz CGE t. j. takież kąty 
po drugiej stronie siecznej są sobie równe.

Dwa inne tegoż samego nazwiska kąty z jednej i dwa 
z drugiój strony siecznej, będąc wierzchołkowemi kątów 
danych z założenia równych, są także równe.

c) Summa C G F -f DGF = 2 R  według §. 7; a że CGF =  BHE 
z założenia, przeto położywszy w miejsce kąta CGF je ­
mu równy BHE, będzie tćż B H E -f D G F:=2R .

Również BHE - f  AHE = : 2R a wziąwszy CGF za BHE 
jako jemu równy, będzie także A H E-)-CG F=z2R  t. j. 
kąty jednostronne wewnętrzne w summę wzięte czynią 
dwa kąty proste.

Podobnież BHF -f BHE =  2R ; a że BHE — CGF zaś 
CGF — DGE jako wiórzchołkowe, więc kładąc DGE za 
BHE, znajdziemy tćż B H F f  D G E tr2R .

I znowu: C G E fC G F = 2 R ; lecz CGF — BHE =  AHF, 
zatem C G E f  AHF =r2R, t. j. summa kątów jednostron­
nych zewnętrznych czyni dwa kąty proste.
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Tyra sposobem z przyjętej jednej własności, że dwa 
kąty naprzemianległe wewnętrzne są sobie równe, dowiedliś­
my własności innych kątów.

Uwaga. Uczący się dobrze uczynią skoro każdą z wła­
sności przyjmować będą za dowiedzioną, a starać się będą 
udowodnić inne, tym bowiem sposobem na tćm bardzo ła- 
twem dowodzeniu, nabędą wprawy tyle potrzebnćj przy tru­
dniejszych dowodzeniach.

Pokażmy tu jeszcze sposób dowodzenia, gdy na odwrót 
którakolwiek z wiadomych własności nie ma miejsca, że też 
i inne ostać się nie mogą, a następnie że proste nie są rów­
noległe.

Niech będzie dowiedzione że BHE-f-DGF >  2R t. j. że 
summa kątów jednostronnych wewnętrznych nie czyni dwóch 
kątów prostych, ale jest np. większą, tedy
a) ponieważ BHE -j- BHF =  2R, tudzież DGF -j- DGE=; 2R, 

zatem (BHE +  D G F )-f - (B H F -f  DGE) =  4R. Od dwóch 
ilości równych odjąwszy nierówne, reszty pozostałe będą 
nie równe, a mianowicie ta reszta będzie mniejszą, która 
pozostaje z odjęcia większej ilości; jeżeli więc od pićrw- 
szej strony ostatniego zrównania odejmiemy BHE-f-DGF 
a od drugiej 2R, znajdziemy BHF -f- OGE 2R.

Podobnież: ponieważ BHE =  AHF a DGF CGE jako 
wićrzchołkowe, zaś z założenia B H E -f-D G F > 2 R  więc 
też AH F-f-CGE > 2 R ,  t. j. summa kątów zewnętrznych 
tak z jednej jako i drugiój strony siecznej nie jest rów­
na dwom kątom prostym, ale jedna jest mniejsza a druga 
większa niż dwa kąty proste.

b) Summa kątów BHF-j-BHE=2R. Odjąwszy tu z pićrw- 
szej strony B H E -f-D G F a z drugiej 2R, pozostanie 
B H F — DGF <  0 czyli BHF < . DGF, przeto także 
A I I E c  CGE jako wierzchołkowe pierwszych. Również 
DGE-f-DGF— 2R ; a odjąwszy tu znowu założoną nie­
równość, znajdziemy DGE—BH E<;0 czyli BGE<BHE, 
a następnie C G F < A H F  jako kąty wierzchołkowe po­
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przedzających. Żadne więc dwa kąty odpowiadające so­
bie nie są równe.

c) Nareszcie: A H E -f-B H E = 2R ; lecz B H E -(-D G F2>2R  
przeto tymże samem co wyżej rachunkiem znajdziemy 
AHE — D G F < 0  czyli A H E < D G F .

Dalej: CGF-fDGF=i2R, ale B IIE -fD G F > 2 R , zatem 
CGF— BHE<^0 czyli CGF<cBHE.

B H E -j-B H F  =  2R, lecz B H E - { -DGF > 2 R , więc 
BHF— D G F < 0  czyli B IIF < D G F  lecz D G F =C G E  jako 
wierzchołkowe, zatem również BIIF < ;  CGE.

DGF -j- DGE =  2R, zaś BHE +  DGF >  2R , skąd 
DGE — B H E < 0  albo DGE < BHE; a że B H E=AH F 
jako wierzchołkowe, więc też DGE<^A1IF. Jeżeli przeto 
summa dwóch kątów jednostronnych wewnętrznych nie 
jest równa dwom kątom prostym , ani kąty wewnętrzne 
ani zewnętrzne naprzcmianlcgłc nie są sobie równe.

Uwaga. Uczący się i tu nie bez korzyści mogą zało­
żenie zmieniać a dowodzić niepodobieństwa innych prawd 
przy prostych równoległych dowiedzionych.

§• 12-
T w ie r d z e n ie . Dwie proste AB i CD fig. 13 przecięte 

ocl trzeciej E F  i nie czyniące kątów jednostronnych odpowia­
dających sobie równych, nie mogą być równoległe.

Niech bowiem będzie kąt CHE;>AGE, tedy przez punkt 
II pomyśleć sobie można poprowadzoną inną prostą IK tak, 
że będzie kąt IH E = A G E  i że następnie ta prosta IK bę­
dzie równoległą do A B ; dwie więc równoległe AB i IK mieć 
muszą koniecznie jednakowe położenie względem prostej CD. 
A że CD przecina jednę z nich t„ j. IK, więc też i drugą 
AB także przecinać musi pod tern samem nachyleniem, 
s koro ją  dostatecznie przedłużymy; a kiedy się proste AB i 
( ̂ D przecinają, nie mogą zatem być równolcgłemi, co też 
potrzeba było dowieść.

W n io s e k . Przez dany punkt za prostą, jak tu przez 
punkt II , dany za prostą AB , jedna tylko równoległa do
tejże prostej AB poprowadzona być może, wszystkie bo-
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wiem inne, podobne do pro stój CD, dostatecznie przedłużone, 
przecinają bliżćj lub dalćj prosty AB.

§• 13.
T w ie r d z e n ie . Prosta prostopadła do jednej z dwóch rów­

noległych, jest też prostopadła i do drugiej.
Niech AB i CD fig. 14 będą dwie równoległe i niech 

trzecia EF będzie prostopadła np. do AB , trzeba dowieść, 
żó też jest prostopadłą i do CD. Niech EF przecina AB w 
punkcie G, zaś CD w punkcie H, tedy z założenia kąt EGB 
jest prosty, przeto i jemu przyległy BGF jest prosty. Ale 
kąt BGF z kątem DHE jako jednostronne wewnętrzne wzglę­
dem równoległych AB i CD tudzież siecznój EF czynią dwa 
kąty proste, zatem i ten ostatni kąt prostym być musi, a 
proste EF i CD do siebie prostopadłe.

Albo tak: kąty BGE i DHE jako jednostronne odpo­
wiadające sobie są równe; a że pierwszy z założenia jest pro­
sty, zatem i drugi prostym być musi i prosta EF również 
do HD czyli CD prostopadła co było do dowiedzenia.

W n io s e k  1. Z tego wypada, że jeżeli z dwóch rów­
noległych jedna jest prostopadła do trzeciej, druga też musi 
być do tejże prostej prostopadłą, co wprost i naturalnie z po­
przedzającego twierdzenia wypływa.

W n io s e k  2. Dwie proste równoległe do trzecićj są też 
między sobą równoległe. Bo poprowadziwszy czwartą prostą 
prostopadłą do jednej z dwóch pierwszych i tę przedłużyw­
szy tak iżby dwie inne także przecinała, widoczną jest rze­
czą iż wszystkie trzy będą do tój czwartej prostopadłe, gdyż 
pierwsza z trzecią i druga z trzecią jako między sobą rów­
noległe, są do niej prostopadłe, a przeto i pierwsza z drugą 
są także prostopadłe, a następnie między sobą równoległe. 
Ogólnie więc ilekoiwiek będzie prostych prostopadłych do 
jednejże prostej, wszystkie będą między sobą równoległe, 
i wzajemnie jeżeli jedna z ilukolwiek równoległych będzie 
prostopadłą do jakiej prostój, wszystkie też do niej będą pro­
stopadłe.
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§• 14.
T w ie r d z e n ie . Dwa kąty których ramiona są równole­

głe od siebie i rozchodzą się te jednę stronę t. j. w jednymźe 
kierunku, są sobie równe.

Niech będą dwa kąty ABC i abc fig. 15. takie, że ba 
ramię kąta abc jest równoległe do BA ramienia kąta ABC, 
jak również drugie ramię bc kąta abc równoległe do BC ra­
mienia kąta ABC, potrzeba dowieść że kąt abcz= ABC.

Uważając kierunki ramion w prawo t. j. od B ku A i 
C, jako też od b ku a i c za dodatne, przeciwne kierunki 
względem punktów B i b będą odjemne. Wystawiwszy so­
bie ramiona tych kątów do nieskończoności w jednymźe kie­
runku przedłużone, dwa z nich nie równoległe, jak tu BC i 
ba koniecznie przeciąć się muszą według §. 12., niech punkt 
przecięcia będzie d. Kąt A B C =«dC  tudzież adC—abc jako 
jednostronne odpowiadające sobie pierwsze względem dwóch 
równoległych AB i ab i trzeciój siecznój BC, drugie zaś 
względem dwóch równoległych BC i bc tudzież siecznej ab] 
przeto ABC =  aóc co należało dowieść.

Uwaga. Dodaliśmy tu w twierdzeniu i rozchodzą się 
w jednę stronę z tego powodu, że ramiona dwóch kątów ABC 
i cba' są także równoległe, rozchodzą się atoli w przeciwne 
strony i dla tego też te kąty nie są równe ale w summę 
wzięte czynią dwa kąty proste, bo abc-\-cba — 2R jako przy­
ległe; a wziąwszy ABC za abc jako jemu równy, będzie też 
ABC -)-cba' —  2R.— Jednak kąt abc', chociaż ramiona jego 
rozchodzą się w przeciwnych kierunkach ramionom kąta 
ABC, jest mu wszelako równy jako wierzchołkowy kąta abc 
równego kątowi ABC; przypatrzywszy się atoli z uwagą tak 
kątom ABC i abc, jako też kątom ABC i cba a nareszcie 
kątom ABC i abc , dostrzeżemy tę prawdę, że kąty równe 
Których ramiona są równoległe, mają każdy oba swe ramiona 
w jednymźe kierunku. Tak ramiona kątów ABC i abc mają 
kierunek w prawo, t. j. dodatny, jako tóż kąty ABC i abc' 
chociaż ramiona ba i bc rozchodzą się w przeciwne strony, 
oba przecież mają jednoimienne kierunki t. j. odjemne, tak
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jak ramiona BA i B C , chociaż ich kierunki idą w prawo, 
oba jednak są jednoimienne t. j. dodatne. Tymczasem dwa 
kąty ABC i cba są takie, iż pierwszego oba ramiona są do­
datne, gdy drugiego ramię bc jest dodatne, a ramię ba od- 
jemne, zatem różnoimienne. Dla tego możeby ogólniej wysło­
wić można poprzedzające twierdzenie następującym sposobem: 
dwa kąty których ramiona są równolegle od siebie i oba w 
każdym kącie idą w tymże samym lub •przeciwnym kierunku, 
są sobie równe.

ROZDZIAŁ II.

Figury prostokreślne, to jest prostemi Unijami ograniczone, 
tudzież ich róicność i przystawanie (congruentia).

§• 15.
Miejsce na płaszczyźnie ilukolwiek prostemi ograniczo­

ne, nazywa się figurą geometryczną prostokreślną. Już w po­
przedzającym rozdziale widzieliśmy, że dwiema prostemi nie 
można zupełnie miejsca ograniczyć, dla tego też przybrawszy 
do dwóch prostych jeszcze trzecią i te poprowadziwszy tak 
iżby każda z nich dwie inne przecinała, trzy te proste już 
zamkną miejsce czyli ograniczą ze wszech stron płaszczyznę. 
I  tak, niech trzy proste GH, IK, LM fig. 16 przecinają się 
z sobą w ten sposób, że GH przecina dwie inne w punktach 
A  i B, IK przecina dwie inne w punktach A i C, nareszcie 
trzecia LM przecina dwie inne GH i IK w punktach B i C, 
tedy miejsce temi trzema prostemi ograniczone, czyli figura 
ABC nazywa się trójkątem (triangulum v. trigonum). Ponie­
waż do zamknięcia miejsca potrzeba najmniej trzech pro­
stych, przeto trójkąt jest najprostszą z figur; ale ponieważ, 
jak to później zobaczymy, wszystkie inne figury można roz­
łożyć lub zamienić na trójkąty, przeto trójkąt jest podstawą 
całej Geometryi.

Kawałek każdej z prostych GH, IK, LM zawarty mię­
dzy dwiema innemi, jak są AB , AC i BC, nazywa się bo-

3
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kiem trójkąta (latus trianguli). Każdy kąt między dwoma bo­
kami zawarty, nazywa się kątem wewnętrznym trójkąta (an- 
gulus internus), takiemi kątami są : BAC, ABC i ACB. Każ­
dy zaś kąt zawarty między bokiem i przedłużeniem drugiego, 
zowie się kątem zewnętrznym (angulus externus), jak są kąty 
IAB, ABL, HBC i t. d. Z tych kątów każde dwa są sobie 
równe jako wierzchołkowe, jak np. IAB—GAC i podobnież 
inne. Summa trzech boków trójkąta stanowi i nazywa się 
jego obwodem (perimeter).

Co do boków trójkąta samo z siebie wypada, że sum­
ma dwóch którychkolwiek jest większą od trzeciego, bo ten 
trzeci bok będąc liniją prostą, jest najkrótszą odległością je ­
dnego punktu od drugiego, gdy przeciwnie dwa inne boki 
stanowią liniją złamaną, a zatem dłuższą drogę między te- 
miź punktami. Różnica zaś tychże samych boków jest mniej­
sza od boku trzeciego.

T w ie r d z e n ie . Wziąwszy wewnątrz trójkąta ABC fig. 17. 
gdziekohoiek punkt D i ten złączywszy z punktami A  i C 
prostemi AD i CD, summa tych dwóch prostych jest mniejsza 
niż summa AB i BC t. j .  A B -j-B C >  AD-j-DC.

Przedłużywszy bowiem AD aż do przecięcia się z BC 
w punkcie E, mamy w trójkącie ABE według powyższego 
AB-j-BE j>-AE czyli AB-(-B E !>A D -f-D E ; również w trój­
kącie DEC jest DE-}-ECr>DC. Do dwóch ilości nierównych 
dodawszy nierówne i to tak że większą do większej a mniej­
szą do mniejszej, summy wypadną nierówne , a mianowicie 
pierwsza będzie większa niż druga, zatem 
A B + B E - fD E + E O A D -fD E + D C . Lecz B E -fE C  =  BC, 
przeto A B -j-B C -f-D E > A D -j-D C -| -D E ; a od nierównych 
ilości odjąwszy równe, reszty pozostają nierówne; odjąwszy 
przeto od każdej z ostatnich ilości DE, pozostaje

AB-j-BC>AD-j~DC. Prawdą zatem jest że i t. d.
Trójkąty ze względu boków mają właściwe swoje na­

zwy. I tak: trójkąt którego wszystkie trzy boki są między 
sobą równe, nazywa się równobocznym (aequilaterum), trój­
kąt mający dwa tylko boki między sobą równe, zowie się
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równoramiennym (aeąuicrurum v. isosceles), nareszcie trójkąt 
którego wszystkie trzy boki są różne, równobocznym (scale- 
num) nazywamy.

D e f in ic y ja . Wystawiwszy sobie trójkąt jako stojący, 
na jednym z swych boków, nazywać będziemy ten bok pod­
stawą trójkąta (basis). Z wierzchołka kąta przeciwległego 
podstawie prostą prostopadłą do tejże podstawy, zwać bę­
dziemy wysokością trójkąta (altitudo). W  trójkącie równora­
miennym bierzemy zwyczajnie bok trzeci za podstawę, 
w innych zaś trójkątach każdy bok można wziąść za pod­
stawę. Każdy trójkąt równoboczny uważać można za rów­
noramienny.

§. 16.
Połączmy następnie cztery proste tak, iżby każda z nich 

dwie z pozostałych trzech przecinała; albo, co na jedno wy­
chodzi, poprowadziwszy w trójkącie prostą tak, iżby dwa 
którekolwiek jego boki przecinała, ograniczymy tym sposo­
bem na płaszczyźnie miejsce cztórema prostemi, które czwo­
rokątem (ąuadrilaterum v. tetragonum) nazywamy. Tak np. 
jeżeli się cztery proste AB, CD, EF i GH jig. 18 w powyższy 
sposób przecinają w punktach P, Q, R , S, lub też, jeżeli 
w trójkącie KQR poprowadzimy prostą EF tak iżby dwa 
jego którekolwiek boki np. KQ i KR przecinała, miejsce 
PQRS czterema prostemi w ten sposób ograniczone, jest czwo­
rokątem. Część każdej prostej między dwiema innemi jak 
PQ, QR, RS i PS, nazywa się tu znowu bokiem czworokąta. 
Każdy kąt zawarty między takiemi bokami, zowie się kątem 
wewnętrznym, kąt zaś zawarty między bokiem i przedłuże­
niem drugiego, zewnętrznym czworokąta. .Tuż w trójkącie wi­
dzieliśmy że ta figura ma tyle kątów ile boków; w czworo­
kącie znowu toż samo dostrzegamy, wnioskować więc możemy, 
że każda figura prostokreślna ma tyle boków ile kątów; z tego 
też powodu brano czasem nazwy figur od liczby boków i 
zamiast czworokąt, mówiono i pisano czworobok; teraz atoli 
zgodzono się ogólnie brać te nazwy od kątów. Summa wszyst­
kich czterech boków czworokąta nazywa się także jego

3.
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obwodem. Odmiany czworokątów oraz ich szczególne nazwy 
są następujące:

1. Każdy czworokąt podobnie poprzedzającemu nakre­
ślony, nazywamy pospolicie czworokątem albo trapezojdem 
(trapesoides) fig. 19.

2. Jeżeli w czworokącie dwa którekolwiek boki są rów­
nolegle lecz nierówne, nazywano go dawniej równoległobokiem 
niezupełnym, sądzę jednak iż nie mając stosowniejszej na­
zwy dla takiego czworokąta, lepićj zostać przy greckiej trapez 
(trapezium) pochodzącej od n t^aneia, stół znaczącej, fig. 20.

3. Skoro oprócz dwóch boków równoległych i dwa inne 
także między sobą są równoległe, wtenczas czworokąt nazy­
wamy równoległobokiem (parallelogramum) fig. 21.

4. Jeżeli w równolegloboku jeden kąt jest prosty, wszyst­
kie też inne muszą być prostemi; bo dwa a dwa przy je- 
dnymże boku leżące jako jednostronne wewnętrzne, czynią 
dwa kąty proste. Taki znowu czworokąt nazwiemy prosto­
kątem (rectangulum) fig. 22.

5. Jeżeli w prostokącie wszystkie cztery boki są mię­
dzy sobą równe, przechodzi on na kwadrat (ąuadratum) fig. 23. _

6. Zdarzyć się może równoległobok mający wszystkie 
eztóry boki równe, a kąty nierówne, albo kwadrat mający 
kąty różne od prostego, natenczas czworokąt taki nazwiemy 
kwadratem ukośnym (rhombus). Francuzi nazywają go lo - 
sa n g e  fig. 24. R hom bus, nazywają zwyczajnie każdy rów­
noległobok.

7. Nareszcie między trapezojdami czyli zwyczajnemi czwo­
rokątami, znajduje się jeden ich gatunek mąjący wyłącznie 
sobie służące własności i dlatego nadano mu także szczegól­
ną nazwę antiparallelogramu. Jest to rzeczywiście czworo­
kąt taki, że summa dwóch jego przeciwległych kątów, czyni 
dwa kąty proste, on tćż sam między trapezojdami jest, jak 
późnićj zobaczymy, czworokątem mogącym być w koło w pi­
sanym lub liniją kołową opisanym.

W  jakimkolwiek czworokącie prosta łącząca dwa wierz­
chołki kątów przeciwległych, nazywa się przekątnią (diago-
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nalis). Wysokością równoległoboku nazywa się prostopadła, 
z któregokolwiek punktu jednego z boków, na jemu przeciwle­
gły, lub jego przedłużenie spuszczona. Bok na który prosto­
padła pada, uważa się w tym razie za podstawę. W  trapezie 
wysokością jest prostopadła z któregokolwiek punktu jedne­
go z boków równoległych na drugi spuszczona. W  prostokącie 
wziąwszy jeden z jego boków za podstawę, jemu przyległy 
będzie wysokością prostokąta.

§• 17.
Jeżeli pięć prostych połączymy z sobą tak, iżby każda 

z nich dwie z pozostałych przecinała, albo jeszcze prościej, 
przybrawszy do czterech prostych, z których czworokąt zło­
żyliśmy, piątą i tą przeciąwszy dwa którekolwiek boki prze­
cinające się, miejsce tak ograniczone pięciu prostemi, nazwie- 
my pięciokątem (pentagonum).

I tak połączywszy proste MN, PQ, RS, TU i VW fig. 25 
sposobem jak wspomnieliśmy, lub też w czworokącie ABCD 
z czterech pierwszych prostych złożonym, przeciąwszy dwa 
boki np. AD i CD przecinające się w punkcie D, piątą pro­
stą VW , ograniczymy tym sposobem miejsce ABCDE które 
pięciokątem nazwaliśmy. Jak w trójkątach i czworokątach, 
tak też i tu część każdej z prostych ograniczających, zawarta 
między dwiema innemi, nazywa się bokiem pięciokąta* Kąty 
zawarte między każdemi dwoma bokami, nazywają się kąta­
mi wewnętrznemi, zawarte zaś między każdym bokiem i prze­
dłużeniem jemu przyległego, kątami zewnętrznemi.

Z tego co powiedzieliśmy o trójkącie, czworokącie i pię­
ciokącie, łatwo pojąć jaką figurę nazwiemy sześciokątem (hexa- 
gonum), siedmiokątem (heptagonum), ośmiokątem (octogonum) i 
w ogólności wielokątem (polygonum). Zwyczajnie każdą figurę 
więcej niż cztery boki mającą, nazywamy wielokątem. Jak w 
czworokącie tak też podobnie i w pięciokącie, a w ogólności 
w każdym wielokącie prosta łącząca dwa którekolwiek wiórz- 
chołki kątów przeciwległych nazywa się przekątnią.

Summa wszystkich boków w każdym wielokącie, również 
jak w trójkącie i czworokącie nazywa się obwodem icielokąta.
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Co do kątów wewnętrznych każdego wielokąta poczy­
nając od czworokąta, nie zawadzi tu powiedzieć, źe też wie­
lokąty, mogą mieć nie same kąty wklęsłe ale też i wypukłe 
§. 9. Pospolicie nazywamy pierwsze wyskakującemi (salien- 
tes), drugie zaś icskalcującemi (insilientes). Tak np. w czwo­
rokącie ABCD fig. 26 kąt ADC, w pięciokącie ABCDE fig. 
27 kąt EDG, w sześciokącie ABCDEF fig. 28 kąty AFE i 
BCD i t. d. są wskakującemi czyli wypukłemi.

Każdy wielokąt którego wszystkie boki między sobą, 
tudzież wszystkie kąty także między sobą są równe, nazy­
wać będzieiuy wielokątem foremnym (polygonum regulare). 
A tak trójkąt równoboczny jest trójkątem foremnym, jak rów­
nie kwadrat, czworokątem foremnym.

§• IB.
W  §. 15 wspomnieliśmy że każdy wielokąt można roz­

łożyć, czyli rozebrać na trójkąty, poznawszy przeto też wie­
lokąty, zobaczmy w jaki sposób to rozłożenie da się usku­
tecznić. Niech będzie wielokąt jakikolwiek ABCDEFGHIK 
fig. 29 który chcemy rozłożyć na trójkąty; którykolwiek z 
wierzchołków jego kątów np. K połączywszy ze wszystkiemi 
innemi wierzchołkami linijami prostemi, czyli, z jednegoż 
wierzchołka K poprowadziwszy do innych wierzchołków prze­
kątnie, jak tu KB, KC, KD, KE, KF, KG i KH, przekątnie 
te podzielą cały wielokąt, jak to naocznie widzimy, na same 
trójkąty. Albo: wewnątrz wielokąta obrawszy gdziekolwiek 
punkt O i ten złączywszy prostemi ze wszystkiemi wierz­
chołkami kątów wielokąta, podzieli się tenże wielokąt także 
na trójkąty, mające wszystkie punkt O za wierzchołek spoiny. 
W  drugim razie rozbiera się “wielokąt na tyle trójkątów, ile 
wielokąt ma boków, w pierwszym zaś na tyle, ile przekątni 
poprowadzić można więcej jeden.

§. 19.
Abyśmy w każdym razie mogli dokładnie wiedzieć na 

ile trójkątów da się jaki wielokąt rozłożyć, zastanówrmy się 
nad tem ile z jednegoż wierzchołka poprowadzić można prze­
kątni w wielokącie o jakiejkolwiek liczbie boków, którą w
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ogólności wyraźmy przez n. Ponieważ w trójkącie żaden kąt 
wewnętrzny nie ma sobie przeciwległego, żadnej też prze­
kątni w trójkącie poprowadzić nie można.

W  czworokącie, w którym jak wiemy są cztery kąty 
każdy z nich ma sobie przeciwległy ale tylko jeden; więc 
też jednę tylko przekątnię z tegoż samego wierzchołka po­
prowadzić można. W  pięciokącie każdy kąt ma sobie dwa 
inne przeciwległe, a przeto obrawszy którykolwiek z nich za 
ten z którego przekątnie prowadzić chcemy, tych nie więcej 
jak dwie poprowadzić możemy.

W  sześciokącie podobnież rozumując, znajdziemy że 
tylko trzy przekątnie z jednegoż z jego wierzchołków kątów, 
do innych poprowadzić można i t. d. Zestawiając więc pod 
jeden widok to co o przekątniach powiedzieliśmy, mamy, że 
w trójkącie żadnej przekątni prowadzić nie można czyli 0 = 3 — 3
w czworokącie jednę tylko 99 99 99 1 = 4 — 3
w pięciokącie dwie „ n n 99 2 = 5 — 3
w sześciokącie trzy „ 99 99 99 3 = 6 — 3
a zatem w siedmiokącie cztery 99 99 99 4 = 7 — 3

w ośmiokącie pięć 99 99 99 5 = 8 — 3
w wielokącie mającym n boków, poprowradzić
można przekątni „ n 99 99 n— 3

A że czworokąt przez prowadzenie jednej przekątni, roz­
biera się na dwa trójkąty, pięciokąt przez dwie przekątnie 
rozbiera się na trzy trójkąty, sześciokąt przez trzy przeką­
tnie na cztery trójkąty i t. d. zatem

czworokąt rozbiera się na 2 =  4 — 2 trójkąty
pięciokąt „ „ 3 =  5 - 2  „
sześciokąt „ 111

i t. d.
a w ogólności wielokąt mający n boków, rozbiera się przez 

przekątnie powyższym sposobem prowadzone na 
n — 2 — n — 3 - j - l  trójkąty.

Z  tego roztrząsania pokazuje się, że każdy wielokąt 
rozebrać można albo na n— 2, albo też na n trójkątów.
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§• 20.
Do figur prostokreślnych przyłączmy tu dobrze- wszyst­

kim znajomą figurę krzywokreślną, a która, jak później zo­
baczymy, pomimo że jest krzywokreślną, wszelako z prosto- 
kreślną, a mianowicie z wielokątem foremnym porównaną 
być może. Chcę tu mówić o figurze liniją kołową ograni­
czonej.

Miejsce na płaszczyźnie kołową liniją ograniczone, na­
zywamy kołem, (circulus). Ponieważ już ze wstępu wiemy co 
to jest liniją kołowa, co promień a co średnica, przeto teraz 
powiedzieć nam wypada o innych prostych w kole prowa­
dzonych, jako też o częściach tak okręgu jako też i koła.

Prosta łącząca dwa którekolwiek punkta okręgu i nie 
przez środek koła ale mimo tegoż przechodząca, zowie się 
cięciwą (chorda) jak jest prosta AB fig. 30.

Prosta przecinająca okrąg koła w dwóch punktach i 
przynajmniej w jednę stronę wychodząca za okrąg, nazywa 
się sieczną (secans), taką sieczną jest prosta CD.

Prostą w jednym tylko punkcie dotykającą okrąg koła, 
nazywać będziemy styczną (tangens), jak jest prosta EF,

Jakkolwiek wielką część linii kołowój nazwiemy lukiem 
(arcus) jak BG.

Średnica dzieli okrąg koła na dwa półokręgi (setnipe- 
riphaeria), koło zaś na dwa półkola (semicireulus) między 
sobą równe. Dwie średnice HG i IK do siebie prostopadłe, 
dzielą tak cały okrąg, jako też i koło na cztery części rów­
ne, które ćwiartkami (ąuadrans) zwać będziemy.

Część koła, zawartą między dwoma promieniami i łu- 
kiem, nazwiemy wycinkiem koła (sector), jak np. część ko­
ła BSG.

Część tegoż koła zawarta między cięciwą i łukiem, na­
zywa się odcinkiem koła (segmentum), jak np. AIB.

Z opisania średnicy i cięciwy łatwo dostrzedz, że śre­
dnica jest także cięciwą, lecz największą, że cięciwa dzieli 
koło na dwa odcinki nierówne, że zatem do każdej cięciwy 
dwa odcinki należą, jeden większy drugi mniejszy; a nastę­
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pnie, że jednej tylko średnicy odpowiadają dwa odcinki rów­
ne półkolami wyżój nazwane. Tak do cięciwy AB należy 
odcinek AIB, jak równie odcinek AKB. Mówiąc atoli o od­
cinku, zawsze rozumieć będziemy odcinek mniejszy.

Równość i przystawanie figur próstokrcślnych (congruentia).

§. 21.

Ponieważ figury są to ograniczone miejsca, czyli pola 
na płaszczyźnie, mówiąc przeto o ich równości, nie co innego 
mieć będziemy na celu, tylko równość miejsc prostemi ogra­
niczonych. Ale to każdy wie z doświadczenia, że miejsca, a 
zatem figury bardzo różnego kształtu, mogą sobie być wsze­
lako równe; ogród bowiem lub dziedziniec czworokątny, kwa­
dratowy lub trójkątny, może być zupełnie tak obszernym, jak 
pięciokątny, lub sześciokątny; stół kwadratowy lub prosto­
kątny co do swej wielkości może być zupełnie równy sto­
łowi innego nawet okrągłego lub owalnego kształtu i t. d.
0  takiej równości dopiero później mówić będziemy, tu zaś 
będzie mowa o równości figur tegoż samego nazwiska. Ale
1 figury tejże samćj nazwy, mogą mieć kształt bardzo od 
siebie różny, a wszelako być sobie równe we względzie 
miejsc prostemi ograniczonych. O takich figurach będzie 
mowa także na innem miejscu. Pozostaje więc tylko przy­
padek równości figur jednejże nazwy i tegoż samego zupeł­
nie kształtu, które położone na sobie przykrywają się do­
kładnie we wszystkich swych częściach. O takich figurach 
mówić będziemy, że przystają do siebie (congruunt). Jak 
skoro figury przystają do siebie, już tern samem są sobie 
równe. Aby łatwiej poznać cechy takiej równości figur, za­
cznijmy od najprostszych t. j. od trójkątów.

§ .  22.

Mając trzy proste materyjalne, np. trzy druciki lub 
pręciki oznaczonej długości, lecz takie, iżby summa długości 
dwóch którychkolwiek była większą od trzeciego, z powodu 
w §. 15 wyłożonego, i złożywszy je  tak, iżby każdy z nich 
dwoma swemi końcami, dotykał końców dwóch innych dru­
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cików dla zamknięcia trójkąta, bez trudności dostrzeżemy, 
iż długości trzech tych drucików złożonych w trójkąt, w tak 
ścisłym zostają związku z trzema kątami przez też druciki 
uformowanemu, iż chcąc długość któregokolwiek z nich zmie­
nić, koniecznie przynajmniej dwa kąty zmienią także swą 
wielkość. Nawzajem, chcąc którykolwiek z kątów powiększyć 
lub zmniejszyć, zmiana jego pociąga za sobą konieczną zmia­
nę długości przynajmniej jednego drucika, a następnie zmia­
nę przynajmniej jednego z pozostałych kątów. Zastąpiwszy 
myślą owe druciki prostemi geometrycznemi, prawda co do 
ścisłej zależności czyli związku boków z kątami, nie podlega 
żadnemu ograniczeniu, ale będzie tenże sam wypadek, chcąc 
boki geometryczne albo kąty powiększać lub zmniejszać. 
Przy oznaczonej więc długości każdego z boków, każdy z 
kątów ma też wielkość oznaczoną, a zatem stałą i niezmien­
ną; trzy przeto oznaczone boki trójkąta z trzema jego ką­
tami, stanowią niejako całość, która za zmianą któregokol­
wiek z sześciu elementów (trzy boki i trzy kąty), koniecznie 
także zmienić się musi; wypadkiem tej zmiany będzie zawsze 
trójkąt różny od pierwszego. Dla tego rozumiem iż każdy 
łatwo pojmie, że z trzech prostych długości danej, nie można 
złożyć dwóch trójkątów różnych ale tylko jeden. A  chociaż 
każda z prostych coraz inne miejsce zajmować i coraz w inną 
stronę tymże samym końcem skierowaną być może, to wsze­
lako nie stanowi różności trójkątów, gdyż to wychodzi na 
odwrócenie w różny sposób raz złożonego trójkąta. Wypada 
też i’zeczywiście z nauki o przestawieniach §. 45 Arytm., że 
z trzech elementów jest 1. 2. 3 ~ 6  przestawień, skądby się 
zdawało, iż sześć różnych trójkątów z trzech prostych da­
nych złożyć można. Jak atoli każde z sześciu przestawień 
tęż sarnę całość stanowi bez względu na porządek, tak w 
trójkącie, z powodu że go przeczytać można, poczynając od 
któregokolwiek z wierzchołków i to w jednym lub drugim 
kierunku, nie zmienia się całkiem mówiąc: trójkąt ABC, 
ACB, BAC, BCA, CAB, CBA, bo tem czytaniem zawsze
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tenże sam trójkąt wyrażamy, sześć zatem pozornych trójką­
tów, zlewają się w jeden i tenże sam.

To dobrze zrozumiawszy, dwoma trójkątami rówuemi 
i do siebie przystającemu będą te, w których trzy boki je ­
dnego, są równe trzem bokom drugiego trójkąta każdy każ­
demu. Tak tedy mamy pierwszą cechę równości dwóch trój­
kątów i możemy ustanowić

T w ie r d z e n ie . Dwa trójkąty w których trzy boki jednego 
są równe trzem bokom drugiego, każdy każdemu są sobie równe 
i przystają do siebie.

Zn dowód tego twierdzenia służy powyższe rozumowa­
nie, które żadnćj sprzeczności nie zamyka. Kiedy trójkąty 
przystają, wszystkie części jednego muszą być dokładnie 
równe odpowiednim częściom drugiego trójkąta tak, iż poło­
żywszy je  na sobie, przykryją się wzajemnie najdokładnićj 
we wszystkich swych częściach; skąd naturalny wniosek wy­
pływa, że kąty tylko dwóch trójkątów są sobie równe także 
każdy każdemu. Uważać tych potrzeba, że w tym przykryciu 
się zupełnem, te kąty są sobie równe, które lożą naprzeciw­
ko boków równych, lub zawarte są między bokami równemi. 
Takie kąty nazywać będziemy w dalszym ciągu kątami je ­
dnakowo położonymi (anguli liomologi). Toż samo rozumie 
się względem boków, iż leżące naprzeciwko kątów równych, 
zwać będziemy także bokami jednakowo położonemi, albo 
lepiej bokami odpowiadającemi (latera liomologa).

§• 23.
T w ie r d z e n ie . Dwa trójkąty mające po dwa boki równe 

każdy każdemu i po kącie między temiż bokami zawartym 
równym, są sobie owionę i przystają do siebie.

Niech będą dwa trójkąty ABC i abc jig. 31 takie, że 
AB —  ab, BCz=óc i B = ró ; potrzeba dowieść, że te trójkąty 
położone stósownie na sobie, zupełnie się przykryją, a tem 
samćm są sobie równe, t. j. że też AC ~ac, A — a, C = :c . 
Na dowiedzenie tego dosyć jest tylko dowieść, że AC =  ac, 
a już według poprzedzającego twierdzenia dwa te trójkąty 
przystaną do siebie.
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Wystawmyż sobie trójkąt abc oderwany z swego miej­
sca i położony na trójkącie ABC i ułożony w ten sposób, 
iżby punkt b padł na B, a bok ba poszedł w kierunku boku 
BA; tedy z powodu że kąt b —  B, bok bc pójdzie też w kie­
runku BC. Ale że z założenia ó a ^ B A  i ó c = B C , przeto 
punkt a padnie koniecznie na punkt A i punkt c na C; a 
że przez dwa punkta jedna tylko prosta przechodzić może, 
zatem bok ac przykryje zupełnie bok AC tak , iż się staną 
jedną i tąż samą prostą, a następnie a c~  AC co potrzeba 
było rzeczywiście dowieść. Dwa więc założone trójkąty przy­
stawszy do siebie, są sobie we wszystkich swych częściach 
równe, a przeto również i a — A., c =  C.

Jest to więc druga cecha po którćj się poznaje równość 
i przystanie trójkątów. W  pierwszym przypadku z równości 
trzech boków, dowiedliśmy przystania trójkątów, z czego 
wnioskowaliśmy o równości kątów; w obecnym przypadku 
podobnież z równości trzech elementów (dwóch boków i kąta), 
dowiedliśmy, że trójkąty przystają do siebie, a następnie 
wnioskujemy o równości trzech innych elementów.

§• 24.
T w ie r d z e n ie . Dwa trójkąty mające po jednym Ijoku 

równym i po dwa kąty przy tychże bokach leżące równe, są 
sobie także równe i przystają do siebie.

Niech dwa trójkąty ABC i abc jig. 31 będą takie, że 
AC ac, kąt A = a  i kąt C =  c ; mamy dowieść że te trój­
kąty są sobie we wszystkich częściach równe, czyli że przy­
stają do siebie, t. j. że też AB — ab, CB =  có i B rró . Aby 
tego dowieść, dosyć tu znowu pokazać że AB— ab, C B ~ cb, 
bo tym sposobem dwa te trójkąty mieć będą po trzy boki 
równe, a zatem będą sobie równe.

Podobnie jak w poprzedzającem wystawmy sobie trój­
kąt abc położony na trójkącie ABC w ten sposób, iżby punkt 
a padł na A a bok ac poszedł w kierunku boku AC. Po­
nieważ te boki z założenia są równe, zatem i punkt c padnie 
na punkt C , a bok ac przykryje zupełnie bok AC. A że 
również z założenia kąt a— A i c ~ C ,  przeto bok ab pój-
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dzie po AB , a bok cb po boku CB; punkt więc b padnie 
w pierwszym razie gdziekolwiek na bok AB lub jego prze­
dłużenie, w drugim zaś razie tenże sam punkt b padnie na 
bok CB lub jego przedłużenie; ten przeto punkt znajdować 
się będzie razem na dwóch prostych, t. j. na AB i CB, 
gdzieindziej więc żadną miarą znajdować się nie może jak 
na spólnćm tych prostych przecięciu czyli w punkcie B, bo 
proste rzeczone ten tylko jedyny punkt mają spoiny: więc 
nareszcie i punkt b pada na punkt B, a bok ab przykrywa 
dokładnie bok AB i bok cb przykrywa podobnież bok CB. 
Dwa zatem założone trójkąty przystają do siebie a tern sa- 
inóm są sobie równe; skąd wniesiemy że ab — AB , cb —  CB 
i kąt i  =  B co było do dowiedzenia.

Uwaga 1. Co dopiero dowiedzione twierdzenie stanowi 
trzecią cechę równości trójkątów. W  niem widzimy, że zno­
wu z równości trzech elementów trójkąta, pomiędzy któremi 
znajduje się jeden bok, dowodzimy przystania czyli równości 
trójkątów, a potem wnioskujemy o równości trzech innych 
elementów. Trzy te cechy uczą nas, że jeżeli z sześciu ele­
mentów trójkąta trzy sę dane, trójkąt wtedy tylko jest zu­
pełnie oznaczonym, gdy danemi elementami są: albo trzy 
boki, albo dwa boki z kątem między niemi zawartym, lub 
nareszcie jeden bok z dwoma kątami przyległemi.

Uwaga 2. Trzy poprzedzające twierdzenia o równości 
i przystawaniu trójkątów są bardzo ważne, na nich bowiem 
polega dowód wielu prawd w Geometryi i prawie ciągłego 
będą w dalszym ciągu użycia; dla tego też już tu należy się 
przejąć duchem geometrycznego dowodzenia i nie mieć na 
oku prostych trójkąt ograniczających, albo samych trójkątów 
jako materyjalnych, ale raczej dobrze uważać na sposób i 
ścisłość z jaką każdą prawdę udowodnić należy, jeżeli kogo
0 jej rzetelności przekonać chcemy. Z tej strony uważając 
poprzednie i następne dowodzenia, wiejemy w owe linije i 
figury ducha, że je  słyszeć będziemy przemawiające do nas
1 wskazujące nam co to jest prawdziwe dowodzenie jakiej­
kolwiek prawdy.
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Uwaga 3. Co się tyczy przystawania innych figur, nie­
potrzebne są osobne twierdzenia; rozebrawszy albowiem każ­
de dwa wielokąty tymże samym sposobem za pomocą prze­
kątni na trójkąty, skoro każde dwa odpowiadające sobie, a 
tem samem wszystkie części w tymże samym porządku, jak 
są ułożone, przystają do siebie, natenczas i całości t. j. sa­
me wielokąty przystać także muszą. Dwa zatćm równole- 
głoboki mające po dwa boki przylegle równe i po kącie mię­
dzy temiź bokami zawartym równym, przystają do siebie. 
Dwa prostokąty mające po dwa boki przyległe równe, także 
przystają do siebie i t. d. ♦

Za pomocą nabytych już dotąd wiadomości, możemy roz­
wiązać następujące zagadnienia.

§• 25.
Z a g a d n ie n ie  1. Na danej prostej i przy punkcie danym 

narysować kąt równy danemu.
Rozwiązanie. Niech będzie kąt M i prosta AB , tudzież 

punkt A  na nity dany fig. 32 potrzeba z tego punktu popro­
wadzić inną prostą, któraby z daną czyniła kąt równy dane­
mu M. Na ten koniec z punktu M dowolną otwartością cyr­
kla krćślimy łuk przecinający ramiona kąta M w punktach 
N i P tąż samą otwartością cyrkla, krćślimy z danego punk­
tu A  łuk z tej strony prostśj danej, z której chcemy mieć 
kąt, tak iżby przeciął prostą AB, jak tu w punkcie D. Wziąw­
szy potóm cyrklem odległość punktów N i P, i tą z punktu 
D (t. j. postawiwszy jednę nóżkę cyrkla w punkcie D), prze­
cinamy ostatni łuk w punkcie C, a poprowadziwszy przez 
punkta A  i C prostą, ta z daną AB czynić będzie kąt równy 
danemu M. Dla dowiedzenia, że takiem postępowaniem za­
gadnienie to jest rzetelnie rozwiązane, połączmy tak punkta 
N i P jako tćż C i D prostemi NP i CD , tedy w dwóch 
trójkątach MNP i ACD jest AC — MN, AD=zMP i CDzrNP 
z wykreślenia, bo tak oba luki tąż samą otwartością cyrkla 
nakreśliliśmy, przez co promienie MN, MP i AC, AD są 
między sobą równe, jako też i odległość NP też sarnę prze­
nieśliśmy od D do C, zatem dwa te trójkąty według twier­
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dzenia §. 22 przystają do siebie, a z przystania wnosimy że 
kątyjednakowo położone są sobie równe, przeto CAD=CAB=rM  
co było do okazania.

§. 26.
Z a g a d n ie n ie  2. Prostą oznaczonej długości podzielić na 

dwie części równe.
Rozioiązanie. Niech prostą daną będzie AB, fig. 33, po­

trzeba tę prostą podzielić na dwie części równe. Z końców 
jćj A  i B jako ze środków koła, dowolną otwartością cyrkla, 
byle tylko większą niż połowa prostej AB, zakreślamy z obu 
stron prostej łuki jakiejkolwiek wielkości, byle się tylko z 
sobą przecięły, co w każdym razie nastąpi, skoro warunek 
otwartości cyrkla był zachowany, jak tu w punktach C i D. 
Złączywszy te dwa punkta prostą CD, ta podzieli AB w punk­
cie w którym ją  przecina, t. j .  w E  na dwie równe części.

Na dowiedzenie rzetelności tego postępowania, złączmy 
punkta C i D z punktami A i B prostemi AC, BC, AD, 
B D ; w dwóch trójkątach CAD i CBD jest AC ~  BC , 
AD —BD i CD spólne, przeto dwa te trójkąty według §. 22 
przystają do siebie, z przystania zaś wnosimy, że kąty je ­
dnakowo położone, są między sobą równe, zatem A C D =BCD . 
W  dwóch znowu trójkątach ACE i BCE jest AC =  B C , bok 
CE spoiny i kąt ACE =  BCE, zatem według §. 23 przystają 
do siebie, a w szczególności bok AE =  BE co było do okaza­
nia.

Uwaga. Zupełnie takiem samem postępowaniem podzie­
lić można łuk dany na dwie równe części, kreśląc z jego 
końców łuki tak jak z końców prostej danej kreśliliśmy i łą­
cząc punkta przecięcia się dwóch łuków prostą, która podzie­
li dany łuk, na dwie równe części.

§• 27.
Z a g a d n ie n ie  3. Z danego punktu na prostej danej po­

prowadzić inną prostą do pierwszej prostopadłą.
Rozwiązanie. Daną prostą niech będzie AB fig. 34, tu­

dzież niech na jej kierunku danym punktem będzie C , po­
trzeba z tego punktu poprowadzić w jednę lub drugą stronę
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prostopadłą do AB. Na ten koniec od punktu C tak ku A 
jako tóż i ku B, odetnijmy części CD i CE między sobą ró­
wne a z resztą dowolne, z punktów D i E jakąkolwiek otwar­
tością cyrkla, byle większą niż połowa DE, czyli większą niż 
każda z odciętych części, zakreślmy nad, lub pod prostą AB 
dwa luki jak w zagadnieniu poprzedzającóm, które przetną 
się w punkcie F ; złączywszy punkt F  z danym C prostą 
FC, ta będzie prostopadłą żądaną.

Na dowiedzenie rzetelności tego rozwiązania, połączmy 
punkt F z punktami D i E prostemi DF i EF, tedy dwa 
trójkąty DFC i CFE są sobie równe i przystają do siebie, 
według §. 22, bo DF =  EF, gdyż punkt F znajduje się tak 
na okręgu koła ze środka D , jako też i na okręgu koła ze 
środka E, tymże samym promieniem zakreślonym, CD CE 
także z wykreślenia i CF spólne, z przystania zaś tych trójką­
tów wnosimy; że kąt D CF~ECF. Ale te kąty są przyległe, 
czynią zatem dwa kąty proste, a kiedy sobie są równe, każ­
dy z nich jest prostym §. 6 a prosta FC jest prostopadłą do 
AB co należało dowieść.

Gdyby z końca danej prostej potrzeba było poprowa­
dzić do niej prostopadłą, wtedy należy przedłużyć prostą da­
ną w przeciwną stronę i postąpić jak wyżej.

Uicaga. Jeżeli z punktu na prostej danego potrzeba po­
prowadzić prostopadłą do tćjże, używamy w takim razie wy­
rażenia: z punktu na prostej danego, wyprowadzić lub wysta­
wić do niej prostopadłą.

§ . 28.
Z a g a d n ie n ie  4. Z punktu danego nad liniją prostą po­

prowadzić prostopadłą do tejże.
Rozwiązanie. Niech AB będzie prostą daną, tudzież nad 

nią (może tćż być i pod nią) punkt C jig. 35, potrzeba z te­
go punktu poprowadzić prostopadłą do AB. Z danego punk­
tu C, krćśli się łuk otwartością cyrkla większą niż jest odle­
głość punktu C od AB , a zatem dowolną byle tylko taką, 
iżby zakreślony łuk przeciął prostą AB w dwóch punktach 
D i E; z tych ostatnich punktów jako ze środków jednymże
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promieniem, ale większym niż połowa DE, kreślimy dwa 
łuki z przeciwległej strony punktu danego względem prostej 
danej, przecinające się w punkcie F , lub też między prostą 
i punktem danym, przecinające się w punkcie G, lub naresz­
cie nad punktem C, przecinające się w K (pierwsze w każ­
dym razie jest dokładniejsze); punkta C i F lub C i G, lub 
też C i K łączymy prostą, którą w dwóch ostatnich przy­
padkach przedłużamy aż do przecięcia się z AB w punkcie 
H, a ta będzie prostopadła do AB. Na udowodnienie że tak 
jest w istocie, połączmy punkta C i F z punktami D i E 
prostemi CD, CE, DF i EF, tedy zupełnie jak w zagadnie­
niu poprzedzającem, dwa trójkąty CDF i CEF przystają do 
siebie według §. 22, a w szczególności kąt D C F=FC E .

Dwa znowu trójkąty DCH i LICE przystają także do 
siebie według §. 23, a następnie kąt DIIC =  CHE. A  że te 
kąty są przyległe, więc każdy z nich jest prostym a prosta 
CH prostopadła do AB według §. 6 co było do dowiedzenia.

Gdybyśmy z jakich powodów musieli kreślić łuki prze­
cinające się w G lub K, wtenczas dowód zupełnie jest ten 
sam jak poprzedzający.

Uwaga 1. Przez punkt dany za prostą poprowadzić 
prostopadłą do tejże, używa się w Geometryi wyrażenia: 
z punktu danego za liniją, spuścić prostopadłą do tejże.

Uwaga 2. Że tak z punktu na prostej, jako też i za 
prostą danego nie więcej jak jednę prostopadłą do niej po­
prowadzić można, jest rzeczą bardzo jasną, gdyż w pierwszym 
razie każda inna, w inny sposób prowadzona jak np. CG 
lub CH jig. 34 czynić będzie z prostą daną dwa kąty nie­
równe; bo kąt G C B <;F C B  t. j. od prostego, kąt zaś 
H C B > F C B , pierwszy więc jest ostry a drugi rozwarty; 
proste więc CG i CH są pochyłemi względem AB stosownie 
do §. 6. Co się tyczy drugiego przypadku, pozwólmy, jeżeli 
to być może, że prosta CE jig. 35 z punktu C do AB po­
prowadzona, jest także do AB prostopadła. Dwie proste pro­
stopadle do trzeciej są od siebie równoległe według §. 13, 
więc CE musiałaby być równoległą do HC. Ale proste rów-

4
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noległe nigdzie się z sobą nie schodzą, proste zaś IIC i EC 
spotykają się w punkcie C, nie mogą więc być równoległemi 
a następnie prosta CE nie jest prostopadłą do AB lecz po­
chyłą; zatem z punktu za liniją nie można więcej jak tylko 
jednę spuścić do nićj prostopadłą.

§• 29.
Z a g a d n ie n ie  5. Przez punkt dany za prostą poprowa­

dzić inną prostą równoległą do pierwszej.
Rozwiązanie. Niech daną prostą będzie AB i punkt za 

nią C jig. 36, potrzeba przez ten punkt poprowadzić równo­
ległą do AB. Z punktu C poprowadźmy prostą CD pod ja- 
kiemkolwiek nachyleniem do AB, potem przy prostćj CD i 
przy punkcie C według §. 25 narysujmy kąt ECD CDB, 
a przedłużywszy jego ramię CE w obie strony nicograniczc- 
nie, prosta EF jest żądaną równoległą do AB. Kąty bowiem 
ECD i CDB są naprzemianległe wewnętrzne i sobie równe 
z wykreślenia, zatem proste AB i EF według §. 10 są 
równoległe.

Uwaga. Ze przez punkt C nie więcej jak jedna rów­
noległa do AB jest możebną, przekonać się można z §. 12 
jako też i ztąd, że przypuściwszy iż prosta GIT przez p.unkt 
C przechodząca różna od EF, jest także równoległa od AB, 
musiałby kąt GCD być równy kątowi CDB; a że CDBrrECD 
z wykreślenia, zatem i kąt GCD byłby równy kątowi ECD. 
Ale kąt GCD, jest częścią kąta ECD więc mu nie może być 
równy, przeto i to być nie może, iżby prosta GH była rów­
noległą do AB; zatem przez punkt C nie więcej nad jednę 
prostą równoległą do AB poprowadzić można.

§• 30.
Z a g a d n ie n ie  6. Przez dany za prostą punkt poproioa- 

dzić inną, któraby z daną czyniła kąt żądany lub dany.
Rozwiązanie. Niech AB będzie prostą, C punktem, M 

kątem danym, jaki prosta przez C przechodząca ma czynić 
z AB fig. 37. Przy którymkolwiek punkcie M ' prostej danćj 
narysujmy kąt NM'D równy danemu według §. 25, a potćm 
według zagadnienia poprzedzającego poprowadźmy przez
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punkt C równoległą, do NM' a ta z daną prostą czynić bę­
dzie kąt CD B=:M . Rozwiązanie to tak jest oczywistćm, że 
żadnego dowodzenia nie potrzebuje, pamiętając tylko wła­
sność liuij równoległych.

§• 3 1 .

Z a g a d n i e n i e  7 . Mając dane trzy proste oznaczonej długości, 
narysoicać trójkąt, któregoby bokami były te trzy proste dane.

Rozwiązanie. Niech danemi trzema prostemi będą AB, 
CD i EF jig. 38, nakreśliwszy prostą nieograniczonej dłu­
gości, odcina się na niej jedna z prostych danych np. AB 
od M do N, potćm z punktu M otwartością cyrkla równą 
jednćj z pozostałych prostych np. CD kreśli się łulc, a z pun­
ktu N otwartością cyrkla równą drugiej prostej przecina się 
tenże łuk; punkt przecięcia się tych łuków P połączywszy 
z punktami M i N prostemi MP, NP, otrzymamy trójkąt żą­
dany. Gdy bowiem MN — AB, MP — CD a NP =  EF, z wy­
kreślenia, więc bokami trójkąta MNP są trzy proste dane, 
jest zatem trójkąt MNP żądanym, bo z trzech prostych jeden 
tylko trójkąt nakreślić można według §. 22.

Uwaga 1. Aby to zagadnienie było podobnćm do rozwią­
zania, jedyny tylko jest warunek, aby summa dwóch których- 
kolwiek prostych danych była większą niż trzecia według §. 15.

Uwaga 2. Gdy z danych elementów mamy narysować 
trójkąt, używamy w Geometry! wyrażenia się: wykreślić lub 
wystawić'trójkąt. Tak ostatnie zagadnienie wysłowią się zwy­
czajnie: z trzech prostych danych wykreślić lub wystawić trój­
kąt. Tegoż samego wyrażenia się używać także będziemy 
przy innych prostokreślnych figurach.

Uwaga 3. Gdyby trzy proste były między sobą równe, 
wystawiony trój kąt byłby równobocznym, a w takim razie 
zagadnienie zmieniłoby swoje brzmienie w następujące: na 
prostej danej wystawić trójkąt równoboczny, którego rozwią­
zanie niczóm się nie różni od poprzedzającego.

§• 3 2 .

Z a g a d n i e n i e  8 .  Mając dane dwie proste i kąt mający 
być między niemi zaioarty, wystawić trójkąt.

4.
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Rozwiązanie. Niech danemi prostemi będą AB i CD, 
tudzież danym kątem M fig. 39 nakreśliwszy prostą nieo­
graniczonej długości, odcina się na niej jedna z prostych da­
nych np. CD od M do N, potem przy prostćj MN i przy 
punkcie M lub N, kreśli się kąt równy danemu M, a odciąw- 
szy na ramieniu nakreślonem, drugą z prostych danych AB 
od M do P i złączywszy punkta P i N prostą PN, otrzyma­
my trójkąt MPN żądany; albowiem MN zr CD i MP — AB 
tudzież kąt PMN— M jest kątem między danemi prostemi 
zawartym, jak żądano; a z dwóch prostych i kąta między 
niemi zawartego nie podobna mieć dwóch trójkątów różnych 
według §. 23.

§■ 33.
ZAGADNIENIE 9. Dana jest prosta i dwa kąty mające 

przy niej leżeć, wystawić z tych trzech elementów trójkąt.
Rozwiązanie. Niech daną prostą będzie AB a dwoma 

danemi kątami M i N fig. 40, potrzeba z tych rzeczy wy­
stawić trójkąt. Nakreśliwszy prostą nieograniczonej długości, 
odcina się na niej prostą daną AB od M do N; przy punk­
cie M kreśli się kąt równy danemu M, a przy punkcie N 
kąt równy kątowi N lub przeciwnie; nakreślone ramiona 
przedłużają się aż do przecięcia się z sobą w punkcie P , a 
te zamkną trójkąt MNP żądany; jest bowiem MN =  AB, 
PMNrzM, PNMzzN i oba te kąty leżą przy prostej M N =AB 
jak żądano : z trzech zaś takich elementów nie można wy­
stawić dwóch różnych trójkątów według §. 24.

Uwaga. Żeby to zagadnienie było podobnem do roz­
wiązania, koniecznym jest warunkiem aby summa dwóch da­
nych kątów była mniejszą niż 2R, inaczej bowiem przedłu­
żone ramiona nie przetną się z sobą ale raczej rozchodzić 
się będą jak np. ramiona MP i NQ fig. 41, z tego powodu, 
iż dwie proste MP i NQ przecięte od trzeciój MN czynią 
summę kątów jednostronnych wewnętrznych większą niż 
2R, zatóm nie przetną się nad ale pod prostą MN w punk­
cie R i zamkną rzeczywiście trójkąt MNR, którego dwa kąty 
RMN i RNM są spełnieniami kątów danych do dwóch kątów
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prostych. W  takim więc przypadku wykreślony trójkąt nie 
będzie zamykał elementów danych a mianowicie kątów, ale 
ich spełnienia.

Gdyby summa danych kątów równała się 2R, ramiona MP 
i NQ nigdzieby się nie przecięły, gdyż w takim przypadku 
summa kątów PMN i QNM będąc równa 2l t , proste MP i NQ 
byłyby równoległemi według twierdzenia §. 10 co do trzeciego.

§. 34.
Z a g a d n i e n i e  10. Dany kąt podzielić na dwie równe części.
Rozwiązanie. Danym kątom niech będzie kąt A fig. 42, 

na ramionach jego naznaczywszy dwa punkta B i C jedna­
kowo od wierzchołka A odległe, z tych punktów B iC ja k o  
ze środków dowolnym promieniem byle większym niż poło­
wa odległości BC zakreśliwszy dwa łuki przecinające się 
w punkcie D, prosta łącząca wierzchołek z punktem D po­
dzieli dany kąt A  na dwie równe części.

Na udowodnienie rzetelności tego rozwiązania, złączmy 
punkta B i C z punktem D prostemi BD i C D , tedy dwa 
trójkąty ABD i ACD według §. 22 przystają do siebie, a 
następnie kąty jednakowo położone są sobie równe; przeto 
kąt BAD leżący naprzeciwko boku B D , jest równy kątowi 
CAD przeciwległemu bokowi CD a równemu bokowi BD, 
co było do okazania.

W n i o s e k . Dzieląc tym samym sposobem każdy z  k ą ­

tów BAD i CAD znowu na dwie równe części, podzielimy 
kąt dany A na cztery części równe; a dzieląc każdy z ostat­
nich kątów na dwie, cały kąt A  podzielimy tym sposobem 
na ośm części równych i t. d. Widzimy przeto że powyższem 
postępowaniem każdy kąt podzielić możemy na 2, 4, 8, 16 . . .  .
czyli 21, 22, 23, 24 .......... 2" części równych.

§. 35.
Z a g a d n i e n i e  1 1 . Mając dane dicie proste na dwa przy­

legle boki równolegloboku i kąt mający być między niemi za­
warty, wykreślić czyli wystawić równoleglobok.

Rozwiązanie. Prostemi danemi niech będą AB i CD 
tudzież danym kątem M jig. 43, potrzeba z tych elementów
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wystawić równoległobok. Na ton koniec kreśli się naprzód 
prosta nieograniczonój długości i na niej odcina się jedna 
z prostych danych np. większa AB od P do R ; przy punk­
cie P lub R kreśli się kąt równy danemu; a na jego na- 
kreślonem ramieniu odciąwszy drugą prostą daną CD od P 
do T, przez punkt T prowadzi się równoległa od PR, a przez 
punkt R równoległa od P T ; te przedłużone aż do ich prze­
cięcia się z sobą, zamkną równoległobok żądany. Lub tóż 
na równoległej od PR odciąwszy TS “  PR, punkt S złączyć 
z punktem Ił prostą, dwie tak poprowadzone proste z dwie­
ma pierwszcmi zamkną równoległobok jak poprzednio. Rze­
telność tego rozwiązania nie potrzebuje dowodu; jest bowiem 
rzeczą widoczną, że wystawiona figurajcst równoległobokiem 
i zawiera trzy elementa dane.

ROZDZIAŁ III.
Własności figur prostokreślnych, co do boków i kątów, tudzież 

własności prostych prostopadłych i pochyłych.

§• 36.
Po rozwiązaniu poprzednich zagadnień, łatwo dowie­

dziemy zasadnicze twierdzenie całej nauki o trójkątach, a 
zatem i figurach prostokreślnych, które jak już wspomnieliś­
my, można albo rozebrać, albo zamienić na trójkąty. Twier­
dzenie to jest następujące:

T w i e r d z e n i e . W  każdym trójkącie prostokreślnym sum­
ma trzech jego wewnętrznych kątów równa się dwom kątom 
prostym.

Niech będzie trójkąt ABC fig. 44, potrzeba dowieść że 
A - f  B +  C n 2 R  =  180°.

Przez wierzchołek któregokolwiek z jego kątów np. B 
poprowadziwszy prostą DE równoległą do boku przeciwle­
głego AC, kąt A — DBA, kąt C =  CBE jako naprzemianle- 
głe wewnętrzne względem dwóch równoległych AC i DE i 
siecznych AB i CB. Ale summa kątów D BA-j-B4-CBE~2R
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według §. 7, wziąwszy więc zamiast kątów DBA i CBE im 
równe A  i C , będzie tćż A -j-B -j-C — 2R co było do dowie­
dzenia.

W n i o s e k  1 . W  k a ż d y m  tró jk ą c ie  p ro sto k re śln y m  su m ­

m a  d w óch  k tó ry c h k o lw ie k  k ą tó w  m n ie jsza  je s t  o d  d w ó c h  k ą ­

tów  p ro sty c h  i w a ru n e k  w  u w a d ze  p r z y  za ga d n ien iu  §. 33 
g łó w n ie  n a  tej za sa d zie  p o le g a .

W n i o s e k  2. Jeżeli w trójkącie prostokreślnym znamy 
dwa kąty, już tem samem i trzeci jest znany; równa się bo­
wiem różnicy między 180° a summą dwóch wiadomych. Twier­
dzenie więc §. 24 może. być ogólniej wysłowione tym sposo­
bem: dwa trójkąty mające po jednym bolcu równym i po dwa 
którekolwiek kąty równe, są sobie równe i przystają do siebie.

W n i o s e k  3. Jeżeli w trójkącie jeden kąt jest prosty, 
dwa inne koniecznie muszą być ostre. A gdyby w trójkącie 
jeden kąt był rozwartym, dwa inne tem więcej muszą być 
ostre.

Uwaga. Trójkąty ze względu kątów mają także szcze­
gólne nazwy. I tak: trójkąt mający kąt prosty, nazywa się 
prostokątnym (triangulum rectangulum). W  takim trójkącie 
bok przeciwległy kątowi prostemu, zowie się przeciwprosto- 
kątnią (hypothenusa), dwa zaś inne boki nazywają się boka­
mi kątowi prostemu przyległemi (catheti). Trójkąt, którego 
jeden kąt jest rozwarty, nazywać będziemy rozwartokątnym 
(obtusangulum), a bok temu kątowi przeciwległy, przeciwroz- 
icartokątnią. Trójkąt nareszcie, którego każdy z trzech ką­
tów jest ostry, zwać będziemy ostrokątnym (acutangulum), bok 
zaś przeciwległy kątowi ostremu, przeciwostrokątnią. Dwie 
ostatnie nazwy rzadko się używają, a trójkąty rozwarto- i 
ostrokątne noszą jeszcze jednę ogólną nazwę ukośnokątnycli 
(obliąuangulum).

§• 37.
Na podstawie poprzedzającego twierdzenia, znajdziemy 

w każdym wielokącie summę jego kątów wewnętrznych na­
stępującym sposobem:
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a) W  czworokącie ABCD fig. 45 poprowadziwszy przeką­
tnią AC lub B D , ta podzieli czworokąt na dwa trójkąty, 
których kąty wewnętrzne należą do kątów czworokąta. 
A  że w każdym z tych trójkątów summa trzech kątów 
czyni 2R czyli 180°, zatem summa kątów wewnętrznych 
czworokąta czyni 2 .2 R = 4 R  2.180° =  360".

Można też znaleźć summę wewnętrznych kątów czwo­
rokąta tak: gdziekolwiek wewnątrz czworokąta obrawszy 
punkt E i takowy połączywszy z wierzchołkami kątów 
czworokąta prostemi, te podzielą czworokąt jak wiemy 
na cztćry trójkąty, których kąty, oprócz tych które są 
przy punkcie E, stanowią kąty wewnętrzne czworokąta. 
Ponieważ w każdym z czterech trójkątów summa trzech 
kątów czyni 2R, zatem summa wszystkich kątów czyni 
4.2Rr=8R. Ale, jak to wspomnieliśmy, kąty przy E nie 
należą do kątów czworokąta, a czynią 4R według §. 7, 
zatóm summa kątów wewnętrznych czworokąta jest równa 
8 R — 4 R = 4 R  jak wyżej. "Tę summę dla dalszego wy­
raźmy tak 4.2R—4R.

b) W  pięciokącie ABCDE Fig. 46 z wierzchołka któregokol­
wiek z jego kątów np. A poprowadziwszy do innych wierz­
chołków przekątnie, których dwie tylko według §. 18 
prowadzić można, te według tegoż §. podzielą pięcio­
kąt na trzy trójkąty, których kąty wewnętrzne stanowią 
kąty wewnętrzne pięciokąta. A  że summa trzech kątów 
każdego trójkąta czyni 2R, zatem summa kątów 'wszyst­
kich trzech trójkątów, czyli summa kątów wewnętrznych 
pięciokąta, równa się 3 .2R ~ 6R .

Albo: obrawszy wewnątrz pięciokąta gdziekolwiek punkt 
S i ten złączywszy prostemi ze wszystkiemi wierzchoł­
kami kątów pięciokąta, podzieli się tym sposobem pięcio­
kąt ten na pięć trójkątów. W  każdym z tych trójkątów 
summa jego kątów wewnętrznych czyni 2R , więc we 
wszystkich trójkątach summa kątów czynić będzie 5 .2R =  
10R. Ale znowu kąty przy S czynią 4R a nie należą 
do kątów pięciokąta j więc nareszcie summa kątów we­
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wnętrznych pięciokąta jest równa 10R— 4R=r6R jak wy- 
żćj, albo 5.2R— 4R.

c) Zobaczmy jeszcze w sześcioltącie. Postąpiwszy tu dwo­
ma powyższemi sposobami, znajdziemy według pierwsze­
go summę kątów wewnętrznych sześciokąta równą 4 .2R =  
8R; bo przez prowadzenie przekątni, których będzie trzy, 
podzieli się sześciokąt na cztery trójkąty. Według zaś 
drugiego sposobu tenże sześciokąt podzieli się na sześć 
trójkątów, a zatem summa kątów wewnętrznych sześcio­
kąta będzie równa 6.2R— 4R =  8R jak pierwszym spo­
sobem.

Zestawiając to co dotąd o summie kątów wewnętrznych 
trójkąta, czworokąta, pięciokąta i sześciokąta dowiedliś­
my, pod jeden widok, i pisząc 2R =  3.2R— 4R summę 
kątów wewnętrznych w trójkącie, mieć będziemy: 
summa kątów wewnętrznych trójkąta =  2R =3.2Il—■4R 

„ „ „ czworokąta — 4R=.4.2R—4R
„ „ „ pięciokąta — 6R ~5.2R —4R
„ „ „ sześciokąta ~ 8 R = 6 .2 R —4R

więc w ogólności summa kątów wewnętrznych wielokąta 
mającego n boków równa się . ?i.2Ii —  4R =  (n —  2)2R. 
t. j. summa rzeczonych kątów równa się tyle razy wzię­
tym dwom kątom prostym ile wielokąt ma boków mniej 
4 kąty proste, albo: równa się tyle razy wziętym dwom 
kątom prostym, ile wielokąt ma boków mniej 2.

Uwaga. Ponieważ summa kątów wewnętrznych 
trójkąta czyni 
czworokąta „ 
pięciokąta „ 
sześciokąta „ 
siedmiokąta „

i t. d.
więc summa kątów wewnętrznych wielokątów tak jak po so­
bie następują, poczynając od trójkąta, stanowią szereg liczb 
parzystych 2, 4, 6, 8, 10 . . .  . którego ogólny wyraz jest

4 1
6 { kątów
g I prostych

10 )
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2 (n— 2) wyrażający summę kątów wewnętrznych wielokąta 
n boków mającego.

§• 38.
Definicyja zewnętrznego kąta w §§. 15 i 16 podana, 

pozostaje dla każdego wielokąta taż sama, zobaczmy więc 
co jest uwagi godnego względem kątów zewnętrznych każ­
dego o jakiejkolwiek liczbie boków wielokąta.

Jeżeli w trójkącie ABC fig. 47 idąc w kierunku ABC 
przedłużymy jego boki w tymże kierunku, otrzymamy przy 
każdym wierzchołku jeden tylko kąt zewnętrzny, jak tu są 
kąty DBC, ECA i FAB; takie kąty nazywać właściwie bę­
dziemy kątami zewnętrznemi trójkąta, ile razy będzie mowa 
o wszystkich razem; mają one bowiem tę własność, że w 
summę wzięte czynią 4R. Jakoż przy każdym wierzchołku 
kąt zewnętrzny z wewnętrznym czynią 2R jako przyległe, 
w trzech przeto wierzchołkach jest 6R , od czego odjąwszy 
kąty wewnętrzne, których summa— 2R, pozostaje na summę 
kątów zewnętrznych trójkąta 4R.

W  czworokącie ABCD fig. 48 postąpiwszy tymże sa­
mym sposobem, otrzymamy jego kąty zewnętrzne EBC, FCD, 
GDA i BAH. A że znowu każdy kąt zewnętrzny z wewnę­
trznym czyni 2R, a wierzchołków jest cztćry, zatćm summa 
kątów zewnętrznych z wewnętrznemi czyni 4.2R — 8R. Od­
jąwszy od tej summy kąty wewnętrzne czworokąta, które 
według poprzedzającego §. czynią 4R, pozostaje na summę 
kątów zewnętrznych czworokąta 4R.

W  pięciokącie ABCDE fig. 49 przedłużywszy jego bo­
ki w sposób przy trójkącie i czworokącie wskazany, otrzyma­
my summę kątów zewnętrznych i wewnętrznych =z5.2R— 10R. 
A że według powyższego summa drugich ~  6R, zatem na 
summę kątów zewnętrznych pięciokąta wypada 10R— 6R=4R.

W  szcściokącie przez podobneż rozumowanie znaleźli­
byśmy summę kątów zewnętrznych z wewnętrznemi = : 6.2R ~  
12R; ale że summa drugich czyni 8R, summa przeto pierw­
szych czyli zewnętrznych czynić będzie 12R—8R—4R.
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Kiedy dla każdego z czterech przywiedzionych wielo­
kątów summa kątów zewnętrznych wypada ~ 4 R , wniesiemy 
więc ogólnie: że summa kątów zewnętrznych każdego wieloką­
ta jest stałą i równa się czterem kątom prostym.

Albo tak: wielokąt mający n boków, ma też n wierz­
chołków kątów, przeto summa kątów zewnętrznych i wewnę­
trznych razem, czyni >i.2R. Ale według poprzedzającego §. 
summa drugich czyni n.2R— 4R, które odjąwszy od poprze­
dzającej summy, otrzymamy n .2R — (n.2R— 4R) =: 4R na 
summę kątów zewnętrznych jak szczegółowo widzieliśmy.

§. 39.
T w i e r d z e n i e . Kąt zewnętrzny trójkąta równa się dwom 

wewnętrznym naprzeciwko leżącym.
Niech będzie trójkąt ABC jig. 50 , w którym przedłu­

żywszy jeden z boków np. AC nieograniczenie, otrzymamy 
kąt BCD zewnętrzny trójkąta A B C ; potrzeba dowieść że 
BCD =  A -f-B . Przez punkt C poprowadziwszy prostą CE 
równoległą do AB, będzie kąt BCE“ B, jako naprzemianle- 
głe wewnętrzne względem AB i CE i siecznój BC; podobnież 
kąt ECDzrA jako jednostronne odpowiadające sobie wzglę­
dem tychże równoległych i siecznój AD. A że BCE-f-ECDrz 
BCD, więc też A-j-B— BCD co było do dowiedzenia.

Uwaga. Kąty naprzeciwkoleżące nazywają się te, które 
z kątem zewnętrznym nie mają spólnego wierzchołka.

W n i o s e k . Z tego twierdzenia wypada, że kąt zewnętrz­
ny trójkąta jest zawsze większy od każdego z wewnętrznych 
naprzeciwko położonych.

§. 40.
Poznawszy cechy równości trójkątów, tudzież że sum­

ma kątów W ew n ętrzn ych  trójkąta je s t  stałą i rów n a  się 2R, 
zobaczmy teraz jaki wpływ m a ją  boki trójkąta na jego ką­
ty i wzajemnie, gdyż już wiemy że pomiędzy niemi ścisły 
zachodzi związek.

T w i e r d z e n i e . W  trójkącie naprzeciwko hoków równych 
leżą kąty równe i wzajemnie: naprzeciwko kątów równych le­
żą boki równe.
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Co do pierwszego. Niech będzie trójkąt ABC fig. 51, w 
którym AB=:BC; potrzeba dowieść że też kąt A = C . Na do­
wiedzenie tej prawdy, bok trzeci AC podzielmy w punkcie 
D na dwie równe części i punkt podziału złączmy z wierz­
chołkiem kąta przeciwległego B prostą BD. Dwa trójkąty 
ABD i DBC według §. 22 przystaną do siebie, bo trzy bo­
ki jednego są równe trzem bokom drugiego, każdy każdemu, 
t. j. A B = B C  z założenia, ADnz:DC z podzielenia a BD spoi­
ny, należy bowiem tak do trójkąta ABD jako tóż i DBC. 
Z przystania tych trójkątów wnosimy, że kąty ich jednako­
wo położone są sobie równe; jest więc A = C , A D B —BDC 
i ABDzzDBC. Pierwsza przeto część obecnego twierdzenia 
jest tym sposobem dowiedziona.

Twierdzenie to wysłowią się zwyczajnie tak: w trójkącie 
równoramiennym kąty leżące przy podstawie są sobie równe.

W n i o s e k  ł . Ponieważ każdy trójkąt równoboczny jest 
zarazem równoramienny, więc taki trójkąt jest oraz równo- 
kątnym, t. j . trzy jego kąty są między sobą równe. A kie­
dy summa trzech kątów trójkąta jest =  180°, zatem w trój­
kącie równobocznym każdy kąt jest =  60°.

W n i o s e k  2 .  Ponieważ z przystania dwóch powyższych 
trójkątów wypadło także iż ADB — BDC, a te kąty jako 
przyległe czynią 2R, zatem każdy z nich jest prostym a pro­
sta BD prostapadła do podstawy AC. A że również z przy­
stania rzeczonych trójkątów wnieśliśmy że ABD — DBC, więc 
prosta BD dzieli kąt w wierzchołku na dwie równe części. 
Wniesiemy więc ogólnie, że w trójkącie równoramiennym 
połączywszy wierzchołek kąta przeciwległego podstawie ze 
środkiem tejże podstawy liniją prostą, ta jest prostopadłą do 
podstawy i dzieli kąt w wierzchołku na dwie równe części.

Co do drugiego. Jeżeli w trójkącie ABC kąt A —  C, 
potrzeba dowieść, że też bok AB—BC. Na dowiedzenie te­
go, podzielmy kąt B na dwie równe części według §. 34, a 
prostą dzielącą przedłużmy aż do przecięcia się z bokiem AC 
w punkcie D. Ponieważ A = C  z założenia, zaś ABD=:DBC
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z wykreślenia, zatóm i trzecie kąty są sobie równe §. 36 
wniosek 2; a że i bok BD jest spoiny, przeto te trójkąty we­
dług §. 2 4  przystają do siebie, a w szczególności boki odpo­
wiadające sobie są między sobą równe, t. j . AB =  BC i 
A D = D C . Druga przeto część powyższego twierdzenia jest 
także dowiedziona, t. j .  że trójkąt mający dwa kąty między 
sobą równe, jest równoramienny.

W n i o s e k  l. Ponieważ AD — DC i kąty przy D są rów­
ne, a jako przyległe są proste, wniesiemy z poprzedzającego 
ż e  w trójkącie równoramiennym podzieliwszy kąt przeciwle­
gły podstawie na dwie równe części, prosta dzieląca dzie­
li też podstawę na dwie równe części, i jest do niej prosto­
padłą.

W n i o s e k  2 .  W  tró jk ą c ie  ró w n o ra m ie n n y m  p ro sto p a d ła  

z  w ie rz ch o łk a  k ą ta  p rz e c iw le g łe g o  p o d staw ie , sp u szc zo n a  na  

tęż  p o d staw ę, d z ie li ta k  k ą t w  w ie rz c h o łk u , ja k o  też i p o d ­

staw ę n a  d w ie  rów n e c z ę ś c i ; tu d zież p ro sto p a d ła  ze  środ k a  

p o d sta w y  tró jk ą ta  ró w n oram ien n eg o  do niej w y p r o w a d z o n a , 

k o n ie c zn ie  p rze ch o d zić  m u si p rze z  w ie rz ch o łe k  k ą ta  p rze c iw ­

le g łe g o  i p o d zie lić  ten że k ą t  n a  dw ie c zęśc i r ó w n e , b o  z  

pu n k tu  n a  prostej d a n e g o , je d n ę  ty lk o  p ro sto p a d łą  do tejże  

p o p ro w a d z ić  -m o żn a .

§• 4 1 .

T w i e r d z e n i e . W  każdym trójkącie naprzeciwko boku 
większego leży kąt iciększy, i odwrotnie.

Niech będzie trójkąt ABC jig. 52, w którym B C > A B , 
trzeba dowieść że kąt A > C . Na ten koniec na boku więk­
szym BC odcina się BD — AB, a złączywszy punkta A i D 
prostą AD, ponieważ AB =  BD, trójkąt przeto ABD jest rów­
noramienny; zatem BAD =  BDA według poprzedzającego 
twierdzenia. Lecz kąt B 1 )A > C  jako zewnętrzny względem 
trójkąta ADC, zatem i kąt BA D >*C , a tembardzićj kąt A, 
którego tamten jest tylko częścią, jest większy od kąta C co 
było do dowiedzenia.

O d w r o t n i e . Jeżeli w trójkącie ABC kąt A >  C, po. 
trzeba dowieść, że tóż B C > A B . Gdyby ktoś temu twier­
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dzeniu przeczył, nie mógłby tego w inny sposób czynić, tyl­
ko mówiąc, zenie jest B C > A B , ale, albo B C = :A B , albo 
też BC <  AB, bo nie masz innego przypadku. Jeżeli utrzy­
muje pierwsze, t. j. że BCrrAB, według poprzedzającego §. 
byćby musiało A =  C; jeżeli zaś drugie, tedy według pierw­
szej części obecnego twierdzenia byćby powinno A<cC. A  że 
oba wypadki tych przeciwnych twierdzeń sprzeciwiają się 
założeniu że kąt A > C ,  nie może więc być ani BC zr AB 
ani B C < A B ; trzeci więc możliwy przypadek B C > A B  jest 
koniecznym, co też potrzeba było dowieść.

W n i o s e k . Z tego twierdzenia wypada, że w trójkącie 
prostokątnym przeciwprostokątnia jest większą od każdego 
z boków przyległych kątowi prostemu. W  trójkącie zaś roz- 
wartokątnym bok przeciwległy kątowi rozwartemu jest naj­
dłuższy.

Uwaga. Dowód, którego w drugiej części tego twierdze­
nia użyliśmy, nazywają Geometrowie dowodem nie icprost 
(demonstratio indirecta), w Filozofii nazywa się deductio ad 
absurdum. Uważać tylko potrzeba, że taki dowód polega na 
okazaniu czyli dowiedzeniu, że prawda twierdzeniu przeci­
wna, pod żadnym względem ostać się nie może.

§. 42.
Z  dwóch poprzedzających twierdzeń razem, wypływają 

następujące prawdy:
aj Ze środka prostej danćj AB fig. 53 wyprowadziwszy do 

niej prostopadłą CD nieograniczonej długości, każdy punkt 
tćj prostopadłej, jak są E, F, G, II i t. d. jest w równej 
od obu końców prostej AB odległości. Uważając bo­
wiem AB za podstawę trójkąta, prostopadła z jej środ­
ka przechodzi przez wierzchołek kąta przeciwległego tyl­
ko w trójkącie równoramiennym; skoro więc którykolwiek 
punkt prostopadłej złączymy z końcami A i B prostemi, 
te wraz z AB , zamkną nie inny tylko równoramienny 
trójkąt, a następnie będą sobie równe.

b) Ze ze wszystkich prostych, jakie z danego punktu popro­
wadzić można do prostej danej, najkrótsza jest prostopa-
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dla; wszystkie zaś pochyłe tym są dłuższe, im punkt icli 
przecięcia się z prostą daną, dalej pada od spodka pro­
stopadłej. Jakoż, jeżeli z punktu B spuścimy prostopa­
dłą BD do AC fig. 54 , tudzież poprowadzimy inne pro­
ste BE, BF i t. d ., które jak wiemy nazywają się po- 
chyłemi, każda taka pochyła jest przeciwprostokątnią w 
trójkącie prostokątnym, jakiemi są trójkąty DBE, DBF 
i t. d. a zatem każda jest dłuższą niż bok przyległy ką­
towi prostemu BD §. 41 wniosek. Również, ponieważ 
kąt BED jest ostry §. 36 wniosek 3, więc kąt jemu przy­
legły BEF jest rozwarty; w trójkącie więc rozwartokąt- 
nym BEF, bok BF jest najdłuższy według tegoż samego 
§. a zatem B F > B E . Ale tćż punkt F , w którym po­
chyła BF 'spotyka prostą AC, dalej leży od spodka pro­
stopadłej D niż punkt E, prawda więc że pochyłe im się 
bardziej oddalają od spodka prostopadłej, tym są dłuższe. 
Kiedy więc prostopadła z jakiego punktu do prostój da­
nej spuszczona jest najkrótszą, jest więc stałą i użytą 
być może, jakoż używa się za miarę odległości 'punktu 
z którego jest spuszczona od linii danej.

c) Dwie pochyłe równe, są w równej odległości od spodka 
prostopadłej i nie mogą inaczćj być poprowadzone, tylko 
jedna z jednej, druga z drugiej strony prostopadłej. Je­
żeli bowiem BE ~  BG, trójkąt GBE jest równoramienny, 
a prostopadła BD pada na środek jego podstawy GE 
§. 40 wniosek 1 i 2, więc DE =  DG.

d) W  trójkącie prostokreślnym prostopadła z wierzchołka 
kąta na podstawę spuszczona, trojakie mieć może poło­
żenie, t. j. paść może wewnątrz trójkąta na jego podsta­
wę, albo na koniec tćj podstawy, lub nareszcie zewnątrz 
trójkąta na jej przedłużenie. Jeżeli kąty przy podstawie 
trójkąta oba są ostre, prostopadła koniecznie paść musi 
wewnątrz trójkąta; dwa bowiem boki czyniące z podsta­
wą kąty ostre, są dwiema w przeciwne strony pochyłemi 
z wierzchołka trójkąta do podstawy poprpwadzonemi, 
prostopadła więc przypaść musi między niemi a zatem
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wewnątrz. Jeżeli zaś jeden kąt przy podstawie jest pro­
sty, ten musi leżeć przy prostopadłej, a wtedy prostopa­
dła pada na koniec podstawy. Gdyby nakoniec jeden kąt 
przy podstawie był rozwarty, prostopadła padnie zewnątrz 
trójkąta, bo dwa boki będą pochyłemi w jednęż stronę 
względem podstawy; z tego też powodu prostopadła pada 
ze strony kąta rozwartego, a zatem na przedłużenie pod­
stawy. I tak: w trójkącie ABC fig. 55, w którym dwa 
kąty przy podstawie A i C są ostre, a przeto boki AB 
i CB nachylają się do AC w przeciwne strony, prosto­
padła BD z wierzchołka kąta B przeciwległego podstawie 
do tejże spuszczona, pada wewnątrz trójkąta t. j. na pod­
stawę AC. W  trójkącie A'BC rozwartokątnym przy A', 
ponieważ boki A'B i CB są pochylono do AC w jednąż 
stronę, leżeć muszą z tejże samej strony prostopadłój, a 
zatem prostopadła BD leżeć musi za obu ramionami czyli pa­
dnie zewnątrz trójkąta A ’BC na przedłużenie podstawy CA'.

§. 43.
T w i e r d z e n i e . Dwa trójkąty prostokątne, mające prze- 

ciwprostokątnie równe i po jednym boku przyległym kątowi 
prostemu równym, są sobie równe i przystają do siebie.

Niech bowiem będą dwa takie trójkąty ABC i ąbc fig. 
56, w których BC =  óc i A B := «ó , trzeba dowieść że te trój­
kąty przystają do siebie t. j. że też AC = a c  i B zzb, C = c . 
Wystawiwszy sobie trójkąt abc położony na trójkącie ABC 
w ten sposób, iżby punkt b padł na punkt B a bok ba po­
szedł po boku BA, tedy ponieważ te boki z założenia są so­
bie równe, punkt a padnie na punkt A. W  tern położeniu 
gdyby przeciwprostokątnia bc nie wzięła kierunku BC, mu­
siałaby przypaść z jednej lub drugiej strony BC, t. j. albo 
jak BD, albo też jak BD'. W  pierwszym razie jest B C > B D , 
w drugim zaś B C < B D ' §. popi’zedzająey b). A  że w pierw- 
szem położeniu byłby trójkąt ABD — abc, skąd B D “ óc i 
podobnież w drugiem położeniu byłby trójkąt ABD' abc; 
skąd B D '~ ó c ;  z tego powodu byćby tóż musiało BC >  bc 
i B C < bc; co ponieważ się w obu razach sprzeciwia założeniu
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że BC — bc, przeto przeciwprostokątnia bc nie może paść 
ani z jednej ani z drugi ój strony przeciwprostokątni BC; musi 
więc pójść w kierunku BC, a następnie punkt e padnie na 
C i bok ac przystanie do boku A C ; bo przez dwa punkta 
jedna tylko prosta przechodzić może. Skoro więc wszystkie 
części, tedy i cały trójkąt cibc przystaje do trójkąta ABC, a 
z przystania wniesiemy że AC —  ac, B —  b i C = c  co było 
do dowiedzenia.

Uwaga. Czwarta ta cecha równości trójkątów, służy 
tylko samym trójkątom prostokątnym.

W n i o s e k . Dwa tró jk ą ty  p ro sto k ą tn e  m a ją ce  a lb o  p rze -  

c iw p ro sto k ą tn io , a lb o  k tó re k o lw ie k  b o k i p r z y le g łe  k ątow i  

p rostem u  rów n e i po je d n y m  z  k ą tów  o strych  r ó w n y m , p r z y ­

sta ją  ta k że  do  s ie b ie , b o  dru gie k ą ty  ostre  są  tern sa m ćm  

so b ie  rów n e , w  k tó ry m  razie  zn a jd u ją  się te tró jk ą ty  w  p r z y ­

p a d k u  § .  2 4 .

§ .  4 4 .

T w i e r d z e n i e . Dwa trójkąty mające po dwa boki równe 
każdy każdemu i po kącie przeciwległym bokowi większemu 
równym, są sobie równe i przystają do siebie.

Niech trójkąty ABC i abcjig. 57 będą takie, że AB— ab, 
BC — bc i kąt A — a, ale także B C > A B  jako też bc7>ab-, 
trzeba dowieść że dwa te trójkąty przystają do siebie, czyli 
że są sobie równe we wszystkich swych częściach. Z wierz­
chołków kątów B i b, spuśćmy prostopadłe BD i bd na trze­
cie boki AC i ac; prostopadłe te padną, jak z poprzedzają­
cego wiemy, wewnątrz albo zewnątrz trójkątów. W  obu przy­
padkach jest tenże sam dowód. Przyjmijmy że kąty A i C, 
a i c są ostre i że zatóm prostopadłe padają wewnątrz trój­
kątów, tedy dwa trójkąty ABD i abd, w których kąt A —a, 
kąt ADB zzzadb a zatem i trzecie kąty są sobie równe t. j. 
abd— ABD §. 3 6  wniosek 2, oprócz tego A B rraó  z za­
łożenia, przystają do siebie według §. 2 3 ,  a z przystania 
wnosimy, że bd zz BD. Dwa też trójkąty prostokątne DBC 
i dbc mają przeciwprostokątnie równe i po boku przyległym 
kątowi prostemu równym, bo bc —  BC z założenia, a bd— YYD

5
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z poprzedzającego dowiedzenia, zatem również przystają do 
siebie według §. 43. Kiedy więc części składające trójkąty 
ABC i abc, t. j. części ABD i abd, BBC i dbc przystały do 
siebie, zatóm i całości przystają, co było do dowiedzenia.

Cecha równości trójkątów w tem twierdzeniu wskazana 
i dowiedziona, jest piątą i ostatnią cechą; widzimy atoli iż 
ona nie jest ogólną ale wyjątkową czyli pod pewnćm ogra­
niczeniem wystarczającą do równości i przystania trójkątów.

Uwaga. W  obecnem twierdzeniu dodaliśmy: że kąty 
przeciwległe bokom większym są sobie równe, gdyby bowiem 
zamiast kątów A i a, dane były kąty C i c z warunkiem, 
że C =  c, t. j .  gdyby twierdzonem było, że kąty leżące na­
przeciwko boków mniejszych są sobie równe, natenczas mo­
gą być dwa trójkąty mające te trzy elementa równe, a wsze­
lako nie przystaną do siebie, będąc całkiem różnemi między 
sobą. Jakoż, w trójkącie abc, bd będąc prostopadłą, z punktu 
b do ac, zaś ba pochyłą, można z drugiej strony prostopa­
dłej poprowadzić inną pochyłą tak, że ba — ba; dosyć bo­
wiem wziąść da ~ d a  i punkt a złączyć z b prostą ba. 
Tym sposobem dwa trójkąty ABC i abc mają także A B =a 'ó , 
BC ~ b c  i kąt C — c, a jednak w żaden sposób przystać do 
siebie nie mogą, bo trójkąt abc jest częścią trójkąta abc rów­
nego trójkątowi ABC, a zatem część do całości przystać nie 
może. Ze trójkąty ABC czyli abc i abc zupełnie między 
sobą są różne, widzimy to naocznie, bo trójkąt ABC jest 
ostrokątny, zaś abc rozwartokątny.

§. 45.
T w i e r d z e n i e . Z punktu wziętego za, lub między ramio­

nami kąta danego spuściwszy 'prostopadłe do tychże ramion, 
kąt jaki te prostopadłe czynią między sobą, jest równy kąto­
wi danemu.

Niech danym kątem będzie BAC a danym punktem D 
fig. 58, spuściwszy z tego punktu prostopadłe DE i DF, 
pierwszą na AC a drugą na AB, trzeba dowieść że kąt mię­
dzy prostopadłemi t. j. kąt E D F = B A C . Nazwawszy, albo 
raczej wyraziwszy kierunek ramienia AC przez o, zaś ramie­
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nia AB przez b, tudzież kierunek pierwszej prostopadłej czyli 
DE przez p a drugićj przez q dla jaśniejszego i krótszego 
wyrażenia się, bo tylkó znaki i —  wyrażają w Gcome- 
tryi kierunki, możemy kąt AED wyrazić przez a— p, jako 
różnicę kierunków dwóch prostych AC i E D ; dla tejże sa­
mej przyczyny kąt AFD wyrazimy przez b —  q. A że to 
kąty jako proste są sobie równe, więc a — p ~ b — q, albo 
przenosząc b na pierwszą a p  na drugą stronę tego zrówna­
nia, wypada a —  b —p  —  q. Lecz a —  b wyraża różnicę kie­
runków dwóch prostych AC i AB czyli kąt BAC, zaś p— q 
wyraża również kąt EDF, zatem te kąty są sobie równe jak 
twierdzono.

Albo tak: W  dwóch trójkątach A GE i DGF kąty przy 
G są sobie równe jako wierzchołkowe, kąty przy E i F pro­
ste, więc i trzecie kąty są sobie równe t. j. GAE czyli 
BAC =  GDE jak wyżej.

Uwaga. Dwie prostopadłe jako proste przecinając się 
czynią dwa kąty przyległe różne, ale też i dwa ramiona kąta 
danego jako proste, czynią podobnież dwa kąty przyległe 
różne skoro jedno z nich przedłużymy w przeciwną stronę, 
uważać więc potrzeba o których kątach mówimy i twierdzi­
my. Uważając atoli punkt D za początek, prostopadłe ze 
względu tego punktu mają dwa kierunki, jako też ramiona 
kąta danego ze względu na jego wićrzchołek A jako także 
początek, mają również dwa kierunki; jeżeli więc kierunki 
AB i AC przyjmiemy za dodatne, tudzież kierunki prosto­
padłych DE i DF także za dodatne, dostrzeżemy że w każ­
dym razie kąty równe zawarte są między jednoimiennemi 
kierunkami.

Jeżeli punkt dany jest między ramionami kąta, jak jest 
punkt D między AB i AC fig. 59, natenczas kąt jaki pro­
stopadłe czynią między sobą, jest spełnieniem danego kąta 
do dwóch kątów prostych. Poprowadziwszy bowiem też pro­
stopadłe jak na figurze widzimy, zamkną one wraz z ramio­
nami danego kąta czworokąt AEDF, w którym kąty przy 
E i F są proste; kąt więc EDF z kątem A czynią 2R §. 37 o),

5.
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a zatem jeden drugiego nazywa Kię spełnieniem jak to w §. 
9 powiedzieliśmy.

Uwaga. Tak proste AB i AC, jako też DE i DF prze­
cinając się czynią również jak poprzednio dwa różne kąty, 
pamiętając atoli na ich kierunki, nigdy nie weźmiemy jed­
nego kąta za drugi, oraz znajdziemy zawsze, że kąty między 
jednoimiennemi kierunkami zawarte, są sobie równe.

Co do równości innych figur prostokreślnych, ale rów­
ności o jakiej dotąd mówiliśmy, dosyć jest powiedzieć, że 
skoro każda taka figura przez prowadzenie przekątni z je ­
dnego wierzchołka kąta do wszystkich innych, może być ro­
zebrana na same trójkąty, przeto dwie figury czyli dwa wie­
lokąty o jednejźe liczbie boków, mogące być rozebrane na 
trójkąty przystające do siebie i podobnie w jednym jak w 
drugim wielokącie ułożone, również przystają do siebie; bo 
kiedy części przystają*! całości przystać muszą, jeżeli części 
w tymże samym porządku w obu wielokątach są sobie równe.

§. 46.
Z a g a d n ie n ie  1. Mając daną prostą z położenia *) i dioa 

punkta z jednejźe jej strony leżące, znaleść na niej punkt 
trzeci któryby był iv równej odległości od punktów danych.

Rozwiązanie. Niech prostą daną będzie AB , tudzież 
dane dwa pnnkta C i D jig. 60, potrzeba na prostej AB zna­
leść punkt któryby był w równej odległości od C i D. Dla 
znalezienia tego punktu, łączę punkta C i D prostą CD, tę 
w punkcie E dzielę na dwie równe części i z tego punktu 
E wyprowadzam prostopadłą do CD aż do przecięcia się 
z AB w punkcie F , który będzie punktem szukanym. D o­
wód rzetelności tego postępowania zasadza się na własności 
prostopadłćj ze środka prostój wyprowadzonej §. 42 a).

§• 47.
Z a g a d n ie n ie  2. Mając daną prostą z położenia i dwa 

punkta z jednejźe jej strony leżące, znaleść na prostej danej 
trzeci punkt taki, iżby proste łączące go z danemi czyniły 
z daną kąty równe.

*) To znaczy, ic  jej miejsce i kierunek są dane.
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Niecli znowu prostą daną będzie AB i dwa dane pun- 
kta C i D fig. 60 jak w poprzedzającym zagadnieniu; z je ­
dnego z punktów danych np. z punktu C spuściwszy pro­
stopadłą do AB i tę przedłużywszy za prostą AB do punktu 
G, lecz tak iżby HG było równe CH i punkt G złączywszy 
z drugim z danych D prostą GD, ta naznaczy na prostej 
danej punkt K szukany. Poprowadziwszy bowiem prostą CK 
ponieważ C H =:H G , zatem według §. 42 jest tóź CK =  GK, 
a następnie według §. 40, wniosek 2 kąt CKAzzAKG. Lecz 
AKG =  BKD jako wierzchołkowe, zatem kąt CK A  =  DKB 
jak zagadnienie wymaga.

§• 48.
W  §. 27 pokazało się sposób wyprowadzenia prosto- 

padłój do prostej danej z punktu na niej danego; ten atoli 
sposób nie może być użytym w przypadku gdy punkt dany 
znajduje się na końcu prostćj danej, a tćj dla jakich prze­
szkód przedłużyć nie można. W  takim przypadku zagadnie­
nie to inaczej musi być rozwiązanem, a sposób jego rozwią­
zania dopićro tu wskazanym być może, samo zaś zagadnienie 
wysłowi się następnie:

Z a g a d n i e n i e  3 . Z końca prostej danij wyprowadzić do 
niej prostopadłą nie przedłużając jej.

Rozwiązanie. Daną prostą niech będzie AB fig. 61, po­
trzeba z jćj końca A wyprowadzić prostopadłą. Wziąwszy 
w tym celu gdziekolwiek za prostą daną punkt C, i z niego 
odległością równą CA naznaczmy na AB punkt D , a po­
prowadziwszy przez punkta D i C prostą nieograniczonćj 
długości, odetnijmy na niej tęź samą odległość C A — CD, 
z drugiój strony punktu C do E , t. j. tak żeby było 
CE — CD — CA, a złączywszy punkta E i A  prostą A E , ta 
będzie żądaną prostopadłą, czego się tak dowodzi: tak trój­
kąt AC1) jako i ACE jest równoramienny, przeto kąty przy 
trzecim boku leżące w każdym, są między sobą równe; za­
tem CAD =  CDA, C A E = C E A . Lecz w trójkącie AED jest 
CE A + E  AD - f  ED A = C E A + C  A E + C  A D + E D A = 2 R  według 
§. 36, czyli CAE-j-CAE-f-CAD-j-CAD=2 (C A E +C A D )=2R ,
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;i następnie CAE -)- CAD z : EAD r :  R ; przeto prosta EA jest 
prostopadła do AB jak żądano.

§• 49.
Z a g a d n i e n i e  4. Na danej 'prostej wystawić kwadrat.
Rozwiązanie. Prostą daną niech będzie AB fig. 62, 

mamy na niej wystawić kwadrat. W  tym celu z końców A 
i B wyprowadzają się dwie prostopadłe do AB i na nich 
odcinają się cyrklem długości AC i BD tak żeby A C = B D  ~AB, 
nareszcie łączą się punkta C i D prostą CD a ta zamknie 
żądany kwadrat.

Albo tak: z końców A  i B fig. 63 otwartością cyrkla 
równą prostej danej, t. j. równą A B , kreślą się dwa luki 
przecinające się w C; z punktu C tąż samą otwartością cyr­
kla przecina się luk z końca A zakreślony w punkcie D ; 
dalej szuka się punktu jednakowo odległego od punktów C 
i D kreśląc zawsze tąż samą otwartością cyrkla (można tćż 
i inną) z tychże punktów dwa łuki przecinające się w punk­
cie E ; a złączywszy punkta E i A, prosta łącząca przetnie 
łuk CD w punkcie F ; potem z punktu C otwartością cyrkla 
równą CF, kreśli się łuk który przetnie łuk zakreślony z pun­
ktu B w punkcie G ; nareszcie punkta F i G , B i G złą­
czywszy prostemi, te zamkną żądany kwadrat. Albowiem, 
AF =  A B , bo są promieniami jednegoż okręgu, punkt C jest 
w równej odległości tak od punktów A  i B, jako też od pun­
któw F  i G, przeto środki prostych AB i FG z punktem 
C leżą na jednejże prostej, dzielącej każdą z pierwszych na 
dwie równe części. Ta prosta dzieląca, w myśli tylko po­
prowadzona, będąc prostopadłą tak do AB jako też i do 
FG, jest równoległą od AF według §. 13; przeto i FG rów­
noległa od AB; a kiedy '/2 AB — 1/,i FG, zatem też F G =A B , 
BG oczywiście r ; A B ; wszystkie przeto cztery boki tej figu­
ry są między sobą równe; a źe i kąt przy A jest prosty, 
zatem wszystkie inne są także proste, jest więc ten czwo­
rokąt kwadratem §. 16.

Uwaga. Drugie to rozwiązanie zdawać się może nieco 
przydłuższem, rzeczywiście atoli mniej zachodu potrzebuje
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niż pićrwsze, a przytem jest pewniejszem; dwa bowiem pun- 
kta F i G wynajdują się przy pomocy cyrkla przez prze­
cięcie się i to nie ostro łuków, co nie mało wpływa na pew­
ność wyznaczyć się mających punktów. Prócz tego nie pro­
wadzi się tutaj żadnej do szukanego kwadratu nie należącej 
linii, ani się spuszcza na dokładność trójkątów prostokątnych 
ekierkami ( eauorre) zwanych, a do prowadzenia prostopa­
dłych i równoległych pospolicie używanych.

§ . 5 0 .

Z a g a d n i e n i e  5 .  Mając daną prostą mającą być jednym 
z boków trójkąta, kąt mający być przyległym temuż i summę 
dioóch innych boków, wystawić trójkąt.

Rozwiązanie. Niech prostą daną będzie A , kątem da­
nym M a prosta B niech będzie summą dwóch innych bo­
ków fig. 64, z tych rzeczy mamy wystawić trójkąt. Na pro­
stej nieograniczonej długości odetnijmy P R = A  i przy punk­
cie P wykreślmy kąt równy danemu M , dając mu za dru­
gie ramię PS — B ; punkt S złączywszy z R prostą SR, tę 
podzielmy w punkcie O na dwie równe części, i z punktu 
O wyprowadźmy prostopadłą do RS aż do przecięcia się 
z PS w punkcie T ; złączywszy nareszcie punkt T z R pro­
stą RT, otrzymamy trójkąt PTR żądany. Źe tak jest, do­
wodzi się następującym sposobem: RT —  L'S jako dwie po­
chyłe jednakowo od O odległe, zatem trójkąt PTR zamyka 
wszystkie rzeczy dane t. j . P R = A , T P R =M  i PT-f-TR =B , 
jest więc trój kątem żądanym z danych elementów wystawionym.

ROZDZIAŁ IV.
Podobieństwo figur prostokreślnych czyli icielokątów.

§ .  5 1 .

Jak w dwóch poprzedzających tak i w tym rozdziale 
zacznijmy od najprostszych figur, to jest od trójkątów i zo­
baczmy jakie własności trójkątów odkryją nam linije równo­
ległe. Na ten koniec dowiedźmy naprzód parę przygotowaw­
czych twierdzeń.
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T w i e r d z e n i e . Jeżeli dwie proste równolegle przetniemy 
dwiema innemi takie róionoleglemi, części pierwszych równo­
ległych, zawarte między dwiema drugiemi między sobą, a czę­
ści drugich zawarte między pierwszemi równoległemi znowu 
między sobą są równe.

Niech dwie równoległe AB i CD fig. 65 przecięte będą 
od dwóch innych EF i GH także równoległych w punktach 
M, N, O, P, potrzeba dowieść, że tak części dwóch pierw­
szych MO i NP między sobą, jako też części dwóch drugich 
MN i OP między sobą są równe. Poprowadziwszy w rów- 
noległoboku MNPO przekątnią NO, ta podzieli go na dwa 
trójkąty MNO i NOP, w których bok NO jest spólnym, kąt 
MNOntNOP, tudzież kąt MON — ONP jako naprzemianle- 
głe wewnętrzne, pierwsze względem dwóch równoległych EF 
i Gid, a drugie względem równoległych AB i CD i siecznój 
ON; dwa przeto te trójkąty według §. 24 przystają do siebie, 
a z ich przystania wnosimy, że boki odpowiadające sobie są 
równe. A  tak bok MN przeciwległy kątowi MON, równy 
jest bokowi OP przeciwległemu kątowi O N P; podobnież 
NO ~  NP, oba bowiem te boki leżą naprzeciwko kątów rów­
nych, co potrzeba było dowieść.

W n i o s e k  1. Z tego twierdzenia wprost wypada, że prze­
kątnia dzieli równoległobok na dwa trójkąty przystające do 
siebie, tudzież że w każdym równoległoboku kąty przeciw­
ległe są sobie równe.

W n i o s e k  2 . W  ró w n o le g ło b o k u  p o p ro w a d ziw sz y  dw ie  

p rze k ą tn ie , te p rze cin a ją  się w z a je m n ie  je d n a  d ru gą  n a  dw ie  

rów n e c z ę ś c i ; d w a  b o w ie m  tró jk ą ty  MOS i NPS a lb o  MNS 
i OPS p rzy sta ją  do sieb ie .

§. 52.
T w i e r d z e n i e . W  trójkącie jakimkolwiek podzielitcszy je ­

den z jego boków na ilekolwiek części róicnych, a przez punk- 
ta podziału poprowadziwszy proste równoległe do jednego z 
pozostałych boków, rótonoległe te przedłużone aż do przecię­
cia się z trzecim bokiem, podzielą go na tyleż części między 
sobą równych.
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Niech będzie trójkąt ABC fig. 66, w którym podzielmy 
którykolwiek bok np. AB na ilekolwięk części Ba, ab, bc, 
i t. d. między sobą równych, a przez punkta podziału a, b,
c....  prowadźmy równolegle od AC, które przedłużmy aż do
przecięcia się z trzecim bokiem BC w punktach a', b’, ć .....
potrzeba dowieść, że części tego ostatniego boku t. j. części
Ba', ab', b'c.....  są między sobą równe.— Z punktów a, b',
c'.....  równoległe do boku AB poprowadźmy proste aż do
przecięcia się każdej z najbliższą z pierwszych równoległych
w punktach m, n, o....  Ponieważ Ba=zab — bc — ..... więc
także a m ~ b 'n ~ c 'o ~ .......  według poprzedzającego twier­
dzenia; kąt aBa — ma'b~nb'c’zz....  bo wszystkie są jedno­
stronne odpowiadające sobie. Również kąt Tłaa— Tłbb'—Yłcć, 
zaś Tłbb' — a'mb', Bcc = b ’nc'—  i t. d., przeto trójkąty B«a', 
a mb', b'nc' i t. d. według §. 24 przystają do siebie i są sobie 
równe, a z przystania wnosimy, że ich boki odpowiadające 
są sobie także równe, t. j . Bb'— db’— b'c — i t. d. co było 
do dowiedzenia.

§. 53.
T w i e r d z e n i e . W  jakimkolwiek trójkącie prostokreślnym 

poprowadziwszy do jednego z jego boków równoległą, ta po­
dzieli dwa inne boki na części proporcyjonalne.

Niech będzie trójkąt ABC fig. 67, poprowadziwszy pro­
stą DE równolegle do AC i tę przedłużywszy aż do prze­
cięcia się z bokami AB i BC, mamy dowieść że ta prosta 
podzieli boki AB i BC na części proporcyjonalne, t. j. że 
będzie

B D : AD =  B E : CE.
Chcąc to twierdzenie dowieść z całą ścisłością, uważać 

potrzeba iż tu mogą być dwa przypadki, t. j. albo części BD 
i AD są spółmierne albo niespółmierne §§. 2 i 3.

Co do pierwszego. Jeżeli części BD i AD są spółmier­
ne, przypuśćmy że Ba jest spólną największą ich miarą i że 
BD zamyka takich części m, zaś AD n, będzie więc BD=w.Ba, 
AD =  n.Ba, zatem

B D ; AD rr m.Ba: n.Ba =  m \ n ;
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cały przeto bok AB podzielić można na m-\-n części między 
sobą równych i równych spólnój miarzo Ba. Pomyśliwszy 
przez te m-J-re podziałów poprowadzone proste równoległe 
do AC, te według poprzedzającego twierdzenia podzielą też 
bok BC na tyleż części znowu między sobą równych i rów­
nych prostej Bb, mianowicie zaś BE podzieloną zostanie na 
m, a CE na n takich części. Dlatego mieć też będziemy 
BE~ui.Bó, a CE =  u.Bó, skąd

B E ; CE —  wi.Bó; m.Bó — m\n
Łącząc z sobą dwa stosunki trzeciemu równe, znajdziemy 

B D ; AD — BE; CE
co mieliśmy dowieść.

Pomiędzy własnościami proporcyi ilorazowej w §. 98 
Arytm. dowiedzionemi znajduje się i ta, że w każdej propor­
cyi ilorazowej summa dwóch wyrazów piórwszych tak się ma 
do summy dwóch wyrazów drugich, jak poprzednik do po­
przednika lub jak następnik do następnika. Stósując tę wła­
sność do ostatniej proporcyi, otrzymamy:

BD +  A D ;B E  +  CE =  BD ;BE =  AD :CE 
albo AB:BC =  B D ;B E = :A D :C E
t. j. że prosta równoległa do podstawy trójkąta, dzieli dwa 
inne jego boki na części takie, iż stosunek dwóch odpowie­
dnich sobie jak BD i BE albo AD i CE, równa się stosun­
kowi samych boków AB i BC.

Co do drugiego. Jeżeli części BD i AD nie są spółmier- 
ne, uważmy iż proporcyją AB 1 BC —  B l) ; BE wyprowadziliś­
my z proporcyi B D : AD =  B E ; CE; cokolwiek-więc powiemy 
lub dowiedziemy o pierwszej, wszystko to odnieść można do 
drugiej; jeżeli przeto dowiedziemy, że w razie niespółmier- 
ności części BD i AD proporcyją AB ; BC n  BD ; BE jest 
prawdziwa, tern samem dowiedziemy, że tóż i proporcyją 
B D ;A D — BE;CE jest prawdziwa, bo z fałszywej prawdziwa 
wypłynąóby nie mogła. Przypuśćmyż więc że proporcyją 
A B ;B C —BD ;BE jest fałszywa. Ponieważ trzy wyrazy każ­
dej proporcyi mogą być jakiekolwiek, byle tylko czwarty do­
pełniał proporcyi, zatem fałszywość tej proporcyi pochodzić
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jedynie może od czwartego jej wyrazu, że ten jest albo za 
mały, albo za wielki. Niechże wyraz BE będzie za mały i 
dajmy że powiększywszy go o ilość Ep, czyli w miejsce BE 
położywszy Bp, proporcyja AB : BC — BU 1 Bp będzie pra­
wdziwa.

Podzielmy chociaż w myśli bok BC na tyle części rów­
nych na ile można z tym wszelako warunkiem, iżby wielkość 
każdej była mniejsza niż przydana ilość Ep, i niech jedną 
taką częścią będzie B ó < E p ; wziąwszy ją  w cyrkiel i prze­
nosząc od B ku C, żaden podział nie padnie na punkt p , 
lecz z jednej lub drugićj jego strony, z powodu żeBó-c^Ep. 
Weźmyż więc podział przypadający między E i p  jak jest 
punkt d, tedy prowadząc przez ten punkt d równoległą dc 
do AC, znajdujemy się w pierwszym przypadku gdzie Bd i 
Cd będąc spółmierne, równoległa przez d do AC dzieli bok 
AB na dwie części Bc i Ac proporcyjonalne częściom Bd i 
Cd; jest zatem według pierwszej części tego twierdzenia

AB;BC =  Bc;Bd
z przypuszczenia mamy proporcyją A B ; BC =  B I); Bp 
więc też będzie B c; BD B d ; Bp.
Ale w każdej proporcyi ilorazowej czem jest poprzednik 
względem swego następnika w pierwszym, tćm tóż być po­
winien poprzednik względem swego następnika w drugim 
stosunku; więc jako B c> B D , tak też być powinno Bd^>Bp, 
gdy tymczasem naocznie widzimy, że B d < B p ;  ta przeto 
ostatnia proporcyja jest fałszywa. A że ona wypadła z dwóch 
poprzedzających, albo więc obie, albo przynajmniej jedna z 
nich jest fałszywa. Druga jest prawdziwą jako dowiedziona, 
przeto pierwsza czyli przypuszczona jest fałszywa. Wyraz 
więc czwarty BE nie jest za mały, bo większy Bp nie mo­
że być wyrazem tej proporcyi.

Zmniejszywszy BE o jakąkolwiek ilość np. Ep' i bio­
rąc Bp' za BE, zupełnie podobnym sposobem dowiedlibyś­
my, że to Bp' nie może także być czwartym wyrazem pro­
porcyi o którą chodzi i że następnie wyraz BE nie jest za 
wielki. A kiedy tenże wyraz nie jest ani za mały ani za
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wielki, więc być musi takim, jakim być powinien, aby pro- 
porcyja była prawdziwa, bo innego przypadku nawet pomy- 
elić nie można. Jest zatśm ogólnie w każdym przypadku 

A B : BC =  B D : BE.
Uwaga I. W  obecnym dowodzie uważać potrzeba, że pra­

wdę dowiedzioną dla ilości spółmiernych, przenieśliśmy do 
ilości niespółmiernych, t. j. ze stósunku ilości spółmiernych 
przeszliśmy do stósunku ilości niespółmiernych. Ponieważ 
w dalszym ciągu takie przejścia nie rzadko nam się wyda­
rzać będą, przeto nie od rzeczy będzie powiedzieć tu nieco 
o tern przejściu.

Szukając sposobem w §. 2 wyłożonym spólnej najwięk­
szej miary dwóch prostych niespółmiernych, przekonaliśmy 
się żc jakkolwiek daleko tamże wskazane działanie posunie­
my, zawsze jednak pozostanie reszta, która wszelako tern 
mniejszą będzie, im dalej działanie posuwamy; skąd wypada 
naturalny wniosek, że resztę tę uczynić można mniejszą niż 
wszelka ilość jakkolwiek mała. Uważając więc dwie proste 
niespółmierne jako spółmierne, popełniamy rzeczywiście błąd 
ale tern mniejszy, im spoiną ich miarę mniejszą weźmiemy; 
a że takową brać można dowolnie małą, zatem biorąc proste 
niespółmierne za spółmierne, popełnić można błąd dowolnie 
mały a do tego taki, iż go uczynić można mniejszym od każ­
dej ilości jakkolwiek małej. Dowiódłszy więc jakiej prawdy 
dla wszystkich bez wyjątku ilości spółmiernych, bez żadne­
go skrupułu przenieść możemy tę prawdę do ilości niespół­
miernych; każdą bowiem taką ilość wystawić sobie można 
zamkniętą między dwie spółmierne takie, iż ich różnica jest 
mniejszą od wszelkiej pomyślić się mogącej ilości jakkolwiek 
małćj; tern zaś bardzićj różnica między jedną ze spółmier­
nych a środkującą niespółmierną, będzie jeszcze mniejsza, 
tak dalece, że nie można nigdy dosięgnąć granicy, gdzie się 
spółmierność kończy a niespółmierność zaczyna. Jeżeli się 
więc dostrzeże jakie prawo dla wszystkich ilości spółmiernych, 
toż samo prawo zachodzić musi i między niespółmiernemi; 
albo innemi słowy: stosując jakie prawo, dowiedzione dla ilo­
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ści spółmiernych, do ilości niespółmiernych, popełnić można 
błąd mniejszy niż wszelka jakkolwiek mała ilość, albo raczej 
nie popełnia się żadnego błędu. Porównawszy to rozumo­
wanie z użytem w Arytmetyce dla ilości niewy mierny cli §. 
43, dostrzeżemy że jest zupełnie toż samo.

Uwaga 2. Wziąwszy w obecnem twierdzeniu bok AC za 
podstawę trójkąta, możnaby toż twierdzenie wysłowić, jakoż 
najczęściej wysłowią się, następującym sposobem: W  trójkącie 
prostokreślnym prosta równoległa do podstaioy jego dzieli dwa 
inne boki trójkąta na części proporcyjonalne.

§. 54.
T w i e r d z e n i e . W  trójkącie prostokreślnym poprowadziw­

szy prostą równoległą do podstawy, ta od całego trójkąta ode- 
tnie trójkąt, którego boki są proporcyjonalne z bokami danego.

Niecłi danym trójkątem będzie ABC jig. 68, poprowa­
dziwszy prostą DE równoległą do podstawy AC, ta odcina 
trójkąt DBE; mamy dowieść że boki tego ostatniego są pro­
porcyjonalne z bokami pierwszego, czyli źe 

A B ; BD =  B C : BE zn A C : DE.
Poprowadziwszy z punktu E prostą EF równoległą do 

A B , (można też z punktu D prowadzić równoległą do BC) 
według poprzedzającego twierdzenia jest:

AB;BD  =  BC;BE
w trójkącie zaś ACB, EF jest równoległą do AB z wykreśle­
nia, przeto według tegoż samego twierdzenia jest 

BC:BE =  A C ;A F
Lecz A F = D E  §. 51, zatóm BC;BE =  A C :D E ; trzy więc 
stósunki A B ; BD, BC;BE i AC ;D E są między sobą równe t. j.

A B :B D rrB C ;B E  =  AC :D E co było do dowiedzenia.
W n i o s e k . Prosta więc równoległa do podstawy trójkąta 

dzieli dwa inne jego boki na części proporcyjonalne, a sama 
jest do podstawy w takim stosunku, w jakim boki do swych 
w wierzchołku trójkąta przecinających się części.

§. 55.
T w i e r d z e n i e . W  trójkącie prostokreślnym poprowadziw­

szy z wierzchołka kąta przeciicległego podstaioie ilekolwiek



78

prostych aż do przecięcia się z podstawą, te podzielą każdą 
równoległa do podstawy na części proporcyjonalne częściom 
na jakie podstawa podzieloną została.

Niech będzie trójkąt ABC fig. 69, z wierzchołka kąta 
B poprowadziwszy proste BI), BE, BF i t. d. aź do przecię­
cia się z podstawą AC, jeżeli gdziekolwiek poprowadzimy 
prostą MN równoległą do podstawy, potrzeba dowieść że taż 
jest podzielona przez poprzednie proste w punktach d, e, / ,  
i t. d. na części proporcyjonalne częściom podstawy, t. j. że

AD:M d =  D E :d e = E F :e /  =  F C : /N =  i t. d.
W  trójkącie ABD, Md jest równoległą do podstawy AD, dla­
tego według poprzedzającego twierdzenia 
jest BD :Bd =  AD;M d
podobnież w trójkącie DBE jest B D : Bd = : D E ; de — BE;Be 
również w trójkącie EBF „ B E ; Be =  E F ; e / == B F ; B / 
nareszcie w trójkącie FBC „ B F ;B /=  FC :/N  
Z tych proporcyj wypada A D \ Md “  D E : de— E F ; ef— F C : /N  
co było do dowiedzenia.

W n i o s e k . Gdyby przez powyższe proste p o d sta w a  po­
dzieloną została na części równe, t. j. gdyby było A D = D E =  
EF =  FC, byłoby też także Md —  de — e /  ru /N  czyli prosta 
MN byłaby podzieloną na części także równe. A  jeżeli czę­
ści AD, DE, EF i FC mają pewien oznaczony stosunek mię­
dzy sobą, części też Md, de, ef i /N  mieć będą tenże sam stosunek 
między sobą. Tonamwskazujesposób dzielenia prostej danej na 
części równe, lub na części pewien stosunek między sobą mające.

§. 56.
Po tych przygotowawczych twierdzeniach, przystąpmy 

do podobieństwa figur geometrycznych.
Sądzę iż nie masz człowieka któryby nie miał wyobra­

żenia wyrazu podobieństwa i któryby zaraz nie czuł, iż pe­
wien jaki przedmiot przedstawiony w rysunku, zazwyczaj by­
wa mały ale zupełnie i ze wszystkiemi szczegółami przed­
stawiający przedmiot rzeczywisty czasem nieporównanie więk­
szy. W  Gcometryi zatćm dwie jakiekolwiek figury są także 
podobne skoro obie ograniczone są tąż samą liczbą prostych
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lub płaszczyzn jednakowo w obu figurach położonych i zu­
pełnie jednakowo wzajemnie do siebie nachylonych. Czuje 
też każdy że w takich figurach nie masz takiego punktu w 
jednej, aby sobie nie miał odpowiedniego w drugiej, tak że 
połączywszy w jakikolwiek, ale tenże sam sposób w obu figu­
rach odpowiednie punkta prostemi, stosunki odpowiednich 
prostych wszystkie będą między sobą równe. Spoiny ten 
stósunek dla wszystkich prostych, nazywa się stosunkiem po­
dobieństwa dwóch lub więcej figur. Źe podobieństwo zacho­
dzić tylko może między jednoimiennemi figurami, sądzę iż 
ostrzegać nie potrzebuję. Zacznijmyż więc od najprostszych 
figur t. j. od trójkątów i zobaczmy jakie są potrzebne konie­
cznie warunki, iżby dwa lub więcój trójkątów były podobnemi.

D efinicyja. Jak dwa trójkąty, w których trzy boki je ­
dnego są równe trzem bokom drugiego trójkąta każdy każ­
demu §.22, nazwaliśmy równemi, tak znowu dwa lub więcój 
trójkątów, w których trzy kąty jednego są równe trzem ką­
tom drugiego każdy każdemu, albo krócej, trójkąty róiuno- 
kątne nazywać będziemy trójkątami podobnemi (similes). Po­
dobieństwo figur wyrażać będziemy dla krótkości znakiem*^. 
A że dwa trójkąty mające po dwa kąty równe, mają tóż i 
trzecie kąty także równe §. 36, wniosek 2, przeto stósownie 
do tćj definicyi, dwa lub więcej trójkątów mających po dwa 
kąty równe każdy każdemu, są podobne.

Uwaga. Na podobieństwie figur spoczywa cała Geome- 
tryja zastósowana, dlatego też nauka o podobieństwie figur 
jest bardzo ważną i w praktycznój Geometry i konieczną.

T w ie r d z e n ie . Trójkąty podobne mają boki odpowiada­
jące proporcyjonalne.

Niech będą dwa trójkąty ABC i abc fig. 70 podobne 
t. j. takie że kąt A  —  a, B =  ó i C =  c, potrzeba dowieść że 
ich boki odpowiadające są proporcyjonalne t. j. że 

A B ; ab —  B C : bc— A C : ac.
Gdyby było AB —  ab, trójkąty byłyby równe i przy­

stały do siebie według §. 24 a ich boki miałyby się w tym 
przypadku do siebie jak 1 : 1 ,  przeto i twierdzenie byłoby
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tern samóm dowiedzione. Niech atoli będzie AB >  ab, tedy 
na boku AB odciąwszy BD =  aó i poprowadziwszy prostą DE 
równoległą do AC aż do przecięcia się z bokiem BC w punk­
cie E , ponieważ kąt BDE — A , tudzież BED — C , zaś kąt 
A— a, B r :ó  i C n e  z założenia, zatem kąt B D E =a, B E D ~c; 
dwa więc trójkąty BDE i abc przystają do siebie i są sobie 
równe według §. 24, a następnie BE— óc, DE— «c. W  trój­
kącie ABC, DE jest równoległa do AC, przeto według §. 54 
jest A B ;B D = B C :B E = A C ;D E .
Położywszy w miejscu BD, BE i DE ilości im równe ab, 
bc i ac, będzie też

A B ; aóznBC; bc— A C ; ac. 
co było do dowiedzenia.

Uwaga. W  przystawaniu trójkątów za równością ich 
boków szła równość kątów i przeciwnie: w podobieństwie zaś 
trójkątów za równością kątów idzie proporcyjonalność boków 
i przeciwnie; a jako z równości boków wnioskowaliśmy o ró­
wności kątów im przeciwległych, tak tu z równości kątów, 
wnioskować będziemy o proporcyjonalności boków im prze­
ciwległych, lub kąty równe obejmujących. Wzajemnie tćż 
z proporcyjonalności boków dwóch trójkątów wnioskować mo­
żna o równości ich kątów, czyli o ich podobieństwie. W y­
chodząc z definicyi trójkątów równych czyli z twierdzenia §. 
22, na jego zasadzie wskazaliśmy cechy, po których równe 
trójkąty rozpoznać można; tak też i tu opierając się na defi­
nicyi trójkątów podobnych, wskażemy również cechy ich po­
dobieństwa.

§• 57.
T w i e r d z e n i e . Dwa trójkąty są podobne t. j . równoką-  

tne, jeżeli boki jednego są proporcyjonalne bokom drugiego 
trójkąta.

Niech będą dwa trójkąty ABC i abc fiq. 70 takie, że 
A B ;a ó = B C :6 c  =  AC:ac,

potrzeba dowieść że kąt A — a, B — b i C ~ c  czyli że te trój­
kąty są podobne.
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Na boku AB odetnijmy B D rz ab (gdyby było A B < a ó  
wtedy można odciąć AB na ab lub też uh na przedłużeniu 
boku AB) i poprowadźmy DE równoległą do AC; tedy we­
dług §. 54 jest

A B : BD =  B C : BE =  A C : DE.
A  że z wykreślenia BD —  ab,
przeto A B :a ó ~ B C : BE tudzież A B : ab—AC : DE
Ale z założenia jest

A B : « ó = B C : bc jako tćź A B : ab— A C : ac 
przeto, kiedy w dwóch proporcyjach trzy wyrazy jednej, są 
równe trzem wyrazom drugiej, czwarte wyrazy są sobie także 
równe; jest zatem BE — óc i DE — ac. Dwa trójkąty DBC 
i abc według §. 22 są sobie równe i przystają do siebie, są 
zatem równokątne, a w szczególności BDE =  a, i
BED^rc. A że BDE — A , BED zz C jako jednostronne odpo­
wiadające sobie, zatem A =  a i C ~  c co potrzeba było dowieść.

Twierdzenie to stanowi pierwszą cechę podobieństwa 
trójkątów. Dobrze atoli uważać potrzeba że w podobnych 
trójkątach te kąty są sobie równe, które leżą albo naprze­
ciwko boków proporeyjonalnych, albo też są zamknięte mię­
dzy takiemiż bokami. Jak przy równości trójkątów tak i 
przy ich podobieństwie nazywać będziemy takie kąty jedna- 
koioo położonemi lub krócej odpowiadającemi §. 22.

§. 58.
T w i e r d z e n i e . Dica trójkąty mające po dwa boki pro- 

porcyjonalne i po kącie między temiź bokami zawartym rów­
nym, są podobne.

Niech znowu trójkąty ABC i abc fig. 70 będą takie, 
że AB :ab — BC : bc i kąt B == b, potrzeba dowieść że są rów­
nokątne czyli podobne, t. j. że też kąt A  zza i kąt C =  c.

Na boku AB wziąwszy BD =  ab i przez punkt D po­
prowadziwszy DE równoległa do AC, ponieważ według §. 54 
jest ' A B :B D = B C :B E ,
zaś z założenia A B : aóz^BC : bc
a z wykreślenia BI) — ab, zatćm BE =  bc. Dwa przeto trój­
kąty DBE i abc według §. 23 są sobie równe i przystają do

6



siebie a w szczególności kąt Y )~a  i kąt E — c. A że kąt 
D =  A i E ~ C ,  więc tóż kąt A zza i C n e ;  dane zatem 
trójkąty są równokątne, a tern samem podobne.

Twierdzenie tó stanowi drugą cechę podobieństwa trój­
kątów.

§• 59.
T w i e r d z e n i e . Dwa trójkąty których dica boki jednego 

są proporcyjonalne dteom bokom drugiego i kąty leżące na­
przeciwko boków większych między sobą równe, są podobne.

Niech trójkąty ABC i abc jig. 70 będą takie, że 
A B :ab —  AC \ac i kąt B ~ ó  tudzież A C > A B ,  jako tóż 
ac7>ab; dowieść potrzeba że są równokątne, czyli że też 
kąt A ~ a  i kąt C =  c. Podobnie jak w dwóch poprzedza­
jących twierdzeniach na boku AB wziąwszy BD — ab i przez 
punkt D poprowadziwszy prostą DE równoległą do AC, we­
dług §. 54 jest A B : BD =  A C :DE. Ale z wykreślenia 
BD =  ab, a z założenia A B : ab ~  A C : ac, więc czwarte wy­
razy tych dwóch proporcyj są sobie równe, t. j . DE —  ac. 
Dwa trójkąty DBE i abc w których BD ~  ab, DE — ac i kąt 
B=r b, według §. 44 przystają do siebie, a z przystania wno­
simy że kąty odpowiadające są sobie równe t. j. kąt D  =  «  
i kąt E = c .  Ale DE równoległa do AC , więc kąt D = : A  
i kąt E =  C, przeto też kąt A — a i C r r c ;  są więc dwa te 
trójkąty równokątne a następnie podobne, co było do do­
wiedzenia.

Jestto trzecia cecha podobieństwa trójkątów.
§. 60.

T w i e r d z e n i e . Trójkąty których boki są równoległe od 
siebie każdy od każdego, są podobne.

Niech będą dwa trójkąty ABC i abc jig. 70, w których 
bok AB równoległy od ab, BC od bc i AC od ac, dowieść 
potrzeba że są równokątne, czyli co jedno jest, podobne.

W  §. 14 dowiedliśmy że dwa kąty których ramiona 
są równoległe i rozchodzą się w tychże samych kierunkach, 
są równe; na mocy więc tego twierdzenia, ponieważ AB rów­
noległa od ab i BC od bc, kąt B =  ó. Podobnież AB rów-



uolcgła od ab i AC od ac, więc kąt A — a. Dla tćj samój 
przyczyny kąt C “ c. Dwa więc te trójkąty są równokątne 
a zatem podobne, co chcieliśmy dowieść.

Równoległość przeto boków dwóch lub więcej trójką­
tów stanowi czwartą cechę ich podobieństwa.

§. 61.
T w i e r d z e n i e . Trójkąty w których boki jednego są pro­

stopadłe do boków drugiego, są równokątne a następnie podobne.
Przedsiębiorąc dowiedzenie tego twierdzenia, napotkać 

możemy dwa różne przypadki co do położenia jednego wzglę­
dem drugiego trójkąta; t. j . albo jeden z nich leży zewnątrz 
albo wewnątrz drugiego. W  obu przypadkach dowód jest 
nader łatwy że takie trójkąty są równokątne, przypomniaw­
szy sobie to co w §. 45 dowiedliśmy.

Niech bowiem będą dwa trójkąty ABC i abc jig. 71 
takie że ab prostopadłe do AB, bc do BC i ac do AC i trój­
kąt abc'leży zewnątrz trójkąta ABC, tedy ponieważ ab jest 
prostopadła do AB a ac do AC , kąt zawarty między temi 
prostopadłemi z punktu a zewnątrz leżącego na ramiona AB 
i AC kąta A  spuszczonemi, jest równy temuż kątowi, t. j. 
kąt azzA.  Zupełnie tym samym sposobem dowiedzie się żc 
kąt ó =  B i kąt c — C; przeto te trójkąty są podobne.

Podobnież, jeżeli trójkąt ab'c leży wewnątrz trójkąta 
ABC, z punktu a’ dwie prostopadłe a'm i an czyli b'a'm 
i acn  do AB i AC spuszczone, czynią kąt równy kątowi 
zawartemu między AB i AC, a zatem kąt a ~z A  według 
tegoż co wyżej §. A  że i o kątach zawartych między ab' 
i b'c', jako tśż między b’c i a'c' toż samo powiedzieć moż­
na, zatem również kąt ó '= B  i kąt c '~  C co było do do­
wiedzenia.

Albo tak: w czworokącie Aman summa czterech jego 
kątów wewnętrznych czyni 4R; a że kąty przy ni i n są 
proste, zatem kąt A z kątem n czynią także 2R. Lecz kąt « 
z kątem a czynią również 2R jako przyległe, zatćm kąt 
A — a', i tak o dwóch innych kątach.

6.



84

Prostopadłość boków jednego do boków drugiego trój­
kąta jest piątej, i ostatnią cechą podobieństwa trójkątów.

Uwaga. Podobieństwo trójkątów zakończmy tą ogólną 
uwagą która się i do wszystkich wielokątów stosuje, że w 
trójkątach równokątnych boki odpowiadające są te które leżą 
naprzeciwko kątów równych lub obejmują kąty równe.—  
W  trójkątach których boki są równoległe lub prostopadłe, 
odpowiadającemi są to boki, które są równoległe lub pro­
stopadle do siebie.

§• 62.
T w i e r d z e n i e . W  trójkącie prostokreślnym wziąwszy 

jeden z jego boków za podstawę i podzieliwszy kąt przeciw­
legły tejże na dwie równe części, prosta dzieląca podzieli także 
i podstawę na dwa odcinki których stosunek jest równy sto­
sunkowi dwóch innych boków.

Niech będzie trójkąt ABC jig. 72 w którym biorąc 
AC za podstawę, podzielmy kąt B na dwie równe części 
według §. 34 prostą BD, trzeba dowieść że taż prosta prze­
dłużona aż do przecięcia się z podstawą AC, podzieli ją na 
dwa odcinki AD i DC takie że AB ; C D :=  AB ; BC. Na do­
wiedzenie tej prawdy, z końca podstawy A lub C wypro­
wadźmy równoległą do BD aż do przecięcia się z przedłu­
żonym bokiem CB w punkcie E lub też z przedłużonym 
bokiem AB w punkcie F ; tedy trójkąt AEB jest równora­
mienny, bo kąt EAB — ABD jako naprzemianległe, tudzież 
kąt AEB DBC jako odpowiadające sobie; z założenia 
kąt ABD =  DBC, skąd też kąt AEB — EAB; przeto we­
dług §. 40 AB =  BE. W  trójkącie ACE, BD jest równo­
legła do A E , zatem według §. 53 jest AD : DC =  BE ; BC; 
a że BE =  AB, więc A D ;D C  =  A B ;B C  co potrzeba było 
dowieść. Zupełnie ten sam dowód z trójkąta AFC.

Uicaga. Podzieliwszy kąt ABE spełniający pierwszy 
do dwóch kątów prostych na dwie równe części prostą BD ’, 
ta również jak BD podzieli, albo raczej wyznaczy na prze­
dłużeniu podstawy punkt D ’ podobny co do własności pun­
ktowi D , t. j. że też będzie C D ’ ; AD' =  BC : AB. Jakoż
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poprowadziwszy z punktu C prostą CE' równoległą do dzie­
lącej BD' aż do spotkania się z przedłużonym bokiem BA 
w punkcie E ', kąt B E C z z D B E ’ jako naprzemianległe; kąt 
BCE'=zEBD' jako odpowiadające sobie; a żc kąt D ’B E 'zzEBD 
z podzielenia, więc tćż i kąt B E 'C ~ B C E '; przeto trójkąt 
E'BCjest równoramienny i BE' zzBC. Trójkąt A D 'B -^ A E '0  
bo kąty przy A są równe jako wierzchołkowe, kąt ABD'zz 
BE 'C , zatem i kąt AD'B zz ACE'. Z podobieństwa tych trój­
kątów wypada następująca proporcyja A D ': AC z: AB ; AE ’ 
z której AD' + A C  ; AD' — AB 4 - A E '; AB , 
albo C D ':A D 'z=B E '; A B zzB C  ; AB co było do dowiedzenia.

Łącząc tę proporcyją z dowiedzioną w twierdzeniu, t. j. 
z proporcyją DC; ADz=BC;AB, wypada CD’ ;A D ’zzCD :AD . 
Położywszy C D 'zza , DD ’ zz b, A D ’ zzc i porównawszy z §. 
20 Alg. dział II, dostrzeżemy żc to jest proporcyja harmo­
niczna i dlatego ile razy taka proporcyja ma miejsce, mó­
wimy że prosta AC jest podzielona harmonicznie a dwa pun- 
kta D i D ’ nazywają się punktami z sobą złączonemi albo 
do siebie należącemi (puncta conjugata). Jeźli więc prosta 
AC jest podzielona w punkcie D w stosunku danym, tedy 
znajduje się zawsze na jej przedłużeniu drugi punkt D ’ taki 
że jest proporcyja

C D ': A D 'zzC D  ; AD
Odmieniwszy w tej proporcyi miejsce średnim wyrazom będzie

CD' ; CD zz A D ’ : AD
która nas uczy że punkta A i C tak są położone względem 
prostej D D ’ jak punkta D i D' względem prostój AC. Cztery 
punkta C, D, A, D' tym sposobem ułożone formują związek 
albo układ harmoniczny.

§. 63.
T w i e r d z e n i e . W  trójkącie prostokątnym spuściwszy 

z wierzchołka kąta prostego prostopadłą na przeciw prostokąt­
nî , ta podzieli trójkąt na dwa inne także prostokątne podob­
ne całemu a następnie podobne między sobą; potem dzieli prze- 
ciwprostokątnię na dwa odcinki takie, że każdy bok przyle­
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gły kątowi prostemu jest średnią geometrycznie proporcyjonal- 
ną między całą przećiwprostokątnią i odcinkiem jemu przy­
ległym, a nareszcie ze ta prostopadła jest średnią geometrycz­
nie proporcyjonalną między odcinkami.

Niech będzie trójkąt ABC prostokątny przy A  fig. 73, 
spuściwszy prostopadłą AD z wićrzchołka kąta prostego na 
przeeiwprostokątnię, mamy dowieść naprzód, że każdy z trój­
kątów ABD i ADC jest podobny trójkątowi ABC. Jakoż 
dwa trójkąty ABC i ABD mają kąt B spoiny, kąty przy A  
i D równe jako proste, przeto i kąt DAB — C według §. 36 
wniosek 2, są więc te trójkąty podobne. Również dwa trójkąty 
ABC i ADC mają kąt C spoiny, kąty przy A i D proste zatem 
równe, przeto i kątBAC=zB  i te więc trójkąty' są podobne. 
Lecz że dwie ilości równe lub podobne trzeciej muszą być 
między sobą równe lub podobne, przeto trójkąt ABD ADC 
co też i z równości ich kątów wnioskować można; mają bo­
wiem kąty przy D równe jako proste, a z poprzedzającego 
kąt B — DAC i kąt B A D = C  są więc równokątne a zatem 
podobne.

Co do drugiego i trzeciego: W  podobnych trójkątach, 
boki odpowiadające są proporcyjonalne według §. 56, zatem 
kiedy trójkąt ABC ABD będzie

B C : AB =  A B : BD
Również, ponieważ trójkąt ABC ADC, jest też 

B C :A C ^ A C :D C
Nareszcie trójkąt A B D A D C ,  zatóm

BD : AD — AD : DC co było do do­
wiedzenia.

W niosek. Niech będzie BC— hu, A B = a « ,  AC — ó«, 
B D ^  mu i D C = w « , j- niech a będzie obraną jednostką, 
którą przemierzywszy boki uważanych tu trójkątów, znaleźliś­
my że takich jednostek bok BC zamyka h, AB zamyka ich 
a, AC, b, BD m, a DC ti; tedy dwie pierwsze z powyższych 
proporcyj według §§. 2 i 3 zamienią się na następujące 
liczbowe
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h \ a ~  a\m skąd a2 — hm 
h \ h — h\ n „ b~ =  hn

Z dwóch tych zrównali wypada at ‘.b i — hm'.hn— m ’.n 
tudzież a1 Ą-h*— hm-Ą-hn— (m-\-n)h.
Ale m -f-a  =  B D -)-D C = B C  ~  h, zatem a2 -|- ó4 — ń .ń = ń 2 
t. j. że kwadrat z liczby wyrażającej długość przeciwprosto- 
kątni, równa się summie kwadratów z liczb wyrażających dłu­
gości boków przyległych kątowi prostemu; poprzedzająca zaś 
proporcyja uczy nas, że też kwadraty mają się do siebie jak 
odcinki przeciwprostokątni przyległe odpowiednim bokom.

§• 64.
T w i e r d z e n i e . W  trójkątach podobnych, stosunek ich 

wysokości równa się stosunkowi podstaw tychże trójkątów, czyli, 
jak się zwyczajnie wyraża, toysokości dwóch podobnych trój­
kątów, mają się do siebie jak podstawy.

Niech będą dwa trójkąty ABC i abc jig. 74 podobne, 
ich podstawy AC i ac a wysokości BD i bd, dowieść po­
trzeba że BD ; bd —  AC : ac.

Dwa trójkąty ABD i abd są równokątnc, bo kąt A ~ a  
z założenia, gdyż trójkąty ABC i abc są podobne, kąt D ~ d  
jako prosty prostemu, trzecie więc kąty są sobie także rów­
ne, t. j .  ABD “ «óc?, są więc te trójkąty podobne, a z ich 
podobieństwa według §. 54 wypada następująca proporcyja 

AB ; a ó = B D  ; bd
Ale że trójkąt ABC K -̂abc z założenia, przeto według tegoż
§. jest też AB ; ab — AC : ac
zkąd wypada BD ; bd —  AC ; ac co należało dowieść.

§. 65.
Przejdźmy teraz do podobieństwa wielokątów. Można 

tu dać ogólne pojęcie wielokątów podobnych, wychodząc 
z podobieństwa trójkątów, że dwa wielokąty o jednakowej 
liczbie boków, których kąty są sobie równe, każdy każdemu i 
io tymże samym porządku w obu wielokątach ułożone, a boki 
obejmujące kąty równe propórcyjonalne, są podobne.
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T w i e r d z e n i e . Dwa wielokąty podobne można zawsze 
rozebrać za pomocą przekątni na jednakową liczbę trójkątów 
podobnych i podobnie w obu wielokątach ułożonych.

Niech bowiem będą dwu np. sześciokąty ABCDEF i 
abcdef jig. 75 takie, że kąt A l~a , B — b, C =  c, D ~ d ,  
E =  e i F ~ / ,  tudzież A B ;aó= B C  ; be — C D ; c d = D E : d e =  
E F : ef słowem podobne, tedy z wierzchołków kątów A i a 
poprowadziwszy przekątnie AC, AD, AE i ac, ad, ae, każdy 
z tych sześciokątów rozbierze się na cztery trójkąty według 
§. 18; pozostaje więc tylko dowieść że te trójkąty są sobie 
podobne w tym porządku jak po sobie następują. Trójkąt 
ABC abc według §. 58, zatem kąt BCA =  bca i kąt 
BAC =  bac, tudzież B C : bc —  A C : ac; a że kąt C i r c i  więc 
kąt ACD ~  acd. W  dwóch następnych trójkątach ACD i 
acd jest kąt ACD =  acd i C D : cd zz A C : ac; bo z poprze­
dzającego jest B C : bc— AC : ac, a z założenia B C : óczz:CD: cd, 
przeto trójkąt ACD o-s acd §. 58. Z podobieństwa tych trój­
kątów wynika, że kąt CI)Azzzeda, i kąt C A D ~ cad, jako 
tćż że CD :cd — W ) : ad. Przechodząc tym samym sposobem 
do dwóch następnych trój kątów, znajdziemy je  także podob- 
nemi według tegoż samego § ., zkąd wniesiemy iż prawdą 
jest że wielokąty podobne rozebrać można na równą liczbę 
trójkątów podobnych i podobnie ułożonych.

Nawzajem też twierdzić można, iż dwa lub więcej wie­
lokątów które się dają, jednymże sposobem w obu, rozebrać 
na równą liczbę trójkątów podobnych, i podobnie ułożonych, 
są także podobne.

Ze dwa lub więcej wielokątów foremnych o jednako­
wej liczbie boków są podobne, rozumiem że nie potrzebuje 
dowodu.

§ .  66.

T w i e r d z e n i e . W  dwóch wielokątach podobnych, prze­
kątnie lub jakiekolwiek proste jednymże sposobem ic obu wie­
lokątach prowadzone, mają się do siebie w stosunku odpowia­
dających boków.
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Niech będą dwa pięciokąty ABCDE i abcde fig. 76 po­
dobne; poprowadziwszy w nich jednakowo przekątnie AD i 
ad, tedy dwa trójkąty ADE i ade są podobne, bo z założe­
nia kąt E z :e  i A E :n e ~ D E : de jako w wielokątach podob­
nych: zatem także
A D : a d A E : ae albo n=DE: de ~ C D : cd~  B C : óc= ;A B : ab.

Poprowadziwszy powtóro proste AF i af także jedna­
kowo, t. j. żeby np. z bokami AE i ae czyniły kąty równe, 
będą kąty FAE i fae sobie równe, więc znowu trójkąt 
AFE K^-afe, a następnie A F : af ~  AE : ae — A B : ab — i t. d.

Poprowadźmy potrzecie proste GF i gf jakkolwiek byle 
jednakowo w obu wielokątach, a zatem żeby np. BG było 
taką częścią względem BC, jaką jest bg względem bc: rów­
nież EF względem DE takąż częścią jaką efi względem de; 
złączywszy punkta G i F  z punktem A, jak również punkta 
g i /  z punktem a prostemi A G , AF i ag, af, według po­
przedzającego tak trójkąt ABG abg jako też i trójkąt 
AEFts^aef, zkąd ponieważ A G : ag — A B : ab i A F : af—  
A E :a e =  A B :aó, wypada że A G :a g — AF:af. A  że kąt 
A — a z założenia, zaś kąt BAGr=óa(/ i kąt EAF —  eaf 
z poprzedzającego, z powodu że trójkąt BAG ^  bag, a trój­
kąt EAF i—. ea/, więc kąt GAF ~ g a f]  dla tego trójkąt 
AGF agf. Z podobieństwa ich wypada A G : ag—G Y : gf; 
a że A G : ag — A B : ab, więc tćż G F : g f=  AB : ab .z B C : bc—  
i t. d. co potrzeba było dowieść.

§• 67.
T w i e r d z e n i e . Obwody dwóch icielokątów podobnych 

mają się do siebie w stosunku dwóch który chkolwiek odpowia­
dających boków.

Oznaczywszy obwody dwóch wielokątów podobnych 
przez O i o, boki pierwszego przez A , B , C, D , i t. d. a 
odpowiadające boki drugiego przez a, b, c, d, i  t. d., tedy 
według definicyi wielokątów podobnych mamy A : a~zB : b—  
C :c  =  D :d r r E : e =  i t. d. Ale z Arytmetyki §. 97 wia­
domo że (A  +  B +  C - f  D + E  . . . ) :  (a -j-ó -f  c- f  d + e  . . . ) =  
A : « z r : B :  b — C : c zzD :d — i t. d.
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zatćm ponieważ według §. 17 A -j-B -f-C -j-D -f-E -}- • . .  =  0 ,  
tudzież a-\-b~\-c-\-d-\-e-\-. . .  — o,
przeto 0 :o  =  A : o =  B : t C : c  =  D : t i r :E :e r :  i t .  d. co 
było do dowiedzenia.

W niosek. Zatem obwody dwóch wielokątów podob­
nych mają się także według poprzedzającego twierdzenia, 
w stósunku dwóch prostych jednakowo w obu wielokątach 
poprowadzonych.

§ . 68.

Z agadnienie 1. Na danej prostej wykreślić trójkąt 
podobny danemu.

Rozwiązanie. Niech danym trójkątem będzie ABC /ó/. 77 
a prostą daną MN, potrzeba na tśj prostej wystawić trójkąt 
któryby był podobny danemu ABC.

Ponieważ podobnemi trójkątami są trójkąty równokąt- 
ne, zatśm dla rozwiązania tego zagadnienia dosyć jest wy­
kreślić trójkąt, któregoby jednym bokiem była prosta MN, 
a kąty równe kątom trójkąta ABC. Na ten koniec przy 
punkcie M i przy prostej MN wykreślmy kąt LMN — A i po­
dobnież przy punkcie N i z tejże samej strony prostej MN 
kąt KNM =  C, a przedłużywszy ramiona tych kątów aż do 
ich przecięcia się z sobą w punkcie P, te wraz z prostą da­
ną zamkną trójkąt żądany. Gdy bowiem kąt M =  A kąt 
N — C więc też i kąt P = B ;  a kiedy trójkąty MNP i ABC 
są równokątne, więc są podobne §. 56.

Albo tak: na kierunku AC boku danego trójkąta od- 
ciąwszy prostą daną MN od A do I) i przez punkt D po­
prowadziwszy równoległą do boku BC aż do przecięcia się 
z bokiem AB w punkcie E, trójkąt ADE będzie żądanym 
§. 60. W  przypadku że prosta MN A C , punkt D przy­
padnie na przedłużenie AC, a punkt E na przedłużenie AB 
co ani wykreślenia ani dowodu nie zmienia. Na tento przy­
padek powiedzieliśmy ogólnie że się odcina MN na kierun­
ku AC.
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Z a g a d n i e n i e  2 . Na danej prostej wystawić wielokąt 
podobny danemu.

Rozwiązanie. Danym wielokątem niech będzie pięcio­
kąt ABCDE, daną zaś prostą linija MN jig. 78, potrzeba na 
tej ostatniej wystawić pięciokąt podobny danemu.

Na ten koniec z wierzchołka kąta A  poprowadziwszy 
w danym wielokącie przekątnie AD i AC , podzielimy go 
tym sposobem na trzy trójkąty; wystawiwszy teraz na pro­
stej MN trójkąt MN O ADE , potćm na prostej MO trójkąt 
MOPł̂ -sADC, a nareszcie na prostej MP trójkąt MPB ABC, 
tym sposobem otrzymamy pięciokąt MNOPR ABCDE, są 
bowiem te pięciokąty złożone z tejże samej liczby trójkątów 
podobnych i podobnie ułożonych, zatćm według §. 65 są 
podobne.

Można tu także postąpić jako w poprzedzaj ącem zaga­
dnieniu, t. j. na kierunku boku AE wielokąta danego, odciąć 
prostą daną od A  do K lub od A do Ze, według tego jak 
MN >  AE lub MN <  AE. Z punktu K lub k poprowadźmy 
prostą równoległą do ED aż do przecięcia się z przedłużoną 
lub tćż z samą przekątnią AD w punkcie L lub Z; przez 
punkt L łub Z; poprowadźmy znowu równoległą LM lub Im 
do DC aż do przecięcia się z następną przekątnią AC przedłu­
żoną w punkcie M, lub z tąż przekątnią w punkcie m ; naresz­
cie z punktu M lub m, równoległą MN lub mn do boku BC 
aż do przecięcia się z przedłużonym lub samymże bokiem AB 
w punkcie N lub n ; tym sposobem otrzymany pięciokąt 
AKLMN lub Aklmn będzie podobny danemu. Jakoż wielo­
kąty ABCDE i AKLMN są równokątne, bo ramiona każdego 
kąta w pierwszym, są równoległe od ramion odpowiadających 
kątów w drugim wielokącie. Ze boki jednego są proporcy- 
jonalne bokom drugiego wielokąta jest oczywistćm; w trój­
kącie bowiem AKL prosta DE jest równoległa od KL zatem 
AK :AE =  A L: AD = K L :  D E; w trójkącie ALM dla tejże 
samój przyczyny jest A L :A D  :=r A M :AC — LM :D C; dalej

§• 69.
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w trójkącie AMN, AM : AC =  AN : AB ~  MN: BC a następnie 
A B : A N = B C  : M N C D : LM =  D E : KL =  A E : AK.

Jak postąpić z wielokątem o jakiejkolwiek liczbie bo­
ków, chcąc na prostej danej wystawić jemu podobny, sądzę 
że z tego co się powiedziało o pięciokącie jest jasnetu i dal­
szego tłómaczenia nie potrzebuje.

§. 70.
Z a g a d n i e n i e  3. Prostą daną 'podzielić na ilekoluńek czę­

ści równych.
R o z w i ą z a n i e . Niech prostą daną do podzielenia na ró­

wne części będzie AB fig. 79. Załóżmy sobie podzielić ją  
na 7 części równych, tedy na prostej nieograniczonej długo­
ści począwszy od któregokolwiek jej punktu, odetnijmy w je- 
dnę lub drugą stronę siedm części równych dowolnej długo­
ści np. od M do N; na prostśj MN wystawmy trójkąt równo­
boczny MNP § .3 1  uwaga 3. Na boku MP od P ku M ode- 
tnijmy PR — AB, a przez punkt Ił poprowadziwszy równole­
głą RS do MN, lub też na boku PN odciąwszy PS =  AB i 
połączywszy punkta R i S prostą RS, ta będzie równa 
prostej AB danej do podzielenia; bo według §. 54 jest 
M P: PR n; MN: RS; a że MP =  MN więc tćż i PR =R S. Ale 
P R ~ A B  z wykreślenia, przeto również RS = : AB. Jeżeli te-1 
raz wierzchołek kąta P połączymy z punktami podziału 1 ,
2, 3,.....  prostemi, te podzielą RS =: AB na tyleż części pro-
porcyjonałnych częściom pierwszym według §. 55. A że 
pierwsze części są między sobą równe, więc też i drugie mię­
dzy sobą są równe, co było do okazania.

Albo tak: na prostej nieograniczonej długości jak przed 
tem, odcinamy również tyle części między sobą równych, 
lecz wielkości dowolnej, na ile prostą daną podzielić chce- 
my fig. 80; z jednego lub drugiego końca t. j .  z punktu M, 
lub 7 prowadzimy prostą MP, pod jakiemkolwiek nachyle­
niem do MN i na niej od wierzchołka kąta M odcinamy 
MR — AB; punkt R łączymy z ostatnim podziałem jak tu z 7 
prostą R7 i przez wszystkie inne podziały prowadzimy rów­
noległe do R7, a te podzielą prostą M R = A B  na żądaną licz­
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bę części równych. W  trójkącie bowiem MNR prosta ia bę­
dąc równoległą do R7, dzieli dwa inne boki na części pro- 
porcyjonalne; jest więc M7;M1 = M R ;M a . A jako Ml =  łN7, 
tak tćż być musi M a = y M R r z j AB t. j. Ma jest siódmą czę­
ścią prostej danej AB. Podobnież w tymże samym trójkącie 
uważając ó2 równoległą do R7, mamy też proporcyją M7 ;M 2~  
MR : Mó , z której , ponieważ M2 n  |M7 wypada, że też 
M ó =  fMR =  f  AB i t. d.

Uwaga. Ponieważ nie tak jest łatwo z potrzebną dokła­
dnością prowadzić równoległe, przeto ułatwia się podział pro­
stej na części równe lub żądane i zyskuje na dokładności, 
prowadząc z punktu R w przeciwnym kierunku prostą RS 
równoległą do MN i na tę, począwszy od punktu R, przeno­
szą się podziały, któreśmy na MN naznaczyli; łącząc naresz­
cie odpowiednie punkta podziałów t. j. I i l , 2 i 2 , 3 i 3  
i t. d. prostemi, te podzielą jak wprzód prostą MR =  AB na 
części żądane.

Gdyby potrzeba prostą daną podzielić na dwie części 
któreby się miały do siebie w stosunku dwóch prostych da­
nych, tedy chociaż na zasadzie twierdzenia §. 55 łatwo to 
uskutecznić, najłatwiejszy atoli sposób jest następujący:

Niech AB będzie prostą daną do podzielenia na dwie 
części mające się do siebie w stosunku dwóch innych pro­
stych P i Q fig. SI, z końców prostej danćj A i B , popro­
wadźmy dwie inne proste AC i BC' w jakimkolwiek kierun­
ku lecz do siebie równolegle i jednę z jednej, a drugą z dru­
giej strony prostej AB. Na pierwszej weźmy AC — P a na 
drugiej BC’= Q  lub przeciwnie, a połączywszy punkta C i C' 
prostą CC’, ta przetnie prostą daną AB w punkcie I) w stosun­
ku żądanym. Jakoż trójkąt A D C .^B D C ’, 
przeto A D ;D B  =  A C :B C '= :P :Q .

Prowadząc równoległe z końców prostej danej po jednćj 
ich stronie, jak są AC i B C '= :Q , a potem łącząc punkta 
C i C” prostą, ta przetnie prostą daną przedłużoną w punk­
cie D ’ tak, że też jest A D '; BD' ~  AC i BC" =  P : Q. Tę
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proporcyją łącząc z powyżćj otrzymaną, 
będzie A D ': B D '= A D  ; BD

Porównywając tę ostatnią proporcyją z otrzymaną w §. 
62 incaga dostrzeżemy, że jest harmoniczną a dwa punkta 
D i D ’ są punktami do siebie należącemi. Podzielić zatem 
prostą w stósunku danym znaczy toż samo jak podzielić pro­
stą w proporcyi harmonicznej, lub nareszcie wynaleść na jej 
kierunku dwa punkta do siebie należące.

§• 71.
Są też i inne sposoby dzielenia prostej na części rów­

ne, a szczególniej kiedy wypadnie podzielić prostą daną na 
drobno części. Potrzeba takiego podziału zachodzi zawsze 
w zastósowaniach Geometryi, gdziekolwiek przedstawia się ja- 
kibądź przedmiot w linijowym rysunku. Gdy bowiem takie 
rysunki bywają w zmniejszonych wymiarach robione z zacho­
waniem podobieństwa, rysują się zatem zawsze figury podobne, 
te zaś jak wiemy, muszą mieć odpowiadające boki proporcyjo- 
nalne. Z tego powodu obiera się dowolna długość czyli pro­
sta mająca np. cal długości (jednostka), która nam przed­
stawiać może jakąkolwiek długość rzeczywistą, czyli odno­
śnie do przedmiotu, jako to: sążeń, sznur, 10, 100, 1000 i 
t. d. sznurów, milę i t. d. Chcąc zaś przy rysowaniu takie­
go przedmiotu mieć podziały mniejsze, czego zawsze niezbę­
dna potrzeba wypada, rzeczoną calową długość mieć musimy 
podzieloną na drobniejsze części. Tak podzielona jednostka 
nazywa się zwyczajnie jpodziałką (scala). A  że wspomnione 
rysunki przedstawiać mogą niniejsze lub większe obrazy przed­
miotów, prawie zaś zawsze mniejsze od samychżc przedmio­
tów, zatem im obraz ma być mniejszy, tćm podziałka przed­
stawiająca np. cal długości, na drobniejsze części dzielona 
być musi. Sądzę więc że tu będzie właściwe miejsce ku po­
daniu sposobów robienia, czyli wykreślania podziałki.

Najpospolitsza podziałka, używana nie do bardzo dokła­
dnych rysunków, są to dwie proste równoległe blisko siebie 
pociągnione, jedna grubsza druga cieńsza. Wzdłuż tych od­
cina się jednostka dowolną liczbo razy i te podziały znaczą
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się prostopadłemi poprowadzonemi między pićrwszemi dwiema 
równoległemi i przynajmnićj w jcdnę stronę nieco przedłużo- 
ncmi jako główne podziały znaeząceini. Pierwszy główny po­
dział dzieli się na drobniejsze części, a to stosownie do potrze­
by na 4, 5, 10 i t. p. części. Drugi główny podział znaczy 
się liczbą zamykającą tyle jedności, ile ich ta jednostka ma 
przedstawiać, drugi 2razy tyle i t. d. jak na fig. 82 widzi­
my podziały 10, 20, 30.....  Tym sposobem drobniejsze po­
działy w pierwszym głównym, wyrażać będą każdy 2 sążnie; 
dlatego też znaczymy je  liczbami 2, 4, 6, 8. W  końcu po- 
działki dopisuje się jakie długości ta podzialka przedstawia, 
jak tu sążnie. Gdyby główny podział przedstawiał sążeń, 
oznaczylibyśmy drugi i następne podziały zamiast liczbami 
10, 20, 30 i t. d., liczbami 1, 2, 3 i t. d. a dzieląc pićrw- 
szy na 6 części, każdy z tych drobnych podziałów wyrażał­
by stopę, dlaczego nie liczbami 2, 4 , 6 , 8 , ale liczbami 1, 
2, 3, 4, 5 oznaczyćby je  potrzeba. Użycie takiej podziałki 
nie potrzebuje jak sądzę objaśnienia.

Drugi gatunek podziałki, który się używa ile razy chce­
my zrobić dokładniejszy rysunek, jest to podziałka wykre­
ślona za pomocą tak nazwanych prostych transicersalnych. 
Aby taką podziałkę wykreślić, należy liczbę miar, jaką ma 
wyrażać każdy podział główny, rozebrać na dwa czynniki. 
Tak np. clioąc nakreślić podziałkę gdzieby główny podział 
wyrażał 20 sążni rzeczywistych i z którejby pojedyncze są­
żnie brać można, tak postąpić należy. Liczbę 20 rozłożyw­
szy na dwa czynniki 4 i 5, kreśli się prostą MN nieograni­
czonej długości fig. 83 i na niój odcina się tyle części rów­
nych, ile potrzeba wymagać będzie i równych obranej je ­
dnostce np. calowi, jak tu AB, BC, CD.....  Pierwszy z tych
podziałów dzieli się na 4 mniejsze części, ale także między 
sobą równe; z punktów A i B wyprowadziwszy prostopadłe 
do MN dowolnej długości, bierze się na którejkolwiek z nich 
5 części także między sobą równych, a z resztą dowolnych 
od B do P; przez punkt P prowadzi się równoległa do MN 
i tę przedłuża aż do przecięcia się z pierwszą prostopadłą,
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oraz przenoszą się na nię cztóry mniejsze podziały poprzednio 
na AB zrobione. Przez pięć na prostopadłćj zrobionych po­
działów, prowadzą się równoległe do MN przedłużając je tak 
daleko, jak podziałka zasięga. Nakoniec łącząc punkt P z pierw­
szym podziałem mniejszym Q, a potem następne łącząc także 
z sobą, mamy tym sposobem podziałkę ukończoną. Zobaczmy 
tylko czyli zadość wymogom czyni? Trójkąt BPQ:-^« 1P pi-zeto 
BP;P1 = B Q ;a l ;  a ż e P i~ £ B P ,  więc podobnież al — £BQ. 
Ale BQ=z^AB, zatem al =  J .|A B = 2'nAB.

Zupełnie tym samym sposobem okaże się że ó2r=ynA B , 
że dalej c3 53SAB i t. d. więc al wyraża jeden, 62, dwa, 
c3, trzy i t. d. sążnie; dlatego też na tych równoległych 
widzimy wzdłuż prostopadłćj PB liczby 1, 2, 3 , 4. Każ­
dy z mniejszych podziałów jak BQ będąc czwartą częścią 
20tu sążni, wyraża 5 sążni i z tego powodu widzimy wzdłuż 
górnej równoległej liczby 5, 10, 15.

Po takiem wyjaśnieniu w mowie będącej podziałki, ro­
zumiem iż jej użycie nie stawi żadnej trudności ani wątpli­
wości.

Z tego rodzaju podziałek najużywańsza jest dziesiętna, 
z powodu że też i rachunek dziesiętny, szczególniej między 
uczonymi, stał się prawie ogólnym. Taka podziałka kreśli 
się zupełnie jak poprzedzająca z tą jedyną różnicą, że się 
liczba nie rozkłada na dwa czynniki i pierwszy główny po­
dział dzieli się na 10 części równych, tudzież na prostopa­
dłej BP odcina się także 10 części równych, a tym sposo­
bem ponieważ BQ =  T'nAB, będzie al — TJ0AB, ó2 =  Tg0AB 
i t. d. Taką podziałkę przedstawia nam fig. 84. Użycie jej 
jak pierwszej, t. j. niech AB przedstawia 100 sznurów, tedy 
chcąc z podziałki wziąść 374 sznury, potrzeba jednę nóżkę 
cyrkla postawić w punkcie R, a drugą w r na prostej trans­
wersalnej liczbą 70 z góry oznaczonej, a tak długość rR wy­
rażać będzie 374 sznury,

bo R r=R 4-| -4eZ-f i r  =  300 +  7 0 -f  4 = 3 7 4 .
Zresztą prędkiego i dokładnego użycia podziałki, naby­

wa się dopiero w praktyce.
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§• 72.
Z a g a d n i e n i e  4 .  Mając prostą podzieloną na ilekolwiek 

części, a zatem w ogólności na n części równych, podzielić 
tęż prostą na n -j- /  części także równych.

Rozwiązanie. Prostą daną podzieloną na n części niech 
będzie AB, 9i,a- jej częścią niech będzie AC jig. 85, znaleść 
potrzeba jej (n-j- l)tą część. Na ten koniec na prostej AB 
wystawmy kwadrat AB DE, a poprowadziwszy przekątnię AD, 
tudzież punkta C i E złączywszy prostą CE, ta przetnie prze­
kątnię w punkcie F ; prowadząc przez punkt F  prostą GH, 
równoległą do boku kwadratu AE , ta odetnie nam od AC 
część AH, która jest żądana (ra-j-l)tą częścią prostej AB.

Dowód rzetelności tego postępowania jest bardzo pro­
sty, albowiem trójkąt EFD AEG bo są równokątne, prze­
to F D ; AF =  E D ; AC. W  trójkącie BAD, HF równoległa do 
BD dzieli dwa inne jego boki na części proporcyjonalne, za­
tem FD ; AF --- HB ; AH. Z dwóch ostatnich proporcyj wy­

pada E D : A C = B H : AH. Lecz E D =A B , A C =  *-AB
n

zatem AB; 1 AB =  BH;AH albo 1 ;— = B H ;A H ,
n n

skąd AH —  B il, albo w.AII =  BH. Dodawszy do każdej 

z dwóch tych ilości równych, ilość AH, będzie «.AH -|-AH=

BH-j-AH, albo (n-j-1) A H =A B  skąd nareszcie AII =
1

n-1-1 AB

co było do dowiedzenia.
§ .  7 3 .

Z a g a d n i e n i e  5 . Mając dany punkt między ramionami 
kąta, poprowadzić przez tenże prostą, któraby kończąc się na 
ramionach kąta, w punkcie danym podzieloną była na dwie 
równe części.

Rozwiązanie. Niech BAC będzie kątem danym i punkt 
M między jego ramionami fig. 86, potrzeba przez ten punkt 
poprowadzić prostą między ramionami, któraby w tymże punk­
cie podzieloną była na dwie części równe.

7
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Przez dany punkt poprowadźmy równoległą do jednego 
z ramion danego kąta np. do A C , ta przetnie drugie ramię 
w punkcie H; zróbmy HD —  AH i przez punkta D i M po­
prowadźmy prostą DME, ta będzie prostą żądaną t. j. że bę­
dzie DM =  ME. Gdy bowiem HM równoległa do AE więc 
AH ;H D  =  ME:DM. A  że A H =iH D  z wykreślenia, więc też 
ME =  DM co należało dowieść.

§■ 7 4 .

Z a g a d n i e n i e  6 . Mając dany kąt i prostą między jego 
ramionami z wierzchołka poprowadzoną, tudzież za ramionami 
kąta punkt dany, poprowadzić między ramionami rzeczonego 
kąta prostą tak, iżby przez pomstą daną podzielona była na 
dioie równe części a w przedłużeniu sioojem przechodziła przez 
punkt dany.

Rozwiązanie. Niechże danym kątem będzie BA O, pro­
stą daną AD, a nareszcie E punktem danym fig. 87, potrze­
ba przez ten punkt poprowadzić prostą tak, iżby jej część 
między ramionami kąta zawarta, podzieloną była przez pro­
stą AD na dwie równe części. Na danej prostej AD obierz­
my gdziekolwiek punkt F, i przez ten, według poprzedniego 
zagadnienia, poprowadźmy prostą B ' C ' podzieloną w tymże 
punkcie na dwie równe części tak że B ’F ~ F C '. Jeżeli te­
raz przez punkt dany E poprowadzimy EN równoległą do tej 
ostatniej prostej, część jej MN będzie także podzieloną w 
punkcie O, a zatem przez prostą daną, na dwie równe części; 
jest więc prostą żądaną. Dowód tej prawdy.jest oczywisty 
przeto go pomijam.

§ .  7 5 .

Z a g a d n i e n i e  7 . Mając dane trzy proste oznaczonej dłu­
gości, znaleść czwartą proporcyjonalną.

Rozwiązanie. Trzema prostemi danemi niech będą A , 
B, C fig. 88, potrzeba do nich znaleść czwartą proporcyjo­
nalną. Na ten koniec wykreślmy jakikolwiek kąt P i na je- 
dnem z jego ramion odetnijmy prostą pierwszą A od P do A, 
tak, że P A ~  A; nadrugiem ramieniu odetnijmy P B ~ B ; trzecią 
prostą odetnijmy na ramieniu pierwszem, tak że PC — C ;
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C poprowadźmy równoległą do AB, a ta na drugiem ramie­
niu odetnie PD, która jest czwartą proporcyjonalną szukaną. 
W  trójkącie bowiem CPD, w którym AB równoległa do CD 
jest A P : BP =  CP: DP czyli A ;B  =  C:DP; jest więc rzeczy­
wiście DP czwartą proporcyjonalną, której żądaliśmy.

§. 76.
Z a g a d n i e n i e  8 .  Do dwóch prostych znaleśó trzecią ciągłą.
Rozwiązanie. Niech prostemi danemi będą A  i B fig. 89 

i niecił B będzie tą prostą, która ma być średnią geometry­
cznie proporcyjonalną, a znaleśó potrzeba trzecią któraby z 
danemi czyniła proporcyją ciągłą. Dla znalezienia jćj wy­
kreślmy znowu jak poprzednio jakikolwiek kąt P i na je- 
dnem z jego ramion weźmy PA =  A , na drugiem P B = B  i 
znowu na pierwszem PB' = : B. Punkta A i B złączywszy 
prostą AB a przez punkt B' poprowadziwszy równoległą od 
niej ta odetnie na drugiem ramieniu prostą PC, która będzie 
trzecią ciągle proporcyjonalną szukaną; według bowiem po­
przedzającego zagadnienia jest AP; B P ~B 'P ;C P . A źe A P = A , 
B P = B , B'P =  B, więc A 'B z= B ;C P  czyli -H- A ;B :C P ; jest 
więc CP trzecią ciągłą do dwóch danych A i B.

§. 77.
Z a g a d n i e n i e  9 . Mając dane dwie proste, znaleśó mię­

dzy niemi średnią geometrycznie proporcyjonalną.
Rozwiązanie. Niech A  i B Jig. 90 będą dwiema proste­

mi, pomiędzy któremi znaleśó mamy średnią geometrycznie 
proporcyjonalną. Wiedząc z §. 63 że prostopadła z wierz­
chołka kąta prostego na przeciwprostokątnię spuszczona jest 
średnią geometrycznie proporcyjonalną między odcinkami przez 
siebie zrobionemi, na zasadzie tej kreśli się prosta nieogra­
niczonej długości, i na niej odcina się jedna z prostych da­
nych np. A od M do N, potem druga B od N doP ; z punk­
tu N wyprowadza się prostopadła do MP, także nieograniczo­
nej długości; chodzi teraz o to, jak jej długość naznaczyć? 
Naznaczenie tej długości zależy na wyznaczeniu na tej pro­
stopadłej takiego punktu, iżby proste łączące go z punktami
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M i P czyniły w tymże punkcie kąt prosty. Na ten koniec 
dzieli się prostą MP w punkcie Q na dwie równe części i z 
tego punktu otwartością cyrkla równą QM, kreśli się luk 
przecinający tęż prostopadłą w punkcie R; mówię że NR jest 
średnią geometrycznie proporcyjonalną szukaną. Aby tę pra­
wdę udowodnić, potrzeba okazać, że kąt MRP jest prosty. 
Złączywszy punkt R z punktami M, Q, P prostemi, tak trój­
kąt MQP, jako też trójkąt QRP jest równoramienny, bo 
Q M rrQ R = Q P , zatem kąt M =M RQ , tudzież kąt P ~  QRP. 
W  trójkącie MQR jest M-j- MRQ -j- MQR ~  2R 
czyli 2MRQ-j-MQR =  2R; podobnież w trójkącie QRP jest 

P - f  QRP +  RQP =  2R czyli 2QRP -f- RQP =  2R, 
zatem 2 (MRQ - f  QRP) +  (MQR - f  RQP) =  4R.
Lecz M RQ4-QBP= MRP, zaś MQIl-|-RQPrr 2R jako przy­
ległe, przeto odjąwszy po obu stronach ostatniego zrównania 
ilości równe t. j. od pierwszćj ilość M QR-j-RQP a od dru­
giej 2R, otrzymamy 2MRP =  2R czyli M R P = R . Jest więc 
kąt MRP prosty, a prostopadła NR średnią geometrycznie 
proporcyjonalną między MN i NP czyli między A i B co na­
leżało dowieść.

§. 78.
Z agadnienie 10. Mając dane dwa iloczyny, każdy 

z dwóch linij prostych, znaleść stósunek tych iloczynów także to 
linijach prostych, czyli znaleść dwie proste, któreby się tak 
miały do siebie, jak się mają rzeczone iloczyny.

Rozwiązanie. Niech dane iloczyny będą A X B  i C X D , 
gdzie A , B , C , D wyrażają linije proste albo ich stosun­
ki do jednostki, a w takim razie wyrażałyby liczby. Jeżeli 
wyrażają liczby, przypuśćmy że A n 5 ,  B = 1 4 , 0 = 7 ,  D = 4 , 
tedy mamy znalóść stósunek równający się stosunkowi

5 X 1 4 : 7 X 4 -
Na ten koniec do trzech liczb 14, 7 i 4 szukamy czwartej 
proporcyjonalnej, którą według Arytmetyki znajdziemy

4 X 7
1 4 :7  =  4 ;  ■ czyli 14: 7 =  4 ;2  skąd 7 X 4 “ 2 X  14; mieć
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więc będziemy 5 X 1 4 : 7 X 4  =  5 X 1 4 : 2 X 1 4 = 5 : 2 ;  liczby 
więc 5 i 2 mają się do siebie w takim samym stósunku, w 
jakim są iloczyny 5 X 1 4  i 7 X 4 ,  gdyż 5 X 1 4 '.7 X 4  =  5 ;2  
czyli 70;28 =  5 ;2  skąd 7 0 X 2  =  2 8 X 5 ,  co dowodzi rzetel­
ności tej ostatniej proporcyi.

Jeżeli zaś A, B, C, D wyrażają linije, jak rzeczywiście 
w zagadnieniu wyrażono, postępowanie w rozwiązaniu zaga­
dnienia w tym przypadku jest toż samo, t. j. do trzech pro­
stych B, C, D szuka się czwartćj proporcyjonalnćj §. 75, 
którą nazwawszy K, mamy B ; C = D ; K  skąd C X D  =  B X K ;  
będzie więc A X H ! C X B >  =  A X U l I l X K = A i K '  j ) wjc 
więc proste A i K mają się do siebie, jak dwa iloczyny dane.

§. 79.
Z a g a d n i e n i e  1 1 . Mając dane dwa iloczyny, każdy z 

trzech prostych złożony, znaleść ich stosunek wyrażony także 
w linijach prostych.

Rozwiązanie. Niech iloczynami danemi będą A X B X C  
i A ' X H ’ X C '  gdzie ilości A, B, C i A', B', C' wyrażają li­
nije proste, potrzeba znaleść stosunek tych iloczynów wyra­
żony w linijach. Na ten koniec naprzód do trzech prostych 
A', A, B szukamy czwartej proporcyjonalnój, którą nazwaw 
szy K będzie A ’ ;A =  B :K  skąd A X B  =  A ' X K-

Potóm do trzech prostych C , B ', C ' szukamy znowu 
czwartej proporcyjonalnćj i tę K' nazywamy, tak że 

C :B ' =  C ':K ; skąd B ' X C '  =  C X K ' .
Jeżeli teraz w miejsce iloczynów A X B  i B ' X C  położymy 
znalezione im równe ważności, będzie:
a x b x C:A,x b ,x c ' =  a' X k x C:A'x c x k ' = k :K';
skąd się pokazuje, że znalezione dwie proste K i K ’, mają 
się do siebie jak podane iloczyny, co też w zagadnieniu 
żądano.
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ROZDZIAŁ V.
Własności prostych w różny sposób względem okręgu koła pro­
wadzonych, jako też kątów, różnie wśród linii kołowej, na niej 

lub za nią położonych.

§• 80.
Z §. 20 już wiemy co jest łuk i co cięciwa, w tym więc 

rozdziale dowiedziemy naprzód następujące
T wierdzenie. Kątgm równym mającym swe wierzchołki 

iv środku koła, odpowiadają cięciwy równe i łuki między ich 
ramionami zawarte równe. Nawzajem, cięciwom równym od­
powiadają kąty równe i łuki równe, jako tśż lukom równym 
odpowiadają cięciwy i kąty równe.

Co do pierwszego. Niech będą dwa kąty ASB i CSD 
jig. 91 równe, mające swoje wierzchołki w środku koła S; 
jeżeli połączymy punkta A i B, C i D prosteini, czyli co je ­
dno jest, jeżeli poprowadzimy cięciwy AB i CD, potrzeba 
dowieść że te cięciwy są sobie równe, tudzież że i łuki do 
nich należące także sobie są równe.

Dwa trójkąty ASB i CSD według §. 23, są sobie ró­
wne i przystają do siebie, bo mają po dwa boki AS i BS, 
CS i D S, jako promienie jednegoż koła równe i po kącie 
między niemi zawartym z założenia równym; z ich więc przy­
stania wnosimy że AB =z CD.

Wycinek ASB położywszy na wycinku CSD tak, aby 
punkt S przypadł na S, promień SA poszedł w kierunku SC, 
tedy punkt A przypada na C dla równości promieni, a pro­
mień SB pójdzie w kierunku SD dla równości kątów przy S. 
A  że SB =  SC więc i punkt B padnie na punkt D. Skoro 
więc dwa punkta A  i B luku AB padły na dwa punkta C i 
D łuku CD, muszą też wszystkie inne punkta łuku AB, paśdź 
na odpowiadające punkta łuku CD, czyli łuki te zupełnie 
przykryć się muszą, gdyż wszystkie punkta obu, będąc w ró­
wnej od środka S odległości, nie mogą paść ani bliżej ani 
dalej tegoż środka, jak są punkta łuku CD, co było do do­
wiedzenia.
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Co do drugiego. Ponieważ zakładamy że AB =  01), 
więc trójkąty ASB i CSD według §. 22 przystają do siebie, 
a w szczególności kąt ASB=CSD . Ze luki są sobie równe, 
już bardzo łatwo wnioskować, bo z przystania trójkątów, punk- 
ta A i B leżą na C i D.

Co do trzeciego. Wycinek ASB położywszy na wycinku 
CSD tak, aby punkt A padł na C, punkt B przypaść musi 
na D , albowiem te łuki z założenia są sobie równe. A  że 
przez dwa punkta jedna tylko prosta przechodzić może, za­
tem cięciwa AB przykryje cięciwę CD, a następnie te cięci­
wy są sobie równe. Z przystania potem trójkątów mających 
po trzy boki równe każdy każdemu, wniesiemy że kąt 

ASB — CSD.
Prawdą więc jest wszystko, co twierdziliśmy.

W niosek. Z samego toku dowodzenia tego twierdzenia 
wypływa, że kątom równym przy środku koła odpowiadają 
nie tylko cięciwy i łuki, ale także wycinki i odcinki równe.

§• 81.
Podzieliwszy kąt ASB fig. 92 na ilekolwiek części rów­

nych, i podziałowe proste przedłużywszy aż do przecięcia 
się z lukiem jakimkolwiek promieniem z wierzchołka kąta 
S jako ze środka zakreślonym, łuk ten podzielonym zosta­
nie na tyleż części równych. Wzajemnie, jeżeli podzielimy 
łuk między ramionami kąta z jego wierzchołka jakimkolwiek 
promieniem zakreślony na ilekolwiek części rówmych i pun­
kta podziału połączymy z wierzchołkiem prostemi, te podzielą 
też kąt między którego ramionami łuk został zakreślony na 
tyleż części równych. Oprócz tego jasno widzimy, że dwa, 
trzy, cztery i t. d. razy większy łuk jest zawarty między ra­
mionami kąta dwa, trzy, cztery i t. d. razy większego; bo 
np. łuk A5 będąc 5 razy większym od łuku A l ,  jest też 
zawarty między ramionami kąta AS5 5 razy większego od 
kąta A SI ;  łuk A8 będąc 4 razy większy od łuku A 2, jest 
też zawarty między ramionami kąta AS8, 4razy większego 
od kąta AS2 i t. d. Kiedy więc łuki nakreślone z wierz­
chołków kątów tymże samym promieniem powiększają się
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w tymże samym stosunku w jakim się kąty powiększają, na­
turalną jest rzeczą, iż w miejsce stósunku kątów, wziąść 
można stósunek łuków jednymże promieniem z wierzchołków 
pomiędzy ich ramionami zakreślonych; kąty przeto mają się 
w ogólności do siebie jak luki z ich wierzchołków jednymże 
promieniem nakreślone. Jeżeli bowiem łuki są spółmierne, 
rzetelność tego twierdzenia z poprzedzającego jest jasną i 
oczywistą; jeżeli zaś są niespółmierne tedy według tego co 
w §. 53 uiuaga wyrzekliśmy, można łatwo dowieść że i w 
tym przypadku stósunek kątów jest równy stósunkowi łu­
ków z ich wierzchołków jednymże promieniem między ich 
ramionami zakreślony cli.

Poprowadziwszy przez środek koła dwie średnice do sie­
bie prostopadłe, te jak już wiemy dzielą tak okrąg koła jako 
też i samo koło na cztery części równe, które w §. 19 ćwiart­
kami koła nazwaliśmy. Lecz z przecięcia się dwóch średnic 
prostopadle do siebie, powstają cztery kąty proste, więc czwarta 
część okręgu koła zawarta jest tym sposobem między ramio­
nami kąta prostego wierzchołek w środku koła mającego; 
zamiast więc porównywać kąt z kątem prostym jako jednost­
ką, można porównywać łuk z wierzchołka tegoż kąta jakimkol­
wiek promieniem między jego ramionami nakreślony, z czwar­
tą częścią okręgu koła takimże promieniem nakreślonego, i 
w tern to rozumieniu mówimy zwyczajnie: miarą kąta jest łuk 
między jego ramionami z wierzchołka jako ze środką jakim­
kolwiek promieniem nakreślony.

W  §. 9 przyjąwszy kąt prosty za jednostkę do mie­
rzenia kątów, dla większej wygody podzieliliśmy go na 90 
części które stopniami nazwaliśmy, zatem i czwartą część 
okręgu koła jako miarę kąta prostego dzieli się także na 90 
części; tym sposobem cały okrąg koła jakimkolwiek pro­
mieniem zakreślony, zamykać będzie 360 części, bo on jest 
miarą cztórecb kątów prostych, które też czynią 360 stopni, 
z których każdy dzieli się na minuty a te na sekundy. A tak 
czyli to chcemy wyrazić w liczbach kąt czyli też łuk, w każ­
dym razie wyrażamy je liczbą stopni, minut, sekund i t. d.
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Chcąc zaś znaleść stosunek dwóch kątów lub łuków, dosyć 
jest znaleść stosunek dwóch liczb wyrażających ile każdy 
z nich zamyka stopni, minut i sekund.

Po tein co dotąd o kątach i lukach razem uważanych 
powiedzieliśmy, łatwo poznamy jak geometryczne działanie 
w dochodzeniu stosunku dwóch kątów czyli ich spólnej 
miary w §. 8 wskazane, zamienić można na działanie bez 
porównania łatwiejsze z lukami tymże kątom za miarę słu- 
żąeemi. ,

Uwaga. Powiedzieliśmy że cały okrąg kola jest miarą 
czterech kątów prostych i to okrąg kola jakimkolwiek pro­
mieniem nakreślony; skąd się pokazaje, że wielkość kąta 
nie zależy od wielkości promienia. Rzeczywiście ponieważ 
tu ramionami kąta są promienie, a od długości ramion nic 
zależy wielkość kąta §. 4, więc też i od wielkości promie­
nia zależeć nie może. Lecz długość luku między ramionami 
kąta zakreślonego tern jest większa im promień dłuższy; 
skądby poszło że luk jako, co do swej długości zmienny, nic 
może być miarą kąta jak poprzednio dowiedliśmy. Atoli jakkol­
wiek długość linii kołowej tern jest większa im promień dłuż­
szy, wszelako tak mały okrąg jako i wielki, zawsze jest mia­
rą czterech kątów prostych; jeżeli bowiem między ramionami 
kąta prostego nakreślimy różnemi promieniami luki, a kąt 
prosty wystawimy sobie podzielony na 90 części, podziałowe 
linije podzielą też każdy z nakreślonych łuków na 90 części, 
dla tego to okrąg koła jakimkolwiek promieniem nakreślony, 
dzielimy zawsze na 360 części równych nazwanych stopnia­
mi i każda taka część jest miarą kąta mającego 1 stopień; 
jakkolwiek bowiem ta miara co do długości swojej jest róż­
na, według długości promienia, zawsze jednak jest 90tą częścią 
czwartej części okręgu. W  nowszych czasach Francuzi, wpro­
wadziwszy użycie miar dziesiętnych, podzielili też okrąg kola 
na 400 części nazwanych stopniami (grade), każdy taki stopień 
podzielili na 100 części nazwanych minutami, a każdą minutę 
na 100 sekund. Chcąc więc w dawnym podziale znaleść stosunek 
jakiegokolwiek kąta do jednostki, dosyć jest liczbę jego sto­
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pni podzielić przez 90, w nowym zaś podziale liczbę stopni 
(grade) podzielić potrzeba przez 100. Chcąc zaś zamienić 
stopnie dawnego podziału na stopnie nowego, potrzeba liczbę 
stopni pomnożyć przez '5° , a przeciwnie przechodząc z no­
wego do dawnego, liczba stopni mnoży się przez T9„. Tak np. 
25"54’ 36" czyli 25°. 96 dawnego podziału czynią nowych 
25-96 X  W =28*8444 . . .  czyli 28*8444" . . .
13°75'92” czyli 13-7592 nowego podziału, czynią 
13-7592 X  Tso =  12°38328 =  12022'59"808 podziału dawnego.

§. 82.
T wierdzenie. Prostopadła ze środka koła do cięciwy 

spuszczona, dzieli ją i luk do niej należący na dwie równe 
części.

Niech będzie prosta SC prostopadła do cięciwy AB 
fig. 93, potrzeba dowieść że ta prostopadła dzieli cięciwę w 
punkcie przecięcia się z nią D na dwie równe części, a w 
przedłużeniu swojem, dzieli także łuk do niej należący na 
dwie równe części.

Poprowadziwszy promienie SA i SB, dwa trójkąty ASD 
i BSD według §. 35 przystają do siebie, są bowiem prosto­
kątne przy D tudzież mają przeciwprostokątnie SA, SB rów­
ne i po jednym boku przyległym kątowi prostemu równym 
t. j.  S D S D ; z ich więc przystania wnosimy że A D = B D .

Albo tak: SD jest z założenia prostopadła da AB, zaś 
SA i SB są dwiema pochyłemi; ponieważ te pochyłe są rów­
ne jako promienie jednegoż okręgu, więc według §. 32 c), 
są w równej od spodku prostopadłej SD odległości, przeto 
B D = B D .

Powtóre: Dwa trójkąty ACD i BCD mają po dwa boki 
z kątem zawartym równe, gdyż AD =  BD z poprzedzającego 
CD =  CD i kąty przy D proste, więc przystają do siebie 
według §. 23, a z przystania wnosimy, że cięciwa ACz=BC.

Albo: kiedy CD prostopadła do AB a z poprzedzają­
cego dowodzenia AD ~  B D , zatem pochyła AC =  BC. Lecz 
pochyłe te są cięciwami, zatem według §. 80 co do drugiego,
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luki do nich należące są sobie równe. Prawdą przeto jest 
że prostopadła ze środka koła i t. d.

Uwaga. Trzy punkta S, U, C, t. j. środek koła, śro­
dek cięciwy i środek do nićj należącego luku, leżą jak wi­
dzimy na jednej prostej. Ale do poprowadzenia każdej pro­
stej dosyć jest mieć dwa punkta, a dla tego każda prosta 
przechodząca przez dwa którekolwiek z rzeczonych trzech 
punktów, koniecznie przechodzić musi i przez trzeci oraz być 
prostopadłą do cięciwy. A  jeżeli jaka prosta dopełnia dwóch 
którychkolwiek z czterech warunków t. j. przechodzenia przez 
środek koła, dzielenia cięciwy na dwie równe części, prosto­
padłości do niej i przechodzenia przez środek luku do tejże 
cięciwy należącego, dwa inne są już koniecznym wypadkiem 
pierwszych. Dlatego prostopadła ze środka cięciwy wypro­
wadzona przechodzi łuk przez środek koła jako też i środek 
luku; prosta łącząca środek koła z środkiem łuku, dzieli cię­
ciwę do niego należącą na dwie równe części i jest do niej 
prostopadłą; nareszcie prosta łącząca środek łuku z środkiem 
cięciwy do niego należącej, jest do tćj cięciwy prostopadłą 
i przechodzi przez środek koła.

§. 83.
T wierdzenie. Przez trzy nie w jednym kierunku dane 

punkta, zawsze nakreślić można okrąg kola ale nie więcej jak 
tylko jeden.

Niech trzema danemi punktami będą A , B, C, fig- 04, 
połączywszy jeden z nich np. B z dwoma innemi linijami 
prostemi BA i BC tudzież ze środków tych prostych D i E 
wyprowadziwszy prostopadłe DF i EG, te przetną się ko­
niecznie z sobą, jak tu w punkcie S; gdyby się bowiem nie 
przecięły, byłyby równoległe, a dwie proste AB i BC przez 
punkt B prostopadle do DF i EG poprowadzone, byćby mu­
siały jedna na przedłużeniu drugiej, co jest przeciwne zało­
żeniu, że trzy punkta A, B, C, nie w jednym są kierunku. 
Poprowadziwszy proste AS, BS, i CS, te są między sobą 
równe; albowiem punkt S uważany jako będący na prosto­
padłej DF, jest w równej odległości tak od A jako i B; tenże
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punkt S uważany jako leżący na prostopadłej EG jest w rów­
nej odległości od B i O; przeto okrąg koła promieniem SA 
z punktu S zakreślony, przejdzie przez trzy punkta A, B, C.

Że przez te trzy punkta więcej okręgów kół przecho­
dzić nie może, bardzo łatwo okazać: gdyby bowiem to być 
mogło, środek każdego takiego okręgu znajdowaćby się mu­
siał tak na prostopadłej DF jako też i na prostopadłej EG; 
a kiedy dwie proste nie więcej jak w jednym punkcie prze­
cinać się mogą, przeto jest niepodobieństwem z tegoż samego 
punktu i tymże samym promieniem zakreślić dwa lub wię- 
cćj okręgów kół.

W n i o s e k  1. Połączywszy punkta A i C prostą AC, 
otrzymamy trójkąt ABC, skąd wniesiemy że przez trzy wierz­
chołki kątów trójkąta prostokreślnego, zawsze można nakre­
ślić okrąg koła, czyli jak później mówić będziemy, każdy 
trójkąt można opisać okręgiem koła.

W n i o s e k  2. Ze środka prostej AC wyprowadziwszy 
prostopadłą HI, ta koniecznie przejść musi przez punkt S, 
gdyż punkta A i C są w równej od niego odległości; skąd 
wniesiemy, że w trójkącie prostokreślnym podzieliwszy każ­
dy z boków na dwie części równe i z punktów podziału wy­
prowadziwszy prostopadłe do tychże boków, trzy te prosto­
padłe przecinają się w jednym punkcie, który jest środkiem 
koła na trójkącie opisanego.

W n i o s e k  3 . Dwa okręgi kół mieć tylko mogą dwa 
punkta spólne czyli jak zwyczajnie mówimy: nie więcój jak 
w dwóch punktach przecinać się mogą; gdyby bowiem mia­
ły przynajmniej trzy punkta spólne, jużby według poprze­
dzającego twierdzenia były jednym i tymże samym okręgiem 
czyli przykryłyby się zupełnie.

§■ 84.
T w i e r d z e n i e . Cięciwy równe są w równej od środka 

kola odległości, tudzież cięciwa większa leży bliżej środka 
koła niż cięciwa mniejsza.

Niech będą dwie cięciwy AB i CD fig. 95 równe, po­
trzeba dowieść, że odległości ich od środka koła S sa także
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równe, czyli że prostopadła SE — SF, bo prostopadłe mierzą 
odległość punktu od prostej. Na dowiedzenie tej prawdy, po­
prowadźmy promienie AS i CS, tedy dwa trójkąty ASE i 
CSF prostokątne przy E i F, mają przeciwprostokątnie rów­
ne i boki przyległe kątowi prostemu AE i CF równe, gdyż 
AR—CD z założenia, przeto i jA B rr^C D  czyli A E = C E . 
Dwa więc te trójkąty według §. 42 przystają do siebie a w 
szczególności SE =  SF, co było do dowiedzenia.

Niech powtóre. będzie AG >  A B , potrzeba dowieść że 
też SE >S H . Ponieważ SE jest oczywiście większe niż SK 
zaś SK >  SH jako przeciwprostokątnia, więc tern bardziej 
SE >  Sil; zatem większa cięciwa bliżej leży środka koła niż 
mniejsza

W niosek. Ze wszystkich cięciw jakie w temże samem 
kole poprowadzić można, największa jest ta, która leży naj- 
bliżśj środka, przeto średnica przechodząc przez sam środek 
a następnie nie mając od niego żadnej odległości, jest naj­
większą między cięciwami.

§. 85.
T wierdzenie. Prosta z końca promienia prostopadle do 

tegoż icyprowadzona, ma tylko ten jeden punkt spoiny z okrę­
giem, kola, czyli jest styczną. Wzajemnie, styczna jest prosto­
padła do promienia poprowadzonego do punktu jej dotknięcia 
się z okręgiem koła.

Niech prosta AB w końcu promienia SC poprowadzo­
na, będzie prostopadłą do tegoż, t. j. niech kąt SCA będzie 
prostym ^. 96, dowieść potrzeba, że ta prosta AB ma tylko ten 
jedyny punkt spoiny z okręgiem koła. Jeżeliby ktoś twier­
dził, że prosta AB sposobem w twierdzeniu wyrażonym po­
prowadzona, ma jeszcze inne punkta spólne z okręgiem koła, 
tedy pozwólmy że punkt którykolwiek D na prostej AB wzię­
ty, leży także na okręgu koła, złączywszy go ze środkiem 
S prostą SD, otrzymamy trójkąt SDC prostokątny przy C. 
Lecz w trójkącie prostokątnym, przeciwprostokątnia jest naj­
dłuższym z jego boków, zatem S D > S C ;  a że punkt C leży 
na okręgu, więc punkt D leżeć musi koniecznie za okręgiem.



Podobnież każdy inny punkt prostej AB różny od punktu 0  
leżeć musi za okręgiem, bo prosta łącząca go ze środkiem S, 
będzie zawsze przeciwprostokątnią a zatem dłuższą niż SC.

Że wzajemnie styczna jest prostopadłą do promienia, 
bardzo łatwo jest dowieść; albowiem jeżeli AB jest styczną 
w punkcie C, tedy ten tylko punkt ma spoiny z okręgiem 
koła, wszystkie zaś inne jej punkta leżą za okręgiem, a za­
tem dalej od środka koła. Dlatego proste łączące też punk­
ta z środkiem koła będą pochyłe a zatem każda z nich bę­
dzie dłuższą niż SC. Ze wszystkich więc prostych jakie z 
punktu S do prostej AB poprowadzić można, najkrótszą jest 
prosta SC, jest więc ta prosta według §. 42 b) prostopadłą 
do AB co potrzeba było dowieść.

§ . 86.

T wierdzenie. Dwie cięciwy równoległe, odcinają na okrę­
gu koła łuki między sobą zaioarte równe.

Niech będą dwie cięciwy AB i CD jig. 97 równoległe, 
potrzeba dowieść że łuki AC i BD między temiż cięciwami 
zawarte są sobie równe. Na ten koniec ze środka koła S 
spuściwszy do którójkolwiek z tych cięciw prostopadłą SE, 
ta też będzie prostopadłą i do drugiej według §. 13. W e­
dług zaś §. 82 dzieli tak łuk CED, jako też i AEB w punk­
cie E na dwie równe części; skoro więc C E z i D E ,  tudzież 
AE =  B E , zatem i CE— AE =  DE — BE czyli. A C = B D , 
co należało dowieść.

Gdyby jedna z cięciw np. AB była styczną do okręgu 
koła, jak jest prosta FG, tedy ponieważ SE prostopadła do 
FG jest też prostopadła i do CD i dzieli łuk AED w punk­
cie E na dwie równe części, więc CE =  DE.

W  przypadku gdy obie cięciwy przechodzą na styczne 
równoległe, dowód jest oczywistym i żadnej nie zamyka tru­
dności.

§. 87.
Dęfinicyja. Kąt mający swój wierzchołek w środku ko­

ła, nazywać będziemy środkowym (angulus ad centrum), kąt 
zaś którego wierzchołek jest na okręgu koła, okręgowym (a.
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ad periphaeriam). Ten ostatni nazywają także kątem wpi­
sanym.

Twierdzenie. Kąt środkowy jest dwa razy większy od 
kąta okręgowego, ramionami swemi tenże sam luk jak pierw­
szy obejmującego.

W  dowodzenia tego twierdzenia mogą być trzy przy­
padki: t. j. albo jedno ramię kąta okręgowego przechodzi 
przez środek koła, albo też ramiona tegoż kąta obejmują 
środek, lub nareszcie oba ramiona są mimo środka.

Co do pierwszego. Niech będzie kąt okręgowy ABC jig. 
08 ramionami swemi obejmujący luk AC, poprowadziwszy 
promień SA otrzymamy kąt środkowy ASC tenże sam luk 
jak pierwszy ramionami swemi obejmujący; potrzeba dowieść 
że A S C =2A B C . Ponieważ kąt ASC jest zewnętrznym trój­
kąta ABS, więc się równa dwom wewnętrznym naprzeciwko 
siebie położonym, t. j. kąt ASC ~  SAB -)- ABS. Lecz trójkąt 
ASB jest równoramienny bo SArz:SB zatem kąt 

SAB =  ABS= ABC,
przeto też kąt ASC =  ABC-f-ABC =  2ABC.

Co do drugiego. Niech będzie kąt okręgowy AB'C ra­
mionami swemi środek koła S obejmujący; poprowadziwszy 
średnicę B’D, ta dzieli tak kąt okręgowy, jako też i środko­
wy na dwie części i sprowadza ten przypadek do pićrwsze- 
go; albowiem według pierwszego przypadku jest kąt 

ASI) =  2 AB'D tudzież kąt DSC =  2DB'C 
skąd ASI) +  USC =  2 A B 'D + 2 D B 'C = 2  (A B 'D -f DB’C).
A  że ASI) +  DSC =  ASC zaś AB'D +  DB'C =  AB'C, zatem 
kąt ASC =  2AB'C.

Co do trzeciego. Niech okręgowym kątem będzie AB"C 
którego ramiona AB" i B"C idą mimo środka, potrzeba do­
wieść że i w tym przypadku kąt ASC zz 2AB"C. Poprowa­
dziwszy i tu średnicę B'T>', sprowadza się ten przypadek 
również do pierwszego, bo kąt D 'B” C jest okręgowym, któ­
rego jedno ramię B"D ' przechodzi przez środek koła, jako 
też i kąt D 'B"A; pierwszemu odpowiada kąt środkowy D ’SC 
drugiemu zaś takiż kąt D ’SA. Ale według pierwszego przy­
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padku jest D'SC =  2D 'B"C , tudzież I ) ’SA =: 2D’B"A  skąd 
D'SC—D'SA =  2D'B"C— 2D 'B"A  =  2 (D 'B” C—D ’B"A). A że 
D ’SC— D ’S A = A S C  zaś D 'B''C — D 'B "A  =  AB"C więc kąt 
ASC=r2AB"C. W  każdym więc z trzech przypadków do­
wiedliśmy założonego twierdzenia, że kąt środkowy jest dwa 
razy większy od kąta okręgowego, ramionami swemi tenże 
sam łuk obejmującego.

W niosek 1. Ponieważ według §. 81 miarą kąta środ­
kowego jest łuk między ramionami jego zawarty, zatem wnie­
siemy że miarą kąta okręgowego jest połowa tuku między je ­
go ramionami zawartego.

W niosek 2. Wszystkie kąty okręgowe wspierające 
się ramionami swemi na jednymże luku, czyli jak zwyczaj­
nie mówimy, wszystkie kąty* w jednymże odcinku koła są 
sobie równe; każdy bowiem ma za miarę połowę tegoż sa­
mego łuku: skoro więc miary są równe i kąty muszą być 
równe.

W niosek 3. Kąt okręgowy ramionami swemi obejmu­
jący śr.ednicę, a zatem wspierający się na połowie okręgu, 
jest prosty, ma bowiem za miarę połowę półokręgu, czyli 
ćwierć tego okręgu czyli 90 ’, który łuk jest miarą kąta pro­
stego według § .81  uwaga. Własność tę wyrażamy zwyczaj­
nie: kąt w półkolu jest prostym.

W niosek 4. Każdy kąt okręgowy wspierający się ra­
mionami swemi na łuku mniejszym niż połowa okręgu koła, 
jest ostrym, wspierający się zaś na łuku większym niż poło­
wa okręgu, jest rozwartym.

§. 88.
T wierdzenie. Kąt mający swój wierzchołek gdziekol- 

iciek na płaszczyźnie koła, ma za miarę połowę summy łuków 
zawartych między jego ramionami i przedłużeniami tychże, kąt 
zaś mający swój wierzchołek za okręgiem koła, ma za miarę 
połowę różnicy dwóch łuków między jego ramionami zawar­
tych.

Niech będzie kąt ABC jig. 99, mający swój wierzcho­
łek w punkcie B na płaszczyźnie koła; przedłużywszy jogo



ramiona aż do przecięcia się z okręgiem w punktach D i E, 
AC +  DE

potrzeba dowióść, że jest miarą kąta ABC. Na

ten koniec z punktu D poprowadziwszy cięciwę DF równo­
ległą do ramienia BC, jest kąt ABC •= ADF jako jednostron­
ne odpowiadająco sobie, więc i miary ich są sobie równe. 
Lecz według poprzedzającego §. miarą kąta ADF, jako okrę­
gowego jest połowa luku AF między jego ramionami zawar­
tego , więc tćż i miarą kąta ABC jest połowa tegoż luku. 
Ałe luk A F n :A C -j-C F , zaś według § .86  CF =  DE przeto 
AF A C -| -D E , a następnie miarą kąta ABC jest połowa
, , „  A C - f D E
łuku AF czyli — —  - -

Niech powtóre będzie kąt AB'C' mający swój wierzcho­
łek za okręgiem koła w punkcie B ’, okazać potrzeba, że mia-

__ GrH
rą jego jest połowa różnicy łuków AC' i GH czyli-------^ -------.

Na dowiedzenie tego z punktu G poprowadźmy GF' równo­
ległą do B 'C ’, tedy kąt AGF’ = A B 'C ', zatem i miary ich są 
równe. Lecz miarą kąta okręgowego AGF' jest połowa łu­
ku AF' zaś A F ’ =  AC'— F 'C 'a  F 'C 'rr  Gil; przeto miarą ką-
* , j i t att. . . AC' — F 'C ’ AC' — GHta AB L jest połowa łuku AF czyli---------------- = :-----------------

co potrzeba było dowieść.
Dwie części tego twierdzenia można też innym sposo­

bem następnie dowieść:
Co do pierwszego. Punkta A i E złączywszy prostą, kąt 

ABC —CEA-|-EAD §. 39, więc miarą kąta ABC jest połowa 
miary kątów CEA i EAD. Ale miarą kąta CEA jest poło­
wa łuku AC, zaś miarą kąta EAD jest połowa łuku DE, za­
tem miarą kąta ABC jest połowa łuku AC więcój połową

łuku DE czyli AC +  D E ,

Co d,o drugiego. Poprowadziwszy prostą AH, kąt 
AHC' =  A B 'C '- f  HAB' skąd AB'C' =  AHC’ — HAB'. 

Miarą kąta AHC' jest połowa łuku AC', miarą zaś kąta HAB'
8
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jest połowa luku HG więc miarą kąta AB'C’ jest połowa lu­

ku AC ’, mniej połową łuku HG czyli

§• 89.
T wierdzenie. Kąt zawarty między cięciwą i styczną po­

prowadzoną 10 jednym z punktów, w których cięciwa przecina 
okrąg koła, jest połową kąta środkowego wspierającego się ra­
mionami swemi na końcach cięciwy.

Niech prosta AB będzie cięciwą zaś AD styczną j^r. 100, 
poprowadziwszy promienie SA i SB, które utworzą kąt środ­
kowy ASB, potrzeba .dowieść że ASBrr2DAB.

Ze środka koła S spuściwszy prostopadłą SC na cięci­
wę AB, ponieważ w trój kącie ACS kąt przy C jest prosty, 
przeto kąt CAS z kątem CSA czynią także kąt prosty, czyli 
CAS -j- CSA =  R. Ale też kąt SAD jest prosty, bo styczna 
AD jest prostopadłą do promienia SA, ten zaś kąt składa 
się z dwóch CAS i CAD czyli że CAS-f-CAD r; R , przeto 
CAS 4- CSA =  CAS -j- CAD, skąd po odjęciu kąta CAS spól- 
nego obu stronom, pozostaje CSA =  CAD. Lecz prostopadła 
SC dzieli kąt ASB na dwie równe części §. 40 wniosek 2, 
przeto kąt DAB jest połową kąta ASB, co należało dowieść.

W niosek 1. Miarą kąta uczynionego przez cięciwę i 
styczną na okręgu koła przecinające się, jest połowa łuku 
między styczną i cięciwą zawartego.

W niosek 2. Wziąwszy jakikolwiek punkt D za okrę­
giem koła i poprowadziwszy z niego dwie styczne DA i DB 
do okręgu koła, a punkta ich dotknięcia się A i B złączyw­
szy cięciwą, ponieważ według poprzedzającego tak kąt DAB 
jako też i kąt DBA jest równy połowie kąta ASB, zatem 
kąt DAB =  DBA, a trójkąt ADB jest równoramienny, prze­
to DC z wierzchołka kąta do środka podstawy popi’owadzo- 

# na, jest do niój prostopadłą i dzieli kąt między stycznemi 
ADB na dwie równe części. Ale dwie prostopadłe DC i SC 
leżą na jednej prostej, obie bowiem mają dwa punkta spól- 
ne 4. j. C i E, bo prostopadła SC przechodząc przez punkt 
C, przechodzić też musi i przez punkt E §. 82 uwaga, i po-
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dobniei prosta DC przechodząc przez punkta D i C , ko­
niecznie przechodzić musi przez punkt E; z tego wypada, 
że prosta łącząca punkt przecięcia się dwóch stycznych z 
środkiem koła, przechodzi przez środek luku między stycz- 
nemi zawartego, środek cięciwy do tegoż łuku należącej i 
dzieli kąt między stycznemi zawarty na dwie równe części, 
oraz jest prostopadłą do rzeczonej cięciwy.

§. 90.
T w i e r d z e n i e . Części dwóch cięciw przecinających się 

wśród okręgu koła mają się w stosunku odwrotnym.
Niech będą dwie cięciwy AB i CD przecinające się 

w punkcie E jig. 101, potrzeba dowieść, że części cięciw z te­
go przecięcia powstające, są w stósunku odwrotnym. Na do­
wiedzenie tego punkta A i D , B i  C połączmy prostemi, 
tedy trójkąt A D E -^ B E C , bo kąty przy E są równe jako 
wierzchołkowe, tudzież kąt A  — C, B =  D jako mające za 
miarę połowę jednegoż łuku. Z podobieństwa tych trójką­
tów wypływa

A E :C E  = D E :B E  skąd AE. BE — CE. DE; 
iloczyn więc z części jednej cięciwy, jest równy iloczynowi 
z części cięciwy drugiej i to też jest cechą ich stósunku od­
wrotnego ; w stósunku albowiem prostym nie iloczyny ale 
ilorazy byłyby równe. Albo jeszcze wyraźniej mówiąc, części 
jednej cięciwy są skrajnemi, części zaś drugićj średniemi 
wyrazami proporcyi.

W n i o s e k . Ponieważ średnica koła FG jest także cię­
ciwą, tedy, chociaż drugiej cięciwie HI nadamy szczególne 
względem pierwszej położenie, mianowicie, iżby była prosto­
padłą do średnicy, poprzedzające twierdzenie, gdzie położe­
nia cięciw zupełnie nie uszczególnialiśmy, i tu jest w całój 
swej mocy; a zatem będzie podobnież 

F K :H K = K I:K G .
Lecz promień lub średnica prostopadła do cięciwy dzieli ją 
na dwie równe części, przeto HK — K I , a następnie 

F K :H K = H K :K G
t. j. z któregokolwiek punktu okręgu koła spuściicszy prosto-

8.



padlą do średnicy, ta prostopadła jest średnią geometrycznie 
proporcyjonalną między odcinkami średnicy.

Uwaya. Połączywszy punkt II z końcami średnicy, 
otrzymamy trójkąt HFG prostokątny przy H §. 87 wniosek 3, 
więc prostopadła HK z wierzchołka kąta prostego na prze- 
ciwprostokątnią spuszczona, jest średnią geometrycznie pro- 
poreyjonalną między odcinkami przeciwprostokątni, co już 
inną drogą w §. 63 dowiedliśmy. Bok HG jest średnią geo­
metrycznie proporcyjonalną między FG i G K , jako też HF 
między FG i FK według tegoż §. 63. To posłuży nam do 
łatwiejszego rozwiązania zagadnienia w §. 77 innym sposo­
bem rozwiązanego.

§. 91.
T w i e r d z e n i e . Z punktu wziętego za okręgiem kola po­

prowadziwszy dwie sieczne, ich stosunek jest równy odwrot­
nemu stosunkowi ich części za okręgiem kola leżących.

Niech danym punktem za okręgiem kola będzie A 
fig. 102, poprowadziwszy dwie sieczne AB i AC, potrzeba 
dowieść, że stósunek A B : AC ~  A E : AD. Połączywszy pun- 
kta B i E, C i D prostemi, mamy dwa trójkąty ABE i ADC 
podobne, gdyż kąt A spoiny obu trójkątom, kąt B =  C bo 
każdy ma za miarę połowę luku DE, więc też kąt A D C =A E B  
według §. 36, przeto na mocy twierdzenia §. 56 jest 
AB :AC =  A E :A D  co należało dowieść.

Własność ta siecznych wyraża się zwyczajnie: sieczne 
z jednegoż punktu poprowadzone, mają się w stosunku odwrot­
nym swych części za okręgiem: to ma znaczyć, że sieczna i 
część jej za okręgiem stanowią wyrazy skrajne lub średnie 
w proporcyi.

Wystawiwszy sobie jednę z siecznych np. AB obraca­
jącą się około punktu A a zatem zmieniającą swój kierunek, 
jasną jest rzeczą, iż ona coraz w innych a innych punktach 
przecinać będzie okrąg koła i wielkość jej części BD za każ­
dą zmianą jćj kierunku zmieniać się będzie. Przypuściwszy, 
że taż sieczna w obrocie swoim wzięła kierunek taki, iż się 
stała styczną A F , tedy ponieważ z proporcyi wyżej dowie­



dzionej wypada AC. AE — AB. AD —  (AD -f- DB) AD, a w tu­
kiem położeniu siecznej, część jej w kole zawarta BD zni­
kła zupełnie, część zaś za okręgiem AD przeszła na AF, 
zatem AC. AE —  AF. AF =  A F 2 t. j. styczna jest średnią geo­
metrycznie proporcyjonalną między sieczną i częścią jej za 
okręgiem koła. Ta ostatnia prawda może też być i tak do­
wiedziona: poprowadziwszy proste FC i FE , trójkąt 
A F C ^ A F E  bo AFC +  GFC =  2R, jako też AEF +  F E C =  
2R; a że FEC =  GFC §. 89, więc AFC =  AEF, kąt A jest 
spoiny obu trójkątom, a nareszcie kąt AFE =  FCA. Z po­
dobieństwa zaś tych trójkątów wypada 
A C :A F ~ A F :A E  skąd AC. AE ~  A F2 jak wprzód.

§. 92.
T w i e r d z e n i e . Gdziekolwiek na okręgu koła obraioszy 

trzy punkta i poprowadziwszy w tychże punktach styczne aż 
do wzajemnego ich przecięcia się z sobą, jeżeli punkt prze­
cięcia się którychkolwiek dwóch stycznych, złączymy z punktem 
dotknięcia się trzeciej stycznśj liniją prostą i tenże sam ostatni 
punkt połączymy prostemi z dwoma innemi punktami dotknię­
cia, otrzymamy kąt, między którego ramionami każda prosta 
równolegle do trzeciej stycznej prowadzona, jest podzielona na 
dwie równe części przez piśrwszą prostej, łączną.

Niech na okręgu koła będą dane lub obrane trzy pun­
kta A, B,C jig. 103 poprowadziwszy w tych punktach styczne 
przecinające się w punktach D, G, II i połączywszy np. punkt 
D z punktem A prostą AD, jako też punkt A połączywszy 
z B i C prostemi AB, AC, potrzeba dowieść, że każda pro­
sta między ramionami kąta BAC, równolegle do trzeciej stycz­
nej GH prowadzona, jak np. prosta mn, jest podzielona przez 
pierwszą prostą łączącą t. j . przez prostą AD na dwie równe 
części tak, że rnp —  np.

Według §. 89 wniosek 2, jest AG =  GB; trójkąt 
AGB (✓ •BDE, gdyż kąty przy B równe jako wierzchołkowe, 
kąt AGB =  BDE jako naprzemianległe wewnętrzne i kąt 
BAG =  BED dla tejże samej przyczyny; przeto według twier­
dzenia §. 56 mamy AG :G B =  DE:BD. A że AG =  GB



118

więc tez DE =  BD. Podobnież dowiedzie się, że w dwóch 
trójkątach podobnych ACH i CDF jest A H :H C ^ :D F :C D ; 
a ponieważ znowu AH ~  H C , więc tćż DF =  DC. Ale 
BD =  DC jako styczne z jednegoż punktu D poprowadzone, 
zatóm DE ~ D F . Nareszcie w trójkącie EAE poprowadziw­
szy mn równoległą od podstawy E F , tę podzieli prosta AD 
z wierzchołka A  do podstawy poprowadzona w takim stó- 
sunku, w jakim dzieli podstawę EF §. 55, przeto ponieważ 
D E = D F , być też musi mp tz np co należało dowieść.

§■ 93.
Z a g a d n i e n i e  1. Mając dany okrąg koła znaleźć jego 

środek.
Rozwiązanie. Obrawszy gdziekolwiek na okręgu da­

nego koła trzy punkta A , B , C jig. 104, połączmy jeden 
z nich np. B z dwoma innemi prostemi linijami B A , BC; 
każdą z tych prostych podzielmy na dwie równe części i 
z punktów podziału D i E wyprowadźmy prostopadle, a punkt 
przecięcia się ich S, będzie szukanym środkiem koła. Al­
bowiem BA i BC są cięciwami, więc prostopadłe z ich środ­
ków przechodzić muszą przez środek kola według §. 82. 
Skoro więc środek koła leży tak na jednej jako i na dru­
giej prostopadłej, nie gdzieindziej zatem znajdować się musi 
tylko na wzajemnćm ich przecięciu się z sobą. Ale dwie 
proste nie w więcćj jak jednym punkcie przecinać się mo­
gą, tóm więc przecięciem nie inny jest punkt tylko środek 
kola.

Albo tak: Poprowadziwszy jakąkolwiek cięciwę MN 
fig. 104, podzielmy ją  na dwie równe części według §. 26 
przez liniją PR, ta według §. 82 przechodzić będzie przez 
środek koła, będzie przeto jego średnicą; skoro tę ostatnią 
t. j . PR podzielimy znowu przez liniją QT na dwie równe 
części, punkt podziału S będzie szukanym środkiem.

Tym samym sposobem szuka się środka koła, do któ­
rego należy luk dany, obierając na tymże luku trzy punkta 
i postępując jak się wyżej wskazało.
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Albo tak: Niech będzie łuk dany ABC fig. 105, potrze­
ba znaleść środek koła do którego należy. Z  któregokol­
wiek punktu B danego luku otwartością dowolną, zakreśla 
się okrąg koła tak, żeby z obu stron punktu B ten okrąg 
przecinał luk dany. Z końców luku A  i C tąż samą otwar­
tością cyrkla kreślą się luki przecinające pierwszy okrąg 
każdy w dwóch punktach D , E i F , G. Poprowadziwszy 
wreszcie proste DE i FG , te przecięciem się swojem wy­
znaczą środek szukany. Dowód rzetelności tego postępowa­
nia każdy łatwo dostrzeże.

§ .  9 4 .

Z a g a d n i e n i e  2 .  Mając w trójkącie długość ‘prostopa­
dłej z wierzchołka na podstawę spuszczonej, długość prostej 
dzieiącśj kąt iv wierzchołku na dwie równe części, zawartej 
między wierzchołkiem i podstawą i nareszcie długość prostej 
od wierzchołka do środka podstawy poprowadzonej, wystawić 
trójkąt.

Rozwiązanie. Niech trzema danemi prostemi wr tym 
porządku jak w zagadnieniu są przywiedzione, będą AB, 
AC i AD fig. 106, niech prosta III będzie kierunkiem pod­
stawy, bo ten jest dowolny. W  którymkolwiek punkcie B 
tej ostatniej prostej, wystawmy prostopadłą w jednę lub dru­
gą stronę, na niej odetnijmy BA równą prostej danej AB. 
Otwartością cyrkla równą prostej danej AC, z punktu wprzód 
naznaczonego A, naznaczmy na prostej HI punkt C, potem 
otwartością cyrkla równą danej prostej AD, z tegoż samego 
punktu A naznaczmy na III punkt D ; a poprowadziwszy 
proste AC i AD, z punktu D wyprowadźmy prostopadłą do 
HI w przeciwną stronę punktu A aż do przecięcia się z prze­
dłużoną AC w punkcie E ; prostą AE podzielmy w punkcie 
F na dwie równe części i z tegoż punktu wyprowadźmy pro­
stopadłą do AE aż do przecięcia się z prostopadłą DE prze­
dłużoną, jeżeli potrzeba, w punkcie S ; nareszcie z punktu 
S promieniem równym SA lub SE zakreśliwszy okrąg koła, 
ten przetnie prostą HI w punktach H i I, które z punktem
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A złączywszy prostemi A H , A l, otrzymamy trójkąt HAI 
szukany.

Dowodzenie. Ponieważ AB, AC, AD według wykreśle­
nia są prostemi danemi, zatem tu dosyć będzie dowieść, że 
punkt D jest środkiem podstawy HI, tudzież że prosta AC 
dzieli kąt HAI na dwie równe części. Poprowadziwszy SH 
i SI, dwie te pochyłe względem prostopadłej SD są sobie 
równe jako promienie jednego koła, zatem według §. 41, 
H D ~ D I ,  przeto punkt D jest środkiem podstawy trójkąta 
HAI.—  Uważając HI jako cięciwę, prostopadła DE według 
§. 82 dzieli łuk HEI na dwie równe części, zatćm łuk 
HE zz El. A  że połowy tych łuków są miarami kąłów HAE 
i IAE, zatem kąt HAC =  IA C , prosta zatem AC dzieli kąt 
IIAI na dwie równe części, co potrzeba było dowieść.

§. 95.
Z a g a d n i e n i e  3 .  Z końca danej prostej wyprowadzić 

do niej prostopadłą.
Rozwiązanie. Niech będzie prosta AB fig. 107, z któ­

rej końca A potrzeba wyprowadzić do niej prostopadłą. Na 
ten koniec gdziekolwiek za prostą daną obiera się punkt S 
i z tego punktu jako ze środka promieniem równym odle­
głości SA, kreśli się okrąg koła przecinający prostą daną w 
punkcie C, lub na jej przedłużeniu; potem łączy się ten punkt 
przecięcia się C z punktem S prostą CS i tę przedłuża się 
aż do przecięcia się z nakreślonym okręgiem w punkcie D, 
czyli prowadzi się średnica CSD, a złączywszy punkt D z 
punktem A prostą A D , ta będzie prostopadłą żądaną. Kąt 
albowiem DAC jako obejmujący ramionami swemi średnicę, 
jest prosty §. 87 wniosek 3, a następnie DA prostopadła 
do AB.

Uwaga. Porównawszy to rozwiązanie z rozwiązaniem 
§. 48, przekonamy się, że zupełnie na jedno wychodzi; do­
wód tylko obecny jest daleko łatwiejszy jako oparty na wła­
sności kąta w półkolu już poprzednio dowiedzionej.
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Z a g a d n i e n i e  4 .  Na danej prostej wykreślić odcinek 
koła w którymby kąt okręgoicy był równy danemu kątowi.

Rozioiązanie. Prostą daną niech będzie AB, tudzież M 
danym kątem fig. 108. Przy punkcie A lub B wykreśliwszy 
kąt DAB ~  M , z punktu A wyprowadźmy prostopadłą AE, 
tedy uważając AD jako styczną okręgu koła, którego odcin­
ka szukamy, prostopadła ta przechodzić musi przez środek 
koła; uważając teraz prostą AB za cięciwę, prostopadła z jej 
środka C wyprowadzona także przechodzić musi przez śro­
dek koła, punkt więc przecięcia się tycli prostopadłych, na­
znaczy środek koła S, z którego promieniem SA =  SB za­
kreśliwszy okrąg koła, odcinek AFB będzie odcinkiem szu­
kanym. Którykolwiek bowiem punkt łuku AFB złączywszy 
z końcami prostej danej, otrzymamy kąt okręgowy mający 
za miarę połowę łuku AB; a że też i kąt DAB ma za mia­
rę połowę tegoż łuku, więc każdy z pićrwszycłi będzie rów­
ny kątowi DAB. A ponieważ ten ostatni jest z wykreślenia 
równy kątowi danemu M, Więc i każdy z pierwszych będzie 
równy danemu.

§• 9 7 .

Z a g a d n i e n i e  . 5 . -  Przez punkt dany poprowadzić styczną 
do danego okręgu, koła.

Rozioiązanie. Jeżeli punkt z którego mamy prowadzić 
styczną jest na okręgu koła, zagadnienie to nie stawia żad­
nej trudności. Na mocy bowiem twierdzenia §. 85 punkt
dany połączywszy z środkiem koła prostą i do niej z dane­
go punktu wyprowadziwszy prostopadłą, ta będzie styczną 
żądaną.

Jeżeli zaś dany punkt znajduje się za okręgiem koła, 
jak np. punt A fig. 109, tedy złączywszy środek danego ko­
ła z tym punktem prostą SA i na niej jako na średnicy wy­
kreśliwszy okrąg koła, ten z danym okręgiem przetnie się 
w dwóch punktach B i C ; punkta te złączywszy z punktem 
A prostemi AB i AC, te są stycznemi do danego okręgu 
koła. Albowiem poprowadziwszy SB i SC, tak kąt SBA

§• 96.
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jako też i SC A jest prosty, bo każdy z nich jest w półkolu; 
przeto AB prostopadła do BS, AC prostopadła do CS. A  że 
BS i CS są promieniami danego koła, przeto AB i AC są 
stycznemi §. 85. Ze te styczne są sobie równe, już to wie­
my z §. 89, że zaś z liniją AS czynią kąty równe, to z przy­
stania trójkątów ABS i ACS wnioskować można.

Uwaga. Pierwszy raz tu w Geometryi na jedno żąda­
nie otrzymujemy dwie odpowiedzi; to atoli nie powinno nas 
zadziwiać, pamiętając z Algebry, że tam na jedno pytanie 
często nie tylko dwie ale trzy, cztery i t. d. odpowiedzi znaj­
dowaliśmy; zdarzają się nawet przypadki tak w Geometryi 
jako i w Algiebrze, iż na jedno pytanie znajdujemy nieskoń­
czoną liczbę odpowiedzi. W  obecnem zagadnieniu przeko­
nywamy się, że z punktu danego za okręgiem koła zawsze 
dwie styczne równe, do tegoż okręgu poprowadzić można.

§. 98.
Z a g a d n ie n ie  6. Mając daną prostą z położenia *) i dwa 

punkta po jednej że jej stronie leżące, znaleść na niej trzeci 
punkt taki, iżby okrąg koła przez dane punkta przechodzący 
dotykał prostej danej to tym, punkcie.

Rozwiązanie. Niech prostą daną będzie PQ, a danemi 
punktami A  i B jig. i 10, potrzeba na prostej PQ znaleść 
trzeci punkt, w którymby okrąg kola przechodzący przez A 
i B dotykał prostą PQ.

Ponieważ według §.91 styczna jest średnią geometrycz­
nie proporcyjonalną między sieczną z tegoż samego punktu 
poprowadzoną i częścią jej za kołem, zatem przedłużywszy 
prostą BA przez dwa dane punkta idącą aż do spotkania 
się z prostą daną PQ w punkcie C, na prostej BC jako na 
średnicy wykreślmy pół okręgu, a wyprowadziwszy z pun­
ktu A  prostopadłą do CB aż do spotkania się z co dopiero 
wykreślonym półokręgiem w punkcie D, i z punktu C jako 
ze środka koła promieniem CD zakreśliwszy łuk, ten prze­

*) Wyrażenie z położenia znaczy, iż prosta ma na plasczyznie pewne 
oznaczone położenie.
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tnie prostą daną PQ w punkcie E szukanym. Aby mieć 
okrąg koła przechodzący przez A  i B, z wyznaczonego pun­
ktu E wyprowadźmy prostopadłą do PQ, potóm uważając 
prostą AB jako cięciwę żądanego okręgu koła, z jć j środka 
wyprowadźmy również prostopadłą do niej w stronę ku pro­
stej danej, a punkt przecięcia się dwóch tych prostopadłych 
S będzie środkiem okręgu koła przez A i B przechodzącego 
a prostą PQ w punkcie E dotykającego, który promieniem 
SA =  SB zz SE z punktu S wykreślić możemy. Chcąc do­
wieść rzetelności tego postępowania, dosyć jest okazać, że 
CE jest średnią geometrycznie proporcyjonalną między CB 
i CA a zatem styczną, reszta bowiem jest sama z siebie 
jasną. Jakoż połączywszy punkta D i B prostą, trójkąt 
CDB jest prostokątny przy D, więc według §. 63 
C B :C D =C D :C A . A że CD zz CE więc też CB: C E = C E : CA. 
Jest więc CE, a zatem i PQ styczną w punkcie E do okrę­
gu koła przez A  i B przechodzącego.

§. 99.
Z a g a d n i e n i e  7 . Do dwóch prostych danych, znaleść 

średnią geometrycznie proporcyjonalną.
Rozwiązanie. Zagadnienie to już w §. 77 rozwiązane, 

rozwiążemy teraz nieco łatwiejszym lubo w istocie na toż 
samo wychodzącym sposobem, opierając się na twierdzeniu 
§ .  6 3 .

Niech dwiema danemi prostemi będą A i B Jig. 111, 
chcąc między niemi znaleść średnią geometrycznie propor­
cyjonalną, postąpimy zupełnie tak jak w wspomnionym §. 
to jest na prostej nieograniczonej długości, odcinamy jednę 
z nich np. B od M do N, a potem drugą A w tymże samym 
kierunku od N do P ; całą prostą MP wyrażającą summę 
prostych danych, dzielimy w punkcie S na dwie równe części 
i z punktu tego jako na średnicy zakreślamy półokręgu lub 
cały okrąg koła, a wyprowadziwszy z punktu N prostopadłą 
do MP aż do przecięcia się z okręgiem w punkcie R, ta bę­
dzie szukaną średnią geometrycznie proporcyjonalną. Na do­
wiedzenie tej prawdy połączmy punkt R z punktami M i P,
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a otrzymamy trójkąt MRP prostokątny przy R według §. 87 
wniosek 3, przeto prostopadła RN jest średnią geometrycznie 
proporcyjonalną między MN i NP §. 63 czyli między pro- 
stemi im równemi B i A.

Albo też: opierając się na własności trójkąta prosto­
kątnego w rzeczonym §. dowiedzionej, że bok przyległy ką­
towi prostemu jest średnią geometrycznie proporcyjonalną 
między przeciwprostokątnią i odcinkiem przy tymże boku 
leżącym, możemy obecne zagadnienie rozwiązać następującym 
sposobem:

Na większej z dwóch prostych danych, którą tu niech 
będzie MP =  A jako na średnicy zakreślamy pół łub cały 
okrąg koła, potem na tójże średnicy, poczynając od jej koń­
ca, odcinamy drugą B od M do N i z punktu N wyprowa­
dzamy prostopadłą do średnicy aż do przecięcia się z okrę­
giem w punkcie R, a złączywszy punkta R i M prostą RM, 
ta będzie prostą szukaną, bo złączywszy jeszcze punkta R 
i P , mamy według przywiedzionego §. MP:MR =  MR:MN 
czyli A :M R = M R :B  jak żądano.

§ .  100.

Z a g a d n ie n ie  8 . Mając daną prostą oznaczonej długości, 
podzielić takową na dwie części takie, Oby większa była śre­
dnią geometrycznie proporcyjonalną między całą prostą i mniej- 
szą jej częścią.

Niech prostą do podzielenia daną będzie AB jig. 112, 
z końca B wyprowadźmy do niój prostopadłą B S = ,jA B  i 
promieniem SB zakreślmy okrąg koła; przez punkt A i S 
poprowadźmy sieczną A D , a nareszcie z punktu A pro­
mieniem AC zakreślmy łulc przecinający AB w E, tedy AE 
będzie częścią szukaną. Według bowiem § .9 1  mamy:

A D ;AB =  AB ;AC skąd według §. 98 Arytm. jest 
AD — A B : AB r :  A B — AC: AC czyli, 

ponieważ AB — 2SB :=  2SC CD, przez co 
AD —  AB =  A D — CD =  AC =  AE 

zaś AB —  AC =  AB — AE =  EB , będzie AE ;AB =  EB;AE 
albo zmieniwszy w tój proporcyi miejsce skrajnych i średnich
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sunki, otrzymamy nareszcie A B ; AE —  A E ;EB jak żądano.

Uwaga. Aby wyrazić żądanie podzielenia prostej w spo­
sób co dopiero opisany, wysłowiamy krócej to zagadnienie 
tak: Prostą daną podzielić w stosunku średnim i skrajnym. 
Ale to wysłowienie jak każdy dostrzeże jest fałszywe i -win­
no być sprostowane w ten sposób: prostą daną podzielić na 
skrajne i średnią, co znaczy: podzielić prostą na dwie części, 
z którychby jedna zawsze i koniecznie większa niż druga, by­
ła średnią geometrycznie proporcyjonalną między całą prostą 
i częścią mniejszą. W  pierwszej proporcyi t. j. wproporcyi 
A D :A B = zA B :A C  prostą AB zastąpiwszy jej równą CD, 
będzie AD : CD :=  CD : AC t. j. sieczna AD podzielona jest 
w punkcie C na średnią i skrajne.

§. 101.
Weźmy teraz pod uwagę dwa okręgi kół i zobaczmy 

co nam godnego uwagi oba razem przedstawić mogą.
Dwa okręgi kół różnych promieni, razem uważane mo­

gą mieć trojakie względem siebie położenie, t. j. może być 
jeden wewnątrz drugiego, albo jeden może przecinać drugi, 
lub nareszcie pierwszy może być zewnątrz drugiego.

W  pierwszem położeniu mogą dwa okręgi mieć środek 
spólny, a wtedy nazywają się spólśrodkowe (concentricae) w 
takim razie i płaszczyzny czyli koła, nazywają się także spól- 
środkowemi (circuli concentrici). Jeżeli zaś ich środki znaj­
dują się w różnych punktach, odległość ich środków jest zaw­
sze mniejsza niż różnica promieni, o czem naocznie przeko­
nać się można, wykreśliwszy dwa okręgi w takiem położeniu.

W  drugiem położeniu t. j. gdy się przecinają, przecinać 
się nie mogą w więcej jak w dwóch punktach §. 83, a pro­
sta łącząca te dwa punkta czyli cięciwa obu spoina, jest pro­
stopadłą do prostej łączącej ich środki, którą prostą środków 
zwać będziemy. Niech bowiem będą dwa okręgi, których 
środki S i S' przecinające się w punktach A i B jig. 113, 
poprowadziwszy proste AB i SS', tudzież promienie SA i SB, 

,S ’A i S’B, dwa trójkąty SAS’ i SBS’ według §. 22 przysta­



ją  do siebie, a w szczególności kąt ASS' =  BSS' i kąt
AS'S =  BS'S;

w trójkącie równoramiennym ASB prosta SS' dzieląca kąt 
w wierzchołku na dwie równe części, pada na środek pod­
stawy i jest do niej prostopadłą §. 40. Toż samo wypada 
także z trójkąta AS'B; prawdą przeto jest co, twierdzono, że 
AB prostopadła do SS'.

W  trzeciem nareszcie położeniu, czyli gdy się dwa okrę­
gi znajdują zewnątrz siebie, odległość ich środków jest więk­
szą, niż summa ich promieni, co jest oczy wistem i dowodu 
nie potrzebuje.

W  pierwszym przypadku powiedzieliśmy, że odległość 
środków jest mniejsza niż różnica, w ostatnim zaś, iż taż od­
ległość jest większa, niż summa promieni obu okręgów. Je­
żeli atoli będzie przypadek, iż albo różnica, albo summa pro­
mieni równa się odległości środków, w takim razie dwa okrę­
gi dotykają się, a mianowicie w pierwszym przypadku we­
wnątrz, w drugim zaś zewnątrz, a punkt dotknięcia leży w 
każdym razie na prostćj środków. Ile więc razy odległość 
środków dwóch kół równa się różnicy ich promieni, okręgi 
dotykają się wewnątrz t. j . jeden leży w drugim; skoro zaś 
rzeczona odległość równa się summie promieni, okręgi kół 
dotykają się zewnątrz. W  obu razach mówimy też, że okrę­
gi lub kola są stycznemi.

§. 102.
Z a g a d n i e n i e  9 .  Mając dane z położenia d w a  okręgi kół, 

poprowadzić styczną spoiną obu okręgom.
Rozwiązanie. Niech będą dane z położenia dwa okręgi 

kół, których środki są S i s, a promienie llir jig . 114, ma­
my do tych dwóch okręgów poprowadzić styczną spoiną obu 
okręgom. Na ten koniec połączywszy środki okręgów da­
nych prostą Ss i na nićj jako na średnicy wykreśliwszy okrąg 
koła, ze środka pićrwszego S promieniem =  R —  r zakreślmy 
łuk, który na okręgu wykróślonym na linii środków nazna­
czy dwa punkta A i a; przez punktu S i A poprowadziwszy 
prostą SA i tę przedłużywszy aż do przecięcia się z okręgiem
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pierwszym, którego promień R ta naznaczy punkt T dotknię­
cia się stycznej na tymże okręgu; a jeżeli ze środka s dru­
giego okręgu poprowadzimy promień równoległy od ST, ten 
naznaczy na drugim okręgu punkt t, w którym taż styczna 
dotknie drugi okręg koła i prosta T< będzie szukaną. Kąt 
albowiem SAs jest prosty jako w półkolu, więc sA jest pro­
stopadłą do ST; a że st równoległa do ST i równa AT, więc 
czworokąt AT<s jest prostokątem, i T t prostopadła tak do ST 
jako też i do st, jest przeto styczną tak do pierwszego jako 
i drugiego okręgu, jak żądano. Ale luk zakreślony promie­
niem ~ R — r przeciął okrąg koła na prostej środków wy- 
krćślony nie tylko w punkcie A , ale tóż w drugim punkcie 
a, przeto postąpiwszy tu znowu tymże samym co wyżej spo­
sobem, otrzymamy drugą prostą T T  również styczną do obu 
danych okręgów, skąd się pokazuje, że dwa okręgi dane z 
położenia mają dwie styczne spólne.

W  poprzedzającem ze środka S nakróśliliśmy luk pro­
mieniem = R  —  r, gdybyśmy z tegoż środka wykreślili luk 
promieniem =  R -|- r , znaleźlibyśmy również jak wyżej dwa 
punkta przecięcia się jego z okręgiem na linii środków wy­
kreślonym t. j. punkta A' i a'; złączywszy punkta A' i s 
prostą A's i przez punkta S i A' poprowadziwszy także pro­
stą , ta nam naznaczy na okręgu S punkt T " , przez który 
prowadząc równoległą T "t" do A's, ta będzie trzecią styczną 
spoiną obu okręgom. Gdyż znowu kąt SA's jako w półkolu 
jest prosty, zatem sA' prostopadła do SA'; a że T "t" równo­
legła do A's, zatem jest także prostopadłą do ST", jest więc 
styczną do okręgu S. Że jest styczną i do drugiego okręgu 
s łatwo okazać, bo 'sć" =  A 'T " , kąty przy T " i A ' proste, 
zatem czworokąt A T '7 "s  jest znowu prostokątem i kąt przy 
t" prosty, a T"t" prostopadła,do st". Ale zakreślony luk 
przeciął też okrąg koła na linii środków "wykreślony w dru­
gim punkcie a, postąpiwszy więc z tym punktem tak jak z 
poprzedzającym, otrzymamy czwartą styczną T "'t'" spólną obu 
okręgom. Tak tedy zamierzywszy sobie znaleśó styczną do 
dwóch okręgów danych z położenia, postępowanie nasze w
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rozwiązaniu tego zagadnienia przyprowadziło nas do tćj praw­
dy, że do dwóch okręgów kół danych z położenia nie jednę, 
ale cztery styczne obu spólne poprowadzić można. Dwie 
pierwsze z tych stycznycli nazywamy zeionętrznemi, dwie zaś 
drugie wewnętrznymi. Pierwsze przedłużywszy dostatecznie, 
dostrzeżemy, że się przecinają na linii środków przedłużonej 
także, t. j. za mniejszym okręgiem koła w punkcie B. Dru­
gie dwie przecinają się także na tejże linii, ale między obu 
okręgami w punkcie B' co jest widocznem.

Drugi sposób. Na zasadzie §§. 62 i 70 t. j. dzielenia 
prostej w proporcyi harmonicznej, można to zagadnienie da­
leko prędzej i prościej rozwiązać następującym sposobem. 
Przypatrzywszy się z uwagą stycznym już wykrćślonym, t. j. 
uważając jakoby zagadnienie już było rozwiązanem, przeko­
namy się, że do ich poprowadzenia dostateczną jest znajomość 
punktów B i B ’, w których rzeczone styczne przecinają pro­
stą środków. W  trójkącie bowiem TBS fig. 114 st jest rów­
noległa do ST i dlatego SB:Ss =  ST:st, a z dwóch trójką­
tów ST''B' i s<’'B ’ podobnych jest także SB':sB'=ST":st"zrST:st, 
przeto SB:Ssr=SB’ :sB ', z której proporcyi czytamy, że pro­
sta Ss łącząca środki dwóch okręgów danych, podzieloną jest 
w punktach B : B ’ w proporcyi harmonicznej §. 62 uwaga, 
a puukta B i B' są punktami do siebie należącemi. Chcąc 
przeto znaleść te punkta, dosyć jest przez środek S popro­
wadzić jakąkolwiek średnicę MN fig. 115, a przez środek 
s promień do niej równoległy sraj proste łączące punkta M 
i N z m, naznaczą tak na przedłużeniu prostój Ss, jako tóź i 
na niej samej szukane punkta B i B'. Nareszcie z tych punk­
tów według §. 97 prowadząc do jednego z okręgów styczną, 
ta zarazem będzie styczną i do drugiego.

Uwaga. Gdyby dane dwa okręgi kół były równe czyli 
gdyby było R “ r , robiąc toż samo wykróślenie, przekonali­
byśmy się że piórwsze dwie styczne są od siebie równoległe 
dwie zaś drugie, przecięłyby się z sobą na linii środków i to 
dokładnie w połowie odległości Ss.



Dalsze rozbieranie tego zagadnienia przekonałoby nas 
że jeżeli się dwa dane koła dotykają zewnątrz, dwie wewnę­
trzne styczne zamieniają się na jedną do linii łącznej prosto­
padłą i w tym przypadku trzy tylko styczne są możebne. 
Jeżeli się zaś przecinają, dwie wewnętrzne styczne są niemo- 
żebne i do takich dwóch kół tylko dwie styczne poprowa­
dzić można. Gdyby się okręgi dotykały wewnątrz, wtedy 
tylko jedna styczna możebna. Nareszcie gdyby jedno koło 
leżało wewnątrz drugiego, nie przecinając go ani dotykając, 
w takim razie żadnej stycznej wspólnej poprowadzić nie można.
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ROZDZIAŁ VI.

Krzy wa kołowa wraz z figurami prostokróślnemi u ważana.

§. 103.
Dotąd uważaliśmy figury prostokróślne same w sobie, 

jak również jednę figurę krzywokreślną kołem nazwaną, je ­
dynie w związku z prostemi w kole rozmaicie prowadzonemi; 
teraz potrzeba nam zastanowić się nad figurami prostokróśl- 
nemi w związku z liniją kołową uważanemi.

Definicyja. Każdą figurę prostokreślną albo raczej każ­
dy wielokąt, którego wiśrzehołki wszystkich kątów znajdują 
się na okręgu koła, nazywać będziemy wielokątem w koło 
wpisanym (polygonum circulo inscriptum), okrąg zaś koła 
takie położenie mający nazwiemy okręgiem koła na wieloką­
cie opisanym. Wielokąt którego wszystkie boki są styczne- 
mi do okręgu koła, nazywać się będzie wielokątem opisanym 
na kole (polygonum circulo circumscriptum); okrąg zaś ko­
ła w tym przypadku, kołem wpisanem w icielolcąt.

T w ie r d z e n ie . W  wielokącie foremnym podzieliwszy każ­
dy z jego wewnętrznych kątów na dwie róume części, proste 
dzielące schodzą się icszystkie w jednym punkcie.

Niech będzie ABGDE.....  fig. 116 wielokąt foremny o
jakiejkolwiek liczbie boków; podzieliwszy dwa którekolwiek

9
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jego kąty np. A  i B na dwie równe części, proste dzielące 
AS i BS przetną się naturalnie w jednym tylko punkcie S ; 
połączywszy ten punkt S z wierzchołkami wszystkich innych 
kątów prostemi SC, SD, SE i t. d., jeżeli dowiedziemy, że 
każda z tych prostych dzieli kąt, przez którego wierzchołek 
przechodzi, na dwie równe części, tern samem dowiedzie się 
prawdy założonego twierdzenia.

Z punktu S spuśćmy prostopadłe Sa i Sb na boki wie­
lokąta AB i BC. Ponieważ kąt A B jako w wielokącie 
foremnym, zatem i połowy ich są także równe t. j. kąt 
SAa=SBa, kąty przy a są proste, więc dwa trójkąty SAa i 
SBa przystają do siebie, a w szczególności SArrSB i A a=B a. 
Dwa trójkąty SBa i SBó mają bok SB spólny, kąty przy B 
jako też kąty przy a i b równe, według więc §. 36 wniosek 2, 
przystają do siebie, a z przystania wnosimy, że Sa zz Sb i 
Ba— Bó. A że B a=^A B , więc tćż B ó= £ B C  bo z założe­
nia AB =  BC. Dwa znowu trójkąty SBó i SóC według §. 
23 przystają do siebie, gdyż Sb mają spólne, Bó =  óC jako 
połowy boku BC i kąty przy b równe jako proste; z przy­
stania ich wnosimy, że SC =S B  i kąt SCó — SBó. A  że kąt 
C =  B z założenia a SBó =  ^B, więc też i kąt SC ó=:^C . 
Zupełnie tym samym sposobem okazuje się , że prosta SD 
dzieli kąt D na dwie równe części i że SC =  SD. Toż sa­
mo dowiedzie się też o wszystkich prostych łączących wierz­
chołki kątów wielokąta z punktem S, a następnie łatwo wnieść 
nawzajem, że proste dzielące kąty wielokąta foremnego na dwie 
równe części, przecinają się w jednym punkcie S , ’ co było 
do dowiedzenia.

W n i o s e k  1. Ponieważ z ciągu dowodzenia powyższego
twierdzenia wypadło, że SA — SB —  SC =  SD r ; ......  przeto
punkt S jest w równej odległości od każdego z wierzchołków 
kątów wielokąta. A  że również z dowodzenia otrzymaliśmy 
Sa =  Só =  Sc =  Sd = ......  zatem punkt S je st także w ró­
wnej odległości od każdego z boków tegoż wielokąta, słusz­
nie więc ten punkt S nazywa się środkiem loielokąta (cen­
trum polygoni).
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W n i o s e k  2 . K ie d y  p u n k ta  A, B, C, D.....  są w  rów nej

odległości od punktu S, muszą one leżeć na okręgu koła pro­
mieniem SA zakreślonego. Podobnież punkta a, b, c, d....
leżą na okręgu koła z punktu S promieniem Sa zakreślone­
go. Jeżeli więc z punktu S promieniem SA zakreślimy okrąg 
koła, ten musi przejść przez wierzchołki wszystkich kątów 
wielokąta i będzie okręgiem koła opisanym na wielokącie, 
a wielokąt wpisanym w okrąg koła. Podobnież, jeżeli z te­
goż punktu S promieniem Sa zakreślimy drugi okrąg koła,
ten przejdzie znowu przez punkta a, b, c, d....  tak, że boki
wielokąta AB, BC, CD....  będą w punktach a, b, c.....  sty-
cznemi do tegoż okręgu jako prostopadłe do promieni, a za­
tem ten ostatni okręg koła, według definicyi, będzie w wie­
lokąt wpisanym, sam zaś wielokąt będzie opisanym na kole.

§. 104.
W niosek 3. Z toku dowodu poprzedniego twierdzenia

wypływa jeszcze, że kąt ASB =  BSC =  CSD = ....  t. j., że
wszystkie kąty przy środku wielokąta a zatem i koła opisa­
nego na nim, są między sobą równe; skąd wniesiemy, iż, aby 
w dany okrąg wpisać wielokąt, rozumie się foremny, dosyć 
jest tenże okrąg koła podzielić na tyle części równych, o ilu 
bokach chcemy wpisać wielokąt i punkta podziału połączyć 
prostemi. Gdy bowiem kątom równym przy środku koła od­
powiadają luki i cięciwy równe §. 80, a te cięciwy są bo­
kami wielokąta, każdy zaś kąt między dwoma bokami zawar­
ty, ma za miarę połowę luku =rw — 2 częściom (jeżeli przez 
n rozumiemy liczbę boków wielokąta wpisać się mającego, 
a zatem i liczbę części na którą cały okrąg podzieliliśmy), 
przeto tak boki między sobą, jako też i kąty wielokąta mię­
dzy sobą są równe; stósownie więc do § .17  wielokąt ten jest 
foremny. Jeżeli do boków tego ostatniego wielkokąta spu­
ścimy ze środka koła S prostopadłe i te przedłużymy aż do 
przecięcia się z okręgiem, a potem przez te punkta popro­
wadzimy styczne do okręgu koła, te przedłużone aż do prze­
cięcia się z promieniami przez A , B , C, D i t. d. przecho- 
dzącemi, a zatem i do przecięcia się z sobą, zamkną wielo-

9.



kąt foremny na kole opisany o takiójże liczbie boków jak 
wielokąt wpisany.

Niech bowiem będzie okrąg koła, którego środek SJig. 
117, podzielmy go na n części równych np. na 6, tedy łą­
cząc te punkta podziału prostemi, otrzymamy sześciokąt fo­
remny w koło wpisany. Że boki jego są między sobą ró­
wne, nie potrzeba dowodu, gdyż są cięciwami łuków równych. 
Że zaś kąty są między sobą równe, łatwo dowieść według 
tego co wyżej powiedzieliśmy. Kąt bowiem np. ABC jako 
okręgowy ma za miarę połowę łuku n— 2 bo tyle części okręgu 
ramionami swemi obejmuje (w naszym sześciokącie 6—2 = 4 ); 
a że i każdy inny kąt obejmuje swemi ramionami takąż licz­
bę części, a te części są między sobą równe, zatóm miary 
tych kątów a następnie i same kąty są między sobą równe 
i wielokąt jest foremny.

Co do wielokąta opisanago, niech piórwsza styczna przez 
punkt a poprowadzona, spotyka promienie przez A i B prze­
chodzące w punktach A' i B’, tedy ponieważ tak AB jako też 
i A'B' są prostopadłe do Su , dwie te proste są do siebie 
równoległe, a następnie, kiedy trójkąt ASB jest równoramien­
ny, i trójkąt A ’SB’ jest także równoramienny; bo kąty przy 
A i A ’, B i B ’ są sobie równe, że zaś kąty przy A i B są so­
bie równe, bo SA ~  SB, zatem i kąty przy A' i B ’ są także 
równe. Ale w trójkącie równoramiennym prostopadła z wićrz- 
chołka na bok trzeci dzieli tenże na dwie równe części, za­
tem A 'a =  B ‘a. Połączywszy punkt B' z b prostą B 'b i tę 
przedłużywszy aż bo przecięcia się z promieniem przez C prze­
chodzącym, w punkcie C’ , dwa trójkąty B'Sa i B ’Só mają 
bok SB’ spoiny, Sa =  Só i kąt B’S a= B S ó, bo mają za mia­
rę luki równe aB i B ó , które są połowami łuków AB i BC 
między sobą równych, przeto przystają do siebie, skąd wno­
simy, że a B '= B ’ó i kąt SaB' =  SóB'. A że pierwszy kąt jest 
prosty, więc i drugi prosty, a prosta B ’C' będąc prostopadłą 
do promienia w koócu tegoż wyprowadzona jest styczną. 
Trójkąt B ’SC' dla tej samej przyczyny jak trójkąt A 'SB 'jest 
równoramienny, przeto B'ó =  óC'. A że wyżćj dowiedliśmy,
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że A ’a = B 'a ,  przeto B ’a =  jA 'B ', jak również B'& =  JB'C‘, 
a stąd wypada, ż e A 'B '= B 'C ’. Postępując dalej, dowiedzie­
my tym samym sposobem, że B 'C ’~ C D ' i t. d., t. j .  dowie­
dziemy, że wszystkie boki są stycznemi i są sobie równe;
jest więc wielokąt A ’B 'C 'D '........ opisanym na okręgu koła.
Że jest foremnym, potrzeba jeszcze dowieść, że wszystkie je ­
go kąty między sobą są równe. Ale te kąty są równe ką­
tom wielokąta w pisanego każdy każdemu, bo ich ramiona 
są od siebie równoległe i rozchodzą się w jednychże kierun­
kach; a kiedy te ostatnie są między sobą równe, zatem i pierw­
sze są także między sobą równe i wielokąt jest foremny.

Ze także wielokąt opisany jest podobny wpisanemu, 
wypada stąd, że są równokątne, tudzież że boki ich są pro- 
porcyjonalne. Bo np. w trójkącie A ’SB', AB jest równole- 
legła od A'B', więc B'S : BS =: A 'B ': A B ; w trójkącie B'SC' 
jest znowu B'S :BS — B'C’ : BC skąd A 'B ':A B  =  B 'C  :BC i 
tak o innnych bokach. Skąd wniesiemy, że mając wielokąt 
w koło wpisany, można zawsze opisać na tćmże kole wielo­
kąt podobny wpisanemu.

Wzajemnie, mając wielokąt opisany, można także przy 
jego pomocy w pisać w koło wielokąt jemu podobny, łącząc 
tylko wierzchołki jego kątów z środkiem koła a potem punk- 
ta przecięcia się tych prostych z okręgiem koła łącząc pro- 
stemi, te bowiem zamkną wielokąt foremny wpisany, podo­
bny opisanemu.

Mając wielokąt wpisany w koło, można jeszcze drugim 
sposobem opisać jemu podobny na kole, prowadząc przez 
wierzchołki kątów wpisanego styczne do okręgu koła, aż do 
wzajemnego ich przecięcia się z sobą, jak to fig. 118 wska­
zuje. Aby i tu dowieść, że wielokąt A ’B 'C 'D 'E 'F ’ jest fore­
mny, uważmy tylko, że na zasadzie §. 88, 89 AA ’ =  A ’B , 
B'B=:B'C, C 'C =C 'D , i t. d., a następnie A'S, B'S, G'S i t. d. 
przechodzą przez środki łuków należących do boków wielokąta 
wpisanego i środki tychże boków, tudzież dzielą kąty przy S na 
dwie części równe i są prostopadłe do boków wielokąta wpisa­
nego, więc dwa trójkąty B'SB i A'SB według §. 24 przystają
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do siebie, gdyż BS spólne kąty przy B proste i kąty przy S rów­
ne jako mające jednakowe miary, a z przystania wnosimy, że 
B'Br=A'B. Tym samym sposobem dowiedzie się, że B ’Cr:C 'C , 
a następnie że A 'B ’ — B'C' =  C 'D '= : i t. d. Każdy z kątów
A', B', C', D '....  jest spełnieniem kąta przy środku, jak np.
B' -f- BSG 180, a że wszystkie kąty przy środku są sobie 
równe, więc i ich spełnienia są równe t. j.  kąt A' —B '= C ' =  .... 
przeto wielokąt A 'B 'C 'D 'E 'F ' jest foremny. Ze jest podobny 
wpisanemu, potrzeba okazać że jest z nim równokątny i boki 
mają proporcyjonalne. Kąty wielokąta wpisanego są także speł­
nieniami kątów równych między sobą i równych kątom, któ­
rych kąty A', B', C’, D '....  są spełnieniami, przeto A =  A',
B = B ',  C = :C '....  Trójkąty AA B, BB’C, CC'D.... są wszy­
stkie sobie podobne

więc A 'B :B 'C  =  AB:BC 
albo 2A 'B : 2B’C — A B : BC 
lub A 'B ':B 'C '= A B :B C

i tak o innych bokach; jest więc opisany wielokąt podobny 
wpisanemu. Z wielokąta opisanego znajdziemy wpisany, łącząc 
tylko punkta dotknięcia się boków okręgu kola prostemi, 
które zamkną wielokąt foremny i podobny opisanemu.

§. 105.
W n i o s e k  4 .  Kiedy wszystkie kąty przy środku wielo­

kąta foremnego między sobą są równe, a razem czynią 4R, 
więc kąt środkowy w tymże wielokącie jest wiadomy, równa 
się bowiem n‘*i części czterech kątów prostych. Dlatego też

4 2w sześciokącie foremnym kąt środkowy = — R = —- R = 60°,O o
przeto dwa kąty przy boku sześciokąta leżące czynią 

180"— 60° -  120;
a że są między sobą równe jako w trójkącie równoramien­
nym, więc każdy z nich zamyka 60°. Trójkąt przeto, które­
go dwoma bokami są promienie koła, w które jest wpisany 
sześciokąt, a trzecim bokiem bok sześciokąta, ma wszystkie 
trzy kąty między sobą równe, ma tóż zatem i wszystkie trzy 
boki między sobą równe , jest przeto równobocznym i bok



135

sześciokąta foremnego w koło wpisanego równa się promienio­
wi tegoż koła. Chcąc zatem wpisać sześciokąt foremny w ko­
ło dane, dosyć jest promień tegoż koła przenieść na okrąg' 
koła jako cięciwę, który się da sześć razy dokładnie odciąć, 
i punkta tak naznaczone połączyć prostemi.

Łącząc podział pierwszy z trzecim, trzeci z piątym a 
piąty z pierwszym, otrzymamy trójkąt foremny czyli równo­
boczny w koło wpisany. Skąd wniesiemy, że aby w dany 
okrąg koła wpisać trójkąt równoboczny, potrzeba wprzód 
wpisać sześciokąt foremny, a potćm postąpić do trójkąta jak 
co dopićro wspomnieliśmy.

Można też obejść się bez wpisywania sześciokąta, uży­
wając następującego sposobu, który w istocie na toż samo 
wychodzi. W  danym okręgu koła, w które mamy wpisać 
trójkąt równoboczny poprowadziwszy średnicę MN fig. 119 i 
z jednego jej końca np. N promieniem równym promieniowi 
danego koła, zakreśliwszy luk przecinający, dany okrąg w 
punktach A i B, cięciwa AB będzie bokiem trójkąta żądą- 
nego. Połączywszy potem punkta A i B z punktem M t. j. 
z drugim końcem średnicy, otrzymamy trójkąt AMB żądany. 
Aby w dane koło wpisać kwadrat, dosyć jest poprowadzić 
dwie średnice MN i PQ prostopadłe do siebie i punkta w 
których okrąg koła przecinają, połączyć prostemi.

§. 106.
Widzieliśmy, że wpisanie trójkąta foremnego w koło, za­

leży na wpisaniu sześciokąta foremnego. Gdybyśmy ze środ­
ka koła spuścili prostopadłe do boków sześciokąta i te prze­
dłużyli aż do przecięcia się z okręgiem, te jak wiadomo po­
dzielą luki, których cięciwami są boki sześciokąta, każdy na 
dwie równe części, a zatem cały okrąg koła na 12 części 
równych. Połączywszy te punkta podziału z wierzchołkami 
kątów sześciokąta, otrzymamy dwunastokąt foremny w koło 
wpisany; a postąpiwszy tu znowu tak jak z sześciokątem, 
otrzymalibyśmy 24rokąt foremny w koło wpisany. Przy po­
mocy tego ostatniego wielokąta wpiszemy w koło 48kąt fo­
remny i t. d. Tym sposobem umiejąc wpisać sześciokąt fo­
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remny w koło, umiemy wpisać w toż koło wielokąty o 3, 6,
12, 24, 48, 96..... 3.2™-1 bokach, gdzie m —  1, 2, 3, 4.....

Umiejąc według powyższego wpisać w koło kwadrat 
i postąpiwszy z nim jak z sześciokątem postąpiliśmy, otrzy­
mamy ośmiokąt foremny w koło wpisany, a przy jego pomo­
cy przyjdziemy do 16stokąta i t. d. t. j., za pomocą kwadra­
tu umiemy wpisać w koło wielokąty o 4, 8, 16, 32, 64.......
4.2ra—1 bokach, gdzie znowu m—  1, 2, 3.....

Dla wpisania pięciokąta foremnego w koło, potrzebaby 
okrąg tegoż koła podzielić na pięć części równych; atoli na 
to nie mamy elementarnego sposobu i dlatego pięciokąta 
wpisać w koło inaczej nie możemy, tylko przy pomocy dzie- 
sięciokąta. Aby wpisać dzicsięciokąt foremny w koło, po­
trzeba nam naprzód dowieść następujące twierdzenie.

§• 107.
T w ie r d z e n ie . Bok dziesięciokąta foremnego w kob wpi­

sanego równa się większemu odcinkowi promienia podzielonego 
na skrajne i średnią.

Niech promień SB będzie podzielony w punkcie C fig. 
120 na skrajne i średnią, t. j. niech będzie S B :S C ~ S C :B C ; 
wziąwszy A B = S C , potrzeba dowićść, że luk AB jest T’0 czę­
ścią całego okręgu koła, lub co na jedno wychodzi, że kąt 
ASB jest T'jj częścią cztćrech kątów prostych. Na ten ko­
niec poprowadziwszy AC , ponieważ SC rr AB , jest też 
SB :A B  =  A B :B C . Lecz SB i AB są dwoma bokami trój­
kąta ASB kąt B obejmująccmi, zaś AB i BC dwoma boka­
mi tenże kąt B, w trójkącie ACB obejmującemi, przeto trój­
kąt ASB-^-ABC; a że trójkąt ASB jest równoramienny, więc 
i trójkąt ABC jest także równoramienny, a mianowicie kąt 
ACB =  B, kąt B A C =S i AC =  AB, następnie zaś AC =  SC; 
skąd wypada, że tćż trójkąt ASC jest równoramienny. Ale 
kąt A C B rrC A S -)-S  §. 39, a kiedy kąt CAS =  S, zaś kąt 
A C B =B , więc kąt B —2S. W  trójkącie ASB mamy 

A -j-B  +  S=:2R , czyli ponieważ A = B ,  2S -j-2S -j-S  =  2R 
albo 5Sr=2R, przeto S =  £ 2 R ~  r202 R ~  r'04R, t. j. kąt S jest 
Tl0 częścią całego okręgu koła, a następnie cięciwa AB jest
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bokiem dziesięciokąta foremnego w koło wpisanego, co było 
do dowiedzenia.

Aby więc wpisać w koło dziesięciokąt foremny, potrze­
ba promień tegoż koła podzielić na skrajne i średnią, a wziąw­
szy większy odcinek rzeczonego promienia, przenieść go ja­
ko cięciwę na okrąg danego koła, co się 10 razy zupełnie 
da uskutecznić. Połączywszy potem punkta tak naznaczone 
prostemi, otrzymamy żądany dziesięciokąt foremny w koło 
wpisany.

Jeżeli teraz połączymy końce każdych dwóch takich 
części okręgu koła prostemi, te zamkną pięciokąt foremny 
w koło wpisany.

Praktyczny sposób wpisania pięciokąta foremnego w k o ­
ło nie wpisując wprzód dziesięciokąta, jest następujący:

W  danem kole poprowadziwszy średnicę AB fig. 121 i ze 
środka koła wyprowadziwszy promień SC do nićj prostopadły, 
podzielmy promień SB w punkcie E na dwie równe części 
i z punktu E promieniem EC zakreślmy łuk przecinający 
średnicę AB w punkcie F , tedy CF będzie bokiem pięcio­
kąta a SF bokiem dziesięciokąta; nareszcie z punktu C pro­
mieniem CF zakreślmy inny łuk przecinający okrąg koła 
w punkcie G, cięciwa C G “ CF będzie bokiem pięciokąta 
foremnego w dane koło wpisanego.

Sposób ten wpisywania pięciokąta i dziesięciokąta w da­
ne koło znajduje się już w Euklidesie ks. 13.

W niosek. Ponieważ trójkąt CFS jest prostokątny przy 
S, więc według §. 63 wniosek będzie kwadrat z liczby wyra­
żającej długość prostej FC czyli długość boku pięciokąta w 
koło wpisanego, równy summie kwadratów z liczb wyrażają­
cych długość promienia i boku dziesięciokąta w toż koło wpi­
sanego: albo, jak zwyczajnie mówić będziemy, summa kwa­
dratów z promienia i boku dziesięciokąta w koło wpisanego, 
równa się kwadratoici z boku pięciokąta w toż koło wpisa­
nego.

Uwaga 1. Pierwszy sposób wpisania pięciokąta zasa­
dzał się na wpisaniu dziesięciokąta, ten drugi, wpisując pię­
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ciokąt, wpisuje zarazem dzicsięciokąt, a w użyciu jest pręd­
szy i łatwiejszy *).

Uwaga 2. Umiejąc wpisać pięciokąt foremny w koło, 
możemy też wpisać wielokąty o 5, 10, 20, 40, 80 . . . 5.2"*-1 
bokach, gdzie m — 1, 2, 3, 4. . . .

W n io s e k  2. Ponieważ £ — —  ?4n —  T'5 , przeto umie­
jąc wpisać szesciokąt i dziesięciokąt w koło, umiemy też 
wpisać pietnastokąt. Jeżeli bowiem luk DE fig. 120 jest 
a łuk EF t‘jj częścią całego okręgu, tedy łuk DE =  DE — EF 
według powyższego, będzie T*5 częścią okręgu koła; przeto 
cięciwa DF będzie bokiem pietnastokąta foremnego w koło 
wpisanego. Przy jego pomocy umiemy też wpisać wieloką­
ty o 30, 60, 120 . .  . 15.2"* 1 bokach, gdzie znowu 

m — i, 2, 3, 4. . . .
§. 108.

Podaję tu jeszcze praktyczne sposoby wpisania w koło 
siedmiokąta, dziewięciokąta i jedenastokąta.

Dla siedmiokąta zakreśla się z któregokolwiek punktu 
danego okręgu kola np. z A fig. 122 promieniem równym 
promieniowi danego koła łuk przecinający okrąg w dwóch 
punktach B i C, a połowa cięciwy BC t. j. BB’ jest bokiem 
siedmiokąta żądanego.

Dla dziewięciokąta zrobiwszy toż samo i znalazłszy 
cięciwę BC fig. 122, z jćj środka D promieniem równym 
promieniowi danego koła zakreśla się łuk przecinający prze­
dłużoną cięciwą DC w punkcie E , z punktu E tąż samą 
otwartością cyrkla przecina się łuk pierwszy w punkcie F; 
prosta łącząca punkt F z środkiem koła naznaczy punkt G 
na okręgu, ten złączywszy z punktem C prostą GC, ta bę­
dzie bokiem dziewięciokąta w toż koło wpisanego.

Nareszcie dla jedenastokąta, potrzeba promień SM fig. 
122, podzielić w punkcie H na dwie równe części, potćm 
tak z punktu H jako też i M , promieniem = M H  zakreślić

*) Sposób ten podany josl przez P tolemeusza w jego Alniage&cie 
(2vvta£i<; /.uyab]).
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dwa luki przecinające się w punkcie K  i oprócz tego na­
znaczyć punkt przecięcia sią łuku z M zakreślonego, z okrę­
giem danym jak tu L ; na ostatek z punktu L otwartością 
cyrkla ~  LK zakreśliwszy luk przecinający dany okrąg w 
punkcie I , prosta łącząca punkta H i I, jest szukanym bo­
kiem jedenastokąta w koło wpisanego*).

Ogólny praktyczny sposób wpisania wielokąta w koło 
o ilukolwiek bokach, podany przez tegoż samego co po­
przedzające autora, jest następujący:

Poprowadziwszy w danem kole średnią AB Jig. 123, 
prowadzi się potem prosta AM nieograniczonej długości pod 
jakiemkolwiek do średnicy nachyleniem. Na tćj prostej po­
czynając od punktu A odcina się tyle części równych do­
wolnej długości, o ilu bokach chcemy wpisać wielokąt np. 
7; ostatni ten podział łączy się z drugim końcem średnicy 
B prostą B7, a przez podział 2 prowadzi się do niej rów­
noległą przecinającą średnicę w punkcie C. Z obu końców 
średnicy, otwartością cyrkla równą średnicy, kreślą się dwa 
luki przecinające się w punkcie D. Nareszcie przez punkta 
D i C prowadzi się prosta, która przetnie okrąg danego ko­
ła w punkcie E, a prosta łącząca ten punkt E z końcem 
średnicy A będzie bokiem szukanego wielokąta w toż koło 
wpisanego. Wszystkie te sposoby podane są w przytoczo- 
nćm dziełku praktycznie bez żadnego dowodu. A kiedy przy 
pomocy dotąd poznanych prawd nie moglibyśmy dowieść 
jak daleko zgodne są te sposoby z prawdą (bo rzeczywiście 
są tylko zbliżonemi), dla tego tóż przytaczając je  jako tylko 
praktyczne, dla poradzenia sobie w potrzebie, żadnych do­
wodów nie dołączam.

*) Te praktyczne sposoby znalazłem w dziełku zupełnie na miedzi rytóm 
pod tytułem: „ Anweisung zum Zirkel- und Lineal-Gebrauch souiolil 
vor die Juyend ais Professionisten und Handwerker. Verlegt in Augs­
burg von Johann Hertel “ bez roku i autora.— Autorem tego dziełka 
składającego się z 244 stronic jest A nthoni E rnst B( kckjiaki> von 
B ikkenstein. Pierwsze jego wydanie wyszło także w Augsburgu u 
Jakóba Koppmayera r, 1689.
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Uwaga. Kończąc rzecz o wpisywaniu i opisywaniu wie­
lokątów foremnych w koło, wypada nam jeszcze wspomnieć, 
iż od Euklidesa aż do początku bieżącego stólecia sądzono, 
że sposobem geometrycznym t. j. elementarnym (za pomocą 
prostej i okręgu koła) nie można wpisać innych wielokątów 
w koło jak tylko trójkąt, kwadrat, pięciokąt, sześciokąt, dzie- 
sięciokąt i pietnastokąt; jako też te, które przez podwajanie 
liczby boków z wymienionych wielokątów, jak to wyżej wi­
dzieliśmy, powstają. Atoli sławnej pamięci matematyk Gauss 
w wydanej w r. 1801 w Lipsku Arytmetyce pod tytułem „Dis- 
quisitiones Aritkmeticae“ dowiódł, że tym samym sposobem 
można wpisać wszystkie wielokąty, których liczba boków jest 
wyrażoną przez 2 " - j - l  byle tylko ta liczba była liczbą 
pierwszą.

§. 109.
Że każdy trójkąt można opisać kołem, już to z §. 83 

wiemy. Źe nawzajem w każdy trójkąt można wpisać okrąg 
koła, to następnie okażemy.

T w ie r d z e n ie . W  trójkącie prostokreślnym podzieliw­
szy każdy z jego kątów na dwie równe części, proste dzielące 
przecinają się w jednym punkcie, który jest w równej odle­
głości od każdego z boków trójkąta.

Niech będzie trójkąt ABC fig. 124, podzieliwszy które­
kolwiek dwa jego wewnętrzne kąty np. A  i C na dwie rów­
ne części i poprowadziwszy proste dzielące, te przetną się 
naturalnie w jednym tylko punkcie O. Złączywszy ten punkt 
O z wierzchołkiem trzeciego kąta B prostą BO, jeżeli do­
wiedziemy, że ta ostatnia prosta dzieli kąt B także na dwie 
równe części, tern samem dowiedziemy pierwszćj części za­
łożonego twierdzenia.

Jakoż z punktu O spuściwszy prostopadłe O D , OE i 
O F, pićrwszą do boku A B , drugą do A C , trzecią do BC, 
w dwóch trójkątach AOD i AOE prostokątnych przy D i E, 
kąt D A O m E A O  z założenia, przeto i trzecie kąty są sobie 
równe §. 36 umiosek 2; oprócz tego przeciwprostokątnia jest 
obu spoina, zatem dwa te trójkąty przystają do siebie, a z
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przystania wnosimy, że OD =  OE. Zupełnie dla tej samej 
przyczyny dwa trójkąty OEC i OFC także przystają do sie­
bie a w szczególności OE — OF. Nareszcie dwa trójkąty 
prostokątne BDO i BFO mają przeciwprostokątnią BO spól- 
ną i po boku kątom prostym przyległym równym t. j. 
OD zz OF, zatćm również przystają do siebie, a z przystania 
wnosimy, że kąty jednakowo położone w obu, są sobie rów­
ne, t. j. że kąt D BO =FBO , co potrzeba było dowieść. A że 
z dowodzenia wypadło, że OD z=O E =  OF, zatem i druga 
część twierdzenia także dowiedziona, że punkt przecięcia się 
prosty cli dzielących kąty w trójkącie na dwie równe części, 
jest w równćj odległości od każdego z boków.

Jeżeli teraz z punktu O promieniem — OD=rOE=OF, 
zakreślimy okrąg koła, ten dotknie boki trójkąta w punktach 
D, E, F i będzie kołem w trójkąt ABC wpisanem.

Uwaga. Nie tylko proste dzielące kąty wewnętrzne 
trójkąta przecinają się w jednym punkcie, ale też i proste 
dzielące dwa kąty zewnętrzne i jeden wewnętrzny przecinają 
się także w jednym punkcie jak proste AO' BO' i CO', skąd 
powstaną trzy koła styczne do boków trójkąta lub do ich 
przedłużeń. W  ogólności więc są cztćry koła styczne do 
boków trójkąta uważanych jako proste nieograniczonej dłu­
gości.

§. 110.
Źe czworokąt może być wpisany w koło, łałwo jest po­

jąć, bo obrawszy gdziekolwiek na okręgu koła cztery pun- 
kta i te połączywszy prostemi, te zamkną czworokąt w koło 
wpisany. Ze atoli nie każdy czworokąt może być w koło 
wpisany przekonać się można z tego co w §. 83 dowiedliś­
my. Albowiem obrawszy tamże czwarty punkt gdziekolwiek, 
okrąg koła przechodzący przez trzy punkta, nie zawsze przej­
dzie i przez punkt obrany. Po czemże więc poznać, który 
czworokąt może być wpisany w koło? Aby tę cechę odkryć, 
obierzmy dowolnie cztery punkta A, B, C, D na okręgu ko­
ła fig. 125, te połączmy prostemi dla zamknięcia czworokąta. 
Poprowadziwszy potem dwie przekątnie AC i BD uważmy
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np. trójkąt ABC: w tym summa kątów wewnętrznych czyni 
2R czyli B +  BAC -f- BCA =  2R. Lecz kąt BACrrBD C bo 
każdy z nich ma za miarę połowę łuku B C ; kąt BCA “ BOA 
bo są w jednymże odcinku, zatem B A C B C A  = D ; przeto 
B -j- I) =  2R. A że w każdym czworokącie summa kątów 
wewnętrznych równa się czterem kątom prostym, więc rów­
nież A -f-C  =  2R. Albo krócćj: kąt B ma za miarę połowę 
luku ADC, kąt D ma za miarę połowę łuku ABC, a że 
summa łuków ABC -j- ADC czyni cały okrąg, więc summa 
kątów B -|-L  ma za miarę połowę okręgu koła; czyni więc 
dwa kąty proste. Cecha tedy o którą nam chodziło jest ta, 
że tylko czworokąt w którym summa kątów przeciwległych 
czyni 2R, może być wpisany w koło. Jest to więc czworo­
kąt któryśmy w §. 16 nazwali antiparallelogramem.

Uwaga. Może tćż być opisany kołem czworokąt trapez 
którego dwa boki nierównoległe są sobie równe a któryby 
z tego powodu trapezem równoramiennym nazwać można.

§• U l-
T w ie r d z e n ie . W  każdym trójkącie prostokreślnym ilo­

czyn z dwóch jego boków równa się iloczynowi ze średnicy 
koła opisanego i prostopadłej na bok trzeci z wierzchołka kąta 
przeciwległego spuszczonej.

Niech będzie trójkąt ABC jig. 126, opisawszy go ko­
łem §. 83 i z punktu np. A poprowadziwszy średnicę AE, 
tudzież z wierzchołka B spuściwszy prostopadłą BD na bok 
A C , mamy dowieść, żc A B X H C  — A E X H D . Na dowie­
dzenie tego poprowadziwszy prostą BE, dwa trójkąty ABE 
i BDC są podobne; jest bowiem kąt ABE prosty jako w 
półkolu równy prostemu D , kąt E — C, bo są w jednymże 
odcinku, przeto i kąt BAE =  DBC, a stąd według twierdze­
nia §. 56 jest A B : BD =  A E :BC. Z tej proporcyi wypada 
A B X H C  =  A E X B D , jak w twierdzeniu wyrażono.

WNIOSEK. Rozmnożywszy dwie ostatnie ilości równe 
każdą przez A C , będzie A B X B C X -A C  A C X H L 1X A E . 
Lecz, jak w następnym rozdziale zobaczymy, iloczyn ACXH1^ 
wyraża podwójną powierzchnią trójkąta ABC, zatem w każ-
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dym trójkącie prostokreślnym iloczyn z trzech jego boków 
równa się iloczynowi z podwójnój jego powiórzchni przez śre­
dnicę; czyli nazwawszy promień koła opisanego przez Ii, a 
powierzchnię trójkąta ABC przez ponieważ A E r=2R
będzie A B X B C X A C = 2 A X 2 R  =  4 A R

a = ABXBCXAO r = ą b x b o x a c
Ą 4R 4 A

t. j. powierzchnia trójkąta równa się iloczynowi z trzech jego 
hokóio podzielonemu przez 4 razy wzięty promień kola opisa­
nego; zaś prómień koła opisanego na trójkącie, równa się ilo­
czynowi z trzech jego bohóic podzielonemu przez 4 razy wziętą 
powierzchnię tegoż trójkąta.

Uicaga. Może tu nie jednemu wpadnie na myśl, jak 
znaleść iloczyn z dwóch, trzech i t. d. prostych? Tego od­
syłamy do §§. 2 i 3 , gdzie powiedzieliśmy, iż zamieniwszy 
długości, a zatem linije na ilości krotne czyli liczby, już 
wszystkie działania arytmetyczne z niemi uskutecznić można.

§• H2.
T w ie r d z e n ie . W trójkącie prostokreślnym podzieliwszy 

jeden z jego kątów na dwie równe części, prosta dzieląca po­
dzieli też bok temu kątowi przeciwległy na dwa odcinki ta­
kie, że iloczyn z dwóch innych boków równać się będzie ilo­
czynowi z odcinków powiększonemu drugą potęgą z prostej 
dzielącej.

Niech znowu będzie trójkąt ABC fig. 127, podzieliw­
szy kąt jego B na dwie równo części prostą BD, ta podzieli 
bok AC na dwa odcinki AD i DC. Według twierdzenia ma 
być A B X B C  =  A D X D C -| -B D 2. Aby tej prawdy dowieść, 
opiszmy trójkąt dany kołem, a przedłużywszy prostą dzie­
lącą aż do spotkania się z okręgiem kołu w punkcie E, 
złączmy punkt E z punktem C prostą CE. Trójkąt ABDłXBCE, 
bo z założenia kąt A B D z=E B C , kąt BAC =  BEC mają bo­
wiem każdy za miarę połowę luku BC, przeto i kąt ADB ~BCE. 
Z podobieństwa tych trójkątów mamy AB:B E  =  B D :B C  
skąd A B X B C  := B E X B D . Lecz B E = B D  +  DE 
przeto AB X  BC =r BD ( BD - f  D E ) -  BD2- f  BD X D E .
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Ale BD X  DE — AD X D C  §. 90, więc nareszcie
AB X  BC =  BD2 -(- AD X  DC, co było do dowiedzenia.

§• H3.
O czworokącie w kolo wpisanym czyli antiparallelo- 

gramie, dowiedźmy następujące
T w ie r d z e n ie . Iloczyn z przekątni antiparallelogramu, 

równa się summie iloczynów z boków przeciwległych.
Niech będzie czworokąt wpisany w koło ABCD fig. 128, 

poprowadziwszy przekątnie AC i BD , mamy dowieść, że 
A C X B D  iz ABXCD~|- A D X B C . Na ten koniec weźmy 
luk D E = A B  i poprowadźmy CE przecinającą BD w pun­
kcie F, tedy trójkąt A B C t^ C F D , bo kąt BAC =  BDC ja ­
ko w jednymże odcinku, kąt BCA =: FCD, bo luk E D = A B  
z wykreślenia, przeto i kąt ABC =  CFD. Z podobieństwa 
ich wypada według §. 56

A C : CD =  A B :FD skąd A C X F D  =  A B X C D .
Podobnież trójkąt ACI) BFC, bo kąt CAD =  CBD 

kąt ACD — BCF, każdy bowiem składa się z dwóch kątów 
równych t. j. kąt ACD= ACE-j-ECD a kąt BCF—B C A -f ACE, 
zaś kąt BCA =  E C D , więc kąt ADC — BEC. Z podobień­
stwa znowu tych trójkątów wypada A C :B C = :A D :B F  skąd 
AC X  BF =  BC X  AD. Z dwóch otrzymanych zrównań do­
dając jo  stronami do siebie wypada 
A C (F D + B F ) =  A B X C D - f  BCXAD . A że F D -fB F = B D , 
zatem A C X B D  =  A B X C D + B C X A D , co było do do­
wiedzenia.

§. 114.
T w ie r d z e n ie . W  czworokącie wpisanym, w koło stó- 

sunek przekątni równa się stósunkowi sum iloczynów z boków 
wspierających się na tychże samych końcach przekątni.

Niech będzie czworokąt ABCD fig. poprzedzająca wpi­
sany w koło , poprowadziwszy przekątnie AC i BD przeci­
nające się w punkcie G, potrzeba dowieść że

A C :B D = A B X A D  +  B C X C D :A B X B C -| -A D X C D  
Trójkąt A B G ^ D G C , przeto A B :C D  =  BG:CG 
trójkąt ADGt-^-BCG, zatem A D :B C  =  A G :BG  
Z  obu prroporcyj wypada . . A B X A D : B C X C D  = A G : CG
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a stąd według §. 98. Arytm.
A B X A D + B C X C D :A B X A D  =  A G + C G  : AG, 

czyli, ponieważ AG -f- CG =  A C ,
A C :A G  =  A B X A D + B C X C D :A B X A D ................(1)

Z tychże samych trójkątów wypada: 
z trójkątów ABG i DGC . . . .  A B :C D = A G :D G , 
z trójkątów ADG i BCG . . . .  B C :A D z= B G :A G  
a stąd A B X B C :A D X C D = B G :D G
a następnie A B X B C -| -A D X C D :A B X B C := B G -| -D G :B G ; 
a że B G - f  D G — BD
zatem BD : BG =  A B X B C  +  A D X C D : A B X B C  . . .  (2) 
Wyrazy proporcyj (1) i (2) dzieląc przez siebie, otrzymamy 

A C .A G _ A B X A D + B C X C D .A B X A D _  
B D 'B G “ A B X B C + A D X C D , A B X B C  —

A B X  AD 4- BC X  CD _ AD 
A B X B C + A D X C D * B C  

Ale z podobnych trójkątów AGD i BGC jest
AD AD

A G : BG =  AD : BC czyli

przeto z ostatniój proporcyi wypada
A C _ A B X A D  +  B C X C D  
B D ~ A B X B C  +  A D X C D

czyli A C : B D = A D X  AB-j-BC X  C D : AB X  B C -f AD X  CD
co potrzeba było dowieść.

Uwaga. Dwa ostatnie twierdzenia o czworokącie wpisa­
nym w koło, posłużą nam do znalezienia przekątni z wiado­
mych boków tego czworokąta. Pierwsze nazywają autorowie 
twierdzeniem P t o l e m e u s z a , albowiem wielki ten alexandryj- 
ski astronom około r. 140 po Chr. pierwszy użył tego twier­
dzenia w swem dziele Almagest zwanem do obrachowania 
cięciw w kole różnej wielkości łukom odpowiadających, które 
ułożone w tablice, zastępowały długi czas nasze tablice try­
gonometryczne.

10
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ROZDZIAŁ VII.
Potoierzchnie figur prostokreślnych i ich stosunki między sobą.

§. 115.
Dotąd uważaliśmy dwa gatunki ilości geometrycznych 

t. j. długości czyli linije i kąty czyli różnice ich kierunków. 
W  tym rozdziale zatrudnimy się nowym gatunkiem geometrycz­
nych ilości, mianowicie zaś zatrudnimy się powierzchniami 
figur geometrycznych prostokreślnych. A  jako mierząc dłu­
gości obieraliśmy pewną znaną lub dowolną długość za je ­
dnostkę, do mierzenia zaś wielkości kątów użyliśmy jednostki 
także kątowej, obierając za takową kąt prosty, tak też mie­
rząc powierzchnie, potrzeba będzie obrać na ten cel za je ­
dnostkę ilość tegoż samego gatunku, a zatem pewną powierz­
chnią i z nią wszystkie inne porównać; stąd naturalnie otrzy­
mamy stosunki powierzchni tychże figur wyrażone w liczbach 
a zatem mogące być pod rachunek podciągnione.

Najprościejsza na ten cel powierzchnia nawija nam się 
kwadrat wystawiony na jednostce długości, bo i kąty jego 
będąc wszystkie proste, są jednostkami do mierzenia kątów 
użytemi, i figura ta jest najznajomsza każdemu, oraz naj­
łatwiejsza do nakreślenia. Lecz jak w długościach i kątach, 
tak tóż i tu jednostka, jakiej użyć chcemy do porównania 
z nią wszelkich powierzchni, jest zupełnie dowolną, gdzie­
kolwiek zaś zostawiony nam jest dowolny między wielu 
rzeczami wybór, tam pospolicie najprostszą obieramy, przeto 
i tu nie dla innej przyczyny obrano kwadrat.

Przy mierzeniu powierzchni figur chodzić nam będzie 
jedynie o to, ile razy powierzchnia kwadratu wziętego za 
jednostkę, mieści się w powierzchni danej, lub co na jedno 
wychodzi, ile razy dana powierzchnia większa jest lub mniej­
sza od powierzchni kwadratu na jednostce długości wysta­
wionego. Stąd wypada, że kwadrat porównywać będziemy 
musieli z innemi figurami. A że figury prostokreślne mogą 
być bardzo różnego od kwadratu kształtu, przeto obrać nam 
potrzeba taką drogę postępowania, iżbyśmy zawsze porówny-
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wali figury jak najwięcej kształtem do siebie zbliżone. Dla 
tego, ponieważ podobieństwem najbliższą kwadratu figurą 
jest prostokąt, przedewszystkiem ten wypada nam porównać 
z kwadratem, iżbyśmy w każdym przypadku mieli pewny, 
między temi dwiema figurami zachodzący, stósunek. Nim 
jednak dwie te figury porównamy z sobą, dla łatwiejszego i 
jaśniejszego pojęcia zachodzącego między niemi stósunku, 
porównajmy dwie zupełnie sobie podobne figury, to jest: po­
równajmy dwa prostokąty. Te jeżeli mają podstawy i wy­
sokości równo, muszą koniecznie do siebie przystać i po­
wierzchnie ich są tern samem równe. Jeżeli zaś mają albo 
podstawy albo wysokości różne, Szukajmy ich w tym przy­
padku stósunku.

§• H 6.
T wierdzenie. Dwa prostokąty mające równe wysokości 

a podstawy różne, mają się do siebie w stósunku tychże podstaw.
Niech będą dwa prostokąty ABCD i ABEF jig. 129, 

mając równe wysokości t.j. AB = : CD, a podstawy AD i AF 
różne; mamy dowieść, że powierzchnia ABCD:ABEF=AB: AF. 
W  dowodzeniu tej prawdy natrafić możemy na dwa przypadki, 
mianowicie, że podstawy AB i AF są prostemi spółmiernemi, 
lub niespółmiernemi. Zobaczmy dowód w każdym razie. Je­
żeli AB i AF są spółmierne, niech AH będzie spólną ich 
największą miarą, tudzież niech A D ~ m .A H  zaś AFnm .Ałł, 
tedy A D : AF =  »i.AH :n.AH =:m : n i podstawa pićrwszego 
prostokąta da się podzielić na m części równych, podstawa 
zaś drugiego na n takichże części. Wystawiwszy sobie przez 
te punkta podziału wystawione prostopadłe do podstaw pro­
stokątów, tedy prostokąt pierwszy podzieli się nam , prosto­
kąt zaś drugi na n prostokątów zupełnie między sobą równych, 
gdyż wszystkie mają tak podstawy jako też i wysokości ró­
wne. Prostokąt więc piórwszy zamyka m takich prostokątów, 
jakich drugi zamyka n, a przeto powierzchnia prostokąta 

ABCD: ABEF - m : n .
Łącząc tę proporcyją z powyższą, znajdziemy 

ABCD: ABEF =  A D : AF.
10.
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W  piórwszym więc przypadku twierdzenie tym sposobem jest 
dowiedzione.

Jeżeli podstawy AD i AF rzeczonych prostokątów są 
niespółmierne, uważmy, jak to już w §. 53. uczyniliśmy, że 
proporcyja AB C D : ABEF = A D : AF może tylko być fałszywą 
z powodu czwartego jej wyrazu AF, że ten jest albo za wielki 
albo za mały, aby z wyrazem trzecim AB czynił stosunek 
równy pierwszemu. Przypuśćmy więc, że on jest za wielki 
i że go potrzeba zmniejszyć np. o ilość FL i żc po zmniej­
szeniu proporcyja AB C D : ABEF =  A D : AL jest prawdziwa. 
Podstawę AD prostokąta ABCD podzielmy na tyle części 
równych, na ile się da, byle tylko mniejszych niż ilość FL o 
którą zmniejszyliśmy wyraz czwarty. Niech taką częścią bę­
dzie AO. Wziąwszy tę część w cyrkiel i przenosząc ją  na 
podstawę A F , ponieważ AD i AF są niespółmierne; żaden 
punkt podziału nie padnie na F , lecz albo z jednej albo z 
drugiej strony tego punktu. Przypuśćmy, iż pada jeden z po­
działów między L i F w punkcie M (następny podział padłby 
z prawej strony punktu F). Wyprowadziwszy z punktu M 
prostopadłą MN, ponieważ dwa prostokąty ABCD i ABNM 
mają podstawy AD i AM spółmierne, zatem według pierw­
szej części tego twierdzenia jest A B C D : ABNM A D : AM. 
Porównawszy tę proporcyją z przypuszczoną, ponieważ w nich 
poprzedniki stosunków są równe, więc następniki uczynią 
także proporcyją i będzie

ABEF: ABNM =: A L : AM.
A że w każdój proporcyi czem jest poprzednik względem 
swego następnika w pierwszym, tern też być powinien po­
przednik względem swego następnika w drugim stosunku, 
przeto jako ABEF>ABN M , tak też być powinno A L > A M . 
A gdy naocznie widzimy, że A L < A M , przeto ostatnia pro­
porcyja jest fałszywa. Lecz ona powstała z dwóch innych, 
przeto albo obie, albo przynajmnićj jedna z nich jest fałszywą. 
Druga jest prawdziwą, bo jest dowiedzioną, przeto przypu­
szczona jest fałszywą. Nie jest więc wyraz czwarty AF za 
wielki.
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Przypuściwszy po wtóre, że wyraz AF jest za mały, do­
wiedlibyśmy zupełnie podobnym sposobem fałszywość tego 
przypuszczenia. Skoro więc wyraz czwarty ani jest za wielki 
ani za mały do uczynienia proporcyi, jest więc takim jakim 
być powinien i jest ogólną prawdą, że dwa prostokąty, któ­
rych wysokości są równe, mają się do siebie w stosunku 
swych podstaw.

W niosek 1. Ponieważ z §. 16. wiemy, że którykolwiek 
z boków prostokąta można wziąść za podstawę ,̂ a wtedy bok 
jemu przyległy będzie wysokością prostokąta, przeto jeżeli 
dwa prostokąty mają podstawy równe a wysokości różne, 
wziąwszy te ostatnie za podstawy, dowiedziemy, że dwa 
‘prostokąty mające równe podstawy a wysokości różne, mają 
się do siebie jak też wysokości. Nazwawszy ogólnie powierz­
chnie dwóch prostokótów przez P i  p, ich podstawy przez 
B i ł a  wysokości przez W  i w, mamy 
w przypadku W  — w . . . P : p — B : ó
w przypadku B — ó . . . P :p ~  W : to.

§• 117.
T wierdzenie. Dwa prostokąty mające tak podstawy jako 

i wysokości różne, mają się do siebie w stosunku iloczynów 
z ich podstaw przez icysokości.

Niech będą dwa prostokąty ABCD i abed jig. i30, któ­
rych tak podstawy A D zzB  i ad —  b jako też i wysokości 
A B —W  i ab~w  są różne; potrzeba dowieść, że powierzchnia 
pierwszego do powierzchni drugiego ma się jak B X W :bj<jv. 
Na ten koniec na wysokości AB pierwszego prostokąta ode- 
tnijmy Ab'— ab i poprowadźmy b'c' równoległą do A D ; a 
nazwawszy powierzchnią prostokąta ABCD przez P , prosto­
kąta abed przez p , a nareszcie prostokąta Aó'c'D  przez q, 
będzie według poprzedzającego §.
p : q — b: B bo ich wysokości ab i Aó'są równe z wykreślenia 
g :P== w : W  bo oba stoją na tejże samej podstawie AD



150

składając proporcyje wypada p : P =  J X w :J J X W  co było 
do dowiedzenia.

Nie potrzebuję tu zapewne powtarzać że ilości B , W , 
b, są wyrażone w liczbach, t. j. przez mierzenie tych długości, 
spoiną jednostką, zamienione na ilości krotne czyli stosunki 
do jednostki.

W niosek. Wziąwszy w miejsce prostokąta p , kwadi’at 
abef, będący gatunkiem prostokąta, w Którym niech ab będzie 
=  1, t. j. niech będzie jednostką którą mierzymy B i W , tedy 
nazwawszy powierzchnią tego kwadratu K , według osta­
tniego twierdzenia mamy P : K = B X W B X W : 1X^ 
skąd P = B X W X K
t. j.  powierzchnia prostokąta P jest równa B X W  razy wzię­
temu kwadratowi K. Jeżeli teraz weźmiemy kwadrat K za 
jednostkę do mierzenia powierzchni prostokąta P , znajdzie­
my P =  B X W
t. j. że powierzchnia prostokąta równa się iloczynowi z jego 
podstaioy przez wysokość.

Prawdę tę można naocznie tak okazać: Ponieważ B i 
W  wyrażają liczby, t. j. każda z tych ilości wyraża liczbę 
jednostek długości zawartych tak w podstawie MN jako też 
i w wysokości MP prostokąta jig. 131, przeto przypuściwszy 
że B =  9, W = 4  i zrobiwszy te podziały tak na podstawie 
jako i ■wysokości, jeżeli przez punkta podziałów poprowadzi­
my równoległe do wysokości i podstawy prostokąta, dostrze­
żemy, iż cały prostokąt podzieli się na kwdraty na rzeczo­
nej jednostce długości wystawione, a dla tego między sobą 
równe. Liczba tych kwadratów w przyjętym tu przypadku 
równa się 36 =  9 X 4 ?  t. j. powierzchnia prostokąta równa się 
iloczynowi z dwóch liczb wyrażających długość podstawy i 
długość wysokości zmierzonych przyjętą jednostką długości.

Uwaga. Po dowiedzeniu tego twierdzenia, łatwo zro­
zumiemy iloczyny z prostych o jakich w poprzednim roz­
dziale mówiliśmy. I tak w §. 63 wniosek wysłowimy, że 
w trójkącie prostokątnym spuściwszy prostopadłą z wierz­
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chołka kąta prostego na przeciwprostokątuią, kwadrat z bo­
ku przyległego kątowi prostemu równa się prostokątowi z prze- 
ciwprostokątni i odcinka temuż bokowi przyległego; że kwa­
drat z prostopadłej równa się prostokątowi z odcinków i że 
nareszcie kwadrat na przeciwprostokątni wystawiony, równa 
się summie kwadratów wystawionych na bokach przyległych 
kątowi prostemu. W  §. 90 powiedzieć możemy, że prosto­
kąt wystawiony na częściach jednej, równa się prostokątowi 
wystawionemu na częściach drugiej z cięciw przecinających 
się na powierzchni koła. Kwadrat wystawiony na prostopa­
dłej z któregokolwiek punktu okręgu koła na średnicę spu­
szczonej, równa się prostokątowi ż odcinków średnicy przez 
prostopadłą zrobionych. Również inaczćj wysłowić można 
twierdzenia w §§. 111, 112, 113 i 114 dowiedziono.

§• H 8.
Porównawszy dwa prostokąty z sobą i prostokąt z kwa­

dratem, przystąpmy teraz do figury najbliżej z prostokątem 
spowinowaconej t. j . do równoległoboku i ten porównajmy 
z prostokątem dowodząc następujące

T wierdzenie. Poicierzchnia równoległoboku, równa się 
iloczynowi z jego podstawy przez wysokośó.

Niech będzie równoległobok ABCD fig. 132, którego 
podstawa AD a wysokość prostopadła z któregokolwiek pun­
ktu boku BC na podstawę spuszczona, a zatóm Bó lub Cc. 
Spuściwszy dwie te prostopadłe z końców boku BC na pod­
stawę, z których druga Cc pada na jej przedłużenie, otrzy­
mamy prostokąt óBCc, którego powierzchnia według poprze­
dzającego §. jest zzzbcj^JSb. Ale trójkąt ABó równy trójką­
towi DCc, bo kąty przy B i C są sobie równe §. 14, bok 
AB =  CD, bok B ó = C c  przeto i Ab=Dc  a następnie bc— KD. 
Powierzchnia więc prostokąta óBCc równa się także iloczy­
nowi AD X  Bó. Lecz obie figury t. j. równoległobok i pro­
stokąt mają powierzchnią czyli czworokąt óBCD spoiny i 
jeżeli do tego czworokąta dodamy trójkąt DCc, otrzymujemy 
prostokąt óBCc, jeżeli zaś do tegoż samego czworokąta do­
damy trójkąt ABó — DCc, otrzymujemy równoległobok dany
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AB C D ; skąd wniesiemy, że równoległobok ABCD — prosto­
kątowi óBCc. A że powierzchnia tego ostatniego =  A D X B ó, 
więc i powierzchnia równoległoboku zz A D X B ó , co było do 
dowiedzenia.

W niosek 1. Każdy więc prostokąt równy jest co do 
powierzchni równoległobokowi mającemu z nim tęż samą 
podstawę i wysokość, albo równe podstawie i wysokości 
równoległoboku.

Figury różne kształtem a wszelako równe co do po­
wierzchni, nazywać będziemy równemi co do powierzchni 
(aoquivalentes). W  tym przeto rozdziale będzie mowa o rów­
ności figur o jakiej w §. 21 wspomnieliśmy.

W niosek 2. Z  tego tóż twierdzenia wypływa, że kie­
dy równoległobok równa się co do powierzchni prostokątowi 
mającemu z nim podstawę i wysokość równe, a dwa prosto­
kąty mające równe podstawy, mają się do siebie jak wyso­
kości, mające zaś równe wysokości mają się do siebie w sto­
sunku podstaw, że dwa równołegłoboki mające równe pod­
stawy mają się do siebie również jak ich wysokości; jeżeli 
zaś mają wysokości równo, powierzchnie ich są w stosunku 
podstaw. Nakoniec dwa równołegłoboki mające różne pod­
stawy i wysokości, mają się do siebie jak iloczyny z ich 
podstaw przez wysokości.

§■ H9.
Porównajmy teraz dwa równołegłoboki z sobą co do 

ich powićrzchni.
T wierdzenie. Dwa równołegłoboki mające podstawy rów­

ne i wysokości równe, są sobie równe co do poioierzchni.
Niech będą dwa równołegłoboki ABCD i abed mające 

podstawy równe i wysokości równe; położywszy jeden na 
drugim tak, iżby ich podstawy do siebie przystały, bok prze­
ciwległy podstawie jednego, koniecznie przypadnie na kie­
runek odpowiadającego boku drugiego równoległoboku, z 
powodu że ich wysokości są równe. Co do położenia dwóch 
innych boków, mogą byc trzy przypadki t. j .  albo położony 
równoległobok pokaże się względem drugiego tak jak fig. 133,
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albo tak jak fig. 134, albo nareszcie tak jak fig. 135 przed­
stawia. W  przypadku pierwszym trójkąty BAó i CDc, w 
drugim trójkąty BAC i CDc, a w trzecim nareszcie BAó i 
CDc są sobie równe, dodawszy potem na pierwszej figurze 
do każdego z trójkątów trapez A óC D , na drugiej trójkąt 
ACD, a na trzeciej trójkąt AzD i odejmując trójkąt Cbz, 
wypadną zawsze dwa dane równoległoboki równe.

W niosek. W ięc wszystkie równoległoboki stojące na 
tejże samej podstawie i mające boki przeciwległe podstawie 
na prostej równoległej od tejże podstawy, są sobie równe co 
do powierzchni, bo mają wysokości równe.

§. 120.
T wierdzenie. Powierzchnia trójkąta równa się iloczy­

nowi z podstawy przez połowę jego wysokości.
Niech będzie trójkąt ABC fig. 136, wziąwszy bok AC 

za podstawę i z wierzchołka kąta przeciwległego B spuściw­
szy prostopadłą BD, potrzeba dowieść, że powierzchnia trój­
kąta A B C = A C X a B D . Przez wierzchołek kąta B poprowa­
dziwszy prostą równoległą do AC jako też przez punkt C 
równoległą do AB i te równoległe przedłużywszy aż do ich 
przecięcia się w punkcie E , powiórzchnia równoległoboku 
ABEC =  A C X B D . Ale dany trójkąt ABC =  BCE, bo trzy 
boki jednego równe są trzem bokom drugiego każdy każ­
demu, przeto trójkąt ABC jest połową równoległoboku 
ABEC a następnie i powierzchnia jego będzie

=  ^A C X  BD =  A C X  jjBD co chcieliśmy dowieść.
W niosek 1. Z  tego twierdzenia wypada, że powierz­

chnia trójkąta jest połową powierzchni równoległoboku ma­
jącego z nim podstawę i wysokość równe.

W niosek 2. Dwa trójkąty mające równe podstawy i 
wysokości, są sobie równe co do powierzchni. Wszystkie 
więc trójkąty stojące na tejże samej podstawie i mające swe 
wierzchołki na prostej równoległój od podstawy jak na fig. 
137 widzieć można, są sobie równe co do powiórzchni. Trój­
kąty mające równe wysokości, mają się do siebie jak pod­
stawy; mające zaś równe podstawy, mają się do siebie jak
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wysokości, a nareszcie mające tak podstawy jako też i wy­
sokości różne, są w stosunku iloczynów z podstaw przez 
wysokości; połowy bówiem dwóch jakichkolwiek ilości, zaw­
sze są w tymże samym stosunku, w jakim się całości znaj­
dowały.

Uwaga. Ponieważ wyrażenie powierzchni trójkąta moż­
na trojako napisać t. j. £ A C X B D , albo A C X £ B D  albo

. A C X B D  .. . . .  , .nareszcie -------- --------- , zatem wysłowienia: powierzchnia

trójkąta równa się iloczynowi z połowy jego podstawy przez 
luysolcośó, albo iloczynowi z podstawy przez połowę wysokości 
lub nareszcie połowie iloczynu z podstawy przez wysokośó, są 
równoznaczne.

§. 121.
TWIERDZENIE. Powiórzchnie dwóch trójkątów podob­

nych, mają się do siebie jak kwadraty z odpowiadających 
boków.

Jeżeli bowiem są dwa trójkąty ABC i abc fig. 74 po­
dobne, tedy z §. 64 wiadomo, że ich wysokości BD i bd 
mają się do siebie jak podstawy AC i ac, czyli że jest 
B D : bd — AC : ac. Rozmnożywszy w tej proporcyi poprze­
dniki przez AC a następniki przez ac a potem wyrazy pierw­
szego stosunku podzieliwszy przez 2, otrzymamy

T B D X A C  Lecz --------— — ’BD X  AC _ ó d X   j y j 2 — a 
ac . : powierz-

N / CtCcłrni trójkąta ABC, a ---------- =  powiórzclini trójkąta abc §.
$ ——2 —2

poprzedzający, zatem trójkąt A B C : abc = A C  : ac Ale z po­
wodu podobieństwa trójkątów jest A C : ac =: A B : aór:BC :bc, 
według zaś własności proporcyi geometrycznćj jest 
AĆ2 : ac2= A B 2 : aó2 =  BĆ2 bc“
A B C : abc = A C "  : ac'1 = A B " : ab*

przeto nareszcie trójkąt 
------2 '— 2:B C  : bc , t. j .  powierz­

chnie trójkątów podobnych, mają się do siebie w stosunku 
kwadratów z odpowiadających boków.

Ponieważ z pierwszej proporcyi wypada także 
B D 2: bd1 — AC2 : ac2 przeto też ABC:aóc =  BD 2: bd2 t. j.
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•powierzchnie trójkątów podobnych, mają się także jak kwa­
draty z ich wysokości.

W niosek. Ponieważ trójkąt jest połową równoległobo- 
ku mającego z nim podstawę i wysokość równe, zatem rów­
nież powierzchnie dwóch równoległoboków podobnych, mają 
się do siebie jak kwadraty z boków odpowiadających.

§. 122.
T wierdzenie. Powierzchnie dwóch trójkątów mających 

jeden kąt spoiny, albo mających po jednym kącie równym, są 
w stosunku iloczynów z boków kąt ten obejmujących.

Niech będą dwa trójkąty ABC i ADE mające kąt spoi­
ny A jig. 138, punKta B i E połączywszy prostą BE, dwa 
trójkąty ABC i ABE uważać można jako stojące, piemszy 
na podstawie AC, drugi na AE, mające w punkcie B wierz­
chołek spólny, więc i wysokości mają równe; mają się zatćm 
do siebie jak podstawy, czyli że jest trójkąt ABC: ABE r ; 
AC :AE. Podobnież trójkąty ABE i ADE, można uważać 
jako stojące pierwszy na podstawie AB, drugi na podstawie 
AD i mające wierzchołek spólny w punkcie E , więc znowu 
mają wysokości równe, mają się więc do siebie jak podsta­
wy, czyli że trójkąt A B E:AD E =  A B :A D .

Mnożąc te dwie proporcyje przez siebie i skracając 
pierwszy stosunek, znajdziemy trójkąt 
ABC:AD E rz A B X A C : A E X A D  co było do dowiedzenia.

W niosek. Dwa trójkąty ABC i ADE byłyby równe, 
gdyby iloczyny AB«XAC i A E X A I )  były równe, czyli 
gdyby było A B X  AC zz AE X  AD albo raczej A B :A D  =  
AE : AC. Ale ta proporcyja jest prawdziwa, jeżeli prosta DC 
jest równoległą do BE, przeto i trójkąty ABC i ADE w tym 
tylko przypadku są równe.

§. 123.
T wierdzenie. Powierzchnia trapezu równa się iloczy­

nowi z połowy summy jego boków równoległych przez wysokość.
Niech będzie trapez ABCD jig. 139, wysokość jego BE 

lub DF. Poprowadziwszy przekątnię BD, podzielimy go na 
dwa trójkąty ABD i BCD mające podstawy AD i BC, a wy­
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sokości równe. Powiórzchnia trójkąta A B D = J A D X B E , 
trójkąta zaś BCD =  £B C X E E  — ĄBC X  BE zatóm powiórz­
chnia trapezu =: ABD -j-BCD ~  £ (AD -{- BC)BE r :

X B E  jak twierdzono. 
i

W niosek. Jeden z boków nierównolegiych trapezu np. 
CD podzieliwszy w punkcie G na dwie równe części i przez 
ten punkt G poprowadziwszy dwie równoległe HK i GL, 
pierwszą do AB aż do zamknięcia równoległoboku ABHK, 
a drugą aż do przecięcia się z bokiem AB, ponieważ LGr= 
BH =  BC -j-CII, tudzież LG — A K = A D — DK, przeto dodaw­
szy te zrównania stronami do siebie, otrzymamy 2LG=r 
A D -f-B C -f-C H  —  DK. Lecz dwa trójkąty DGK i CGH 
przystają do siebie, bo CG =  DG z wykreślenia, kąty przy 
G równe jako wierzchołkowe, kąt KDG rr GCH jako naprze- 
mianległe wewnętrzne; z ich przeto przystania wnosimy, że 

D K = C H , a następnie 2LG =  AD-|-BC, skąd

AD-j-BC^ Tym sposobem będzie powierzchnia trape-
2

zu ~  L G X B E  t. j. równa się ta powierzchnia iloczynowi 
z prostej łączącej środki boków nierównołegłyćh trapezu przez 
jego wysokość. A lbo : powierzchnia trapezu równa się po­
wierzchni prostokąta lub równoległoboku mającego za podsta­
wę prostą średnią arytmetyczną między bokami równoległemi 
a za wysokość wysokość trapezu.

Wyrażenie powierzchni trapezu ^  X ^ E  moż­

na jeszcze i tak wysłowió: powierzchnia trapezu równa się 
powierzchni trójkąta mającego za podstawę summę boków rów­
noległych trapezu, a wysokość równą jego wysokości.

§• 124.
Chcąc znaleść powierzchnią jakiegokolwiek wielokąta 

prostokreślnego, dzielimy go zwyczajnie na trójkąty przez 
prowadzenie przekątni, lub na trapezy, lub nareszcie na trójką­
ty i trapezy razem; a obrachowawszy powiórzchnie wszyst­
kich części, summa ich będzie powiórzchnią wielokąta.
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Jeżeli wielokąt jest foremny, powierzchnią jego daleko 
łatwiej obrachowaó można, łatwo bowiem dowieść następujące

T wierdzenie. Powierzchnia wielokąta foremnego rów­
na się iloczynowi z jego obwodu przez połowę prostopadłej ze 
środka wielokąta na którykolwiek bok spuszczonej.

Niech np. będzie sześciokąt foremny ABCDEF fig. 117 
środek jego S połączywszy ze wszystkiemi wierzchołkami 
kątów, podzieli on się tym sposobem na tyle trójkątów mię­
dzy sobą równych, ile tenże wielokąt ma boków. Powierz­
chnia trójkąta ASB — A B X 4Sffl; a że powierzchnia każde­
go innego trójkąta równa się temuż samemu iloczynowi, z po­
wodu, że A B = B C  =  CD=z i t. d. jako tćż Sa' =  Sb'=Sc'=: 
i t. d. §. 103, zatem summa tych trójkątów czyli powierz­
chnia wielokąta, równa się iloczynowi A B X  jSa' wziętemu 
tyle razy ile wielokąt ma boków. Nazwawszy więc w ogól­
ności liczbę boków wielokąta przez n, będzie powierzchnia 
wielokąta z : m.A B X  JS«'. Lecz ?i.AB stanowi obwód wie­
lokąta który wyraziwszy ogólnie głoską O, tak że 0 = m.AB, 
tudzież prostopadłą S«' nazwawszy r, będzie nareszcie po­
wierzchnia wielokąta P r O X j * ' )  co było do dowiedzenia. 
Powierzchnia wielokąta foremnego równa się jeszcze prosto­
kątowi lub równoległobokowi mającemu za podstawę obwód 
wielokąta a za wysokość połowę prostopadłej ze środka na 
bok wielokąta spuszczonćj; albo mającemu za podstawę po­
łowę obwodu a za wysokość rzeczoną prostopadłą. Albo po- 
wićrzchnia wielokąta foremnego równa się powierzchni trój­
kąta, mającego za podstawę obwód wielokąta a za wysokość 
prostopadłą, o której tu mowa.

§. 125.
T wierdzenie. Powiśrzchnie dwóch wielokątów podob­

nych mają się do siebie w stosunku kwadratów z boków od­
powiadających.

Niech będą dwa wielokąty np. dwa pięciokąty ABCDE 
i abcde jig. MO podobne; ponieważ takie wielokąty mogą być 
rozebrane na jednakową liczbę trójkątów podobnych i podob­
nie ułożonych §. 65 przez prowadzenie przekątni, przeto we­
dług §. 121 mamy:
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ponieważ trójkąt ABCt^aóc . . ABC:aóc—AC : ac 
podobnież ACD<s^acd . . ACD:acafc=AC“:ac —AD -̂.ad1 
nareszcie AED^^-.aed . . AED:ae<fcrAD~ : ad
skąd wypada że A B C : abc —  ACD :acd ~ A E D  :ne^ 
albo według własności stosunków równych §. 97 Arytm.

ABC -f- ACD -f- A E D : a b c a e d a e d  —  A B C : abc —
A C D : acc£=A E D : aed.

Ale pierwsza summa stanowi powierzchnią wielokąta
ABCDE, druga zaś powierzchnią wielokąta abcde, przeto

--- 2 ---2powierzchnia ABCDE : abcde —  A B C :nic —  AC : ac —  --- 2 ---2 ----2 — 2AB : ab =  BC : bc~ — i t. d. co mieliśmy dowieść.
W niosek. W  §. 66 dowiedliśmy, że proste jednakowo 

w podobnych wielokątach prowadzone są w stosunku dwóch 
odpowiadających boków, przeto łatwo z ostatniego twierdze­
nia wniesiemy, że 'powierzchnie wielokątów podobnych, mają 
des takie do siebie w stósunku kwadratów z prostych jednym- 
że sposobem w tych wielokątach poprowadzonych.

§. 126.
Zobaczeiny teraz jak wyrażenie kwadrat używane w Aryt­

metyce zamiast druga potęga, zaczerpniętćm zostało z Geome- 
tryi i jak trzy prawdy tamże w §. 8 , dowiedzione to jest 

(a-\-b)  ̂— a'1 ‘2ab-\-b‘1, (a —  bj^— a2 — 2ab-\-b* 
\(a-\-b)(a — b) — a- —  b- odpowiadają zupełnie wykreśleniu 
geometrycznemu.

T wierdzenie. Kwadrat wystaiciony na linii będącej 
summą dioóch innych, składa się z kwadratu pierwszej, więcej 
kwadratem z linii drugiej i więcej dwa razy wziętym pro­
stokątem wystawionym na tychże dwóch prostych.

Niech prosta AC będzie summą dwóch innych AB i BC 
fig. 141, wystawiwszy na niej kwadrat ACED, weźmy AG— AB 
i poprowadźmy GI równoległą do AC, tudzież BF równole­
głą do AD. Tym sposobem kwadrat ACED podzielony bę­
dzie na cztśry części, t. j. ABHG, EFHI, DGHF i BCIH. 
Pierwsza z tych części jest kwadratem wystawionym na AB 
czyli na prostćj pierwszej, bo A G = A B ; druga jest kwadra­
tem wystawionym na prostój BC, gdyż
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AD =  A C , AG — A B , zatem AD — AG =z AC — AB czyli 
D G = B C , tudzież H IrzBC. Trzecia część DGHF jest pro­
stokątem mającym podstawę G H =A B  a wysokość D G ~  BC, 
przeto jego powierzchnia AB><BC. Ostatnia część t. j. 
BCIH jest także prostokątem mającym dwa wymiary*) t. j. 
podstawę BH =  A G = A B  a wysokość BC, przeto również 
jego powierzchnia —  AB X  BC; więc nareszcie kwadrat 
ACED =  A B ' -j— BC2 -j- 2A B X B C  co inaczej tak piszemy 

(A B + B C )2=  AB 2 +  BC2 +  2A B X B C .
Położywszy AB =  a, BC b, czyli zamieniwszy dłu­

gości na liczby, mieć będziemy pierwszą z założonych prawd 
dowiedzioną.

§• 127.
T w ie r d z e n ie . Na prostej będącej różnicą dwóch innych, 

wystawiwszy kicadrat, ten składa się z kwadratu na pierw­
szej, więcej kwadratem na drugiej prostej wystawionym, mniej 
dworna prostokątami z pierwszej przez drugą prostą.

Niech prosta AB będzie różnicą dwóch innych AC i 
BC tak, że AB =  AC — BC fig. 142, wystawiwszy na niej 
kwadrat, potrzeba dowieść, że

(AC — BC)2= A C 2 - f  BC2 —  2AC X  BC
Na prostej AC wystawmy kwadrat ACDE, weźmy 

AF =: AB; przez punkt F  poprowadźmy równoległą FH do 
AC, a przez punkt B równoległą BI do A E ; nareszcie na 
prostej EF wystawmy kwadrat EFLK. Prostokąt LGIK ma 
za podstawę LG =  AC, bo F G = :A B , F L = F E = B C , a za 
wysokość FE=iBC> jego więc powierzchnia = A C X B C . 
Podobnież prostokąt BCDI ma za podstawę BI ~  AC a za 
wysokość BC , przeto jego powierzchnia ~ A C X B C . Cała 
figura ACDKLFA składa się jak widzimy raz z dwóch kwa­

*) Wymiarami (dimensiones) prostokąta nazywamy jego podstawą i wy- 
sokość czyli długość i szerokość i dla tego to wymierzanie powierz­
chni nazywamy często Geometryją w dwóch wymiarach, wymierzanie 
zaś objętości ciał Geometryją iv trzech wymiarach, bo jak to na swćra 
miejscu zobaczymy, do wymierzenia każdego ciała użyć jeszcze musi­
my trzeciego wymiaru, t. j. grubości, lub głębokości, lub wysokości.
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dratów t. j. ACDE i E FLK , drugi raz składa się z trzech 
części t. j. z kwadratu ABGF— A B 2, prostokąta BCDI i pro­
stokąta GIKL, które prostokąty są sobie równe, bo każdy 
z nich = A C X B C , przeto kiedy

A C D K L F A -A C D E -fE F L K = A C 2+ B C 2 tako też 
A C D K L F A =A B G F +B C D I-f GIKLzz A B 2 + A C X B C +  

A C X B C = A B 2 ;-)-2ACXBC Jest teżAB 2+ 2 A C x B C  — 
A C 2+ B C  2, skąd A B 2= A C 2+ B C 2—  2ACXBC; a że 

A B ~ A C — BC, więc nareszcie 
(AC— BC)2= A C 2+ B C 2—  2ACXBC jak założyliśmy.

Położywszy tu znowu AC zza, B C ~  b, mieć będziemy 
drugą z arytmetycznych prawd dowiedzioną.

§. 128.
T w ie r d z e n ie . Prostokąt wystawiony na summie i ró­

żnicy dwóch prostych równa się różnicy kwadratów wystaioio- 
nych na każdej z tych prostych.

Niechże będą dwie proste AB i BC Jig. 143, na prze­
dłużeniu prostćj AB weźmy B D zzB C , tedy prosta 
AD =  A B -j-B C , zaś A C = A B — BC, mamy dowieść że 
A D X A C  czyli (AB -j-BC) (AB— BC) =  AB —  BC ,

Na prostych AB i AC wystawmy kwadraty ABEF i 
ACGH, tudzież z punktu D poprowadźmy równoległą do AH 
aż do przecięcia się z przedłużoną HG w punkcie I; tedy 
prostokąt ADIII ma za podstawę AD =  AB -j-BC a za wy­
sokość A H rzA C zz  AB — BC, jego więc powierzchnia równa 
się (AB-j-BC)(AB  —  BC). Ale ten prostokąt uważać mo­
żna jako złożony z dwóch innych ABKH i BDIK to jest 
(AB -j- BC)(AB —  BC) z ; ABKH +  B D IK ; z tych ostatni czy­
li BDIK =  HGLF, gdyż B K = A H  =  IIG, a BD =  BC =  HF, 
przeto (AB - f  BC )(AB — BC) =  ABKH - f  HGLF.
Lecz dwa prostokąty ABKH i HGLF składają kwadrat 
ABEF skoro od niego odejmiemy GKEL, która figura jest 
kwadratem z BC, gdyż GK ~  B C , GL zz IIE — BC, więc 
nareszcie

(AB +  BC) (AB —  BC) =  ABEF —  GKEL =  AB 2 —  BC2
jak twierdzono.
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Położywszy tu A B rra , BC =  b, bodziemy mieć trzecią 
i ostatnią prawdę dowiedzioną.

§. 129.
Dowiedźmy też tu ściśle geometrycznie prawdy w §. 63 

wniosek innym sposobem dowiedzionćj.
T w ie r d z e n ie . W  trójkącie prostokątnymi kwadrat wy­

stawiony na przeciwprostokątni, równa się summie dwóch kwa­
dratów wystawionych na Lokach przyległych kątowi prostemu.

Niech będzie trójkąt ABC prostokątny przy B fig. 144, 
wystawiwszy na przeciwprostokątni AC kwadrat ACIH tu­
dzież na bokach AB i BC przyległych kątowi prostemu kwa­
draty ABED i BCGF, potrzeba dowieść, że kwadrat ACIH— 
ABED-j-BCGF czyli jak zwyczajnie piszemyAC "= A B '-| -B C 2’ 
Na dowiedzenie tej prawdy, punkta D i C , A  i G, B i  II, 
B i I połączmy prostemi, tedy kwadrat ABED z trójkątem 
ACD uważać można jako stojące na jednejże podstawie AD, 
przeto z wierzchołka kąta C przeciwległego podstawie w trój­
kącie ACD spuściwszy prostopadłą na tęż podstawę, ta pa­
dnie na jej przedłużenie w punkcie K i będzie CK n  AB, bo 
EC równoległa do DK; przeto trójkąt ACD z kwadratem 
ABED mają równe podstawy i wysokości; dlaczego według 
§. 120 powierzchnia tego trójkąta jest połową powierzchni 
kwadratu ABDE. Podobnież: uważając trójkąt ABH z pro­
stokątem ALMII jako stojące na podstawie A li, wysokości 
ich są także równe bo BM jest równoległa do podstawy 
i prostopadła czyli wysokość trójkąta BP —  A L ; przeto ró­
wnież powierzchnia trójkąta ABH jest połową powierzchni 
prostokąta ALMH. Ale trójkąt ACD przystaje do trójkąta 
ABH według §. 23, bo AD i AC w trójkącie ACD równe są 
AB i AH w trójkącie ABH, tudzież kąt DAC zawarty mię­
dzy pierwszemi, równy jest kątowi BAH zawartemu między 
drugiemi bokami, gdyż każdy z nich złożony jest z kąta pro­
stego DAB, LAH i kąta BAC obu kątom spólnego; powierz­
chnie przeto tych trójkątów są równe. A że ACD jest po­
łową kwadratu ABED, a ABH połową prostokąta ALMH, 
przeto kiedy połowy są sobie rówme, i całości muszą być

11
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równe; powierzchnia zatóm kwadratu ABED równa się po­
wierzchni prostokąta ALMH. Zupełnie tym samym sposobem 
dowiedziemy, że powierzchnia kwadratu BCGE równa się po­
wierzchni prostokąta CLMI. A  kiedy summa obu prostoką­
tów składa kwadrat ACIH, zatem prawdą jest, że kwadrat 
ACIH =  ABED -) -BCGF czyli raczej AC* — A B 2 -j-BC*, jak 
zp łożyliśmy.

W n io s e k  1. Z ostatniego zrównania wypada A B 2 =  
A Ć ” — BCV, jako też B C 'r=A C * — A B 2, t. j. żje w trójką­
cie prostokątnym kwadrat z boku przyległego kątowi proste­
mu, równa się kwadratowi z przeciwprostokątni zmniejszonemu 
kwadratem z drugiego boku przyległego kątowi prostemu.

W n io s e k  2. Poprowadziwszy w kwadracie ABCD prze­
kątnią AC fig. 145, ta podzieli kwadrat na dwa trójkąty prostokąt­
ne i równoramienne ABC i ADC, przeto AC 2 =  AB '  -f- BC 2 =  
2A B ', skąd wniesiemy, że kwadrat wystawiony na przekątni 
kwadratu, jest równy dwa razy wziętemu kwadratowi z boku 
danego kwadratu; co też i naocznie pokazać można wykre­
śliwszy na przekątni kwadrat EEGII i prowadząc drugą prze­
kątnią BD w kwadracie danym; wszystkie bowiem tym spo­
sobem uformowane trójkąty są między sobą równe, a wido­
cznie kwadrat ABCD zamyka ich cztery, kwadrat zaś EFGH 
zamyka tych trójkątów ośm, zatem kwadrat drugi jest dwa 
razy większy od pierwszego.

Rozłożywszy powyższe zrównanie na proporcyją, będzie 
A C * : A B 2 = 2 : 1 ,  a z własności proporcyi geometrycznej wy­
pada A C :A B  =  \C2:1. A  źe \^2 jest liczbą niewymierną, 
§. 43. Arytrn., zatem wniesiemy z tej proporcyi, że dwie pro­
ste AC i AB t. j. przekątnia i bok kwadratu są dwiema pro- 
stemi niespółmiernemi.

W n io s e k  3. Dowiedliśmy, że kwadrat ABED ̂ <7. 144 ró­
wna się prostokątowi ALMH, ten zaś prostokąt z kwadratem 
ACIII mają wysokość AH spólną, przeto ich powierzchnie 
mają się do siebie, jak podstawy t. j. kwadrat ACIH: pro­
stokąta A L M H =  A C : AL. A że w miejsce prostokąta ALMH 
można wziąść jemu równy kwadrat ABED, przeto
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ACIH: ABED =  A C : AL albo raczój AC* : AB 2 =  A C : AL 
i podobnież

ACIH:BCGF =  A C :L C  . . . .  A Ć 2 :B C 2 = A C :L C
t. j. kioadrat z przeciwprostokątni ma się do kwadratu z je­
dnego z przyległych boków kątowi prostemu, jak się ma przeciw- 
prostokątnia do odcinka przyległego temu bokowi.

W n io s e k  4. Z poprzedzającego twierdzenia wypada 
także: ponieważ dwa ptostokąty ALMH i LCIM mają jedna­
kowe podstawy t. j. LM, ich więc powierzchnie mają się do 
siebie jak wysokości AL i LC. A że te prostokąty równają 
się kwadratom ABED i BCGF, więc i powierzchnie dwóch 
ostatnich kwadratów mają się do siebie jak AL i LC t. j. 
AB E D : BCGF =  A L : LC czyli raczej A B 2 :B C 2 =  A L :L C , 
co wyrażając słowy znaczy: iż kwadraty z przyległych boków 
kątowi prostemu w trójkącie prostokątnym, mają się do siebie 
jak odcinki przeciwprostokątni przyległe tym&e bokom.

W n io se k  5. Dowiedliśmy w §. 125, że powierzchnie 
dwóch wielokątów podobnych mają się do siebie jak kwa­
draty z boków odpowiadających, przeto wystawiwszy na trzech 
bokach trójkąta prostokątnego wielokąty podobne, wielokąt 
wystawiony na przeciwprostokątni, równa się summie wielo­
kątów wystawionych na bokach przyległych kątowi prostemu. 
Nazwawszy bowiem powierzchnie tych trzech wielokątów przez 
M, N, P, gdzie P jest wielokątem na przeciwprostokątni, po­
nieważ AB, BC i AC są trzema bokami odpowiadającemi 
sobie w wielokątach podobnych, tedy M :N  — A B ' :B C ' skąd 
M +  N :M = A B 2+ B C 2 :A B \  Ale także M : P =  AB 2 : AC2 ,
przeto łącząc te dwie proporeyje znajdziemy:
M - f  N :P = A B 2 + B C 2 :A C #;a ż e  A B 2 + B C 2 =  A Ć 2, więc 
tóż M -f-N = P . Z proporcyi M :P  =  A B 2 : A C 2 wypada tak­
że P —  M : M = A C 2 —  A B 2 : AB2. Ale I I :N = A B 2 : BC2, prze­
to P —  M :N = A C 2— AB 2;B C '. A że według wniosku 1. 
AC2— A B '= B C 2, zatem również P —  Mr= N t. j. wielokąt 
N jest różnicą powierzchni wielokątów P i M.

Uwaga 1. Ostatnie twierdzenie nosi nazwę PiTAGOKESA, 
ten bowiem wielki filozof i geometra w szóstym przed Chr.

11.
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wieku żyjący, takowe miał wynaleźć; a jakkolwiek wszystkie 
twierdzenia Geometryi są ważne, bo jedna prawda na dru- 
gićj spoczywa, to przecież P itaojoresa twierdzenie w całej 
Geometryi jest może najważniejsze z powodu następstw, któ­
re z niego wypływają.

Uwaga 2. Porównawszy to twierdzenie z twierdzeniem 
w §. 63 dowiedzionem, przekonamy się, że jest zupełnie tern 
samem, co nam posłużyć może za cechę jego rzetelności, 
dwiema albowiem całkiem różnemi drogami przychodzimy do 
jednych i tychże samych prawd. Wypadki tu otrzymane z uwa­
żania powierzchni będąc zupełnie zgodnemi z wypadkami 
w §. 63 dowodzą nam tej prawdy, że równość kwadratu z prze- 
ciwprostokątni dwom kwadratom z przyległych boków kątowi 
prostemu w trójkącie prostokątnym, jest właściwie następ­
stwem proporcyjonalności boków w trójkątach podobnych. 
I ta też okoliczność jest godna uwagi, iż wnioskując z jakie­
go twierdzenia lub z kilku twierdzeń, natrafiamy często na 
prawdy już innym sposobem dowiedzione. To też jest zaiste 
najwybitniejszą cechą pewności prawd geometrycznych, że 
łącząc je z sobą w jakikolwiek sposób, byle tylko rozumo­
wania nasze oparte były na pewnych, już dowiedzionych lub 
skądinąd wiadomych zasadach, dochodzimy zawsze do wy­
padków prawdziwych. Inaczej, gdyby prawdy geometryczne 
podległe były najmniejszej niepewności, przez łączenie ich 
z sobą na wyprowadzenie innej prawdy, małe nawet błędy 
w jeden wniosek nagromadzone, okazałyby błąd widoczny, 
a najpiękniejsza zgoda między rzeczonemi prawdami zamie­
niłaby się w pewne chaos wyjątków i wyjąteczków, ograni­
czeń, uwag, dodatków i t. d. zgoła zamieniłaby się w budo­
wę, którąby lada wiatr w gruzy mógł zamienić.

§. 130.
T w ie r d z e n ie . W  trójkącie prostokreślnym spuściwszy 

prostopadłą z wierzchołka któregokolwiek kąta na bok prze­
ciwległy, kioadrat z boku przeciwległego kątowi ostremu ró­
wna się summie kwadratów z dicóch innych, zmniejszonej dum-
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ma prostokątami z boku na który prostopadła pada, przez od­
cinek przyległy kątowi ostremu o którym mowa.

Niecli będzie trójkąt ABC fig. 146, w którym kąt A 
jest ostry; z wierzchołka kąta B spuściwszy prostopadłą BD 
do AC, ta jak wiadomo paść może wewnątrz albo zewnątrz 
trójkąta ABC, według tego jak kąt C jest ostrym fig. a, lub 
rozwartym fig. b. Jeżeli pada wewnątrz jak na fig. a, tedy 
ponieważ DC AC —  AD , a według §. 127 mamy

DC" =  (AC —  AD) - — A C 2 - f  A D 2 —  2AC X  A D , 
dodawszy z obu stron tego zrównania B D ', będzie

D C 2 + B D 2= A C 2 +  A D 2 + B D 5 - _ 2 Ą C X A p .
Lecz D C 2 -j-B D 2 = B C 2, tudzież A D 2 - f  BD 2 =  AB2, za­
tem BĆ2 =  A C " -j- A B '  —  2AC X  AD, jak twierdzono.

Gdybyśmy zamiast A  uważali kąt ostry C, tedy zupeł­
nie tym samym sposobem znajdziemy

A B 2 =  A C 2 -(-"BĆ2 — 2 A C X D C .
Jeżeli prostopadła pada zewnątrz trójkąta jak na fig. b, 

mamy również CD =  A D —  AC, a następnie według przytoczo­
nego wyżej §. C D '= (A D — A C )2= A D 2 + A C 2— 2A C X A D ; 
a dodawszy podobnież po obu stronach B D ', będzie 
C D ' -|-BD' zr B D ' -f-A D '-| -A Ć 2 — 2 A C X  AD. Ale znowu 
CD - f -B D '—  BC i B D '-| -A D '=  AB 2 według §. poprze­
dzającego, przeto zupełnie jak wyżej jest

BC2 =  AB 2 -f-A C 2 —  2 A C X  AD.
§. 131.

T w ie r d z e n ie . W  trójkącie rozwartokątnym, kwadrat 
wystawiony na boku przeciioległym kątowi rozwartemu jest 
mniejszy niż summa kwadratów z boków tenże kąt obejmują­
cych ; a spuściwszy z jednego z kątów ostrych prostopadłą na 
bok przeciwległy, przewyżka ta róumaó się będzie prostokąto- 
ivi z boku, na który prostopadła pada, przez odcinek przy­
legły kątowi rozwartemu.

Niech będzie trójkąt ABC fig. 147 rozwartokątny przy 
A, z wierzchołka kąta B spuściwszy prostopadłą BD na bok 
AC, ta już nie może paść wewnątrz ale zewnątrz trójkąta
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§. 42 d), mamy dowieść, że BC" =: A B ' -)- AC 5-f-2A C X A D . 
Ponieważ CD == AC -f- AD , więc według §. 126 jest 
ĆDa = (A C  - f  AD)2=z AC* +  A D 2 +  2AC X  AD. Dodawszy 
po obu stronach B D 2 i uważając, że CD 2 B D '  rxBC2, tu­
dzież A D '  -f-B D " -n A B ', otrzymamy nareszcie 
BC2 =  I c 5 +  A B ' +  2 A C X A D  CO założyliśmy.*)

Uwaga. Porównawszy z sobą trzy ostatnie twierdze­
nia dostrzeżemy, że muszą być wypływem jednego ogólnego, 
które tćż w Trygonometryi poznamy. Bzeczywiście jedno 
z dwóch ostatnich jest ogólniejszem niż pierwsze, gdyż to osta­
tnie z jednego z pierwszych wyprowadzonem być może. Przy­
puściwszy bowiem, że kąt A jest prosty, prostopadła BD zmie­
sza się z bokiem BA i odcinek AD stanie się zero, a wtedy 
iloczyn 2 A C X A D  =  0 i wypadnie BC* =  A C ! -f- AB" jak 
w pierwszem z rzeczonych twierdzeń. Przekonamy się ró­
wnież, że tylko w trójkącie prostokątnym summa kwadratów 
z dwóch boków jest równa kwadratowi z boku trzeciego; 
w razie bowiem, że kąt zawarty między temi dwoma bokami 
jest ostry, rzeczona summa jest większa, jeżeli zaś tenże kąt 
jest rozwarty, jest mniejsza niż kwadrat z boku przeciwległego.

§. 132.
T w ie r d z e n ie . W trójkącie prostokróślnym podzieliwszy 

jeden z jego bokóto na dwie części równe i punkt podziału 
złączywszy prostą z wierzchołkiem kąta przeciwległego, summa 
kwadratóio z dwóch innych boków, równa się podwójnemu kwa­
dratowi z prostej dzielącej, więcej podwójnym kwadratem z po­
łowy podzielonego boku.

Niech będzie trójkąt ABC fig. 148, podzieliwszy bok je ­
go AC na dwie równe części w punkcie D i tenże punkt 
złączywszy z wierzchołkiem kąta B prostą BD, potrzeba do­
wieść, że A B 2 -}-B C " = 2 A D "  -j-2B D ". Na ten koniec spu­

*) Dwa ostatnie twierdzenia można także całkiem geometrycznie do­
wieść nie używając rachunku, jak to w czasowem piśmie przez Gru- 
nekta w Greifswald pod tytułem „Archw der Mathematik und Phy- 
,iik“ wydawanem, w Tomie 23 uczyniłem.
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ściwszy prostopadłą BE do AC, według dwóch poprzedzają­
cych twierdzeń mamy
w trójkącie A B D .....  AB 2 =  BD 2 -j- A D 2 —  2A D X D E ,
w trójkącie zaś B D C   BC2 =  BD 2 +  DC2 +  2DC X D E ,
albo, ponieważ D C = A D ,

BC2 =  BD 2 - f  A D 2 - f  2AD X  DE
Dodając pierwsze zrównanie z trzecióm, znajdziemy 

A B 2 -f-B Ć 2 =  2BD2 +  2 A D 2 
co było do dowiedzenia.

W niosek. W  równoległoboku lub prostokącie, przeką­
tnie dzielą się wzajemnie na dwie części równe, przeto fig. 149 

A B 2 -f- BC2 =  2AE2 - f  2BE2
Jako tćż A D 2 - f  CD2 =  2AE2 + 2DE2______________
skąd A B ^ B C 2^ - CD2 +  A D 2 z= 4AE2 -j-4 B E 2 
Lecz 4AE2 =  2A E X  2AE =  AC X A C = A C 2> 
jako też 4BE2 =  2B E X 2B E = B D X B D  =  BD a* 
przeto AB* -j- BC2 -|- CD ' -j- A D 2 =  A C " -f- BD 2 t. j . summa 
kwadratów wystawionych na czterech bokach równoległoboku 
równa się dwom kwadratom wystawionym na przekątniach.

§ .  1 3 3 .

Twierdzenie. W  trójkącie prostokreślnym wystawiwszy 
na dwóch jego bokach równoległobok i jakiekoliciek i boki ich 
równoległe do bokóio trójkąta przedłużywszy aż do przecięcia 
się z sobą, potem złączywszy ten punkt przecięcia się z najbliż­
szym wierzchołkiem kąta w trójkącie danym prostą i nakoniec 
wystawiwszy na trzecim boku trójkąta równoległobok, dając 
mu za drugi bok przyległy owę prostą równolegle do niej po­
łożony, summa dwóch pierwszych równoległoboków równa się 
trzeciemu.

Jeżeli w trójkącie ABC fig. 150 na bokach AB i BC 
wystawimy dwa jakiekolwiek równoległoboki lub prostokąty, 
lub nareszcie kwadraty AFGB i BCDE, boki ich FG i DE 
przedłużymy aż do przecięcia się w punkcie O, punkt ten 
złączymy z wierzchołkiem najbliższego kąta B prostą OB, a 
nareszcie na trzecim boku AC wystawimy równoległobok 
ACIH mający za drugi bok przyległy AH:=OB i równoległy
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do OB, tedy mamy dowieść, że AFGB-f-BCDEr=ACIH. Na 
dowiedzenie tego, boki HA i IC równoległoboku na AC wy­
stawionego, przedłużmy aż do przecięcia się z bokami FGr 
i DE równo ległoboków pierwszych w punktach K i L, i te 
punkta połączmy prostą KL. Ponieważ KO = A B , OL— BC 
i kąt O— B, zatem trójkąt KOL przystaje i jest równy trój­
kątowi ABC, a następnie kąt OKL =  BAC, kąt OLKrrBCA, 
i KL równoległa od AC. Równoległobok AFGB — AKOB, 
jako też równoległobok ACDE =  BCLO według §. 119. 

przeto AFGB -f. BCDE =  AKOB -f BCLO.
Lecz pięciokąt AKOLC IIABCI bo AC r : HI,

AK =  BO =  AH, KO =  A B , LO =  BC i LC — BO =  CI, 
tudzież kąty zawarte między odpowiedniemi bokami są sobie 
równe t. j. kąt O =  B, kąt OKA =  BAH, bo każdy z nich 
składa się z dwóch innych sobie równych, jako to: kąt 
OKA =  OKL 4 - AKL =  BAC +  C A H = B A H  i t. d. dwa 
przeto rzeczone pięciokąty przystają do siebie, a następnie ich 
powierzchnie są sobie równe.
Ale ponieważ AKOLC —  ABC =  AKOB-j-BCLO,
zaś HABCI— ABC =r ACIH
zatem AKOB - f  BCLO =  ACIH =  AFGB -j- BCDE *).

§. 134.
ZAGADNIECIE 1. Wykreślić kwadrat któregoby powierz­

chnia równała się powierzchni dwóch kwadratójc danych.
Rozwiązanie. Nakreśliwszy kąt prosty, na jodnem jego 

ramieniu poczynając od wierzchołka, odcina się bok jednego 
z danych kwadratów, a na drugiem bok drugiego, prosta 
łącząca te dwa punkta czyli przeciw prostokątnia, będzie 
bokiem szukanego kwadratu na mocy §. 129.

Jeżeliby potrzeba wykreślić kwadrat dwa razy większy 
od danego, tedy na każdem z ramion kąta prostego odcina

*) Na zasadzie tego ogólnego twierdzenia, dowodzi się łatwo twierdze­
nie §. 129, który dowód podałem w czasowem piśmie „Archiu der 
Mathemalik und Phyaik. herauegegeben von Prof. G runert. Theil 
XXII. *. 35tl.
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się jak wprzód, bok kwadratu danego, a prosta łącząca te 
dwa punkta będzie bokiem kwadratu dwa razy większego.

Albo: w danym kwadracie poprowadziwszy przekątnią, 
ta według §. 129 wniosek 2 będzie bokiem kwadratu dwa 
razy większego.

§. 135.
Z a g a d n i e n i e  2 .  Wykreślić kwadrat 2, 3, 4 ,  5, 6 . . . n 

razy większy od kwadratu danego.
Rozwiązanie. Niech danym kwadratem będzie ABCD 

fig. 151, poprowadziwszy przekątnią BD, ta będzie bokiem 
2 razy większego kwadratu. Tę przekątnią odciąwszy na 
prostej AE od A do 2 i ten punkt 2 złączywszy z punktem 
B prostą B2, ta będzie bokiem kwadratu 3 razy większego; 
albowiem w trójkącie prostokątnym BA2 mamy 
B2" A B 2 -f- A 2 L e c z  AŻ" =  2AB2> przeto B2* =  3AB2- 
Jeżeli teraz przeciwprostokątnią B2 odetniemy od A  do 3 
i ten punkt 3 złączymy z punktem B prostą B3, będzie ona 
bokiem 4 razy większego kwadratu; bo w trójkącie pro­
stokątnym AB3 jest B3" =r AB2-)- A 3“ . A że A3 —  B2 zaś 
B2 =  3AB > więc też także A32 — 3AB2> a następnie B32=  
4 AB 2 i t. d. Tym sposobem wykreślić możemy kwadrat tyle 
razy większy od danego ile chcemy, lub ile potrzeba wy­
magać będzie; albo mówiąc ogólnie, dany kwadrat możemy 
powiększyć w postępie różnicowym, którego wyrazy są licz­
bami naturalnego porządku 1, 2, 3, 4 ......................................
Albo tak: niechby potrzeba wykleślić kwadrat 7 razy więk­
szy od danego; pociągnąwszy prostą AB nieograniczonej dłu­
gości, odetnijmy na niej 7 razy bok kwadratu danego fig. 
152, potem na prostej A7 wykreśliwszy półokręgu i z punktu 
1 wyprowadziwszy prostopadłą do AB aż do przecięcia się 
z okręgiem w punkcie C, cięciwa łącząca tenże punkt C 
z punktem A  jest bokiem kwadratu 7 razy większego niż dany; 
gdyż według §. 129 wniosek 3, jest A C “ =  A B X -A 4, zaś pro­
stokąt ABX-A1 jest widocznie 7 razy większy od danego 
kwadratu.
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§ .  1 3 6 .

Z a g a d n i e n i e  3 .  Wykreślić kwadrat, któregoby powierzch­
nia była różnicą dwóch kwadratów danych.

Bozwiązanie. Nakreśliwszy kąt prosty, na jednym z 
jego ramion odcina się bok kwadratu mniejszego np. od A 
do B fig. 153, wziąwszy potem w cyrkiel bok kwadratu 
większego i z punktu B zakreśliwszy luk przecinający drugie 
ramię w punkcie C, będzie AC bokiem szukanego kwadratu, 
gdyż BC'2 — AB" §. 129 wniosek 1.

§• 1 3 7 .

Z a g a d n i e n i e  4 .  Wykreślić kwadrat równy co do po­
wierzchni danemu prostokątowi.

Bozwiązanie. Na większym boku BC prostokąta da- 
nego fig. 154, jako na średnicy wykreśliwszy półokręgu i na 
tej średnicy od punktu B odciąwszy BE =  AB t. j. drugi 
bok przyległy pierwszemu, z punktu E wyprowadziwszy 
prostopadłą EF do BC aż do przecięcia się z okręgiem, cię­
ciwa BF jest bokiem żądanego kwadratu; bo według §. 129 
wniosek 3 jest BF2 =  B C X B E  — B C X A H -

§. 138.
Z a g a d n i e n i e  5 . Mając dany równoległobok, wykreślić 

kwadrat równy mu co do powierzchni.
Bozwiązanie. Niech będzie dany równoległobok ABCD 

fig. 155, którego podstawa AD a wysokość BE; chcąc wykre­
ślić kwadrat równy mu co do powierzchni, potrzeba znaleść 
bok tegoż kwadratu. Na ten koniec do podstawy AB i wy­
sokości BE równoległoboku, szukajmy średniej geometrycznie 
proporcyjonalnej według §. 99, a ta będzie bokiem kwadratu 
równego równoległobokowi. Nazwawszy bowiem tę średnią 
geometrycznie proporcyjonalną MN, z wykreślenia mamy 

AD : MN =  MN : BE
skąd MN2 = A D X B E . A że A D X B E  jest miarą powierzchni 
danego równoległoboku, zaś MN miarą powierzchni kwadratu 
wystawionego na MN, przeto dwie te powierzchnie są sobie 
równe jak żądano.
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Lub też: zamieniwszy wprzód równoległobok na pro­
stokąt, potóm zapomocą poprzedzającego zagadnienia zamie­
nia się prostokąt na kwadrat i tym sposobem dany równo­
ległobok zamienimy na kwadrat równy mu co do powierzchni.

§. 139.
Z a g a d n i e n i e  6 .  Na danej prostej wystawić prostokąt 

równy co do powierzchni prostokątowi danemu.
Rozwiązanie. Niech dwoma wymiarami danego prosto­

kąta będą proste M i N, tudzież prostą daną P, potrzeba na 
tej ostatniej wystawić prostokąt, któregoby powierzchnia ró­
wnała się powierzchni prostokąta danego. Do prostej danćj P i 
do dwóch wymiarów prostokąta danego M i N, szukajmy 
czwartej geometrycznie proporcyjonalnćj według §. 75; tę 
znalazłszy, oznaczmy ją przez X, tedy ponieważ według tego 
wykreślenia jest P :M “ N :X  skąd P X X  =  MXN, a iloczyn 
M X N  wyraża powierzchnią prostokąta danego i jest równy 
iloczynowi P X X , który wyraża powierzchnią prostokąta wy­
stawionego na, P i X, zatem te prostokąty są sobie równe.

§. 140.
Z a g a d n i e n i e  7 . Dany trójkąt zamienić na kwadrat ró­

wny mu co do powierzchni.
W  tern zagadnieniu chodzi jedynie o znalezienie boku 

kwadratu równającego się trójkątowi co do powierzchni. Niech­
że więc danym trójkątem będzie ABC jig. 146, którego pod­
stawą AC a wysokość BD. Dla znalezienia boku żądanego 
kwadratu, do podstawy trójkąta AC i połowy wysokości BD, 
albo też do połowy podstawy AC i do wysokości BD szu­
kajmy średniej geometrycznie proporcyjonalnćj według §. 99; 
tę nazwawszy X,
ponieważ AC : X  =  X  : JBD X 2 -  A C X  JBD

albo 'A C  : X  = X  : BD skąd X 2 =  'A C X  BD
więc powierzchnia kwadratu wystawionego na prostćj X  ró- 
wna się powierzchni danego trójkąta.

Uwaga. Jak skoro więc umióó będziemy przerobić każdy 
wielokąt prostokreślny na trójkąt równy mu co do powierz­
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chni, przerobimy też tenże wielokąt na kwadrat mający 
powierzchnią równą powierzchni wielokąta.

§■ 141.
Z a g a d n ie n ie . 8, Wykreślić prostokąt równający się co 

do powierzchni danemu kwadratowi, a któregohy summa lub 
różnica dwóch wymiarów t. j. dwóch jego przyległych boków 
równała się prostej danej.

Rozwiązanie. Niech prostą daną będzie MN jig. 156, i 
niech naprzód ta prosta wyraża summę dwóch wymiarów 
szukanego prostokąta, bokiem danego kwadratu niech będzie 
prosta mn, tedy na prostej MN jako na średnicy wykreśliwszy 
okrąg kola i z punktu M wyprowadziwszy do MN prostopadłą 
MP =  mw, tudzież przez punkt P poprowadziwszy równoległą 
PR do MN aż do przecięcia się z okręgiem koła w punk­
tach Q i R, a nareszcie z punktów Q i R spuściwszy prosto­
padłe QO i RT do MN, dwoma wymiarami prostokąta szuka­
nego będą MO i ON albo też TN i MT. Albowiem 
MO X O N  =  Q 0 2 =  MP2 =: tudzież MO +  ON =  MN.
Również T N x M T  =  RT2 = M P 2 =  zaś TN +TM =M N .

Uwaga. Zastanowiwszy się nad rozwiązaniem tego za­
gadnienia, dostrzeżemy, że tylko w przypadku, gdy M P < S L  
czyli mn <  SM albo raczej mn C  JMN, a przynajmniej 
mn ~  ^MN jest podobnem do rozwiązania, co nam dowodzi, 
że największy prostokąt jaki wystawić możemy na dwóch czę­
ściach prostej danej, jest to kwadrat wystawiony na połowie 
tejże prostej.

Jeżeli prosta MN wyraża różnicę między dwoma wy­
miarami prostokąta mającego się równać kwadratowi danemu, 
tedy zrobiwszy wykreślenie jak wyżej, przez punkta P i S 
poprowadźmy średnicę PK przecinającą okrąg koła w punk­
tach I i K, natenczas dwoma wymiarami żądanego prostokąta 
będą proste PK i PI. Albowiem według § .9 1  P K X P I =: 
PM" =  mn"> tudzież PK — P I I K r r M N .

To zagadnienie przeciwnie, w każdym przypadku ja ­
kiekolwiek są dane MN i mn jest podobnem do rozwiązania.
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§• 1 4 2 .

Te kilka zagadnień, a szczególniej zagadnienie §. 1 4 0  

pokazują już dowodnie, że cała nauka o powierzchniach figur 
prostokreślnych spoczywa na znajomości powierzchni trój­
kąta, którą znowu, jak wiadomo wyprowadziliśmy z powierz­
chni równoległoboku albo w szczególnym przypadku z po­
wierzchni prostokąta. Aże tak trójkąt jako tóż i prostokąt 
umiemy zamienić na kwadrat i wzajemnie, przeto gdybyśmy 
jeszcze umieli zamienić każdą figurę prostokreślną na trójkąt, 
potrafilibyśmy tym sposobem każdą takąż figurę zamienić na 
kwadrat równy mu co do powierzchni i twierdzenie w §. 15  

wyrzeczone, że trójkąt jest przedstawą całej Geometryi, by­
łoby usprawiedliwione. Usiłuj myż więc przekonać się dosta­
tecznie o tej prawdzie, żc każdy wielokąt zamienić można 
na trójkąt rozwiązując następujące ogólne,

Z a g a d n i e n i e  9 . Dany wielokąt zamienić na inny równy 
mu co do 'powierzchni, a któryby miał mniej o jeden bok niż 
wielokąt dany. ,

Rozwiązanie. Niech danym wielokątem będzie np. sze- 
ściokąt ABCDEF jlg. 157, z któregokolwiek wierzchołka np. 
z B poprowadźmy przekątnią ale tak, iżby z jednej jej strony 
pozostał tylko jeden kąt wielokąta, a z drugiej wszystkie 
inne oprócz dwóch przekątnią złączonych; (w naszym przeto 
sześciokącie przekątnią BD albo BF,) przez pozostały wierz­
chołek kąta C poprowadziwszy prostą równoległą do prze­
kątni co dopiero poprowadzonej, jeden z następnych boków 
wielokąta, jak tu AB lub ED przedłużmy aż do spotkania 
się z tąż równoległą w punkcie G, tedy widzimy, że trójkąt 
B C D ^ B G D , bo stoją na jednójże podstawie a wierzchołki 
mają na prostćj równoległej do podstawy, są więc sobie 
równe, wziąwszy zatem za BCD trójkąt BGD, widzimy oczy­
wiście, że sześciokąt ABCDEF zamienia się tym sposobem 
na pięciokąt ABGEF t. j.  wielokąt mający o jeden bok 
mniej niż dany, a wszelako jemu równy co do powierzchni

Ten nowy wielokąt podobnymże sposobem zamieniając 
na inny o jeden znowu mnićj mający boków, prowadząc



174

przekątnią AE i zamiast trójkąta AFE biorąc trójkąt AHE, 
otrzymamy w naszym przypadku czworokąt BGEH; nareszcie 
w tym czworokącie prowadząc przekątnią GH i równoległą 
El, zamienimy tenże na trójkąt BGI równy co do powierz­
chni sześciokątowi danemu.

Z poprzedzającego postępowania przekonywamy, się że 
o jakkolwiek wielkiej liczbie boków byłby wielokąt dany, 
powtarzając ciągle jedno i tożsamo działanie, przyjdzieiiiy 
zawsze w końcu do trójkąta równającego się temu wieloką­
towi; a zatem każdy wielokąt umiemy zamienić na trójkąt 
a następnie według §. 140 na kwadrat. Ale przy zamianie 
jednych figur na drugie, często przydawane bywają (szcze­
gólniej zdarza się to w praktyce) osobne warunki, którym 
zadość uczynić należy, przeto tu jeszcze o takich przypad­
kach nieco powiemy, przywodząc najczęściej wydarzające się 
zagadnienia. Tu atoli najwięcej mieć potrzeba na baczności 
§. 120. Zatrudnijmy się naprzód zamianą trójkątów jednych 
na drugie.

§• 143.
Jeżeli danego trójkąta podstawa jest AC a wysokość 

BD, zaś innego mającego się równać pierwszemu też wy­
miary są ac i bd, tedy skoro powierzchnie tych dwóch trój­
kątów mają być równe, mieć powinniśmy A C X i& D  — ac^^bd 
czyli A C X B O  =  a c X W - W  zrównaniu tern są cztery ilości, 
dwie znane AC i BD a dwie nieznane ac i bd, nie może 
więc być w żaden inny sposób rozwiązanem, dopóki albo 
jedna z nieznanych niebędzie daną, lub przez przydanie ja ­
kiego warunku za znaną uważaną. Dla tego to zagadnienie 
„wystawić trójkąt równy danemu co do ■powierzchni i któryby 
miał podstawę albo wysokość równą danemu trójkątowi“ jest 
zupełnie oznaczonćm, albowiem w powyższem zrównaniu 
jedna tylko nieznana zostaje, na którą otrzyma się zaraz wa­
żność, lub też zapomocą wykreślenia znajdzie się ac lub bd. 
Rozłożywszy to zrównanie na proporcyją, mamy 

AC : ac — bd : BD
ta proporcyją uczy nas, że wysokości dwóch trójkątów równych
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ćo do powierzchni, są w stósunku odwrotnym ich podstaw. 
W  każdym więc przypadku czyli będzie dane ac czyli bd, 
rozumie się oprócz AC i BD, zawsze zagadnienie sprowadza 
się do znalezienia czwartej geometrycznie proporcyjonalnćj 
do trzech prostych danych.

Z a g a d n i e n i e  1 0 . Dany trójkąt zamienić na inny równy 
mu co do powierzchni a wierzchołek jego żeby się znajdował 
na jednym z boków danego trójkąta lub na przedłużeniu tegoż 
boku, tudzież żeby oba trójkąty miały jeden kąt spólny.

Rozwiązanie. Niechże danym trójkątem będzie ABC fig. 
158, potrzeba go zamienić na inny, któryby miał z pierwszym 
kąt A spólny a wierzchołek drugiego kąta na boku AB w 
punkcie D. Na ten koniec złączywszy punkt D, z C prostą 
DC i przez punkt B poprowadziwszy inną prostą do tamtej 
równoległą aż do przecięcia się z przedłużonym bokiem AC 
w punkcie E, nareszcie poprowadzona prosta DE zamknie 
trójkąt ADE żądany; trójkąt bowiem BCD zrC D E  jako na 
jednćj podstawie DC stojące i mające wierzchołki B i E na 
równoległej BE do podstawy BC.

Gdyby się wierzchołek żądanego trójkąta miał znajdo­
wać na przedłużeniu boku AB np. w punkcie D', wykreśle­
nie zupełnie jest toż samo, bo złączywszy znowu punkt D' 
z C prostą D'C i przez B poprowadziwszy do niej równoległą 
BE' aż do przecięcia się z bokiem AC w punkcie E', a na­
reszcie prostą D 'E ’, będzie trójkąt A D 'E '= A B C .

§• 1 4 4 .

Z a g a d n i e n i e  1 1 . Zamienić dany trójkąt na inny równy 
mu co do powierzchni i któregoby wierzchołek jednego z kątów 
znajdował się na powierzchni trójkąta danego a bok jemu 
przeciwległy na boku danego trójkąta.

Rozwiązanie. Niech znowu będzie trójkąt ABC jig. 159, 
który mamy zamienić na inny mający wierzchołek jednego 
z kątów w punkcie D t. j.  wewnątrz trójkąta danego, a bok 
jemu przeciwległy np. na boku AC. Punkt D złączywszy z 
punktami A i C prostemi AD, DC i przez punkt B popro­
wadziwszy do tych prostych równoległe aż do przecięcia się
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z przedłużonym bokiem AC w punktach E i E', punkt D 
złączony z temi , ostatniemu prostemi DE i DE ’, te zamkną 
trójkąt EDE' równy co do powierzchni trójkątowi ABC, co 
łatwo dowieść, prowadząc prostą DB. Albowiem trójkąt ADEzr 
ABD tudzież trójkąt D C E '= :D B C .

§ .  1 4 5 .

Z a g a d n i e n i e  12 . Dany trójkąt zamienić na inny równy 
mu co do powierzchni, a któregoby wierzchołek jednego z ką­
tów leżał zewnątrz trójkąta danego.

Rozwiązanie. Niechże jeszcze będzie trójkąt ABC fig. 
1 6 0 , który chcemy przerobić na inny mający swój wierzcho­
łek w punkcie D leżącym zewnątrz trójkąta danego. Z  punktu 
D poprowadziwszy równoległą do AC aż do przecięcia się 
z jednym z dwóch innych boków trójkąta np. z przedłużonym 
bokiem AB w punkcie D', zamieńmy trójkąt ABC na inny 
mający wierzchołek w punkcie D ’ §. 1 4 3  t. j. na trójkąt 
AD'E, a złączywszy punkt D z końcami podstawy A, E no­
wego trójkąta, otrzymamy żądany trójkąt A1)E, bo A B C =  
A D E  zaś AD'E =  ADE.

Uwaga. Gdyby w trzech ostatnich przypadkach doda­
ny jeszcze był warunek, iżby podstawa nowego trójkąta wy­
chodziła od innego punktu, a zresztą leżała w kierunku pod­
stawy danego trójkąta, dosyćby było przenieść znalezioną 
podstawę od danego punktu w kierunku podstawy danego 
trójkąta. I tak nieciłby w ostatniem zagadnieniu podstawa 
żądanego trójkąta miała się poczynać w punkcie A ’ , tedy 
wziąwszy znalezioną AE w cyrkiel i przeniósłszy w kierun­
ku AC od A ’ do E', trójkąt A'DE' będzie żądanym.

§• 146.
Z a g a d n i e n i e  1 3 . Dany trójkąt zamienić na trójkąt 

równoramienny równy danemu co do powierzchni.
Rozwiązanie. Niech będzie trójkąt ABC fig. 161, który 

chcemy zamienić na równoramienny mający powićrzclinią 
równą z danym. W  tem zagadnieniu mogą być dwa przy­
padki t. j . albo jest dana odległość wierzchołka trójkąta rów­
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podstawa a szuka się wysokości.

W  pierwszym przypadku ze środka podstawy E danego 
trójkąta wyprowadziwszy prostopadłą, odcinamy na niój od 
E do D odległość wierzchołka daną. Z punktu B prowadzi 
się równoległą BD' do AC aż do przecięcia się z prostopa­
dłą ED, a łącząc punkt D ’ z końcami podstawy A i C pro- 
stemi AD' i CD', zamienimy tym sposobem trójkąt ABC na 
równoramienny A D ’C. Złączywszy nareszcie punkt D z A  
i C prostemi AD i CD i przez punkt D', poprowadziwszy 
proste D ’F i D ’G równoległe do pierwszych i punkt D po­
łączywszy z punktami F i G , otrzymamy żądany trójkąt. 
Jest bowiem jak wyżej A B C =A D 'C , zaś według poprzedza­
jącego zagadnienia trójkąt AD'C =  FDG, a nawet widoczną 
jest rzeczą, żc za trójkąt AD 'F można wziąśó trójkąt FDD', 
zaś za trójkąt D'GC, trójkąt DD ’G, więc trójkąt AD ’C =FD G .

W  drugim przypadku, jeżeli podstawa mającego się 
znaleść trójkąta równoramiennego jest daną, zrobiwszy toż 
samo wykreślenie dla zamienienia trójkąta ABC na AD'C 
od punktu E t. j. od środka podstawy trójkąta danego od­
cina się w jednę i drugą stronę E F = E G r : połowie podsta­
wy danej, punkta F  i G złączywszy z punktem D' prostemi 
D'F, D'G, przez punkt A prowadzi się prosta równoległa do 
D ’F, albo przez punkt C prosta równoległa do D'G, a każda 
z nich naznaczy na prostopadłej z punktu E wyprowadzonej 
punkt D , a proste AD i CD łączące tenże z punktami A 
i C, zamkną żądany trójkąt AD C; ostatnie bowiem równo­
ległe albo jedna z nich wyznacza wysokość szukanego trój­
kąta.

Jeżeli ani jedno ani drugie nie jest danćm ale ogólne 
żądanie zamienienia trójkąta jakiegokolwiek na równoramien­
ny, wtedy przyjąwszy podstawę dowolną, szuka się wyso­
kości. To uskutecznia się najłatwiej w następujący sposób:

Niech będzie do zamienienia trójkąt ABC fig. 162, któ­
rego wysokość BD; od punktu D ku C odcinamy DE =  AD 
i prostą AE uważamy za podstawę szukanego trójkąta. Po-

12
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nieważ powierzchnia trójkąta ABC— A C X B D
2

, nazwawszy

wysokość szukanego przez X , jego powierzchnia będzie
A E X X  , . A E X X-, a następnie AC X  BD

2 ' 2 - 2 A£X X =
A C X B D  skąd A E :A C  =  B D :X , z którój proporcyi czyta­
my, źe wysokość szukanego trójkąta jest czwartą geometrycz­
nie proporcyjonalną do jego podstawy tudzież podstawy, i wy­
sokości danego. Żeby ją więc wykreślić, bierze się DF=:AC 
i D G ~A E . Punkta B i G łączy prostą BG a przez punkt 
F  prowadzi się równoległą F il do BG, która naznaczy wy­
sokość DH trójkąta szukanego. Łącząc nareszcie punkt H 
z punktami A  i E, otrzymamy żądany trójkąt; gdyż w trój­
kącie HDF mamy DG :D F = B D  :I1D czyli A E : A C = B D : HD 
więc HD =  X  jest wysokością trójkąta równoramiennego.

§. 147.
Z a g a d n i e n i e  1 4 . Dany trójkąt zamienić na inny rów­

noboczny równy danemu co do powierzchni.
Rozwiązanie. Niech danym trójkątem będzie ABC, ten 

według poprzedzającego zagadnienia zamieniony na trójkąt 
równoramienny, niech wyda trójkąt AHE fig. 163. Starajmy 
się teraz ten ostatni zamienić na trójkąt równoboczny równy 
mu co do powierzchni. Na ten koniec z wierzchołka kąta 
H spuśćmy prostopadłą HD. Na podstawie AE wystawmy 
trójkąt równoboczny AFE §. 31, uwaga 3 ;  potem na wy­
sokości HD jako na średnicy nakreślmy półokręgu , a wy­
prowadziwszy z punktu F prostopadłą do HD aż do przecię­
cia się z okręgiem w punkcie G i z punktu D jako ze ęrod- 
ka koła promieniem DG zakreśliwszy łuk, ten naznaczy na 
wysokości HD punkt K , przez który poprowadziwszy rów­
noległe od AF i FE aż do przecięcia się z przedłużoną pod­
stawą AE w punktach L i M otrzymamy trójkąt LKM żą­
dany ; czego tak dowodzimy: trójkąt LKM A F E , przeto 

LKM : AFE =  K I)2 : FD " = DG2 : FD 2.
Lecz i)G 2 =  H D X FD  §. 129, przeto

LKM : AFE =  HD X  F D : FD* =  H E : FD.



Ale trójkąt AFE z trójkątem AHE stoją na jednójże pod­
stawie, mają się więc do siebie jak ich wysokości t. j.

A F E : AHE =  F D : HD
składając więc dwie ostatnie proporcyje, znajdziemy 
LKM: AHE =  H D : HD. A jako HD =  H D , tak tóż trójkąt 
LKM =  AHE, co było do okazania.

Uwaga. Ponieważ według §. 142 umiemy zamienić 
każdy wielokąt na trójkąt, ten zaś według teraźniejszego 
zagadnienia na trójkąt równoboczny, więc każdy wielokąt 
można zamienić na trójkąt równoboczny równy mu co do 
powierzchni.

§. 148.
Często też w praktyce wydarza się potrzeba zamienie­

nia danego trójkąta na inny równy mu co do powierzchni, 
ze zmianą kierunku jednego z jego boków. Abyśmy po­
znali jak sobie w tym przypadku postąpić mamy, weźmy 
chociaż jedno

Z a g a d n i e n i e  1 5 . Dany trójkąt zamienić na inny rów­
ny mu co do ‘powierzchni i w którymby kierunek jednego z je ­
go boków był zmieniony.

Rozwiązanie. Niech będzie trójkąt ABC fig. 164 dany, 
i niech prosta CD wskazuje kierunek, w jakim np. bok no­
wego trójkąta zastępujący kierunek boku BC iść powinien. 
Przedłużywszy AB bok danego trójkąta aż do przecięcia się 
z danym kierunkiem w punkcie D, na prostej AD jako na 
średnicy wykreśla się półokręgu, a wyprowadziwszy z pun­
ktu B prostopadłą do AD aż do przecięcia się z okręgiem 
w punkcie E, z punktu A jako ze środka koła promieniem 
AE zakreśla się łuk przecinający AD w punkcie F ; naresz­
cie przez punkt F prosta FG równoległa do danego kierun­
ku, zamknie nowy trójkąt AFG równy co do powierzchni 
danemu ABC. Dowód rzetelności tego rozwiązania jest na­
der łatwy; albowiem według §. 122 mamy:
ABC: AFG==ACXAB: A F X A G —A C X A B X A F : AF°' X  AG 
Lecz AF 2= A E 2= A D X A B , przeto ABC:AFG

=  A C X A B X A F : A D X A B X A G = A C X A F : AD XAG .
12.
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Prosta FG jest równoległa do DC, przeto A C : A G = A D :A F , 
skąd A C X A F = r  A D X ^ G  a zatem i trójkąt AFG =  ABC.

§• 149.
Jak każdy wielokąt można zamienić na trójkąt, tak 

wzajemnie każdy trójkąt zamienić można na wielokąt. Nad 
tćrn atoli zagadnieniem nie będziemy się zatrzymywać, bo cie­
kawi znajdą w dziełach, szczególniej praktyce poświęconych, 
tak te jako też i poprzednio rozwiązane. Wszelako zobacz­
my przynajmniej, jak się zamienia trójkąt na trapez i to 
tylko w szczególnym przypadku, rozwiązując następujące

Z a g a d n i e n i e  16. Dany trójkąt zamienić na trapez rów­
ny mu co do powiórzclini i któryby miał podstawę tęi samą 
jak trójkąt, jeden z boków nierównoległych w kierunku boku 
trójkąta, drugi zaś w kierunku danym.

Rozwiązanie. Niechby potrzeba zamienić trójkąt ABC 
fig. 165 na trapez równy mu co do powierzchni i którego- 
by podstawą była prosta AC, jeden z boków nierównole­
głych iżby przyszedł w kierunku boku AB a drugi w kie­
runku danym oznaczonym np. przez prostą CK. W  tern 
zagadnieniu cała rzecz chodzi o znalezienie na boku AB 
punktu D , przez któryby prowadzona równoległa do AC 
zamkła z częściami boków AB i CK trapez którego żądamy. 
Dla wynalezienia tego punktu poprowadźmy BE równoległą 
do danego kierunku CK, na AC jako na średnicy wykreśl­
my półokręgu i z punktu E wyprowadźmy EF prostopadłą 
do AC aż do przecięcia się z okręgiem koła; potem z pun­
ktu C jako ze środka koła promieniem CF zakreślmy łuk 
przecinający AC w punkcie G i nareszcie przez punkt G 
poprowadźmy GD równoległą do CK , ta naznaczy na AB 

* punkt szukany D, przez który poprowadzona równoległa do 
AC aż do przecięcia się z kierunkiem CK w punkcie I, 
zamknie trapez ADIC żądany. Aby dowieść, że ten trapez 
równa się co do powierzchni danemu trójkątowi ABC, kie­
runkową prostą przedłużmy aż do przecięcia się z prze­
dłużonym bokiem AB w punkcie K, tedy naocznie widzimy, 
iż aby z trójkąta ABC przejść do trapezu ADIC, dosyć do-
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wieść, że trójkąt D K I= BKC, bo na miejsce trójkąta DBH 
ma przyjść trójkąt HIC; figura zaś dokładnie wskazuje, iż 
odjąwszy od trójkąta AKC trójkąt BKC, pozostanie trójkąt 
ABC, odjąwszy zaś od tegoż samego trójkąta trójkąt DKI, 
pozostanie trapez ADIC; jeżeli więc rzeczone dwa trójkąty 
są równe co do powiórzchni, reszty pozostałe będą równe. 
Powierzchnie trójkątów DKI i BKC jako mających kąt K 
spoiny, mają się do siebie jak iloczyny z boków kąt ten 
obejmujących §. 122 t. j. DKI:BKC =  D K X K I :B K X K C . 
Jeżeli więc dowiedziemy, że D K X K I —  B K X ^ C , tern sa- 
mćm dowiedziemy równości rzeczonych trójkątów, a następ­
nie równości trójkąta danego ABC i trapezu ADIC.
DI jest równoległa do AC, przeto K C :K I— A K :D K ; lecz 
DG równoległa do KC, przeto także A K :D K = A C :G C  
mAC: CF, a następnie K C :K I~ A C :C F . Drugi stósunek 
rozmnożywszy przez CF, będzie K C : K I= A C X C 'F : C F2; ale 
CF2= A C X C E , przeto
K C :K I = A C X C F :A C X C E  =  CF:CE =  CG:CE =  D I:LI. 
W  tró jk ą cie  KDI, BL ró w n o le g ła  do  KI, przeto  

D I:L I — D K :B K , w ięc n areszcie  K C : KI rr  I )K : BK, sk ą d  

D K X K 1= B K X K C , co p o trze b a  b y ło  d o w ie ść .

§. 150.
Zdaje mi się, że tu także właściwe miejsce będzie po­

wiedzieć nieco o dzieleniu figur prostokreślnych na części 
żądane i pod pewnemi warunkami; dla tego weźmiemy jesz­
cze kilka w tym przedmiocie zagadnień, ograniczając się 
tylko na trójkątach i czworokątach.

Co do trójkątów. Ponieważ proste dzielące wychodzić 
mogą z różnych punktów według potrzeby w praktyce zdarza­
jącej się, przeto zobaczmy niektóre zwyczajniejsze przypadki.

Z a g a d n i e n i e  17. Dany trójkąt podzielić na n części któ- 
reby się miały do siebie w stósunku jak a: b: c :d:  e i t. d. i że­
by proste dzielące wychodziły z jednego z wierzchołków trójkąta.

Rozioiązanie. Niech będzie trójkąt ABC fig. 166, któ­
rego powierzchnią podzielić chcemy na n części w stósunku 
danym, lecz tak, iżby proste dzielące wychodziły np. z w'ierz-
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chołka B. Dla uskutecznienia tego podziału, bok AC prze­
ciwległy kątowi B, z którego dzielące proste wychodzić ma­
ją, dzielimy według §. 55 na n części tak, iżby się miały 
do siebie jak a:b :c :d :e :  i t. d .; potóm punkta podziału łą­
czymy z punktem B prostemi, a te podzielą trójkąt dany 
na n innych, które wszystkie mają wićrzchołek spólny w 
punkcie B, mają też wysokości równe, a zatóm ich powierz­
chnie mają się do siebie jak podstawy czyli jak a:b :c :d  
i t. d. i zagadnienie tym sposobem rozwiązane.

Gdyby potrzeba było podzielić trójkąt na n części rów­
nych, ogólne to zagadnienie w temby się tylko zmieniło, że 
w takim razie byłoby a— b ~c— d— e:~ i t. d.

Niechby np. potrzeba było podzielić trójkąt ABC na 
5 części równych i gdzieby proste dzielące wychodziły z 
wierzchołka B, tedy bok AC dzieli się na 5 części równych 
i prowadzi się proste BI, B2, B3, B4, a tym sposobem wszyst­
kie pięć tak utworzonych trójkątów są między sobą równe 
co do powierzchni, mają bowiem wysokości równe i podsta­
wy równe.

§. 151.
Z a g a d n i e n i e  18. Dany trójkąt podzielić na ilekolwiek 

części równych lecz tak, izby proste dzielące wychodziły z pun­
ktu leżącego na jednym z boków danego trójkąta.

Rozwiązanie. Niech będzie trójkąt ABC fig. 161 do 
podzielenia np. na trzy części równe, lecz tak, iżby proste 
dzielące wychodziły z punktu D leżącego na boku AB. Na 
ten koniec zamieńmy trójkąt ABC na ADE według §. 143, 
a podzieliwszy podstawę AE na trzy równe części w pun­
ktach F, G, połączmy je  z punktem D prostemi, tedy trój­
kąt ADE podzielony został tym sposobem na trzy części 
równe. Dwie z tych części ADF i FDG leżą tak w trój­
kącie ABC jako też i A D E , przeto każda z nich jest trze­
cią częścią tak trójkąta ADE, jako też i trójkąta ABC; ostat­
nia tylko część DGE leży w obu trójkątach, gdy część 
DGCB, której się tamta ma równać, leży jedynie w trójką­
cie ABC i dla tego nie tak widocznie jest trzecią częścią
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trójkąta ABC; ale zastanowiwszy się że za trójkąt DEC, 
można wziąść trójkąt BCD, dostrzeżemy, że trójkąt DGE 
równa się czworokątowi D G CB; co tez i stąd wnioskować 
można, iż kiedy trójkąt ADGzrijABC, czworokąt DGCB być 
musi =^ABC.

Zamierzmy sobie jeszcze podzielić trójkąt ABC fig. 168 
na sicdm części równych pod tymże samym warunkiem, że­
by proste dzielące wychodziły z punktu na boku AB leżą­
cego. Zamieniwszy trójkąt ABC na ADE i podzieliwszy 
podstawę AE na siedm równych części, proste dzielące po­
dzielą wprawdzie trójkąt ADE na żądaną liczbę części rów­
nych, ale nie trójkąt ABC i tylko części ADF, FDG, DGH 
i HDI są rzeczywiście żądanemi częściami, bo proste dzie­
lące DF, DG, DH i DI wszystkie padają wewnątrz danego 
trójkąta ABC. Ale proste DK i DL jakkolwiek są dzielą- 
cemi dla trójkąta ADE, nie mogą być za takież uważane dla 
trójkąta ABC; przeto punkta K i L należy przenieść na bok 
BC. Ale jakimże sposobem? Oto poprowadziwszy D C, a 
potem z punktów K i L do niej równoległe, te naznaczą na 
BC punkta M i N, przez które proste dzielące przechodzić 
powinny. Tym sposobem nic się innego rzeczywiście nie 
robi, jak tylko, że za część powierzchni zewnątrz danego 
trójkąta leżącą, bierze się jej równa wewnątrz będąca. I tak 
przy części IDK, bierze się trójkąt DCM za trójkąt DCK, 
przy części KDL, bierze się znowu trójkąt DCN za trójkąt 
DCL, co na figurze dokładnie widzieć można.

§ .  1 5 2 .

Z a g a d n i e n i e  19 . Dany trójkąt podzielić na ilekolwiek 
części równych lecz tak, iżby proste dzielące wychodziły z pun­
ktu wewnątrz trójkąta leżącego.

Rozwiązanie. Niechby potrzeba trójkąt ABC jig. 169 
podzielić np. na siedm części równych ale tak, żeby proste 
dzielące wychodziły z punktu D leżącego wewnątrz trójkąta 
ABC. Dla wykonania tego podziału, zamieniamy trójkąt 
ABC na EDF równy pierwszemu co do powierzchni, a ma­
jący wierzchołek w punkcie D , z którego proste dzielące
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wychodzić mają,. Podstawę tego ostatniego trójkąta dzielimy 
na siedm części równych i prowadzimy proste dzielące, z 
których tylko DH, D.T, DK i DL, będą rzeczywiście dzie- 
lącemi dla trójkąta ABC. Aby znaleść resztę tychże pro­
stych, punkta G i E przenosimy na bok AB, za pomocą 
równoległych do AD, do N i B, punkta zaś M i F przeno­
simy na bok BC, za pomocą równoległych do DC, do O i B 
jak w poprzedzającein zagadnieniu widzieliśmy i tak prze­
niesione punkta łączymy z punktem D, a tym sposobem po­
dział trójkąta ABC na żądaną liczbę części będzie ukończo­
ny. Każdy bowiem z trójkątów HDI, IDK i KDL jest i  
trójkąta ABC, bo wszystkie mają równe podstawy i wyso­
kości, czworokąt zaś DHAN równa się trójkątowa HDG bę­
dącemu także i  częścią trójkąta ABC i t. d.

Gdyby kierunek był dany, którędy jedna z prostych 
dzielących koniecznie ma przechodzić, natenczas zrobiwszy 
podział jak poprzednio, przesunęłoby się tylko każdą z części 
obracając je  około punktu D i w razie potrzeby przenosząc 
punkta podziału na boki AB i BC.

§ .  1 5 3 .

Z a g a d n i e n i e  2 0 . Dany trójkąt podzielić na ilekolwiek 
części róicnyćh prostemi do jednego z boków trójkąta równo- 
ległemi.

Rozwiązanie. Niech danym trójkątem będzie ABC fig. 
170, który chcemy podzielić np. na pięć części równych 
prostemi od boku AC równoległemi, tedy dla dokonania te­
go podziału, jeden z dwóch innych boków np. BC dzielimy 
na tyle części równych, na ile ma być trójkąt podzielony, 
jak tu na pięć w punktach D, E, F, G. Na boku BC jako 
na średnicy kreślimy półokręgu i z punktów D , E , F, G, 
wyprowadzamy prostopadłe do BC aż do przecięcia się z 
okręgiem w punktach d, e, f ,  g ; z punktu B jako ze środ­
ka koła promieniami Bd, Be, B /, Bg, kreślimy łuki przeci­
nające BC w punktach d', e', f , g', a nakoniec przez te 
ostatnie punkta prowadzimy proste równoległe do AC, które 
podzielą trójkąt dany na części żądane.
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Aby dowieść rzetelności takiego postępowania, u ważmy, 
iż trójkąt -ABCt^-iWiBd', zatem według §. 131 mamy 

ABC imBcZ^BC2 : IM7* =  B C 2: Bd!2; 
a że BT  = B C X B D  §. 129,
zatem A B C : mBd' =  BĆ2 : BC X B D  =  BC :BD.
A jako BD =  £BC, tak też rriBd, =  JABC.

Podobnież trójkąt
ABCiłiBe' =  BC2 : Be"2 = B C 2 : Be2 = B C 2: BCXBE 

= B C :B E . A że BE — |BC, więc też trójkąt reBe' = §  ABC. 
Ale trójkąt mBcZ'~ £ ABC, przeto trapez mnd'e'z=.  ̂ABC.

Zupełnie tym samym sposobem dowiedziemy, że trójkąt 
oBf — ij ABC, zaś trójkąt pBg' — £ABC, skąd równość wszyst­
kich pięciu części jest widoczna.

§. 154.
Z agadnienie 21. Dany trójkąt podzielić dwiema pro- 

stemi na trzy części równe, ale tak, izby te proste wychodziły 
z pewnego wewnątrz trójkąta leżącego punktu i były równo­
legle do dwóch boków danego trójkąta.

Rozwiązanie. Niech trójkąt ABC fig. 171 będzie dany 
do podzielenia na trzy części równe, ale tak, iżby dwie pro­
ste dzielące, wychodziły z wyznaczyć się mającego punktu 
D i były równoległe do boków AB i BC. Na ten koniec 
dla wyznaczenia punktu D robimy następujące wykreślenie: 
podstawę AC dzielimy na dwie równe części w punkcie E 
i prowadzimy prostą BE; a podzieliwszy AE lub EC na trzy 
równe części, na tejże prostej np. na AE, wykreśla się pół- 
okręgu, a jeżeli EF =  \AE, tedy z punktu F wyprowadza się 
prostopadła do AE aż do przecięcia się z okręgiem w pun­
kcie G, potćm z punktu E jako ze środka koła promieniem 
= E G  kreśli się łuk przecinający AE w punkcie H; przez 
punkt H prowadzi się równoległa do AB a ta naznaczy na 
BE punkt D szukany, z którego proste dzielące wychodzić 
mają. Gdyby się podobneż wykreślenie robiło na EC, przy- 
ślibyśmy do tegoż samego punktu D, zatem poprowadziwszy 
przez punkt D równoległą do BC aż do przecięcia się z AC 
w punkcie I, proste DH i 1)1 podzielą trójkąt według żąda­
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nia; pozostaje tylko dowieść, że tak jest w istocie, t. j. że 
tak trójkąt HDI jako też i każdy z trapezów ABDH i BCID 
jest trzecią częścią trójkąta ABC. Że trójkąt HDE jest rów­
ny gAEB, jako tóż trójkąt EDI — ^BEC, jest jasną rzeczą 
z poprzedzającego zagadnienia. A  że AEB =  ^ABC jako 
też B E C = £ A B C , więc HDE =   ̂ABC, a EDI —  ̂ABC, a 
następnie trójkąt HDI =  HDE -f- EDI =  gABC ~   ̂ABC. 
Kiedy HDE —  ̂  ABC a ABEr=,jABC, więc trapez 
ABDH zz  ̂ABC —  ̂  ABC =  | ABC ~   ̂ABC, a zatem i tra­
pez BCID — $ ABC, co należało dowieść.

§. 155.
Z agadnienie 22. Dany trójkąt prostokątny podzielić 

na dwie części równe prostą prostopadłą do przeciwprosto- 
kątni.

Rozwiązanie. Niech danym trójkątem do podzielenia 
będzie ABC jig. 172 prostokątny przy A; dłuższy bok AC 
przyległy kątowi prostemu przedłużmy w kierunku AC i na 
przedłużeniu weźmy CD — \ AC. Na prostej AD wykreślmy 
półokręgu i z punktu C wyprowadźmy prostopadłą do śre­
dnicy AD aż do przecięcia się z okręgiem w punkcie E, 
z punktu C jako ze środka koła promieniem = C E  zakreśl­
my łuk przecinający przeciwprostokątnią BC w punkcie F, 
a nareszcie z punktu F wyprowadźmy do BC prostopadłą 
FG, która podzieli trójkąt ABC na dwie równe części. Na 
dowiedzenie tego dość okazać, że trójkąt FGC jest rr^ABC. 
Jakoż trójkąt ABC•->>'>GFC bo są równokątne, więc 
A B C :G F C = A C 2 : F C 2= A Ć 2:ĆE2=  A C 2:A C X C D =A C :C D . 
Ale jako CD rz JAC z wykreślenia, tak też GFC  ̂ABC, 
co należało dowieść.

Uwaga. Gdyby dany trójkąt był równoramienny t. j. 
gdyby było AB zr AC, natenczas prostopadła z wierzchołka 
kąta prostego na przeciwprostokątnią spuszczona, podzieliła­
by trójkąt dany na dwie równe części.

§. 156.
Co do czworokątów. Tu także może zachodzić waru­

nek, iżby proste dzielące wychodziły albo z jednego z wierz­
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chołków kątów, albo z punktu leżącego na jednym z boków 
lub z punktu wewnątrz będącego. W  każdym przypadku 
zamieniamy naprzód czworokąt na trójkąt równy mu co do 
powierzchni według §. 1 4 2 , potem ten trójkąt na inny mają­
cy swój wierzchołek w punkcie, z którego proste dzielące 
wychodzić mają, dalej, uskuteczniamy podział na tym ostat­
nim trójkącie, a nareszcie proste dzielące wychodzące za 
czworokąt, przenosimy według §. 15 1  na boki czworokąta. 
Weźmy parę zagadnień.

Z a g a d n i e n i e  2 3 .  Dany czworokąt podzielić na pięć 
części równych tak, żeby proste dzielące wychodziły z jednego 
z jego wierzchołków kątów.

Rozwiązanie. Jeżeli danym do podzielenia na pięć 
części równych jest czworokąt ABCD jig. 173, tedy ten za­
mieniamy na trójkąt ABE równy mu co do powierzchni; 
podstawę jego AE dzielimy na pięć części równych i pro­
wadzimy proste BE, BG, B il i BI. Ponieważ proste BH i 
BI wychodzą zewnątrz czworokąta, przenosimy punkta H i 
I, za pomocą równoległych do BD, na bok CD do punktów 
K i L, a nareszcie prowadzimy proste BK i BL, przez co 
czworokąt zostanie podzielonym na pięć części równych. 
Dowód, że te części między sobą są równe i że każda jest 
— £ABCD jest nader łatwy i dlatego tu takowy pomijam.

W  innych przypadkach postępowanie jest zupełnie toż 
samo, dlaczego nie zatrzymując się nad niemi weźmy jeszcze

§ .  1 5 7 .

Z a g a d n i e n i e  2 4 . Dany trapez podzielić prostemi rów- 
noległemi od jego boków równoległych na ilekolwiek części 
równych.

Rozwiązanie. Niech będzie trapez ABCD jig. 174 do 
podzielenia na cztery np. części prostemi od AB równole­
głemu Na większym z dwóch równoległych boków AB wy­
kreślmy półokręgu, potem z pnnktu D poprowadźmy DE 
równoległą do BC, dalój z punktu B jako ze środka koła 
promieniem BE zakreślmy łuk EF czyli przenieśmy BE za 
cięciwę BF i z punktu F spuśćmy do AB prostopadłą FG.
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Podzieliwszy teraz prostą AG na tyle części równych, na ile 
trapez dzielić chcemy, jak tu na cztóry części, w punktach 
H, I, K, z tych punktów wyprowadźmy prostopadle do AB 
aż do przecięcia się z okręgiem w punktach L , M, N , a 
z punktu B jako ze środka koła promieniami BL, BM, BN za­
kreślmy łuki przecinające AB w punktach l, m, n ; naresz­
cie z tych punktów prowadząc równoległe do BC, te nazna­
czą na AD punkta l' m! n , przez które proste dzielące 
l'l", mm" i nn" przechodzić mają. Te rzeczywiście popro­
wadziwszy równolegle do AB, uskutecznimy żądany po­
dział trapezu. Że tak jest w istocie, następnie dowodzimy. 
Przedłużywszy boki AD i BC aż do ich przecięcia się z so­
bą w punkcie R, ponieważ trójkąt i’R Z"o^D R C  przeto 

Ż'RT:DRC = l T 2: ĆD2 = b F  : BE 2 = B L 2: BF2 
= AB X  B H : AB X  BG = B H : BG.

Z tej proporcyi wypada rJW— D R C : DRC— BH— B G : BG 
czyli D H ''C : DRC= G E : BG.
Podobnież, ponieważ trójkąt ARB ■-*'> DRC, zatem

ARB:DRC= AB2: CD 2 =  AB* : BE2 =  ABa : BF*
=  AB2: A B X B G  =  A B : BG.

Z tej znowu proporcyi wypada
ARB—D R C : DRC= AB—B G : BG 

czyli AB C D : DRC =  A G : BG.
Łącząc tę proporcyją z powyżej otrzymaną, wypada 

ABCD : DZ7"C = A G : GE.
A  jako GE =  JAG, tak też D Z7"C =  JABCD.

Porównywając następnie trójkąty mRm" i DRC jako 
też trójkąty ARB i CDR, znajdziemy znowu dwie proporcyje 
DwW 'C :D R C = G I :B C , tudzież ABCD : DRC =  A G : BG, 
które podobnież łącząc z sobą, znajdujemy 

ABCD :D m W 'C = A G : GI.
A jako G I = f  AG, tak tóż być musi D m W C =|A B C D .
Dalej znajdziemy przez podobneż dowodzenie, że trapez 
Drin"C — fABCD, a zatem równość tych częśc^est widoczna.

Albo tak: mając trapez ABCD fig. 174 do podzielenia 
np. na trzy równe części, przedłużamy jogo boki nierówno-
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ległe aż do przecięcia się z sobą w punkcie R. Na boku 
RB jako na średnicy kreślimy pólokręgu, a z punktu R pro­
mieniem RC łuk przecinający pólokręgu w punkcie E !, z któ­
rego spuszczamy prostopadłą E 'F ' do RB; a podzieliwszy 
odległość F ’B na tyle części, na ile trapez dzielić mamy, jak 
tu na trzy, z punktów podziału G' i ET wyprowadzamy do 
RB prostopadłe G T  i II'K ' aż do przecięcia się z okręgiem. 
Nareszcie z punktu R jako ze środka koła promieniami RF 
i RK’, kreślimy łuki, które naznaczą na boku trapezu CB 
punkta L ', M', przez które prowadzone proste L'N' i M P 
równoległe do AB , podzielą trapez na żądaną liczbę części 
równych. Dowód tej prawdy jest zupełnie podobny poprze­
dzającemu. Ale zobaczmy takowy chociaż dla jednej części. 
Trójkąt N R L ’D R C ^ ,  przeto N’RL ':D RC =  iS 7 2 : RC2 

= R T 2: RE72 = R B X R G ': R BX RF ' =  RG :R F ’.
Z tej proporcyi mamy N R L ' —  D R C :D R C =R G '— R F ':R F ' 
czyli N 'D C L ': DRC =  F 'G jR F '.
Podobnież, trójkąt ARB :DRC “ RB2: RC”

=  RB2: RE '2 z: RB2: R B X R F ’ =  RB :RF' 
skąd znowu ARB— D R C : DRC =  RB— R F ':RF’ 
czyli AB C D : DRC =  F ’B : RF'.
Łącząc tę proporcyją z powyższą, znajdziemy 

A B C D : N'DCL ’ =  F 'B : F'G '.
A że F'G' =  JF 'B , więc też N'DCL' — ^ABCD.

Ponieważ dzielenie figur, szczególniej wr zastósowaniu 
jest przedmiotem bardzo ważnym, dla tego spodziewam się, 
że będę usprawiedliwiony, iż odstąpiwszy od ciągu prawd 
geometrycznych, przytoczyłem dość znaczną liczbę w tym 
przedmiocie zagadnień.
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ROZDZIAŁ VIII.
Porównanie linii kołoicej jako też powierzchni koła, z figu­
rami prostokreślnemi, a następnie wyprowadzenie stósunku 

okręgu koła do średnicy i powierzchni koła.

§. 158.
Ponieważ do poznania każdej prawdy przychodzimy je ­

dynie drogą porównania, porównanie zaś zachodzić tylko 
może pomiędzy przedmiotami jednejże natury, zdawałoby się 
więc, że pomiędzy liniją łamaną, jaką jest obwód wielokąta, 
a krzywą kołową czyli okręgiem koła, dwiema tak od sie­
bie różnemi linijami, żadne porównanie miejsca mieć nie 
może. Atoli z paragrafów o wpisywaniu w koło i opisywa­
niu wielokątów na kole, łatwo się przekonać, że wpisawszy 
np. kwadrat lub sześciokąt w koło i podwajając ciągle licz­
bę jego boków, łamana łinija stanowiąca obwód wielokąta 
bez końca zbliża się do okręgu koła; a skoro rzeczone po­
dwajanie liczby boków posuniemy bardzo daleko, cięciwy 
wyrażające boki tegoż wielokąta, zmięszają się w końcu z li­
niją kołową tak, że obwód wielokąta i okrąg koła prawie 
za jedno i toż samo wziąść można. Mówimy tu prawie, 
gdyż ze wstępu wiadomo, iż najmniejsza cząstka krzywej, 
uważając ściśle, prostą być nie może. Wiemy podobnież, że 
opisawszy jakikolwiek wielokąt na kole np. także sześcio­
kąt, można również ciągle podwajać liczbę boków i że przez 
takie podwajanie, obwód wielokąta opisanego zbliża się także 
bez końca do okręgu koła, ale się nigdy stać nim nie może. 
A kiedy tylko wielokąty foremne mogą być wpisane i na 
kole opisane, przeto stąd wypada, że tylko z takiemi wielo­
kątami i to o bardzo wielkiej liczbie boków porównać moż­
na okrąg koła.

Małe zastanowienie się, a nawet samo spojrzenie na 
dwa wielokąty, o jednakowój liczbie boków, jeden wpisany 
a drugi na tćmże samem kole opisany, nasuwa nam tę praw­
dę, że obwód wpisanego koniecznie jest mniejszy od okręgu
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koła jako rzecz objęta od obejmującej, obwód zaś opisanego 
wielokąta, większy niż tenże okrąg, jako rzecz obejmująca 
od objętej; że również powierzchnia wielokąta wpisanego jest 
mniejszą, powierzchnia zaś wielokąta opisanego jest większą 
od powierzchni koła dla tejże samej przyczyny. A  że jak 
wyżej powiedzieliśmy, przez ciągłe podwajanie liczby boków 
tak jednego jako i drugiego wielokąta, obwody ich zbliżają się 
nieskończenie do okręgu koła, którym jednak żaden z nich stać 
się nie może, zatem okrąg koła uważać można i rzeczywi­
ście uważa się jako granica, do której się ciągle zbliża tak 
obwód wielokąta wpisanego jako też i opisanego. Również 
powierzchnia koła jest granicą powierzchni wielokątów wpi­
sanego i opisanego. Tych granic nigdy dosięgnąć a tym 
bardziej przestąpić nie mogą. Z tego bardzo łatwo pojąć, 
że gdybyśmy znali obwody dwóch wielokątów, wpisanego i 
opisanego o bardzo wielkiej liczbie boków, ponieważ same 
te obwody nie wieleby się między sobą różniły, bo każdy 
z nich zbliżył się tak do swej granicy, że je j prawie dosią- 
gnął, środkujący obwód koła tym mniejby się różnił od je ­
dnego z obwodów, że zatem albo jeden z obwodów wielo­
kątów albo lepiej ilość pośrednia pomiędzy temi obwodami 
wyrażać może w wielkiem przybliżeniu okrąg koła. Obra- 
chowawszy zaś powierzchnie dwóch rzeczonych wielokątów, 
powierzchnia koła środkować będzie między niemi i podo­
bnież w przybliżeniu, ale, jak zobaczymy, w przybliżeniu 
do prawdy takiem jak chcemy, otrzymana być może. Jak 
stosownie do tych uwag przyjdziemy do wymierzenia tak 
długości linii kołowej jako też i powierzchni koła, zobaczy­
my z następujących zagadnień, które są tylko prostem za­
stosowaniem dotąd nabytych wiadomości.

§. 159.
Z §. 67 wiemy, że obwody dwóch wielokątów podob­

nych mają się do siebie jak którekolwiek ich boki odpowia­
dające albo jak proste jakkolwiek, byle jednymże sposobem 
w obu wielokątach poprowadzone, tudzież z §. 124 wiado­
mo, że powierzchnia wielokąta foremnego, równa się iloczy­



nowi z jego obwodu przez połowę prostopadłej ze środka 
wielokąta na którykolwiek bok spuszczonej; według zaś §. 
125 wniosek, powierzchnie takichże wielokątów mają się jak 
kwadraty z boków odpowiadających lub prostych jednakowo 
poprowadzonych. Uważając teraz dwa wielokąty o jednako­
wej liczbie boków, jeden wpisany a drugi opisany na je- 
dnemże kole, a które według §. 104 są koniecznie foremne, 
wiśmy że prostopadła spuszczona ze środkn wielokąta, a za­
tem i ze środka kola na bok wielokąta wpisanego, jest za­
razem promieniem koła w tenże wuelokąt wpisanego, prosto­
padła zaś z rzeczonego środka na bok wielokąta opisanego 
spuszczona, jest także promieniem tegoż koła, które też uwa­
żać można jako koło wpisane w wielokąt opisany. W  ta­
kim razie przytoczone prawdy wyrazimy następującym spo­
sobem :

Obwody dwóch wielokątów foremnych o jednakowej 
liczbie boków mają się do siebie w stosunku promieni kół w 
też wielokąty wpisanych.

Powierzchnia wielokąta foremnego równa się iloczynowi 
z jego obwodu przez połowę promienia koła wpisanego w ten­
że wielokąt.

Powierzchnie dwóch wielokątów foremnych o jednakowej 
liczbie boków, mają się w stosunku kwadratów z promieni kół 
w też wielokąty wpisanych.

Dwie te prostopadłe albo raczćj promienie oznaczać bę­
dziemy w ciągu tego rozdziału przez r i R tak, że r wyra­
ża promień koła wpisanego zaś R opisanego na wielokącie. 
Pierwszy promień prawie u wszystkich autorów nosi dotąd 
grecką nazwę apothema albo promień mniejszy, drugi zaś zo- 
wią promieniem większym.

§. 160.
Z agadnienie 1. Znając bok icielokąta wpisanego w koło 

i promień tegoż koła, znaleść powierzchnią wielokąta.
Rozwiązanie. Niech wiadomym bokiem wielokąta wpi­

sanego będzie AB =  a , tudzież wiadomym promieniem koła 
S A = R  fig. 175, ze środka koła S spuściwszy prostopadłą
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SC.do AB, jeżeli liczbę boków wielokąta oznaczymy ogólnie 
przez n, będzie jego obwód —  na, jego zaś powiórzchnia, któ­
rą przez p oznaczmy, według §. wyżej przywiedzionego, jest 

p ~naX.  jSC rr naX  *r 
Ale w trójkącie ASC prostokątnym przy C jest

SC ' =  A S 2 — (jA B ) 2 czyli r2 =  R 2— <a2
. /— ---------  V4Ra_ a a

skąd r — VII2— J a2 — ------------- Tę ważność położywszy

w powyźszem wyrażeniu powierzchni wielokąta, znajdziemy
naS 4R2 — a 2

P = --------- 4-------- '
§• 161.

Z a g a d n i e n i e  2 .  Z wiadomego boku wielokąta wpisa­
nego, znaleść bok wielokąta takie wpisanego dwa razy więcej 
boków niż pierwszy mającego.

Rozwiązanie. Niech znowu AB — a będzie wiadomym 
bokiem wielokąta wpisanego jig. 175; ze środka koła spu­
ściwszy prostopadłą SC na AB i tę przedłużywszy aż do 
okręgu w punkcie D i połączywszy punkt D z B lub A, 
będzie BD bokiem wielokąta wpisanego dwa razy więcej bo­
ków mającego niż pierwszy, który znaleść potrzeba. Poło­
żywszy, jak w poprzedzającem zagadnieniu AS := R, S C = r  
a BD ~  a, mamy w trójkącie CAD prostokątnym przy C 
a,2—  ^a2-|-CD2. Lecz ponieważ CD — SD — SC = R — r 
skąd C D ' — R 2— 2R r-j-r2 przeto a,2—^a2 - j -  R 2— 2Ri—\-r2 
Ale z poprzedzającego zagadnienia jest r 2 =  R2—  £a2 zaś

V4R2— a , , . .
r —  ----------- , zatóm włożywszy te ważności wostatnie wyrażę-i

V4R»-
- j  a 2nie, znajdziemy a ,2— ^a2- j-R 2—  2R ------ --------- ( -R 2-U

=  2R2— RV4R2— a- a następnie a, = \ J 2R2 — RV4R-—  aK

Używając tu wzoru §. 77 Arytm. na wyciąganie pier­
wiastka kwadratowego z ilości częścią wymiernej a częścią 
niewymiernej, znajdziemy jeszcze:

13
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«i = V r(r + !)-V ll(R  -  |)

Chcąc przeciwnie wyrazić a przez « , ,  przy pomocy

działań arytmetycznych znajdzieiny a == y ^ /  4R- —  o, 2

tak np. szukając boku trójkąta wpisanego z boku sześcio- 
kąta wpisanego, ponieważ ax =  R, znajdziemy zaraz a =:R\/3.

§• 1 6 2 .

Z a g a d n i e n i e  3 . Z toiadomego boku wielokąta wpisa­
nego w koło i promienia tegoż koła, znaleźć bok wielokąta opi­
sanego na temźe kole a podobnego pierwszemu.

Rozwiązanie. Niech danym bokiem będzie AB —  a 
fig. 175; zc środka S spuściwszy do AB prostopadłą i tę 
przedłużywszy aż do przecięcia się z okręgiem w punkcie 
D , tudzież położywszy jak poprzednio S A = R , SC ~  r i 
przez punkt D poprowadziwszy styczną aż do przecięcia się 
z przedłużonemi promieniami SA i SB w punktach A' i B ’, 
będzie A ’B' bokiem wielokąta opisanego podobnego wielo­
kątowi którego bok dany. Ponieważ AC równoległa od A'D, 
przeto A 'D : AC ~  S D : SC, czyli A 'D :J «  — R :r

i . . «aR oR . V4R2— a2 o Ąrr.skąd A D = * ----= — . A że r ~ ------- - ------ §. 160,
2r

«R
:, a następnie, położywszy bok opisa-zatóm A ^ z i . . , --------—

V 4 R 2— a 9
nego .wielokąta A'B' rr A, ponieważ 2A’D = :A 'B ' będzie

2aR «R
A =

V4R-— a1 VR2— >a9 .
W n io s e k . Obwód tego wielokąta będzie z z z n A  —  

naR
; powierzchnia zaś jego którą oznaczmy przez P

{a1Vll2 

będzie P
?i«R

' Vr -
X k ^ -

waR2 «aR 2

2 \ /R 2 — j a 2 V 4 R 2 — a 2i2— i « 2
§ . 1 6 3 .

Znalazłszy z wiadomego boku wielokąta wpisanego tak 
obwody wielokątów wpisanego i opisanego, jako też umie-
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jąc znaleść bok wielokąta wpisanego dwa razy więcej bo­
ków mającego, a następnie tak jego obwód jako tóż i po­
wierzchnią, z tego boku szukalibyśmy znowu boku wielo­
kąta opisanego dwa razy więcej boków niż poprzedzający 
mającego, potóm jego obwodu i powierzchni. Co do boku, 
ważność jego znajdziemy z ważności A kładąc tylko «, 
w miejsce a, bo R jako promień kola jest niezmiennym.

Oznaczywszy więc w ogólności przez a„ bok wielokąta 
wpisanego n boków mającego, tudzież przez a*„ bok wie­
lokąta w toż samo koło wpisanego, lecz dwa razy więcej 
boków mającego, a nareszcie przez A„ bok wielokąta opi­
sanego n boków mającego, według poprzedzających zagadnień, 
jeżeli jeszcze położymy R = l ,  będzie:

Otrzymawszy według tych wzorów boki wielokątów tak 
wpisanego jaKO i opisanego, mamy też zaraz ich obwody. 
I tak poczynając rachunek od sześciokąta foremnego w kolo 
wpisanego, ponieważ a„ — 1 , będzie bok dwunastokąta 
czyli at. = a 12— V f — V' —  ^(\/6 —  V2) =0-5176385902

zas A6 =
1

: =  1-1547005383
V! V 3 '

a rachując obwody dalszych wielokątów, ale tylko na 10 
cyfer dziesiętnych, znajdziemy:
Liczba Ważność Obwód
boków bokn wielok. wpisań. wielok. wpisanego.

6 . . 1-0000000000 . . . 6-0000000000 .
12 . . 0-5176385902 . .. . 6-2116630824.
24 . . 0-2610526410 . . . 6 2652633840 .
48 . . 0-1308063875 . . . 6-2787066000 .
96 . . 0-0654382301 . . . 6-2820700896 .

192 . . 0-0327234954 . . . 6-2829111168.
384 . . 0-0163622953 . . . 6-2831213952 .
768 . . 0-0081812160 . . . 6-2831738880 .

1536 . . 0-0040906166 . . . 6-2831870976 .

Obwód
wielok. opisan.
6-9282032298
6-4307872728
6-3195921744
6-2921787120
6-2854353984
6-2837519616
6-2833317120
6-2832264960
6-2832003072
13.
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skąd naocznie i bez żadnego innego dowodu widzimy, że 
obwody dwóch wielokątów o jednakowćj liczbie boków, wpi­
sanego i opisanego, coraz bardziój zbliżają się do siebie i to 
tóm prędzej, im liczba boków jest większa. Gdybyśmy więc 
działanie podwajania liczby boków obu wielokątów, posunęli 
do nieskończoności, co jedynie myślą i rachunkiem usku­
tecznić możemy, wnieślibyśmy, iż też obwody są sobie w nie­
skończoności prawie równe. A że okrąg koła środkujący 
między temiż obwodami, chociaż nie mający ani mogący mieć 
spólnej miary z prostą dowolną np. z promieniem lub śre­
dnicą swoją, jest jednakże zawarty pomiędzy dwie bardzo 
siebie bliskie granice, których stosunek do promienia koła 
jest wiadomy, przeto według tego co już raz na zawsze w §. 
53 uwaga powiedzieliśmy, można wszystko co się dowiedzie 
o obwodach lub powierzchniach dwóch rzeczonych wieloką­
tów, przenieść bez obawy znacznego błędu, do okręgu koła; 
tym bowiem sposobem nic innego nie zrobimy, tylko uważać 
będziemy okrąg koła za wielokąt foremny wpisany lub opi­
sany o nieskończonej liczbie boków. Lecz w §. 67 wniosek 
dowiedliśmy, że obwody dwóch wielokątów podobnych mają 
się w stosunku dwóch prostych jednakowo w obu wieloką­
tach poprowadzonych, przeto obwody dwóch wielokątów fo­
remnych, wpisanego i opisanego, mają się w stosunku pro­
stopadłych z ich spólnego środka na którekolwiek boki spusz­
czonych; te zaś prostopadłe są jak wiemy promieniami koła 
wpisanego i opisanego i kiedy obwody tych wielokątów zbli 
żają się bez końca do siebie, zbliżają się też także i te pro­
stopadłe bez końca. Te prostopadłe nazwaliśmy wyżej E i 
r ; pierwsza jest promieniem koła opisanego a druga wpisa­
nego; przeto proporcyja O : o —  E : r jest prawdziwa. Ale 
kiedy O zbliża się bez końca do o, r zbliża się także do E; 
w nieskończoności więc możemy za O położyć okrąg koła 
z promienia E, który oznaczmy przez C, a za o inny okrąg koła 
c z promienia r, tak że mieć będziemy proporcyją także 
prawdziwą C : c “  R : r z której czytamy, że dv;a okręgi kół 
różnych promieni, mają się do siebie w stosunku tychże promieni.
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Podzieliwszy pićrwszy stosunek przez n gdzie n wy-
C craża liczbę całkowitą, będzie —: -  ~  R : r — 2R : 2r =  S : s
n n

C coznaczając przez S i s średnice kół. Ponieważ -  i -  wy­

rażają pewne części okręgów kół, a takie części nazwaliśmy 
lukami i te luki są podobne t. j. są miarami kątów równych, 
przeto z ostatniej proporcyi czytamy także, iż luki mierzące 
kąty równe mają się do siebie jak promienie lub jak średnice 
kół do których luki należą.

W  proporcyi C : R =  c : r rozmnożywszy następniki 
przez 2 i położywszy 2R =  S, 2r — s, gdzie S i s znaczą 
średnice tychże kół, będzie

C : S =  c : s.
Oznaczywszy przez C, C', C", C " ' ................okręgi kół

różnych promieni, zaś przez S, S', S” , S '” , . . . .  średnice 
tychże kół, tedy na tejże samej zasadzie mamy:

C : S =  C' : S' =  C" : S" =  C '" : S"' =  i t. d.
skąd się pokazuje, że stosunek okręgu do swej średnicy, jest 
stosunkiem stałym i niezmiennym; dosyć więc znaleść sto­
sunek jednego okręgu do swój średnicy. Ten stosunek w ca­
łym obszarze Matematyki oznacza się przez n tak, że C : S ~  zr 
albo C : 2r z=z n, znacząc przez r promień koła C ; skąd 
C — 2nr to jest że okrąg koła równa się zawsze iloczynowi 
z owego stałego stosunku przez średnicę lub przez podwójny 
promień. Skoro więc znany jest promień koła, już tern samem 
znany będzie i okrąg koła, jeżeli stały stosunek n znajdziemy.
„  . , , C .
A ostatniego zrównania wypada też r —  —  t. j. znając okrąg

&TC
koła i stosunek n, znamy też i promień tegoż koła.

W n io s e k . W  §. 124 dowiodło się, że powierzchnia 
wielokąta foremnego równa się iloczynowi z jego obwodu 
przez połowę prostopadłój ze środka wielokąta na bok spu­
szczonej; jeżeli więc uważać będziemy wielokąt o nieskoń­
czonej liczbie boków, obwód jego przechodzi według powyż­
szego na okrąg, prostopadła na promień tegoż koła, a po­
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wierzchnia wielokąta na powierzchnię koła, przeto w zrównaniu 
P — O X  ó >' w przywiedzionym §. otrzymanym, położywszy 
C w miejsce O, a K w miejsce P, oznaczając przez K po­
wierzchnię koła, będzie też P =  C X  i  *■ t. j. powierzchnia 
koła równa się iloczynowi z jego okręgu przez połowę promienia.

Położywszy tu wyżej znalezioną ważność na C, otrzymamy
Is. izr 2nr \ r ẑ z nr~

czyli, że powierzchnia koła równa się wyżej wspomnionemu 
stosunkowi stałemu okręgu koła do średnicy rozmnożonemu 
przez kwadrat z promienia.

Uważać tu potrzeba, że w dwóch wyrażeniach C =  2nr 
i K  =  nr2 dwie ilości C i K są liczbami oderwanemi wy­
rażającemu stósunek, pierwsza do jednostki linijowej a druga 
do jednostki powierzchni. Pierwsza więc wyraża liczbę jedno­
stek takich w jakich promień r jest dany, druga zaś wyraża 
liczbę kwadratów wystawionych a takiejże jednostce. Ozna­
czywszy przez K' powierzchnię innego koła a jego promień 
przez r‘, będzie też K' =  jrr'2 
zatem K : K ’ =  nr'1 : nr 2 =  r" :
Rozmnożywszy drugi sósunek przez 4 i pisząc ostatnią pro- 
porcyją następnie K : K ' =  (2r) 2 : (2r ) 2, tudzież kładąc 2r~ s  
2r — ś  gdzie s i ś  wyrażają średnice kół, otrzymamy 
K : K' — s2 : .s'2 t. j. powierzchnie dwóch kół mają się do 
siebie w stósunlcu kwadratów z ich promieni, albo kwadratóio 
z ich średnic.

Ze zrównania K = 7rt’2 wypada także r=z\J  skąd się

pokazuje, że znając promień i stósunek n, znajdzie się po­
wierzchnię koła; znając zaś powierzchnię koła, znajdzie się 
jego promień. Cały więc rachunek tak okręgu koła jako też 
i powierzchni jego, zależy jak widzimy od poznania stosunku 
n\ zatrudnijmy się przeto obrachowaniem tej liczby stałej.

§. 164.
Na obrachowanie stosunku okręgu koła do średnicy 

jest kilka elementarnych sposobów, nie mówiąc o sposobach
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na wyższej Geometryi opartych. Nim przystąpimy do jego 
obrachowania, zobaczmy, w jakich on się granicach znajduje.

Obwód sześcioltąta wpisanego jest — fi/' z powodu, że 
bok tego sześciokąta jest równy promieniowi. Opisawszy na 
temże kole kwadrat, bok jego jest równy średnicy czyli 2r 
a zatem obwód jego = 8r. A że okrąg koła jest zawsze więk­
szy niż obwód sześciokąta wpisanego a mniejszy niż obwód 
kwadratu opisanego, przeto oznaczywszy okrąg koła jak wyżej 

przez C, jest C >  6r jako też C 8r.
Podzieliwszy dwie te nierówności każdą przez 2r mamy

C C
2,. >  3 j ako 2r <  4

C
Ale 2,. =  71 więc /r >  3 „ „ n 4

leży więc stósunck o którym mowa między dwiema całko- 
witemi liczbami 3 i 4. Jest zaś liczbą niewymierną z po­
wodu, że wyraża stósunek linii krzywej t. j. kołowej do pro­
stej t. j. do średnicy, a dwie takie linije żadnego stosunku 
między sobą mieć nie mogą, jako dwie ilości całkiem od 
siebie różne; rachując go przeto wychodzimy z tej zasady, że 
krzywa kołowa jest wielokątem o nieskończonej liczbie bo­
ków nieskończenie małych. Takie boki nieskończenie małe 
zwykli Geometrowie nazywać elementami linii kołowej. Jak 
więc tylko w nieskończoności uważać możemy okrąg koła 
za wielokąt foremny z nieskończenie małych boków złożony, 
tak też tylko w przypadku tym znaleść możemy stósunek 
okręgu koła do średnicy. A jako okrąg koła czyli granica 
wielokątów wpisanego i opisanego nigdy przejść zupełnie nie 
może na wielokąt, a wszelako zbliżyć się do niego może 
z taką dokładnością jak chcemy, tak też i stósunek tegoż 
okręgu do średnicy w żaden sposób zupełnie dokładnie otrzy­
manym być nie może; pomimo to jednak dokładność tę tak 
daleko posunąć można, iż rzeczony stósunek mniej się od 
zupełnie dokładnego różnić będzie, niż wszelka ilość nazna­
czona jakkolwiek mała; a to jest jak wiemy cechą nie wy- 
mierpości.
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Obrachowanie stósunku okręgu kola do średnicy czyli n.
§. 165.

Pierwszy sposób. Według §. 163 obrachowawszy obwody 
wielokątów wpisanych lub opisanych, których liczba boków 
powiększa się następnie dwa razy, wychodząc od pewnego wie­
lokąta, który umiemy wpisać w koło i któregoby bok był znany, 
tudzież kładąc promień kołacz: 1, otrzymamy szereg obwodów 
wielokątów, z których każdy następny będzie bliższym okręgu 
koła a jego stosunek do średnicy będzie także znany. Wziąw­
szy potćm jeden którykolwiek z obwodów wielokąta za okrąg 
koła, otrzymamy jego stosunek do średnicy tóm więcej do 
prawdziwego zbliżony, im dalszych wielokątów obwody brać 
będziemy. Tak tedy z przywiedzionego §, gdzie wyszliśmy 
od sześciokąta, biorąc obwód 12stokąta za okrąg kola mieli­
byśmy, stosownie do zrównania n — C : 2r,

«  =  6-216630824 : 2 =  3-108315412 : 1 
Z następnych wielokątów znajdziemy podobnież:

71 =  6-2652633840 : 2 =  3-1326316920 : 1
7t =  6-2787066000 : 2 =  3-1393533000 : 1
7t =  6-2820700896 : 2 =  3-1410350448 : 1
«  =  6-2829111168 : 2 =  3-1414555584 : 1
7t =  6-2831213952 : 2 =  3-1415606976 : 1
* =  6-2831738880 : 2 =  31415869440 : 1
7i =  6-2831870976 : 2 =  3-1415935488 : 1

Z obwodów zaś wielokątów opisanych znajdziemy:
«  =  6-4307872728 : 2 =  3-2153936364 : 1
n =  6-3195921744 : 2 =  3 1597960872 : 1
* =  62921787120 : 2 =  3-1460893560 : 1
„  =  6-2854353984 : 2 =  3 1427176992 : 1
n =  6-2837519616 : 2 =  3-1418759808 : 1
* — 6-2833317120 : 2 =  3-1416658560 : 1
* =  6-2832264960 : 2 =  3-1416132480 : 1
«  =  6-2832003072 : 2 r= 3-1416001536 : 1

Uważając więc obwód wielokąta wpisanego mającego 1536 
boków za okrąg koła, mieć będziemy szukany stosunek 

a =  3-1415935488.
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Jeżeli zaś obwód takiegoż wielokąta opisanego uważać bę­
dziemy za okrąg koła, na ten czas otrzymamy 

* =  3-1416001536.
Widzimy tu wyraźnie jak stosunek, * z następnóm podwaja­
niem boków zbliża się ciągle do pewnej granicy stałej i nie­
zmiennej; z dwóch bowiem wielokątów wpisanego i opisanego, 
stosunek ten przy wielokątach po 1536 boków mających, 
zgadza się już prawie w pięciu cyfrach dziesiętnych. A gdy 
okrąg koła, spoina obu wielokątów granica, znajduje się cią­
gle między niemi zawarty, więc stosunek * jest rzeczywiście 
większy od pierwszego a mniejszy od drugiego czyli 

*>3-1415935488 tudzież * <  3-1416001536 
można więc za zbliżony stosunek okręgu koła do średnicy 
wziąść z wszelką pewnością przynajmniej te cyfry, w których 
się obwody dwóch tych wielokątów zgadzają; albo też do­
kładniej, jako dla ilości środkującej między rzeczonemi ob­
wodami, wziąść średnią arytmetyczną między ostatnicmi wy­
padkami. Tak tedy znajdziemy * rz 3-1415968512 
który stosunek porównany z otrzymanym sposobami jakie 
wyższa Matematyka podaje, zgadza się z nim w pięciu cy­
frach dziesiętnych, która dokładność dla zwyczajnych, nawet 
dość delikatnych w praktyce wydarzających się rachunków, 
jest wystarczającą. W  dalszym więc ciągu, gdy potrzebować 
będziemy tego stosunku, przyjmiemy stale * zz 3-14159.

Pierwszy A kciiimedes urodzony w Syrakuzie około r. 
287 przed Chr. pracując nad obrachowaniem koła znalazł, 
że kiedy średnica zz 1, okrąg koła jest mniejszy niż 3^g 
a większy niż 3£J, jego więc stósunek okręgu koła do śred­
nicy jest = 2 2  : 7 czyli 3 -14.......... t. j. w dwóch cyfrach dzie­
siętnych dokładny. A d r y ja n  M e t iu s  około 1585 znalazł
tenże stósunek = 3 5 5  : 113 czyli * =  3-141592 .............t. j.
w sześciu cyfracli dziesiętnych dokładny a niezmiernie łatwy 
do zatrzymania w pamięci; każda bowiem z trzech pierw­
szych liczb nieparzystych 1, 3, 5 jest dwa razy powtórzoną 
113355 i pierwsze trzy cyfry wyrażają długość średnicy a 
ostanie trzy długość okręgu koła.
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§. 166.
Drugi sposób . Dowiodło się w §. 163, że powierzchnia 

koła K =  położywszy r — 1, będzie K —  n t. j .  stosu­
nek okręgu koła do średnicy równa się powierzchni koła któ­
rego promień — 1. Szukając przeto powierzchni dwóch wie­
lokątów wpisanego i opisanego o jednakowój liczbie boków, 
w przypuszczeniu że promień koła je s trr  1, znajdziemy także 
nieco łatwiej stosunek o który chodzi z następującego za­
gadnienia.

Z agadnienie. Mając dane powierzchnie dwóch wieloką­
tów wpisanego i opisanego na kole, o jednakowej liczbie bo­
ków, znaleśó powierzchnie dwóch innych wielokątóio wpisanego 
i opisanego na ternie samem, kole o podwójnej liczbie boków.

Rozwiązanie. Niech będą ab i AB fig. 176 boki dwóch 
wielokątów wpisanego i opisanego o n liczbie boków, których 
powierzchnie są znane; poprowadziwszy cięciwę bC, ta będzie 
bokiem wielokąta wpisanego mającego 2n boków. Prowadząc 
w punktach a i b styczne aż do przecięcia się z AB w punk­
tach A' i B', będzie A ’B' bokiem wielokąta opisanego mają­
cego także 2« boków. Oznaczywszy powierzchnie, dano przez 
p i P a  szukane przez p' i P', ponieważ powierzchnia wielokąta 
którego bok ab jest

zz n.aSb —  2a.DSó
a wielokąta opisanego którego bok AB, powierzchnia 

rr nASB rr 2m.CSB;
tudzież, ponieważ powierzchnia wielokąta którego bok Cb, 
równa się 2«.CSó, a nareszcie powierzchnia wielokąta opisa­
nego, którego bok A 'B ’ równa się 2«.A 'SB', albo, z powodu 
że trójkąt CSB’ =  B'Só §.43 , taż powierzchnia =  2n.CSóB', 
przeto mamy

p =  2«.DSó, P =  2/i.CSB, p' =  2w.CSó, P ’ =  2ra.CSiB' 
i wodzimy, że powierzchnie tych czterech wielokątów mają 
się w stósunku trzech trójkątów i czworokąta, skoro je po 
dwa łączyć będziemy; dosyć więc znaleść stósunek rzeczo­
nych trójkątów’ i czworokąta, a tem samem mieć będziemy
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stosunki powierzchni wielokątów, z których rozwiązanie po­
danego zagadnienia wprost wypływa.

Dwa trójkąty CSB i CSó mają wysokości równe, gdyż 
mają wierzchołek w jednymże punkcie C i podstawy na pro­
stej SB, ich więc powierzchnie są w stosunku podstaw t. j.

CSB : CSó =  SB : Sb. Lecz SB : Só : SC : SD 
bo CB równoległa do Dó, przeto 

CSB : CSJ =  SC : SD
Dwa trójkąty CSó i DSó mają także wysokości równe, mają 
się więc ich powierzchnie jak podstawy 
to jest CSÓ : DSó =  SC : SD
a następnie CSB : CSó =  CSó ~  DSó
Dołożywszy w miejsce trójkątów same powierzchnie, któ­
rych są częściami, będzie

P : p ~  p' : p  skąd p' ~  \r P.p 
skąd czytamy, że powierzchnia wielokąta wpisanego jest 
średnią geometrycznie proporcyjonalną między powierzchnią 
wpisanego i opisanego wielokąta, dwa razy mniej hoków ma­
jących. Tym sposobem jedna część zagadnienia rozwiązana.

Aby znalcść P', uważmy, iż w trójkącie CSB prosta SB' 
dzieli kąt CSB na dwie równe części, przeto według §. 62 
jest BB' : B'C =  SB : SC.
Oprócz tego trójkąty B ’SB i B ’SC mają tęż sarnę wysokość 
SC, przeto
B'SB : B ’SC =  BB’ : B'C =  SB : SC =  Sb : SD -  SC : SD, 
Lecz wyżej znaleźliśmy SC : SD —  CS 6 : DSó, przeto też

B'SB : B’SC =  CSó : DSÓ 
skąd B'SB +  B ’SC : B'SC =  CSó +  DSó : DSó 
Ale B ’S B - f  B ’SC=CSB zatem CSB :B 'SC =C S ó-fD S ó:D Só, 
albo mnożąc następniki przez 2 i bacząc iż 2B'SC=CSóB', 
będzie CSB : CSóB' =  CSi -+ DSó ; 2DSÓ; 
albo kładąc same powierzchnie jako tenże sam stosunek 
względem siebie zachowujące,

P : P ’ —  V~\~P • 2jp, a stąd P ’ ~
2P. p 2P.p
P + P  p —f-Vp ,p
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Tak tedy z wiadomych powierzchni p  i P, znaleźliśmy żądane 
powierzchnie p i P'.

Po rozwiązania obecnego zagadnienia, przez następne 
ciągle podwajanie boków wielokątów wpisanego i opisanego, 
w przypuszczeniu że promień koła jest =  1, możemy zna- 
leśó powierzchnię koła, która będzie żądanym stosunkiem 
okręgu koła do średnicy czyli n.

Najprościejszy przypadek, jaki się tu nasuwa jest, gdy 
p  wyraża powierzchnię kwadratu w koło wpisanego a P po­
wierzchnię kwadratu opisanego; skoro bowiem r —  i, naten­
czas p — 2, zaś P =  4. Będzie więc

V' — V4.2 ~  2V'2, P ':
2.4.2 _  8(1—\/2) _

2-f2V2 *+V2 1—2
8(V2-1)

i tym sposobem znalazło się powierzchnie ośmiokątów wpi­
sanego i opisanego. Wykonawszy naznaczony rachunek, 
znajdziemy p' =  2-828427, P '=3-313709. Postępując tymże 
samym sposobem, otrzymamy powierzchnie 16stokątów wpi­

sanego i opisanego p" ~  YP'.y> ,

p ” =  3-061467, P" =  3-182598 i t. d. aż nareszcie przyjdzie­
my do powierzchni wielokątów wpisanego i opisanego nie­
skończenie mało różniących się od siebie; a wtedy wziąwszy 
jednę z nich lub dokładniój średnią arytmetyczną między niemi 
za powierzchnię koła, ta według na początku zrobionej uwagi, 
będzie szukanym stosunkiem okręgu koła do średnicy czyli n.

§. 167. ■

2 P > '
P ' = —rr— r. czyli p - f  p *

Trzeci sposób oparty na wielokątach róiunoobicodoioych 
(isoperimetra). Tu mamy sposób czysto geometryczny podany 
przez J. S c h w a b  w  r. 1813 *) a wyłożony i ułatwiony przez 
W il h . M a t z k a  profesora w Pradze w czasowóm piśmie Gru- 
NEKTA **). Ten jest następujący. Niech AB będzie bokiem 
wielokąta foremnego w koło wpisanego fig. 177, poprowa­
dziwszy do niego prostopadle promień SC, tedy jak wiadomo 
promień ten dzieli kąt ASB, bok AB i łuk ACB na dwie

*) Eleinens de Geometrie par J. Schwab. Nancy 1813.
**) Archiy der Mathematik und Physik von Gbunebt B. IX. S. 79.
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równe części. Poprowadziwszy cięciwy AC i BC, te będą 
między sobą równe, a poprowadziwszy znowu do nich pro­
stopadle promienie SA' i SB' i złączywszy A', B' prostą A ’B', 
ta będzie równoległą do AB i — gAB, przeto A 'B ' jest bo­
kiem wielokąta foremnego w koło wpisanego dwa razy więcój 
boków niż pierwszy mającego, obwód zaś jego będzie równy 
obwodowi pierwszego, ma bowiem wprawdzie dwa razy mniej­
sze boki, lecz za to liczba ich jest dwa razy większa. Na­
zwawszy promień koła opisanego na pierwszym wielokącie 
t. j. promień SA ~  R, zaś promień koła wpisanego SD —  r, 
tudzież promień koła opisanego na drugim wielokącie czyli 
SA' — K' a SD’ czyli promień koła wpisanego w tenże wie­

lokąt przez ?•’, tedy ponieważ C D '= D 'D , więc S D '= ^ ~ jj^ —

bo S D ' +  D'C -  SC, tudzież S D '— D'C =  SD' —  DD' =SD . 
A że położyliśmy SA =  SC — R, S D = r ,  S D '= r ’ ,

R + r
więc r — — g— •

W  trójkącie SA'C prostokątnym przy A', A 'D ' jest prosto­
padłą do SC, przeto SC : SA’ — SA' : SD ’ §. 63 

czyli R : R' =  R ’ : r skąd R ’ — VR.r'.
Niechże S, s i S', s' oznaczają średnice tychże samych kół, 
do których promienie R, r i R', r\ należą, tedy mnożąc 
pierwsze z otrzymanych zrównań przez 2,

będzie , 2R -j- 2r .. , S-)-s
2r — ------- !------  czyli s =  — — .

2 J 2
Mnożąc podobnież drugie przez 2 będzie

2R' ~  2 \ ^  =  V « t y = V a Ł 2 ?  czyli S ' = V Ś V .  
Niechże teraz O wyraża obwód tak pierwszego jako i dru­
giego wielokąta, bo te są sobie równe, tedy dzieląc obie 
strony ostatnich zrównań przez O, znajdziemy:

S ) : 2  ‘O
_  S +  s s
“  20 "O" ' O

o
_ VS.s'_\/s ^  —\ / s  

o » V o • otudzież
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z których zrównań widzimy, że - -  jest średnią arytmety-

. , S . s , S' . , , .czną między —  i — , zas jest średnią geometryczną mię­

dzy i -L , stąd rachunek jest nadzwyczajnie łatwy, bo

wychodząc od wielokąta, którego obwód znamy, szuka się 
tylko ciągle średniej arytmetycznej i średniej geometrycznej 
między dwiema znanemi liczbami. Takiemi wielokątami są 
kwadrat albo sześciokąt w koło wpisane. Wyjdźmy od sze- 
ściokąta. Ponieważ AB — R zaś O ~  611,

zatem S _  2̂R _
O 6R 3

A żc AD =  Ą R, tudzież z trójkąta ASD jest r 2-f- ^R " = R 2 

skąd r = T V 3 , w i ę c ^ . = ^  =  _  =  i V3.

Następnie znajdziemy: ^  J -j- ~ )  : 2 —

jako też -p- =  V i  • — * Vs -hV 3-
Postępując tak dalej i rachując na dziesięć cyfer dziesięt­
nych dokładnie, znajdziemy:

Liczba boków 
wielokąta « : 0 S : O

6 . . . . 0-2886751346 . . . 0.3333333333
12 . . . . 0-3110042340 . . . 0.3219752754
24 . . . . 0-3164897547 . . . 0-3192207323
48 . . . . 0-3178552435 . . . 0-3185372563
96 . . . . 0-3181962499 . . . 0-3183667075

192 . .  . . 0-3182819787 . . . 03183243387
384 . .  . . 0-3183031587 . . . 0-3183121777
768 . . . . 0-3183076682 . . . 0-3183099231

1536 . . . . 0.3183087956 . . . 0-3183093595
Widzimy tu wyraźnie, jak średnia arytmetyczna już przy 

48kącie bardzo się mało różni od średniej geometrycznćj i 
obeszłoby się już bez dalszego rachunku, byle tylko trzecią
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część różnicy między temi średniemi odjąć od większej albo 
§ tejże różnicy dodać do mniejszej, otrzymamy bowiem

0-3185372563 —  0-3178552435 
3

0-0002273376
ci

zatem -g- =  0-3183109187 albo =  0-3183099187

które z ostatniemi średniemi w poprzedzającćj tabliczce zga­
dzają się w pięciu cyfrach dziesiętnych. Wziąwszy teraz 
w miejsce obwodu wielokąta okrąg koła, t. j. położywszy C za O,

będzie ~  =  0-3184109187 =  -L  skąd «  =  3-14158

t. j.  w czterech cyfrach dziesiętnych dokładnie. Ostatnie
liczby rzeczonej tabliczki dają także:
pierwsza n —  3-141603669, druga n — 3-141597852
t. j. prawie w pięciu cyfrach dokładnie czyli blisko tak, jak
z 48miokąta otrzymaliśmy.

Uwaga. Można też było wprost , , R -j-rz wzorow r —  — -—  
2

i R' —  \ R.r' szukać różnych r i R, poczynając także od 
wielokąta, którego stosunek boku do promienia jest znany 
wp. od kwadratu lub sześciokąta. Zacząwszy podobnie jak 
wyżej od sześciokąta, znajdziemy

r — 0-8660254038 ................R =  1-0000000000
0-9330127019 .........................  0-9659258263
0-9494692641 .........................  0-9576621969
09535657305 .........................  0-9556117686
0-9545887496 .........................  0-9551001221
0-9548444359 .........................  0-9549722705
0-9549083532 .........................  0-9549403113
0-9549243322 ................ : . . 0-9549323207

i t. d.
Zastanowiwszy się nad tern, że R jest promieniem koła opi­
sanego na wielokącie, a r prostopadłą (apothema) ze środka 
na bok wielokąta spuszczoną, dostrzeżemy jak za kaźdem 
podwojeniem liczby boków wielokąta, ta prostopadła zbliża 
się ciągle do promienia. Przez to ostatnie postępowanie znaj­
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duje się naturalnie promień koła, którego okrąg jest 6, a

przeto ponieważ n —  będzie z naszego rachunku n — ~  
2r 2v

lub 7i , albo dokładniej n —  - ^----- - — — ------
2R J 2R -j- 2r R -j-r

2
Wziąwszy za R i r ostatnie liczby co dopiero otrzymane, 

0
znajdziemy n —  ——----------------=  3*14159..............jak wyżej.

J 3 1*9098566529 J J J
W  nowszych czasach posuniono rachunek liczby n aż do
530 cyfer dziesiętnych *), z których pierwsze 20 są:

=  3*14159265358979323846.
Czasem bywa i dokładniejszy logarytm tej liczby potrzebny, 
przeto gó tu kładę log. n — 0*497149872694.
Ten atoli rachunek prowadzono nie żadnym z trzech tu wy­
łożonych elementarnych sposobów, ale przy pomocy sposo­
bów, jakie wyższe części Matematyki podają.

§. 168.
W  §. 163 znaleźliśmy dla powierzchni koła wyrażenie 

K:z= C X  2 r> które nam wskazuje, że taż powierzchnia równa 
się powierzchni trójkąta mającego za podstawę okrąg koła, 
rozumie się wyprostousany, a za wysokośó promień tegoż kola; 
albo: równa się powierzchni prostokąta mającego za podstaioę 
okrąg wyprostoioany a za wysokość połowę promienia.

Gdybyśmy więc umieli dokładnie znalcść długość okręgu 
koła dla danego promienia, moglibyśmy według §. 136 zna- 
leść kwadrat równający się powierzchni koła. Lecz długość 
krzywej kołowej znaleźliśmy C -  2 nr, która jak widzimy 
zależy od n-; w poprzedzających zaś §§. przekonaliśmy się,

*) Professor Richter w Elblągu wyrachował ten stosunek w 333 cy­
frach a Streiilke Dyrektor w Gdańsku giedm ostatnich cyfer poprawił 
i 63 dalszych doracliował. Zobacz Archie der Mathernatik und Phy- 
3ik eon G runert XXIII. Thf.il S. 475. R utherford obrachował n 
w 440 cyfrach, a nareszcie Shanks w 530. Zobacz „Noueelles Anna- 
les de Mnthematiques~ T. XIV. p. 210 albo ,,Comios‘' T. VII p. 335 
23. Marca 1855.
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że liczba jr, nigdy z bezwzględną dokładnością otrzymaną być 
nie może, dla tego tćż ani długość okręgu koła ani jego powierz­
chnia z geometryczną dokładnością znalezione być nie mogą; 
pomimo to jednak, rzeczone ilości tak bliskie prawdziwych 
otrzymane być mogą, iż różnice między niemi a prawdziwemi 
będą mniejsze niż wielkość naznaczona, jakkolwiek mała.

Znalezienie długości okręgu koła a w ogólności dłu­
gości każdej krzywej w jednostkach prostych, nazywa się 
icyprostowaniem krzywej (rectificatio), znalezienie zaś powierz­
chni koła, albo każdćj figury krzywokreślnej, wyrażonój 
w jednostkach powierzchni prostokreślnej, nazywa się kwa- 
drowaniem koła lub innych figur (ąuadratura), z powodu, że 
do mierzenia powierzchni wzięliśmy za jednostkę kwadrat 
na jednostce długości wystawiony, i że szukając powierzchni 
koła, szukamy rzeczywiście, ile razy taż powierzchnia jest 
większą niż kwadrat jednostkowy.

Wymiary koła, t. j. długość jego okręgu i wielkość 
poła krzywą kołową ograniczonego, zależą jak widzieliśmy 
jedynie od liczby n czyli od stósunku okręgu koła do swej 
średnicy, więc znalezienie dokładne powierzchni koła, zależy 
od dokładności n. A  że, jak to już wielokrotnie starałem 
się przekonać, n jest liczbą niewymierną, bo krzywa koło­
wa z prostą (swoją średnicą) jako całkiem różnćj natury li- 
nije, żadnego stósunku, a zatem i spólnej miary mieć nie 
mogą, zatem tak okrąg koła jako też i jego powierzchnia 
w żaden sposób z bezwzględną dokładnością obrachowane 
być nie mogą.

Pomimo takiej oczywistości, kwadratura koła zajmowa­
ła wiele nawet niepospolitych głów; zrodziła wiele śmiesz­
ności i zaciętych sporów naukowych; wywołała bardzo wiele 
pism i pisemek w tym przedmiocie; a przeszedłszy nawet 
w pośmiewisko, z powodu, że nie wszyscy rozumiejąc o co 
tu chodzi, sądzili, iż kwadratura koła zależy na znalezieniu 
koła kwadratowego, skończyło się na tćm, że Geometrowie 
francuzcy i angielscy jąwszy się szczerze tej pracy i prze­
konawszy się dowodnie o niepodobieństwie znalezienia po-

14
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wierzchni prostokreślnej równaj ącćj się z matematyczną do­
kładnością powierzchni koła, a przy tóm mając na wzglę­
dzie mały i prawie żaden pożytek z tej pracy, przez swój 
organ, Akademiją umiejętności w Paryżu, ogłosili w r. 1775, 
iż żadnego pisma tyczącego się kwadratury koła Akademija 
więcej nie przyjmuje. Owocem usiłowań znalezienia stosun­
ku okręgu koła do średnicy są liczne na ten cel podane 
wzory lub szeregi, przy pomocy których można bez trudności 
i z taką jak chcemy lub potrzebujemy dokładnością obra- 
chować n. Kiedy więc można zawsze mieć stosunek okrę­
gu koła do średnicy, a następnie okrąg i powierzchnią koła 
z taką jak chcemy dokładnością, na cóż się przyda próżny 
mozół i suszenie mózgu na sklejenie jakiejś lepianki pozor­
nie schludnćj a w rzeczy samej brudnej i wiole śmieszności 
mającej? Żadnemu tóż już prawdziwie uczonemu nie przyj­
dzie do myśli szukać kwadratury koła, bo podobna manija 
zwykła się tylko rodzić w głowach płytkich, którym wszyst­
kie nauki zdają się do nabycia bardzo łatwe i prawie żad­
nej pracy nie ■wymagające; oddając się więc wszystkim na 
raz, dostają pewnego zawrotu głowy i gorączki, w której 
wszystko jasno widząc, usiłują te swoje marzenia innym zdro­
wym na umyśle narzucić, a wszelki opór z ich strony uwa­
żają za grubą niewiadomośc lub nieprzenikliwość.

§. 169.
Znalazłszy długość linii kołowej tudzież powierzchnię 

koła, zatrudnijmy się teraz znalezieniem powierzchni części 
koła a mianowicie powierzchni wycinka, odcinka i pierście­
nia kołowego t. j. powierzchni zawartćj między dwoma okrę­
gami kół spółśrodkowych.

T w ie r d z e n ie . Powierzchnia toycinka kołowego równa 
się iloczynowi z wyprostowanego luku, który nazwać można 
podstawą wycinka, przez połowę promienia koła w którórn 
wycinek uważamy.

Niech będzie wycinek ASB fig. 178, oznaczywszy jego 
powierzchnię przez W , mamy dowieść, że W = A B X j A S .  
Rozumiem, że nie potrzeba dowodzić, iż powierzchnia wycin-
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ka jest takąż samą częścią względem całej powierzchni ko­
ła, jaką jest łuk AB służący mu za podstawę, względem ca­
łego okręgu koła, albo też jaką częścią jest kąt ASB wzglę­
dem czterech kątów prostych (4R) przeto proporcyja 

W  : Iv r= A B : C jest prawdziwą, 
zatrzymując z poprzednich §§. znaczenie C i K. Rozmno­
żywszy drugi stosunek przez i AS, będzie 

W : K =  AB XĄ A S : C X jA S  
Ale ponieważ według §. 163 K C X  5AS, więc też
W = AB X  i AS, co było do dowiedzenia.

Z  tego wyrażenia powierzchni wycinka kołowego czy­
tamy jeszcze, że taż powierzchnia równa się powierzchni trój­
kąta mającego za podstawę łuk AB wyprostowany, a za wy­
sokość promień koła.

Uwaga. Znalazłszy powierzchnię wycinka, skoro po­
prowadzimy cięciwę AB, widzimy wyraźnie, że powiórzchnia 
odcinka równa się różnicy między wycinkiem a trójkątem 
ASB. Oznaczając więc odcinek w ogólności przez O, będzie 
w każdym razie 0 ~ W — A  ASB.
Wyrażenie powierzchni odcinka zależące głównie od powierz­
chni trójkąta jest różne według różności danych do rachun­
ku. Może być bowiem danóm do obrachowania powierzchni 
odcinka, a) promień koła i łuk wyrażony w stopniach; 
h) może być daną długość luku wyrażona w linii prostej, 
cięciwa i promień; c) może tóż być danym kąt ASB i cię­
ciwa A B ; nareszcie d) może być dauą cięciwa AB i część 
promienia do cięciwy prostopadłego, zawarta między cięciwą 
i łukiem, jak na figurze część CD, którą pospolicie strzałką 
(sagitta) nazywamy. Jak w każdym z tych przypadków 
obrachować tak powierzchnię wycinka jako też trójkąta, a 
następnie otrzymać wyrażenie powierzchni odcinka, potrzeb­
ne do tego są inne wiadomości, które w dalszym ciągu po­
znamy.

14.
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§■ 170.
Dejinicyja. Dwa wycinki w kołach różnych promieni 

nazywają się podobne, skoro ich podstawy (łuki) mierzą też 
same lub równe kąty przy środku.

T w ie r d z e n ie . Powierzchnie dwóch podobnych wycinków, 
mają się iv stosunku kwadratów promieni kół do których na­
leżą.

Niech będą dwa wycinki ASB i A'SB' jig. 179, piórw- 
szy w kole, którego promień SA, a drugi w kole z promie­
nia SA' i których podstawy (łuki) AB i A 'B ’ mierzą tenże 
sam kąt ASB przy spólnym środku S , mamy dowieść, że 
pierwszy do drugiego jak kwadrat z SA do kwadratu z SA' 
czyli oznaczając pierwszy przez W  a drugi przez ic, 
że W :w  =  SA2: SA72.
Ponieważ według poprzedzającego twierdzenia jest 

W  =  A B X J S A , zaś w =  A ’B’ X||SA', 
zatem W : m =  A B X ,J S A :A ’B 'X J S A '. Ale z §. 163 wia­
domo, że AB : A ’B '— S A : SA', a mnożąc poprzedniki przez 
SA a następniki przez SA’, tudzież pierwszy stosunek przez 
\, będzie A B X  JSA :A ’B 'X j S A ’jr rŚ A 2: SA7* 
zatćm W : w =  S A ": SA '2.

W n io s e k . Z proporcyi A B : A 'B ' ~  S A : SA' wypływa 
A B 2: A ’B ' 2 = S A " : SA '2 przeto także W ~ w = A B 2 : A 'B ’2 
t. j. powierzchnie wycinków kołowych mają się do siebie 
w stósunku kwadratów z promieni lub średnic, jak równie 
tu stósunku kwadratów z swych podstaw czyli łuków.

Uwaga 1. Różnica dwóch wycinków spółśrodkowych 
i podobnych, którą trapezem kołowym nazywamy, jak na fi­
gurze powierzchnia AA'B'B, zawarta między dwoma lukami 
spółśrodkowemi, może być także przez bardzo prosty wzór 
wyrażona. Poprowadziwszy bowiem w punktach A  i A' 
styczne nieograniczonej długości, wystawmy sobie łuk AB 
rozwiniony na pierwszą styczną t. j. weźmy ĄC =  długości 
linijowej łuku AB, a złączywszy punkt C z środkiem koła 
S, prosta ta przecina drugą styczną w punkcie C '; dwa trój­
kąty ASC i A 'S'C ' są podobne, przeto A C : SA = A 'C ' : SA'
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czyli A C :A ’C' =  SA :SA '. A  że AB: A 'B '= S A : SA’, więc 
też AC: A'C' =  AB: A'B'. Ale z wykreślenia AC =  AB, więc 
też A 'C '= :A ’B' t. j . prosta A 'C ' wyraża długość łuku A'B'. 
Powierzchnia trójkąta ASCm  ACXjSA:r:powierzchni wycin­
ka ASB; podobnież powierzchnia trójkąta A 'SC’ — A 'C 'X śS A ' 
— powierzchni wycinka A'SB', przeto różnica powierzchni trój­
kątów, czyli trapez prostokreślny AA 'CC ’~  powierzchni tra­
pezu kołowego A A 'B ’B. Lecz powierzchnia trapezu 

AC I A ’C'
AA ’C’C = ------ x------X A A ’ §. 123, zatem powierzchnia tra-

AB +  A ’B ’ , ,
pezu kołowego A A ’B ’B = ------- =-------X A A ’ t. j. równa się£
iloczynowi z połowy summy dwóch jego podstaw przez róż-

AB +  A ’B ’
nicę promieni. Łatwo też dowieść, że -=rA ''B "

czyli, że połowa summy dwóch rzeczonych podstaw równa 
się łukowi koła spółśrodkowego a przez środki AA' i BB' prze­

chodzącego , tak jak ------- ------—  A ’’C” .

Uwaga 2. Dwa okręgi kół spółśrodkowych ograniczają 
pewną część powierzchni większego koła, która się pierście­
niem (annulus) zowie. Wyrażenie tej powićrzchni bardzo ła­
two znaleść. Jeżeli bowiem C i c wyrażają okręgi, Ił i r 
promienie, a K i k powierzchnie tych kół, tedy ponieważ 
oczywiście powierzchnia pierścienia równa się różnicy po­
wierzchni obu kół, zaś K — C X «B  a k -c ^ ^ r ,  oznaczywszy 
powierzchnię pierścienia przez P, będzie JP=:K— &=£(CR— cr) 
albo równa się połowie różnicy dwóch prostokątów ma­
jących za wymiary C i R , c i r. Prościejsze znajdzie- 
my wyrażenie tego pierścienia, biorąc powierzchnie kół 
wyrażone przez n. Gdy bowiem K =  ttR2, k —  nr'1 zatem 
P —  77:(R2— r'1)—  7r(R-j-r)(R— r) t. j. powierzchnia pierścienia 
równa się powierzchni prostokąta mającego za dwa wymiary 
summę i różnicę promieni kół, rozmnożonej przez stosunek 
okręgu koła do średnicy. Albo jeszcze lepiój : szukając do 
dwóch prostych R -j-r  i R — r średniej geometrycznie pro-
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porcyjonalnój według §. 99, którą oznaczmy przez R', ponieważ 
R-{-?-:R ' =  R' :R — r , skąd R '2= (R -| -? ’)(R—r), przeto po­
wierzchnia pierścienia będzie JP— rtli'". Lecz ttR '2 wyraża 
powierzchnię koła, którego promień R ’ , zatem powierzchnia 
<pierścienia równa się powierzchni kota, którego promień jest 
średnią geometrycznie proporcyjonalną między summą i róż­
nicą promieni kół spółśrodkowych tworzących pierścień.

Albo: przedłużywszy promień AS do D i przez punkt 
G, w którym tenże promień spotyka okrąg mniejszego koła, 
poprowadziwszy cięciwę większego koła EF styczną do okrę­
gu koła mniejszego, ponieważ AG =  R-J-r zaś GL) ~  R—r, 
a z §. 90 wiemy że F G “ -  AG X  GD z :  (R -f-r^ ) (R— r), 
więc FG jest to promień, który wyżej przez R ’ oznaczyliśmy, 
cięciwa zaś EF jest średnicą; przeto powiedzieć jeszcze mo­
żemy, że powierzchnia pierścienia równa się powierzchni koła, 
którego średnica jest cięciwą więlcszego, poprowadzona stycz­
nie do mniejszego koła.

§• 171.
Znalazłszy w §§. poprzedzających stosunek okręgu ko­

ła do średnicy, czyli co na jedno wychodzi, wyprostowaw­
szy chociaż tylko ^sposobem przybliżonym okrąg koła na 
łiniją prostą, albo jeszcze wyraźniej, znalazłszy, że gdy śre­
dnica jakiego koła jest = 1, okrąg jego zamyka takich je ­
dnostek 3-14159 . . . albo gdy promień =  1, że okrąg koła 
— ‘In — 6-28318 . . . łatwo z twierdzenia, że okręgi kół ma­
ją się w stosunku promieni lub średnic, znaleść okrąg każ­
dego koła; jakże atoli znaleść długość jakiegokolwiek łuku 
koła?

Już w §. 81 widzieliśmy, że chcąc znaleść stosunek 
dwóch kątów albo raczej wielkość jakiego kąta, potrzeba tyl­
ko znaleść jego stósunek do jednostki kątowej t. j. do kąta 
prostego; a jeżeli kąt jaki jest wyrażony w stopniach, dosyć 
jest tę liczbę stopni podzielić przez 90, aby otrzymać żąda­
ny stósunek. Jeżeli zaś kąt jest wyrażony w stopniach, 
minutach i sekundach, wyraża się naprzód w sekundach, a 
potóm dzieli przez 90X 60X ^0 =324000. A że wszystko co
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się powiedziało o kątach, rozumie się także i o łukach bę­
dących ich miarami, przeto chcąc znaleść długość łuku, do­
syć jest tenże łuk wyrażony w sekundach podzielić przez 
324000, a wypadek będzie stosunkiem długości łuku do dłu­
gości ćwiartki okręgu. Tym sposobom wyznaczona długość 
łuku nazywa się miarą luku kątową. Można się tćż atoli 
zapytać, jaka jest długość łuku, gdybyśmy go sobie wysta­
wili na liniją prostą, wyprostowany czyli roztoczony? Taką 
miarę łuku nazywać będziemy miarą podłużną. Widzimy 
zatem, że jak okrąg koła ma podwójną miarę t. j. kątową 
=  360° i podłużną — 2nr, tak też i każdy łuk, w tej po- 
dwójnój miarze wyrażony być może, t. j . odnosząc go albo 
do ćwiartki okręgu, w którym razie wyrazimy go w stop­
niach, minutach i sekundach, czyli w miarze kątowej, albo 
odnosząc go do promienia czyli szukając stósunku danego 
łuku wyprostowanego do promienia, a wtedy Wyrazimy go 
io miarze podłużnej. Z tego dwoistego uważania łuku, ro­
dzą się nam dwa zadania następujące:

§• 172.
Z adanie 1. Znając liczbę stopni, minut i sekund, czyli zna­

jąc miarę kątową jakiego łuku koła, znaleść stosunek jego 
długości do promienia, czyli znaleść jego miarę podłużną.

Zastanowiwszy się z uwagą nad tern, że n jest stosun­
kiem okręgu koła do średnicy, czyli co na jedno wychodzi

7 t

stósunkiem półokręgu do promienia, łatwo dostrzeżemy, że

jest stósunkiem ćwiartki okręgu do promienia. To dobrze 
pojąwszy, jasną jest rzeczą, że chcąc znaleść długość jakie­
go łuku o danej liczbie stopni, w jednostkach promienia, 
dosyć jest stosunek tegoż łuku do ćwiartki koła rozmnożyć

7 t
przez Oznaczywszy w ogólności liczbę stopni jaką dany

łuk zamyka przez a, zaś długość łuku wyrażonego w jedno­
stkach promienia przez a, tudzież wyraziwszy ćwiartkę okręgu
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w sekundach czyli przez 324000, będzie według tego co 
powiedziano

n
T324000" ’ 2 ~  648000

albo oznaczywszy w ogólności stósunek danego luku do 
ćwiartki okręgu czyli do 90° przez m, t. j . położywszy

<*° _ 6 0 «__60.60.a
90° ~  5400 324000 ’ — m

będzie a —  m. —, a to jest miarą podłużną luku.
Z

Z adanie 2. Znając stósunek wyprostowanego luku do pro­
mienia, czyli znając jego miarę podłużną, znaleźć liczbę stopni 
iv tym luku zawartych, czyli jego stósunek do ćwiartkiokręgu, 
albo jeszcze wyraźniej: znaleźć jego miarę kątową.

Z  ostatniego zrównania wypada m ~  a: -x- co dowodzi,Z
iż aby znaleść stósunek luku do ćwiartki okręgu, potrzeba 
daną długość luku a (t. j. liczbę oderwaną zamienioną na

ułamek dziesiętny), podzielić przez —  wyrażone także w u-
Z

łamku dziesiętnym, a otrzymany iloraz obrócić według Aryt­
metyki na stopnie, minuty i sekundy.

Kiedy promień koła jest — i, wiemy już, że n wyraża
180

półokręgu na liniją prostą roztoczonego, zatem ----- wyra-
7 t .

żać będzie liczbę stopni luku równającego się co do swej
.......................... . , „  , , . , 180.60 . 180.60.60

długości promiemowi koła. Podobnie tez ----------  i --------------
U Tl

wyrażać będą liczbę minut albo sekund luku równającego się 
co do swój długości promieniowi.

Mieć zatem będziemy promień koła wyrażony w stopniach 
180°

R ° = ------=  57°.2957795

wyrażony w minutach 

R' = 180°.60
=  3437'.7467708
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wyrażony zaś w sekundach

R " =  180 -60-60 _  206264"806247

albo ogólnie R =  57°17'44"-806247.
71 7 t

Uwaga. Dwa wzory a— m. im —a: —  otrzymaliśmy

w przypuszczeniu, że promień koła, do którego łuk należy, 
jest = 1 .  Jeżeli zaś promień nie jest jednością, czyli jeżeli 
nie jest r =  1 , należy pierwszy wypadek rozmnożyć przez

r, skąd się otrzyma r albo az=.mr.— \ w drugim

zatóm razie trzeba wypadek podzielić przez r, przez co
7T7* 7Z  #

będzie m = a :—  albo m— ~  : Zastosowanie tych wzo­

rów do liczbowego rachunku zaraz zobaczymy:
§. 173.

Z agadnienie 1. Mając dany promień lub średnicę, 
znaleść długość okręgu koła i jego powierzchnię, i wzajemnie.

Niech długość danego promienia będzie 600 stóp, tedy 
z wzorów C =  2 nr i K  =  nr2 
mamy C =  2.600.3 14159=3769-908 stóp,
zaś K =  3’14159.6002=  1130972'4 stóp kwadratowych.

Niech nawzajem będzie okrąg koła 5400 mil (obwód 
równika ziemskiego), jakiż jest jego promień? (jak daleko 
do środka ziemi).

Z  pierwszego zrównania mamy 
C 5400

7' = 2 ^ = -^28318 = 859'438 miL
Gdyby zaś powierzchnia koła była — 11 stóp kwadratowych, 
a pytano się o promień tegoż koła, tedy z drugiego z przy­
toczonych zrównań mamy 

77 i \ IfTr'1 —  —  skąd r ~  y  —  albo według Arytmetyki
71 71

log. r = £ ( lo g .  77 —  log. n) =0-69467.
Temu logarytmowi odpowiada liczba 4-95 . . . zatem pro­
mień o który chodzi wynosi blisko 5 stóp.
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§• 174.
Z a g a d n i e n i e  2 .  Znaleśó powierzchnię wycinka koło­

wego, którego podstawą jest luk mający 60°, promień zaś ko­
ła do którego należy ma 10 stóp długości.

Rozwiązanie. Według §. 169 powierzchnia wycinka 
jest W = Ł X j » '  gdzie Ł  znaczy podstawę wycinka t. j. łuk 
wyprostowany na liniją prostą, służący wycinkowi za podsta­

wę. Z  §. 172 uwaga mamy Ł  =  mr.— gdzie m znaczy

stósunek miary kątowej luku do ćwiartki okręgu. W  naszym
. 60 2 2 n nr

przeto przypadku jest m ~ ^  = - g - , p r z e t o = - ^ .

A  że 7 t= 3 ‘14159, a r = 1 0 ,  więc Ł “  10 472, a następnie 
powierzchnia wycinka W r r  10-472X 5 =  52.36 stóp kwadra­
towych. , -

Nawzajem: powierzchnia pewnego wycinka kołowego 
równa się 52'36 stóp kwad/ratowych, a promień koła w któ- 
rem się ten wycinek uważa, zamyka 10 stóp,- icieleż stopni 
ma łuk służący temu wycinkowi za podstawę?

Z  wyrażenia powierzchni wycinka W  =  Ł X j 1’ J znaj­

dziemy Ł =  - 

Ł
mamy m = —

2W  104-72 _
■ =  10-472.10

10-472
2 10

2-0944

3-14159_

3-14159 =  0-66666.

Zaś z §. 172, uwaga

=  1-0472X3.14159

t. j.
dług. łuku Ł wyrażonego w stopniach 

90 ' 0-66666 . . .

przeto długość łuku Ł w stopniach =  0-66666 . . . .
=  59°.999 . . . czyli =  60°.

§. 175.
Z a g a d n i e n i e  3 .  Pyta się kto, jak długi jest łuk mający 

10° 15' 36", gdy promień koła do którego należy jest—  864 
stopy?
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Ponieważ długość czyli miara podłużna łuku a~mr. —
ll

gdzie r i n są znane, przeto należy znaleść wprzód m.
W  naszym przykładzie jest

m
10015’36” 10°26 615'.6 36936” 114

90u 90° 5400’ 324000” 1000
przeto szukana długość łuku

3-14159

—  -  =  0114

a z=0-l 14.864. =  154-717 stóp.

Załóżmy sobie jeszcze znaleść długość łuku jednej sekundy 
dla promienia r.

Tu widzimy, żc tylko potrzeba obrachować iloczyn

ten zaś jest =  — i —  ’. JL =  - •-* - =  0-00000485.

W  ogólności więc dla jakiegokolwiek promienia, długość 
łuku jednej sekundy jest =  0-00000485.r. Wziąwszy r =  
1000000 stop czyli prawie 41 § mil, otrzymamy długość łuku 
1 sekundy =  4-85 stop. Wziąwszy zaś długość promienia 
24000 stop czyli milę, znajdziemy tęż długość łuku jednej 
sekundy =  0-1164 stóp. Z  powodu takiej małości łuku je- 
dnćj sekundy, najczęściej w praktycznych rachunkach, nie 
wymagających wielkićj ścisłości, opuszczają się sekundy.

§. 176.
Z a g a d n i e n i e . 4 .  Mając daną długość łuku, cięciwę i  

■promień, znaleść powierzchnię odcinka kołowego.
'Rozwiązanie. Niech łuk AB — a -fig. 178, co do swój 

długości będzie danym, tudzież cięciwa AB — b i promień 
SA — r, potrzeba znaleść powierzchnię odcinka ACB.

Ponieważ według §. 169 uwaga powierzchnia odcinka 
O =  W  — A A S B , przeto znalazłszy powierzchnię wycinka 
ASBC i trójkąta ASB, tym samym mieć będziemy i po­
wierzchnię żądanego odcinka.
Powierzchnia wycinka W  =  a X  i 7** §• 169.

W  trójkącie ASB z wierzchołka S spuściwszy prosto­
padłą SD na AlB, będzie powierzchnia

A A S B  -  £AB x  DS =  x  DS.
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W  trójkącie DSB prostokątnym przy D jest 
P S 2— SB3- D B a= r g— (» 5)2= r 2— \b*, przeto PS -V ,-2—  \IĄ 
powierzchnia więc A A S B  — b̂ V;-'2— ^b2, a nereszcie szu­
kana powierzchnia odcinka jest 0 = a X  ^r— %b Vr2— J/A 
W  tóm wyrażeniu wszystkie ilości są znane, a zatem z łatwo­
ścią powierzchnia odcinka wyrachowaną być może.

Jeżeli w szczególnym przypadku cięciwa b jest bokiem 
sześciokąta w koło wpisanego, tedy ponieważ b ~ r ,  będzie 
powierzchnia trójkąta ASB VV‘2— Jr2 £ rV | r 2 =  £ r 2\ 3.

Według §. 172 a r ;  mr — , czyli, ponieważ w tym przypadku
Z +

60 2 . , 2 7t 7ir . . .m =  -  =  skąd a =  — . r. —  ~  — , powierzchnia wy­

cinka będzie W  =  ^ - X  przeto nareszcie powierz-
O o

chnia odcinka, którego cięciwa równa się promieniowi, jest

O' =  —  —  —  r2y3 —  1 r *(—------ —y3)
6 4 v 2 ^ 3  2 w

Lecz ~  =  1-0471975

zaś \ V3 =  0-8660254

więc -J-----— 0-1811721

a powierzchnia odcinka będzie 0 ’ ~ 0 -090586r2. 
Powierzchnia kola z promienia r jest K zz  n:r2=3-141592?‘2, 
przeto stosunek znalezionego odcinka, mającego za cięciwę 
promień, do powierzchni koła jest

O' _  0-090586r2 _  0 -090586_n noc^
K ~  3141592r2 “  3-141592 —

§• 177.
Z a g a d n i e n i e  5 . Mając daną cięciwę i strzałkę, znaleźć 

powierzchnię odcinka.
Rozwiązanie. Niech na poprzedzającój figurze będą 

AB =  b i PC  =  s dane, wyrachować potrzeba powierzchnię 
odcinka ACB. Już wiadomo, że powierzchnia odcinka jest



221

różnicą między powierzchnią wycinka i powierzchnią trój­
kąta. W  obecnem zagadnieniu przekonamy się, że z wiado­
mościami, jakich dotąd nabyliśmy, nie jesteśmy go wstanie 
rozwiązać, albowiem tylko powierzchni trójkąta znaleść mo­
żemy, powierzchni zaś wycinka nie znajdziemy wprzód, do­
póki nie będziemy wiedzieć miary kątowój luku AB t. j.  
dopóki nie znajdziemy ile stopni zamyka luk AB. Ten luk 
mierzy kąt ASB, przeto na znalezienie liczby stopni w luku 
AB, potrzeba umieć znajdować kąt w trójkącie skoro jego 
boki są dane, czego się dopióro w dalszym ciągu nauczymy.

Dla znalezienia powierzchni trójkąta, następujący ra­
chunek odbyć potrzeba:

Ponieważ AB =  b jest znane, potrzeba znaleść wyso­
kość DS, a już tym sposobem mieć będziemy i powierzchnię. 
Lecz jakże znaleść DS? Widzimy iż DS =  S C — C D =  r —s, 
zaś DŚ2 rr AŚ2 — A D ' —  r2— £ó2, skąd r2-\-s2— 2rs— r2— \b

albo a2—  2ra =  —  J ó2, a stąd r =  =  ^  +  4*2
2 s 8s

Zneleźliśmy tym sposobem promień koła SC,
ó2 -4- 4s2 b2— 4s2zatem U S =  r— s = ---- -̂------- s —

8s
Tak tedy do znalezienia powierzchni trójkąta ASB ma 

my wszystko gotowe i będzie
7,2 ^ _  J.o2

A  ASB =  ( b :-— )8s
skoro się więc nauczymy znaleść w trójkącie ASB kąt S, 
potrafimy rozwiązać i podane zagadnienie.

Z §. 129 wniosek 5. wiemy, że wykreśliwszy na trzech, 
bokach trójkąta prostokątnego trzy wielokąty podobne, po­
wierzchnia wielokąta wykreślonego na przeciwprostokątni 
równa się summie powierzchni dwóch innych wielokątów; 
gdybyśmy na tychże trzech bokach jako na średnicach wy­
kreślili okręgi kół, dowiedziemy, że powierzchnia koła wykre­
ślonego na przeciwprostokątni, równa się summie powierzchni 
kół wykreślonych na dwóch bokach przyległych kątowi pro­
stemu.
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Jakoż oznaczywszy przez R promień koła, wykreślonego 
na przeciwprostokątni, zaś przez r i r' promienie dwóch 
innych kół, mamy AC =  2R, AB =  2r i BC =  2r'; fig. 180, 
a z przywiedzionego wyżćj §. jest (2R) 2 — (2r)2-j-(2r) 2 
albo 4R2 — 4r2 -j- 4r ’2 czyli R 2 — r2 fi- r '2.
Mnożąc obie strony tego zrównania przez n 
będzie jtR 2 =  nr'1 -f- nr 2. Aże ?rR2, nr2 i nr'2 wyrażają po­
wierzchnie kół wykreślonych na rzeczonych trzech bokach, 
przeto prawdą jest, że i t. d. W  ostatniem zrównaniu mnożąc 
obie strony przez Ą, będzie JjrR2 =  Jnr?’2- f -^ r '2 t. j. powierz­
chnia półkola wykreślonego na przeciwprostokątni równa się 
summie powierzchni dwóch innych półkolów.

Po obustronach tego ostatniego zrównania odjąwszy sum­
mę odcinków kołowych ABM -(-BCN, pozostanie z piórwszćj 
strony trójkąt ABC, a z drugiój summa powierzchni APBA-j- 
BQCB, zatem summa tych ostatnich powierzchni równa się 
powierzchni trójkąta ABC.

Powierzchnie krzywokreślne takie jak APBA i BQCB 
ograniczone dwoma lukami kół, w jednęż stronę wklęsłości 
swoje mającemi zwrócone, znane są w Geometryi pod nazwi­
skiem księżyców Hippokratesa, (lunulae Hippocratis), on al­
bowiem pierwszy miał nauczyć znalezienia ich powierzchni 
czyli jak się zwyczajnie mówi ich kwadrowania.

Ponieważ w poprzedzającem widzieliśmy, że tylko dwóch 
księżyców razem można znaleść powierzchnię, zachodzi py­
tanie, czyli mając jeden taki księżyc można także znaleść 
jego powierzchnię?

Na prostćj AB fig. 181, wykreśliwszy okrąg koła i po­
prowadziwszy średnicę CD prostopadłą do AB a z jćj końca 
D  promieniem DA zakreśliwszy łuk AEB, otrzymamy księ­
życ ACBEA. Szukajmy jego powierzchni.

Łuk AEB jest ćwiartką okręgu, bo kąt ADB jest pro­
sty; powierzchnie kół wykreślonych promieniami SA i DA 
mają się do siebie jak 1 : 2, §. 129 wniosek 2. Powierzchnia 
półkola ACBA =  ^ S A 2; powierzchnia wycinka 

ADBEA =  ^ D A * ,



przeto ACBA :_ADBEA =  ^ S A 9 : ^ D A 2 =  2SA2 : D A 2. 
Lecz SA2: D A 2 =  1 : 2 czyli 2SA2: DA* =  2 : 2 =  1 : 1 
przeto ACBA : ADBEA ~  1 : 1 czyli ACBA =  ADBEA. 
Odjąwszy od każdej z dwóch tych ilości odcinek AEBA, 
pozostanie ACBEA =  A A D B  i tym sposobem powierzchnia 
księżyca znaleziona jako liczba wymierna; podobne przeto 
księżyce kwadrowanemi być mogą.





CZESC II.

Stereometryj a (Solidometryj a ).
§■ 178.

Zwróciwszy naszę uwagę na to, co dotąd w umiejętności 
Geometryją nazwanej zrobiliśmy, dostrzeżemy, że wyszedłszy 
od najprostszych pojęć, mianowicie zaś od pojęcia linii pro­
stej i uważając naprzód wielkość dwóch lub więcej prostych, 
potem ich wzajemne względem siebie położenie i własności 
z tego położenia wypadających kątów, przyszliśmy nareszcie 
do figur prostemi na płaszczyźnie ograniczonych, a których 
własności i rozmiary jak równie własności i rozmiary linii ko- 
łowój i koła były dalszym przedmiotem części Geometryi któ- 
rąśmy Planimetryją nazwali. Ale we wstępie powiedzieliśmy, 
że miejsce na płaszczyźnie, lub przestrzeń ze wszech stron 
ograniczona, nazywa się pospolicie figurą; widzimy zatem, iż 
nam pozostają figury w przestrzeni uważane, bo dotąd żadnej 
o nich wzmianki nie uczyniliśmy; następnie więc zatrudnimy 
się figurami w przestrzeni, które ogólnie ciałami (solida), a 
tę część Geometryi, Solidometryj ą albo lepićj Stereometryją 
nazywamy.

Aby miejsce na płaszczyźnie ograniczyć, potrzebowaliś­
my najmniej trzech prostych §. 15. Chcąc przestrzeń ogra­
niczyć, potrzebować do tego będziemy płaszczyzn, bo ta nie 
da się ani prostemi ani krzywemi linijami ograniczyć; wy­
pada więc mówić naprzód o płaszczyznach. A że w porówny­
waniu i dochodzeniu własności figur w przestrzeni czyli ciał 
geometrycznych, wypada bardzo często prowadzić proste

15
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w rozmaitóm względem płaszczyzn położeniu, pi’zeto mówiąc
0 płaszczyznach, równocześnie mówić będziemy o prostych, 
różne względem płaszczyzn położenie mających; po czem 
ograniczać będziemy bąć po części hąć całkiem przestrzeń
1 zastanawiać się nad własnościami tak ograniczonój, czyli 
raczej mówić będziemy o ciałach geometrycznych.

ROZDZIAŁ I.
O płaszczyźnie i prostej różne względem pierteszej położenie

mającej.

§• 179.
W e wstępie powiedzieliśmy, że płaszczyzna (planum) 

jest to taka powierzchnia, na której poprowadziwszy przez 
którekolwiek dwa tamże obrane punkta prostą, ta całkiem 
na niej leży, t. j, żaden jój punkt nie znajduje się za płasz­
czyzną. To znamię płaszczyzny tak jest samo z siebie jasne, 
że chcąc go dowodzić, możebyśmy je  przyćmili; zatem prze­
stając na tern, co o płaszczyźnie w rzeczonym wstępie po­
wiedziano, uczynimy tylko ten wniosek, że prosta mająca z 
płaszczyzną dwa punkta spólne, wszystkie jej punkta leżą na 
tejże płaszczyźnie. Prosta więc nie może hyc 10  części na płasz­
czyźnie a w części za płaszczyzną, t. j. nie może leżeć na dwóch 
różnych płaszczyznach.

We wszystkich rysunkach jako tóź i figurach, wystawiać będziemy 
na papierze lub tablicy płaszczyznę przez równoległobok i oznaczać dwie­
ma głoskami na jego przekątni położonemi. Tak atoli narysowaną i ograni­
czoną płaszczyznę, wystawić sobie należy rozszerzoną do nieskończoności. 
Podzieli ona całą przestrzeń (spatium) na dwie nieograniczone części na­
zwane okolicami (regiones).

Drugie znamię płaszczyzny wskazaliśmy we wstępie, 
że trzy punkta nie te jednym kierunku leżące, dokładnie icy- 
znaczają płaszczyznę. Znamię to możemy w następujący spo­
sób dowieść.

Ponieważ przez jednę prostą można pomyślió nieskoń­
czoną liczbę płaszczyzn, tak jak przez punkt na płaszczyźnie 
nieskończoną liczbę prostych, przeto jeżeli dane są trzy
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punkta A, B, C fig. 182 jakkolwiek byle nic w jednym kie­
runku w przestrzeni położone, można sobie pomyślić jaką­
kolwiek płaszczyznę przez prostą AB łączącą dwa którekolwiek 
z danych punktów przechodzącą; tym sposobem dwa dane 
punkta A i B leżeć będą na tejże płaszczyźnie. Wystawiwszy 
sobie teraz tę płaszczyznę materyjalną i obracając ją około 
prostćj AB jakby około osi, ta w obrocie swoim myślą, jeżeli 
tego potrzeba, rozszerzona, napotka trzeci punkt C i na nim 
się wstrzyma; przechodzić więc będzie przez trzy dane punkta 
i mieć położenie stałe, bo dalszego obrotu odbywać nic może 
nie opuściwszy punktu C. Trzy więc punkta A, B, C nie 
w jednym kierunku leżące znajdują się na jednejże płasz­
czyźnie, której nadają położenie stałe.

Że przez te trzy punkta więcej płaszczyzn przechodzić 
nie może, albo też przechodząc, że się z pierwszą mieszają 
czyli schodzą, łatwo się o tóm przekonać. Gdyby bowiem 
punkta A, B, C leżały na dwóch różnych płaszczyznach, na­
tenczas proste łączące też punkta, t. j. proste AB, AC, BC 
brane po dwie t. j. AB, AC; AB, BC; AC, BC leżeć by mu­
siały całkiem na dwóch płaszczyznach, co według powyższego 
być nie może, przeto też być nie może, iżby trzy punkta A, 
B, C leżały na dwóch różnych płaszczyznach, czyli żeby 
przez trzy punkta nie w jednym kierunku leżące więcej jak 
jedna płaszczyzna przechodzić mogło.

§. 180.
Z  tego dowodu wypada, że 'przez dioie proste przecina­

jące się, jako też i dwie proste równoległe jedna tylko płasz­
czyzna przechodzić może; w obu bowiem przypadkach dowód 
tćj prawdy, sprowadza się do poprzedzającego. Bo wysta­
wiwszy sobie w pierwszym przypadku przez jednę z prostych 
poprowadzoną płaszczyznę, punkt przecięcia się prostych, jak 
równie każdy punkt tej prostej, przez którą płaszczyznę po- 
myśliliśmy, leżeć będzie na tejże płaszczyźnie. A  że dla na­
znaczenia kierunku prostej dostateczne są dwa punkta, przeto 
obierając jeszcze na drugiej prostej trzeci punkt, sprowadzamy 
tym sposobem obecną prawdę do poprzedzającego §.

15.
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W  drugim przypadku obrawszy na jednćj z równole­
głych dwa a na drugiej trzeci punkt, przyjdziemy znowu 
w dowodzie do §. 179. Prawdy przeto albo twierdzenia, że 
przez prostą i punkt za nią dany, przez dwie proste przeci­
nające się, dwie proste równoległe i trzy proste wzajemnie 
się przecinające czyli przez trzy boki trójkąta, prowadzić 
zawsze można płaszczyznę ale tylko jednę, są rzeczywiście 
wnioskami twierdzenia, że przez tx-zy punkta nie w jednym 
dane kierunku, zawsze poprowadzić można płaszczyznę ale 
tylko jednę.

Z tego też samego twierdzenia wypływają następujące 
prawdy jako proste wnioski.

a) Przecięcie się dwóch płaszczyzn jest liniją prostą. Gdyby 
bowiem trzy na tern przecięciu obrane punkta nie leżały 
w jednymże kierunku, dwie płaszczyzny mające te trzy 
punkta spólne, zejśćby się musiały, co się sprzeciwia 
wysłowieniu, że się przecinają.

I) Dwie płaszczyzny mające jeden punkt spólny, mają tćż 
nieskończoną liczbę innych punktów spólnych, które 
wszystkie leżą na prostej z przecięcia się płaszczyzn 
wypadającej.

c) Przez punkt w przestrzeni nie można prowadzić toięcój 
jak jednę prostą równoległą do innej dane/. Przypuściwszy 
bowiem, że można przynajmniej dwie równoległo popro­
wadzić, tedy jako proste przecinające się w tym danym 
punkcie, leżałyby na jednćj płaszczyźnie, potem jako 
każda równoległa do danej, leżałaby znowu każda z tą 
ostatnią na jednejże płaszczyźnie, więc przez punkt dany 
na płaszczyźnie, możnaby poprowadzić więcej niż jednę 
równoległą do prostej danej, co jak z §. 12 wiemy, jest 
niepodobnem.

d) Wszystkie równoległe, jakie pomyślić można przez każdy, 
albo niektóre punkta tejże samej prostej, leżą koniecznie 
na jednejże płaszczyźnie. Przez dwa bowiem którekolwiek 
punkta tej prostej poprowadziwszy dwie inne proste ró­
wnoległe, te według powyższego leżą na jednejże płasz-



220

czyznie; a że i wszystkie punkta piórwszćj prostej leżą 
na tej płaszczyźnie przez ostatnie dwie równoległe prze­
chodzącej, zatem równoległe przez każdy punkt pierwszej 
prostej leżą na tejże samej płaszczyźnie.

§• 181.
Dwie proste uważane na płaszczyźnie, mogą tylko być 

między sobą równoległe lub się przecinać §. 4, w przestrzeni 
zaś też dwie proste mogą także być od siebie równoległe 
albo się przecinać i wtedy, leżą na jednejże płaszczyźnie, ale 
oprócz tego mogą się nie przecinać a wszelako nie być ró- 
wnoległemi, a w takim razie znajdują się na różnych płasz­
czyznach.

Kiedy prosta mająca dwa z płaszczyzną spólne punkta, 
całkiem na niej leży, zatem taż prosta tylko trojakie poło­
żenie względem płaszczyzny mieć może, t. j. albo leżeć na 
płaszczyźnie, albo od niój być równoległą, albo też mieć 
z płaszczyzną jeden tylko punkt spoiny. W  tym ostatnim przy­
padku mówimy, że płaszczyzna przecina prostą. Punkt spoiny 
prostej i płaszczyźnie, zowiemy punktem przecięcia się pro­
stej z płaszczyzną. Sarnę prostą nazwiemy prostopadłą do 
płaszczyzny, jeżeli jest prostopadłą do każdej prostej na tejże 
płaszczyźnie przez ów punkt spoiny, który w tym przypadku 
spodkiem prostopadłej nazwiemy, przechodzącej. W  każdym 
innym przypadku zwać będziemy rzeczoną prostą pochyłą do 
płaszczyzny.

Prosta jest równoległą do płaszczyzny, jeżeli obie jak 
najdalej przedłużone, nigdzie się z sobą nie schodzą.

Dicie płaszczyzny są także równoległe, jeżeli bez granic 
rozszerzone, nigdzie się z sobą nie spotykają.

§. 182.
Jeżeli dwie płaszczyzny nie są równoległe, dostatecznie 

rozszerzone przetną się z sobą w prostej, a wtedy mówimy, 
że też płaszczyzny czynią z sobą pewien kąt. Kąt ten dwóch 
płaszczyzn nazywamy kątem dicuściennym (diedre). Płaszczy­
zny tworzące ten kąt nazywamy ścianami kąta (facies), spólne 
zaś przecięcie się tych płaszczyzn, które tu zastępuje wierz­
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chołek kąta zowiemy krawędzią kąta dwuściennego, przez 
E ulera nazwano po łacinie acies. Francuzi nazywają tę kra­
wędź arete a Niemcy Kante.

Jeżeli kąt dwuścienny jest tylko jeden przy tejże kra­
wędzi, znaczymy go i wymawiamy dwiema głoskami na kra­
wędzi połoźonemi; jeżeli zaś dwa lub więcej kątów dwuścien- 
nych mają krawędź spoiną, natenczas do przeczytania każdego 
z nich używa się czterech głosek, z których dwie środkowe 
kładą się na krawędzi, dwie zaś skrajne na ścianach kąta. 
Tak np. cztery kąty, jakie tworzą dwie płaszczyzny ABCD 
i EFGH przecinające się w prostej LK fig. 183, przeczytamy 
każdy pojedynczo uważany LK, dla rozróżnienia zaś każdego 
z czterech, jak następuje: ALKH, ELKC, BLKG i FLKD. 
Jak się takie kąty mierzą, w dalszym ciągu zobaczymy.

§. 183.
W  powyższym §. 181 powiedzieliśmy, że prosta wtedy 

jest do płaszczyzny prostopadła, gdy jest prostopadłą do każ­
dej prostej na tejże płaszczyźnie przez jej spodek poprowa­
dzonej; ale ponieważ wiadomo, iż przez jeden punkt na płasz­
czyźnie nieskończoną liczbę prostych prowadzić można, 
przeto chcąc dowieść prostopadłości jakićj prostej do płasz­
czyzny, potrzehaby dowodzić jej prostopadłości do każdej 
prostej przez jej spodek na tójże płaszczyźnie przechodzącej, 
t, j. prowadzićby potrzeba nieskończoną liczbę dowodów, 
czyli wyraźniej mówiąc, nigdybyśmy tych dowodów skończyć 
nie mogli, a następnie nie moglibyśmy ostatecznie wyrzec 
o prostopadłości rzeczonej prostej do płaszczyzny. Dla tego, 
aby wskazać cechę, po której moglibyśmy poznać, że jaka 
prosta jest prostopadłą do płaszczyzny, obrać nam potrzeba 
inną drogę dowodu. Na ten koniec dosyć będzie dowieść 
następujące

T wierdzenie. Jeżeli prosta jest prostopadłą do dioóch 
innych prostych, na pewnej płaszczyźnie przez jej spodek prze­
chodzących, a zatem tamże przecinających się, jest tern samem 
prostopadłą do każdej innej prostej na tejże samej płaszczy­
źnie i przez tenże sam spodek poprowadzonej.



Niech prosta AS fig. 184, będzie prostopadłą do dwóch 
innych SB i SC na płaszczyźnie PQ przez punkt S przecięcia 
się jej z płaszczyzną poprowadzonych, potrzeba dowieść, że 
taż sama prosta AS jest też prostopadłą do każdej innej 
prostój na tejże samój płaszczyźnie przez punkt S poprowa­
dzonej. Jedną z tych prostych niech będzie SD. Na dowie­
dzenie tego twierdzenia, prostą AS przedłużmy na drugą 
stronę płaszczyzny aż do punktu A', lecz tak, iżby A'S było 
— A S ; potćm na płaszczyźnie PQ poprowadźmy jakkolwiek 
prostą KL, byle tylko trzy proste SB, SC i SD przecinała, 
jak na figurze w punktach E, F, G ; a połączywszy punkt 
E z punktami A A', ponieważ SE z założenia jest prosto­
padłą do prostej AA' i to z jój środka S wyprowadzona, zatem 
dwie proste AE i A 'E są sobie równe §. 42, gdyż one są 
dwiema pochyłemi jednakowo od spodku S prostopadłej BS 
odległemi. Dla tój samej przyczyny połączywszy punkt F 
z punktami A i A', będzie AF =  AF'. Dwa trójkąty AEF 
i A'EF, w których trzy boki jednego są równe trzem bokom 
drugiego każdy każdemu, bo AEn:A 'E; A F = A 'F  i EF spólne, 
przystają do siebie według §. 22. W  ich przystaniu, ponie­
waż proste AG i A'G łączące punkt G z punktami A  i A' 
leżą na płaszczyznach tych trójkątów, a mianowicie prosta 
AG na płaszczyźnie trójkąta AEF, prosta zaś A 'G  na płasz­
czyźnie trójkąta A'EF, kiedy punkt A ' padnie na punkt A, 
prosta A'G padnie na prostą AG, i zupełnie się przykryją; 
jest więc tym sposobem AG =  A ’G; następnie zaś SG musi 
być prostopadłą do A A ’, kiedy dwie pierwsze jako pochyłe 
i jednakowo od jej spodka S odległe są sobie równe, według 
§. 42. A kiedy SG jest prostopadłą do A A ' więc wzajemne 
A 'A  jest prostopadłą do SG czyli SD, co było do dowiedzenia.

W n io s e k  1. Ponieważ prostój SD nie naznaczaliśmy 
żadnego szczególnego położenia oprócz przechodzenia przez 
punkt S i znajdowania się na płaszczyźnie PQ, zatem łatwo 
wnieść można, że ten dowód stosowanym być może do każdej, 
z owój nieskończonój liczby wspomnianych prostych i żc 
zatem cecha, po której poznaje się prostopadłość prostej do
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płaszczyzny jest ta, iż każda prosta prostopadła do dwóch 
innych w jój spodku się przecinających, jest tem samem, pro­
stopadłą do płaszczyzny przez te dwie proste przechodzącej, 
i wzajemnie ta płaszczyzna do niej jest prostopadłą.

W n io s e k  2. Prosta prostopadła do płaszczyzny, jest 
tem samem prostopadłą do każdej prostej na tejże płaszczy­
źnie przez jćj spodek poprowadzony.

§■ 184.
T w ie r d z e n ie  w z a je m n e . Jeżeli prosta jaka jest prosto­

padłą do trzech innych prostych przez jeden którykolioiek jej 
punkt przechodzących, trzy te proste leżą koniecznie na jednejże 
płaszczyźnie.

Niech prosta AS będzie prostopadłą do trzech innych 
SB, SC, SD przez jedenże jej punkt S jig. 185 przechodzą­
cych, potrzeba dowieść, że trzy te proste leżą na jednejże 
płaszczyźnie. Przypuśćmy, że którakolwiek z tych trzech pro­
stych np. SB nie leży na płaszczyźnie przez dwie inne SC 
i SD przechodzącej, tedy leżeć musi nad albo pod tąż płasz­
czyzną. W  każdym razie wystawiwszy sobie przez dwie pro­
ste AS i SB przecinające się w punkcie S poprowadzoną 
płaszczyznę, co według §. 179 można, i dostatecznie rozsze­
rzoną, ta musi koniecznie przeciąć płaszczyznę przez SC i 
SD przechodzącą. Tem spólnćm przecięciem niech będzie 
prosta SE, trzy więc proste AS, SB i SE leżą na jednejże 
płaszczyźnie; ale też i trzy proste SC, SD i SE leżą również 
na jednej a od tamtej różnój płaszczyźnie. Według poprze­
dzającego twierdzenia AS będąc z założenia prostopadłą do 
SC i SD, jest też prostopadłą i do SE. Ale również z zało­
żenia jest AS prostopadłą do SB, pi-zeto z punktu S na 
jednejże płaszczyźnie możnaby wyprowadzić dwie prosto­
padłe SB i SE do AS, co według §. 28 jest niepodobnem; 
równie więc jest niepodobnem, iżby prosta SB nie leżała na 
płaszczyźnie przez dwie inne SC, SD przechodzącej; co na­
leżało dowieść.

W n io s e k  1. Z obu razem poprzedzających twierdzeń 
wypływa, że wszystkie prostopadłe do jednejże prostej w prze­
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strzeni, przez którykolwiek jój punkt przechodzące, konie­
cznie leżą na jednój i tejże samej płaszczyźnie, co w Geome- 
tryi wyrażamy zwyczajnie następującemi słowy: m iejscem  

geom etryczn ym  w szystk ich  p rosto p a d łych  do j e d n e j le  p ro ste j  

p r z e z  k tóryk olw iek  j e j  p u n k t p rzech od zą cych , j e s t  p ła szczyzn a .

W n i o s e k  2 . Przez dany punkt S na prostej AS, można 
zawsze poprowadzić płaszczyznę prostopadłą do tejże prostej 
ale tylko je d n ę .  Przypuściwszy bowiem, że przez tenże punkt 
można poprowadzić przynajmniej dwie płaszczyzny prostopadłe 
do AS, tedy przez prostą AS prowadząc trzecią różną od tam­
tych, ta koniecznie przetnie dwie pierwsze płaszczyzny, a 
mianowicie każdą w prostej. Dwie te z przecięcia się płasz­
czyzn wypadające proste leżąc na dwóch różnych płaszczy­
znach i przechodząc przez punkt S, byłyby prostopadłe do 
AS, co według poprzedającego wniosku być nie może. Albo 
uważając rzeczone dwie proste jako leżące na jednójże płasz­
czyźnie z prostą AS t. j. na płaszczyźnie trzeciój, mielibyśmy 
dwie prostopadłe z jednegoż punktu S do tejże samej prostój 
wyprowadzone, co również jest niepodobnem.

W n i o s e k  3. Przez punkt E dany za prostą AA' fig. 1 8 4  

można także poprowadzić płaszczyznę prostopadłą do tejże 
prostój AA', ale znowu tylko j e d n ę ,  a to następującym spo­
sobem. Według §. 179f przez prostą AA' i punkt E popro­
wadźmy płaszczyznę, a na niej z punktu E spuśćmy prosto­
padłą ES do AA' §. 28, potóm z punktu S na innej przez 
AA' przechodzący płaszczyźnie, poprowadźmy drugą prostą 
SF prostopadłą do AA ’, tedy prosta AA' będzie prostopadłą do 
płaszczyzny ESF §. 183 i wzajemnie, płaszczyzna ESF bę­
dzie prostopadłą do prostój AA', a zatem płaszczyzną żądaną.

Źe tylko jednę taką płaszczyznę przez punkt E popro­
wadzić można, łatwo okazać. Przypuściwszy bowiem, że 
przez punkt E przechodzi inna do AA' prostopadła płasz­
czyzna, tedy pomyśliwszy przez dwie proste AS i SE trze­
cią płaszczyznę, ta przecięłaby dwie pierwsze do AA ' pro­
stopadłe w dwócli prostych w punkcie E przecinających się 
a przecież prostopadłych do AA', co jest niepodobnem, bo
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z jednego punktu nie można spuścić dwóch prostopadłych do 
jednejże prostej, leżącej z rzeczonym punktem na tejże sa­
mej płaszczyźnie.

Uwaga. Na początku widzieliśmy, że do prowadzenia 
albo wyznaczenia stałego położenia płaszczyzny, potrzebne 
są trzy warunki, mianowicie zaś, iżby przechodziła przez trzy 
nie w jednym kierunku dane punkta. Z poprzedzającego 
wniosku przekonywamy się, że toż położenie płaszczyzny 
tylko dwa warunki dostatecznie wyznaczają czyli ustalają. 
Temi warunkami są, iżby płaszczyzna przechodziła przez pe­
wien na prostej dany punkt i była do nićj prostopadłą; skąd 
się pokazuje, że prostopadłość zastępuje dwa warunki.

§. 185.
Twierdzenie. Jeżeli prosta AS fig. 186 jest prosto­

padłą do płaszczyzny PQ, a na tej płaszczyźnie poprowadzi­
my dowolnie prostą 13 C, potem ze spodlca S prostopadłej AS 
spuścimy do I3C prostopadłą SD i punkta A i D połączymy 
prostą AD, prosta BC bidzie prostopadłą do płaszczyzny ASD 
przez AS i AD przechodzącej.

Wziąwszy bowiem na BC dwa punkta E i F jednako­
wo od D odległe i te złączywszy z punktami S i A proste- 
mi SE, SE i AE, AF, tedy dwa trójkąty ASE i ASF, pro­
stokątne przy S, mając AS spólne i S E ~S F  §. 42 c), przy­
stają do siebie według §. 23, a w szczególności AE =  AF, 
następnie zaś AD jest prostopadłą do BC. Prosta więc BC 
będąc prostopadłą do dwóch innych AD i DS przecinaj ą- 

'cyeli się w jednym z ich punktów D , jest też prostopadłą 
do płaszczyzny przez też proste przechodzącej t. j .  do płasz­
czyzny ADS, co było do dowiedzenia.

W niosek. Na tej zasadzie można bardzo łatwo z pun­
ktu danego za lub na płaszczyźnie, poprowadzić prostą do 
niej prostopadłą, t. j . z danego punktu spuścić albo wypro­
wadzić prostopadłą do płaszczyzny. I tak: aby z danego za 
płaszczyzną punktu spuścić prostopadłą do tejże, płaszczyzny, 
dosyć będzie poprowadzić dowolnie na danej płaszczyźnie 
prostą BC, fig. 186, potem przez tę prostą, i punkt dany
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poprowadzić płaszczyznę, a na nićj z danego punktu A spu­
ścić prostopadłą AD do BC, z jej zaś spodka D, na danej 
płaszczyźnie wyprowadzić inną DS do BC prostopadłą. Na­
reszcie na płaszczyźnie przez AD i DS przechodzącej, spu­
ścić z punktu A prostopadłą AS do DS, a ta będzie zarazem 
prostopadłą do płaszczyzny danćj według poprzedzającego 
twierdzenia.

Podobnież, aby z danego punktu S na płaszczyźnie PQ 
wyprowadzić prostopadłą do tejże płaszczyzny, potrzeba na­
przód na płaszczyźnie PQ poprowadzić dowolnie prostą BC, 
i z danego punktu S spuścić do niej prostopadłą SD; pro­
wadząc potem przez BC płaszczyznę jakąkolwiek, byle róż­
ną od danej, potrzeba na nićj z punktu D poprowadzić pro­
stopadłą DA do BC; nareszcie na płaszczyźnie tych dwóch 
prostych t. j. DS i DA do BC prostopadłych, wyprowadzić 
z punktu S prostopadłą do SD, a ta będzie zarazem prosto­
padłą do płaszczyzny PQ.

Uwaga. Nie od rzeczy tu będzie zwrócić uwagę, że 
w przestrzeni można zawsze poprowadzić prostopadłą do dwóch 
innych prostych nierównoległych, jak w powyższem twier­
dzeniu prosta SD jest tak do AS jako też i do BC prosto­
padła. Ta też prostopadła mierzy najkrótszą dwóch rze­
czonych prostych odległość.

§. 186.
T wierdzenie. Z punktu danego tak na płaszczyźnie 

jako też i za płaszczyzną nie można ani wyprowadzić ani 
spuścić więcej prostopadłych do tejże płaszczyzny jak jednę.

Niech danym na płaszczyźnie punktem będzie S jig. 187, 
przypuśćmy, jeżeli można, iż z tegoż punktu dwie prostopa­
dłe SA i SB do płaszczyzny PQ wyprowadzić można, tedy 
wystawiwszy sobie przez te dwie proste poprowadzoną płasz­
czyznę, ta przetnie nam płaszczyznę PQ np. w prostej SC, 
do której tak AS jako i BS byłyby prostopadłe, co być nie 
może; więc i to być nie może, aby z tegoż samego na płasz­
czyźnie punktu dwie lub więcej prostopadłych wyprowadzić 
można.
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Co do drugiego. Niech danym za płaszczyzną punktem 
będzie A, przypuśćmy znowu, jeżeli można, że z tego pun­
ktu oprócz AS można spuścić inną AD prostopadłą do płasz­
czyzny PQ. Pomyśliwszy przez AS i AD poprowadzoną 
płaszczyznę, ta przetnie płaszczyznę PQ w prostej SD i w 
trójkącie ASD mielibyśmy kąty przy S i D proste, co rów­
nież być nic może; niepodobnem jest przeto z punktu za 
płaszczyzną spuścić dwie lub więcej prostopadłych do tejże.

§. 187.
Definicyja. Z punktu danego za płaszczyzną poprowa­

dziwszy różne proste spotykające tęż płaszczyznę w różnych 
punktach B, C, D, E, F, te proste oprócz prostopadłej AS 
fig. 188, nazywają się pochyle (obliąuae) do płaszczyzny, a 
punkta ich spotkania się z płaszczyzną PQ nazywamy ich 
spodkami. Dwie którekolwiek pochyłe, których spodki są 
jednakowo odległe od spodku prostopadłej, nazywamy jedna­
kowo oddalające się od prostopadłej.
Na zasadzie tej można dowieść następujące

T w ie r d z e n ie . Z  punktu wziętego za płaszczyzną po- 
proteadziwszy do niej prostopadłą tudzież różne pochyłe, bę­
dzie a) prostopadła krótsza niż każda z pochyłych, b) dwie 
pochyłe równo od, prostopadłej oddalające się są równe, 
c) z dwóch pochyłych ta jest dłuższa, która się więcej od 
prostopadłej oddala.

Niech za płaszczyzną PQ będzie punkt A  fig. 188, po­
prowadziwszy z niego AS prostopadłą, tudzież AB, AC, AD, 
AE i AF pochyłe do płaszczyzny PQ, i połączywszy punkta 
ich spotkania się z płaszczyzną ze spodkiem S prostopadłej 
AS prostemi SB, SC, SD, SE i SF mamy:

Co do pierwszego. W  trójkątach B AS, CAS, D A S , 
EAS i FAS prostokątnych przy S, każda przcciwprostokąt- 
nia AB, AC, AD, AE AF, jest dłuższą niż bok AS przyle­
gły kątowi prostemu, zatem prostopadła AS jest krótszą niż 
każda pochyła.

Co do drugiego. Jeżeli SB—SC — S D = S E  =  S F , rze­
czone trójkąty prostokątne według §. 23 przystają do siebie
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a następnie AB =  A C =  AD =  AE =  AF, t. j. pochyłe jedna­
kowo od prostopadłej oddalające się, są między sobą równe.

Co do trzeciego. Niech będzie S G > S C , wziąwszy na 
SG, SB =  SC i poprowadziwszy proste AB, A G , ponieważ 
kąt ABS jest ostry, więc kąt jemu przyległy ABG jest roz­
warty, a dla tego AG t>AB. Ale A B = A C  według poprze­
dzającego, zatem AG AC.

W n io s e k  1. Kiedy prostopadła z jakiego punktu do 
płaszczyzny spuszczona jest najkrótszą między wszystkiemi 
prostemi, jakie z tegoż punktu i do tejże samej płaszczyzny 
poprowadzić można, tedy ta prostopadła jest rzeczywiście 
stała i niezmienna, a jako taka, sama jedna służyć może za 
miarę odległości punktu od płaszczyzny.

W n io se k  2. Którykolwiek punkt A wzięty na prosto­
padłej do płaszczyzny, jest jednakowo odległy od punktów 
tejże płaszczyzny, leżących na okręgu koła z jó j spodka, ja ­
ko ze środka, jakimkolwiek promieniem zakreślonego.

W n io s e k  3. Jeżeli prostopadłą AS przedłużymy na 
drugą stronę płaszczyzny PQ aż do punktu A', lecz tak, iż­
by było A 'S = A S , natenczas punkta B, C, D, E, F . . bę­
dą także w równej odległości od punktu A ', a w ogólności 
którykolwiek punkt płaszczyzny PQ jest w równój odległości 
tak od A jako i od A'; skąd własność płaszczyzny, iż jeżeli 
ta dzieli jaką prostą do niej prostopadłą na dwie równe 
części, każdy punkt płaszczyzny jest w równej odległości od 
końców prostej.

Uwaga. Każdy punkt A prostopadłej SA można tóż 
uważać jako środek koła, a pochyłe równe, jako jego pro­
mienie, bo którąkolwiek z nich można zakreślić rzeczony 
okrąg koła. Z  tego powodu często nazywamy prostopadłą 
AS osią okręgu koła BCDEF na płaszczyźnie PQ zakreślo­
nego.

§. 188.
Poprzedzająca uwaga podaje nam nowy sposób spusz­

czenia prostopadłej do płaszczyzny z danego za nią punktu. 
Przytwierdziwszy bowiem w danym punkcie A jakiejkolwiek
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według §. 180 c) być nie może, więc tćż i to być nie mo­
że, iżby BL nic była prostopadłą do płaszczyzny PQ.

Uwaga. Twierdzenie to podaje nam nowy sposób wy­
prowadzenia z danego na płaszczyźnie punktu prostopadłej 
do tejże płaszczyzny. Spuściwszy bowiem z jakiegokolwiek 
innego punktu prostopadłą do danćj płaszczyzny, według §. 
185 icniosek, jeżeli przez dany na płaszczyźnie punkt, po­
prowadzimy równoległą do tej prostopadłój, ta będzie pro­
stopadłą żądaną według teraźniejszego twierdzenia.

W n io s e k . Dwie proste równoległe od trzecićj nie le­
żącej z niemi na tejże samej płaszczyźnie, są także równo­
ległe od siebie. Niech bowiem dwiema prostemi będą AB 
i EF równoległemi do trzecićj CD fig. 190, która leży na 
innój płaszczyźnie; tedy przez którykolwiek punkt tej osta- 
tnićj G , poprowadziwszy płaszczyznę do niej prostopadłą 
§. 184 icniosek 3, i tę rozszćrzywszy aż do przecięcia się 
z dwiema pierwszemi w punktach II i I, będzie tak AB ja ­
ko też i EF, stósownie do poprzedzającego twierdzenia, pro­
stopadłą do tejże płaszczyzny GHI; a jako takie, są według 
tego twierdzenia równoległe od siebie.

§. 191.
T w ie r d z e n ie . Jeżeli jaka prosta jest równoległą do 

innej prostej na pewnej płaszczyźnie poprowadzonej, pierwsza 
prosta, równie jak płaszczyzna, na której druga leży, najda­
lej przedłużone, nigdzie się zejśó nie mogą, czyli stósownie 
do §. 181, prosta jest równoległą do płaszczyzny.

Prostą daną niech będzie AB równoległa do innój CD 
na płaszczyźnie PQ poprowadzonej fig. 191. Przez te dwie 
równoległe poprowadziwszy płaszczyznę, ta przetnie się z płasz­
czyzną PQ w prostej CD. Gdyby więc prosta AB zejść się 
mogła gdziekolwiek z płaszczyzną PQ, tedy ponieważ dwie 
proste AB i CD leżą na jednejźe płaszczyźnie przez AB 
przechodzącej, a przecinającćj się z płaszczyzną PQ w pro- 
stćj CD, zejście to nie gdzieindziej nastąpićby mogło, jak tyl­
ko w kierunku prostej CD jako spólnego przecięcia się dwóch 
tych płaszczyzn, a zatem w jednym z punktów prostej CD.
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Ale proste AB i GD z założenia są od siebie równolegle, 
zejść się przeto w żaden sposób nie mogą, zatćm i zejście 
się prostej AB z płaszczyzną PQ jest niemoźebne; jest więc 
prosta AB równoległą do płaszczyzny PQ.

W niosek. Jak prosta CD równoległa do AB jest za­
razem przecięciem się płaszczyzny przez AB i CD, przecho­
dzącej z płaszczyzną PQ, tak też spólne przecięcie się każ- 
dćj przez AB przechodzącej płaszczyzny z płaszczyzną PQ, 
jest równoległe do prostej AB. Lecz przez prostą AB pro­
wadzić można nieskończoną liczbę płaszczyzn przecinających 
się z płaszczyzną PQ, zatem jeżeli jaka prosta jest równole­
głą do płaszczyzny, można na tej płaszczyźnie poprowadzić 
nieskończoną liczbę prostych do pierwszej równoległych. 
Dosyć bowiem przez rzeczoną prostą prowadzić jakiekolwiek 
płaszczyzny przecinające się z daną, a te spólne przecięcia 
będą równoległemi do prostej danej a następnie i między 
sobą.

§. 192.
T wierdzenie. Dwie płaszczyzny prostopadłe do jednej ze 

-prostej, są od siebie równoległe.
Niech dwie płaszczyzny MN i PQ będą prostopadłe 

do jednejże prostej AB fig. 192, trzeba dowieść, że są od 
siebie równoległe. Gdyby dwie takie płaszczyzny nie były 
równoległemi, rozszerzone dostatecznie, przecięłyby się z so­
bą w prostej np. DE. Obrawszy na tern przecięciu się 
płaszczyzn gdziekolwiek punkt C i takowy połączywszy 
z punktami A i B, prostemi AC i BC, ponieważ prosta AC 
leży na płaszczyźnie PQ, a prosta AB jest do tej ostatniej 
z założenia prostopadła, zatćm jest prostopadłą i do prostej 
AC. Podobnież ta sama prosta AB będąc prostopadłą do 
płaszczyzny MN, jest tćż prostopadłą do prostej BC §. 183. 
W  trójkącie zatem ACB kąty przy A  i przy B byłyby pro­
ste, co w żaden sposób być nie może, i to więc być nie 
może, iżby się płaszczyzny zeszły z sobą czyli nie były od 
siebie równoległe.
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W n i o s e k  1 . Na mocy tego twierdzenia, można zaw­
sze przez punkt dany w przestrzeni poprowadzić płaszczyz­
nę równoległą do płaszczyzny danćj. Jeżeli bowiem danym 
punktem jest A i daną płaszczyzną MN, tedy z danego pun­
ktu A spuściwszy prostopadłą AB do płaszczyzny danćj MN, 
a potem przez tenże punkt A , poprowadziwszy inną płasz­
czyznę PQ prostopadłą do prostej AB §. 184 wniosek 2, ta 
będzie płaszczyzną żądaną równoległą do danćj.

W n i o s e k  2. Z poprzedzającego twierdzenia można 
wprost wnioskować, że jeżeli z dwóch płaszczyzn równole­
głych, jedna jest prostopadłą do pewnćj prostej, druga musi 
być także prostopadłą do tejże prostej, inaczej bowiem ja­
kiekolwiek proste przez punkta A i B na tych płaszczyznach 
poprowadzono, nie byłyby wszystkie prostopadłemi do AB, 
a następnie znalazłyby się przynajmniej dwie, jedna przez 
punkt A na płaszczyźnie PQ, druga przez B na płaszczyźnie 
MN poprowadzone, które dostatecznie przedłużone, zeszłyby 
się z sobą, a w takim razie i płaszczyzny zejśćby się mu­
siały, co być nie może, bo są z założenia równoległe.

W n i o s e k  3 . Dwie płaszczyzny równoległo do trzeciej 
są też równoległe między sobą. Bo poprowadziwszy prostą 
prostopadłą do tej trzeciej płaszczyzny, każda z dwóch pierw­
szych będąc równoległą do trzeciej, jest też prostopadłą do 
tejże prostej, a zatem jako prostopadłe do jednejże prostej, 
według teraźniejszego twierdzenia są od siebie równoległe.

W n i o s e k  4. Prostopadła do dwóch płaszczyzn równo­
ległych jest miarą ich odległości, jest ona bowiem najkrót­
szą ze wszystkich prostych jakie między dwiema płaszczyz­
nami poprowadzić można.

W n i o s e k  5 . Proste równoległe między dwiema płasz­
czyznami poprowadzone, są sobie równe. Wystawiwszy so­
bie bowiem przez którekolwiek dwie równoległe poprowa­
dzoną płaszczyznę, ta przetnie dwie płaszczyzny równoległe, 
w prostych także równoległych i na tej trzeciej płaszczyźnie 
otrzymamy równoległobok, w którym boki przeciwległe są 
sobie równe.
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§. 193.
Cechą równoległości dwóch płaszczyzn w każdym przy­

padku wystarczającą i pewną jest następujące
T w ie r d z e n ie . Jeżeli przecięcia się dwóch płaszczyzn 

z dwiema innemi przecinającemi się są od siebie równoległe, 
każda inna płaszczyzna przecinająca dwie pierwsze, wyda prze­
cięcia równoległe.

Niech będą dwie płaszczyzny MN i PQ przecięte od 
dwóch innych ABóa i ACca przecinających się w prostej Aa 
jig. 193, i niech przecięcia tych ostatnich zpierwszemi t. j. 
proste AB i ab, AC i ac będą równoległe, dowieść potrzeba, 
że każda inna płaszczyzua przetnie MN i PQ w prostych 
równoległych. Niech taką płaszczyzną będzie płaszczyzna 
BCcb przecinająca się z MN i PQ w prostych BC i be. Do­
wód twierdzenia zależy na okazaniu, żc te dwie proste są 
od siebie równolegle. Na dowiedzenie tego, weźmy aD =  AB 
i aE =  AC, a poprowadziwszy BD, DE i CE, mamy: z zało­
żenia AB równoległa do aD, a z wykreślenia AB — aD, prze­
to AaDB jest równoległobokiem, a następnie BD jest równa 
i równoległa od Aa. Dla tej samćj przyczyny CE jest równa i 
równoległa od A  a, przeto według §. 190 wniosek, BD jest równa 
i równoległa do CE, dwie zatem proste BC i DE są także 
równe i równoległe. Ale prosta BC leży na płaszczyźnie 
BócĆ, zatćm prosta DE jest równoległa od tejże płaszczyzny 
według §. 191; jest też taż sama prosta DE równoległa do 
bc przecięcia się płaszczyzny BócC z płaszczyzną MN, bo 
obie te proste leżą na jednćjże płaszczyźnie MN. Nareszcie 
dwie proste BC i bc będąc od trzeciej DE równoległe, są 
też i między sobą równoległe, co potrzeba było dowieść.

W n io s e k  1. Skoro przecięcia się płaszczyzn MN i PQ 
z każdą inną płaszczyzną są od siebie równoległe, przeto te 
płaszczyzny jak najdalej rozszerzone nigdzie się z sobą zejść 
nie mogą, są więc równoległemi i to jest najpewniejsza ce­
cha tej ich własności.

W n io s e k  2. Przecięcia się dwóch płaszczyzn równo­
ległych z trzecią, są także między sobą równoległe.

16.
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Uwaga. Dwie atoli przecinające się płaszczyzny jak 
AaóB i AacC mogą być przecięte w nieskończonćj liczbie 
prostych od siebie równoległych. Dosyć bowiem prowadzić 
płaszczyzny równoległe do spólnego przecięcia się Aa tych 
dwóch płaszczyzn, jak są płaszczyzny DEFG, HIKL i t. d. 
fig. 194, a ich przecięcia się z dwiema pierwszemi t. j . DE, 
F G , H I , KL i t. d. będąc wszystkie równoległe od Aa bę­
dą tóż między sobą równoległe.

§. 194.
T w ie r d z e n ie . Kąty których ramiona są od siebie rów­

noległe i rozchodzą się w tymże samym kierunku, chociaż leżą 
na różnych płaszczyznach, są sobie równe a płaszczyzny na 
których leżą od siebie równoległe.

Niech będą dwa kąty A  i a leżące na różnych płasz­
czyznach, których ramiona AB i ab, AC i ac fig. 195 są od 
siebie równoległe i rozchodzą się wjednymże kierunku, po­
trzeba dowieść, że te kąty są sobie równe, tudzież że płasz­
czyzna przez AB i AC przechodząca jest równoległa do 
płaszczyzny przechodzącej przez ab i ac. Na dowiedzenie 
tego, weźmy ab — AB i ac — AC, a poprowadziwszy proste 
Aa, Bó, Cc i BC, bc mamy: Bó i Cc będąc równe i równo­
legło od Aa, są też między sobą równe i równoległe, a na­
stępnie bc równa i równoległa od BC. Dwa więc trójkąty 
ABC i abc według §. 22 przystają do siebie, a w szczegól­
ności kąt a — A, co należało dowieść.

Co do drugiego. Że płaszczyzny BAC i bac są od sie­
bie równoległe, wypływa wprost z poprzedzającego twierdze­
nia, bo przecięcia się ich AB, ab i AC, ac z dwiema innemi 
AaóB i AacC są od siebie równoległe.

W n io s e k  1. Jeżeli dwie płaszczyzny równoległe BAC 
i bac są przecięte od dwóch innych BAaó i CAac w prostych 
A B , ab i AC , ac, przecięcia te czynią między sobą kąty 
równe.

W n io s e k  2. Jeżeli trzy proste Aa, Bó i Cc są między 
sobą równe i równoległe, tedy trójkąty zawarte między pro-
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stemi łączącemi końce pierwszych są sobie także równe i 
płaszczyzny tych trójkątów są od siebie równoległe.

Uwaga. Nie dodawszy w twierdzeniu wyrażenia, roz­
chodzą się w tymże samym kierunku, potrzebaby w tómże twier­
dzeniu dodać, że takie kąty są sobie równe lub też są kąta­
mi spełniającemi się. (Porównać §. 14).

W n io s e k  3. Z tego też twierdzenia wypływa, że dwie 
płaszczyzny równoległo BAC i hac przecięte od trzeciej BócC 
wydają przecięcia BC i hc równoległe.

W n io s e k  4. Jeżeli dwie płaszczyzny MN i PR jig. 196 
przecinające się w prostćj MP przetniemy ilukolwiek płasz­
czyznami prostopadłemi do krawędzi MP, spólne przecięcia 
się każdej z tych ostatnich płaszczyzn z dwiema pierwszemi 
t.j. AB, AC; A'B', A'C'; A "B ", A ’'C '' schodzą się naturalnie 
na prostej MP w jednymźe punkcie, jak tu w A , A ’ i A ” . 
Źe te spólne przecięcia są prostopadłe do MP, wypływa to 
z §. 192. Ze AB równoległa od A 'B ' i od A"B '', tudzież 
AC równoległa od A 'C ' i A ’'CM, wypływa z poprzedzającego 
wniosku. Kąty przeto BAC, B 'A 'C ’, B "A ” C" i t. d. są sobie 
równe według poprzedzającego §. Każde dwie proste AB i 
AC, A'B' i A 'C ', A "B ” i A "C " i t. d. są prostopadłemi do 
spólnego przecięcia się dwóch płaszczyzn MN i PQ, z je- 
dnegoż punktu krawędzi na obu płaszczyznach wyprowadzo­
nemu A kiedy takie dwie proste zamykają zawsze tenże 
sam kąt, zatćm kąt ten może nam posłużyć za miarę pochy­
łości płaszczyzn MN i PQ. Tym sposobem kąt dwuścienny 
§. 182 sprowadziliśmy do kąta linijowego, oraz wiemy, iż 
aby mieć kąt pochyłości dwóch płaszczyzn, dosyć jest z któ­
regokolwiek punktu spólnćj im krawędzi wyprowadzić pro­
stopadłe do tćjże na obu płaszczyznach, a kąt linijowy mię­
dzy teini prostopadłemi zawarty, będzie miarą pochyłości 
dwóch płaszczyzn. Źe ten stały kąt nie może być między 
prostemi w inny sposób prowadzonemi zawarty, wypływa 
stąd, że skoro płaszczyzny na sobie będą położone, a zatćm 
czynić kąt zero, i kąt linijowy musi być także zero; dwie 
więc proste AB i AC koniecznie przypaść muszą na siebie,
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co inaczćj być nie może, tylko jeżeli mają jednakowe wzglę­
dem prostej MP położenie, a zatem do nićj prostopadłe.

§. 195.
T w ie r d z e n ie . Jeżeli dwie płaszczyzny przecinające się 

są prostopadłe do trzeciej, spólne ich przecięcie się, jest tak­
że prostopadłe do tejże płaszczyzny.

Niech będą dwie płaszczyzny MN i RS przecinające 
się w prostej AB fig. 197, każda prostopadła do trzeciej 
płaszczyzny PQ, trzeba dowieść, że spólne ich przecięcie się 
AB jest prostopadłe do płaszczyzny PQ. Gdyby to spólne 
przecięcie nie było prostopadłe do płaszczyzny PQ , tedy 
z punktu A  możnaby wyprowadzić inną prostą AG albo 
AD prostopadłą do płaszczyzny PQ. Lecz w takim przy­
padku prosta AC lub AD znajdowaćby się musiała tak na 
płaszczyźnie MN jako tśż i na płaszczyźnie RS, t. j . musiała­
by być spólnćm tych dwóch płaszczyzn przecięciem się. 
A że AB jest rzeczywiście tćm przecięciem się płaszczyzn, 
więc te płaszczyzny przecinaćby się musiały w dwóch pro­
stych, co jak wiemy być nie może, i to więc jest niepodob- 
nem, iżby spólne przecięcie się dwóch płaszczyzn do trze­
ciej prostopadłych, nie było także prostopadłe do tejże płasz­
czyzny.

§. 196.
T w ie r d z e n ie . Z  jednegoż punktu spólnego przecięcia się 

dwóch płaszczyzn, wyprowadziwszy dwie prostopadłe do tych­
że płaszczyzn, kąt zawarty między prostopadłemu równa się 
kątowi, jaki czynią płaszczyzny między sobą.

Niech będą dwie płaszczyzny MN i PQ przecinające 
się w prostej MP fig. 198, z któregokolwiek punktu A tego 
spólnego przecięcia się wyprowadziwszy dwie prostopadle 
AB i AC, pierwszą do płaszczyzny MN, a drugą do płasz­
czyzny PQ, potrzeba dowieść, że kąt zawarty między pro- 
stopadłemi t. j . kąt BAC równa się kątowi pochyłości tych 
dwóch płaszczyzn. Na ten koniec przez proste AB i AC 
poprowadźmy płaszczyznę, która naturalnie będzie prosto­
padłą do MP, według poprzedzającego §. Niech ta płasz­
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czyzna przetnie pićrwszą z dwóch płaszczyzn w prostej AD 
a drugą w prostej AE. Ponieważ prosta AB jest prostopa­
dła do płaszczyzny MN, więc jest także prostopadłą do MA 
i AD, więc kąt BAD jest prosty. Podobnież prosta AC jest 
prostopadła do MA i AE, oraz kąt CAE jest także pi'osty; 
ponieważ nawzajem prosta MA czyli MP jest prostopadłą do 
AB, AC, AD i A E , więc według §. 184 wniosek 1, cztery 
te prosto leżą na jednejże płaszczyźnie. Od prostych kątów 
BAD i CAE, odjąwszy kąt obu spoiny BAE, pozostanie kąt 
BAC ~  DAE. Lecz płaszczyzna, na którćj się znajdują pro­
sto AB, AC, AD i AE jest prostopadłą do MP, przeto tóż 
tak AD jako i AE są prostopadłe do MP. Ale dwie pro­
ste AD i AE są prostopadło na dwóch płaszczyznach MN i 
PQ z jednegoż punktu A  do ich spólnego przecięcia się wy­
prowadzone, kąt zatem między niemi zawarty, mierzy po­
chyłość tych dwóch płaszczyzn według §. poprzedzającego 
wniosek 3, przeto kąt BAC równa się kątowi pochyłości tych­
że płaszczyzn.

W niosek. Gdyby te dwie płaszczyzny schodziły się 
zupełnie z sobą, prostopadłe do nich AB i AC z jednegoż 
punktu obu płaszczyznom spólnego A wyprowadzone, ze- 
szłyby się także z sobą, a zatem tak płaszczyzny między 
sobą, jako tóż i proste do nich prostopadło, czyniłyby kąt 
zero. Jeżeli płaszczyzny MN i PQ są do siebie prostopadłe 
i proste AB i AC czynić będą między sobą kąt prosty i 
wtedy AB prostopadła do płaszczyzny MN, leżeć będzie na 
płaszczyźnie PQ, a nawzajem AC prostopadła do PQ, leżeć 
będzie na płaszczyźnie MN. A  że i kąt DAE w takim przy­
padku będzie prosty, więc AB zmiesza się z AD, a AC z AE. 
Tak tedy z kąta, jaki czynią dwie prostopadłe do dwóch 
płaszczyzn z jednego punktu wyprowadzone, wnosić można 
o kącie pochyłości tychże płaszczyzn.

§. 197.
T w ie r d z e n ie . Z któregokolwiek 'punktu w przestrzeni 

spuściwszy dioie prostopadle do dwóch płaszczyzn, kąt zawarty 
między prostopadlemi jest równy kątowi pochyłości płaszczyzn.
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Mogą tu być dwa przypadki: dany punkt może leżeć 
za płaszczyznami lub między płaszczyznami. W  przypadku 
gdy punkt dany A  fig. 199, leży za płaszczyznami, spuściw­
szy z niego dwie prostopadłe AB do MN i AC do MP, niecli 
piórwsza spotyka płaszczyznę MN w punkcie B, a płaszczy­
znę MP w punkcie E, druga zaś płaszczyznę MN w punk­
cie C, a płaszczyznę MP w punkcie F , tedy poprowadziw­
szy przez dwie te prostopadłe płaszczyznę, ta będzie prosto­
padłą tak do pierwszej jako i do drugiej płaszczyzny, a na­
stępnie i do ich spólnego przecięcia się RM. Płaszczyzna 
ta przetnie płaszczyznę MN w prostej DB a płaszczyznę MP 
w prostej DE. Każda z tych prostych jest prostopadłą do 
RM, więc kąt BDE jest kątem pochyłości płaszczyzny MN 
do MP. Na tej trzeciej płaszczyźnie mamy czworokąt BCFE 
w którym kąty przy B i F są proste, zatem kąt AEF z ką­
tem BCF czynią dwa kąty proste. Lecz kąt BCF z kątem 
ACB czynią także 2R , więc kąt BEF —  AGI?. Ale w trój­
kącie BDE prostokątnym przy B , jest BEF -j- BDE n: R; 
tudzież w trójkącie ABC prostokątnym przy B, ACB-|-A:=R, 
przeto A C B -f-A = B E F -j-B D E . A że BEF =  ACB, więc 
A  =  BDE t. j. kąt prostopadłych jest równy kątowi pochy­
łości płaszczyzn. Kąty te są zawarte między jednoimienne- 
mi kierunkami tak płaszczyzn jako i prostopadłych.

Można tóż to twierdzenie dowieść według §. 45, uwa­
żając kąt pochyłości płaszczyzn jako kąt linijowy, jak jest 
rzeczywiście, t. j . kąt BDE i punkt A za jego ramionami.

Jeżeli tu obie płaszczyzny rozszerzymy nieograniczenie, 
te przeciąwszy się w krawędzi spóluej RM, uczynią dwa kąty 
różne nazwane także kątami przylcgłemi, zupełnie tak jak 
dwie prosto przecinające się; co więc w rzeczonym §. o pro­
stopadłych było dowiedzionem, toż samo ma i tu miejsce.

W  przypadku drugim, gdy punkt dany znajduje się 
między płaszczyznami, kąt prostopadłych jest spełnieniem 
kąta pochyłości tych płaszczyzn. Niech bowiem będą dwie 
płaszczyzny MN i MP przecinające się w prostej MQ fig. 200, 
niech też danym punktem w przestrzeni będzie A , tedy



249

spuściwszy z tego punktu AB prostopadłą do płaszczyzny 
MN, tudzież AC do płaszczyzny MP, potem przez dwie te 
prostopadłe prowadząc płaszczyznę, ta będzie do obu pierw­
szych, a zatćm i do ich spólnego przecięcia się MQ prosto­
padłą. Niech ta płaszczyzna przecina pierwszą w prostej 
BD, a drugą w prostej CD, tedy DB jest prostopadła do MQ 
na płaszczyźnie MN i DC także prostopadłe do tegoż spól­
nego przecięcia się MQ na płaszczyźnie MP; przeto kąt 
BDC jest kątem pochyłości dwóch tych płaszczyzn. W  czwo­
rokącie ABDC kąty przy B i C są proste, zątem D -j-A =180 
t. j. kąt jaki prostopadłe czynią między sobą, jest spełnie­
niem kąta pochyłości płaszczyzn do których prostopadłe 
spuszczone były.

Uwaga. Jeżeli w obecnym przypadku równie jak to 
uczyniliśmy w §. 45 mieć będziemy wzgląd na kierunki tak 
prostopadłych jako też i przecięć tej trzeciej płaszczyzny 
z dwiema pierwszemi, łatwo się przekonać, że kąt prosto­
padłych zawarty między jodnoimiennemi ich kierunkami, rów­
na się kątowi pochyłości płaszczyzn zawartemu także mię­
dzy takiemiż kierunkami płaszczyzn. Biorąc bowiem punkt 
A  za początek, z którego dwie prostopadłe wychodzą, te 
czynią dwa kąty spełniające się ; ale tćż i płaszczyzny MN 
i M P , dostatecznie rozszerzone czynią również dwa kąty 
spełniające się. A  jeżeli punkt D na obu płaszczyznach 
znajdujący się, weźmiemy znowu za początek, widzimy, że 
DB i DC są róźnemi kierunkami, przeto kąt BDC równa 
się kątowi prostopadłych B'AC zawartemu między różnemi 
kierunkami.

§. 198.
T w ie r d z e n ie . Dwie proste przecięte trzema płaszczy­

znami równoległemi, podzielone są przez też płaszczyzny na 
części proporcyjonalne.

Niech będą dwie proste AB i CD fig. 201 jakiekol­
wiek i niech je przecinają trzy płaszczyzny równoległe MN, 
PQ i RS, pierwszą w punktach E , I, F, drugą w punktach 
G, K, 11; potrzeba dowieść, iż części tych prostych zawarte



25 0

między trzema rzeczonemi płaszczyznami, są między sobą 
proporcyjonalne. Na ten koniec połączmy punkta E i H 
prostą EH, która niech spotyka płaszczyznę PQ w punkcie 
L, poprowadziwszy IL i LK, a nareszcie EG i F il, ponie­
waż płaszczyzny PQ i RS są równoległe, spólne ich prze­
cięcia się z trzecią przez EF i EH przechodzącą t. j. IL i 
FH są także równoległe §. 193 wniosek 2, przeto w płaskim 
trójkącie EFH jest E l : IF —  E L : LII. I)la tej samej przy­
czyny spólne przecięcia się EG i LK  są także równoległe, 
a w trójkącie EHG jest również E L :L H  — G K :K H , zatóm 
E I :IF ~ G K :K H , co było do dowiedzenia.

Uwaga. Gdyby proste AB i CD były na jednejże 
płaszczyźnie, w takim przypadku trzy punkta I , L, K , le­
żałyby na jednejże prostej równoległej do EG i FH a wte­
dy twierdzenie obecne byłoby twierdzeniem dowiedzionein 
w §. 53 albo w szczególnym przypadku, byłoby wnioskiem 
5 §. 192.

§. 199.
T w ie r d z e n ie . Dwie proste to przestrzeni ani równole­

gła ani się przecinające, lezą na dwóch płaszczyznach równo­
ległych.

Niech dwie proste AB i CD jig. 202, mają położenie 
w twierdzeniu wyrażone. Obrawszy na pierwszej którykol­
wiek punkt E i poprowadziwszy przez niego prostą GH rów­
noległą od drugiej, jako też przez punkt F obrany na dru­
giej prostą IK równoległą od pierwszej, kąty HEB i DFK 
są sobie równe §. 194, a płaszczyzny na których leżą od 
siebie równoległe. Pomyśliwszy więc tak przez proste AB 
i GH jako tóż przez CD i IK płaszczyzny MN i PQ, prosto 
AB i CD leżą na tychże płaszczyznach równoległych, pierw­
sza na MN a druga na PQ.

Uwaga 1. Że dwie te płaszczyzny równoległe sąjedyne- 
mi, na których proste AB i CD umieścić można, przekony­
wamy się z tego, że płaszczyzna przechodząca przez AB 
koniecznie przechodzić także musi przez GII i że prz ez dwie 
te prosto więcej jak jedna płaszczyzna przechodzić nie mo­
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że §. 180, a tą jest płaszczyzna MN; podobnież płaszczyzna 
przechodząca przez CD i IK inną być nie może, jak płasz­
czyzną PQ. Każde więc dwie proste nie będące na jednejże 
płaszczyźnie, leżą na dwóch płaszczyznach równoległych ale 
jedynych i dla tego taki skład dwóch płaszczyzn, nazywamy 
w Geometryi płaszczyznami równoległemi dwóch prostych.

W n io s e k . Z dowodu powyższego twierdzenia wypły­
wa, że przez każdą z dwóch prostych nie będących na 
jednejże płaszczyźnie poprowadzić można płaszczyznę równo­
ległą do drugiej, ale tylko jednę.

Uwaga 2. Z  §. 185 wniosek wiadomo, że w przestrze­
ni można poprowadzić prostą prostopadłą do każdej z dwóch 
innych prostych jakkolwiek położonych i że ta prostopadła 
do obu jest tćż najkrótszą ich odległością. Ta prostopadła 
jest zarazem prostopadłą do płaszczyzn równoległych dwóch 
rzeczonych prostych. Bo przypuściwszy, że FL jest ową 
spoiną prostopadłą tak do AB jako tćż i CD, poprowadźmy 
przez punkt F prostą IK równoległą do AB, ta całkiem le­
żeć będzie na płaszczyźnie PQ. Lecz z przypuszczenia FL 
jest prostopadłą do CD, więc tćż jest również prostopadłą 
do IK, a następnie prostopadłą do płaszczyzny PQ przez 
dwie te prosto przechodzącej §. 182, przeto jest tćż prosto­
padłą i do płaszczyzny MN równoległej do PQ §. 192. Ale 
taka prostopadła spoinie do dwóch płaszczyzn mierzy ich 
najkrótszą odległość, zatem taż prostopadła mierzy również 
najkrótszą odległość dwóch prostych AB i CD.

§. 200.

T w ie r d z e n ie . Dwie proste na różnych leżące płasz­
czyznach, mają zaiosze spoiną prostopadłą, ale tylko jedne.

Umieściwszy dwie proste AB i CD jig. 203 według 
poprzedzającego §. na dwóch równoległych płaszczyznach, 
poprowadźmy przez pierwszą AB płaszczyznę ABEF prosto­
padłą do płaszczyzny MN, przecięcie się tćj płaszczyzny 
z płaszczyzną MN, t. j. prosta EF będąc równoległą do AB, 
nie może zarazem być równoległą do CD, bo inaczej AB i 
CD byłyby równoległemi, co się sprzeciwia założeniu, za-
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tćm prosta E F , a następnie i płaszczyzna ABEF przecina 
prostą CD w pewnym punkcie G. Podobnież prowadząc 
przez CD płaszczyznę CDIH prostopadłą do PQ, ta przetnie 
prostą AB w pewnym punkcie K. Dwie te płaszczyzny 
przechodząc pićrwsza przez AB i punkt G, druga przez CD 
i punkt K , przecinać się koniecznie muszą w prostej GK, 
która jest zarazem prostopadłą tak do płaszczyzny MN jako 
też i do płaszczyzny PQ, a następnie według §. 183 pro­
stopadłą tak do AB jako też i CD.

Że dwóch podobnych prostych być nie może, przeko­
nać się najłatwiej można stąd, że prosta prostopadła do dwóch 
innych AB i CD, powinna przechodzić naprzód przez pewien 
punkt prostej CD i być prostopadłą do płaszczyzny PQ, za­
tem znajdować się powinna na płaszczyźnie prostopadłój 
CDIH. Dla tejże samćj przyczyny znajdować się też po­
winna na płaszczyźnie ABEF. A kiedy razem znajdować 
się powinna tak na pierwszej jako i drugiej płaszczyźnie, 
więc inaczej być nie może, tylko być musi spólnem tych 
płaszczyzn przecięciem się. A że dwie płaszczyzny tylko 
w jednej prostej przecinać się mogą, zatem dwie w twier­
dzeniu wyrażone proste, jednę tylko mają prostopadłą spoi­
ną. Tę to prostopadłą nazywamy najkrótszą odległością 
dwóch prostych w przestrzeni.

§. 201.
Na zasadzie tego twierdzenia rozwiązać można nastę­

pujące
Z a g a d n ie n ie . Mając dane dwie proste w przestrzeni 

leżące na różnych płaszczyznach poprowadzió prostą, spoinie 
do obu prostopadłą.

Rozwiązanie. Niech dwiema prostemi danemi będą AB 
i CD jig. 204 leżące na różnych płaszczyznach. Przez punkt 
E obrany gdziekolwiek na pierwszej prostej, poprowadźmy 
EF równoległą do drugiej prostej CD, a przez proste AB 
i EF poprowadźmy płaszczyznę MN, która będzie równole­
gła do CD §. 191. Potem z punktu G obranego także gdzie­
kolwiek na prostćj drugiej CD, poprowadźmy GH prostopa­
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dłą do płaszczyzny MN. Jeżeli przez proste CD i GH po­
prowadzimy płaszczyznę GHIK, ta będzie prostopadłą do 
płaszczyzny MN i przetnie prostą AB w pewnym punkcie L, 
z którego na tej nowej płaszczyźnie poprowadziwszy LO ró­
wnoległą do GH, ta będzie prostą żądaną. Albowiem LO 
będąc równoległą do GH, prostopadłej do płaszczyzny MN, 
jest tóż prostopadłą do tójże płaszczyzny MN, a zatem jest 
prostopadłą tak do LH jako i do LB. Ale LH jest równo­
legła do CD, zatóm LO jest także prostopadłą do CD, co 
było do okazania.

§ . 202.

Definicyja. Jeżeli z punktu danego w przestrzeni spu­
ścimy prostopadłą do płaszczyzny jakiejkolwiek, punkt spot­
kania się tej prostopadłej z płaszczyzną czyli spodek prosto­
padłej nazywaó będziemy rzutem (projectio) tego punktu na 
płaszczyznę. Jeżeli na prostej danój w przestrzeni obierze­
my dwa jakiekolwiek punkta i z tych spuścimy prostopa­
dłe do pewnej płaszczyzny, a przez rzuty tych punktów po­
prowadzimy prostą na tejże płaszczyźnie, tę nazwiemy rzu­
tem prostej w przestrzeni na płaszczyznę daną. W  przy­
padku, że długość prostej w przestrzeni jest ograniczona, 
spuściwszy z jej końców prostopadłe do pewnej płaszczyzny, 
prosta między rzutami końców prostej w przestrzeni zawarta 
będzie rzutem także ograniczonym co do długości prostój 
danej.

Z każdego punktu prostej LM w przestrzeni, jak na 
fig. 205 z punktów A, B, C, D, E . . . spuściwszy prosto­
padłe Aa, Bó, Cc, Dd, Ee . . . do płaszczyzny PQ, wszyst­
kie te prostopadłe leżą na jednejże płaszczyźnie, a spodki 
ich czyli rzuty punktów A, B, C . ., leżą na jednój prostej 
będącej spólnem przecięciem się płaszczyzny przez prostą 
w przestrzeni, prostopadłej do płaszczyzny PQ. Pomyśliw- 
szy bowiem przez prostą w przestrzeni i jednę z prostopa­
dłych np. Aa płaszczyznę, ta będzie prostopadłą do płasz­
czyzny PQ i przetnie ją w prostój RS; skoro teraz z innego 
punktu np. z punktu C spuścimy prostopadłą Cc, ta leżeć
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będzie na tćj nowćj płaszczyźnie i nie gdzieindziej spotka 
płaszczyznę PQ, tylko na spólnćm tych płaszczyzn przecię­
ciu się RS. A lbo: każde dwie równoległe z prostą w prze­
strzeni leżą na jednćjże płaszczyźnie, wszystkie przeto pro­
stopadło z różnych punktów prostej ĄE do płaszczyzny PQ 
spuszczone, leżą na jednej i tejże samej płaszczyźnie, przez 
tęż prostą przechodzącój, a do danej płaszczyzny prostopa­
dłej, rzut zaś prostej na płaszczyznę PQ, jest spólnćm prze­
cięciem się tych dwóch płaszczyzn.

Płaszczyznę przez prostą w przestrzeni przechodzącą a 
prostopadłą do innej płaszczyzny, nazywamy w Geometry i 
;płaszczyzną rzucającą (planum proijciens). Spólne przecięcie 
się obu, czyli rzut prostej w przestrzeni danćj na płaszczyz­
nę daną, nazywamy śladem, (vestigium, tracę), pierwszej, na 
płaszczyźnie drugićj.

§. 203.
T wierdzenie. Kąt jaki czyni prosta pochyła do płasz­

czyzny z swoim rzutem na tejże płaszczyźnie, jest najmniej­
szym z kątów, jakie taż prosta czyni z każdą inną prostą na 
tejże płaszczyźnie przez spodek pochyłej poprowadzoną.

Niech będzie prosta w przestrzeni AB pochyła do płasz­
czyzny PQ fig. 206, a punkt A jej spodkiem czyli punktem 
przecięcia się jej z płaszczyzną PQ. Z któregokolwiek jej 
punktu B spuściwszy prostopadłą BC do płaszczyzny PQ , a 
przez prostą daną AB i przez tęż prostopadłą poprowadziw­
szy płaszczyznę, ta przetnie płaszczyznę PQ w prostćj AL, 
która według poprzedzającego §. jest rzutem prostej AB na 
płaszczyznę PQ. Potrzeba teraz dowieść, że kąt BAC jest 
najmnićjszym ze wszystkich, jakie prosta AB czynić może 
z różnemi prostemi przez punkt A na płaszczyźnie PQ po­
prowadzonemu Na ten koniec poprowadźmy przez punkt 
A jakąkolwiek inną prostą AD na płaszczyźnie PQ; jeżeli 
dowiedziemy, że kąt BAD jest większy niż kąt BAL, do­
wiedziemy toż samo o każdym innym kącie.

Na prostćj AD weźmy AC'zrAC i poprowadźmy pro­
stą BC', tedy dwa trójkąty BAC i BAC' mają bok AB spól-
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ny, A C = A C ' z wykreślenia, lecz trzecie boki są nierówne, 
bo według §. 187 B C < ;B C ', zatćm i kąt BAD leżący na­
przeciwko większego boku BC' jest większy od kąta BAC 
przeciwległego bokowi mniejszemu BC. A  że toż samo 
dowiedzie się o każdym innym kącie, więc kąt BAC, jaki 
pochyła czyni z swoim rzutem, jest kątem najmniejszym, co 
należało dowieść.

W n io s e k  1. Ponieważ ze wszystkich kątów, jakie pro­
sta w przestrzeni czynić może z różnemi prostemi przez jej 
spodek na pewnej płaszczyźnie poprowadzonemi, najmniej­
szy jest kąt, jaki taż prosta czyni z swym rzutem, przeto 
dla jednejże prostej ten kąt jest stałym i dla tego nazywać 
go będziemy kątem pochyłości prostej do płaszczyzny.

Uwaga. Poprowadziwszy z drugiej strony owej płasz­
czyzny prostopadłej do PQ i na tej ostatniej płaszczyźnie 
prostą, AD ’ tak iżby kąt LAD' był równy kątowi L A D , a 
potem wziąwszy A C "= A C ' i poprowadziwszy prostą BC", ta 
będzie równa prostej BC' a dla tego i kąt BAC" czyli 
B A D '=B A D . Lecz że każdy z nich jest większy od kąta 
BAL, więc stąd wniesiemy, że prosta w przestrzeni nie może 
z trzema prostemi na pewnej płaszczyźnie poprowadzonemi 
czynić kątów równych tylko w tenczas, gdy jest prostopadła 
do tejże płaszczyzny.

W n io s e k  2. Z poprzedzającego twierdzenia łatwo 
wniesiemy, że proste równoległe w przestrzeni są jednako­
wo pochylone do tejże samej płaszczyzny. Z którychkol- 
wiek bowiem ich punktów spuściwszy prostopadłe do tej 
płaszczyzny, te według §. 190 będą od siebie równoległe, 
więc kąty między prostemi danemi i prostopadłemi zawarte, 
będą równe. A  że to kąty są dopełnieniami kątów pochy­
łości tych prostych do płaszczyzny, zatem proste są jedna­
kowo do płaszczyzny pochylone. Twierdząc zaś, że proste 
jednakowo do jednćjźe płaszczyzny pochylone są od siebie 
równoległe, twierdzilibyśmy oczywiście fałszywie; być bo­
wiem może nieskończona liczba prostych jednakowo do płasz­
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czyzny pochylonych, chociaż nie będą między sobą równo - 
ległemi.

§. 204.
Jak w §. 202 otrzymaliśmy rzut prostej na płaszczy­

źnie danój prowadząc przez tęź prostą płaszczyznę prosto­
padłą do płaszczyzny danej; tak też otrzymać można rzut 
jakiejkolwiek figury danej w przestrzeni na płaszczyźnie 
danćj. Niechby np. dany był w przestrzeni trójkąt ABC 
fig. 207, leżący na płaszczyźnie PQ, a chcieliśmy zrobić jego 
rzut na daną płaszczyznę MN jakkolwiek do płaszczyzny PQ 
pochyloną, tedy dosyć jest z wierzchołków trójkąta spuścić 
prostopadłe A a, Bó i Cc do płaszczyzny MN i punkta a, b, c, 
w których spotykają płaszczyznę MN, złączyć prostemi, a to 
zamkną trójkąt abc, który będzie rzutem trójkąta ABC na 
płaszczyznę MN. Albo: przez każdy z trzech boków trój­
kąta ABC prowadząc płaszczyznę prostopadłą do płaszczy­
zny MN, spólne tych trzech płaszczyzn przecięcia się z płasz­
czyzną MN przetną się wzajemnie i zamkną trójkąt abc.

Co tu powiedziano o trójkącie, zastosować można do 
każdej innćj figury prostokreślnej.

Chcąc zaś zrobić rzut figury krzywokreślnej, drugiego 
sposobu użyć nie można, bo punkta linii krzywej płaskiej 
leżą w prawdzie na jednejże płaszczyźnie, ale robiąc ich 
rzuty na inną daną płaszczyznę, każdy z tych punktów le­
żeć będzie na osobnej płaszczyźnie prostopadłej do płasz­
czyzny danej. Dla tego chcąc zrobić rzut linii krzywej na 
daną płaszczyznę, należy z każdego jćj punktu spuścić pro­
stopadłą do danej płaszczyzny i przez spodki tych prosto­
padłych czyli przez rzuty tycli punktów zakreślić krzywą, 
która będzie rzutem krzywej w przestrzeni. Tym samym 
sposobem robi się rzut krzywej podwójnie krzywej t. j. ta­
kiej, której punkta są na różnych płaszczyznach.

256
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ROZDZIAŁ H.

Kąty bryłowe trójścienne i wielościenne.

§. 205.
W  §. 182 widzieliśmy, że dwie płaszczyzny przecinają 

się w prostej. Płaszczyzny te podzieliły całą nieograniczo­
ną przestrzeń na cztery także nieograniczone części, które 
kątami dwuściennemi nazwaliśmy. Jeżeli teraz przez który­
kolwiek punkt krawędzi obu płaszczyznom spólnej poprowa­
dzimy trzecią w jakimkolwiek kierunku, byle różnym od 
kierunku każdej z dwóch pierwszych, trzecia ta płaszczyzna 
podzieli każdy z o wy cli czterech kątów dwuściennych na 
dwie części również nieograniczone i tej samej natury jak 
pićrwsze. Tak na fig. 208 dwie płaszczyzny AJ3CD i EFGH 
przecinają się w prostej PQ i czynią kąty dwuściennne 
APQH, BPQG, APQG i BPQD. Jeżeli przez punkt O spól­
nej im krawędzi PQ poprowadzimy trzecią płaszczyznę IKLM 
przecinającą pierwszą w prostej RS, drugą zaś w prostój TU, 
płaszczyzna ta podzieli każdy z powyższych czterech kątów 
dwuściennych na dwie części i utworzy z dwiema pierwsze- 
mi płaszczyznami ośm przestrzeni czyli okolic nieograniczo­
nych, z których każda zawarta jest między trzema płaszczy­
znami przecinającemi się w jednym punkcie; te bowiem 
trzy płaszczyzny jeden tylko punkt O mają spólny, gdyż 
on leży na każdej z nich. Te ośm przestrzeni nazywać bę­
dziemy kątami trójściennemi albo lepiej trójścianami zwy­
czajnie, lubo mylnie, kątami brylowemi (ang. solidus, po 
francuzku triódre); każda bowiem przestrzeń leży między 
trzema ścianami, punkt zaś O wszystkim trzem płaszczyznom 
spólny nazwiemy wierzchołkiem trójścianu. Trzy więc płasz­
czyzny przecinając się w jednym punkcie, dzielą całą nie­
ograniczoną przestrzeń na ośm części czyli trój ściano w. 
Z Tych cztery są nad płaszczyzną IKLM, a cztery pod tąż 
płaszczyzną.
Pierwsze są: OAEM, OBFK, OBEI i OAFL
drugie zaś ODHM, OCGK, OCHI i ODGL.

17
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Tc kąty są takie, że po dwa, jeden nad a drugi pod płasz­
czyzną IKLM są sobie równe. Tak w obecnym przypadku 
trój ścian O A EM =  OCGK

—  O B F K -O D H M
—  OBEI =  ODGL
—  O AFL =  OCHI

jak się później o tem przekonamy, mówiąc o równości ką­
tów trójściennych.

W  przypadku, gdy te trzy płaszczyzny są do siebie 
prostopadłe, jak na fig. 209, kąty trójścienne wszystkie są 
między sobą równe i dzielą przestrzeń na ośm okolic zu­
pełnie sobie równych. W  takim razie kąty trójścienne na­
zwiemy prosterni. Spólne przecięcie się każdych dwóch płasz­
czyzn stosownie do §. 195 jest prostopadłe do trzeciej płasz­
czyzny, zatem każde spólne przecięcie się dwóch płaszczyzn 
będąc prostopadłe do trzeciej, która przechodzi przez dwa 
inne spólne przecięcia, jest także prostopadłe do każdej 
z tych prostych; przeto trzy te spólne przecięcia są wzajem­
nie do siebie prostopadłe. Na przywiedzionej figurze spólne 
przecięcia się są x x , yy' i zz i na tej figurze można jeszcze 
wyraźniej rozróżnić ośm kątów trójściennych; są one bowiem 
nad płaszczyzną xx następujące

Oxyz, Oxy'z, Ox’yz i Oxy'z 
a zaś pod rzeczoną płaszczyzną

Oxyz', Oxy z , Qxyz i Oxy'z.
Spólne przecięcie xx jest prostopadłe tak do yy'jako też i do 
zz i nawzajem yy’ jest prostopadłe do xx i do zz', a zz’ 
prostopadłe do xx' i yy'. Jakkolwiek trzy te płaszczyzny 
będą do siebie nachylone, kąt Oxyz czyta się zwyczajnie 
xyz, Oxyz czyta się się xyz  i t. d. wymawiając tylko trzy 
głoski na trzech przecięciach w jedną okolicę przestrzeni 
zwróconych leżące. Linijowe kąty xOy, xOz i yOz, nazywać 
będziemy kątami płaskiemi. •

Jeżeli więcej niż trzy jakiekolwiek płaszczyzny prze­
cinają się w jednym punkcie, te zajmują w jednym kierun­
ku nieograniczoną przestrzeń, którą ogólnie nazywamy kątem
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wielościennym (angulus polyeder) i od liczby płaszczyzn czyli 
ścian, przybiera nazwy dwuścienny, trójścienny, czworościen- 
ny, pięcio-, sześcio- i t. d. ścienny.

W  tern co następuje uważać tylko będziemy kąty bry­
łowe wypukłe t. j .  takie w których przedłużywszy którąkolwiek 
ścianę, cały kąt bryłowy leży z jednśj strony tej płaszczyzny.

§. 206.

T w ie r d z e n ie . Wewnątrz kąta bryłowego trójściennego 
czyli trójścianu wziąwszy gdziekolwiek punkt i z tegoż pun­
ktu spuściwszy prostopadłe do ścian tego kąta, a potem przez 
każde dwie prostopadle pomyśliwszy płaszczyznę, te trzy płasz­
czyzny zamkną kąt bryłowy trójścienny, którego kąty pochy­
łości płaszczyzn czyli kąty dwuścienne są spełnieniami kątów 
płaskich danego kąta bryłowego; i wzajemnie kąty dwuścien­
ne drugiego, są spełnieniami kątów płaskich pierwszego kąta 
trójściennego.

Niech będzie kąt trójścienny O trzema płaszczyznami 
AOB, AOC i BOC zawarty jig. 210, obrawszy wewnątrz je ­
go gdziekolwiek punkt o i z tego spuściwszy prostopadłe 
oa na płaszczyznę BOC, ob na płaszczyznę AOC i oc na 
płaszczyznę AOB, i przez te prostopadłe prowadząc płasz­
czyzny, te będą prostopadłe każda do dwóch innych. Tak 
płaszczyzna przez ob i oc jest prostopadłą, tak do płaszczy­
zny AOB jako też i płaszczyzny A O C , a zatem i do ich 
spólnego przecięcia się AO. Lecz rzeczona płaszczyzna prze­
cina dwie drugie w prostych Ab i Ac, te przeto również są 
prostopadłe do OA. Podobnież płaszczyzna przez oa i oc 
jest prostopadłą do OB, jako też spólne jej przecięcia się 
Ba i B c ; a nareszcie płaszczyzna przez oa i ob, tudzież spól­
ne jej przecięcia się Ca i Cb, prostopadłe do OC. Ponieważ 
OA jest prostopadłą tak do Ab jako też i do A c , więc jest 
także prostopadłą i do płaszczyzny boc czyli do ściany boc 
kąta bryłowego o; dla tójżc samej przyczyny OB jest pro­
stopadłą do ściany aoc, a OC prostopadła do ściany aob. 
Stąd wnieść możemy że kąt bryłowy O jest tern samem 
względem kąta o, czem ten ostatni względem pierwszego.

17.
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W  czworokącie OAcB kąty przy A i B są proste we­
dług powyższego, więc kąt AcB z kątem AOB czynią dwa 
kąty proste, jest więc jeden drugiego spełnieniem. Ale kąt 
AcB jest kątem pochyłości ścian boc i aoc czyli kątem dwu- 
ściennym aocb kąta bryłowego o, kąt zaś AOB jest kątem 
płaskim kąta bryłowego O i te kąty są sobie przeciwległe, 
zatem kąt płaski kąta bryłowego O z kątem dwuściennym 
kąta o pierwszemu przeciwległym, są kątami spełniającemi 
się do 180 stopni. Tym samym sposobem dowodzi się, że 
kąt AOC jest spełnieniem kąta aobc a kąt BOC spełnieniem 
kąta boac. Wzajemnie: w czworokącie np. A boc kąty przy 
b i c są proste, zatem kąt płaski boc kąta bryłowego o z ką­
tem pochyłości płaszczyzny AOC do płaszczyzny AOB t. j. 
z kątem bAc czynią 180°, są więc spełnieniem jeden drugie­
go. Toż samo dowiedzie się i o dwóch innycli kątach. Za­
tem kąty płaskie trójściennego kąta O są spełnieniami ką­
tów ściennych kąta bryłowego o przeciwległych pierwszym, 
a kąty płaskie bryłowego kąta o, są spełnieniami kątów 
ściennych kąta O tamtym przeciwległych. Z tego powodu 
dwa trójścienne kąty O i o nazywają się spełniającemi 
(supplementarii).

Twierdzenie to uważać można za zasadnicze w teoryi 
kątów trójściennych.

Uwaga. Cała nauka o związku kątów ściennych z ką­
tami płaskiemi kąt bryłowy trójścienny składającemi, stano­
wi osobną część Geometryi nazwaną Trygonometryją w prze­
strzeni albo zwyczajniej Trygonometryją sferyczną.

§. 207.
T w ie r d z e n ie . W  każdym kącie bryłowym trójścien­

nym summa dwóch którychkolioiek kątów płaskich jest zmuszę 
większa niż kąt trzeci, tudzież każdy kąt płaski jest większy 
niż różnica dwóch innych.

Chcąc z trzech kątów płaskich AOB, BOC i COD 
fig. 211 złożyć kąt bryłowy, wystawić sobie możemy, że płasz­
czyznę AOB obracamy około prostej OB a płaszczyznę COD 
około prostej OC, jakoby około osi dopóty, dopóki płaszczy­
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zny te nie spotkają się z sobą albo raczej dopóki proste OA 
i OD nie zejdą się w jednę krawędź będącą spólnem prze­
cięciem się tych dwóch płaszczyzn. Gdyby kąty AOB i COD 
razem wzięte równały się kątowi BOC, proste OA i OD 
zeszłyby się na płaśzczyznic kąta BOC np. w prostej OE, 
a dwie płaszczyzny ĄOB i COD zmieszałyby się z płasz­
czyzną BOC i nieotrzymalibyśmy żadnego bryłowego kąta. 
W  przypadku zaś, gdyby summa kątów AOB i COD była 
mniejszą niż kąt BOC, prosta OA przypadałaby na płasz­
czyźnie BOC np. w położeniu OA', a prosta CD w położe­
niu CD’ t. j. dwie te proste wcaleby się z sobą nie zeszły, 
a zatem tym mniej zamknęłyby jaką przestrzeń. Z tego skła­
dania kąta bryłowego trójściennego widzimy jasno, iż aby 
z trzech płaskich kątów można złożyć kąt bryłowy, koniecz­
nym jest warunkiem, iżby płaszczyzny AOB i COD zeszły 
się z sobą nad płaszczyzną BOC lub pod tąż płaszczyzną, 
gdybyśmy pierwsze dwie płaszczyzny w przeciwnym kie­
runku obracali. A że ten warunek nie ma miejsca tylko 
w tcnczas, gdy summa dwóch kątów płaskich AOB i COD 
jest większa niż trzeci BOC, zatem jest dowiedzionem, iż 
summa dwóch którychkolwiek kątów płaskich kąt bryłowy 
trójścienny składających, jest większa niż trzeci.

Albo tak: Ponieważ tylko w przypadku, gdy jeden 
z kątów jest większy niż każdy z dwóch innych, dowód mo­
że mieć miejsce, zatem niech w kącie bryłowym trójścien­
nym O fig. 212, będzie kąt AOC największy, tedy chcąc 
dowieść, że wszelako ten kąt jest mniejszy niż summa ką­
tów AOB i BOC, poprowadźmy jakkolwiek prostą AC prze­
cinającą krawędzie OA i OC w punktach A  i C, potem na 
płaszczyźnie kąta największego poprowadźmy prostą OB' tak, 
iżby kąt AOB' był równy kątowi AOB; niech ta prosta prze­
cina prostą AC w punkcie B '; na krawędzi OB weźmy 
O B =O B ’ i poprowadźmy proste BA i BC. Dwa trójkąty 
AOB i AOB' są sobie równe według §. 23, bo AO spólne, 
B 0r=B '0  z wykreślenia i kąt AOBzrAOB' także z wykre­
ślenia; przeto A B ~ A B ’. Lecz w trójkącie ABC jest
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A C < A B + B C  czyii A B '-fB 'C <A B -|-B C  skąd B ’C < B C ; 
więc ponieważ trójkąty BOC i B ’OC mają bok CO spoiny, 
OB =  OB', zatóm kąt B ’OC-<;BOC, gdyż pierwszy leży na­
przeciwko boku mniejszego. Do dwóch ilości nierównych 
dodawszy równe, summy otrzymamy nierówne t. j.

B 'O C + B ’OA<BOC-+-AOB czyli A O C <A O B +B O C .
Co do drugiego. Przypuściwszy że B O C >A O B , ponieważ 

AO B-}-AO C>BO C według poprzedzającego, więc odjąwszy 
od dwóch tych ilości nierównych tęż sarnę ilość AOB, będzie 
A O C >B O C — AOB t. j. którykolwiek z trzech kątów płas­
kich kąta trójściennego jest zawsze większy niż różnica dwóch 
innych, co potrzeba było dowieść.

§. 208.
T w ie r d z e n ie . W  kącie bryłowym trójściennym summa 

trzech kątów płaskich kąt bryłowy składających, jest mniej­
sza niż cztery kąty proste.

Niech będzie kąt bryłowy O złożony z trzech kątów 
płaskich AO B, AOC i BOC fig. 213, potrzeba dowieść, że 
AOB-j-AOC-)-BOC<;4Il. Na ten koniec poprowadźmy ja­
kąkolwiek płaszczyznę DEF przecinającą wszystkie trzy kra­
wędzie w punktach D , E , F , przy których powstają trzy 
kąty bryłowe trójścienne. Tak przy punkcie D powstaje 
kąt bryłowy zawarty trzema kątami płaskiemi ODE, ODF 
i FD E; przy punkcie E kąt bryłowy złożony z trzech ką­
tów płaskich OED, OEF i DEF, a nareszcie przy punkcie 
F, kąt bryłowy trójścienny zawarty kątami płaskiemi OFE, 
OFD i DFE. Ponieważ według poprzedzającego §. 

w kącie bryłowym D jest ODE-|- ODF>  FDE
„ „ „ E „ OED +  OEF >  DEF
„ „ „ F „ OFE +  OFD >  DFE

zaś F D E -f  D E F -f  DFE =  211, zatóm 
ODE - f  OED - f  OEF -f- OFE +  ODF +  OFD 2R 

A  że w trójkącie DOE . . . .  ODE-(-OED =  2R —  DOE 
„ „ „ „ EOF . . . . O E F -f OFE = 2 R  —  EOF

D O F . . . . O D F -f  OFD =  2R— DOF» n n n
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t. j. ODE-f- O E D + O E F -f  OFE +  ODE +  OFD==6R—
' (D O E -f E O F + D O F )

zatem 6R — (DOE -f- EOF -(- I)OF >  2R, a nareszcie 
DOE EOF -f- DOF <  4R co było do dowiedzenia.

W n io s e k . Z tego twierdzenia wprost wypływa, że 
summa kątów ściennych w kącie bryłowym trójściennym t. j. 
summa trzech kątów pochyłości ścian kąta bryłowego, jest 
mniejsza niż 6R a większa niż 2R. Oznaczywszy bowiem przez
a, fi, y, kąty płaskie kąt bryłowy O składające, a przez a,
b, c, kąty ścienne pierwszym przeciwległe, według §. 206

mamy a —  2R — «, ó==:2R —  fi, c — 2R —  y, zatem 
a -f- b -f- c= :6R —  («-(-/?  -j- / ) .  A że w poprzedzającem twier­
dzeniu dowiedliśmy, iż a -j- fi -f- y <  4R , co znaczy, że sum­
ma a —j— fi ~j— y przypada zawsze między 0 i 4R, zatem sum­
ma a +  ó +  c przypada też zawsze między 6R i 2R t. j. 
w każdym razie jest większa niż 2R, a mniejsza niż 6R. Źe 
summa kątów ściennych nigdy nie może przestąpić a nawet 
dosięgnąć granicy 6R , pokazuje się stąd, że summa a -j- fi-j-~ y 
nigdy nie może stać się = 0 , bo w takim razie i kąt bry­
łowy znika; że zaś nie może być nigdy większa, a nawet 
równa 2R, widzimy oczywiście; bo gdyby « p -j- y czyniło 
4R, a tylko w tym razie być by mogło a -j- ó -j- c =r2.R, trzy 
kąty płaskie <*, fi, y, rozpostarłyby się na jednę płaszczyznę 
około punktu O , więcby znowu nie mogły zamykać kąta 
bryłowego.

Z tego rozumowania wynika, że summa a -\-b-\- c mo­
że przybierać wszystkie ważności ale tylko między 2R i 6R 
przypadające.

Jeżeli kąty płaskie <*, fi, y są proste, wtedy też i kąty 
ścienne a, b, c, są proste, jak z §. 205 wiemy.

§. 209.
T w ie r d z e n ie . W  kącie bryłowym trójściennym naprze­

ciwko kątów płaskich równych, leżą kąty ścienne równe i od­
wrotnie.

Niech będzie kąt bryłowy trójścienny O jig. 214, w któ­
rym kąt płaski AOB =  B O C, potrzeba dowieść, że kąt po­
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chyłości płaszczyzny AOB do płaszczyzny AOC jest równy 
kątowi pochyłości płaszczyzny BOC do tejże płaszczyzny 
AOC. Na dowiedzenie tego z któregokolwiek punktu B 
krawędzi OB spuśćmy prostopadłą BD na płaszczyznę AOC, 
a  z jej spodka D  na płaszczyźnie AOC spuśćmy prostopa­
dłe DA i DC do krawędzi OA i O C ; punkta A i C połą­
czywszy z punktem B prostemi AB i BC, te według §. 185 
wniosek będą prostopadłemi, pierwsza do OA druga do OC, 
a kąty BAD i BCD będą owemi kątami pochyłości czyli 
ściennemi, których równości dowieść potrzeba. Dwa trójkąty 
AOB i BOC prostokątne przy A  i C , mają przeciwprosto- 
kątnię OB spoiną, kąt A O B = B O C  z założenia, przeto 
ABr=BC. Dwa znowu trójkąty ABD i BCD prostokątne 
przy D mają bok BD przyległy kątowi prostemu spoiny i 
przeciwprostokątnie AB i BC równe z poprzedzającego do­
wodu, są przeto sobie równe i przystają do siebie, a z przy­
stania wnosimy, że kąty leżące naprzeciwko boków równych, 
są sobie równe t. j. kąt BAD =  BCD, co było do dowie­
dzenia.

Odwrotnie: Jeżeli kąty pochyłości płaszczyzn AOB i 
BOC do płaszczyzny AOC są sobie równe, kąty płaskie 
AOB i BOC im przeciwległe także sobie są równe. Obraw­
szy podobnież gdziekolwiek punkt B na krawędzi OB i 
z niego spuściwszy prostopadłą BD do płaszczyzny AOC, 
potem z jej spodka D prostopadłe D A i DC do krawędzi 
OA i OC, a nareszcie poprowadziwszy proste AB i BC, kąty 
BAD i BCD są kątami pochyłości rzeczonych płaszczyzn 
z założenia równe, dowieść potrzeba, że kąt AOB =  BOC. 
Trójkąty BAD i BCD prostokątne przy D mające bok 
BD spoiny i oprócz tego kąty przy A  i C równe przystają 
do siebie, a w szczególności A B = B C . Dwa też trójkąty 
AOB i BOC prostokątne przy A i C mając przeciwprosto- 
kątnią OB spoiną i bok A B irB C  przystają do siebie, a 
z przystania wnosimy, że kąt AOB przeciwległy bokowi AB 
jest równy kątowi BOC przeciwległemu bokowi BC, a rów­
nemu AB, co było do dowiedzenia.
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WNIOSEK. Poprowadziwszy prostą OD, ponieważ z przy­
stania trójkątów AOB i BOC wypada że też i O A :=O C , 
a z przystania trójkątów ABD i BOD, że AD —  D C , zatem 
dwa trójkąty AOD i DOC, w których trzy boki jednego 
równe są trzem bokom drugiego, każdy każdemu, przystają 
do siebie, a w szczególności kąt AOD DOC. Jeżeli więc 
przez prostopadłą BD i krawędź OB wystawimy sobie po­
prowadzoną płaszczyznę, ta będzie prostopadłą do płaszczy­
zny AOC, i podzieli kąt płaski AOC na dwie części równe 
a kąt bryłowy O na dwa inne mające po kącie ściennym 
prostym i złożone każdy z trzech kątów płaskich równych, 
przeto rzeczona płaszczyzna podzieli kąt bryłowy O na dwie 
części równe. Płaszczyznę taką nazwaćby można równodzie- 
lącą kąt bryłowy trójścienny.

Równość kątów bryłowych trójściennych.

§. 210.

Składając kąt bryłowy trójścienny z trzech kątów płas­
kich w §. 207, widzieliśmy, żc mając trzy kąty płaskie AOB, 
BOC i COD fig. 211, rozpostarto na płaszczyźnie i chcąc z 
nich złożyć kąt bryłowy, obracaliśmy płaszczyznę AOB oko­
ło prostej OB, zaś płaszczyznę DOC około prostej OC, do­
póty, aż się obie zeszły nad płaszczyzną BOC tak, że pro­
ste OA i OB zeszły się w jednę krawędź. Lecz ten sam 
kąt bryłowy moglibyśmy otrzymać obracając też same płasz­
czyzny i około tychże samych prostych, lecz w przeciwnym 
kierunku, a wtedy proste OA i OD zejdą się także w jednę 
krawędź, lecz pod płaszczyzną BOC. Tym sposobem otrzy­
mamy dwa kąty bryłowe złożone z tychże samych kątów 
płaskich i mających też same kąty ścienne. Atoli wystawiw­
szy sobie te dwa kąty położone przy sobie tak, aby na je- 
dnejże płaszczyźnie były położone ścianami BOC, łatwo do­
strzeżemy, iż kąt płaski AOB leżeć będzie w pierwszym z 
lewej, w drugim zaś kącie bryłowym z prawej strony; toż sa­
mo rozumie się o kącie płaskim DOC, kładąc więc dwa te 
kąty na sobie tak, aby wierzchołki O padły na siebie i ścia­
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na BOC przystała do ściany BOC, co się da uskutecznić, bo 
te ściany są równe jako też same, ściana DOC drugiego nie 
może przystać do ściany AOB pierwszego bo nie są równe, 
więc i te kąty bryłowe nie mogą przystać do siebie. W  trój­
kątach prostokreślnych widzieliśmy, iż takowe jakiekolwiek 
miały położenie, skoro trzy boki jednego równe były trzem 
bokom drugiego każdy każdemu, były sobie równe i przy­
stały do siebie. W  kątach zaś bryłowych trójściennych zło­
żonych z kątów płaskich równych napotykamy niepodobień­
stwo ich przystania do siebie, chociażbyśmy którykolwiek z 
nich dowolnie odwracali, lubo o ich równości jesteśmy prze­
konani. Jakież więc kąty bryłowe trójścienne przystać będą 
mogły do siebie? Odpowiedź na to jest bardzo łatwa i za­
pewne bez namysłu, mając przed oczami powyższe dwa ką­
ty bryłowe, każdy odpowie: że dwa kąty bryłowe, trójścienne 
złożone z kątów płaskich równych i w tymże samym porządku 
w obu ułożonych są sobie równe i przystają do siebie. To jest 
pierwsze twierdzenie o równości i przystawaniu kątów bry­
łowych odpowiadające twierdzeniu §. 22.

W  drugim przypadku dwa kąty bryłowe równe t. j.  z 
równych kątów płaskich złożone ale w przeciwnym porządku 
w obu ułożonych, nazwiemy kątami bryłowemi symmetryczne- 
mi. Taicie dwa kąty najłatwiej otrzymamy, przedłużając kra­
wędzie jednego w przeciwnym kierunku. Z trzech więc ką­
tów płaskich można też złożyć dwa kąty bryłowe równe ale 
nieprzystające do siebie.

Uwaga. Kąt bryłowy trójścienny mający dwa kąty płas­
kie równe, na podobieństwo trójkąta równoramiennego, na­
zwać można kątem równościennym (po francuzlcu isoedre). 
Dwa takie kąty bryłowe symmetryczne przystają do siebie, 
bo położywszy jeden na drugim tak, iżby trzecie ściany przy­
stały do siebie, dwie inne ściany czyli to leżą w tymże sa­
mym czyli w przeciwnym porządku jako sobie równe, w każ­
dym razie przystaną do siebie, bo oprócz równości czynią z 
trzecią kąty ścienne równe §. poprzedzający.
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§• 211.
T w ie r d z e n ie . Dwa kąty bryłowe trójścienne mające po 

jednej ścianie równej i po dwa kąty ścienne przy tejże ścia­
nie leżące równe i jednako położone przystają do siebie.

Niech będą dwa kąty bryłowe O i O' jig. 215, mające kąty 
płaskie AOC i A '0 'C  równe, tudzież kąt ścienny O A ~  O'A 
i kąt 0C  =  0 'C ' czyli wyraźniej, kąt pochyłości płaszczyzny 
AOB do AOC równy takiemuż kątowi płaszczyzny A ’0 'B ' 
do A '0 ’C i kąt płaszczyzny BOC z płaszczyzną AOC równy 
kątowi płaszczyzny B ’0 'C ' z płaszczyzną A '0 'C ', potrzeba 
dowieść, że te dwa kąty przystają do siebie. Przeniósłszy 
myślą kąt O 1 na O i ułożywszy tak iżby wierzchołek O' 
padł na O, a ściana A '0 ‘C' przystała do ściany AOC, po­
nieważ te kąty płaskie z założenia są sobie równo, zatem 
krawędź 0 ’A ' pójdzie po krawędzi OA a krawędź 0 'C , po 
OC. Z powodu, że kąt 0 ’A' =  0A , ściana A '0 ’B' weźmie po­
łożenie ściany AOB i dla tej samej przyczyny ściana B '0 'C  
weźmie położenie ściany BOC. Dwie więc płaszczyzny A '0 ’B' 
i B '0 'C  dostatecznie rozszerzone, przetną się w tejże samój 
prostej w której się płaszczyzny 40B  i BOC przecinają t. j. 
w prostej OB, a dlatego krawędź 0 'B ' pójdzie po krawędzi 
OB, a następnie kąty płaskie A '0 'B ’ i AOB, B ’0 'C ' i BOC 
przystaną do siebie, zatem i kąt bryłowy O' przystanie do 
takiegoż kąta O, a tein samem są sobie równe.

§. 212.
T w ie r d z e n ie . Dwa kąty bryłowe trójścienne są sobie 

równe i przystaó mogą do siebie, jeżeli mają po dwa kąty 
płaskie równe i po kącie ściennym między płaszczyznami tych­
że kątów zawartym równym, a kąty płaskie są jednakowo w 
obu ułożone.

Niech będą dwa kąty bryłowe O i O' fig. 215 takie, 
że kąt AOC ~  A '0 'C ', kąt AOB =  A '0 'B  i kąt ścienny 
OB ~  O 'A' czyli kąt pochyłości płaszczyzny AOB do AOC 
równy kątowi pochyłości płaszczyzny A '0 'B ’ do A '0 'C ; po­
trzeba dowieść, że te kąty przystają do siebie a następnie są 
sobie równe, t. j. że i trzecie kąty płaskie BOC i B '0 ’C' są
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sobie równe. Na dowiedzenie tego, połóżmy również kąt O' 
na O tak, iżby punkt O' padł na O, a kąt płaski A '0 'C  przy­
stał do kąta AOC. Ponieważ kąt ścienny 0 'A ' =  OA, zatem 
ściana A '0 'B ' weźmie położenie ściany AOB, a z powodu 
równości kątów płaskich AOB i A '0 'B ', krawędź 0 ’B' weź­
mie płożenie krawędzi OB. A że przez dwie proste przeci­
nające się jedna tylko płaszczyzna przechodzić może §. 180, 
zaś dwie proste 0 'C ’ i O B leżą całkiem na prostych OC i 
OB czyli czynią z niemi jedne i też same krawędzie, zatem 
i kąt płaski B '0 'C ' =  BOC t. j. dwa założone kąty bryłowe 
we wszystkich swych częściach przystają do siebie.

§. 213.
T wierdzenie. Dwa kąty bryłowe trójścienne, w których 

trzy kąty ścienne jednego są równe trzem, takimże kątom dru­
giego i jednakowo ■położone, są sobie równe i przystają do siebie.

Dwóch kątów bryłowych trójściennych O i O ’, oznacz­
my kąty płaskie przez a, fi, y i a, fi;, / ,  kąty zaś ścienne 
im przeciwległe przez a, b, c i a, b', c'. Do każdego z 
tycli kątów bryłowych pomyślmy sobie kąt trójścienny speł­
niający §. 206, tedy ściany jednego z tych kątów będą ró­
wne ścianom drugiego każda każdej jako spełnienia kątów 
a, b, c i a', b', c, gdyż z założenia a ~ a ,  b— b', c — c'. Je­
żeli bowiem kąty płaskie tych spełniających kątów bryło­
wych ozuaczymy przez A , B , C i A ’, B', C', ponieważ 
A  +  a =  1801 i A '-j-a ’=  180 ', zatśin A -|-a =  A '-j-a' a nastę­
pnie AzzA'  bo z założenia a — a'. Dla tejże samej przy­
czyny jest B = B '  i C=zC' Dwa więc kąty spełniające przy­
stają do siebie, a z przystania wniesiemy, że ich kąty ścien­
ne leżące naprzeciwko kątów płaskich równych są sobie ró­
wne. Oznaczywszy takowe w pierwszym przez g, li, k, a 
w drugim przez g', li, k', będzie g — g, li — h' i Ic — li. A że 
znowu z własności kątów spełniających wyżej dowiedzionej 
wypada, że < /-)-«= : 180 i g'-\-a —  180, skąd g —j—r< z; g - f - , 
zatem a — * .  Podobnie też znajdziemy, że fi— fi' i y— y' czyli 
że dwa kąty bryłowe trójścienne mające kąty ścienne równe i
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w tymże samym porządku ułożone są sobie we wszystkich 
swych częściach równe i przystają do siebie.

Uwaga. Kąt bryłowy trójścienny jest więc dokładnie 
oznaczonym, skoro znamy sześć jego elementów t. j. trzy ką­
ty płaskie i trzy kąty ścienne. Łącząc te sześć elementów 
po dwa za pośrednictwem trójściennego kąta spełniającego, 
otrzymamy sześć różnych połączeń.

Chociaż pominęliśmy twierdzenie, że w kątach bryłowych 
trójściennych na przeciwko kątów płaskich równych leżą ką­
ty ścienne równe i odwrotnie, wszelako w przypadku przy­
stania do siebie dwóch takich kątów łatwo to twierdzenie 
wyprowadzić jako prosty wniosek, bo to jest koniecznym 
warunkiem ich przystania.

§. 214.
Powiedziawszy w §. 205, co nazywamy kątem bryłowym 

wielościennym, nie wiele mamy do powiedzenia o takich ką­
tach, oprócz że przez dwie którekolwiek lecz nie na jednej 
ścianie leżące krawędzie poprowadzona płaszczyzna, dzieli 
kąt bryłowy na dwa inne, każdy z mniejszej liczby kątów 
płaskich złożone; że prowadząc przez każde dwie do dwóch 
przyległych ścian należące krawędzie płaszczyzny, podzielić 
można każdy kąt bryłowy wielościenny, na same kąty trójścien­
ne; że nareszcie summa kątów płaskich w wierzchołku kąta 
bryłowego wielościennego, jest zawsze mniejsza niż 4R.

To ostatnie twierdzenie jakkolwiek samo z siebie oczy­
wiste, jeżeli kąt bryłowy ma być rzeczywistym, sądzę za po­
trzebne dowieść, chociażby tylko dla torowania uczącym się 
drogi do innych dowodów.

Niechże więc fig. 216 będzie kąt bryłowy wielościenny 
O; na dowiedzenie, że summa kątów płaskich przy jego wierz­
chołku jest mniejsza niż 4R, poprowadźmy jakokołwiek płasz­
czyznę wszelako z wrarunkiem, iżby wszystkie krawędzie da­
nego kąta przecinała jak tu np. w punktach A, B, C, D, E, 
F. Taż sama płaszczyzna przetnie też każdą ścianę w pro- 
stój, które zamkną pewien wielokąt ABCDEF....  Na płasz­
czyźnie tego wielokąta obrawszy gdziekolwiek punkt S i ta-
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kowy połączywszy ze wszystkiemi wierzchołkami wielokąta, 
przy każdym takim wierzchołku otrzymamy kąt bryłowy 
trójścienny, w którym dwa kąty płaskie należą do ścian kąta 
bryłowego, zaś trzeci do wielokąta. A że według §. 207 każ­
de dwa kąty płaskie do ścian kąta bryłowego należące są 
większe niż trzeci, t. j . niż kąt do wielokąta należący, więc 
summa wszystkich kątów płaskich przy wierzchołkach A, B, 
C, D i t. d. leżących a do ścian kąta bryłowego należących 
jest większa, niż summa wszystkich kątów wewnętrznych wie­
lokąta. Każdej ściany, jako trójkąta prostokreślnego, summa 
trzech kątów czyni 2R, tych zaś trójkątów jest tyle, ile wie­
lokąt ma boków, przeto i liczba kątów prostych będzie rów­
na tyle razy powtórzonym dwom kątom prostym, ile wielo­
kąt ma boków; przeto summa kątów w wierzchołku kąta bry­
łowego uzupełnia summę wszystkich kątów płaskich do ścian 
jego należących do tyle razy wziętych dwóch kątów prostych, 
ile wielokąt ma boków. Podobnież summa kątów przy S u- 
zupełnia summę kątów wewnętrznych wielokąta do tyle razy 
wziętych dwóch kątów prostych, ile wielokąt ma boków; ta 
więc ostatnia summa jest względnie summy wewnętrznych 
kątów wielokąta, czem summa kątów płaskich przy wierz­
chołku , względem summy kątów płaskich przy wierzchołkach 
A, B, C, D ....  leżących, a do ścian kąta bryłowego należą­
cych. Ale ponieważ ta ostatnia summa jest większa, niż sum­
ma kątów wielokąta, przeto summa uzupełniająca tarntę, mniej­
sza być musi od summy tę tu uzupełniającćj, A kiedy osta­
tnia uzupełniająca summa jest — 4R, zatem summa kątów płas­
kich przy wierzchołku kąta bryłowego jest mniejsza niż 4R, 
co chcieliśmy dowieść,

Dwa kąty wielościenne podobnież jak dwa trójściany 
wtedy tylko do siebie przystać mogą, gdy mają kąty płaskie 
równe i jednakowo w obu ułożone i oprócz togo kąty ścienne 
równe. Lub też, jeżeli każdy z nich może być rozebranym 
na tęż sarnę liczbę trójścianów równych i podobnie w obu 
kątach ułożonych.
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§• 215.
Kończąc rzecz o kątach bryłowych, wypada nam jesz­

cze wspomnieć, chociaż tylko pokrótce, jak się mierzy wiel­
kość kąta bryłowego? Wiemy już, iż aby wymierzać ilości 
ciągłe czyli geometryczne, potrzeba w każdym gatunku ilości 
obrać jednostkę tegoż samego gatunku, a wszelako łatwą do 
pojęcia i stałą. Jakoż chcąc wymierzać kąty linijowe, obraliś­
my za jednostkę kąt prosty, bo się przekonaliśmy, że ten jest 
zawsze stałym i niezmiennym, oraz do wykreślenia łatwym 
a pojęcie jego żadntj nie stawia trudności. Chcąc zatem wy­
mierzać wielkość kątów bryłowych, postąpić nam należy tym­
że samym sposobem, obierając za jednostkę do tego wymia­
ru także kąt bryłowy. Ale jakiż kąt za taką jednostkę obie­
rzemy? Rozważywszy wszystko co dotąd o kątach bryłowych 
powiedzieliśmy, dostrzeżemy, że w §. 207 pokazaliśmy, iż sko­
ro się trzy płaszczyzny przecinają, tak żc każda z nich jest 
prostopadłą do dwóch innych, dzielą przestrzeń nieograniczo­
ną na ośm okolić czyli części zupełnie między sobą równych; 
będąc zaś te płaszczyzny wzajemnie do siebie prostopadłemi, 
czynią ośm kątów bryłowych trójściennych między sobą ró­
wnych. Każdy z tych kątów bryłowych zawarty jest trzema 
prostemi kątami płaskiemi, i ma wszystkie trzy kąty ścien­
ne czyli kąty pochyłości ścian proste, z tego powodu takie 
trójścienne kąty bryłowe nazywać będziemy prostemi. W  każ­
dym innym przypadku t. j. gdy się trzy płaszczyzny w inny 
sposób przecinają, kąt bryłowy nie będzie miał tych własno­
ści, iżby jego kąty płaskie były proste równie jak kąty ścien­
ne; dlatego też kąt bryłowy trójścienny prosty jest stałym i 
niezmiennym, oraz łatwym do pojęcia; słuszną więc jest rze­
czą taki kąt obrać za jednostkę do mierzenia innych kątów 
bryłowych. Mówiąc zatem o wielkości jakiego kąta bryło­
wego, rozumieć będziemy stosunek przestrzeni między jego 
ścianami zawartej, do przestrzeni zawartej między trzema ścia­
nami kąta bryłowego prostego.

Jeżeli trzy płaszczyzny przecinają się wzajemnie jako- 
kolwiek, w każdym razie dzielą przestrzeń nieograniczoną na
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ośm okolic nierównych, jak poprzednio między sobą; summa 
atoli tych okolic czyli kątów bryłowych trójściennych równa 
się zawsze ośmiu kątom bryłowym trójściennym prostym. 
Każde dwa kąty bryłowe nad lub pod płaszczyzną poziomą, 
a po jednćjźe stronie jednej z dwóch drugich płaszczyzn w 
summę wzięte, czynią dwa kąty bryłowe prosto i z tego po­
wodu nazwaćby je  można przyległem! na podobieństwo kątów 
linijowych. Co tu powiedzieliśmy o dwóch kątach nad lub 
pod płaszczyzną poziomą, rozumió się także o każdej z trzech 
płaszczyzn, bo każdą z nich uczynić można poziomą. Zasta­
nowiwszy się nad tern, iż im jeden z dwóch przyległych ką­
tów bryłowych jest mniejszy, tem drugi będzie wuększy od 
kąta prostego, tudzież, że również kąty ścienne przy tejże sa­
mej krawędzi leżące, a do tych kątów bryłowych należące, 
w miarę zmieniania się obu kątów bryłowych zmieniać się 
będą, t. j. jeden maleć a drugi róść będzie, łatwo pojmiemy, 
że skoro kąty bryłowe ze stanu równości t. j. gdy są kąta­
mi prostemi, przechodzą do stanu nierówności, kąty tćż ścien­
ne z takiegoż stanu przechodzą do kątów pochyłości nieró- 
wnych jako przyległe; że przeto stosunek jednego z tych ką­
tów nierównych do kąta prostego, koniecznie równym być 
musi stosunkowi zmiennego kąta pochyłości do kąta lini- 
jowego prostego.

To dobrze zrozumiawszy, niech trzy płaszczyzny MN, 
PQ i RS fig. 217, przecinają się w punkcie O ; kąt ścienny 
przy krawędzi O# czyli kąt pochyłości płaszczyzny RS do 
płaszczyzny MN oznaczmy przez c; takiż kąt przy krawędzi 
Oy  czyli kąt pochyłości płaszczyzn PQ i MN oznaczmy przez 
b, a nareszcie kąt przy krawędzi Oz czyli kąt pochyłości 
płaszczyzn PQ i RS oznaczmy przez a ; tedy uważając cztć- 
ry kąty nad płaszczyzną MN, według tego co poprzedziło, ma­
my: summa dwóch kątów bryłowych xyz i xyz  t. j. summa 
kątów po jednej stronie płaszczyzny PQ jest tem względem 
dwóch kątów bryłowych prostych, czem kąt ścienny c wzglę­
dem kąta prostego linijowego czyli 90". Oznaczywszy przeto 
kąt bryłowy prosty przez K, będzie
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2 c(xyz -f- x'yz); 2K =  c ; 90 skąd xyz -(- xyz ~ -  K

Podobnież znajdziemy ■ . •i0 KxyzĄ-xy z— j - ^

xyzĄ-xyz = ( K

26]
90
2«j

’ 90
A że xyz -f- sc'yz -f-a5yz'=r:4K , zatem dodawszy trzy
ostatnie zrównania otrzymamy

, 2 ( 'a - ) -6  +  c ) ir2^2 +  4K =  A -^ _n U K

skąd

albo

xyz — k  -
90

-2K

xyz __(a-j- b -j- c) — 180
90

K.

Wielkość przeto kąta bryłowego trójściennego mierzy się 
przewyżką trzech jego kątów ściennych nad dwa kąty proste, 
t. j . że kąt bryłowy trójścienny taką jest częścią kąta bryło­
wego prostego, jaką częścią jest przewyżka trzech jego kątów 
pochyłości wzgłędem kąta prostego czyli względem i)0°. Tak 
np. gdyby trzy kąty ścienne kąta bryłowego trójściennego 
były 88°, 62 ’ i 45°, tedy wielkość takiego kąta bryłowego

byłaby ~  K ~  -i. K t. j. ten kąt bryłowy co do

wielkości swojej byłby__ kąta bryłowego prostego. Gdyby
6

zaś trzy kąty ścienne były a — 95u, b—  130 ', 0=145", wte­

dy wielkość kąta bryłowego będzie — K =  2K t.

j. kąt bryłowy równałby się dwom kątom bryłowym pro­
stym i t. d.

ROZDZIAŁ III.
O ciałach graniastych (polyedra).

§• 216.
Ze wstępu wiemy, że ciało geometryczne jest to prze­

strzeń ze wszech stron ograniczona. Że ta przestrzeń ogra-
18
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nicza się powierzchniami, które ponieważ być mogą płaskie 
lub krzywe, powstają nam tćż ciała graniaste, lub okrągłe, do 
czego przydać możemy ciała mieszane t. j .  przestrzeń ogra­
niczoną po części powierzchniami płaskiemi a po części krzy- 
wemi.

W  tym rozdziale mówić jedynie będziemy o ciałach płas­
kiemi powierzchniami ograniczonych.

Aby miejsce na płaszczyźnie ograniczyć, potrzebowa­
liśmy najmniej trzech prostych, skąd otrzymaliśmy figurę naj­
prostszą lecz zarazem najważniejszą nazwaną trójkątem. Aby 
przestrzeń ze wszech stron ograniczyć, potrzeba najmniej czte­
rech 'płaszczyzn z warunkiem jednakże, iżby każda z nich 
trzy inne przecinała; widzieliśmy bowiem, że chociaż nic czte­
ry ale jakakolwiek liczba płaszczyzn przecina się ale tak, żc 
wszystkie mają jeden punkt spoiny, nie zamykają jednak ze 
wszech stron przestrzeni, ale owszem w jednym kierunku o- 
twartą i do nieskończoności ciągnąca się, a którą kątem wie­
lościennym nazwaliśmy.

Skoro jakakolwiek liczba płaszczyzn przecina się z so­
bą, tc inaczej przecinać się nie mogą tylko, że albo jeden 
punkt mają spoiny, albo że spólne przecięcia się każdych 
dwóch są od siebie równoległe, albo nareszcie, rozmaicie są 
do siebie nachylone. W  piórwszym przypadku nie zamkną, 
jak już powiedzieliśmy, przestrzeni, dopóki ze strony otwartej 
nie przetniemy wszystkich jedną jeszcze płaszczyzną, skąd 
otrzymamy ciała nazwane ostrosłupowemi albo krócej ostro­
słupami (pyramides). W  drugim przypadku inaczej przestrze­
ni nie zamkniemy, dopóki wszystkich płaszczyzn z dwóch 
otwartych stron dwiema inneini płaszczyznami nie przetnie­
my; z czego otrzymamy ciała graniasto-słupoice (prisma), lu­
bo tę nazwę dajemy ciałom, w których dwie zamykające płasz­
czyzny są od siebie równoległe. W  trzecim nareszcie przy­
padku można zawsze zamknąć przestrzeń rozszerzając tylko 
niektóre z płaszczyzn dostatecznie, skąd otrzymamy ciała na­
zwane wielościanami (polyedra). Ciała wszystkich trzech ga­
tunków mogą być wypukłe (convexa), albo wklęsłe (concara)



W obecnem dziełku jako elementarnem, mówić będzie­
my jedynie o ciałach wypukłych, które łatwo poznamy, bo 
przedłużywszy albo raczej rozszerzywszy którąkolwiek z płasz­
czyzn ograniczających wc wszystkich kierunkach, całe takie 
ciało znajduje się całkiem z jednej strony tak rozszerzonej 
płaszczyzny. Z trzeciego gatunku zatrudnią nas tylko cia­
ła tak nazwane foremne, jak to w dalszym ciągu zobaczymy. 
Zacznijmy od graniastosłupów.

Graniastosłupy (prisrna).
§. 217.

Jeżeli układ płaszczyzn przecinających się tak, żc spoi­
nę przecięcia się każdych dwóch są od siebie równoległe, 
przetniemy dwiema płaszczyznami do siebie równoległemi, 
otrzymamy ze wszech stron ograniczoną przestrzeń, a zatem 
ciało geometryczne, które (jraniastoslwpem nazywamy. Dwie 
ostatnie płaszczyzny przeciąwszy się z pierwszemi, z każdą na­
turalnie w prostej, wydadzą dwa wielokąty zupełnie sobie rów­
ne, które podstawami graniastosłupa nazywać będziemy, jednę 
górną a drugą dolną. Wszystuie inne płaszczyzny przeciąwszy 
się z dwiema podstawami, wydadzą tyle równolcgłoboków, ile 
jest płaszczyzn, a zatem tyle, ile każda z podstaw ma boków; 
dlatego też otrzymać jeszcze można graniastosłup, nakre­
śliwszy na jakiejkolwiek płaszczyźnie wielokąt prostokreślny 
i ze wszystkich jego wierzchołków kątów poprowadziwszy 
zewnątrz i zjednejże strony tej płaszczyzny proste równole­
głe od siebie i równe, a potóm łącząc ich końce prostemi; 
przez co otrzymamy wielokąt równy nakreślonemu, a proste- 
równoległe wraz z bokami dwóch rzeczonych wielokątów ró­
wnych zamkną równoległoboki, które wystawiwszy sobie ja­
ko płaszczyzny, zamkną przestrzeń całkiem ze wszech stron 
ograniczoną.

Wszystkie ograniczające równoległoboki nazywać bę­
dziemy ścianami bocznemi (facies laterales). Spólne przecię­
cia się ścian bocznych tak tu, jako też i w innych ciałach 
nazwiemy również krawędziami. Wysokością graniastosłupa

18.
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nazwiemy prostopadły z któregokolwiek punktu płaszczyzny 
jednój, na płaszczyznę drugićj podstawy spuszczony.

Z tego opisania graniastosłupa łatwo dostrzegamy, że 
ściany boczne formują z podstawami przy każdym wierzchoł­
ku kyty trójścienne, w których zawsze dwa kyty płaskie na­
leżą do ścian bocznych a trzeci do jednej z podstaw.

Sądzę że też nie potrzebuję dowodzić, jako oczywistej 
prawdy, że przeciąwszy gdziekolwiek graniastosłup płaszczy­
zną równoległą do dwóch podstaw, przecięcie to jest wielo­
kątem zupełnie równym każdej z podstaw. Skąd wypływa, 
że graniastosłup można jeszcze otrzymać ruchem jednej z je ­
go podstaw równolegle do pierwszego jej położenia wzdłuż 
którejkolwiek krawędzi, pomyśliwszy sobie tylko, że ta pod­
stawa w swym ruchu pozostawia w każdem położeniu ślad 
swej bytności. W  tym ruchu to jest uwagi godnem, że gra­
niastosłup przechodzi przez wszystkie stany swej wielkości 
począwszy od zero, aż do nieskończoności; aby więc mieć 
ograniczoną wielkość graniastosłupa, dosyć poprowadzić w 
stosownej odległości płaszczyznę równoległą do podstawy.

Każda płaszczyzna nie równolegle, lecz pod jakiemkol- 
wiek nachyleniu do podstawy poprowadzona, dzieli grania­
stosłup na dwa inne, które zwyczajnie nazywamy graniasto- 
słupami ukośnie ściętemi (prisma oblique truncatum), jak prze­
cięcie abcde, fig. 218.

Graniastosłupy przybierają nazwy od liczby ścian bo­
cznych, albo co na jedno wychodzi, od liczby boków wielo­
kąta służącego za podstawę. Tak więc są graniastosłupy trój­
ścienne (prismata triangularia), czworościenne (quadrangula- 
ria), pięciościenne (pentagonalia) i w ogólności wielościenne 
(polygonalia), według tego jak podstawa jest trójkątem, czwo­
rokątem, pięciokątem.....  wielokątem.

Prostym graniastosłupem nazwiemy ten, którego boczne 
krawędzie są prostopadłe do podstaw. W  tym przypadku, po­
nieważ wszystkie te krawędzie są sobie równe, przeto każda jest 
też wysokością graniastosłupa, ściany zaś boczne są prostoką­
tami. Każdy inny graniastosłup nazywać będziemy ukośnym.



277

Nazywamy jeszcze graniastosłupem foremnym każdy 
graniastosłup prosty, którego podstawy są wielokątami fore- 
mnemi. W  takim graniastosłupie wszystkie ściany boczne 
są prostokątami sobie równemi.

W  jakimkolwiek graniastosłupie poprowadziwszy przez 
dwie nie na jednej ścianie leżące krawędzie płaszczyznę, ta 
naturalnie będzie równoległobokiem i nazywać ją będziemy 
płaszczyzną przekątną (planum diagonale). Dwie takie płasz­
czyzny przecinają się w prostej równoległej do każdej z kra­
wędzi graniastosłupa. Na fig. 218 widzimy dwie takie płasz­
czyzny AFHC i 11DIG przecinające się w prostej LM.

Nareszcie każdy graniastosłup rozebrany być może na 
graniastosłupy trójścienne przez płaszczyzny przekątne. Tak 
na fig. 218 widzimy graniastosłup pięciościenny rozebrany 
przez płaszczyzny przekątne na trzy trójścienne ABCFGH, 
ADCFIH i ADEFIK.

Tak w graniastosłupach jako też i w innych ciałach geo­
metrycznych zwrócimy szczególniej naszę uwagę na ich ob­
jętość (volumen) i powierzchnię (superficics), a oprócz tego 
gdzie potrzeba albo sama umiejętność wymagać będzie, wska­
żemy szczególne ich własności.

Objętością ciała nazywać będziemy wielkość przestrzeni 
przez ciało zajętej; powierzchnią zaś wielkość pola zajętego 
przez wszystkie ciało ograniczające powierzchnie, bąć one są 
płaskie, bąć krzywe.

§. 218.
T w ie r d z e n ie . Dwa graniastosłupy mające po kącie trój­

ściennym równym zawartym trzema wielokątami równemi każdy 
każdemu i jednakowo w obu ułożonemi, są sobie równe i przy­
stają we wszystkich częściach do siebie.

Niech będą dwa graniastosłupy ABCDEFGIi i abcdefgh 
fig. 219, mające kąty trójścienne A i a równe i zawarte 
trzema wielokątami każdy każdemu równemi tak, że ABCD =  
abcd, ADHE ~  adhe i ABFE =  abfe; potrzeba dowieść, że 
przystają do siebie, a następnie, że sobie są równe.
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Pomyślmy graniastosłup ab cci e f  g h przeniesiony na 
ABCDEFGH i ułożony tak, iżby podstawa abcd przystała do 
podstawy ABCD, co być może, bo z założenia są sobie równe, 
tedy dla równości ścian, kąty płaskie składające trój ściany 
A i a, są sobie równe każy każdemu; skąd wypływa, że kąty 
ścienne czyli kąty pochyłości tychże ścian są sobie równe, 
każdy każdemu §. 210, więc ściany adhe i abfe wezmą po­
łożenie ścian ADHE i ABFE i do nich przystaną, bo sobie 
także z założenia są równe; punkta przeto e, f ,  li padną na 
E, F, H, a następnie i podstawa górna efgh weźmie położenie 
podstawy EFGH i do niej przystanie, albowiem są sobie 
równe jako równe podstawom dólnym, a z założenia równym; 
więc nareszcie i wszystkie inne boczne ściany czyli równo- 
ległoboki przystaną do odpowiadających sobie; zatem i dwa 
rzeczone graniasto słupy we wszystkich swych częściach przy­
staną do siebie, a następnie są sobie równe.

W n io s e k . Dwa graniastosłupy proste mające podstawy 
i wysokości równe, są sobie równe. Położywszy bowiem pod­
stawę jednego na podstawie drugiego tak, iżby wierzchołki 
odpowiadających kątów padły na siebie, ponieważ boczne 
krawędzie w obu graniastosłupach są prostopadłe do podstaw, 
muszą więc koniecznie wziąść położenie jedne drugich; a że 
też są i między sobą równe, zatem i wierzchołki górnych 
podstaw padną jedne na drugie, a następnie i dwa graniasto­
słupy we wszystkich częściach przystaną do siebie, przeto 
sobie są równe.

§. 219.
T w ie r d z e n ie . Każdy graniastosłup ukośny zamienić mo­

żna na prosty równy mu co do objętości.
Niech będzie graniastosłup ABCDEFGH fig. 220 ukośny, 

potrzeba okazać, iż go można zamienić na prosty równy mu 
co do objętości. W  tym celu przez końce którśjkolwiek kra­
wędzi bocznej np. pi-zez końce B i F, krawędzi BE, popro­
wadźmy dwde płaszczyzny' prostopadłe do tejże krawędzi, te 
płaszczyzny przetną inne krawędzie przedłużone gdzie po­
trzeba, w punktach np. a, c, d, e, g, h. Ponieważ według de-
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finicyi wszystkie krawędzie graniastosłupa ukośnego są od 
siebie równoległe, a dwie nowe płaszczyzny są z wykreślenia 
prostopadłemi do jednej z nich t. j. do BF, są więc równo- 
ległemi od siebie i prostopadłemi i do wszystkich; figura 
przeto a B c d e F g h , jest graniastosłupem prostym. Oba 
graniastosłupy mają część zawartą między płaszczyznami 
ABCD i eFgh spoiną; chcąc więc dowieść, że sobie są równe, 
dosyć będzie okazać, że ciało zawarte między płaszczyznami 
ABCD, aBcd jest równe ciału zawartemu między płaszczy­
znami EFGH i eFgh, t. j. że bryła FH = : BD. Dwie krawę­
dzie AE i ae są równe trzeciój BF i od niej równoległe, 
stosownie do definicyi graniastosłupa, zatćm AE— ae, a następ­
nie Aa —  Ee. A że też AB — EF i «B =  eF, więc dwa 
trójkąty czyli dwie ściany AaB EeF są sobie równe i przy­
stają do siebie. Zupełnie tym samym sposobem dowiedzie 
się, że Cc —  Gg i Dd —  HA, tudzież że kąty ABa i CBc 
są równe kątom EFe i GFy. Skoro więc ciało eFęAEFGH 
wystawimy sobie przeniesione na ciało a B c d A B C D  i uło­
żone w ten sposób, żeby punkt F padł na punkt B, a wie­
lokąt eFgh przystał do wielokątą aBcd, ponieważ kąt eFE =  
aBA, krawędź FE pójdzie po krawędzi BA; a że sobie są 
równe, więc punkt E padnie na A, bo też i eE m aA. Po­
dobnież punkt G padnie na C, a płaszczyzna czyli wielokąt 
EFGH przystanie do wielokąta ABCD. Lecz HA ~  Dd i 
Gg :r  Cc, przeto wszystkie płaszczyzny ograniczające dwa 
te ciała i wszystkie krawędzie przystają zupełnie do siebie, 
więc rzeczone ciała są sobie równe we wszystkich swych 
częściach. Dodawszy teraz spoiną obu graniastosłupom część 
ABCDeFyA do ciała aBcdaABCDA, otrzymamy graniastosłup 
prosty ah; dodawszy zaś tęż sarnę część do ciała eFę/ieEFGHE, 
otrzymamy graniastosłup ukośny BTI, przeto dwa te grania­
stosłupy są sobie równe.

§. 220.
Jeżeli w graniastosłupie podstawy są także równoległo- 

bokami, taki graniastosłup nazywać będziemy róionoległościa- 
nem (paralłelipipedum); składa on się bowiem z sześciu ró-
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wnoległobocznych ścian po dwie od Biebie równoległych i 
równych, jak się zaraz okaże.

Źe przeciwległe ściany równoiegłościanu są sobie ró­
wne, łatwo jest dowieść; albowiem chcąc okazać, że ściana 
AB FE =  DCGH, fig. 221, uważmy, że AB =  CD i 
BF ”  CG, tudzież kąt ABF DCG, przeto równoległo- 
boki ABFE i DCGH według §. 24 uicaga 3, przystają 
do siebie, a tem samem są sobie równe. Oprócz równości, 
są jeszcze te ściany od siebie równoległe: gdy bowiem kąt 
ABF =  DCG, a ramiona ich są od siebie równoległe, zatem 
płaszczyzny ABFE i DCGH są od siebie równoległe stóso- 
wnie do §. 198. Z tej własności wypada, że przeciąwszy 
równo!egłościan w jakimkolwiek kierunku płaszczyzną, prze­
cięcie to zawsze jest równoległobokiem stosownie do §. 193. 
Kiedy równoległościan jest ciałem zawartem sześciu równo- 
ległobokami, zatćm którekolwiek dwie przeciwległe ściany 
wziąść można za jego podstawy. Łatwo tćż jest wrystawić 
równoległościan, skoro mamy dane trzy proste mające być 
krawędziami równoiegłościanu w jednym punkcie schodzącemi 
się i czyniącemi z sobą kąty płaskie dane; dosyć bowiem przez 
koniec każdej prostej poprowadzić płaszczyznę równoległą 
do płaszczyzny przez dwie inne proste przechodzącej, te do­
statecznie rozszerzone, zamkną równoległościan, którego trzy 
proste dane będą trzema krawędziami w jednym punkcie 
schodzącemi się.

Równoległościan nazwiemy prostym, jeżeli boczne jego 
krawędzie są prostopadłe do podstaw; nazwiemy go zaś pro­
stokątnym, jeżeli oprócz prostopadłości krawędzi, podstawy 
są prostokątami. W  tym drugim przypadku t. j.  w równole- 
głościanie prostokątnym, wszystkie ściany, kiedy w pierwszym, 
tylko ściany boczne, są prostokątami.

Równoległościan prostokątny mający za podstawę kwa­
drat a wysokość równą bokowi tegoż kwadratu, nazywać 
będziemy sześcianom (cubus). Sześcian przeto jest grania- 
stosłupem mającym sześć ścian kwadratowych między sobą 
równych. Ciało to jest bardzo ważnem, stosunek bowiem jego
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do innych ciał jest zupełnie ten sam jak kwadratu do po­
wierzchni figur na płaszczyźnie uważanych.

Ponieważ w równoległościanie jest tylko sześć par kra­
wędzi przeciwdegłych §. 223, zatem też nie więcej nad sześć 
płaszczyzn przekątnych w każdym równoległościanie popro­
wadzić można. A że znowu każda taka płaszczyzna, będąc 
równoległobokiem, ma dwie proste przekątne, które też prze- 
kątnemi równoległościanu zowiemy, wypadałoby stąd, iż 
w równoległościanie dwanaście prostych przekątnych popro­
wadzić można. Lecz zastanowiwszy się, że każda z prostych 
przekątnych należy do trzech płaszczyzn przekątnych, jak 
np. AG, fig. 221, jest przekątną równoległoboków ABGH, 
ADGF i AEGC, przekonamy się, iż tylko cztery różne prze­
kątnie w równoległościanie poprowadzić można t. j. AG, BH, 
CE i DF; końce ich nazywają się wierzchołkami równole­
głościanu scbic przeciwdegłemi. Równoległościan ma na po­
wierzchni swojej dwanaście przekątni t. j. na każdej ścianie 
dwie, w środku tejże ściany przecinające się na połowę.

§. 221.

T w ie r d z e n ie . Cztery przekątnie równoległościanu przeci­
nają się w jednym punkcie będącym środkiem prostej łączącej 
środki dwóch ścian przeciwległych.

Niech na poprzedzaj ącój figurze 221, AG i CE będą 
dwie z tych przekątni, ponieweż obie są przekątniami ró- 
wnoległoboku ACGE, zatem według §.51 wnios. 2 przecinają 
się wzajemnie na dwie równe części; punkt przecięcia się 
ich oznaczmy głoską O. Uważmy znowu dwie przekątnie 
AG i DF, z tych każda jest przekątnią tegoż samego równo- 
ległoboku ADGF, przeto punkt O będący środkiem prze­
kątni AG i CE, jest też środkiem przekątni DF. Tymże 
samym sposobem okaże się, że tenże punkt O jest środkiem 
przekątni BH i DF, jest przeto punkt O spólnem przecięciem 
się wszystkich czterech przekątni i środkiem każdej.

Połączywszy środki którychkolwdek dwóch przeciwle­
głych płaszczyzn np. I i K prostą IK , ta jest równa i ró­
wnoległa każdej krawędzi bocznej, a będąc poprowadzona
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przez środki dwóch przeciwległych boków BD i FH równo- 
ległoboku BFHD, przechodzić musi przez jego środek O, 
oraz podzielona jest w tymże punkcie na dwie części równe. 
Toż samo rozumie się o prostej LM łączącej środki ścian 
ADHE i BCGF, tudzież o prostej NP łączącej środki ścian 
ABFE i DCGH.

Uwaga 1. Punkt O będący środkiem każdej przekątni 
równoległościanu, jako też środkiem każdej prostej łączącej 
środki dwóch ścian przeciwległych, nazywać będziemy środ­
kiem równoległościanu.

Uwaga 2. W  równoległościanie prostokątnym każda z 
czterech przekątnych płaszczyzn jest prostokątem, a cztery 
jego przekątnie są sobie równe.

§. 222.
Twierdzenie. W  równoległościanie prostokątnym kwadrat 

z jego przekątni równa się summie kwadratów wystawionych na 
trzech jego krawędziach w jednym punkcie schodzących się.

Niech jig. 222, wystawia nam równoleglościan prosto­
kątny, poprowadziwszy prostą AG, jednę z jego przekątni, --- 2 ---- 2 ---  2 --- 2mamy dowieść że AG — AB - ) -A D "+ A E  . Na ten koniec 
poprowadźmy przekątnią AC prostokąta ABCD. W  trójkącie 
AGC prostokątnym przy Cjest AG" =  GC” -j- AC ; w trójkącie 
ABC również prostokątnym przy D jest AC = A D  -j-DC , 
tudzież GC ~  AE, wstawiwszy więc te ważności, znajdziemy 

AG 2= A E u- f  A D 2+ D C 2= A E 2+  A D 2 -j-AB2 
co było do dowiedzenia.

Uwaga. Ponieważ dla każdej z czterech przekątni toż 
samo twierdzenie ma miejsce t. j. że kwadrat z każdej ró­
wna się AE" -j- A D ' -f- A li2 , przeto naturalny wniosek wy­
pada, że w równoległościanie prostokątnym, cztćry przekątnie 
są sobie równe.

§. 223.
T w ie r d z e n ie . Dwa równoległościany prostokątne mające 

róione podstawy i wysokości, są sobie równe co do objętości; 
mające równe podstawy, mają się do siebie jak toysokości, 
mające równe tuysokości, mają się do siebie jak podstawy, a
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nareszcie mające tak podstawy jako i wysokości różne, mają 
się do siebie jak iloczyny z podstaw przez wysokości.

Pierwsza część tego twierdzenia nie potrzebuje żadnego 
dowodu, gdyż z §. 218 wniosek wprost wypływa, iż dwa ró- 
wnoległościany prostokątne o równych podstawach i wyso­
kościach są sobie równe.

Co do drugiego. Tu mogą być dwa przypadki, albo 
wysokości równoległościanów są spółmicrnc, albo niespół- 
mierne. W  przypadku spółmierności, oznaczywszy objętość 
jednego z nich przez R a drugiego przez r, wysokości zaś 
przez W  i v>, przypuśćmy, iż wysokość pierwszego zamyka 
m takich części jakich wysokość drugiego zamyka n, przez co 
będzie W  :w  — m:n. A jeżeli tak w jednym jako i drugim 
równoległościanie przez punkta podziałów na ich wysokościach 
zrobione, poprowadzimy płaszczyzny do podstaw równoległe, 
pierwszy podzieli się na m, drugi zaś na n równoległościanów 
mających tak podstawy jako i wysokości równe, a zatem 
równych, a dla tego będzie R : r — m : n następnie zaś
R : r W  : xo.

W  przypadku niespółmierności, dowód jest zupełnie 
podobny do tego, jakiego w §. 116 użyliśmy i sądzę, że nie 
stawi żadnej trudności, dla czego bez obawy niezrozumiałości, 
tu go pomijam tym więcej, że w §. 53 uwaga 1, dałem do­
kładne, ile mi się zdaje, pojęcie przejścia ze spółmierności 
do niespółmierności.

Co do trzeciego. Niech będą dwa równoległościany 
ABCDEFGH i BKLMFNOP fig. 223 prostokątne, mające wy­
sokości równe a podstawy nierówne, trzeba dowieść, że obję­
tości takich równoległościanów są w stósunku ich podstaw. 
Na dowiedzenie tego, oba równoległościany postawmy na je- 
dnejże płaszczyźnie obok siebie tak, iżby się jedną krawędzią 
np. BF z sobą schodziły, co zawsze być może, bo krawędzie 
w obu są prostopadłe do podstaw, tudzież iżby ściana BKNF 
drugiego, przypadła na przedłużeniu ściany ABFE pierwszego 
równoległościanu. W  takiem ich położeniu wystawmy sobie 
ścianę CDHG pićrwszego, jako też ścianę BKLM drugiego
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przedłużone aż do przecięcia się pićrwszej z przedłużoną 
ścianą KLON w prostej RS, drugiej zaś z tą nową ścianą 
w prostej CR; tym sposobem otrzymamy trzeci równoległo- 
ścian BKRCFNSG mający równą wysokość z danemi. Tak 
równoległościan pierwszy jako i trzeci wystawić sobie można 
jako stojące na tejże samej podstawie BFGC, według więc 
poprzedzającego twierdzenia, objętości ich mają się do siebie 
jak wysokości t. j. jak AB : BK, czyli oznaczywszy objętości 
tych trzech równoległościanów przez R, r i e, będzie R : c — 
AB : BK. Podobnież równoległościany r i p uważać można 
jako stojące na jednejże podstawie BFNK, a ich wysokości 
są BM i BC, przeto ę : r =  BC : BM. Dwie te proporcyje 
mnożąc przez siebie i upraszczając, otrzymamy R : r ~  
A B X B C  : B K X B M . A że iloczyny A B X B C  i B K X B M  
wyrażają powierzchnie podstaw równoległościanów R i r, 
więc prawdą jest, że dwa rownołegłościany prostokątne ma­
jące równe wysokości mają się do siebie jak podstawy.

Co do czwartego. Niech znowu fig. 224 będą dwa równo­
ległościany prostokątne ABCDEFGH i abcdefgh mające tak 
wysokości jako i podstawy różne. Aby dowieść, że ich obję­
tości są w stosunku iloczynów z podstaw przez wysokości, 
na krawędzi np. ae drugiego, odetnijmy am — AE t. j. wy­
sokość pierwszego i przez punkt m poprowadźmy płaszczyznę 
równoległą od abcd; ta odetnie równoległościan abcdmnop 
mający wysokość równą z pierwszym a podstawę równą z 
drugim. Oznaczając więc jak w poprzedzaj ącem objętości 
tych trzech równoległościanów przez R, r i ę, stosownie do 
dwóch poprzedzających przypadków, będzie

R : p =  AB X  BC : abfi^bc 
tudzież q : r —  am : ae —  AE : ae
Mnożąc te dwie proporcyje przez siebie i upraszczając, otrzy­
mamy R : r — AB X  BC X  AE : ab X  bc X  ae. 
Oznaczywszy powierzchnie podstaw danych równoległoboków 
przez P i p a  wysokości przez W  i w, ponieważ

P :=  AB X  BC, p — ab yC. bc, W  =  AE, w — ae 
zatem R : r =  P X W  : p X  w.
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Uwaga. Ponieważ BC =  AD i bcz= ad, zatem R : r — 
AB X  AD X  AE : ab X  ad X  ae t. j. objętości dwóch równo- 
ległościanów prostokątnych, mają się do siebie w stosunku ilo­
czynów z trzech krawędzi każdego, w jednymże punkcie scho­
dzących się. Trzy te krawędzie nazywamy zwyczajnie trzema 
wymiarami równoległościanu, a w szczególności AB długością, 
AD szerokością alko grubością, AE wysokością albo głębo­
kością zowiemy.

Wniosek. Ta ostatnia własność równoległościanów pro­
stokątnych jest ogólną, z niej przeto łatwo wyprowadzić 
wszystkie w tem twierdzeniu dowiedzione. I tak przypuściwszy, 
że P — p i W  =  w, mamy R : r — ł : 1 skąd R =  r t j. 
równoległościany mające równe podstawy i wysokości, są 
sobie równe co do objętości. Położywszy powtóre P —  p bę­
dzie R : r —  W  : w, czyli że równoległościany o równych 
podstawach mają się do siebie w stósunku wysokości. Jeżeli 
przypuścimy, że po trzecie W  — w, otrzymamy z powyższej 
proporcyi R : r =  P : p t. j. że równoległościany prosto­
kątne o równych wysokościach, mają się do siebie jak pod­
stawy. Połóżmy nareszcie R =: r, tedy znajdziemy P X  W =  
j>X <« albo P : p — iv : W , która proporcyja nas uczy, że 
podstawy dwóch równoległościanów równych, mają się w od­
wrotnym stosunku ich wysokości i wzajemnie wysokości 
mają się w odwrotnym stósunku podstaw.

§. 224.
Szukajmy teraz objętości czyli bryłowatośoi równole- 

głościanu prostokątnego. Tu napotykamy znowu nowy gatunek 
ilości geometrycznych; dla tego zupełnie tak jak przy linijach, 
kątach i powierzchniach postąpiliśmy, i tu postąpić wypada, 
t. j. potrzeba do wymierzania tego gatunku ilości, obrać za 
jednostkę także ciało geometryczne ale takie, iżby tak do 
pojęcia jako też i zpiysłowego wystawienia sobie było łatwem. 
Takiem ciałem jest niezaprzeczenie sześcian; z nim przeto 
potrzeba będzie porównać wszystkie ciała których objętość 
chcieć będziemy mierzyć. Zacznijmy więc od porównania
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sześcianu z ciałćm jemu najpodobniejszóm t. j. z równoległo- 
ścianem prostokątnym.

Ponieważ z §. 220 wiemy, że sześcian jest także równo- 
ległościanem prostokątnym mającym wszystkie ściany między 
sobą równe t. j. kwadraty, przeto dwa te ciała można z sobą 
porównać wr powyższy sposób, szukając ich stósunku między 
sobą. Oznaczywszy objętość równoległościanu przez R, jego 
podstawę przez P a wysokość przez W, zaś objętość, pod­
stawę i wysokość sześcianu przez S, p i w, według poprze­
dzającego §. będzie R : S =  P X W  : p X * '  Lecz kiedy 
ściany sześcianu są wszystkie kwadratami sobie równemi, 
zatem i krawędzie jego są także między sobą równe. 
Wziąwszy więc bok kwadratu podstawy równy jednostce 
długości, powierzchnia podstawy t. j. p będzie r ;  1><1 , a że 
i io ~  1, zatćm będzie p X M — 1 X 1 X 1  —  i , a ostatnia 
proporcyja przechodzi na

R : S = P X W : 1  
skąd R = : P X  W X  S

Jeżeli teraz taki sześcian przyjmiemy za jednostkę do 
mierzenia objętości ciał, t. j. położymy S r~ ł, znajdziemy 
R = P X W  t. j.  ie objętość równoległościanu prostokątnego, 
równa się iloczynowi z jego podstawy przez wysokość; albo 
według uwagi w poprzedzającym równa się iloczynowi 
z trzech jego krawędzi w jednym punkcie schodzących się.

Uwaga 1. Znaleść objętość równoległościanu i w ogól­
ności jakiegokolwiek ciała, nic innego znaczyć nie będzie, 
jak to z powyższego zrównania widzimy, jak tylko podać, 
wiele razy objętość tegoż ciała jest większą od objętości 
sześcianu wziętego za miarę, czyli sześcianu wystawionego 
na kwadracie z jednostki długości.

Uioaga 2. Trzy w jednym punkcie schodzące się kra­
wędzie równoległościanu prostokątnego, a wyrażające jego 
długość, szerokość i wysokość, oznaczywszy przez a, b, c, 
czyli co jest jedno, trzy rzeczone krawędzie przemierzywszy 
obraną jednostką długości, a, b, c , wyrażać rzeczywiście 
będą stósunki bezwzględnych długości tych krawędzi do je­
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dnostki obranój, wyrażać przeto będą liczby: iloczyn też 
tych trzech liczb abc, będzie liczbą wyrażającą stósunek 
objętości równoległościanu do jednostki, ale do jednostki bry­
łowej t. j. do objętości sześcianu którego każda krawędź 
jest równa owej jednostce, którą krawędzie równoległościa­
nu mierzyliśmy. Jednostka długości jest zupełnie dowolną. 
Jeżeli jest calem, stopą, łokciem, sążniem, milą i t. d. bry- 
łowatość czyli objętość równoległościanu otrzymana z roz­
mnożenia rzeczonych trzech liczb przez siebie, wyrażać bę­
dzie liczbę cali, stóp, łokci, sążni, mil i t. d. sześciennych.

Uwaga 3. Sześcian jest sam równoległościanem, prze­
to objętość jego równa się podobnież iloczynowi z liczb wy­
rażających długości trzech jego w jednym punkcie schodzą­
cych się krawędzi. Ale krawędzie w sześcianie wszystkie 
sobie są równe, zatem objętość sześcianu równa się liczbie, 
wyrażającej długość jego krawędzi, podniesionćj do potęgi 
trzeciój. Gdy bowiem a — b — c, zatem abc —  aaa =r a;l. To 
nam teraz jasno tłómaczy używane w Arytmetyce wyrażenie 
•podnieść liczbę do sześcianu. Mając przeto jaki sześcian i 
chcąc poznać jego objętość, dosyć jest zmierzyć jakąkolwiek 
miarą długość którejbądź krawędzi i liczbę tych miar pod­
nieść do potęgi 3ci«Sj. Nie od rzeczy też tu będzie wspom­
nieć, że mając sześcian, którego krawędź — a a zatem obję­
tość — a3, gdybyśmy chcieli znaleść krawędź sześcianu dwa 
razy większą objętość mającego, tedy oznaczywszy krawędź 
szukanego sześcianu przez x, objętość jego będzie x3, a 
według warunku x3— 2a3 skąd a-=raV2. Ale V'2 j est liez- 
bą niewymierną, więc za pomocą rachunku nie można zna­
leść dokładnie krawędzi sześcianu dwa razy większego od 
danego; wszelako można się tak zbliżyć do prawdziwej waż­
ności, jak tylko chcemy.

Wszystkie zagadnienia geometryczne dotąd rozwiązane, 
rozwiązywaliśmy za pomocą przecięcia się prostych, lub pro­
stej z liniją kołową, lub nareszcie przecięcia sią dwóch okrę­
gów kół. A żc dwie proste tylko w jednym, prosta z okrę­
giem koła, jak równie dwa okręgi, tylko się w dwóch pun­
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ktach przeciąć mogą, dla tego też rzeczone zagadnienia roz­
wiązywane rachunkiem, prowadziły tylko do zrównań pierw­
szego lub drugiego stopnia. Chcąc powyższe zagadnienie 
rozwiązać geometrycznie t. j. za pomocą wykreślenia, po­
nieważ nas zaprowadziło do zrównania 3go stopnia, już go 
nie możemy rozwiązać za pomocą prostej i okręgu koła lub 
dwóch okręgów, ale użyć potrzeba linij krzywych, któreby 
się w więcej niż dwócli punktach przeciąć m ogły; dla tego 
też geometryczne rozwiązanie rzeczonego zagadnienia, na­
leży do Geometryi wyższej.

§. 225.
Prawdę w poprzedzającym §. dowiedzioną, że objętość 

równołegłościanu prostokątnego jest równa iloczynowi z trzech 
jego krawędzi w jednym punkcie schodzących się, można 
też naocznie tak okazać. Niech będzie równoległościan pro­
stokątny ABCDEFGH fig. 225 i niech trzema jego wymia­
rami czyli krawędziami w punkcie A  schodzącemi się będą 
AB, AD i AE. Wziąwszy jakąkolwiek jednostkę długości 
np. cal, przemierzmy te trzy krawędzie i niech AB zamyka 
4 cale, AI) 2, a AE 5 cali. Naznaczywszy na każdej z rze­
czonych krawędzi te podziały i na podstawie i-ównoległo- 
ścianu poprowadziwszy prostą an równoległą do AB, tudzież 
proste 11, 22, 33, 44, równolegle do AD, cała podstawa 
podzieli się tym sposobem na 8 kwadratów równych. Jeżeli 
teraz w odległości D E — 1 cal, poprowadzimy płaszczyznę 
równoległą do podstawy, a z wierzchołków kątów każdego 
kwadratu wyprowadzimy proste prostopadłe do podstawy, 
albo lepiej, jeżeli przez punkta podziałów 1, 2, 3, popro­
wadzimy płaszczyzny równoległe do płaszczyzny ADHE, 
te z pierwszą płaszczyzną przez h poprowadzoną, tudzież 
z podstawą równołegłościanu, zamkną 8 sześcianów takich 
jak abcDefgh między sobą równych które stanowić będą nie 
jako piórwszą warstwę jednostkowych sześcianów w równo- 
ległościanie zawartych. A prowadząc przez inne podziały 
na krawędzi AE wyznaczone płaszczyzny równoległe do 
podstawy, otrzymamy tyle warstw mających każda po 8 sze-
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ścianów, ile podziałów ma wysokość AE równoległościanu; 
przeto ponieważ bezpośrednio na podstawie stoi sześcianów 
8, a takich warstw jest 5, więc wszystkich sześcianów jest
8. 5 — 4 0 = 4 . 2. 5, jak wyźój dowiedliśmy.

§. 226.
Przejdźmy teraz do innych równoległościanów. Najpo- 

dobniejszym do prostokątnego, jest równoległościan prosty; 
chcąc zatem znaleść objętość tego ostatniego, porównajmy 
go z pierwszym dowodząc następujące

T w ie k d z e n ie . Każdy równoległościan prosty zamienić 
można na prostokątny równy mu co do objętości.

Niech równoległościanem prostym będzie ABCDEFGH 
fig. 226, mającym za podstawy dolną i górną równolcgło- 
boki AC i EG. Jeżeli z punktów A i B spuścimy prosto­
padłe do D C , otrzymamy prostokąt AK równy co do po- 
wiórzchni równoległobokowi AC. Przez proste AE i A l ja ­
ko też BF i Blv poprowadziwszy płaszczyzny, te będą pro­
stopadłe do obu podstaw i przetną się z podstawą górną 
w prostych EL i FM, zamykając tym sposobem dwa gra- 
niastosłupy trójścienne ADIEHL i BCKFGM według §. 218 
sobie równe. Od całkowitej bryły odciąwszy graniasto- 
słup BCKFGM, pozostaje się równoległościan prosty AG; od 
tejże samej bryły, odciąwszy graniastosłup ADIEHL, pozo­
staje równoległościan prostokątny AM; dla tego dwa te 
równoległościany są sobie równe co do objętości t. j. rów­
noległościan prosty równa się prostokątnemu mającemu z nim 
wysokość tęż samą i podstawy równe co do powierzchni.

W n io s e k . Ponieważ objętość równoległościanu pro­
stokątnego otrzymuje się, mnożąc powiórzchnię jego podstawy 
przez wysokość, zatem i objętość równoległościanu prostego 
dojdzie się, mnożąc powierzchnię jego podstawy przez wyso­
kość, obu bowiem tych równoległościanów podstawy są ró­
wnoważne co do powierzchni.

19
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§. 227.
T w ie r d z e n ie . Każdy równoległościan ukośny zamienić 

można na prosty mający z nim tęż sarnę icysokość a podstawy 
równoważne czyli równe co do powierzchni.

Niech ABCDEFGH fig. 227 będzie równoległościanem 
ukośnym, którego dolną podstawą jest równoległobok ABCD. 
Z punktu A , B , C, D , wystawiwszy prostopadłe do płasz­
czyzny podstawy i te przedłużywszy aż do spotkania się 
z płaszczyzną podstawy górnej w punktach E ’, F', G ’, H' i te 
ostatnie punkta połączywszy prostemi E'F', F'G ', G 'H ’ i H'E', 
otrzymamy równoległobok E 'F 'G 'H ' równy co do powiórzchni 
równoległobokowi ABCD. A  jeżeli przez proste AB i E 'F ', 
DC i H 'G ’, AD i H'E', BC i G’F' poprowadzimy płaszczy­
zny, te zamkną równoległościan ABCDE'F'G'H' prosty* który 
według §. 226 równa się co do objętości ukośnemu ABCDEFGH.

W n io s e k . Z trzech ostatnich twierdzeń wypływa, że 
każdy równoległościan zamienić można na prostokątny ma­
jący z nim tęź sarnę wysokość a podstawę równą co do 
powierzchni podstawie prostokątnego, albowiem równoległo­
ścian ukośny zamienić można na prosty według teraźniej­
szego, ten zaś według poprzedzającego twierdzenia na pro­
stokątny. A kiedy objętość równoległościanu prostokątnego 
równa się iloczynowi z powierzchni jego podstawy przez 
wysokość, zatem łatwo wniesiemy, iż objętość każdego równo­
ległościanu równa się także iloczynowi z powierzchni jego 
podstawy przez wysokość.

W  §. 223 nazwaliśmy długość, szerokość i wysokość 
równoległościanu prostokątnego trzema jego wymiarami; 
nazwa ta i tu ma miejsce z tą tylko różnicą, że ta długość 
trzech krawędzi w jednym punkcie schodzących się, tych 
wymiarów zastąpić nie mogą, pamiętając co nazwaliśmy wy­
sokością jakiegokolwiek graniastosłupa, tudzież że wymiara­
mi równoległoboku są, którykolwiek jego bok i prostopadła 
z któregokolwiek punktu boku przeciwległego na pierwszy 
spuszczona.
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Z  tych też twierdzeń wypływa, że objętość dwóch ja ­
kichkolwiek równoległościanów są w stósunku iloczynów 
z powierzchni ich podstaw przez wysokości. Jeżeli zaś mają 
wysokości równe, a podstawy różne, są do siebie w stósunku 
powiórzchni tychże podstaw; a nareszcie mające podstawy 
równe co do powiórzchni, mają się do siebie jak wysokości.

§. 228.
T w ie k d z e n ie . Dica równoległościany stojące na tejże 

samej podstatoie i mające podstawy górne na jednejże płasz­
czyźnie, a zatem wysokości równe, są sobie równe co do obję­
tości.

Niech ABCDEFGH i ABCDE'F'G'H ' będą dwa rów­
noległościany jakiekolwiek, stojące na tejże samój podstawie 
ABCD i mające oba tęż sarnę wysokość, dla czego górne 
ich podstawy przypadają na jednejże płaszczyźnie równole­
głej do podstawy; trzeba dowieść że dwa to równoległościany 
są sobie równe co do objętości. Co do położenia dwóch 
tych równoległościanów, dwa tylko przypadki być mogą, t. j. 
albo wyższe podstawy obu przypadają pomiędzy temiż sa- 
memi równoległemi albo nie, dowód też ich równości w każ­
dym z tych przypadków jest różny.

Co do pierwszego. Niech będą dwa równoległościany 
wyrażone na fig. 228. Przedłużywszy krawędzie EF i HG, 
cała figura albo raczej cała bryła składa się z dwóch gra- 
niastosłupów trójściennych AEE'DHH' i BFF'CGG'. Te 
graniastosłupy są sobie równe co do objętości według §. 218, 
mają bowiem po kącie trójściennym równym t. j. A  r= B 
i te kąty zawarte są każdy trzema wielokątami sobie rów- 
nemi, a mianowicie: ADHE =  BCGF, ADH'E' =  BCG’F ' i 
A E E '= B F F '. Skoro zaś od całej bryły odetniemy drugi 
graniastosłup t. j. BFF'CGG', pozostanie się równoległościan 
ABCDEFGH; a odcinając graniastosłup piórwszy, to jest 
AEE'DIIIT, pozostaje się równoległościan ABCDE'F'G'H ’, 
więc na mocy pewnika, "że od dwóch ilości równych odej­
mując równe, reszty pozostałe są także równe, dwa zało­
żone równoległościany są sobie równe co do objętości.

19.



292

Co do drugiego. Jeżeli górne podstawy padają w różne 
strony i chociaż na tejże samćj płaszczyźnie ale nie mię­
dzy temiż samemi równoleglemi, jak są równoległościany 
ABCDEFGH i ABCDE F G’H ’ na fig. 229, tedy przedłu­
żywszy krawędzie GF i HE aż do przecięcia się z krawę­
dziami także przedlużonemi G'H 'i F 'E ' w punktach I, K, L, M, 
co być koniecznie musi, bo te krawędzie jako proste leżą 
na jednejże płaszczyźnie, otrzymamy równoległobok IKLM 
=  ABCD co łatwo dowieść. A skoro przez AD i IK, AB 
i K L , DC i IM, a nareszcie BC i LM poprowadzimy 
płaszczyzny, te zamkną nowy równoległościan ABCDIKLM, 
który z dwoma danemi ma tęż sarnę podstawę i wysokość. 
Ten trzeci równoległościan z pierwszym ABCDEFGH, znaj­
duje się w pierwszym przypadku t. j. górne ich podstawy 
przypadają między temiż samemi równoleglemi HK i GL, 
przeto stojąc na tejże samej podstawie, objętości ich są 
równe. Podobnież ten sam trzeci równoległościan z drugim 
ABCDE’F 'G 'H ', znajdują się w tymże samym przypadku, 
bo górne ich podstawy przypadają pomiędzy też same rów­
noległe IG ’ i K F ', są więc także sobie równe co do obję­
tości. Dwa zatem założone równoległosciany będąc równe 
trzeciemu, są też i między sobą równe; co należało dowieść.

W n io s e k . Ponieważ objętość prostego równoległościanu 
dochodzi się, mnożąc powierzchnią jego podstawy przez wy­
sokość, §. poprzedzający, więc tu słusznie wnieść możemy, 
że też i objętość jakiegokolwiek równoległościanu równa się 
iloczynowi z jego podstawy przez wysokość.

Każdy także równoległościan ukośny równa się prosto­
kątnemu co do objętości, skoro mają równe podstawy i wy­
sokości. Również dwa jakiekolwiek równoległościany są 
sobie równe co do objętości, jeżeli mają podstawy i wyso­
kości równe; każdy bowiem z nich zamienić można na pro­
sty równy co do objętości według §. 219 lub §. 227, mające 
z pierwszemi też same wysokości, dla czego i podstawy 
muszą sobie być równe, a prostokątne równoległościany ma­
jące równe podstawy i wysokości są sobie równe co do
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objętości. Stosunek tćż objętości dwóch jakichkolwiek rów- 
noległościanów o równych wysokościach, jest równy stósun- 
kowi ich podstaw; o równych podstawach równa się stosun­
kowi ich wysokości, a nareszcie o różnych podstawach i wy­
sokościach, równa się stosunkowi iloczynów z podstaw przez 
wysokości, z powodu, że każdy z nich równa się równole- 
glościanowi prostokątnemu mającemu z nim podstawę i wy­
sokość równe.

§. 229.
T w ie r d z e n ie . W  jakimkolwiek równoleglościanie po­

prowadziwszy płaszczyznę przekątną, ta podzieli rdwnoległościan 
na dwa graniastosłupy trójścienne, równe sobie co do objętości.

Niech naprzód danym będzie równoległościan prosto­
kątny ABCDEEGH fig. 230; poprowadziwszy płaszczyznę 
przekątną ACGE, ta podzieli równoległościan na dwa gra­
niastosłupy trójścienne ABCEFG i ACDEGH, potrzeba do­
wieść, że te dwa graniastosłupy są sobie równe co do obję­
tości t. j . że ABCEFG =  ACDEGH. Przekątnia AC dzieli 
dolną podstawę równoległościanu na dwa trójkąty ABC i 
ACD równe i przystające do siebie, jak równie przekątnia 
EG dzieli górną podstawę EFGH także na dwa trójkąty so­
bie równe i przystające do siebie, zatem w dwóch grania- 
stosłupach trójściennych ABCEFG i ACDEGH, kąty trój­
ścienne B i D złożone są z trzech wielokątów sobie równych 
i przystających do siebie, tudzież jednakowo ułożonych, bo 
ABC =  ADC, B C G F =A D H E  i ABFE =  CDIIG jako ściany 
przeciwległe w równoległościanie. Wystawiwszy sobie przeto 
graniastosłup ABCEFG przeniesiony na ACDEGH i ułożony 
tak, iżby punkt B padł na I) a bok BC na D A , punkt też 
C padnie na A i podstawa ABC przystanie do podstawy 
ADC; boczna płaszczyzna BCGF przystanie do ADHE i dru­
ga ABFE do CDHG, a dlatego dwa te graniastosłupy są 
sobie zupełnie równe co do objętości według §. 218, przeto 
każdy z nich jest połową równoległościanu danego.

Niech powtóre ABCDEFGH fig. 231 będzie równole­
głościan ukośny; poprowadziwszy płaszczyznę przekątną
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AEGC, potrzeba i tu dowieść, że dwa graniastosłupy trój­
ścienne ABCEFG i ACDEGH, na które taż płaszczyzna dzieli 
równoległościan dany, są, sobie równe co do objętości. W e­
dług §. 219 zamieniwszy ten równoległościan na prosty 
AMNOEPQR i przedłużywszy przekątną płaszczyznę aż do 
przecięcia się z podstawą AMNO tego drugiego równoległo- 
ścianu, widzimy, że taż płaszczyzna dzieli równie prosty rów­
noległościan na dwa graniastosłupy trójścienne ANOEQR 
i AMNEPQ, które według poprzedzającego są sobie równe 
co do objętości; według zaś wspmnionego §. 219, każdy z nich 
jest równy odpowiadającemu sobie ukośnemu graniastosłupowi, 
a mianowicie ANOEQR =  ABCEFG, AMNEPQ=ACDEGH; 
przeto też ABCEFG =  ACDEGH, a następnie każdy z tych 
graniastosłupów jest połową równoległościanu. Tak tedy do­
wiedliśmy, że płaszczyzna przekątna dzieli każdy równoległo­
ścian na dwa graniastosłupy równe sobie co do objętości.

Uwaga. Podstawa każdego z tych graniastosłupów jest 
połową podstawy równoległościanu, przeto co dopiero do­
wiedzione twierdzenie, możnaby tóż wysłowić: graniasto- 
słup trójścienny jest połową równoległościanu mającego dwa 
razy większą podstawę a wysokośó równą icysokości grania- 
stosłupa.

W n io s e k  1. Oznaczywszy podstawę równoległościanu 
przez P, a wysokość przez W, jest objętość jednego z gra- 
niastosłupów trójściennych, na które się równoległościan roz-

kąta służącego za podstawę graniastosłupowi w mowie bę­
dącemu, zatem przynajmniej o graniastosłupie trójściennym 
wiemy z pewnością, że jego objętość równa się powierzchni 
podstawy rozmnożonej przez wysokość.

W n io s e k  2. Dwa graniastosłupy trójścienne mające 
równe podstawy i wysokości są sobie równe co do objętości; 
mające równe podstawy a wysokości różno, są do siebie w 
stosunku tychże wysokości; mające równe wysokości a pod­

kłada z_
P X W _ P  

2 ~ 2
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stawy różno, są w stósunku podstaw; a nareszcie mające tak 
podstawy jako i wysokości różne, są w stósunku iloczynów 
z podstaw przez wysokości. Uważając bowiem każdy z nich 
jako połowę równolcgłościanu o tejże samej wysokości a dwa 
razy większej podstawie, stosunek między połowami jest tenże 
sam jaki między całościami, a ten ostatni jest dowiedziony 
w §. 228.

W n io s e k  3. Ponieważ z §. 220 wiemy, że każdy rów- 
noległościan jest graniastosłupem, zatem słusznie wnieśćbyś- 
my mogli, że tak jak równolcgłościanu, objętość każdego gra- 
niastosłupa równa się iloczynowi z powićrzckni jego podsta­
wy przez wysokość.

Albo też: według wniosku 1 objętość trójściennego gra- 
niastosłupa równa się iloczynowi z jego podstawy przez wy­
sokość, a z §. 217 wiemy, że każdy graniastosłup wielościenny 
można rozebrać na trójścienne za pomocą płaszczyzn prze­
kątnych, przeto objętość wielościennego równać się będzie 
summie pojedynczych trójściennych. A gdy wszystkie mają 
jednakową wysokość, więc też objętość równać się będzie 
summie podstaw graniastosłupów trójściennych rozmnożonej 
przez spoiną wysokość. Lecz summa podstaw pojedynczych 
graniastosłupów, stanowi powierzchnię podstawy graniasto- 
słupa wielościennego, zatem objętość tegoż równa się ilo­
czynowi z powierzchni jego podstawy przez wysokość.

W n io s e k  4. Z §. 219 wiemy, że każdy graniastosłup 
ukośny zamienić można na prosty równy mu co do objętości, 
mający za wysokość jednę z krawędzi, a za podstawę prze­
cięcie prostopadłe do tejże, zatóm objętość graniastosłupa ja­
kiegokolwiek, równa się iloczynowi z przecięcia prostopadłego 
do jednej z krawędzi przez długość tejże krawędzi.

§. 230.
Przystąpmy do wyznaczenia powierzchni graniastosłu­

pów w ogólności.
D e f in ic YJA. Powierzchnią graniastosłupa nazywamy 

summę powierzchni wszystkich jego ścian tak bocznych jako 
też i dwóch podstaw.
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Ponieważ wszystkie ściany boczne w graniastosłupie są 
równoległobokami, przeto obrackowawszy powierzchnię każ­
dego, summa ich będzie powierzchnią boczną tegoż grania­
stosłupa, do której dodawszy powiórzchnie dwóch jego pod­
staw obrachowanych według §, 124, otrzymamy całkowitą 
powierzchnię graniastosłupa. Atoli w graniastosłupach mo­
żemy daleko łatwiój znaleść powierzchnię boczną nie rachu­
jąc powierzchni każdej ściany. Na ten koniec dowiedźmy 
następujące

T w ie r d z e n ie . Powierzchnia boczna jakiegokolwiek gra­
niastosłupa, równa się iloczynowi jednej z jego krawędzi, przez 
obwód przecięcia prostopadłego do tejże, a zatem, i do wszyst­
kich krawędzi.

Niech będzie graniastosłup ABCDEFGIIIK jig. 232; 
przeciąwszy go płaszczyzną prostopadłą do krawędzi AF, ta 
zarazem będzie prostopadłą i do innych krawędzi. Przecięcia 
się tej płaszczyzny z bocznemi ścianami t. j. proste LM, 
MN, NO, OP i PL będą także prostopadłemi do krawędzi. 
Wziąwszy w równoległobokach bocznych krawędzie AF, BG, 
D I, . . .  za podstawy, pierwsze proste prostopadłe do tych 
krawędzi będą icli wysokościami. Powiórzchnia np. ściany 
A B G E — A G X L M , powierzchnia ściany B C H G = B G X M N  
i t. d. A  że A F = B G =  i t. d ., zatem powierzchnia boczna 
graniastosłupa danego równa się

AF (LM +  M N +N O  +  O P + P L ).
Ale summa w nawiasie stanowi obwód przecięcia, przeto 
prawdą jest, że powiórzchnia boczna graniastosłupa równa się 
iloczynowi z jego krawędzi którejkolwiek przez obwód prze­
cięcia prostopadłego do tćjże krawędzi.

W n io s e k  1. Ponieważ w każdym graniastosłupie pro­
stym, przecięcie prostopadłe do krawędzi jest równe podsta­
wie, zatóm powiórzchnia boczna graniastosłupa prostego ró­
wna się iloczynowi z obwodu jego podstawy przez krawędź 
czyli wysokość.

W  graniastosłupie foremnym chcąc znalóść całkowitą 
jego powiórzchnię, uważmy, że ponieważ jego podstawy są
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w ie lo k ą ta m i fo rem n em i, tych  zaś p o w ierzch n ia  z n a jd u je  się 

m n o żą c  o b w ó d  k a żd e g o  p rze z  p o ło w ę p ro sto p a d łó j, ze  środ k a  

w ielok ąta  n a  b o k  sp u szczon ej (a p o th e m a ), za tóm  p o trze b a  r o z ­

m n o ż y ć  o b w ó d  p o d staw y  p rze z  su m m ę z  w y so k o śc i gra n ia sto - 

słu p a  c z y li  k ra w ęd zi i p rostop ad łe j ze  środ k a  p o d sta w y  na b o k  

tć jże  sp u szc zo n ej.

W n i o s e k  2 . W  u k o śn y m  g ra n ia stosłu p ie  o b ra w sz y  k tó ­

r ą k o lw ie k  z  b o c z n y c h  je g o  ścian  za  s ta łą , jeżeli je j  p r z y le ­

g łą  ob raca ć  b ę d z ie m y  o k o ło  spólnój im  k ra w ęd zi d o p ó k i n ie  

w e źm ie  p o ło żen ia  p ie r w s z ó j, p o tem  n astęp n ą  ścian ę ok oło  

k ra w ę d zi spóln ej tej ostatniej i p op rzed za j ącćj ścian ie  aż w e ­

ź m ie  p o ło żen ie  d w óch  p o p rze d za ją c y c h  i t. d . aż do ostat­

n iej ś c ia n y , ro zp o strzem y  ty m  sp o so b e m  ca łą  p ow iórzch n ię  

b o c z n ą  gra n ia stosłu p a  n a  je d n ę  p ła szc zy zn ę  i o trzy m a m y  fi­

gu rę m a ją c ą  k a ż d e  d w a  p rze ciw le g łe  b o k i r ó w n o le g łe , t. j .  

o trzy m a m y  r ó w n o le g ło b o k  m a ją c y  z a  p o d staw ę o b w ó d  p o d ­

sta w y  g ra n ia stosłu p a  a za  b o k  p r z y le g ły , k ra w ęd ź  te g o ż  g r a ­

n iastosłu p a . Z  tak iego  rozp ostarcia  p o w ie rzch n i w n ie s ie m y , 

ż e  powierzchnia boczna graniastosłupa ukośnego, równa się po­
wierzchni równoległoboku mającego za podstawę obwód podsta­
wy graniastosłupa, a wysokość róioną wysokości tegoż grania­
stosłupa.

Tym sposobem rozpościerając powiórzchnię boczną gra­
niastosłupa prostego, otrzymamy prostokąt mający za podsta­
wę obwód podstawy graniastosłupa, a za wysokość krawędź 
boczną tegoż. Powierzchnia przeto boczna graniastosłupa pro­
stego, równa się powierzchni prostokąta mającego podstaioę ró­
wną obwodowi podstawy graniastosłupa, a icysokośc róioną kra­
wędzi bocznej tegoż graniastosłupa.

Tę ostatnią prawdę wnieść mogliśmy z samego wyraże­
nia powierzchni bocznej graniastosłupa prostego. Oznaczyw­
szy bowiem długość obwodu jego podstawy przez O a kra­
wędź czyli wysokość przez K, gdzie O i K wyrażają stosun­
ki do obranej jednostki długości czyli liczby, wyrażenie po­
wierzchni bocznój graniastosłupa prostego według poprzedza­
jącego jest O X K . Ale iloczyn dwóch liczb w znaczeniu geo-
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metrycznćm wyraża powierzchnię prostokąta mającego za 
dwa przyległe boki prosto przez też dwie liczby oznaczone 
zatem i t. d.

Uwaga. Z §. 220 wiemy, że każdy równoległościan jest 
oraz graniastosłupem, zatem co się powiedziało o powierzchni 
tych ostatnich, w całej zupełności stósuje się i dó pierwszych. 
W  sześcianie wszystkie ściany są sobie równe, zatem jego 
powierzchnia równa się 6 razy wziętej powierzchni jednej 
ściany. A że ściany są kwadratami, zatem oznaczywszy dłu­
gość boku kwadratu, czyli co na jedno wychodzi, długość któ­
rejkolwiek krawędzi (wszystkie bowiem między sobą są ró­
wne) przez a, powierzchnia ściany będzie=a2 a powierzchnia 
sześcianu ~  6a2.

Ostrosłupy (pyramides).
§. 231.

W  §. 216 powiedzieliśmy, że jeżeli ilekolwiek płaszczyn 
przecinających się z sobą tak, iż jeden punkt mają spólny, 
przetniemy inną płaszczyzną ze strony otwartej, ta z pierw- 
szemi zamknie zupełnie przestrzeń czyli ciało geometryczne 
ostrosłupem albo piramidą (pyramis) nazwane. Płaszczyzny 
schodzące się w jednym punkcie, a wzajemnemi przecięciami się 
ograniczone, nazwiemy i tu ścianami bocznemi, punkt wszyst­
kim spólny wierzchołkiem (vertex), płaszczyznę przecinającą 
wszystkie inne, albo raczej wielokąt wypadający z przecięcia 
się ścian bocznych z tąż płaszczyzną, podstawą (basis), pro­
stopadłą z wierzchołka ostrosłupa na płaszczyznę podstawy 
spuszczoną, wysokością, a nareszcie, każde przecięcie się dwóch 
płaszczyzn bąć to bocznych, bąć bocznej z podstawą, nazwiemy 
krawędzią ostrosłupa. Z tego opisania ostrosłupa wypada, że 
boczne ściany jego są trójkątami, wszystkie bowiem krawędzie 
schodzą się w wierzchołku; tudzież że każdy kąt wielościenny 
przecięty płaszczyzną ze strony otwartej, stanowi ostrosłup.

Otrzymać tóż można ostrosłup następującym sposobem: 
na płaszczyźnie nakreśliwszy jakikolwiek wielokąt i za tąż 
płaszczyzną obrawszy gdziekolwiek punkt, złączmy go z wierz­
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chołkami wielokąta prostemi; tedy pomyśliwszy sobie tym 
sposobem otrzymane trójkąty jako płaszczyzny, mieć będzie­
my ostrosłup.

Ostrosłupy równie jak graniasto słupy przybierają nazwę 
od liczby ścian bocznych; a że liczba tych ostatnich jest ró­
wna liczbie boków wielokąta, służącego za podstawę ostro­
słupowi, zatem nazywać będziemy ostrosłupem trójściennym, 
którego podstawa jest trójkątem, czworościennym, jeżeli taż 
podstawa jest czworokątem, pięciościennym, sześciościennym i 
w ogólności wielościennym. Ostrosłup trójścienny, tak jak trój­
kąt między figurami płaskiemi, jest między ciałami geome- 
trycznemi najprostszem, ma bowiem najmniej płaszczyzn czy­
li ścian ograniczających a potrzebnych do zamknięcia prze­
strzeni. Taki ostrosłup nosi jeszcze nazwę czworościanu (te- 
traedrum), rzeczywiście bowiem ma cztery ściany t. j. trzy 
boczne a czwartą zamykającą przestrzeń. Każda z nich jest 
trójkątem, a dlatego każdą można wziąść za podstawę ostro­
słupa trójściennego a wierzchołek jego będzie punkt przeciw­
legły podstawie w którym się trzy inne ściany przecinają. 
Jak trójkąt jest podstawą całej Geometryi płaskiej czyli Pla- 
nimetryi, tak też i czworościan moźnaby wziąść za podsta­
wę Stereometryi. A  że tu nie tym sposobem postąpiliśmy, 
zacząwszy naukę o ciałach od graniastosłupów, to jedynie u- 
czyniliśmy dlatego, że objętość czworościanu tylko za pomo­
cą graniastosłupa trójściennego znaleść można; tę atoli raz 
znalazłszy, wszystkie inne ciała graniaste uważać można ja ­
ko z czworościanów złożone. Jestto' zupełnie ten sam przy­
padek jak z powierzchnią trójkąta, którą dopiero przy po­
mocy równoległoboku znaleźliśmy, lecz tę znalazłszy, widzie­
liśmy, że każdy wielokąt uważać można jako z samych trój­
kątów złożony.

Jeżeli podstawą ostrosłupa jest wielokąt foremny, pro­
sta łącząca wierzchołek ze środkiem podstawy nazywa się 
osią ostrosłupa. Jeżeli oś jest prostopadła do podstawy, ostro­
słup nazywać będziemy prostym albo foremnym. W  takim 
ostrosłupie wszystkie ściany boczne są trójkątami równora-
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miennemi przystającemi do siebie, a zatóm i równemi między 
sobą; z czego wypada, że także krawędzie boczne wszystkie 
między sobą, tudzież wszystkie z wierzchołka ostrosłupa na 
boki jego podstawy spuszczone prostopadłe są sobie równe.

§. 232.
T wierdzenie. Przeciąwszy gdziekolwiek ostrosłup płasz­

czyzną równoległą do podstawy, przecięcie to będzie wieloką­
tem podobnym podstawie.

Przeciąwszy ostrosłup np. sześciościenny SABCDEF fig. 
233, płaszczyzną równoległą od podstawy, niech tein prze­
cięciem będzie sześciokąt abcdef, potrzeba dowićść że jest 
wielokątem podobnym podstawie.— Że jest wielokątem o ta- 
kiejże liczbie boków jak podstawa, to nie potrzebuje dowo­
du; w obecnym zatem przypadku przecięcie jest sześcioką- 
tem dla tego, że i podstawa ostrosłupa jest sześciokątem. Że 
zaś jest sześciokątem a w ogólności wielokątem podobnym 
podstawie, tak się dowodzi: dwie płaszczyzny równoległe, t. 
j. płaszczyzna podstawy i przecinająca, są z wrykreślenia ró­
wnoległe, zatem przecięte przez każdą inną płaszczyznę, wy­
dają tćż przecięcia rówmoległe według §. 194 wnios. 3, a dla 
tego proste AB i ab, BC i bc, CU i cd, DE i de, EE i ef, 
FA i fa  są od siebie równoległe. Uważając teraz trójkąty 
czyli ściany boczne, mamy:

w trójkącie ASB . . . SB ‘.Só r=A B ;«ó
„ „ BSC . . . SB : Só B C ; óc = S C : Sc
„ „ csu . . . sc:Sc=DC:dc=SD:Sd
„ „ DSE . . . S D :S d= :D E :de —  SE;Se
„ „ ESF . . . SE:Se =  E F :e /= S F ;S /
„ „ ASF . . . S F ; S / = A F ; a /—  S A ; Sa.

Z tych proporcyj widzimy, że wszystkie stosunki je  skła­
dające są sobie równe, przeto

A B ;«ó= :B C :ó c  =  C D :c d -D E :d e  =  E F :e/r=  A F ;« /  
boki więc tych dwóch wielokątów są proporcyjonalne. A że 
i kąt F A B = /a ó , bo ich ramiona są równoległe i rozchodzą 
się w jednęż stronę, i podobnież kąt ABC =  abc, BCD =  óed
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i t. d. zatem według §. 65 dwa te wielokąty są podobne, co 
należało dowieść.

W n i o s e k . Z p ro p o rc y i

SB ; Sb zz AB ; ab wypada ŚB2 : Sb ' ~  AB" : ab2.
Z podobieństwa zaś tych wielokątów, stosownie do §. 125 
jest ABCDEF :abcdef —  AB2 ; ab~
zatem ABCDEF -.abcdef—  S B ": Só2-
Lecz spuściwszy z wierzchołka S do podstawy prostopadłą 
SP, która płaszczyznę przecinającą przeszywa w punkcie p, 
tedy przez tęż prostopadłą i przez krawędź BS poprowadziw­
szy płaszczyznę i na tej złączywszy punkta B i P, b i p , 
proste BP i bp, wyrażać będą spólne przecięcia się dwóch 
płaszczyzn równoległych z tą ostatnią, a zatem są od siebie 
równoległe, a dlatego SB : Só =  SP : Sp , 
tudzież SB2 : Sb' — S P ": Spz
a następnie ABCDEF: abcdef— SP' : Sp~ .
Ponieważ SP i Sp wyrażają odległości dwóch przecięć ABCDEF 
i abcdef od wierzchołka S, zatem z ostatniej proporcyi czy­
tamy, że powierzchnie tychże przecięć są to stosunku kwadra- 
tów odległości ich od wierzchołka.

D e f i n i c y j a . W  ja k im k o lw ie k  o strosłu p ie  p o p ro w a d ziw ­

s z y  p ła sz c z y z n ę  ró w n o le g łą  od  p o d sta w y  w  ja k ie jk o lw ie k  o d ­

le g ło śc i, ciało  zaw arte m ię d z y  p ła szc zy zn a m i b o c zn e m i, p o d ­

staw ą i tem  p rze cię c ie m , n a z y w a  się ostrosłupem ściętym (p y -  

ram is tru n cata). W  tak im  ostrosłu p ie  w sz y stk ie  śc ia n y  b o c zn e  

są  tra p ezam i rów n em i lu b  n ierów n em i, w e d łu g  tego  j a k  p o d ­

staw a je s t  w ie lo k ą tem  fo re m n y m  lu b  n ie fo r e m n y m , tu d z ie ż , 

c z y li  p ro sto p a d ła  ze  śro d k a  górn ej n a  p od staw ę do ln ą  s p u sz ­

czo n a , p ad a  w  śro d ek  w ie lo k ą ta  fo rem n eg o  za  d o ln ą  p o d sta ­

w ę słu żą c eg o  lu b  n ie .

§. 233.
T w i e r d z e n i e . W  dwóch ostrosłupach mających podsta- 

ivy równe co do powierzchni i wysokości równe, przeciąwszy 
oba w tejże samej odległości od wierzchołka, albo co na jedno 
wychodzi, w tejże samej wysokości od podstawy płaszczyzną 
równoległą od tejże, powierzchnie tych przecięć będą także równe.
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Niech będą dwa ostrosłupy, jeden pięciościenny SABCDE, 
adrugi trójścienny S 'A 'B ’C’ fig. 234, takie, że A B C D E =A 'B 'C ' 
i wysokości obu są także równe. Wystawiwszy sobie oba 
te ostrosłupy postawione na jednejże płaszczyźnie, niech 
prosta PR wyraża spoiną ich wysokość. Przociąwszy oba 
w tóm położeniu stojące ostrosłupy płaszczyzną równoległą 
od płaszczyzny, na której stoją w odległości od tejże np. RQ, 
albo w odległości od wiórzchołków PQ, otrzymamy w pierw­
szym przecięcie abede, a w drugim a'b'ć. Ponieważ we­
dług poprzedzającego twierdzenia te przecięcia są wielokąta­
mi podobnemi podstawom, 
zatem ABCDE: aócderrPR" :P Q 2,
tudzież A 'B 'C ' : a'b'c' — PR” : PQ”
przeto ABCD E: abede = A 'B 'C '; a'b'c
albo ABCDE: A 'B ’C' =  abede: a'b'c'.
A że z założenia ABCDE =  A 'B 'C ', więc też abede ~  a'b'c, 
co było do dowiedzenia.

Uwaga. Gdyby podstawy tych ostrosłupów oprócz 
równości co do powierzchni czyli równoważności, były przy- 
stającemi do siebie, przecięcia też ich w tejże samćj wyso­
kości, takiemiż byćby musiały, bo inaczej nie mogłyby być 
podobnemi swym podstawom i równemi między sobą nie 
przystając do siebie.

§. 234.
T wierdzenie. Dwa ostrosłupy trójścienne czyli dwa 

czworościany mające podstawy i wysokości równe, są sobie 
równe co do objętości.

To twierdzenie trojakim sposobem dowieść można.
A najprzód: W  §. poprzedzającym dowiedliśmy, że 

w dwóch ostrosłupach o równych podstawach i wysokościach, 
przecięcia przez płaszczyzny równoległe w jednakowej odle­
głości od wierzchołka, albo w jednakowej wysokości od pod­
stawy, są sobie równe co do powierzchni; wystawiwszy so­
bie przeto wysokość tych ostrosłupów podzieloną na nieskoń­
czoną liczbę części, które dlatego będą nieskończenie małe,
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skoro przez te podziały poprowadzimy płaszczyzny równo­
ległe do podstawy, każdy z ostrosłupów podzielony zostanie 
na nieskończoną liczbę warstw, ale także nieskończenie cien­
kich. Te warstwy uważać można bez znacznego błędu za 
graniasto słupy trójścienne, które wszystkie w jednym, będą 
równe odpowiednim graniastosłupom w drugim ostrosłupie, 
bo mają podstawy i wysokości równe. A  że liczba grania- 
stosłupów w jednym jest równa liczbie takichźe graniasto- 
słupów w drugim ostrosłupie, zatćm summa pierwszych jest 
równa summie drugich, a następnie ostrosłup pierwszy rów­
ny drugiemu co do objętości.

Jeżeli ten sposób dowodzenia zdaje się komuś niedo­
kładny, z powodu, iż rzeczone warstwy ściśle mówiąc nie są 
graniastosłupami, dlatego służyć może następujący

Drugi dowód. Jeżeli te ostrosłupy nie są równe, ko­
niecznie jeden z nich jest większy. Oznaczmy objętość pierw­
szego t. j . większego przez O a drugiego przez o, różnicę 
zaś między niemi tf tak że O —  o — <3. Tę różnicę S, jaka­
kolwiek ona jest, wystawić sobie możemy jako graniasto- 
słup mający za podstawę trójkąt ABC, a za wysokość pew­
ną część wysokości spólnej PR fig. 235, np. Ra?, bo z §. 217 
wiemy, że graniastosłup na pewnej podstawie wystawiony, 
przechodzić może przez wszystkie stopnie swój wielkości od 
od 0 do o o .  Pokażmy teraz, że to zrównanie jest fałszywe. 
Na ten koniec wysokość tych ostrosłupów PR podzielmy na 
ilckolwiek części równych, lecz tak, iżby te części były 
mniejsze niż Ra?. Niechże te części będą Ra', aa', aa", a"P. 
Przez punkta a, a!, a" . . .  . poprowadziwszy płaszczyzny 
równoległe do podstaw ostrosłupów, otrzymamy odpowiednie 
przecięcia między sobą równo co do powierzchni, tak że 
D E F = D 'E ’F ’, G f f l= G 'H T , K L M ,= K 'L 'M  i t. d. §. po­
przedzający. Jeżeli teraz z punktów A , F , I , M, . . . po­
prowadzimy proste A f, Fh, IK, MZ, . . . równoległe do kra­
wędzi SC aż do przecięcia się z przedłużonemi DF, GI, 
KM . . .  i z równoległą SZ, tudzież z punktów / ,  h, k, l, 
proste fe, lig, ki, lin równoległe od AB aż do przecięcia się
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z DE, GH, KL . . . wystawmy tym sposobem szereg gra- 
niastosłupów trójściennych ABC/eD, DEFAi/G, GHIAuK i t. d. 
które nazwiemy opisanemi na- ostrosłupie. Summa tych gra- 
niastosłupów, którą oznaczmy przez G , jest większą niż 
ostrosłup, jako rzecz obejmująca od objętej t. j. G > 0 .  
Przechodząc do drugiego ostrosłupa, z punktów F ', I', M’, 
poprowadźmy proste F'g', I'*', M T . . . równoległe od kra­
wędzi S'C', a z punktów g', i', V . .  . proste g'h', i'k', l'm . . . 
równoległe od A 'B ’ aż do przecięcia się z B 'C ’, D'E', G’H' 
i K 'L ' w punktach h', k', l1, m . . . tym sposobem wysta­
wimy znowu szereg graniastosłupów trójściennych /A 'C 'D 'E 'F ', 
i'A'D’G'H'I' . . . .  które wszystkie leżą wewnątrz ostrosłupa 
S'A 'B ’C' i które z tego powodu nazywać będziemy wpisanemi 
w tenże ostrosłup. Tych summa będzie mniejszą niż ostrosłup 
jako rzecz objęta od obejmującej; czyli oznaczywszy tę summę 
przez g , będzie g o. Przypatrzywszy się z uwagą tym 
graniastosłupom, dostrzeżemy, że drugi w pierwszym jest 
równy pierwszemu w drugim ostrosłupie, trzeci w pierwszym 
jest równy drugiemu graniastosłupowi w drugim ostrosłupie 
i t. d ., tak że każdy graniastosłup pierwszego ma sobie od­
powiedni w drugim ostrosłupie, wyjąwszy graniastosłup 
pierwszy ostrosłupa pierwszego. Oprócz tego te odpowied­
nie graniastosłupy są między sobą równe jako mające równe 
podstawy i wysokości, przeto różnica między summą pierw­
szych a summą drugich jest graniastosłup ABC/eD to jest 
G — </ =  gran. ABC/eD. Lecz ten graniastosłup jest mniej­
szy niż graniastosłup <) t. j . ABC/eD<C<f, bo mają podsta­
wy równe, a wysokość pierwszego jest mniejsza od wyso­
kości drugiego, gdyż z wykreślenia Ba<^Ba;, a dlatego 
G —  < /<  (t. Ale że O —  o =  j tudzież G > 0  a g<^.o, skąd 
G —  g > 0  —  o, byćby powinno G — g~> ó. Z tego widzimy, 
że dowiedziona nierówność G —  </<;,? sprzeciwia się przy­
puszczonej G — g~>-<f, a zatćm utrzymać się nie może i jest 
fałszywą, skąd wniesiemy, że 0 ~ o .  Podobny dowód, jakie­
go już w Planimetryi użyliśmy, nazywa się przyioiedzeniem 
do niedorzeczności (deductio ad absurdum),
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Trzeci dov)ód. Podzieliwszy wysokość spólną obu ostro­
słupom PR na nieskończoną liczbę części równych i tak na pod­
stawach ostrosłupów jako też i na każdem z przecięć wysta­
wiwszy graniastosłupy opisane sposobem jak wyżej, a potćm 
na każdem z przecięć wystawiwszy graniastosłupy wpisane 
również sposobem wyżćj w drugim ostrosłupie użytym, tu­
dzież przypatrzywszy się uważnie tym graniastoslupom, bez 
trudności dostrzeżemy, że każdy następny opisany, równy 
jest poprzedzającemu graniastosłupowi wpisanemu, tak że 
idąc od wierzchołka, pierwszy opisany równa się wpisanemu 
znajdującemu się pod nim; drugi opisany równa się wpisa­
nemu będącemu pod nim i t. d. aż nareszcie ostatni czyli 
pićrwszy na podstawie ABC opisany, nie ma pod sobą wpi­
sanego, któremuby był równy. Różnica przeto między sum­
mą opisanych a wpisanych grauiastosłupów, równa się gra­
niastosłupowi mającemu za podstawę ABC, a wysokość do­
wolną, lecz nieskończenie małą, bo wysokość PR podzieli­
liśmy wprawdzie na równe, lecz dowolnój wielkości części. 
Zatrzymawszy znaczenie O, o, a summę graniastosłupów opi­
sanych w pierwszym ostrosłupie oznaczywszy przez G, wpi­
sanych zaś przez g, mamy oczywiście O G i o >  g. Zro­
biwszy toż samo wykreślenie w drugim ostrosłupie i summę 
opisanych graniastosłupów oznaczywszy przez G' a wpisa­
nych przez g‘, mamy podobnież 0 < G '  i g'. Z  dwóch 
nierówności 0 < G  i o > g '  wypływa O — o < ;G  —  g' , albo 
O —  o <  G — g, gdyż g —  g’, bo odpowiednie graniastosłupy 
są sobie równe i liczba ich jest taż sama w jednym jak i 
drugim ostrosłupie. Ale różnica G — g zależy od naszej 
woli, bo ona się równa graniastosłupowi na podstawie ABC 
o dowolnój a zatem i nieskończenie małej wysokości wysta­
wionemu, a dla tego ta różnica jest, albo być może, nie­
skończenie małą, a nawet taką, że ją  zawsze jeszcze mniej­
szą uczynić można, dzieląc tylko wysokość jeszcze na mnićj- 
sze części. A kiedy w każdym razie O —  o jest mniejsze 
niż G —  g, zatem wnieść możemy że tu żadnej stałej różnicy 
naznaczyć nie można, tak iżbyśmy jej już mniejszą uczynić

20
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nie mogli i z tego powodu uważać ją  musimy za niknącą, 
a w tym przypadku być musi O —  o =  0 czyli O — o. Tak 
tedy trzema sposobami dowiedliśmy, że dwa ostrosłupy trój­
ścienne czyli dwa czworościany mające równe podstawy i wy­
sokości, są sobie równe co do objętości.

Uwaga. Ponieważ to twierdzenie o czworościanie jest 
bardzo ważne, z powodu jak już wspomniałem, że czworo­
ścian użytym być może do znalezienia objętości innych ciał 
graniastych, przeto osądziłem za potrzebne przekonać uczą­
cych się jak najdobitniój o tćj prawdzie, dla czego spodzie­
wam się, iż o zbytek lub rozwlekłość pomówiony nie będę.

Co do przystania dwóch czworościanów, to w dwóch 
głównych przypadkach być może: ł .  Jeżeli dwa czworo­
ściany mają po kącie dwuściennym równym, zawartym dwie­
ma ścianami równemi, każda każdćj i jednakowo położonc- 
mi. 2. Jeżeli mają po kącie trójściennym równym, zawar­
tym trzema ścianami równemi i jednakowo położonemi (po­
równaj §. 218). Ponieważ dowód w obu przypadkach jest 
bardzo łatwy, dla tego pomijając go, przechodzę zaraz do 
znalezienia objętości czworościanu.

§. 235.
Aby znaleść objętość czworościanu, potrzeba nam jesz­

cze dowieść następujące
T w i e r d z e n i e . Ostrosłup trójścienny albo czworościan, 

jest trzecią częścią graniastosłupa trójściennego o tejże samej 
podstawie i wysokości.

Niech będzie czworościan SABC jig. 236, z wierzchołka 
S poprowadziwszy proste SD i SE pićrwszą do AB a drugą do 
BC równoległe i im równe, a potem złączywszy D i E, otrzy­
mamy trójkąt SDE =  ABC; a łącząc jeszcze A  i D, C i E 
prostemi AD, CE, tudzież przez proste AD i BS, CE i BS, 
AD i CE pomyśliwszy płaszczyzny, te z płaszczyznami ABC 
i SDE zamkną graniastosłup trójścienny ABCDSE. Jeżeli 
teraz przez trzy punkta C, S, D przesuniemy płaszczyznę, 
czyli jak się często wyrażamy, zrobimy przekrój, z łatwością 
dostrzeżemy, iż cały graniastosłup podzieli się tym sposobem



307

na trzy ostrosłupy czyli czworościany, a mianowicie pićrwszy 
dany SABC, dwa zaś inne SACD i SCDE. Trzy tc czworo­
ściany są sobie równe co do objętości; albowiem dwa ostat­
nie mając podstawy ACD i CDE równe, jako połowy tegoż 
samego równoległoboku ACED i wierzchołek spoiny w punk­
cie S, mają też i wysokości równe; zatem według poprzedza­
jącego twierdzenia są sobie równe co do objętości. Z  §. 23 i 
wiemy, iż w czworościanie każdą z czterech jego ścian wziąśó 
można za podstawę, więc w czworościanie np. S C D E  
biorąc ścianę SDE za podstawę, jego wierzchołek będzie 
w punkcie C; ale SDE nr ABC, tudzież wysokość tak tego 
jako i danego czworościanu SABC jest taż sama, równająca 
się odległości ich podstaw; przeto dwa te czworościany, a 
następnie i wszystkie trzy, są sobie równe co do objętości; 
którykolwiek więc z nich, a zatem i SABC jest trzecią czę­
ścią graniastosłupa trójściennego mającego z nim tęź sarnę 
podstawę i wysokość, co mieliśmy dowieść.

W n i o s e k  ł . Z tego twierdzenia wprost wypływa, że 
każdy graniastosłup trójścienny rozebranym, być może przez 
płaszczyzny przekątne na trzy ostrosłupy trójścienne czyli 
czworościany o tejże samej podstaicie i wysokości.

W n i o s e k  2. Ponieważ objętość graniastosłupa jakiego­
kolwiek, a zatem i trójściennego, równa się iloczynowi z jego 
podstawy przez wysokość, więc tćż objętość czworościanu, 
jako trzeciej części ostatniego graniastosłupa o tejże samćj 
podstawie i wysokości, równa się trzeciej części iloczynu z 
jego podstawy przez wysokość, albo iloczynowi z podstawy 
przez trzecią część wysokości, albo nareszcie, iloczynowi z 
trzeciej części podstaioy przez wysokość.

W n i o s e k  3 .  Każdy rów n ole g łościan  je s t  d w a  r a z y  w ię k ­

s z y  o d  g ra n ia stosłu p a  tró jśc ien n eg o  m a ją c e g o  z  n im  tęż sarnę 

w y s o k o ś ć  a  p od staw ę rów n ą  p o ło w ie  p o d sta w y  ró w n o le g ło -  

ścian u , p rzeto  objętość czworościanu jest szóstą częścią równo- 
ległościanu mającego dica razy większą podstawę a wysokość 
tęż sarnę.

20.
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Z czego znowu wypada, że każdy równoległościan ro­
zebranym być może na sześć czworościanów równych między 
sobą co do objętości, a mających tak wysokości jako i pod­
stawy równe. Te ostatnie są połowami podstawy równoległo- 
śćianu, wysokość zaś równa wysokości tegoż.

Podobnież każdy graniastosłup rozebranym być może 
na graniastosłupy trójścienne, zatem każdy ostrosłup jest 
trzecią częścią graniastosłupa mającego z nim tęż sarnę pod­
stawę i. wysokość. Z tego tóż twierdzenia wniesiemy, że ob­
jętość każdego graniastosłupa równa się iloczynowi z powierz­
chni jego podstawy przez wysokość.

W n i o s e k  4 .  Ostrosłup wielościenny rozebranym być może 
za pomocą płaszczyzn przekątnych na same czworościany; 
a że objętość każdego z ostatnich równa się iloczynowi z pod­
stawy przez trzecią część wysokości, zatem summa wszyst­
kich czyli objętość ostrosłupa icielościennego równa się iloczy­
nowi z powierzchni jego podstawy przez trzecią część wysokości.

W n i o s e k  5 .  Objętości dwóch ostrosłupów jakichkolwiek, 
mają się do siebie jak iloczyny z podstaw przez wysokości; 
mające podstawy równo, objętości ich są w stósunku wyso­
kości; a mające wysokości równe, też objętości są w stósunku 
ich podstaw. Jeżeli bowiem objętość, podstawę i wysokość 
pićrwszego oznaczymy przez O, P, W , a drugiego przez o, 
p, w , tedy według poprzedzającego wniosku jest 0 “ P X śW , 
o =  jp X  ipo, zatem co do pierwszego mamy:

O : o =  P X  JW : p X  =  P.W  : p.w. 
przypuściwszy że P — p, będzie co do 2<j<>; O : o == W  : w; 
położywszy zaś W  =  w, znajdziemy co do 3go O : o =  P : p. 
Gdyby było P — p i W  — w, mielibyśmy O =  o t. j. Ostro­
słupy jakiekoliciek mające róione podstawy i wysokości, są 
sobie równe co do objętości. Mogą więc podstawy dwóch 
ostrosłupów o równych wysokościach być wielokątami różnego 
nazwiska, byle tylko co do powierzchni były równe, objętości 
ich będą także równe.
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§. 236.
T wierdzenie . Objętość ostrosłupa ściętego równolegle do 

jego podstawy, równa się trzem ostrosłupom mającym wysokość 
równą piśrwszemu, podstawy zaś jeden dólną, drugi górną 
podstawę ostrosłupa ściętego a trzeci średnią geometrycznie 
proporcyjonalną między dwiema pierwszemi.

Mając dwa ostrosłupy, jeden wielościenny a drugi trój­
ścienny, takie iżby ich podstawy co do powiórzchni i wy­
sokości były równe, jeżeli je przetniemy płaszczyzną rów­
noległą do podstaw W tejże samej wysokości, przecięcia stąd 
otrzymane są sobie jak wiemy równe co do powierzchni; ta 
więc płaszczyzna odcina od obu ostrosłupów części zawarte 
między ich wierzchołkami a płaszczyzną odcinającą równe; 
są to bowiem ostrosłupy mające rzeczone przecięcia za 
podstawy, a za spoiną wysokość odległość płaszczyzny prze- 
cinającćj od wierzchołka. Ponieważ zaś całe ostrosłupy we­
dług §. 234 są sobie równe, więc i pozostałe części, t. j . 
ostrosłupy ścięte, będą sobie równe; z tego powodu na do­
wiedzenie założonego twierdzenia, dosyć będzie uważać ostro­
słup ścięty trójścienny.

Niechże będzie trójścienny ostrosłup ścięty ABCDEF 
jig. 237; przez trzy punkta A, E, C przesuńmy płaszczyznę, 
czyli przekrójmy ten ostrosłup, tedy widzimy, iż tym sposo­
bem odkroimy od całego, czworościan EABC mający pod­
stawę ABC, a wysokość spólną z ostrosłupem ściętym, gdyż 
płaszczyzna DEF jest równoległa do podstawy. Po odcięciu 
tego czworościanu, pozostaje ostrosłup czworościenny EACFD 
mający wierzchołek w punkcie E, a za podstawę czworokąt 
ACFD. Przez trzy punkta D, E, C, przekroiwszy znowu ten 
pozostały ostrosłup, podzielimy go na dwa czworościany 
ECDF i EACD, mające wierzchołek spoiny w punkcie E, 
a zatem wysokości równe, za podstawy zaś, pierwszy ma 
trójkąt CDF a drugi ACD. Ostrosłup ECDF uważać moż­
na jako stojący na podstawie DEF a wierzchołek w punkcie 
C mający; będzie on przeto drugim czworościanem, z któ­
rych się składa ostrosłup ścięty, bo wysokość jego jest rów­
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na wysokości, a podstawa jest górną podstawą danego ostro­
słupa ściętego. Chodzi już tylko o ostatni t. j. trzeci czwo­
rościan, żeby dowieść, iż tenże ma za podstawę średnią geo­
metrycznie proporcyjonalną między dwiema pierwszemi, a 
wysokość jak dwa pierwsze. Na ten koniec z punktu E na 
płaszczyźnie BCFE poprowadźmy prostą EG równoległą do 
krawędzi CF, tedy pomyśliwszy sobie inny czworościan ma­
jący za podstawę trójkąt ACD a wierzchołek w punkcie G 
t. j.  czworościan GACD, ten jest równy czworościanowi 
EACD, bo mają tęż sarnę podstawę a wierzchołki E i G na 
prostej równoległej do płaszczyzny podstawy, a zatem i wy­
sokości mają równe, a następnie są sobie równe co do ob­
jętości tak, że jeden za drugi wziąść można. Ale czworo­
ścian GACD uważanym być może jako stojący na podsta­
wie AGC, a wićrzckołek mający w punkcie E, zatem wyso­
kość jego równa się wysokości ostrosłupa ściętego. Naosta- 
tek mamy jeszcze dowieść, że podstawa AGC tego ostatniego 
czworościanu jest średnią geometrycznie proporcyjonalną 
między ABC i DEF. Dwa trójkąty ACG i DEF mające 
po kącie równym C =  F i po boku równym CG =: EF, we­
dług §. 122 dostarczają proporcyi A C G : DEF =  A C : DF. 
Dwa znowu trójkąty ACG i ABC mające wierzchołek w je - 
dnymże punkcie A , dają proporcyją A B C : ACG ~  BC:CG 
=rB C :E F . Ale trójkąt ABC DEF zatem 

A C :D F = B C :E F .
Z  trzech tych proporcyi widzimy, że

ABC : ACG= A C G : DEF
t. j. trzeci czworościan EACD równy jest innemu czworo­
ścianowi mającemu wysokość równą wysokości ostrosłupa 
ściętego, a podstawę będącą średnią geometrycznie propor­
cyjonalną między podstawami dwóch pierwszych czworo­
ścianów.

Tak dowiódłszy założonego twierdzenia dla ostrosłupa 
ściętego trójściennego, stósownie do tego co wyżej powie­
dzieliśmy wniesiemy, że każdy ostrosłup ścięty równa się co 
do objętości trzem ostrosłupom, z których dwa mają podsta­
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wy, jeden dolnej, drugi górnej ostrosłupa ściętego, trzeci zaś 
średniej geometrycznie proporcyjonalną między dwiema pierw- 
szemi, a wysolcośó każdego równa się wysokości ostrosłupa 
ściętego. Oznaczywszy więc powierzchnią podstawy dolnćj 
przez P, górnćj przez p a wysokość ostrosłupa ściętego przez 
W, jego zaś objętość przez O , będzie według powyższego
o = P x $ w + 2>x*w+Vi>.iW=jw(p+2>+Vpp)

bo VPp jest średnią geometrycznie proporcyjonalną między 
P i p.

Można też dowieść to twierdzenie analitycznie to jest 
sposobem rachunkowym, uważając je w kształcie następują­
cego zagadnienia: mając dane powierzchnie obu podstaw ostro­
słupa ściętego, tudzież ich odległość czyli wysokość tegoż ostro­
słupa , znaleść jego objętość.

Rozwiązanie. Wystawiwszy sobie ostrosłup dokończony 
przez przedłużenie jego ścian aż do ich spotkania się z so­
bą, jeżeli znajdziemy objętość tak dokończonego, tudzież 
objętość uzupełniającego ostrosłupa, którego podstawą jest 
podstawa wyższa ostrosłupa ściętego, różnica tych objętości 
będzie objętością szukaną. Dla znalezienia objętości dwóch 
rzeczonych ostrosłupów, potrzebne są ich wysokości których 
nic znamy, a zatem te najprzód znaleść potrzeba. Niech 
dolna podstawa ostrosłupa ściętego będzie P górna p  a ich 
odległość W ; z wierzchołka dokończonego ostrosłupa spu­
ściwszy prostopadłą do podstawy, część jej zawarta między 
podstawami jest znana i r=W, lecz część od wierzchołka aż do 
górnej podstawy nie jest znana, starać nam się więc potrzeba 
tęż wynaleść. Oznaczmy ją przez x, tedy wysokość całko­
witego t. j. dokończonego ostrosłupa będzie = W  -\-x, wy­
sokość zaś uzupełniającego — x\ objętość zatem pierwszego 
będzie = P X  3 (W  x), drugiego z=pX  3 a objętość ścię­
tego =  P X i (W - j -£ c )— i > X s x- Szukajmyż więc x. Ponie­
waż W  - j- x i x wyrażają odległości od wierzchołka dwóch 
przecięć P i p ,  zatem według §. 232 wniosek mamy 
P :pr= (W -|-a :)2:a:,2, a na mocy własności proporcyi geo­
metrycznej §. 98 Arytm. mamy VP: Vp—  W  -{- x : x\ tu-
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dzież według tegoż samego §.

y P —  yp : \/p =  W : x skąd x ~_  W  \p
Vp—Vp

przeto W + = W + - ? ł Ł = J ^Vp—V p Vp—Vp
Znalazłszy wysokości obu ostrosłupów wyrażone przez 

ilości dane, mamy teraz
wVp pVpobjęt. całkowitego ostrosłup. '  ‘=PX;

V p— \/p
=  3 W .

wV»
objęt. uzupełniającego ostros.~j?X3—_  1 — =  3 W.Vp—yp
a zatem objętość ściętego ostrosłupa =   ̂W  (

VP— \/p
pVp~

Vp - V 2T  

p Vp — pVp 
p Vp — yp

Rozmnożywszy licznika i mianowika przez VP-j-Yp i 
oznaczając objętość ostrosłupa ściętego przez O S , będzie

OS —   ̂ W  |F "'~ P '* +  VFP (P ~  P)j

_ ,  w  |( P + p ) ( P - p )  + V p ^ ( P - p ) j

= .W(P+p+Vpp)
t. j . zupełnie tak, jak sposobem geometrycznym znaleźliśmy, 
a twierdzenie które poprzednio dowiedliśmy, okazuje się tu 
jako wniosek z wypadku zagadnienie rozwiązującego, bo

I w  (P + p + V P p ) = P .  > W  + p .  h W  +  VPp. ■ W .
§. 237.

T wierdzenie. Objętość graniastosłupa trójściennego ścię­
tego płaszczyzną pochyłą do podstawy, równa się objętości trzech 
czworościanów mających tęz sarnę podstawę t. j. podstawę gra­
niastosłupa, a wysokości, prostopadłe z trzech wierzchołków gór­
nej podstawy pochyłej, na płaszczyznę podstawy dólnej spusz­
czone.

Niech będzie graniastosłup trójścienny ABCDEF fig. 238 
ścięty płaszczyzną DEF, pochyłą do podstawy; potrzeba do-
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wieść, iż objętość jego równa się trzem czworościanom czy­
li ostrosłupom mającym za spoiną podstawę trójkąt ABC t. 
j. podstawę graniastosłupa danego, a za wysokości, trzy pro­
stopadłe z punktów D, E, F, na płaszczyznę podstawy spusz­
czone. Na ten koniec przekrójmy ten graniastosłup przez 
trzy punkta A, E, C, a odkroimy tym sposobem jeden z czwo­
rościanów EABC, mający za podstawę trójkąt ABC a za wy­
sokość, prostopadłą z E na płaszczyznę podstawy spuszczo­
ną. Pozostały ostrosłup czworościenny EACFD, przekrójmy 
znowu przez trzy punkta D , E , C, a podzielimy go na dwa 
trójścienne EACD i ECDF mające podstawy, piórwszy ACD 
drugi CDF a wierzchołek spoiny w E. Lecz piórwszy jest 
równy czworościanowi BADC mającemu tęź sarnę podstawę 
a wierzchołok w punkcie B , mają bowiem oba wierzchołki 
na prostej BE równoległój od płaszczyzny podstawy a zatem 
i wysokości równe. Ale ten ostatni uważanym być może ja ­
ko stojący na podstawie ABC, a wićrzchołek w punkcie D 
mający, jest więc drugim czworościanem w twierdzeniu wy­
rażonym, bo wysokością jego jest prostopadła z D na płasz­
czyznę ABC spuszczona. Trzeci nareszcie ECDF równa się 
czworościanowi BCDF mającemu tęż sarnę podstawę CDF a 
wierzchołek B; kiedy więc ich wiórzchołki E i B są na pro- 
stój równoległój do podstawy, przeto mają i wysokości ró­
wne. Ale trójkąt CDF er ACF, bo stoją na jednójże podsta­
wce CF a wierzchołki ich D i A są na prostej AD równo 
ległej do CF, zatem czworościan BCDF =  BACF. Lecz po­
prowadziwszy prostą AF, ten ostatni czworościan uważać mo­
żna jako stojący na podstawie ABC a wićrzchołek w punkcie 
F mający i dla tego wysokość jego jest prostopadła z F  na 
płaszczyznę podstawy ABC, spuszczona, jest on wrięc trzecim 
czworościanem, z których uwrażać można złożony grania­
stosłup dany. Tak tedy
graniastosłup ABCDEF =  EABC - f  EACD+ ECDF

=  EABC - f  D ABC - f  FABC.
Oznaczywszy trzy prostopadłe z E, D, F na płaszczyznę pod­
stawy ABC graniastosłupa danego spuszczone przez p, p ,  p",
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powierzchnią podstawy ABC przez P , a nareszcie objętość 
graniastosłupa w mowie będącego przez G, będzie:

G=PXiP+PX^>'+PX^"=łP(p+P'+p”) = P ( ^ t ^ )
t. j . objętość jakiegokolwiek graniastosłupa 'pochyło płaszczy­
zną, do podstawy ściętego, równa się iloczynowi z powierzchni 
jego podstawy przez trzecią część summy prostopadłych z trzech 
wierzchołków wyższej na płaszczyznę dolnej podstaioy spusz­
czonych, co potrzeba było dowieść.

Uwaga 1 . Jeżeli graniastosłup jest prosty, czyli, jeżeli 
trzy jego krawędzie boczne są prostopadłe do płaszczyzny 
podstawy, rzeczone trzy prostopadłe mieszają się z temiż kra­
wędziami, a w takim przypadku objętość graniastosłupa pro­
stego pochyło do płaszczyzny podstawy ściętego, równa się ilo­
czynowi z jego podstawy przez trzecią część summy trzech je­
go krawędzi bocznych.

Uwaga 2. Graniastosłup ukośnie do podstawy ścięty jest 
tćm między graniastosłupami, czem trapez między figurami 
prostokreślnemi płaskiemi, bo jako każdy wielokąt podzielo­
ny być może na trapezy z pozostałym trójkątem, tak też każ­
de ciało graniaste podzielonćm być może na graniastosłupy 
skośnie ścięte z pozostałym ostrosłupem.

§. 238.
Szukajmy teraz powierzchni jakiegokolwiek ostrosłupa. 

Ponieważ w ostrosłupie wszystkie ściany boczne są trójkąta­
mi, przeto summa powierzchni tych ścian t. j. trójkątów, bę­
dzie powiórzchnią boczną ostrosłupa; do którój dodawszy 
jeszcze powiórzchnią podstawy, mieć będziemy powierzchnią 
całkowitą ostrosłupa.

W  przypadku gdy ostrosłup jest prosty albo foremny, 
wszystkie ściany boczne są trójkątami do siebie przystające- 
mi, a zatem równemi: znalazłszy przeto powierzchnię jednej 
ściany i tę wziąwszy tyle razy, ile ostrosłup ma ścian czyli 
mele wielokąt służący ostrosłupowi za podstawę ma boków, 
mieć będziemy powiórzchnię boczną ostrosłupa prostego. Ale 
ściany boczne są trójkątami równoramiennemi, a wysokość
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każdego jest prostopadła z wierzchołka ostrosłupa na bok pod­
stawy spuszczona, którą długością boczny ściany ostrosłupa 
(apothema pyramidis) nazwać można, przeto ponieważ i bo­
ki podstawy są między sobą równe, powierzchnia boczna ta­
kiego ostrosłupa róiona się iloczynowi z obwodu jego podsta­
wy przez połowę długości ściany albo równa się trójkątowi ma­
jącemu za podstawę obwód podstaicy ostrosłupa, a za wyso­
kości długość jego ściany.

Powierzchnia podstawy, jako wielokąta foremnego równa 
się iloczynowi zjego obwodu przez połowę prostopadłej ze środ­
ka wielokąta na bok jego spuszczonej (apothema polygoni regu- 
laris), zatem całkowita poicierzchnia ostrosłupa rostegop, równa 
się iloczynowi z obwodu jego podstawy przez połowę summy dłu­
gości ściany i prostopadłej ze środka podstawy na bok spuszczonej.

Postępując jak w §. 230 wniosek 2, moglibyśmy boczną 
powierzchnią ostrosłupa rozpostrzóć na płaszczyznę, skądbyś- 
my otrzymali wycinek wielokątny.

§. 239.
Co się tyczy ostrosłupa ściętego, w tym ściany boczne 

są trapezami, przeto tak jak w ostrosłupie jakimkolwiek, obra- 
chować potrzeba powierzchnię każdej ściany osobno, a ich 
summa będzie powierzchnią boczną ostrosłupa ściętego, do 
której dodawszy powierzchnie dwóch podstaw, otrzymamy 
całkowitą powierzchnię ostrosłupa równolegle do podstawy 
ściętego.

Jeżeli zaś ostrosłup ścięty jest prosty, podstawy jego są 
wielokątami forcmnemi a ściany boczne są trapezami do sie­
bie przystającemi, a zatem sobie równemi, przeto powierzch­
nia boczna takiego ostrosłupa, równa się powierzchni jedne­
go trapezu przez liczbę boków podstawy.

Aby znaleść powierzchnią jednej ściany, uważmy, że na 
fig. 239 powierzchnia np. ściany

A E K F = — + ^ . R S = a e X R S  §. 123.
2

A że i tu ae — ab —  bczzzcd —  de, jako też długość każdej 
ściany równa się RS, zatem summa powierzchni wszystkich
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trapezów, czyli powierzchnia boczna ostrosłupa ściętego pro* 
stego — abcde X  ES t. j. róicna się iloczynowi z obwodu prze- 
cięcia równoległego do podstaw, a przez środek którejkolwiek, 
a zatem i wszystkich krawędzi bocznych, przechodzącego, przez 
długość krawędzi, czyli raczej przez długość prostej łączącej 
środki dwóch odpoioiednicli boków dólnej i górnej podstawy. 
Chcąc mieć całkowitą powierzchnią tego ostrosłupa, dodać 
jeszcze potrzeba do powyższego iloczynu

ABCDE X  hOR+  FGHTK X  £ oS.
Oznaczywszy obwody dwóch podstaw przez P i p ,  można tćż 
całkowitą powierzchnię tego ostrosłupa następnie wyrazić 

„  ,RS +  OR. . ,RS-|-oS.
p  (— 5 — ) + p H r - )’

co każdy łatwo dostrzeże.

Wielościany (polyedra).

§• 240.
Jeżeli ilukolwiek płaszczyznami i w jakikolwiek sposób 

ograniczymy przestrzeń, otrzymamy stąd ciało geometryczne, 
które w ogólności wielościanem (polyedrum) nazywać będzie­
my. Według tej definicyi ciała graniaste, o których dotąd 
mówiliśmy, są także wielościanami, ale noszą osobne nazwy, 
jak to widzieliśmy.

Płaszczyzny wielościan ograniczające zowią się i tu ścia­
nami, spólne przecięcia się z sobą każdych dwóch ścian kra­
wędziami, punkta zaś zejścia się tych krawędzi wierzchołka­
mi, zwyczajnie kątami bryłowemi wielościanu.

Roztrząsnąwszy w poprzedzających §§. dwa gatunki ciał 
graniastych, t. j .  graniastosłupy i ostrosłupy, pozostają nam 
jeszcze właściwe wielościany; gdy zaś ich liczba być może 
nieskończona, z powodu nieskończonej rozmaitości sposobów 
ograniczania czyli zamykania przestrzeni powierzchniami płas- 
kiemi i ponieważ Geometrowie dzielą tę nieskończoną liczbę 
wielościanów na wypukłe (convexa) i wklęsłe (concaya); gdy 
nareszcie te ostatnie w zastosowaniu bardzo szczupłego są 
użytku, przeto tylko pierwsze zajmą naszę *uwagę. Cechy, po
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których poznać możemy wielościany wypukłe są: 1° rozszó- 
rzywszy którąkolwiek ścianę takiego wiełościanu, ten znajdu­
je  się całkiem z jednój strony tej płaszczyzny. 2°. Prosta w 
każdym kierunku poprowadzona, nie w więcój jak w dwóch 
punktach spotykać może powierzchnią wiełościanu wypukłe­
go, a nareszcie 3°. Wszystkie płaszczyzny przekątne przy­
padają wewnątrz takiego wiełościanu.

Ale i wielościanów wypukłych jest nieskończona roz­
maitość, a wszystkie noszą nazwę wielościanów Eulerowskich 
z powodu iż ten wielki Geometra najwięcćj się niemi zatru­
dniał. Najznajomsze są Archimodesa i Pitagorejskie albo 
Platońskie. Wielościanami ' Archimedesa nazywamy pospo­
licie takie, w których każda ściana jest wielokątem forem­
nym, Pitagorejskiemi zaś, wielościany, w których oprócz 
foremności, ściany te są przystającemi do siebie, jako też 
pochyłości każdych dwóch ścian, albo co na jedno wychodzi, 
kąty dwuścienne między sobą równe. Te wielościany nazy 
wają się zwyczajnie foremnemi, mają one, jeszcze raz po­
wtarzam, wszystkie ściany równe i przystające do siebie, 
kąty ścienne równe, krawędze wszystkie równe, jako tćż 
pochyłości każdych dwóch ścian między sobą równe. Fo­
remne wielościany są tóm między wielościanami, czem wie­
lokąty foremne między wielokątami. W  elementarnćj Geo- 
metryi mówi się zwyczajnie tylko o tych ostatnich, dla tego 
też z pomiędzy nieskończonej liczby wielościanów wypukłych 
zajmiemy się tylko foremnemi.

Ponieważ to są wielościany wypukłe, zatem wszystkie 
wićrzchołki są na powierzchni wiełościanu czyli wyrażniój 
mówiąc wszystkie kąty ścienne są wyskakujące. Z uwagi, 
że summa kątów płaskich kąt wielościenny składających, 
zawsze musi być mniejsza niż 360° §. 214, wypada, że takich 
wielościanów pie wielka jest liczba. Składając bowiem kąty 
bryłowe z kątów płaskich do foremnych wielokątów należą­
cych, użyjmy najprzód kątów trójkąta foremnego, czyli rów­
nobocznego. Ponieważ kąt takiego trójkąta r : 60°, a do zło­
żenia kąta bryłowego potrzeba najmniej trzech kątów płas­
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kich, zobaczmy zatćm, wielo kątów tegoż trójkąta można 
wziąść najwięcej, aby złożyć kąt bryłowy? Trzy kąty trój­
kąta foremnego czynią 3.60 =  180°; cztery takie kąty czynią 
4 .6 0 = 2 4 0 °; pięć kątów trójkąta równobocznego czynią
5.60 =  300°; nareszcie sześć podobnych kątów czynią 
6.60°=360°. Stąd się pokazuje że tylko trzy wielościany 
loreinne złożyć można z trójkątów foremnych równych i przy­
stających do siebie.

Kiedy z sześciu kątów trójkąta równobocznego nie 
można już złożyć kąta bryłowego, z powodu, że ich summa 
czyni 360° i wszystkie kąty płaskie rozpościerają się na 
jednę płaszczyznę, przeto z porządku przystępujemy do 
czworokąta foremnego czyli do kwadratu. Ponieważ w tym 
każdy kąt jest = 9 0 °  t. j . jest kątem prostym, przeto jeden 
tylko wielościan ograniczyć możemy kwadratami biorąc do 
złożenia kąta bryłowego trzy kąty płaskie proste; summa 
bowiem ich uczyni tylko 270°. Gdybyśmy ich zaś wzięli 
cztery, jużbyśmy tę summę otrzymali 360°, zatóm z kwa­
dratów jeden tylko wielościan otrzymać można.

Kąt pięciokąta foremnego = 1 0 8 ° , przeto trzy takie 
kąty płaskie można wziąść do złożenia kąta ściennego, ale 
cztery kąty pięciokąta foremnego, już czynią więcćj niż 360° 
i dla tego z pięciokątów foremnych jeden tylko wielościan 
mieć można.

Kąt sześciokąta foremnego = 1 2 0 ° ,  trzy przeto takie 
kąty koniecznie potrzebne do złożenia kąta bryłowego czy­
nią razem 3 .120= 360°, a zatem z tych kątów nie można 
składać kątów bryłowych, a następnie nie można ograniczyć 
przestrzeni sześciokątami foremnemi, nie można tćż z tego 
powodu złożyć żadnego wielościanu. Przekonywamy się 
więc, że z wielokątów foremnych nie więcej tylko pięć wie- 
lościanów foremnych złożyć można, t. j .  trzy z trójkątów, je ­
den z kwadratów i jeden z pięciokątów.

§. 241.
Pokazawszy, iż z trójkątów foremnych tylko trojakim 

sposobem składać można kąty bryłowe, t. j. biorąc kątów



319

płaskich po trzy, cztćry i pięć do złożenia kąta bryłowego, 
że z kwadratów tylko w jeden sposób t. j .  biorąc po trzy 
kąty płaskie, składać mt)żna kąty bryłowe, a nareszcie z pię­
ciokątów także jednym tylko sposobem otrzymać można kąty' 
bryłowe, biorąc kątów płaskich pięciokąta foremnego po trzy 
na jeden kąt bryłowy, wypada nam teraz okazać, że tym 
sposobem postępując złożymy rzeczywiście wielościany, czyli 
że tak trójkątami trojakim sposobem, jako też kwadratami 
w jeden i pięciokątami także w jeden sposób ograniczymy 
zupełnie przestrzeń.

Co do pierwszego. Niech będzie trójkąt równoboczny 
ABC, fig. 240, ze środka jego O wystawmy prostopadłą 
OD do płaszczyzny trójkąta ABC, dając jej długość taką, 
iżby AD było równe AB , a potćm przez każdy z boków 
trójkąta ABC i przez punkt D poprowadziwszy płaszczyzny, 
te przetną się dwie a dwie i zamkną przestrzeń, którą Czwo­
rościanem (tetraedrum) nazywamy. Ma ten czworościan 4 ścia­
ny trójkątne, 4 kąty bryłowe, każdy z trzech kątów płaskich 
złożony, i 6 krawędzi między sobą równych.

Co do drugiego. Niech ABCD fig. 241,  będzie kwa­
dratem wystawionym na boku trójkąta równobocznego, z ja ­
kich chcemy składać wielościan. Poprowadziwszy dwie prze­
kątnie AC i BD, te przetną się w środku kwadratu O; z te­
go środka wystawiwszy prostopadłą z jednćj i drugiej strony 
płaszczyzny kwadratu t. j. OE i OF, nadając im długość 
równą połowie przekątni, t. j .  tak, iżby było OE=OF=rAO, 
jeżeli przez każdy bok kwadratu i przez punkt E , a potćm 
przez też boki kwadratu i punkt F  poprowadzimy płasz­
czyzny, te przeciąwszy się po dwie, zamkną przestrzeń którą 
Ośmiościanem (octaedrum) nazywamy. Ośmiościan ma ośm 
ścian trójkątnych, 6 kątów bryłowych, każdy z cztórech płas­
kich złożony i 12 krawędzi między sobą równych.

Ośmiościan najłatwiej można złożyć, wystawiwszy dwa 
ostrosłupy czworościenne foremne i równe, dając im za wy­
sokość połowę przekątni kwadratu ich podstaw, a potem 
składając te ostrosłupy z sobą tak, aby podstawy do siebie
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przystały, a wierzchołki ostrosłupów przypadły z przeciwnych 
stron płaszczyzny podstaw.

Co do trzeciego. Mając składać wielościan z trójkątów 
foremnych, tak iżby każdy kąt bryłowy był zawarty pięcią 
kątami płaskiemi trójkąta równobocznego, narysujmy na 
płaszczyźnie pięciokąt foremny, któregoby bok był równy 
bokowi trójkąta z jakich chcemy ten wielościan złożyć. Ze 
środka O fig. 242 tego pięciokąta, wystawmy prostopadłą 
OM, nadając jej długość taką, iżby było AM =  AB t. j  rów­
ne bokowi trójkąta z jakich chcemy składać ten wielościan, 
a przez każdy z boków pięciokąta i przez punkt M prowa­
dząc płaszczyzny, te przetną się po dwie i złożą kąt pięcio- 
ścienny M z pięciu kątów płaskich AMB, BMC, CMD, DME 
i EMA, w którym każde dwie ściany będą jednakowo do 
siebie pochylone; przy każdym zaś wierzchołku pięciokąta 
będzie kąt trójścienny złożony z trzech kątów płaskich t. j. 
z dwóch trójkąta równobocznego a trzeciego do pięciokąta 
foremnego należącego, a dla tego wszystkie te ostatnie kąty 
są sobie równe według §. 213. Jeżeli teraz A'B'C' jest trój­
kątem równobocznym i takim, że A'B' =  AB t. j. trójkątem z ja ­
kich chcemy składać wielościan, dosyć przy jego wierzchoł­
kach A ’, B ’, C ’, wystawić kąty pięciościenne równe już zło­
żonemu M, przez co otrzymamy powierzchnią wypukłą z dzie­
sięciu ścian trójkątnych złożoną. Jeżeli drugą zupełnie rów­
ną powierzchnią złożymy i potem obie ich obwodami połą­
czymy z sobą tak, iżby dwuścienne kąty tćj tu schodziły się 
z kątami trójścienncmi drugiej, zamkniemy tym sposobem 
przestrzeń zupełnie i otrzymamy wielościan noszący nazwę 
od liczby swych ścian Dwudziestościanu (icosaedrum). Druga 
połowa jest na figurze kropkowaną. Ma ten wielościan 20 
ścian trójkątnych, 12 kątów bryłowych pięciościennycli i 30 
krawędzi między sobą równych.

Co do czwartego. Narysowawszy na płaszczyźnie kwa­
drat, z jakich chcemy albo mamy złożyć wielościan, z wierz­
chołków jego wyprowadzamy w jednąż stronę prostopadłe do 
płaszczyzny kwadratu, dając im długość równą i równą bo­
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kowi kwadratu; końce tych prostopadłych połączywszy pro- 
stemi i przez każde dwie' równoległe przesunąwszy płasz­
czyznę, ograniczymy tym sposobem zupełnie przestrzeń sa- 
memi kwadratami. Tak złożony wielościan będzie znanym 
nam już Sześcianem (hexaedrum); ma on bowiem 6 kwadra­
towych ścian, 8 kątów bryłowych, każdy z trzech kątów 
płaskich prostych złożony i 12 krawędzi między sobą rów­
nych fig. 243.

Co do piątego nakoniec. Niech ABCDE fig. 244, bę­
dzie pięciokątem foremnym, z jakich chcemy złożyć wielo­
ścian. Przy każdym jego wićrzchołku złożywszy kąt trój­
ścienny z trzech kątów płaskich między sobą równych i 
równych kątowi pięciokąta np. kątowi ABC, tak iżby wza­
jemne pochyłości trzech jego ścian były także równe, *na 
każdej z pięciu krawędzi do tych kątów bryłowych należą­
cej, a nie leżącej na płaszczyźnie danego pięciokąta, odchuj­
my, od wierzchołka poczynając, bok pięciokąta danego jak 
na figurze AF =  BG n  CI =  D K — EM — AB; dopełniwszy 
potem na każdym boku tegoż pięciokąta innego pięciokąta 
równego pierwszemu, otrzymamy tym sposobem połowę po­
wierzchni wypukłej wielościanu, który chcemy złożyć. Jeżeli 
zupełnie tym samym sposobem złożymy drugą połowę tam­
tej we wszystkiem równą, a potem to połówki przyłożymy 
albo raczej połączymy z sobą tak iżby ich wklęsłości przy­
padały wewnątrz, zamkniemy przez takie ich złożenie prze­
strzeń, którą od liczby ścian Dwunastościanem (dodecaedrum) 
nazywamy. Ma bowiem rzeczywiście ten wielościan 12 ścian 
pięciokątnych, 20 kątów bryłowych każdy z trzech kątów 
płaskich równych złożony i 30 krawędzi między sobą rów­
nych. Połowę powierzchni dwunastościanu widzimy na fig. 
244, druga zaś połowa jest kropkowaną.

W  przeszłym §. powiedzieliśmy, że te pięć ciał nazy­
wają się Pitagorejskiemi, gdyż Pitagorejezykowie w swej 
symbolicznej nauce porównywali czworościan z ogniem, sze­
ścian z ziemią, ośmiościan z powietrzem, dwudziestościan 
z wodą, a dwunastościan z całym światem.

21
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Aby te pięć ciał foremnych każdy sobie mógł zrobić 
z tektury i tym sposobem łatwiej i jaśniej pojął sposób ich 
składania, dołączam tu siatki, jakie na tekturze zrysować 
potrzeba, aby po ich wycięciu można złożyć każdy z rze­
czonych wielościanów.

Fig. A. jest siatką do czworościanu.
Fig. B. „ „ „ ośmiościanu.-
Fig. C. „ „ „ dwudziestościanu.
Fig. D. „ „ „ sześcianu.
Fig. E. „ „ „ dwunastościanu.

Ponarzynawszy wszystkie linije spólne dwom trójkątom, 
kwadratom lub pięciokątom i wyciąwszy miejsca między fi­
gurami, które są nie potrzebne, każdy z wieloscianów zam­
knie się najdokładniej. Spoiwszy potem ściany sobie przy­
ległe papierem gumą arabską pociągnionym i nareszcie oble­
piwszy czystym papierem powierzchnie, mieć będziemy do­
kładne modele pięciu ciał foremnych.

§. 242.
Złożywszy i przekonawszy się, że ani mniej ani więcej 

jak pięć ciał jest foremnych, wypada nam teraz przystąpić 
do obrachowania wielościanów w ogólności, a w szczegól­
ności do obrachowania tych pięciu ciał foremnych.

Zupełno obrachowanie wielościanu, zależy na podaniu 
pochyłości każdych jego dwóch ścian, jego całkowitej po­
wierzchni i nareszcie objętości.

Co się tyczy pochyłości każdych dwóch ścian, tego bez 
znajomości pomocniczej nauki, Trygonometryi, znaleść nie mo­
żemy; za pomocą bowiem geometrycznego wykreślenia, nie 
znajdzie się nigdy wypadek zupełnie dokładny, gdyż ta do­
kładność od wielu warunków zawisła, którym zadość uczy­
nić nie podobna; prócz tego, chociaż przez wykreślenie znaj­
dziemy kąt, wszelako o wielkości jego dopióro wtedy sądzić 
możemy, gdy go mieć będziemy wyrażony w liczbach. Dla 
tego stosując Trygonometryją do różnych zadań Geometryi, 
pokażemy w dalszym ciągu, jak łatwym sposobem to zada­
nie rozwiązać możemy. Tu czynię tylko tę uwagę, iż w wy­
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liczonych pięciu ciałach foremnych znalazłszy pochyłość dwóch 
któryclikolwiek ścian, już tćm samóm mamy pochyłości wszyst­
kich, albowiem według definicyi ciał foremnych, pochyłości 
te są między sobą równe.

Co do powierzchni wielościanu, ta równa się summie 
powierzchni jego ścian. A że w ciałach foremnych te ściany 
są sobie równe, zatem znalazłszy powierzchnią jedne] ściany 
i wziąwszy ją  tyle razy, ile wielościan ma ścian, mieć bę­
dziemy powićrzchnią żądaną.

Zobaczmyż więc jak znaleść powierzchnią jednej ściany 
w każdem z pięciu ciał foremnych.

Te ściany są wielokątami foremnemi t. j . albo trójką­
tami równobocznemi, albo kwadratami, albo nareszcie pięcioką­
tami foremnemi, ich przeto powierzchnie według §§. 123 i 124 
łatwo obrachowanemi być mogą. Atoli pokażemy tu pręd­
szy a może i łatwiejszy sposób znalezienia powierzchni trój­
kąta równobocznego z wiadomego jego boku, który zarazem 
jest krawędzią czworościanu, ośmiościanu i dwudziestościanu.

Niech będzie trójkąt równoboczny ABC fig. 245, CD 
prostopadła do AB. Powierzchnia jego równa się jak wia­

domo A B X C D
2

Lecz CD pada na środek boku AB §. 40

co do drugiego wniosek 2, przeto DB =   ̂AB. W  trójkącie 
CDB prostokątnym przy D jest
CD 2 =  BC2 —  DB" =  A B 2 — JAB2 =  jjAB2 gdyż B C = A B ,

skąd C D = ^ V 3 , a następnie powierzchnia trójkąta ABC

AB=  —  V3. Przemierzywszy jakąkolwiek jednostką bok AB

czyli krawędź jednego z trzech wspomnionych ciał i zna­
lazłszy, iż takich jednostek zamyka a, mieć będziemy po-

wierzchnią jednej ściany V3. Z tego wyrażenia po­

wierzchni jednej ściany, znajdziemy zaraz powierzchnią
a1Czworościanu ~  4. - — \3 =  «-V'3 
4

21.
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Ośmiościanu —  8. V3 — 2ct2V3a“
T
a1  — —Diuudziestościanu = 2 0 ___V3 —  5a2 V3.
4

Jeżeli krawędź sześcianu oznaczymy ogólnie przez a, 
powierzchnia każdej jego ściany będzie =  a1, a powierzchnia 
całego sześcianu =  6a-.

Aby znaleśó powierzchnią pięciokąta foremnego t. j  
jednej ściany dwunastościanu foremnego, wiemy, że po­
wierzchnia ta =  5ASB fig. 246. Powierzchnia trójkąta ASB

_^AB><SC^^ skąd powierzchnia pięciokąta = | A B X S C .

Ponieważ AB jest krawędzią dwunastościanu, przeto zawsze 
może być znaną, bo ją  zmierzyć można; chodzi więc tylko 
o znalezienie prostopadłej SC. Ta prostopadła może być 
wyrażona przez krawędź, lecz że sposobem rachunkowym 
prędzćj i łatwiej do tego dojdziemy niż geometrycznym, 
przeto sądzę, że mi nie będzie poczytanem za niestosowne, 
że pierwszego użyję, zwłaszcza iż cały rachunek oparty jest 
na twierdzeniach geometrycznych i Arytmetyce zwyczajnej.
Połóżmy AB ■' a , promień koła opisanego na pięciokącie
SA =  R, prostopadłą SC oznaczmy przez r, a nareszcie łuk 
AB podzieliwszy w punkcie D na dwie równe części i po­
prowadziwszy cięciwę A D , ta będzie bokiem dziesięciokąta 
foremnego w toż koło wpisanego, który oznaczmy przez d ; 
średnica DE =  2R.

Według §. 107, d jest większym odcinkiem promienia 
R podzielonego na skrajne i średnią; przeto mniejszy odci­
nek jest =  R —  d i według tegoż twierdzenia mamy 

R:cZ:=cZ:R— d skąd cZa =  R 2—  RcZ
Uważając w tem zrównaniu d jako ilość nieznaną i rozwią­
zawszy je  znanym sposobem, znajdziemy
d -  —  \ R =fc V jR 2-J-R2 =  — , \ R ± V f R J =  —  J R ±  J R\/5 

Wziąwszy na d tylko ważność dodatną, będzie d= R

Ponieważ SC =  R —  CD — R - x . kładąc CD = : x , zaś
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w trójkącie DAE jest AD — DE X  DC §. 129, czyli 

d* =  2 Rx skąd x ~ ~ = z  1- - (-V̂ " 1' . =  R ( 3 ~ V- ? .)., gdy wy- 

żój znalezioną ważność na d tu położymy, zatóm

, = r _ ^ b - ^ ^ = H L + V ! )

Ale według §. 90, AC =  C E X E D  =  (2R — cc)cc 
^ ] ^ ^ . R ( 3 -V 5 ) = ^ (5 +  V5)(3 _ V5)=R! (5 - V5).

a że AC =  j A B = J a ,  więc AC =  £ee2, a następnie
R 2(5 — \/5) czyli a1—_  R 2(5 — ys)

8 '  2
Ponieważ powiedzieliśmy, iż a zawsze być może znanem,

a\J2
zatem z tego ostatniego zrównania znajdziemy R ~  y_-----

Tę ważność wloźywszyw znalezionej wyżej na r,  będzie

r = - - J  _ ■ h - v 5—  a f l + V -  V2 )
V o—  V5 * 4 2 \ V 5 —  \/5 2 J

_  a j  ł + Vg" a \ / ( l + V 5 ) a _  a \ / 3 + V 5
2 \\5 — \ 5 ‘ \ 2J 2 V 2 ( 5 —  \/5) 2 V 5 —  \/5

Rozmnożywszy pod pierwiastkiem licznika i mianownika 
przez 5-|--\/5, a potem podzieliwszy także licznika i miano­
wnika przez \/5, lub co na jedno wychodzi, rozmnożywszy 
zaraz licznika i mianownika przez \/5 — 1, otrzymamy na­

reszcie

Znalazłszy tym sposobem prostopadłą r wyrażoną przez kra­
wędź o , i położywszy jej ważność za SC w wyrażeniu po­
wierzchni pięciokąta na początku przywiedzionem, będzie 
powierzchnia pięciokąta foremnego
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a następnie powierzchnia

Dwunasto ścianu —  12 . — a2
4

§. 243.
Pozostaje nam więc jeszcze mówić o objętości wielo- 

ścianów. Jak powierzchnią każdego wielokąta znajdowaliśmy 
dzieląc go przekątniami na trójkąty, lub też obierając gdzie­
kolwiek na powierzchni wielokąta punkt i ten łącząc ze 
wszystkiemi wierzchołkami wielokąta, przez co także pó- 
dzieli się wielokąt na tyle trójkątów ile wielokąt ma boków, 
tak też objętość każdego wielościanu znajdzie się dzieląc go 
na czworościany, co zawsze można, albo płaszczyznami prze- 
kątnemi, albo tćż obrawszy wewnątrz wielościanu punkt i 
przez ten, tudzież przez każdą jego krawędź prowadząc 
płaszczyzny; te w ostatnim razie podzielą wielościan na tyle 
ostrosłupów, ile wielościan ma ścian. Te ostrosłupy mają za 
podstawy ściany wielościanu, a wierzchołek spólny w obra­
nym wewnątrz punkcie. Jeżeli ściany wielościanu nie są 
trójkątami, ostrosłupy rzeczone będą w ogólności wielościen- 
nemi; ale że te mogą być podzielone na same trójścienne, 
zatćm każdy wielościan uważanym być może jako złożony 
z samych czworościanów, wierzchołek spólny wewnątrz wie­
lościanu mających.

Każde z pięciu foremnych ciał ma swe ściany równe, 
więc też każde z nich uważanem być może jako złożone z 
ostrosłupów mających podstawy równe.

Jako każdy wielokąt foremny ma wewnątrz punkt ró­
wno oddalony tak od boków, jako też i od wierzchołków ką­
tów jego, §. 103 wniosek 1, który środkiem wielokąta nazwa­
liśmy, tak również każdy wielościan foremny ma wewnątrz 
siebie punkt równo oddalony od wszystkich ścian wielościa­
nu i od wszystkich wierzchołków kątów wielościennych. In- 
nemi słowy mówiąc: jako w każdy wielokąt foremny można 
wpisać i na nim opisać koło, tak że promieniem pierwszego 
jest odległość rzeczonego punktu od boków, drugiego zaś
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odległość tegoż punktu od wiórzchołków jego kątów, tak też 
w każdym wielościanie foremnym pomyślió sobie można zam­
kniętą kulę i każdy taki wielcścian zamknięty w kuli tak, 
żc powierzchnia pierwszej dotyka każdą ścianę wielościanu 
w jej środku, a powierzchnia drugiej przechodzi przez wszyst­
kie wierzchołki kątów wielościanu; promieniem przeto pićrw- 
szej będzie odległość wspomnionego wyżej punktu od ścian, 
a promieniem drugiej odległość tegoż punktu od wierzchoł­
ków kątów wielościanu. Pierwszą kulę nazywać będziemy 
wpisanej,, drugą zaś opisanej na wielościanie. Taki punkt we­
wnątrz wielościanu foremnego znajdujący się, nazwiemy 
środkiem wielościanu. Środek ten wielościanu jest zarazem 
środkiem kuli tak wpisanej jako i opisanej na wielościanie. 
Jeżeli przez każdą krawędź i ten środek pomyślimy sobie 
przesunione płaszczyzny, te przez wzajemne przecięcie się 
z sobą, podzielą wielościan na tyle ostrosłupów, ile wielo- 
ścian ma ścian, mających za podstawy ściany wielościanu, 
a za wysokości odległości środka od ścian. A że wyżej 
wspomnieliśmy, że te odległości są równe, zatem wszystkie 
rzeczone ostrosłupy będą także równe , jako mające pod­
stawy i wysokości równe. Objętość przeto wielościanu fo­
remnego równa się iloczynowi z summy wszystkich podstaw 
przez trzecią część spólnej wysokości. Ale summa podstaw 
stanowi powierzchnią wielościanu, zatem objętość tegoż 
równa się iloczynowi z powierzchni wielościanu przez j  pro­
mienia kuli wpisanej. Aby więc obrachować objętość wie- 
lościanów, o jakich tu mowa t. j. foremnych, chodzić tylko 
będzie o to, jak znaleść promień kuli wpisanej, w każdym 
z pięciu rzeczonych wielościanów.

§ .  2 4 4 .

Jakkolwiek dotąd nic jeszcze nie mówiliśmy o kuli, 
wszelako możemy tu dać jej pojęcie, gdyż one jest tak ła- 
twem jak pojęcie krzywej kołowćj.

D e f in ic y ja . Powierzchnia kuli jest to powierzchnia 
krzywa zamknięta, mająca wewnątrz punkt jednakowo od każ­
dego jej punktu odległy, który z tego poioodu jej środkiem
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zotoiemy. Rzeczona stała odległość tego punktu od każdego 
punktu powierzchni krzywej , nazywa się promieniem, kuli, a 
prosta przez tenże punkt przechodząca i kończąca się z obu 
stron na powierzchni krzywej, nazywa się średnicą, kuli.

T wierdzenie. W  każdy wielościan foremny można 
wpisać i na nim opisać kulę.

Niech będzie wielościan foremny ograniczony trójką­
tami, a zatem czworościan iub ośmiościan lub nareszcie dwu- 
dziestościan, których środki oznaczmy przez A, B, C, D i  t. d. 
fig. 247. Środkiem tego wielościanu niech będzie punkt S. 
Z  punktów A i C spuściwszy prostopadłe Aa i Ca do spól- 
nćj krawędzi RT i* przez te prostopadłe poprowadziwszy 
płaszczyznę, która tak do obu ścian A i C jako też i do 
spólnego ich przecięcia się RT będzie prostopadła, złączmy 
potem punkta a i S prostą a S ; tedy w dwóch trójkątach 
prostokątnych SAa i SCa, przeciwprostokątnia Sa jest spólna, 
bok A a ~  Ca, bo to są prostopadło (apothema) ze środków 
trójkątów foremnych równych na ich boki spuszczone, za­
tem trzecie boki są sobie także równe t. j. SA— SC jako też 
kąt AaS =  CaS; prosta więc Sa dzieli kąt pochyłości dwóch 
ścian AaC na dwie równe części. Zupełnie podobnym spo­
sobem dowiedziemy że SB =  SA, SD — SC i t. d. skąd wnie­
siemy, że SB =: SA — SC =  SD =  i t. d. Jeżeli więc we­
wnątrz wielościanu pomyślimy sobie kulę mającą środek w S, 
a za promień prostą SA, powierzchnia jej dotknie wszystkie 
ściany wielościanu w ich środkach t. j. w punktach A, B, 
C, D, i t. d. i będzie kulą wpisaną w wielościan.

Co do drugiego. Ponieważ płaszczyzna SAC jest pro­
stopadła do krawędzi R T , więc i prosta Sa na niej leżąca 
jest także prostopadła do tejże krawędzi; połączywszy pun­
kta R i S, T i S prostemi RS, T S , trzy proste RS, TS i 
aS leżą na jednejże płaszczyźnie SRT. Dwie pochyłe RS i 
TS względem prostopadłej Sa, są sobie równe według §. 42 b)\ 
podobnież i dla tej samej przyczyny pochyłe RS i QS, RS 
i MS są także równe; a zatem S R ~  ST — SQ— S M =  i t. d. 
Jeżeli przeto wystawimy sobie znowu kulę za środek punkt
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S, a za promień prostą SR mającą, jój powierzchnia przej­
dzie przez wszystkie wierzchołki wielościanu tak, że te 
wierzchołki znajdować się będą na powierzchni kuli, a cały 
wielościan ogarniony zostanie taż powierzchnią kuli, którą 
dla tego nazywamy na wielościanie opisaną.

Dowiódłszy że w każdy wielościan foremny można - 
wpisać i na nim opisać kulę, połączmy teraz wszystkie wierz­
chołki wielościanu ze środkiem kuli wpisanój, tedy cały wie­
lościan podzieli się na ostrosłupy j-ak wspomniałem, mające 
za podstawy ściany wielościanu, a wierzchołek w środku rze­
czonej kuli. Tak np. przez połączenie punktów P, Q, R ze 
środkiem S, otrzymujemy ostrosłup SPQR mający za pod­
stawę ścianę PQR, a za wysokość BS; obrachowawszy za­
tem objętość tego ostrosłupa, i wypadek wziąwszy tyle razy 
ile wielościan ma ścian, otrzymamy objętość tego wielościa­
nu. Ale jakże znaleśó wysokość rzeczonego ostrosłupa czyli 
promień kuli wpisanej w wielościan? Zadanie to jakkolwiek 
jest łatwćm do rozwiązania, w wykonaniu ma też same tru­
dności dla jakich w §. 242 kąta pochyłości nie szukaliśmy; 
dokładność bowiem trygonometrycznego rachunku całkiem 
nie zależy od wykreślenia i może nam dostarczyć wypadków 
pewnych; z tego powodu dosyć tu będzie pokazać możność 
znalezienia tego promienia teoretycznie, a ostateczne wyko­
nanie zostawić do Trygonometryi.

W  trójkącie SAa jest bok Aa znanym, bo się w §. 242 
nauczyliśmy otrzymać takowy w liczbach, kąt SaA jest zna­
nym skoro kąt pochyłości A«C dwóch przyległych ścian na­
przód obrachujemy, więc też stósownie do powyższego i kąt 
SaA jako połowa pierwszego będzie znanym. Z dwóch da­
nych elementów trójkąta prostokątnego, między któremi przy­
najmniej jeden jest bokiem, Trygonometryja uczy wyracho­
wać resztę elementów z taką dokładnością, z jaką tylko ra­
chunek dać je może, zatem przy pomocy tejże Trygonometryi, 
możemy znaleść wysokość BS r : AS w liczbach. Mając już 
powierzchnią każdego z pięciu wielościanów foremnych zna­
lezioną poprzednio w liczbach, dosyć będzie takową rozmno­
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żyć przez £ znalezionego promienia kuli wpisanej, aby otrzy­
mać objętość każdego z tych wielościanów także w liczbach.

§. 245.
Za pomocą geometrycznego wykreślenia, możnaby na­

stępującym sposobem znaleść naprzód kąt pochyłości dwóch 
przyległych ścian wielościanu, a potem promień kuli wpi- 
sanćj.

Przypatrzywszy się z uwagą czworościanowi, ośmio- 
ścianowi, dwunastościanowi i dwudziestościanowi, dostrzeże­
my bez trudności, iż w piórwszym, każdy kąt bryłowy składa 
się z trzech płaskich równych między sobą, a każdy zamy­
ka 60°. W  ośmiościanie każdy takiż kąt składa się z czte­
rech kątów płaskich także równych i każdy = 6 0 ° ,  jeżeli 
atoli przez dwie krawędzie, nie na jednćjże ścianie leżące, 
poprowadzimy płaszczyznę, ta czworościenny kąt podzieli na 
dwa inne trójścienne, mające po dwa kąty równe i każdy 
=  60°, trzeci zaś kąt jest spoiny obu i jest kątem prostym 
=  90H. W  każdym z tych kątów dwie ściany równe za­
mykają kąt pochyłości, który jest kątem pochyłości każdych 
dwóch ścian w tymże ośmiościanie, skoro więc ten znajdzie­
my, już tern samem znajdziemy kąt, o który nam chodziło.

W  dwudziestościanie można także płaszczyzną prze­
kątną podzielić kąt pięciościenny na dwa inne t. j . trój­
ścienny i czworościenny; w pierwszym dwa kąty płaskie są 
sobie równe każdy rz: 60°, a trzeci będzie kątem pięciokąta 
foremnego, a zatem znanym, bo się równa £. 6 R =  J . 6.90°zz 108°. 
Pićrwsze dwie ściany tego kąta trójściennego tworzą między 
sobą kąt dwuścienny będący kątem pochyłości każdych dwóch 
ścian w dwudziestościanie, skoro go więc znajdziemy, mieć 
będziemy tym sposobem i tu kąt AaC.

W  dwunastościanie każdy jegó kąt jest trójściennym 
złożonym z trzech płaskich między sobą równych a każdy 
=  108°; każde tćż dwie przyległe ściany zamykają kąt po­
chyłości o jakim tu mowa. Znalezienie przeto kąta pochy­
łości dwóch ścian w każdym z czterech wielościanów forem­
nych, sprowadza się w każdym przypadku do znalezienia



331

kąta pochyłości dwóch któryclikolwiek ścian kąta trójścien­
nego. Kiedy tak jest, zobaczmyź, jak przy pomocy wykre­
ślenia takowy kąt otrzymać możemy.

§• 246.
Z agadnienie. W  kącie trójściennym mając wiadome 

kąty płaskie tenże kąt składające, znaleść kąty dwuścienne 
czyli kąty pochyłości każdych dwóch ścian przyległych.

Dla rozwiązania tego zagadnienia, dosyć będzie poka­
zać, jak się znajduje jeden z tychże kątów. Na ten koniec 
niech będzie kąt trójścienny S składający się z trzech zna­
nych kątów płaskich ASB, ASC i BSC jig. 248. Zamierz­
my sobie znaleść kąt pochyłości ściany ASB do ściany BSC. 
Przez toż samo wykreślenie znajdziemy tu i drugi kąt t. j. 
pochyłość ściany ASC do BSC.

Na krawędzi AS obrawszy gdziekolwiek punkt A i z nie­
go wystawiwszy sobie spuszczoną na płaszczyznę BSC pro­
stopadłą AO, a z jćj spodka O prostopadłe OD i OD, pierw­
szą do BS a drugą do CS, skoro punkt A złączymy z D 
i E , otrzymamy trójkąty prostokątne AOD i AOE, w któ­
rych kąty przy D i E są kątami pochyłości ścian ASB i 
ASC do BSC.

Rozłóżmyż teraz kąty płaskie ASB i ASC na płasz­
czyznę kąta BSC obracając pierwszą ścianę około krawędzi 
BS a drugą około CS, jig. 249, tedy ponieważ tak OD jako 
też i AD są prostopadłemi do BS, skoro płaszczyzna ASB 
weźmie położenie płaszczyzny BSC, prosta AD nie przesta­
nie być prostopadłą do BS, a zatćm jedna z dwóch tych 
prostopadłych będzie przedłużeniem drugiej, gdyż obie przez 
tenże sam punkt D pi-zechodzą. AD t. j. odległość punktu 
D od A  jest przeciwprostokątnią, zaś AO i DO nie prze­
stają być przyległemi bokami kątowi prostemu.

Z tych poprzednich uwag, wykreślenie kąta pochyłości 
następującym uskuteczni się sposobem.

Wykreśliwszy na płaszczyźnie obok siebie trzy kąty 
płaskie, umieszczając w środku ten, do którego ściany zna­
leść chcemy pochyłość dwóch innych ścian, bierze się SA^iSA',
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gdyż w złożeniu kąta trójściennego dwie te proste schodzą 
się w jedną krawędź. Z punktów A  i A' spuszczają się dwie 
prostopadłe, pierwsza do BS a druga do CS i przedłużają aż 
do ich wzajemnego przecięcia się w punkcie O. Z punktu
0  wyprowadzają się dwie prostopadłe, pierwsza do AO, druga 
do A ’0 . Z  punktu D otwartością cyrkla ~  DA zakreśla 
się łuk przecinający piórwszą prostopadłą w punkcte A, i 
podobnież z punktu E otwartością cyrkla = E A ' kreśli się 
łuk przecinający drugą w punkcie A^. Te ostatnie punkta 
złączywszy z D i E t. j. A , z D , A j z E prostemi A ’,D i 
A ’,E , mieć będziemy kąty pochyłości szukane, t. j . kąt 
A,DO jaki ściana BSA czyni z BSC i kąt A ’,EO jaki ścia­
na ASC czyni z BSC. O dokładności rysunku zapewnić 
się można doświadczając, czyli długości dwóch znalezionych 
prostopadłych A ,O  i A^O są sobie równe, gdyż tak być 
powinno; składając bowiem napowrót kąt trójścienny i pod­
nosząc płaszczyzny trójkątów prostokątnych A ,DO i A^EO, 
obracając je  około DO i EO, końce tych prostopadłych A,
1 A ’, zejść się powinny z punktami A i A ’ na ramionach 
dwóch kątów płaskich naznaczonemi w jeden punkt A 
% . 248.

§• 247.
Tak mając znaleziony kąt pochyłości dwóch przyległych 

ścian każdego z pięciu wielościanów foremnych, łatwo już 
również za pomocą wykreślenia, znaleść promień kuli wpi­
sanej i opisanej na wielościanie; wykreśliwszy bowiem kąt 
Q«C fig. 250 równy znalezionemu kątowi pochyłości dwóch 
przyległych ścian, weźmy na ramionach jego a A ~  aC— pro­
stopadłej ze środka ściany wielościanu na jej bok spuszczo­
nej (apothema), albo raczej =  promieniowi koła wpisanego 
w wielokąt, jakiemi wielościan jest ograniczony, a zatem 
w trójkąt lub pięciokąt; z punktów A i C wyprowadziwszy 
prostopadłe do Aa i Ca, te przetną się w punkcie S , który 
będzie środkiem kuli wpisanej, zaś SA — SC jej promieniem. 
Przedłużywszy aA i na tóm przedłużeniu wziąwszy AQ =pro- 
mieniowi koła opisanego na rzeczonym trójkącie lub pięcio­
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kącie, SQ będzie promieniem kuli opisanćj na wielościanie. 
Tym tedy sposobem przygotowaliśmy wszystko potrzebne do 
znalezienia objętości wielościanów foremnych; wszelako po­
nieważ nam chodziło o wielkość ich objętości, o wielko­
ściach zaś jedynie tylko przez porównanie sądzić możemy, 
wszystko zatćm co w trzech ostatnich §§. w tym wzglę­
dzie powiedzieliśmy, dowiodło nam tylko możności znalezie­
nia tych objętości, a nawet geometrycznego ich wykreślenia, 
rzeczywiste zaś obrachowanie zostawiamy na później; cho- 
ciażbyśmy sobie i tu poniekąd poradzić mogli obrawszy je ­
dnostkę długości i przy pomocy podziałki rachując długość, 
promienia SA w liczbach.

Mówiąc o wielościanach foremnych, mało albo wcale 
nic nie mówiliśmy o sześcianie z tego powodu, że jego ob­
jętość już w §. 224 znaleźliśmy i nie potrzebujemy uważać 
go za złożony z ostrosłupów; wszystko jednakże co się po­
wiedziało o wielościanach, zupełnie zastosować można i do 
sześcianu.

§. 248.
Kończąc rozdział o ciałach graniastych, pozostaje nam 

jeszcze do mówienia o podobieństwie icielościanów. Do tego 
co w §. 56 o podobieństwie powiedziano, tu nie wiele przy­
dać można. Jak w §. 65 widzieliśmy iż wielokąty podobne 
można było rozebrać na jednakową liczbę trójkątów podob­
nych i podobnie ułożonych, tak i tu ustanowić możemy ce­
chę podobieństwa wielościanów, iż takiemi sęp te, które roze­
brać można na jednakową liczbę czworościanów podobnych i 
podobnie ułożonych. Jak więc cechy podobieństwa dwóch 
trójkątów wystarczyły nam do wyrzeczenia o podobieństwie 
wielokątów, tak też i cechy podobieństwa czworościanów 
wystarczą nam do poznania czyli dwa wielościany są podob­
ne lub nie; naszą przeto rzeczą będzie ustanowić cechy po­
dobieństwa czworościanów.

Każdy czworościan tak dokładnie jest wyznaczony przez 
sześć swoich krawędzi, jak trójkąt przez trzy swoje boki; a 
jako dwa trójkąty są podobne skoro ich trzy boki są mię­
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dzy sobą proporcyjonalne §. 56, tak też dwa czworościany 
będą podobnemi, jeżeli ich krawędzie są proporcyjonalne i je- 
dnymże sposobem ic obu ułożone.

Z tego wprost wynika, że dwa czworościany podobne 
mają ściany podobne każda każdej i podobnie ułożone, tu­
dzież tak kąty dwuścienne, czyli pochyłości jako też i kąty 
trójścienne równe także każdy każdemu; że dwa czworo­
ściany podobne trzeciemu są i między sobą podobne; a z te­
go co wyżćj powiedziano, wypada znowu, że dwa wielościany 
podobne trzeciemu są podobne między sobą.

To co w figurach płaskich nazwaliśmy bokami odpo- 
wiedniemi (latera homologa), i tu ma swe zastósowanie. 
A  tak nazywać będziemy punktami odpowiedniemi dwóch 
wielościanów podobnych, odpowiednie punkta ich ścian, 
tudzież punkta połączone z odpowiedniemi ścianami za po­
mocą czworościanów podobnych i podobnie ułożonych.

Prostemi odpowiedniemi w dwóch wielościanach nazwie­
my te które wyznaczają po dwa punkta w każdym tak, iżby 
te punkta w jednym, były odpowiedniemi w drugim wielo- 
ścianie.

Przecięciami odpowiedniemi nazywają się te , które 
przechodzą przez trzy odpowiednie punkta w każdym wie- 
lościanie.

Dwa nakoniec wiólościany podobne są równe, jeżeli 
mają po jednćj odpowiedniej krawędzi równej, albo ogólniej, 
po jednój odpowiedniej prostej równej.

Twierdzenie o czworościanach odpowiednie twierdzeniu 
§. 54 jest: że w każdym czworościanie poprowadziwszy płasz­
czyznę równoległą od jednej z czterech jego ścian, ta odetnie 
od całego, czworościan podobny temuż; gdyż stósownie do 
§. 232 krawędzie jednego są proporcyjonalne krawędziom 
drugiego czworościanu. Koniecznym tu atoli warunkiem po­
dobieństwa jest ten, żeby obie płaszczyzny równoległe znaj­
dowały się z jednejże strony wierzchołka sobie przeciw­
ległego.
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W n io s e k  1. Każda płaszczyzna równoległa od pod­
stawy jakiegokolwiek ostrosłupa, odcina od niego inny ostro­
słup podobny całemu byle tylko tak płaszczyzna przecina­
jąca jako i podstawa znajdowały się zjednejże strony wierz­
chołka.

W n io s e k  2. W dwóch czworościanach, a w ogólności 
w dwóch ostrosłupach podobnych, ich wysokości są propor- 
cyjonalne krawędziom. Dowód tej prawdy jest bardzo ła­
twy na zasadzie §. 232.

Po tych ogólnych uwagach, dowiedźmyż dwóch głów­
nych wyżej wspomnianych twierdzeń podobieństwa czwo­
rościanów.

§. 249.
T w ie r d z e n ie . Dwa czworościany mające po dwie ścia­

ny podobne każda każdej, jednakowo do siebie nachylone i 
podobnież w obu położone, są podobne.

Niech będą dwa czworościany SABO i sabc jig. 251, 
takie, że ściana SAB sab, SAC is^sac i kąt dwuścienny
SA równy takiemuż kątowi sa czyli BAC =  bac i obie ścia­
ny tak w jednym jako i w drugim czworościanie są jedna­
kowo położone, potrzeba dowieść, że te dwa czworościany 
są podobne t. j. że wszystkie krawędzie mają proporcyjonal- 
ne i dwa inne kąty dwuścienne czyli pochyłości sobie równe. 
Na krawędzi SA weźmy Sa' =  m  i przez a' poprowadźmy 
płaszczyznę równoległą do ABC, tedy trójkąt Sa'ó' będąc 
podobny trójkątowi SAB, jest tćż podobny trójkątowi sab] 
a że z wykreślenia Sa' =  sa, zatem S a b ' ~  sab. Dla tćjże 
samej przyczyny Sa!c' —  sac, przeto, ponieważ oprócz tego 
kąt dwuścienny Sa' równy takiemuż kątowi sa, wniesiemy, że 
czworościan Sa!b' c — sabc. Ale czworościan Sa'b'c jest po­
dobny czworościanowi SABC, więc tćż ten ostatni jest po­
dobny czworościanowi sabc, co było do dowiedzenia.

Z definicyi podobieństwa czworościanów wypływa tak­
że, że dwa czworościany mające po kącie trójściennym rów­
nym, zawartym trzema ścianami podobnemi każda każdej i po­
dobnie ulożonemi, są podobne. Kiedy bowiem ściany są po-
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dobne, krawędzie są proporcyjonalne a następnie czworościa­
ny są podobne. .

§. 250.
Twierdzenie. Dwa czworościany mające po jednej ścia­

nie podobnej i kąty dwuścienne przylegle tejże ścianie równe, 
każdy każdemu i podobnie ułożone, są podobne.

Niech bowiem będą dwa czworościany SABC, sabc % . 
251 takie, że S A B sab i kąty dwuścienne przyległe tej 
ścianie równe t. j. kąt SA ~sa,  SB ~sb,  A R —ab. Wziąw­
szy jak w poprzedzającem twierdzeniu Sa'=sa i przez punkt 
a' poprowadziwszy płaszczyznę równoległą od ABC, czworo­
ścian Sa'ó'c' jest podobny czworościanowi SABC stósownie 
do ostatniego twierdzenia, jego więc kąty dwuścienne są ró­
wne takimże kątom tego ostatniego czworościanu każdy każ­
demu t. j. So' =  SA, Sft’ =  SB, ab' — AB. Według założe­
nia jest kąt dwuścienny SA zzsa, SB =  sb, AB =  ab, więc 
kąt Sa — sa, Sb' — sb, ab'— ab. A że ściana SAB ŝ->sab, a 
następnie podobna ścianie S ab', a z wykreślenia S a '= s a ,  
czworościan Rab'c'— sabc. Lecz piei-wszy jest podobny czwo­
rościanowi SABC, więc i czworościan sabc^-- SABC, co nale­
żało dowieść.

Można też jeszcze twierdzić, iż dwa czworościany, w któ­
rych kąty dicuścienne jednego są róione takimże kątom dru­
giego, każdy każdemu i jednako w obu ułożone, są podobne; 
bo według §. 213 w dwóch kątach trójściennych naprzeciw­
ko równych kątów ściennych, leżą kąty płaskie równe; prze­
to odpowiednie ściany tych dwóch czworościanów są trójką­
tami podobnemi, a następnie ich boki czyli krawędzie czwo­
rościanów proporcyjonalne, a zatem czworościany podobne. 
W  tćm atoli twierdzeniu jeden warunek jest zbyteczny, bo 
dwa kąty pochyłości w każdym kącie trójściennym wystar- 

ją do wyznaczenia położenia czwartój ściany, skoro trzy 
łożymy w kąt trójścienny.

§. 251.
yżej w §. 248 powiedzieliśmy, które wielościany 
dziemy podobnemi, zatem łatwo nam będzie po
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tem co się dotąd o czworościanach powiedziało, dowieść na­
stępujące

T w i e r d z e n i e . L hca  w ielo ścia n y  p o d o b n e  m a ją  o d p o w ie ­

d n ie  śc ia n y  pod obn e, a k ą ty  ścienne j a k  ró w n ież  k ą ty  w ie lo ­

ścien n e (b r y ło w e ) od p ow ied n ie  rów n e k a ż d y  k ażdem u.

Rozebrawszy bowiem każdy z tych wielościanów na 
czworościany, ponieważ liczba tych ostatnich tak w jednym 
jako i drugim wielośeianie będzie taż sama i odpowiednie 
sobie będą podobne, tedy ściany wielościanów będąc albo ścia­
nami odpowiedniemi czworościanów podobnych, lub też zbio­
rem ścian odpowiednich czworościanów podobnych, są podobne.

Podobnież odpowiednie kąty dwuścienne wielościanów, 
będą także albo kątami dwuściennemi czworościanów podo­
bnych, albo też zbiorem dwuściennyeh kątów czworościanów 
podobnych, przeto są sobie równe każdy każdemu.

Nareszcie odpowiednie kąty wielościenne, jako także 
zbiory kątów dwuściennyeh równych każdy każdemu, są tak­
że w obu wielościanach równe każdy każdemu.

Wzajemnie: d w a  w ielo ścia n y  są  p od o b n e , sk oro  śc ia n y  ich  

są  p od o bn e k a żd a  k a żd ej i  jed n a k o w o  do sieb ie  n a ch ylon e. To 
odwrotne twierdzenie dowodzi się łatwo, rozbierając każdy 
z wielościanów na czworościany i dowodząc ich między sobą 
podobieństwa, a potóm wnioskując na mocy definicyi o po­
dobieństwie wielościanów. W  przypadku wielościanów o ja­
kich tu mówimy t. j. wypukłych, to wzajemne twierdzenie 
zamyka za wiele warunków.

W n i o s e k . Odpowiednie krawędzie, przekątnie i w  ogól­
ności wszystkie proste odpowiednie dwóch wielościanów po­
dobnych, są proporcyjonalne; te albowiem proste uważać mo­
żna jako krawędzie czworościanów podobnych przyległych je ­
dne drugim, a ta ich przyległość łączy wszystkie proporcyje 
między sobą jakie między rzeczonemi prostemi wyprowa­
dzić możemy.

§. 352.
T w i e r d z e n i e . O bjętości dw óch  czw orościanóio pod obn ych  

m a ją  się d o  siebie j a k  trzecie  p o t ę y i  z  od p ow ied n ich  k ra w ęd zi.
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Niech będą dwa czworościany SABO i sabc fig. 251 po­
dobne, mamy dowićść, że ich objętości są w stosunku trze­
cich potęg którychkolwiek odpowiednich krawędzi. Na do­
wiedzenie tego na większej krawędzi SA weźmy Sa' —  sa i 
poprowadźmy przez punkt a płaszczyznę równoległą do ABC, 
ta jak wiadomo odetnie czworościan Sa'ó'c’— sabc. Z wspól­
nego wierzchołka S spuściwszy prostopadłą SO do podstawy 
ABC, ta spotka płaszczyznę ab'c w punkcie o; według §. 
232 jest A B C : a'b'c r=SO ' :  So2 czyli A B C :a óc= S G 2:so2, bo 
wysokości czworościanów Sa‘b'c' i sabc równych są równe. 
Ale z tegoż samego twierdzenia wypada, że S A : S « '= : AB:a’ó', 
tudzież SA : S«' S O : So czyli A B : ab zz SO :so , z własności

—— — 2  2  - — 2   o
zaś proporcyj wypada AB : ab zz SO : so zatem

——  g  —  2
A B C :«óc =  AB : ab . Lecz SA : Sa’ =  A B : ab’, więc też 
SO :S o '= : AB: ab' czyli SO : so =  A B : ab.

Dwie proporcyje ABC :a óc :=  A B ” : ab~iSO:soz=AB:ab 
mnożąc przez siebie i pierwszy stosunek dzieląc przez 3, bę­
dzie ABC X ń S O : a ó cX  3S0 — AB3: n i3. Ale A B C X śS O , 
wyraża objętość pićrwszego, zaś abc X  hs0 objętość drugiego 
czworościanu, przeto prawdą jest, że objętości dwócli czwo­
rościanów podobnych mają się w stósunku trzecich potęg kra­
wędzi odpowiednich.

Z tego twierdzenia można zaraz wyprowadzić wniosek, 
że objętości dwócli wielościanów podobnych, są w stósunku 
trzećich potęg ich krawędzi odpowiednich. Jeżeli bowiem 
objętości dwóch wielościanów oznaczymy przez W  i w, czwo­
rościany składające piórwszy oznaczymy przez C , C', C", 
C " .... . a czworościany składające drugi a odpowiednie pierw­
szym przez c, c', c", c " ....  nareszcie jeżeli krawędzie pierw­
szych czworościanów oznaczymy przez K , K ', K ” , K ” '.....
a im odpowiednie drugich k, k ',  k " , k ' " .....  tedy według te­
raźniejszego twierdzenia mamy proporcyje

C :c  — K 3 : k 3 

O' :c ' = K ’3 ;ifc’3 
C” :c '’= K " 3:żt"3 

i t. d.
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A że wszystkie proste jednymże sposobem w dwóch czwo­
rościanach, albo ogólnie wielościanach prowadzone są pro- 
porcyjonalne §. 248
zatem K : k ~  K ': k' ~  K" : k" =  i t. d.
skąd K3 :k 3 — K '3: k‘3 — K "3: k"3—  i t. d.
przeto C :cz=C ':c 'z=C ":c"  = C ' ' ' :c "  — i t. d.
a następnie C-(-C’-)-C "-f-C '"-(- : c-j-c'—|-c” —|-c’"

—Q:c — C \ ć ~ Q " \ c " ~  i t. d.
Lecz C -j-C  -(- C" - j- . . . .~  W , c-f-c'-j-c,,-|-.... ~  te, 
zatem W :w — C :c  =  C ' : c '~ C ' ' : c " =  i t. d. 
lub nareszcie W:io ~ K 3: k3 — K '3:)fc'3 =z K "3: k"3= .  i t. d.

ROZDZIAŁ IV.
Ciała okrągłe (rotunda).

§. 253.
Wszystkie w ogólności ciała ograniczone bąó całkiem 

bąć tylko po części powierzchniami krzywemi a po części 
plaskiem!, nazywamy okrągłemu Ponieważ zaś powierzchni 
krzywych tak jak linij krzywych wielka jest rozmaitość i 
liczba ich nieskończona, z tego powodu i ciał okrągłych jest 
też nieskończona liczba. A jako w I. części Geometryi mó­
wiliśmy jedynie o linii krzywej kołowej, tak też z pomiędzy 
niezliczonego mnóstwa ciał okrągłych, mówić tu tylko bę­
dziemy o trzech i to nie w całej ogólności, ale tylko w jed­
nym szczególnym przypadku, t. j . zastanowimy się nad wal­
cem kołowym prostym, ostr okręgiem także kołowym prostym i 
kulą. Ta ostatnia, jako z ciał najznajomsza, nie stawia ża­
dnej trudności, iżbyśmyjej w całej ogólności nie mieli uważać.

Mówiąc o tych trzech ciałach, uważać naprzód będzie­
my, jakim sposobem każde z nich powstaje, co zwyczajnie 
nazywamy rodzeniem się jego (generatio); dalej mówić bę­
dziemy o powierzchni, a nareszcie o objętości.

22
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O W  a le  u.
§. 254.

Nakróśliwszy na płaszczyźnie okrąg koła lub inną krzy­
wą, jeżeli prosta pod jakiómkolwiek nachyleniem do tej płasz­
czyzny ślizgać się będzie po krzywej nakreślonej równolegle 
do piórwszego swego położenia, tedy wystawiwszy sobie, że 
ta prosta w całym ciągu swego ruchu, zostawia ślad swój by­
tności, zakreśli powierzchnią krzywą, którą walcową nazywa­
my. Prostą ślizgającą się zwać będziemy rodzącą, a rzeczo­
ny okrąg koła i w ogólności każdą krzywą na płaszczyźnie 
nakreśloną, kierownicą.

Jeżeli tę powiórzchnią przetniemy gdziekolwiek płasz­
czyzną równoległą od płaszczyzny, na której kierownica zo­
stała nakreśloną, przecięcie to będzie zupełnie równem kie­
rownicy.

Niech bowiem ABCDEF fig. 252 będzie okręgiem koła 
mającego służyć za kierownicę, którego środek S, tudzież 
niech rodząca Aa ślizgając się po tym okręgu równolegle do 
swego- pierwszego położenia zajmuje następnie położenia Bó 
Cc, DeZ i t. d.; niech przecięciem przez płaszczyznę równole­
głą do pierwszej będzie figura abedef, potrzeba dowieść, że 
ta figura jest okręgiem koła zupełnie równym pierwszemu.

Ze środka S wyprowadźmy prostą równoległą do ro­
dzącej w któremkolwiek jój położeniu,, niech ta prosta spo­
tyka płaszczyznę przecinającą w punkcie s. Połączywszy punkt 
S z punktami A, B, C, D, E, F, tudzież punkt s z punktami 
a, b, c, d, e, f ,  tak dowodzimy.

Dwie proste Aa i Ss równoległe zawarte między płasz­
czyznami równoległcmi są sobie równe, przeto i dwie proste 
SA i sa łączące końce pierwszych są sobie równe i równo­
ległe. Dla tój samej przyczyny sórrS B , sc =  SC, sd-=. SD 
i t. d. Aże S A = S B = S C = i i t. d. zatem i sa ~sb  zzscz= i 
t. d. przeto figura abedef, jest okręgiem koła a punkt s jego 
środkiem, co należało dowieść.

W  razie, że kierownica jest krzywą zamkniętą, dwie 
płaszczyzny równoległe wraz z powiórzchnią krzywą którąś-
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my walcową nazwali, ograniczają zewsząd przestrzeń, którą 
w alcem  (cylinder) nazywamy. Ten walec różne przybiera na­
zwy stosownie do krzywej, która służy za kierownicę rodzą­
cej ; gdy atoli przedsięwzięliśmy mówić tylko o walcu koło­
wym, przeto takim nazywać będziemy walec, którego kiero­
wnicą jest okrąg koła.

Dwie płaszczyzny zamykające przestrzeń czyli dwa ko­
ła, nazywamy p o d sta w a m i  walca dolną i górną.

Prostą łączącą środki dwóch podstaw S i s  nazywamy 
osią  w a lca  (axis). Od położenia osi względem płaszczyzny 
podstawy, przybićra także walec nazwę ukośnego lub pro­
stego t. j . jeżeli oś jest prostopadła do podstawy walca, na­
zywa się p r o s ty m ,  przeciwnie u k ośn ym . My tu tylko o pierw­
szym mówić będziemy. •

Prostopadła z któregokolwiek punktu górnej na płasz­
czyznę dólnój podstawy spuszczona, nazywa się w ysok ością  

w a lca . W  prostym walcu oś jest wysokością. Często jeszcze odró­
żniają Geometrowie jeden gatunek walca, t. j. jeżeli w walcu 
prostym wysokość jest równa średnicy jego podstawy, nazy­
wają go w tenczas icalcem  rów n oboczn ym  (cylinder aeąuila- 
terus) Z uwagi, że przecinając walec kołowy płaszczyzną ró­
wnoległą do podstawy, każde takie przecięcie jest kołem, mo- 
żnaby sobie jeszcze wystawić walec zrodzony ruchem koła, 
za podstawę uważanego, równolegle do płaszczyzny podsta­
wy, a zatem i do pierwszego swego położenia, lecz tak, iżby 
środek jego znajdował się ciągle na prostćj którą wyżej osią 
nazwaliśmy.

Walec prosty oprócz dwóch powyższych może jeszcze 
być zrodzony następującym sposobem. Uważając cztery bo­
ki prostokąta jako proste stale z sobą połączone, jeżeli oko­
ło jednego z nich obracać będziemy trzy inne ciągle w pier­
wiastkowym związku między sobą zostające, natenczas bok 
przeciwległy zakreśli powierzchnię boczną i będzie prostą 
rodzącą powierzchni walca kołowego prostego, dwa zaś przy­
legle bokowi około którego się obrót odbywa, zakreślą dwa 
koła t. j. dwie podstawy walca. Bok około którego trzy in­
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ne obracamy, będzie osią walca. Ponieważ bok rodzący po­
wierzchnią boczną walca jest w obrocie swym ciągle równo­
ległym do osi, zatem przeciąwszy walec płaszczyzną przez 
jego oś przechodzącą, płaszczyzna ta przetnie powierzchnią 
boczną walca w dwóch prostych rodzących a podstawy w śre­
dnicach tych kół; figura więc z tego przecięcia wypadająca 
będzie podwójnym prostokątem pierwiastkowego czyli obra­
canego. A  że w obrocie każdy punkt prostej rodzącej po­
wierzchnią krzywą zakreśla okrąg koła, przeto bez wszelkie­
go innego dowodu wnieść możemy, że każde przecięcie ko­
łowego walca równoległe do podstawy, jest kołem równem 
podstawie. Prostą rodzącą wkażdem jej położeniu nazywa­
my także bokiem walca (latus) lub krawędzią.

§. 255.
Walec z kształtu swego najpodobniejszym jest do gra- 

niastosłupa wielościennego mającego za podstawę wielokąt fo­
remny; chcąc więc znaleść tak powierzchnią, jako też i ob­
jętość jego, porównać go musimy z takim graniastosłupem; 
już się bowiem nie raz przekonaliśmy, że do poznania ja ­
kiej prawdy przychodzimy jedynie przez porównanie. Kiedy 
tak jest, wpiszmyż i opiszmy na podstawie walca foremne 
wielokąty o jednakowej liczbie boków. Wystawiwszy na tych 
wielokątach graniastosłupy równej z walcem wysokości, pierw­
szy nazwiemy wpisanym a drugi opisanym na walcu. Po­
wierzchnia boczna pierwszego będzie naturalnie mniejszą, po­
wierzchnia zaś drugiego większą od powierzchni krzywej walca, 
pierwsza bowiem jest objętą a druga obejmuje powierz­
chnią walca. Lecz podwajając ciągle liczbę boków wielokątów 
wpisanego i opisanego i za każdem podwojeniem pomyśliwszy 
sobie nowe graniastosłupy na tych nowych wielokątach wy­
stawione, dając każdemu z nich wysokość równą wysokości 
walca, powierzchnie boczne dwóch rzeczonych graniastosłupów 
zbliżają się nieskończenie do siebie tak, że jako między ob­
wodami ich podstaw różnica może być mniejszą od każdej 
ilości jakkolwiek małej, tak tćź i różnica między ich po­
wierzchniami bocznemi mniejsza być może niż wszelka na­
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znaczona ilość jakkolwiek mała. A  że powierzchnia krzywa 
walca środkuje między temi dwiema i jest ich granicą, 
do której się ciągle zbliżają za powiększeniem liczby ścian 
obu graniastosłupów, nie mogąc jej jednak dosięgnąć a tem 
mniej przekroczyć, zatem różnica między powierzchnią boczną 
walca a takąż powierzchnią jednego z rzeczonych graniastosłu­
pów będzie jeszcze mniejszą; na mocy więc rozumowań użytych 
przy powierzchni koła wniesiemy, że 'powierzchnia boczna 
walca, róuma się takiej że powierzchni graniasto słupa wpisane­
go lub opisanego o nieskończonej liczbie ścian. Ale boczna 
powierzchnia graniastosłupa prostego według §. 230 wniosek 
1. równa się iloczynowi z obwodu jego podstawy przez wyso­
kość czyli krawędź jego, zatem, ponieważ w miejsce obwodu 
podstawy graniastosłupa przychodzi okrąg podstawy walca 
czyli okrąg koła jako nieskończenie mało, a zatem tak dobrze 
jak nic, różniący się od pierwszego, powierzchnia boczna czyli 
krzywa walca prostego kołowego równa się iloczynowi z okręgu 
kola służącego mu za podstawę, przez wysokość tegoż loalca.

Oznaczywszy powierzchnią krzywą walca prostego ko­
łowego przez P, promień jego podstawy przez R, a naresz­
cie wysokość przez W , ponieważ okrąg koła którego pro­
mień R jest =  2»R, zatem P =  2)rR X W , gdzie jak wiado­
mo 2rrli wyraża długość okręgu koła w linii prostej. Clipąc 
mieć całkowitą powierzchnią walca t. j. tak krzywej jego 
powierzchni jako też i dwóch podstaw, tedy, ponieważ po­
wierzchnia każdej z podstaw =  ttR2, do powyższego iloczy­
nu dodać jeszcze potrzeba 2ttR2. Jeżeli więc oznaczymy cał­
kowitą powierzchnią walca przez P, będzie

P —  2?rRW - f  2ttR2= 2*R ( W  +  R ) 
z którego wzoru czytamy, iż się znajdzie całkowitą powierz­
chnią walca, mnożąc długość okręgu kola podstawy przez 
summę z jego wysokości i promienia podstawy: można też 
także powiedzieć, iż ta powierzchnia równa się prostokątowi 
mającemu za dwa boki przylegle, okrąg podstawy i summę 
wysokości i promienia podstawy walca.
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W niosek 1. Ponieważ w równobocznym walcu jest 
W  —  2R, zatem jego powierzchnia krzywa = : 4wR2 t. j. rów­
na się cztery razy wziętej powierzchni jego podstawy. Cał­
kowita zaś powierzchnia walca równobocznego =  6otR2 t. j . 
równa się sześć razy wziętej powiórzehni jego podstawy.

W n i o s e k  2 .  Jako powierzchnią boczną graniastosłupa 
w przytoczonym wyżćj §. w n iosek  2 ,  rozpostarliśmy na płasz­
czyznę, tak też i powierzchnią krzywą walca prostego ko­
łowego rozpostrzeć możemy. Z tego rozpostarcia otrzyma­
my prostokąt mający za podstawę długość okręgu koła pod­
stawy walca, a za wysokość wysokość tegoż, co też i z wy­
rażenia tej powierzchni wnieść było można.

U w a ga . Ponieważ tak krzywa powierzchnia walca ja­
ko też i całkowita zależy jak widzimy od długości okręgu 
podstawy, a tę długość tylko w przybliżeniu otrzymać mo­
żemy, zatóm i powierzchnia walca wyżej wynaleziona jest 
tylko przybliżoną, to atoli przybliżenie jak wiemy tak blis­
ko prawdy dotyka, iż bez żadnój obawy za samą prawdę 
wziętem być może.

§ .  2 5 6 .

T w i e r d z e n i e . W  k tó rym k o lw iek  p u n k c ie  ok ręgu  p o d s ta ­

w y  w a lca  p o p ro w a d ziw sz y  stycznej, do tegoż o k r ę g u , tu d zież  

rod zą cą  c zy li  kra w ęd ź w a lc a , a p o tem  p r z e \  te d w ie  p ro ste  

p la sczyzn ę , ta ty lk o  w  te j ro d zą cej d o ty k a ć  się będzie p o w ie rz ­

chn i k r z y w e j w alca , w szystk ie  z a ś  inne j e j  p u n k ta  le ż e ć  będą  

za  w a lcem .

Przez punkt A Jig. 2 5 3  na okręgu podstawy walca o- 
brany, poprowadźmy styczną MP i rodzącą czyli krawędź 
walca A a ,  jeżeli przez te dwie proste przesuniemy płasczy- 
znę MN, dowieść potrzeba, iż ta oprócz punktów leżących 
na rodząećj A a  nic spólnego nie ma z powierzchnią walcową.

Na dowiedzenie tego przez oś walca Ss i przez rodzącą 
Aa przesuńmy płaszczyznę, ta przetnie podstawy walca w 
promieniach SA i sa  równych i równoległych. Powierzchnią 
walcową przetnijmy gdziekolwiek płaszczyzną równoległą od 
podstaw walca, ta jak wiemy przetnie walec w kole którego
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promieniem jest <r« spólne przecięcie się tejże płaszczyzny 
z pierwszą, płaszczyznę zaś MN przetnie w prostej KO. 
Według §. 194 wniosek 3, tak spólne przecięcia SA, sa, <x«, 
jako też MP, LN, KO są od siebie równoległe, więc kąty 
SAP, s«N i <t« 0  są sobie równe. A że kąt SAP jest prosty 
z założenia, więc i kąt traO jest także prosty t. j .  prosta KO 
jest styczną do okręgu koła z promienia <tu, a następnie do­
tyka się go, a zatem i walca w jednym tylko punkcie a. 
Podobnież okazalibyśmy, że wszystkie proste równoległe od MP 
a na płaszczyźnie MN poprowadzone, w jednym się tylko 
punkcie dotykają powierzchni walca, tudzież że te wszystkie 
puukta leżą na rodzącej A a ; wniesiemy przeto, że płaszczy­
zna przez styczną do okręgu podstawy i rodzącą poprowa­
dzona, jedynie w tej rodzącej dotyka powierzchnią walca.

§• 257.
Jak powierzchnią krzywą i całkowitą walca znaleźliś­

my przez porównanie go z graniastosłupem mającym za pod­
stawy wielokąty foremne, tak też i objętość jego znajdziemy, 
uważając walec jako granicę, do której się bez końca zbli­
żają objętości graniastosłupów, wpisanego i opisanego na wal­
cu, foremne wielokąty za podstawy mających; ciągłe bowiem 
objętość pierwszego będzie mniejszą, drugiego zaś większą niż 
objętość walca. Ale kiedy stosownie do tego co wyżej o 
powierzchni walca powiedzieliśmy, objętości dwóch tych gra­
niastosłupów tak nieskończenie zbliżają się do siebie za co­
raz dalszem powiększaniem liczby ich ścian, że różnica ich 
stać się może mniejszą niż wszelka naznaczona jakkolwiek 
mała ilość, zatćm różnica objętości walca jako środkującego 
między niemi, a jednego z tych graniastosłupów będzie tein 
bardziej mniejszą niż pierwsza. Lecz pićrwsza różnica mo­
że być uczyniona mniejszą niż wszelka jak najmniejsza ilość, 
druga zatem będąc jeszcze mniejszą, jest prawie żadną, czyli 
że objętość walca równa się objętości graniastosłupa wpisa­
nego lub na nim opisanego i równą z walcem wysokość ma­
jącego, a którego liczba ścian jest nieskończenie wielka. 
Według §. 229 wniosek 3, objętość graniastosłupa równa się
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iloczynowi z powierzchni jego podstawy przez wysokość, 
zatem i objętość walca równa się także iloczynowi z powierzchni 
jego podstawy przez wysokość. Oznaczywszy jak wyżej pro­
mień podstawy walca przez R , powierzchnia tej podstawy 
jest — 71R.1, a oznaczywszy wysokość walca przez W , będzie 
objętość tegoż walca — «R ,2X W .

W niosek 1. Ponieważ w równobocznym walcu W~2R,
S

zatem jego objętość = :2»R 3, a położywszy R =  -g~, ozna­

czając przez S średnicę podstawy, wyrażenie objętości walca
*S3

równobocznego będzie ~ ~

W niosek 2. Walce mają się do siebie w złożonym 
stosunku z wysokości i kwadratów promieni lub średnic 
swych podstaw. Oznaczywszzy bowiem objętości dwóch wal­
ców przez II7 i w ,  wysokości jak pierwej przez W  i w, a 
promienie ich podstaw przez R i r, średnice zaś tychże pod­
staw przez S i s , ponieważ według poprzedzającego 
H 7= w R 2W , W~nrSuj zatóm W7: tV— 7iR*W:ar*w= R 2W :r2w.

A że R =  — , zatem I ł 7: tV— — W :— to~S aW :s 2w.
2 2 4 4

Jeżeli W 7 =  t v , tedy R aW  =  r*w albo SaW  = : ŝ w, 
skąd W : w r=ra:R 2 albo W  :w — s12: S 2 t. j .  w walcach rów­
nych, wysokości mają się w odwrotnym stosunku kwadratów 
z promieni lub średnic ich podstaw.

Jeżeli R = r  albo co jest jedno S— s, tedy I I7: i v ~ W : w 
czyli, walce o równych podstawach mają się jak wysokości.

Nareszcie położywszy W  —  w będzie II7: w  — R a : r 2 
— S - : s2 t. j .  walce o równych wysokościach, mają się jak 
kwadraty z promieni lub średnic ich podstaw.

§. 258.
Podobnemi walcami nazwiemy to, których osi są pro- 

porcyjonalnc promieniom lub średnicom ich podstaw i są pod 
jednakowym kątem do tychże podstaw nachylone. Z tego 
wypada, że wszystkie walce równoboczne są podobne; jeżeli 
bowiem osi dwóch walców oznaczymy przez O i o, średnice
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ich podstaw S i s, ponieważ O =  S i o —  s według §. 254, 
zatóin 0 : o  =  S :s  =  R :r , więc według definicyi walce te są 
podobne, bo ich osi są proporcyjonalne promieniom icli 
podstaw.

Podobne walce są w stosunku sześcianów odpowiednich 
ich wymiarów t. j. ich wysokości albo średnic lub promieni 
ich podstaw, lub nareszcie osi. Ponieważ bowiem według 
poprzedzającego §. jest I I * :i ł> = R 2W : r 2w  =  S2W : s - w , ze 
środka zatem górnej podstawy spuściwszy prostopadłą tak 
w jednym jako i drugim walcu na podstawę dolną, ta bę­
dzie wysokością każdego i trójkąty zawarte między osiami 
prostopadłemi, co dopiero spuszczonemi i częściami promie­
ni, są podobne jako równokątne, zatem O : a z po-
wodu, że w7alce są podobne, jest też 0 : o “ R :r = S :s ,  zatem 

W :w  =  R :r  =  S:s.
Mnożąc tę proporcyją przez R 2: r 2— R2:r 2 

albo przez S2:s2= S 2:s2 znajdziemy:
R2W :r°in i= R 3:r 3 albo S2W :s 2w =  S3:s3 

czyli II*: w  — R3: r 3 —  S3: s3 — W 3: w3 —  O3: o3 
stosownie do własności proporcyi geometrycznej.

O  O strokręgu .

§. 259.
Jeżeli na płaszczyźnie nakreślimy okrąg koła i gdzie­

kolwiek za płaszczyzną obierzemy punkt i takowy złączymy 
z którymkolwiek punktem nakreślonego okręgu, tedy wysta­
wiwszy sobie, że ta prosta, przechodząc zawsze przez obrany 
punkt, ślizga się po okręgu koła aż dopóki nie powróci do 
pierwszego swego położenia i zostawia ciągle ślad swej by­
tności w każdem położeniu, prosta ta tym sposobem ruch 
odbywająca, zrodzi powierzchnią krzywą, którą p o w ierzc h n ią  

ostrok ręgow ą  (superficies conica) nazywamy, przestrzeń zaś 
tąż powierzchnią krzywą i naprzód nakreślonem kołem ogra­
niczoną, os trok rygiem  k ołow ym  (conus) nazwiemy.

Prostą ruchem swoim powierzchnię krzyw'ą tworzącą i 
tu nazywamy rod zą cą ; okrąg koła po którym się ślizga, k ie -
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r ó w n ic ą ,  a samo koło p o d sta w ą  (basis); punkt przez który 
rodząca ciągle przechodzi, w ierzch ołk iem  ostrok ręgu  (vertcx). 
Rodzącą w każdem jej położeniu nazywamy jeszcze bokiem  

ostrok ręgu  (latus) lub k ra w ęd zią  (acies). Prostą łączącą wierz­
chołek ze środkiem nakreślonego koła, zowiemy osią  ostro­

kręgu  (axis). Jeżeli oś jest prostopadła do podstawy, taki 
ostrokrąg nazwiemy p r o s ty m  (rectus), w przeciwnym razie 
u k ośn ym  (obliquus).

U w aga 1. Ponieważ za kierownicę użyliśmy okrąg 
koła, dla tego powierzchnią przez rodzącą utworzoną nazy­
wamy ostrokręgoioą  k o ło w ą ,  a ostrokrąg powyżej opisany 
k o ło w ym . Gdybyśmy za kierownicę użyli inną krzywą, otrzy­
malibyśmy i w tym przypadku powierzchnią i ostrokrąg ale 
już nie kołowy; nazwa zaś jego zależałaby od kierownicy.

U w a ga  2 .  Prostą rodzącą uważaliśmy tu jako mającą 
pewną długość t. j . jako odległość punktu za płaszczyzną 
obranego od każdego punktu okręgu koła; atoli gdybyśmy ją  
uważali jako prostą nieograniczoną i do nieskończoności w 
obu kierunkach ciągnącą się, natenczas łatwo pojmiemy, że 
ta prosta w ruchu jakiśmy jej wskazali, zrodzi dwie po- 
wićrzchnie zupełnie sobie podobne, a punktem, który wierz­
chołkiem nazwaliśmy, od siebie oddzielone. Dwie te po­
wierzchnie jako przez jednę i tęź sarnę prostą zrodzone, 
uważać należy za jednę z dwóch części złożoną, które p o ­

w łok a m i, po francuzku n a p p es, powierzchni ostrokręgowćj na­
zywamy. Tak rzeczywiście uważał Apoloniusz tę powierz­
chnią na 200 lat przed Chryst. pisząc- o przecięciach ostro- 
kręgowych.

§. 260.
T w ie r d z e n ie . P r z e c ią w s z y  ostrok rą g  k o ło w y  p ła szc zy ­

zną rów n oleg łą  d o p o d s ta w y , p r z e c ię c ie  to będ zie kołem .

Niech z przecięcia ostrokręgu kołowego równolegle do 
podstawy wypadająca figura będzie a b e d e f  f ig . 2 5 4 , potrzeba 
dowieść, iż ta figura jest kołem. Poprowadziwszy oś ostro­
kręgu OS, tudzież promienie SA , SB, SC, SD i t. d. prze­
suńmy przez oś i przez każdy z poprowadzonych promieni
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płaszczyzny, te przetną płaszczyznę pićrwszą w prostych 
sa, sb, sc, sd, i t. d. równoległych do SA, SB, SC, SD i t. d. 
powierzchnią zaś krzywą W prostych OA, OB, OC, OD i t. d. 
W  trójkącie SAO, sa jest równoległą do podstawy SA, przeto 
według §. 53 jest SO :so=:SA :sa. Podobnież w trójkącie 
SBO, sb jest równoległą od SB, 
zatem S O :so= S B :só . Z trójkąta SCO mamy
również SO :so =  SC :sc. Z następnych trójkątów znaj­
dziemy też SO :so zz SD :sd,

SO :sor= S E : se,
S O : so —  S F : sf.

Zatem S A : sa —  SB : sb —  SC : sc — SD :s d ~  SE :se zzSF: sf, 
A  że S A - S B  =  S C = S D  =  SE =  SF,
więc też sa =  sb z=sc=sd — se =  sf,
figura przeto abedef jest kołem.

Płaszczyzna przez styczną do okręgu podstawy i ro­
dzącą, albo krawędź w tymże punkcie poprowadzona, dotyka 
się powierzchni ostrokręgowej w tej tylko rodzącej. Dowód 
zupełnie ten sam jak §. 256.

Z wierzchołka ostrokręgu O spuściwszy prostopadłą OG 
na płaszczyznę podstawy, ta będzie jego wysokością;  niech 
ta prostopadła spotyka płaszczyznę przecinającą w punkcie 
g] przesunąwszy znowu przez oś OS i przez tę prostopadłą 
płaszczyznę, ta przetnie płaszczyznę podstawy w prostej SG, 
płaszczyznę zaś przecinającą w prostej sg. W  trójkącie SOG. 
prosta sg jest równoległą od podstawy SG, zatem S O : sO 
=  O G :O y , przeto również S A : sa OG : 0 <7, a następnie 
SA : sai~  OG : Og . Ale SA i sa są promienie dwóch kół, 
powierzchnie zaś tych kół mają się do siebie jak kwadraty 
z promieni §. 163, przeto powierzchnie dwóch przecięć ostro­
kręgu kołowego mają się do siebie ic stosunku kwadratów 
z odległości ich od wierzchołka; albowiem OG i Og wyra­
żają odległości przecięć ABCDEF i abedef.

§. 261.
Prosty ostrokrąg, o jakim tu mówić przedsięwzięliśmy, 

można sobie jeszcze wystawić jako zrodzony przez obrót



350

trójkąta prostokątnego około jednego z boków przyległych 
kątowi prostemu. W  tym obrocie przeciwprostokątnia zro­
dzi powierzchnią krzywą ostrokręgu i zastępuje miejsce po­
wyższej rodzącćj, zaś drugi bok przyległy kątowi prostemu 
zrodzi koło czyli podstawę ostrokręgu. Bok około którego 
odbywa się obrót zastępuje miejsce osi. Ponieważ w obro­
cie trójkąta wskazanym sposobem każdy punkt przeciwpro- 
stokątni opisuje okrąg koła, którego promień jest prostopa­
dły do osi, a następnie płaszczyzna tego okręgu równoległa 
do podstawy, zatem z tego rodzenia się ostrokręgu wprost 
wnieść można, że każde przecięcie ostrokręgu prostego pro­
stopadłe do jego osi jest kołem. Każda płaszczyzna przez 
oś poprowadzona, przecina powierzchnią krzywą w dwóch 
rodzących sobie równych, (są to bowiem dwie pochyłe je ­
dnakowo od spodka prostopadłej odległe), podstawy zaś w 
średnicy: wszystkie zatem takie przecięcia są trójkątami rów- 
noramiennemi i sobie rówuemi. Wzajemnie jeżeli wszyst­
kie boki ostrokręgu są między sobą równe, ostrokrąg będzie 
prostym.

Uwaga. W  tym drugim sposobie rodzenia się powierz­
chni ostrokręgu, otrzymujemy tylko jednę jego część, chyba 
gdybyśmy sobie pomyślili przeciwprostokątnią nieogranicze- 
nie przedłużoną w obu kierunkach.

Jeżeli przeciwprostokątnia jest dwa razy większa od 
boku kreślącego podstawę, czyli co jest jedno, jeżeli każdy 
bok ostrokręgu równa się średnicy jego podstawy, taki ostro­
krąg nazwiemy równobocznym.

Euklides nazywa jeszcze ostrokręgiem prostokątnym 
(conus orthogonius) taki, którego kąt przy wierzchołku za­
warty między dwoma przeciwległemu bokami jest prosty, lub 
co na jedno wychodzi, którego oś równa się promieniowi 
podstawy.

Jeżeli oś jest większa od promienia podstawy, daje mu 
Euklides nazwę ostrokątnego (conus oxygonius), bo rzeczy­
wiście kąt jego przy wierzchołku między dwoma przeciw­
ległemu bokami ostrokręgu zawarty jest ostry.
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Nareszcie daje nazwę ostrokręgu rozioartokątnego (co- 
nus amblygonius ) ,  takiemu ostrokręgowi, w którym oś jest 
mniejsza od promienia, bo też kąt przy jego wierzchołku 
jest rozwarty.

§. 262.
Dla znalezienia powierzchni krzywej ostrokręgu koło­

wego prostego, porównać znowu należy ostrokrąg z ciałem 
geometrycznem jemu najpodobniejszem. Takićm ciałem, jak 
to każdy łatwo dostrzeże, jest ostrosłup prosty foremny §. 
231. Wpisawszy więc i opisawszy na podstawie ostrokręgu 
dwa wielokąty foremne i przez każdy bok tak wpisanego 
jako i opisanego wielokąta, tudzież przez wierzchołek ostro­
kręgu poprowadziwszy płaszczyzny, te wraz z wielokątami 
zamkną ostrosłupy, z których pierwszy wpisanym a drugi na 
ostrokręgu opisanym nazwiemy.

Bez mego nadmienienia każdy pojmie, że pierwszego 
powierzchnia boczna jest mniejszą a drugiego większą niż 
powierzchnia krzywa ostrokręgu. Lecz skoro liczbę boków 
tak jednego jako i drugiego wielokąta ciągle podwajać i za 
każdem podwojeniem wystawiać będziemy nowe ostrosłupy, 
tych powierzchnie boczne coraz mniej różnić się od siebie 
będą tak jak obwody ich podstaw coraz bardziej zbliżają 
się do siebie. Wystawiwszy sobie oba wielokąty o nieskoń­
czonej lecz zawsze równej liczbie boków i na nich wysta­
wione ostrosłupy, ićh powierzchnie boczne mniej się od sie­
bie będą różnić niż wszelka ilość naznaczonajjakkolwiek 
mała. A  że powierzchnia krzywa ostrokręgu jest obu tych 
powierzchni granicą, zatem równa się taż powierzchnia bocz­
nej powierzchni jednego z ostrosłupów; obie bowiem można 
w nieskończoności wziąść za równe, tem więc bardziej po­
wierzchnią między niemi środkującą można bez obawy błędu 
wziąść za jednę z nich; już się albowiem przekonaliśmy nie 
raz, iż skoro różnica między dwiema ilościami jest taka że 
jej wielkości naznaczyć nie można tak, iżby jej już mniejszą 
uczynić nie można, taką różnicę za żadną uważać należy.
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Z całego tego rozumowania wniesiemy, że powierzchnia 
krzywa ostrokręgu kołowego prostego, równa się powierz­
chni bocznej ostrosłupa foremnego prostego o nieskończonej 
liczbie ścian. Ale ta ostatnia według §. 238 równa się ilo­
czynowi z obwodu podstawy ostrosłupa przez połowę dłu­
gości ściany, czyli prostopadłój z wierzchołka ostrosłupa na 
bok podstawy spuszczonej (apothema), która w ostrosłupie 
o nieskończonej liczbie ścian miesza się z krawędzią, a kra­
wędź ostrosłupa przechodzi ną bok ostrokręgu, zatem po- 
wierzchnia krzywa ostrokręgu kołowego prostego, równa się 
iloczynowi z okręgu podstawy przez połowę boku ostrokręgu.

Oznaczywszy promień podstawy przez R, a bok ostro­
kręgu K, tedy okrąg jego podstawy jest =  2srR a powierz­
chnia jego krzywa =  2wRX iK  m ttRK , całkowita zaś po­
wierzchnia ostrokręgu prostego =  »R K -j- jrRa= w R  (K-j-R). 
Jeżeli wysokość ostrokręgu prostego oznaczymy przez W , 
ponieważ K ~ v W 2- j-R 2, powierzchnia jego krzywa będzie

nr otRVW 2-(-R2, całkowita zaś powierz- 
chnia =  jtR(R-J- VW 2-j-R2).
W  ostrokręgu równobocznym jest K n: 2R , zatem powierz­
chnia krzywa takiego ostrokręgu rm 77R X  2R =  2^R2 t j . 
równa się dwa razy wziętej powierzchni podstawy, a całko 
wita powierzchnia := :37iR2.

Z wyrażenia powierzchni krzywej ostrokręgu prostego 
t. j. z wzoru 2/tR X  ,jK czytamy jeszcze, że ta powierzchnia 
równa się trójkątowi mającemu za podstawę okrąg podsta­
wy ostrokręgu, a za wysokość bok tegoż ostrokręgu.

Wystawiwszy sobie ostrokrąg prosty jako ostrosłup o 
nieskończonej liczbie ścian, możemy zupełnie bok jak po­
wierzchnią boczną tego ostrosłupa według §. 238 rozpostrzeć 
powierzchnią krzywą ostrokręgu prostego na płaszczyznę. 
Z takiego rozpostarcia otrzymamy tę powierzchnią jako wy­
cinek kołowy, którego łuk będzie równy okręgowi podsta­
wy, którego promień równa się krawędzi ostrokręgu, a kąt 
przy środku będzie mniejszy od cztćrech kątów prostych.
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Uwaga. Dwie powierzchnie krzywe t. j. walca pro­
stego i ostrokręgu prostego, które mogą byó rozpostarte na 
jednę płaszczyznę, są tylko szczególnym przypadkiem pew­
nego rodzaju powierzchni, które rozwijalnemi nazywamy. 
Francuzi nazywają je  surfaces decelopables.

§. 363.
Na mocy tegoż samego porównania z foremnym ostro­

słupem i rozumowania, znajdziemy bardzo łatwo objętość 
ostrokręgu kołowego prostego. Uważając go bowiem jako 
granicę między ostrosłupem wpisanym a opisanym, jak w po­
przedzającym §., wniesiemy, że lubo objętość ostrokręgu jest 
większą niż objętość ostrosłupa wpisanego, a mniejszą niż 
ostrosłupa opisanego, wszelako ponieważ objętości rzeczo­
nych dwóch ostrosłupów za każdem podwojeniem liczby ich 
ścian zbliżyć się do siebie mogą tak, że różnica ich mniej­
szą być może niż wszelka naznaczona jakkolwiek mała 
ilość, zatem różnica objętości ostrokręgu i jednego z tych 
ostrosłupów będąc jeszcze mniejszą, jako ilość środkująca, 
prawie za żadną uważana być może, że zatem objętość ostro­
kręgu równa się objętości ostrosłupa wpisanego lub na nim 
opisanego o nieskończonej liczbie ścian. Ale objętość tego 
ostatniego równa się iloczynowi z jego podstawy przez trze­
cią część wysokości, zatem i objętość pierwszego równa się 
iloczynoici z podstawy, do której się tamta bez końca zbliża, 
przez trzecią część wysokości, czyli wyraźniej mówiąc, obję­
tość ostrokręgu prostego kołowego równa się powierzchni koła 
będącego jego podstawą, rozmnożonej przez trzecią część wy­
sokości jego.

Oznaczywszy jak poprzednio promień podstawy przez 
R a wysokość przez W , objętość ostrokręgu będzie

«s*w s
— jrR2X  J W = —12~ , kładąc gdzie S wyraża śre­

dnicę podstawy. Jeżeli znowu przez K oznaczymy bok 
ostrokręgu prostego, tedy ponieważ W  =  VK2—  R2, objętość 
jego będzie ~^w R 2\ K'2 —  R2.

23
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W  ostrokręgu równobocznym jest £  — 2R, przeto 
W  —  V4R®— R 2 — Ry3, a następnie jego objętość

V3 *rR3 nS3
=  3'rE!XK\ 3 _  TrRa-g-—-^ -— gy -  .

Gdyby wysokość ostrokręgu prostego równała się śre­
dnicy jego podstawy, czyli gdyby było W = 2 R , objętość

*S3
jego będzie ĵtR2X 2 R — \nR3— —j ^ .

A że K =  V\Va+  R2~V4R2+ R 2 -  R\/5,
K K 3

skąd R — —r- zaś R n Vo ‘5y5 *

zatóm objętość ostrokręgu prostego, którego wysokość równa
2aK3

jest średnicy jego podstawy, jest =  ' i Ś\/5‘

W niosek 1. Ponieważ objętość walca mającego za 
podstawę kolo z promienia R , a za wysokość W , według 
§. 263 jest — ?rR2X W ,  objętość zaś ostrokręgu też same 
wymiary mającego, według powyższego rz^ R 2X ś W , zatem 
wniesiemy, że objętość ostrokręgu jest trzecią częścią obję­
tości walca mającege z nim tęż sarnę podstawę i wysokość.

W niosek 2. Z nauki o proporcyjach wiemy, iż ponie­
waż między równie wielokrotnemi częściami, taki sam za­
chodzi stosunek jaki pomiędzy całościami, a każdy ostroltrąg 
jest trzecią częścią walca o równej podstawie i wysokości, 
przeto też same wnioski jak w §. 264 wniosek 2, dla ostro- 
kręgów łatwo wyprowadzić możemy.

§• 264.
D efinicyja. Fodobnemi ostrokręgami nazywamy te któ­

rych osi są proporcyjonałne średnicom podstaw i jednakowo 
do tychże podstaw, pochylone.

Według tego proste ostrokręgi których wysokości są 
równe średnicom podstaw są podobne.

Także ostrokręgi równoboczne są podobne, tu bowiem

K = S  a W  =  VK2— R 2=
S\/3

Oznaczywszy w drugim

także równobocznym ostrokręgu bok jego przez k a promień
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podstawy przez r, średnicę zaś przez s, będzie też

to — r1—
s\J3

2 ’ skąd W  :w —
Sy3
~ 2

s\ 3
• - g -  =  S:s, zatem

stosownie do definicyi, ostrokręgi te są podobne, bo i osi 
W  i W są prostopadłe do podstaw.

T wierdzenie. Ostrokręgi podobne mają się do siebie 
w stosunku sześcianów odpoioiednich wymiarów.

Objętości dwóch ostrokręgów oznaczywszy przez O i 
o, promienie ich podstaw przez R i r, a wysokości przez 
W  i w, mamy 0 ~ | ?rE 2X W ,  o — \7ir-y^w, zatóm O :o :=  
j7rR2W : \nr%w ~  R 2W :r3w. Ale spuściwszy prostopadłe W  
i iv, jig. 255 z wierzchołków ostrokręgów na podstawy, bę­
dzie w trójkątach prostokątnych, oznaczając osi ostrokręgów 
przez A i o, A : a ~ W :w ,  lecz także W :w —K.;.kz=R:r, bo 
ostrokręgi z założenia są podobne, skąd R W 2: r ^ ^ R 3:?*3 

S 3 s3
zatóm 0 : o ~ R 3:r 3 —- g - : “gr =  S3: s3 zz K 3:k 3 —  A3 : a3, 

bo R 3:r 3— K 3:&3 = W 3: w3 zz A 3: « 3.
§. 265.

Do ostrokręgów należy także ostrokrągścięty (conus trun- 
catus); weźmy przeto pod uwagę jego powierzchnią i objęteść.

W  jakiójkolwiek odległości od wierzchołka przeciąw- 
szy ostrokrąg płaszczyzną równoległą do podstawy, przecię­
cie to jak wiadomo jest kołem. Część ostrokręgu między 
podstawą i tem przecięciem zawarta, albo raczej przestrzeń 
z boku powierzchnią krzywą ostrokręgową a z dwóch stron 
kołami różnych promieni ograniczona, nazywa się ostrokrę- 
giem ściętym. Aby mieć powierzchnią krzywą ostrokręgu 
ściętego, dosyć jest porównać go z ostrosłupem ściętym §. 
239. Oznaczywszy promień podstawy niższej przez R, a wyż­
szej przez r, zaś bok czyli krawędź tego ostrokręgu przez 
K, stósownie do tego co w przytoczonym §. znaleźliśmy, bę­
dzie krzywa powierzchnia ostrokręgu ściętego

2nYL-\-2nr t R -j-r R-j-r
— -----2------- K=z 2*K (—g—); albo, położywszy —^— — Q> bę-

23.
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dzie powierzchnia krzywa ostrokręgu ściętego = 2 ^ j.K t. j. 
równa się iloczynowi z okręgu koła średniego między podstawą 
dolną i górną, czyli okręgu koła którego promień jest średnim 
arytmetycznym między promieniami obu podstaw, przez kra­
wędź tegoż ostrokręgu.

Z  wyrażenia powierzchni krzywej ostrokręgu ściętego 
2*R -j- 2nr
-------2--------K czytamy jeszcze, że taż powierzchnia równa się

powierzchni trapezu mającego za dwa boki równoległe, dłu­
gości okręgów dwóch podstaw ostrokręgu, a za wysokość 
krawędź tegoż ostrokręgu. Drugie wyrażenie powierzchni 
w mowie będącej, t. j .  wyrażenie 2no.VL wyprowadza się tćż 
łatwo z własności trapezu, a 2ng wyrażać będzie długość pro­
stej dzielącej dwa nierównoległe boki każdy na dwie równe 
części.

Chcąc mieć całkowitą powierzchnię ostrokręgu ściętego, 
tedy do powyższego potrzeba dodać 7rR--j-ffr2= :n (R z-f-r2), 
zatóm całkowita powierzchnia ostrokręgn ściętego 

=  " {  K (R - f - r )  -J-(R2- j-r 2) }.
JJwaga. Jako powierzchnią krzywą całkowitego ostro­

kręgu rozwinąć można na jednę płaszczyznę, tak też i po­
wierzchnią krzywą ostrokręgu ściętego, która jest tamtćj czę­
ścią. Rozumiem, że nawet nie potrzebuję rysować figury, bo 
ją sobie każdy łatwo zrysuje, aby pokazać, że figura z roz­
winięcia ostrokręgu ściętego jest trapezem kołowym jak ją 
w §. 170 uwaga I nazwaliśmy. Dwa równoległe boki tego 
trapezu zastępują dwa spółśrodkowe luki, których promienie 
są: bok czyli krawędź całkowitego i krawędź płaszczyzną 
odciętego ostrokręgu, dwa zaś inne boki nierównoległe lecz 
równe, są każdy krawędzią ostrokręgu ściętego. Oznaczyw­
szy krawędź całkowitego ostrokręgu K , krawędź odciętego 
k, a krawędź ściętego x, mamy naprzód x = Iv — k] potem, po­
wierzchnia wycinka koła z promienia K którego łuk ~2nR, 
jest =  2?rR X  JK =  ^RK, powierzchnia takiegoż wycinka 
z promienia k, którego łuk =  2nr, jest —  2 w X  \1c=znrk.
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A że powierzchnia trapezu kołowego równa się różnicy mię­
dzy temi wycinkami, zatóm powierzchnia krzywa ostrokręgu 
ściętego =  wRK —  nrk — n (RK— rk).
Ale RK —  r& = (R -j-r ) (K  — k) — 2ę.x, bo K : k — 2 R « : 2rn 
czyli K:fc =  R :r , skąd Kr =  fcR,
zatem powierzchnia krzywa ostrokręgu prostego ściętego 
—  2nęx, jak wyżćj inną drogą znaleźliśmy.

§. 266.
Przystąpmy teraz do znalezienia objętości ostrokręgu 

kołowego prostego płaszczyzną równolegle do podstawy ścię­
tego.

Zupełnie na tej samój drodze, na której znaleźliśmy je ­
go powierzchnią, znajdziemy tóż i objętość, t. j . porównywa- 
jąc go z ostrosłupem foremnym ściętym. Uważając znowu 
ostrokrąg ścięty jako ostrosłup ścięty o nieskończonej licz­
bie ścian, powiemy, że objętość pierwszego równa się obję­
tości ostatniego, skoro obwód podstawy tego, zbliża się nie­
skończenie do okręgu podstawy tamtego. A że objętość ostro­
słupa ściętego prostego równa się JW (P -\-p -}-VPp) §.236, 
gdzie P i p są powierzchniami obu podstaw, a W  wysoko­
ścią ostrosłupa ściętego, zatem wziąwszy za P i p ich granice 
t. j . ttR2 i srr2, do których się bez końca zbliżają, gdy w tym­
że czasie objętość ostrosłupa ściętego nieskończenie się także 
zbliża do objętości ostrokręgu ściętego, otrzymamy objętość 
ostrokręgu ściętego =  ^W (wR2 -|- ?jT2-f-YVaR -r2 )

=  (R2 - f  r9 - f  Rr) =  »R 2.JW +  nr*\ W  +  ^Rr.jW.
Ponieważ ^Rr jest średnią geometrycznie proporcyjo- 

nalną między stR2 i nr", zatem z tego ostatniego wyrażenia 
czytamy to twierdzenie, że objętość ostrokręgu ściętego, równa 
się trzem ostrokręgom mającym tęi sarnę icysokość W , równą 
wysokości ostrokręgu ściętego, a podstawą pierwszego jest dol­
na, podstawą drugiego górna, trzeciego zaś średnia geometrycz­
nie proporcyjonalrta między temi podstaicami ostrokręgu ścię­
tego;  zupełnie zgodnie z §. 236, gdzie geometrycznie zosta­
ło dowiedzionem, że ostrosłup ścięty składa się z trzech ostro­
słupów o tejże samej wysokości a podstawy i t. d.
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Wyrażenie objętości ostrokręgu ściętego można jeszcze 
znaleść następującym sposobem: 
ponieważ R 2- j-r 2-(-Rr — (R -j-r )2— Rr
tudzież R 2- j-r 2-|-Rr:=:(R—  r)2-j-3Rr,
zatem objętość jego 0 — \nW/ (R -j-r)2— Rr } 
jako też 0 = J « W  { (R—r)2+ 3 R r  }.
Mnożąc pierwsze z tych wyrażeń przez 3 i dodając do drugiego 
znajdziemy 4 0 r= j^ W  {3(R -f-r)2-|-(R— r)2 j.

= « W (R -| - r )2- f  J*rW(R— r ) 2 
albo 0 = ł f f W ( R - f r ) 2+ ,V r W (R  — r ) 2.
Ponieważ jr(R  +  r ) 2W  jest objętością walca, którego promień 
podstawy R -j- r  a wysokość W , zaś « ( R — r ) 2W  jest obję­
tością walca, którego promień podstawy R —  r a wysokość 
W , przeto położywszy n ( R - j - r ) aW =  M¥\+r

*(R— r)«W =  I fu r
znajdziemy objętość ostrokręgu ściętego

0  =  j W V r + i l, J f V r
z którego wyrażenia nawet tablicę łatwo ułożyć można dla 
ułatwienia obraehowania objętości takich ostrokręgów, dość 
często w praktyce wydarzających się *).

O K u l i .
§. 267.

Powierzchnie dwóch okrągłych ciał, któreśmy dotąd roz- 
trząsnęli t. j . walca i ostrokręgu kołowego prostego, mogły 
być dwojakim sposobem zrodzone, mianowicie zaś za pomo­
cą ruchu prostej pod pewnemi warunkami, lub za pomocą 
obrotu prostokąta i trójkąta prostokątnego. Ze sposobu ich 
rodzenia się wypadła tćż ich własność, iż mogły być na je- 
dnę płaszczyznę rozpostarte czyli rozwinione, dla czego po­
liczyliśmy je  do rodzaju powierzchni rozwijalnych. Z powo­
du drugiego sposobu rodzenia się tych powierzchni t. j . przez 
obrót pewnćj figury płaskiej około prostej stałej, którąśmy 
osią obrotu nazwali, policzymy rzeczone dwie powierzchnie

*) Ostatnie wyrażenie objętości ostrokręgu ściętego podał Prof. Gbunert 
w Archiy. der Mathematik und Physik, 22. Tli. S. 343.
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do innego rodzaju powierzchni krzywych, które obrotowymi 
(tornatae) Geometrowie, a Francuzi surfaces de Reoolution 
nazywają. Do tego samego rodzaju powierzchni należy trze­
cie ciało okrągłe, o którem tu mówić mamy t. j. kida.

Jeżeli półkole ACB fig. 256 obracać się będzie około 
swej średnicy AB jako około osi, a wystawimy sobie, że 
toż półkole w każdem swem położeniu pozostawia ślad swej 
bytności, tedy powróciwszy w obrocie swoim do pierwszego 
swego położenia, półokręgu ACB zrodzi powierzchnię krzy­
wą którą powierzchnią kuli (sphaera), przestrzeń zaś tąż po­
wierzchnią ograniczoną, kulą (globus) nazywamy. A jakkol­
wiek zatrzymano nazwę sphaera tak dla wyrażenia powierz-, 
chni jako i samego ciała, należy wszelako zawsze pamiętać, 
używając i polskiego wyrazu Kula w obu znaczeniach, że to 
są dwie rzeczy czyli dwie ilości geometryczne zupełnie od 
siebie różne, iżby czasem nie wziąść jednej za drugą.

W  obrocie półkola około AB, żaden punkt półokręgu 
nie zmienia swej względem środka S odległości; a że wszyst­
kie są jednakowo od niego odległe, zatem każdy punkt po­
wierzchni kuli przez półokręgu zrodzonej, jest też w równej 
odległości od punktu S. Z tego sposobu rodzenia się kuli, 
można dać następującą dobitniejszą, niż w §. 244, jej defini- 
cyją. Kula jest to przestrzeń ograniczona powierzchnią krzy­
wą, której kaidy punkt jest w jednakowej odległości od pew­
nego wewnątrz niej znajdującego się punktu. Punkt od któ­
rego wszystkie punkta powierzchni kuli jednakowo są odle­
głe, nazywa się jej środkiem (centrum), a stała odległość każ­
dego punktu od środka, promieniem kuli (radius). Każda 
przeto prosta łącząca środek kuli z którymkolwiek punktem 
jój powierzchni nazywa się i jest jćj promieniem.

Prosta przez środek kuli przechodząca i w obu kierun­
kach na powierzchni kuli kończąca się, zowie się średnicą 
kuli (diameter). Jak wszystkie promienie między sobą, tak 
też i średnice są między sobą równe, bo każda z nich rów­
na się podwójnemu promieniowi.
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Z tćj definicyi łatwo wnieść, że kule których promienie 
są równe, są sobie także równe.

Jak pomiędzy linijami krzywemi okrąg koła, tak po­
między powierzchniami krzywemi, albo pomiędzy ciałami 
okrągłemi, kula jest najprostszą i najznajomszą, tak, że trudno 
znaleść człowieka, któryby nie miał wyobrażenia koła i kuli, 
a dlatego starać się będziemy nieco obszerniej o tern ciele 
niż o dwóch pierwszych pomówić.

§. 268.
T wierdzenie. Każde, przecięcie ktdi w jakimkolwiek 

kierunku jest kołem.
W  obrocie półkola około średnicy, jak wyżej widzie­

liśmy, każdy punkt półokręgu zakreśla okrąg koła, którego 
promień jest prostopadły do średnicy, około której się obrót 
odbywa, czyli do osi; każde przeto do osi prostopadłe prze­
cięcie kuli jest kołem. A  że kula zrodzoną być może obro­
tem półkola około którejkolwiek średnicy koła, czyli, po­
nieważ za oś obrotu wziąść można każdą ze średnic, a tych 
jest nieskończona liczba, przeto w każdym kierunku znajdzie 
się średnica kuli, około której wystawić sobie można obrót 
półkola, a następnie w każdym kierunku poprowadzić moż­
na płaszczyznę prostopadłą do średnicy przecinającą kulę, 
przecięcie zaś to według powyższego będzie kołem.

Albo tak: Niech, jig. 257, ABCDEF będzie przecięciem 
kuli, której środek S, z tego środka spuściwszy prostopadłą 
do płaszczyzny przecinającej, niech ją  spotyka w punkcie s. 
Przez tę prostopadłą i przez punkta A , B , C , D, E, F po­
prowadziwszy płaszczyzny, te przetną pierwszą płaszczyznę 
w prostych sA, sB, sC, sD, sE, sF. Poprowadziwszy jeszcze 
proste SA , SB, SC i t. d., trójkąty prostokątne AsS, BsS, 
CsS, i t. d., mają bok Ss spoiny, tudzież SA =  SBrrSC=r 
i t. d., zatem przystają do siebie, a następnie i trzecie ich 
boki są sobie równe t. j. sA— sB—  sC — i t. d.; punkta przeto 
A, B, C, D, E, F i t. d. są jednakowo odległe od punktu s, 
zatem figura ABCDEF jest kołem.
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W n io s e k . Z trójkąta np. AsS wypada As— VAS2—  IŚsS 
albo położywszy As r : q, AS ~ r ,  Ss =  d, (> =  \Jri _ p 0_ 
nieważ r jest promieniem kuli, d odległością płaszczyzny 
przecinającej od środka kuli, a q promieniem koła z przecię­
cia wypadającego, zatem z wyrażenia tego promienia czyta­
my, że im d będzie większe t. j .  im dalej od środka kuli 
przetniemy ją płaszczyzną, tem koło z tego przecięcia wypa­
dające będzie mniejsze. Położywszy d —  r wypadnie q — 0 
czyli wyrażając słowy., przeciąwszy kulę płaszczyzną w od­
ległości od jej środka równającej się promieniowi kuli, koło 
z tego przecięcia wypadające zamienia się w punkt i płasz­
czyzna przecinająca w tym przypadku, ten tylko jeden punkt 
ma spoiny z kulą. Taką płaszczyznę, która tylko jeden punkt 
ma spoiny z kulą, nazywamy styczną. Płaszczyzna styczna 
jest prostopadłą do promienia kuli do punktu dotknięcia się 
płaszczyzny poprowadzonego. Gdy bowiem wszystkie inne 
punkta płaszczyzny są za powierzchnią kuli, zatćm ich od­
ległości od środka kuli są większe niż punktu dotknięcia, pro­
mień przeto do tego punktu poprowadzony, będąc najkrótszą 
odległością środka kuli od płaszczyzny, musi być do niej 
prostopadły, a nawzajem płaszczyzna styczna prostopadła do 
promienia. Wzajemnie: każda płaszczyzna prostopadła do 
promienia kuli a w końcu jego poprowadzona, jest styczną 
do kuli. Położywszy zaś dz=z 0, znajdziemy Q —  r t. j . prze­
cinając kulę płaszczyzną przez jej środek przechodzącą, z 
przecięcia tego wypada koło, którego promień jest równy pro­
mieniowi kuli.

Jak przez jeden punkt nieskończoną liczbę płaszczyzn 
prowadzić można, tak też nieskończona liczba być może prze­
cięć przez środek kuli przechodzących, których wszystkich 
promienie będą między sobą równe jako równające się każ­
dy promieniowi kuli. Wszystkie przeto przecięcia kuli przez 
jej środek przechodzące, są kołami równemi między sobą. 
Z  powodu, że to są koła największe, jakie z przecięcia kuli 
otrzymać można, dla rozróżnienia ich od innych, których tak­
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że nieskończona liczba być może, dano im nazwę kól wiel­
kich (circuli maximi), kiedy ostatnie nazwano kolami malemi.

Z  tego łatwo uczynić wniosek, że każde koło wielkie 
dzieli kulę na dwie równe części nazwane półkulami (hemi- 
spkaerium), tudzież że dwa wielkie koła przecinają się zaw­
sze w średnicy kuli; dzielą się przeto wzajemnie na połowę.

§. 269.
Biegunem (polus) bąć wielkiego bąć małego kola, nazy­

wamy punkt na powierzchni kuli, w którym prostopadła do 
płaszczyzny tegoż koła z jego środka wyprowadzona, spoty­
ka powierzchnią kuli. A że prostopadła jako prosta spotyka 
powierzchnią kuli w dwóch punktach, zatem każde koło z 
przecięcia kuli wypadające, ma dwa bieguny na powierzchni 
kuli i na średnicy prostopadłej do płaszczyzny koła leżące. 
Jeżeli do tejże samej średnicy poprowadzimy ilekolwiek pro­
stopadłych płaszczyzn, z tych każda przetnie kulę w kole, któ­
rego biegunami będą końce średnicy; z czego widzimy, iż też 
same punkta są biegunami nieskończonej liczby kół prosto­
padłych do średnicy przez te bieguny przechodzącćj albo ró­
wnoległych od siebie. W  takim razie średnica przybiera na­
zwę osi.

Osią koła wielkiego jest średnica kuli prostopadła do 
jego płaszczyzny, a jej końce są biegunami.

Jeżeli przez oś poprowadzimy ilekolwiek płaszczyzn, te 
przetną kulę w kołach wielkich, których płaszczyzny będą 
prostopadłe do wszystkich kół prostopadłych do osi. Pierw­
sze koła wielkie nazywamy zwyczajnie południkami (meri- 
diani) drugie zaś, z powodu że są równoległe od siebie, rów­
noleżnikami (paralleli).

Niech, ńg. 258, ABCD będzie przecięcie kuli, a zatem 
koło którego środek s; wyprowadziwszy z tego środka pro­
stopadłą do płaszczyzny koła, ta przejdzie przez środek ku­
li i spotka jój powierzchnią w dwóch punktach P i  p , któ­
re będą biegunami tego kola i wszystkich do niego równo­
ległych, a średnica Pp będzie ich osią. Jeżeli przez tęż oś 
poprowadzimy południki, te przetną płaszczyznę koła ABCD
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w prostych, które będą średnicami tegoż koła tak, że sA, sB, 
sC, sD będą jego promieniami, a zatem między sobą równe. 
Poprowadziwszy cięciwy AP, BP, CP, DP, w trójkątach AsP, 
BsP, CsP, DsP prostokątnych przy s, bok sP jest spoiny, tu­
dzież sA — «B =  sC sD, zatem także AP =  BP =  CP =  DP. 
A  że cięciwom równym w temże samem lub w kołach rów­
nych odpowiadają luki równe, zatem luki AP, BP, CP, DP 
są sobie równe. Toż samo okazalibyśmy dla łuków Ap, Bp, 
Cp, Dp. Bieguny przeto mają tę własność, że każdy z nich 
jest w jednakowej odległości od każdego punktu okręgu ko­
la, którego są biegunami.

Przeciąwszy tęż sarnę kulę przez środek, lecz płaszczy­
zną równoległą do pierwszego przecięcia, otrzymamy koło 
wielkie RQ. Płaszczyzny południków będąc do tego koła 
prostopadłe, przecinają go w średnicach kuli. Ponieważ kąt 
PSQ jest prosty, a miarą jego jest łuk PQ, zatem ten łuk 
równa się ćwiartce okręgu, przeto każdy z biegunów jest o 
90° odległy od każdego punktu okręgu koła wielkiego któ­
rego są biegunami.

Ponieważ wszystkie południki przechodząc przez oś, są 
prostopadłe do każdego z kół prostopadłych do osi, zatem 
spólnem przecięciem się południków jest oś, wszystkie zaś 
ich okręgi przecinają się w biegunach P i jp. Oprócz tego 
luki tych południków jak AP, BP i t. d. BP, QP i t. d. są 
prostopadłe do łuków równoleżników AB, BC i t. d. RQ, 
gdyż płaszczyzny na których te luki leżą, są do siebie pro­
stopadłe.

Ta uwaga podaje nam łatwy sposób znalezienia na po­
wierzchni kuli bieguna danego koła; poprowadziwszy bowiem 
na powierzcli ni kuli, z którychkolwiek dwóch punktów okrę­
gu koła danego dwa luki prostopadłe do jego płaszczyzny, 
punkta ich wzajemnego przecięcia się z sobą będą bieguna­
mi szukanemi. Jeżeli chodzi o bieguny wielkiego koła, tedy 
te można też znaleść prowadząc z któregokolwiek punktu o- 
kręgu danego koła łuk prostopadły do płaszczyzny jego i 
odcinając na nim, poczynając od okręgu, łuk =  90°, a koniec
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jego będzie jednym z biegunów. Nawzajem gdyby dany był 
na powierzchni kuli biegun wielkiego koła, a żądano wyna­
leźć okrąg tegoż koła , potrzebaby z danego bieguna, otwar­
tością cyrkla równą cięciwie łuku 90°, zakreślić na powierzch­
ni kuli okrąg koła, a ten będzie okręgiem koła szukanego *). 
Z  tego wynika, że płaszczyzna wielkiego koła przechodzące­
go przez bieguny innego wielkiego koła, jest prostopadłą do 
płaszczyzny tego ostatniego; nawzajem: jeżeli dwa koła wiel­
kie są do siebie prostopadłe, okrąg jednego przechodzi przez 
bieguny drugiego koła.

§. 270.
T wierdzenie. Katda •płaszczyzna przez punkt dotknię­

cia się płaszczyzny stycznej poprowadzona, przecina kulę w 
wielkiem lub małem kole, płaszczyznę zaś styczną w prostej, 
która jest styczną do okręgu tegoż koła.

Gdyby prosta z przecięcia się dwóch płaszczyzn wypa­
dająca była cięciwą nie styczną do okręgu koła, t. j. miała 
dwa punk ta z nim spólne, tedy, ponieważ taż prosta leży 
na płaszczyźnie stycznćj a okrąg koła na powierzchni kuli, 
płaszczyzna styczna musiałaby mieć także przynajmniej dwa 
punkta spólne z kulą, co według definicyi tej płaszczyzny w 
żaden sposób być nie może, więc i t. d.

W niosek. Jeżeli przez oś kuli poprowadzimy dwa ja ­
kiekolwiek południki, te przetną płaszczyznę styczną w dwóch 
prostych stycznych do tychże południków, a zatem prosto­
padłych do osi, a powiórzchnią kuli w dwóch okręgach kół 
wielkich.

Ponieważ oba południki przecinają się w osi czyli śre­
dnicy kuli, a kąt jaki powyższe styczne do południków czy­
nią między sobą mierzy kąt ich pochyłości, poprowadziwszy 
przeto przez środek kuli płaszczyznę równoległą do płasz­
czyzny stycznej, ta przetnie oba południki w dwóch promie­
niach także prostopadłych do osi, a zatem równoległych do

*) Do kreślenia okręgów na powierzchni kuli są cyrkle, nazywające się 
sferycznemi. Przy ich pomocy można na powierzchni kuli równie wy­
godnie jak zwyczajnemi na płaszczyźnie kreślić okręgi kół.
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owych stycznych; kąt więc zawarty między stycznemi równa 
się kątowi między promieniami. A  że miarą kąta między 
promieniami jest luk koła wielkiego zawarty między połu­
dnikami, zatem miarą pochyłości dwóch południków jest łuk 
koła wielkiego do tych południków prostopadłego zawarty 
między temiż południkami.

§. 2 7 1 .
D efinicyje. Część powierzchni kuli zawarta między 

dwiema płaszczyznami równoległemi, nazywa się pasem sfe­
rycznym (zona sphaerica), a płaszczyzny, jego podstawami.

Jeżeli jedna z płaszczyzn stoję się styczną kuli, naten­
czas pas nazywa się czaszką sferyczną, po francusku la ca- 
lołte spheriąue. Taka czaszka ma tylko jednę podstawę.

Część powierzchni kuli zawartą między dwoma południ­
kami, nazwał Jan Śniadecki taśmą spiczastą, Francuzi na­
zywają taką część powierzchni kuli le fuseau*).

Odcinkiem kulistym (segmentom sphaericum) nazywa­
my część kuli między dwiema równoległemi płaszczyznami 
zawartą. Te płaszczyzny są jego podstawami równie jak pa­
su, który z boku ten odcinek ogranicza. W  przypadku, że 
jedna z płaszczyzn jest styczną, odcinek kuli nazywa się o 
jednej podstawie i ta część kuli nazywa się właściwie odcin­
kiem , pierwszej zaś dajemy w polskim języku nazwę kloca 
kulistego.

Wysokością pasu lub odcinka jest odległość dwóch je ­
go podstaw od siebie, albo co na jedno wychodzi, prostopa­
dła z któregokolwiek punktu jednej, na płaszczyznę drugiój 
podstawy spuszczona.

Część kuli ograniczoną dwiema płaszczyznami południ­
ków i dwukątem nazywamy klinem kulistym, po francuzku 
onglet spheriąue.

*) Możeby nie zła była nazwa na tę część powierzchni kuli, duutcął sfe­
ryczny. Gdy bowiem dwiema prostemi nie można ograniczyć miejsca 
na płaszczyźnie, a tem raniej w przestrzeni, zatem zdaje rai się, iż ta nazwa 
cechowałaby rzeczywiście figurę dwukątną, a zatem i dwuboczną, któ­
rej bokami są krzywe; przymiotnik zaś sferyczny odróżni dwukąt na 
powierzchni kuli od podobnegoż dwukijta na innój powierzchni krzywój.
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Trójkątem sferycznym (triangulum sphaericum) nazywać 
będziemy miejsce na powierzchni kuli trzema lukami kół 
wielkich ograniczone.

Wielokątem sferycznym (polygonum sphaericum), nazwie­
my miejsce na powierzchni kuli ilukolwiek lukami kół wiel­
kich ograniczone.

Z  wierzchołka trójścianu jako ze środka wystawiwszy 
sobie zakreśloną kulę jakimkolwiek promieniem, powierzch­
nia jej przetnie ściany tego trójścianu w lukach kół wielkich 
przecinających się wzajemnie na krawędziach trójścianu. Trzy 
te luki ograniczą pewną część powierzchni kuli którąśmy 
wyżej trójkątem sferycznym nazwali.

Tym samym sposobem postąpiwszy z kątem wielościen­
nym wypukłym §. 204 t. j. wystawiwszy sobie z jego wierz­
chołka zakreśloną kulę dowolnego promienia, jój powierzchnia 
przetnie każdą ścianę w luku koła wielkiego, które przetną się 
po dwa na krawędziach kąta i ograniczą część powierzchni 
kuli wyżój wielokątem sferycznym nazwaną.

Z tego co się w §. 204 o kątach bryłowych wielościen­
nych wypukłych powiedziało, łatwo wnieść, że tak trójkąt 
jako i wielokąt sferyczny koniecznie znajdować się musi na 
jednej półkuli, którą wyznacza którakolwiek ściana wielościa- 
nu rozszerzona na wszystkie strony; przechodząc bowiem 
przez środek kuli, podzieli ją  na dwa półkula, a rzeczony 
wielokąt leżeć będzie całkiem na jednej z nich.

Łuki kół wielkich, w których powierzchnia kuli z wićrz- 
chołka trójścianu jako ze środka zakreślona przecina jego 
Ściany, są oczywiście miarami kątów płaskich trój ścian skła­
dających, kąty zaś dwuśeienne czyli kąty pochyłości każdych 
dwóch ścian są według §. 270 równe kątom jakie czynią 
między sobą styczne do tych łuków w punktach ich przecię­
cia się z sobą poprowadzone; a że zamiast tych ostatnich ką­
tów wziąść można kąty jakie czynią między sobą łuki, za­
tem w każdym trójkącie sferycznym łuki, które bokami zwać 
będziemy, są miarami kątów płaskich kąt trójścienny składa­
jących, kąty zaś są miarami pochyłości ścian.
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Ponieważ tak trójkąt jako i wielokąt sferyczny leży cał­
kiem na jednej półkuli, więc boki jego muszą być każdy 
mniejszy niż półkole czyli 180'1 i takie tóż tu jedynie trój­
kąty uważać będziemy.

§• 272.
Rozszerzywszy wszystkie trzy ściany kąt trójścienny 

składające na wszystkie strony, wiemy z §.205, że podzielą 
całą przestrzeń na ośm części, czyli że powstanie stąd ośm 
kątów trójściennych. A że te tak rozszerzone płaszczyzny 
przecinają powierzchnią kuli w lukach kół wielkich, przeto 
i powićrzchnią kuli podzielą także na ośm trójkątów sferycz­
nych. Wszystkie zatem twierdzenia o kątach trójściennych 
w rozdziale II. dowiedzione tu w całej obszerności mają swo­
je  zastosowanie, kładąc tylko wszędzie zamiast kątów płas­
kich boki, a zamiast kątów dwuściennych czyli pochyłości, 
kąty trójkąta sferycznego, który uważać można za podstawę 
kąta trójściennego wierzchołek w środku kuli mającego. Atak:

1 W  każdym trójkącie sferycznym summa dicóch któ- 
rychkolwiek jego boków jest większa od boku trzeciego; bo sum­
ma dwóch którychkolwiek kątów płaskich jest większa od 
trzeciego kąta §. 207, a łuki składające boki trójkąta sfery­
cznego zakreślone będąc jednymże promieniem, służą za mia­
ry tym kątom.

2°. Summa trzech boków trójkąta sferycznego jest zaw­
sze mniejsza niż okrąg koła czyli niż dli; bo summa kątów 
płaskich kąt trójścienny składających jest mniejsza niż 4R, 
§. 208. Również summa wszystkich boków wielokąta sfery­
cznego mniejsza jest niż 4R, §. 214.

3°. Z §. 214 wiemy, że w kącie trójściennym summa 
trzech jego kątów ściennych czyli kątów pochyłości, jest zaw­
sze większa niż 2R a mniejsza niż 6R, i żęta summa przejść 
może przez wszystkie wielkości począwszy od 2R aż do 6R, 
a dlatego trójkąty sferyczne mogą być nietylko ostrokątne, 
prostokątne i rozwartokątne, jak prostokreślne, ale też być mo­
gą o jędrnym, dwóch lub trzech kątach prostych zgodnie z §. 
205.
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4". W  trójkącie sferycznym naprzeciwko boków równych 
leżą kąty równe i odwrotnie, §■ 209 i t. d.

§ .  2 7 3 .

D efinicyja. Mając dany na powierzchni kuli trójkąt 
ABC fig. 259, jeżeli z wierzchołków jego A , B , C, otwarto­
ścią cyrkla równą cięciwie 90'-' wziętych na okręgu kola wiel­
kiego, zakreślimy luki, te przetną się wzajemnie w punktach 
A ', B', C' i ograniczą inny trójkąt A 'B ’C ', który zowie się 
biegunoioym pierwszego.

Własności trójkąta biegunowego. Przedłużywszy boki 
trójkąta ABC aż do przecięcia się z bokami trójkąta biegu 
nowego w punktach D, E, F, G, H, I, ponieważ punkt A jest 
biegunem luku B ’C', zatem AF =  90° i A G ~ 9 0 °, a luk GF 
jest miarą kąta A. Punkt A' leży na przecięciu się dwóch łu­
ków B 'A ’ z punktu C i C’A ' z punktu B zakreślonych, za­
tem ten punkt A' jest w równej odległości tak od B jako i 

od C, i od każdego 90", jest zatem biegunem łuku BC, a na­
stępnie A 'E =  90 ’, A'H =  90°. Podobnież okazać można, że 
punkt B’ jest biegunem łuku AC, a punkt C' biegunem łu­
ku AB i że B ’D =  90°, B'G =  90", C’F  =  90", C’I =  90", a 
nareszcie, że HI jest miarą kąta B a DE miarą kąta C; bę­
dzie więc można wziąść za kąt A, łuk F G , kąt B za III, a. 
kąt C za łuk DE. Oznaczywszy w trójkącie ABC boki prze­
ciwległe przez a, b, c, zaś w trójkącie A ’B'C' przez a', V, c', 
ponieważ B C ^ B G - j - C F  — FG
zatem a'—  90° -j- 90° —  A =  180°— A
i podobnież b' =  180°— B, c =  180"— C.

Ponieważ A', B', C’ są biegunami boków trójkąta ABC, 
zatem miarą kąta A' jest łuk HE, a dlatego

A' =  HE =  BH +  CE — BC =  90° +  90°— BC 
czyli A '— 180“ — a i podobnież B ’ = 1 8 0 u— b, C '= 1 8 0 n— c. 
Zbierając pod jeden rzut oka te zrównania i pisząc je  na­
stępnie

A -]-« ' =  180" A '- f a = 1 8 0 u
B -f -ó '=  180° B '- f ó  =  180"
C - f c '  =  180ł C' +  c = 1 8 0 "
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dostrzeżemy tój własności trójkąta biegunowego, że naprzód, 
dany trójkąt jest nawzajem biegunowym drugiego t. j .  oba 
trójkąty są w takim z sobą związku, że jeden drugiego jest 
biegunowym— powtóre, że boki jednego z nich z przeciwległe- 
mi kątami drugiego, spełniają się do dwóch kątów prostych 
czyli do 180n;  dlatego też te trójkąty nazywają jeszcze speł- 
niającemi się (trianguli supplementarii). Porównawszy wła­
sność trójkątów biegunowych z trójścienncmi kątami spełnia- 
jącemi się §. 206 , dostrzeżemy zupełne ich podobieństwo 
i te ostatnie z tamtych wprost wyprowadzonemi być mogły.

W niosek. Ponieważ
A - f  B +  C - f  a -f- b' +  c’ = 3 .180 " =  3.2R =  6R,

więc skoro tylko trójkąt ABC istnieje, trójkąt też A'B'C' ist­
nieć musi, a w poprzedzającym §. 2° pokazaliśmy, 
że a - j - ó '- f - c ’ <c;4R,
zatem A -j- B -j- C >  2R; a kiedy a -j- b' -{- c' zawsze jest ró­
żne a mianowicie większe niż zero, to tóź A - j-B - j-C  musi 
być zawsze mniejsze niż 6R , zgodnie z §. 208 wniosek t. j. 
summa trzech kątów trójkąta sferycznego zawsze jest mniejsza 
niż 6E, a większa niż 2K. Ta summa może się zbliżyć do 
każdej z tych granic tak jak chcemy i dla tego to trzy ką­
ty trójkąta sferycznego mogą być wszystkie trzy ostre, pro­
ste lub nawet rozwarte, jak to już wyżej wspomnieliśmy.

Jeżeli w trójkącie sferycznym dwa kąty są proste, dwa 
boki im przeciwległe są równe i każdy — 90®, taki przeto trój­
kąt jest równoramiennym, a wierzchołek trzeciego jego kąta 
jest biegunem boku trzeciego. Jeżeli zaś w trójkącie sfery­
cznym każdy jego kąt jest prostym, każdy z trzech jego bo­
ków jest ćwiartką okręgu koła, a sam trójkąt będzie g czę­
ścią powierzchni kuli. (Porównaj §§. 205 i 215).

§. 274.
T wierdzenie. Dwa trójkąty sferyczne na jednejże kuli 

lub na dwóch kulach równych są równe,
1° jeżeli mają po boku równym i po dwa kąty tym bo­

kom przyległe także równe i podobnie położone, albo tćż jeże-
24
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li mają po dwa boki równe każdy każdemu i podobnie ulożo 
ne z kątem między niemi zawartynj, równym.

2° jeżeli mają po trzy boki równe każdy każdemu i po­
dobnie ułożone, albo trzy kąty w jednym równe trzem kątom 
w drugim trójkącie i podobnie ułożone.

3° mogą, też trójkąty być równe, jeżeli mają po dwa 
boki równe każdy każdemu i podobnie ułożone, tudzież po ką­
cie jednemu z nich przeciwległym, albo, jeżeli mają po dioa ką­
ty równe każdy każdemu i podobnie ułożone, tudzież po boku 
jednemu z nich przeciwległym.

W  trzecim przypadku powiedzieliśmy że tylko mogą, bo 
rzeczywiście ten przypadek ma wiele warunków czyli za­
strzeżeń.

Jak widzimy, zamyka to twierdzenie sześć różnych przy­
padków, które jednak powiązane są z sobą po dwa, na mocy 
własności trójkąta biegunowego.

Dla dowiedzenia tego twierdzenia, najprościej a razem 
najłatwiej postąpimy wracając do równości kątów trójścien­
nych §. 211, 212, 213; a położywszy na sobie w każdym przy­
padku kąty trójścienne przy środku tejże samej lub przy 
środkach kul równych tym trójkątom odpowiadające, dostrze­
żemy, iż za przystaniem kątów trójściennych, czego już w 
przytoczonych §§. dowiedliśmy, i trójkąty sferyczne przystają.

Uwaga 1. Przestrzeń ograniczoną z trzech stron płaszczy­
znami w jednym punkcie schodzącemi się a z czwartej trój­
kątem sferycznym, nazywamy czworościanem sferycznym (te- 
traedrum sphaericum). Skoro trójkąty sferyczne przystają do 
siebie, tern samem i czworościany sferyczne przystają. Część 
zaś kuli czyli przestrzeń ograniczoną z boku płaszczyzna 
mi w jednym punkcie (w środku kuli) schodzącemi się i 
wielokątem sferycznym zamkniętą, nazywamy ostrosłupem sfe­
rycznym (pyramis sphaerica).

Uioaga 2. Są przypadki, gdzie dwa trójkąty sferyczne 
mają wszystkie elementa między sobą równe, ale nie jedna­
kowo ułożone, w takim razie mówimy, że dwa takie trójką­
ty są symetryczne, odpowiadają ono bowiem dwom kątom trój-
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ściennym symetrycznym §. 210. W  przypadku atoli trójką­
tów sferycznych równoramiennych t. j .  takich, że dwa boki 
w każdym są między sobą równe i równo dwom odpowiada­
jącym bokom w drugim trójkącie, oprócz symetryczności są 
sobie równe i przystają do siebie, bo odpowiadają kątom trój­
ściennym równościennym § . 210 , które też, jak już wiemy, 
przystąją do siebie.

§. 275.
T wierdzenie. Dwa trójkąty sferyczne symetryczne są 

sobie równe co do ■powierzchni.
Niech dwa trójkąty ABC i A ’B'C' fig. 260 będą sym- 

metrycznc, mamy dowieść, iż są równoważne czyli równe so­
bie co do powierzchni. Na ten koniec przez trzy punkta 
A, B, C, poprowadźmy płaszczyznę, która przetnie kulę w kole 
małem, niech punkt P będzie jednym z biegunów tego kola, 
leżącym z tejże samój strony środka kuli jak koło małe, za- 
tćm AP =  BP =  CP §. 269. Na powierzchni trójkąta A'B'C' 
przy punkcie A ' poprowadźmy łuk czyniący z bokiem A'B' 
kąt równy kątowi PAB, a odciąwszy na tym luku A 'P '= A P  
będzie kąt P ’A'B' =  PAB; nareszcie przez punkta P' i B ', 
P' i C' poprowadziwszy łuki kół wielkich, mamy: w dwóch 
trójkątach ABP i A 'B T ' kąt P A B = P 'A 'B ' z wykreślenia, 
tudzież AP =  A ’P' także z wykreślenia, zaś AB rr A'B' z za­
łożenia, zatem według poprzedzającego §. będąc równora- 
micnnemi, przystają do siebie. Dla tej samej przyczyny tró- 
kąty APC i A 'P :C' przystają do siebie, bo kąt P A C = P 'A ’C', 
gdyż z założenia BAC z: B 'A ’C', a z wykreślenia PABrrP'A 'B ' 
i do tego są równoramienne, gdyż PA =  PC i P 'A ’ = P 'C '.  
Nareszcie zupełnie z tego samego powodu trójkąty PCB i 
P 'C 'B ' przystają do siebie. Ale ABC=rACP-j-BAP —  BCP 
zaś A 'B 'C ' =  A W + B A P - B ' C ’P ', zatem A B C =A 'B 'C '.

Uwaga. Punkt P' przez powyższe wykreślenie wyzna­
czony, jest też biegunem małego koła przez punkta A', B', 
C' przechodzącego.

24.



372

§• 276.'
T wierdzenie. Najkrótsze/, odległością dwóch, punktów na 

powierzchni kuli, jest mniejszy luk koła wielkiego przez też 
punktu przechodzącego.

Aby to twierdzenie dowieść sposobem najwłaściwszym, 
poprzedźmy go innem przybranem z planimetryi, że łuk 
koła wykreślonego na jakiejkolwiek cięciwie mniejszym pro­
mieniem, zamyka więcej stopni i jest zarazem dłuższy niż łuk 
innego koła na tejże samej cięciwie, promieniem większym za­
kreślony.

Niech na prostej AB fig. 261 jako na cięciwie wykre­
ślone będą dwa łuki AMB i AM'B, pierwszy promieniem 
SA, drugi promieniem S'A, gdzie S 'A > S A . Samo spojrze­
nie na figurę przekonywa nas dostatecznie o rzetelności za­
łożonego twierdzenia, albowiem droga od A do B po luku 
AM'B jest zamknięta drogą po luku AMB, luk więc AMB 
musi być większy niż łuk AM'B jako rzecz obejmująca od 
objętej.

Że też łuk AMB więcej zajmuje stopni z całego swego 
okręgu niż łuk AM’B z swego, jest także oczywistem; gdy 
bowiem kąt ASB^>AS'B, a te kąty są mierzone lukami AMB 
i AM'B, więc też pierwszy więcej zajmuje stopni niż drugi.

Po tern przygotowaniu bardzo łatwo jest dowieść zało­
żonego twierdzenia. Gdy bowiem na powierzchni kuli tylko 
po okręgu koła bąć to wielkiego, bąć małego, lub też po ob­
wodzie wielokąta sferycznego postępować można, zatem wy­
stawiwszy sobie przez dane dwa punkta łuk koła wielkiego, 
małego i część wielokąta sferycznego przechodzące, tedy naj­
przód w tym ostatnim przypadku część rzeczonego wielokąta 
z lukiem koła wielkiego kończące się w punktach danych, 
zamykają wielokąt sferyczny, w którym każdy bok jest mniej­
szy, niż summa wszystkich innych; zatem bok należący do 
koła wielkiego jest mniejszy niż summa wszystkich innych 
stanowiących część obwodu wielokąta sferycznego, bąć to lu­
kami kół wielkich, bąć lukami koł małych zawartego. W  przy­
padku pićrwszym t. j. gdy przez dwa dane punkta przecho­
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dzi luk koła małego, wiemy z §. 268, że promień takiego 
koła jest zawsze mniejszy niż promień kuli, a zatem i koła 
wielkiego; a dlatego, ponieważ łatwo sobie wystawić tak łuk 
koła wielkiego, jako i małego na tejże samej cięciwie (na 
prostej dwa dane punkta łączącej), chociaż nie na jednejże 
płaszczyźnie wykreślone , według twierdzenia przygotowaw­
czego, łuk należący do mniejszego promienia jest dłuższy, niż 
łuk do większego promienia należący; zatem łuk kola wiel­
kiego jest krótszy, niż łuk koła małego, przez dane dwa 
punkta ńa powierzchni kuli przechodzących, co należało do­
wieść.

§• 277.
Podzieliwszy pół okręgu koła wielkiego, na ilekolwiek 

części równych, a przez punkta podziałów i bieguny tegoż 
koła poprowadziwszy płaszczyzny, te przeciąwszy się wzaje­
mnie w osi przez bieguny przechodzącej, przetną powierzch­
nią kuli w południkach i podzielą całą jej powierzchnią na 
dwarazy tyle dwukątów czyli taśm śpiczastych, na ile części 
podzieliliśmy półkole, albo podzielą te południki tak powierz­
chnią kuli, jako też i okrąg wielkiego koła na jednakową 
liczbę części. Ponieważ miarą kąta pochyłości dwóch połu­
dników czyli kąta dwukąta, jest łuk koła wielkiego, między 
temiż południkami zawarty, §. 270 wniosek, przeto kiedy mia­
ry kątów dwukątów są sobie równe, i kąty w biegunie są 
między sobą równe, a następnie wTszystkie dwukąty są także 
między sobą równe; jeden zatem z tych dwukątów taką jest 
częścią całej powierzchni kuli, jaką częścią jest jego kąt w 
biegunie względem 4R.

Wziąwszy trójkt sferyczny o trzech kątach prostych, 
który jak w §. 273 toniosek widzieliśmy jest i  powierzchni 
kuli, za jednostkę do mierzenia powiórzchni wielokątów sfe­
rycznych, będziemy mogli wystawić całą powierzchnią kuli 
przez 8. Oznaczywszy powierzchnią dwukąta przez D, a kąt 
jego przez A, według poprzedzającego będzie

— -  A ,  skąd D =  2A 
8 4 ’ 1
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t. j. powierzchnia dwukąta równa się dwarazy wziętemu jego 
kątoioi. Używając tego wyrażenia pamiętać potrzeba, iż w 
nim są dwie jednostki t. j .  D  odniesionem jest do trójkąta 
sferycznego o trzech kątach prostych na tejże samej kuli, na 
której D  uważamy nakreślonego, zas’ A  ma za jednostkę kąt

prosty, tak źc też można napisać"- — Tak np. gdyby1 J
kąt A  był równy 30 % tedy według proporcyi będzie 

D  30 i . . _  8 2

Albo D :

8 360 12’ sk£łd D  — 12— 3
2.30°

90 =  -5-  t. j . powierzchnia jakiego dwukąta

jest j  powierzchni trójkąta sferycznego o trzech kątach pro­
stych czyli całćj powierzchni kuli.

§. 278.
Szukajmy teraz powićrzchni trójkąta sferycznego. Po­

prowadziwszy płaszczyznę przez środek k u li, podzielimy 
ją na dwa półkola wierzchnie i spodnie. Przez tenże środek 
kuli poprowadźmy jeszcze dwie inne płaszczyzny, któro prze­
tną kulę w kołach wielkich ACA'A i BCB’B jig. 262. Dwa 
tc koła wielkie z pierwszćm przecinają się w punktach A , 
A ' i B, B', same zaś z sobą w punktach C i C'. Przez to 
wzajemne przecięcie się ograniczają na półkulu wiórzclmićm 
trójkąt ABC, a na spodniem trójkąt A ’B'C\
Ponieważ AGA' -  180°, i CA'C' =  180°, więcr AC =  A 'C '. 
Podobnież BCB’ =  180°, i CB'C' =  ł80°, zatem BC =  B 'C'. 
Nareszcie ABA' r :180°, i BA 'B ’ z= ł8 0 ° , zatem AB A ’B ’. 
Trójkąty więc A B C iA 'B 'C ' mające wszystkie boki i wszyst­
kie kąty między sobą równe, są symetryczne , a jako takie 
mają powierzchnie równe §. 275. Przypatrzywszy się z uwa­
gą, bez trudności dostrzeżemy, że półkuli wierzchnie składa 
się z dwukąta ABA’A, dwukąta BAB'B zmniejszonego trój­
kątem ABC i z dwukąta CBjC'A'C zmniejszonego trójkątem 
A ’B 'C ’, czyli jemu równym ABC. Według poprzedzającego 
§. powierzchnia pierwszego dwukąta jest ~  2A, drugiego 2B, 
a trzeciego 2C; powierzchnia zaś kuli, biorąc za jednostkę
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powierzchnią trójkąta sferycznego o trzech kątach prostych 
wyraża się, jak z §. 273 wniosek wiemy, przez 8, zatóm po­
wierzchnia połowy kuli wyrazi się przez 4. Będzie więc 
według tego co poprzedziło, jeżeli powierzchnią trójkąta ABC 
oznaczymy przez S,

2 A + 2 B  —  S +  2C —  S =
czyli 2 (A +  B +  C) —  2S =  4
albo A +  B +  C —  S r = 2
skąd S = A + B + C — 2

Ponieważ A, B, C, wyrażają kąty trójkąta sferycznego, 
zaś 2 znaczy dwa kąty proste czyli 180°, zatem powierzchnia 
tegoż trójkąta wyrazi się, SrrA-j-B -j- C — 180. A że z przy­
wiedzionego co dopiero 8. wiemy, 
że A + B + C > 1 8 0 ,
zatem A - j -B - j -C — 180
wyraża nadmiar trzech kątów trójkąta sferycznego nad dwa 
kąty proste. Ten nadmiar nazywamy pospolicie przepełnie­
niem sferycznym (excessus) i z tego powodu mówimy, żo 
powierzchnia trójkąta sferycznego równa siei przepełnieniu sfe-. 
rycznemu. (Porównaj §. 215).

Uwaga. Każdemu uczącemu się a myślącemu, wyda 
się wyrażenie powierzchni trójkąta sferycznego bardzo rażą­
cą sprzecznością. Jak to, zapyta się nie jeden, ilość wyra­
żająca powierzchnię ma się równać ilości kątowej? to nie 
podobna, lub też całe rozumowanie jest fałszywem. Bliższe 
atoli zastanowienie się przekona każdego, iż tu chodziło tyl­
ko o krótkość wyrażenia się, a istotę jego zostawiono prze­
wodnikom do wytłumaczenia. Wyraziwszy już wyżej po­
wierzchnią dwukąta przez ilość kątową t. j. przez dwa razy 
wzięty jego kąt, i wytłumaczywszy tamże prawdziwe znacze­
nie tego wyrażenia, łatwo nam będzie wytłumaczyć i ostat­
nie. Wszakże oznaczywszy przez A i B kąty dwóch dwu- 
kątów, a ich powierzchnie przez D i D' ponieważ 2A a

P> A
D '= :2 B , zatem Yy~~ jj~, z czego widzimy, że lubo A i B,



A
wyrażają ilości kątowe, wszelako ich stosunek —  wyraża rze­

czywiście liczbę oderwaną, a przeto do żadnego gatunku ilości 
nie przyczepioną. Dwóch trójkątów sferycznych powierzchnie 
oznaczywszy przez S i S', a ich kąty przez A , B , C, i A ’ 
B', C1, powierzchnie ich mieć się będą do siebie jako prze­
pełnienie sferyczne w jednym do takiegoż przepełnienia 

S A -f-B  +  C — 180
w drugim czyli -^7 —   ̂ jj, ~q . t. j. stosunek ich

powierzchni równa się także liczbie oderwanej. Porównywa- 
jąc trójkąt sferyczny, którego powierzchnia S z takimże trój­
kątem o trzech kątach prostych, mielibyśmy 
S A - f B  +  C — 180 A  +  B -f-C  — 180 

T =  3. 90— 180 =  90 » t0Jest P0'
wierzchnia S ma się tak do powierzchni trójkąta o trzech 
kątach prostych, jak przepełnienie pierwszego do kąta pro­
stego, skąd się pokazuje, żo w wyrażeniu powyższem po­
wierzchni trójkąta sferycznego dwie są jednostki, powierzchni 
i kątowa, jak o tóm w poprzednim §. ostrzegałem. Z  całej 
tej uwagi wyciągniemy sobie ten wniosek, że wyrażenie po­
wierzchnia trójkąta sferycznego równa się jego przepełnieniu 
sferycznemu nic innego nie znaczy, tylko że rzeczona po 
wierzchnia taką jest częścią trójkąta jednostkowego czyli o 
trzech kątach prostych, jaką jest częścią przepełnienie sfe­
ryczne względem kąta prostego czyli 90°. Niechby np. był 
trójkąt sferyczny w którym

A =  95°30'25",B =  450 12' 45", C ~ 39° 51' 20" 
zatem A + B + -C — 180= 3 4 ' 30 ''=2070 ’ ’= 3 4 '-5 = 0 °5 7 5  
więc przepełnienie sferyczne a zatem i powierzchnia trój­
kąta czyli

0°-575 34'-5 2070" 23
S ~  90 90-60 90.60.60 ~  3600 ~  00003888 • • •

23
to jest powierzchnia tego trójkąta jest $qqq części czyli 

0-0063888 . . . części trójkąta jednostkowego, całej zaś po­

376
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wierzchni kuli danego trójkąta powierzchnia jest blisko 0-0008 
częścią, rozuń.ie się, że tu promień kuli jest uważany za 1.

WNIOSEK. Powierzchnia wielokąta sferycznego równa 
się summie jego kątów zmniejszonej iloczynem z dwóch kątów 
prostych przez liczbę jego boków mniej dwa. Z  któregokol­
wiek bowiem wierzchołka kąta wielokąta poprowadziwszy do 
wszystkich innych wierzchołków luki przekątne, podzieli się 
tym sposobem ten wielokąt na tyle trójkątów sferycznych, 
ile wielokąt ma boków mnićj dwa. A że powierzchnia każ­
dego z tych trójkątów ma za miarę przewyżkę summy trzech 
jego kątów nad dwa kąty proste, czyli przepełnienie sferycz­
ne, 'albo jeszcze, summę trzech swych kątów mniej 2l i ;  tu­
dzież ponieważ jest widoczną rzeczą, iż summa wszystkich 
kątów trójkątową na które wielokąt rozłożonym został, rów­
na się summie kątów wielokąta, zatem prawdą jest, że i t. d.

Oznaczmy przez K summę kątów wielokąta sferycznego, 
którego liczba boków jest«, tedy odnosząc jego powierzchnią 
do trójkąta o trzech kątach prostych a jego kąty do kąta 
prostego jako jednostki, powierzchnia jego będzie 

=  K —  2 (n — 2) =  K — 2n-f-4.
§. 279.

T w ie r d z e n ie . Powierzchnia kidi równa się cztery ra­
zy wziętej powierzchni wielkiego jej koła.

Niech będzie półkole M’ABCDN' fig. 263, którego środ­
kiem jest punkt S; -wpiszmy w toż półkole i opiszmy na niórn 
połowę wielokąta foremnego o parzystej liczbie boków; pierw­
sza niech będzie MABCDN, a druga M A'B 'C 'D 'N '. Wysta- 
wiwszy sobie, że tak obie połowy wielokątów jako też i pół- 
okręgu obraca się około średnicy M'N' jako około osi aż do­
póki nie powrócą do pierwotnego swego położenia, łatwo do­
strzeżemy, iż nam się przez ten obrót zrodzą trzy różne po­
wierzchnie krzywe, t. j .  dwie zrodzone przez dwie połowy 
wielokątów wpisanego i opisanego, trzecia zaś przez półokrę- 
gu koła. Dwie pierwsze będą złożonemi każda z powierz­
chni ostrokręgów uciętych a zakończone z wierzchu i spodu 
dwiema płaszczyznami kół, trzecia zaś jak już wiemy będzie
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powierzchnią kuli. Obrachujmy całkowite powierzchnie zro­
dzone przez każdy z wielokątów, Z  punktów B i B' spu­
ściwszy prostopadłe B i i B7/ na oś obrotu M'N', nie trudno 
dostrzedz, iż w obrocie wielokątów około osi, boki ich AB 
i A 'B ' zakreślają każdy powierzchnią krzywą ostrokręgu u- 
ciętego, których podstawy są: pierwszego dolna, koło z pro­
mienia ÓB, a górna koło z promienia MA; drugiego zaś dol­
na, koło z promienia VB', a górna koło z promienia M'A\ 
Z  punktów E i E' które są środkami boków AB i A 'B ' spu­
ściwszy prostopadłe Ee i E'e' na M’N', według §. 265 będzie 
powierzchnia krzywa pierwszego ostrokręgu uciętego t. j. 
powierzchnia zrodzona.
przez bok A B .............=  2 » .E e .A B ,
zaś przez bok A 'B ' .............=  25r.E'e'.A'B'
Ale z punktów A i A ' spuściwszy jeszcze prostopadłe Am 
i A W  na óB i V B ’ i poprowadziwszy promień SE' prosto­
padły do AB i A 'B ', który z tego powodu przecina każdy 
z tych boków na dwie równe części, dwa trójkąty AmB i 
EeS są podobne, gdyż boki jednego są prostopadłe do bo­
ków drugiego trójkąta, zatem

A B : Am =  S E : Ee skąd AB.Ee =  Awi.SE =  Mó . SE.
Dla tejże samej przyczyny trójkąt A ’m'B’ «^sEVS, 

przeto . A 'B ': A ’ m =  S E ': E V
skąd A'B'.E 'e’ =  A W .SE ' =  M’Ó'.SE'.
Położywszy *te ważności w powyższych wyrażeniach, mieć 
będziemy powierzchnią krzywą zrodzoną 
przez bok AB . . . := 2it.Mó . SE =  2?r.SE. Mó.

„ „ A 'B ’ . . . =2?r.M 'ó'.SE '= 2wSE'.M'ó'.
Zupełnie przez podobne rozumowanie znajdziemy, że powićrz- 
chnia krzywa zrodzona
przez bok B C ................2tt.SE.0c, bo SF rrSE

„ „ B ' C ' ............. —  2?r.SE’.ó'c'
„ „ C D .................=  2ttSE.cN, bo SGr =  SE
„ „ C’D ’ ..............=  2».SE.c'N'. '

Dodawszy powierzchnie krzywe utworzone przez boki 
. AB, BC, CD i t. d. w jednę a powierzchnie zrodzone przez
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A'B’, B'C', C'D' i t. d. w drugą sumę, znajdziemy powierz­
chnią krzywą zrodzoną
przez ABCD . . . =  2tt.SE (MJ -j-óc-f- cN) — 2ff.SE.MN 

„ A 'B 'C ’D ' . . =  2ff.SE '(M 'ó'+ó'c'+c'N ')=2ff.SE '.M 'N '. 
Dodawszy do pierwszej z tych powierzchni

2ff.MA2 =  ffMA2 +  ffND2,
co wyraża powierzchnie dwóch kół z promienia MA i NO~M A, 
do drugićj zaś 2 ff.fżV 2 =  nWA'2 - f  ffND72, bo M'A' =  N'D' 
będzie powierzchnia zrodzona przez obrót połowy wielokąta 

wpisanego =  2ff. SE.MN - f  2ff. MA2 =  2ff (SE. M N + MA2) 
powierzchnia zaś zrodzona przez połowę wielokąta opisanego

= 2 ff.S E ’.MN-j- 2ff.M7A;2=  2ff(SE.'M'N’+ M 7A72). 
Podwajając liczbę boków obu -wielokątów do nieskończoności, 
wiemy, że obwody ich zbliżają się nieskończenie do siebie, 
co inaczej być nie może, tylko że każdy w szczególności 
bok wpisanego, zbliża się nieskończenie do odpowiadającego 
boku wielokąta opisanego, a w takim razie i prostopadłe ze 
środka obu wielokątów na ich boki spuszczone, t. j. prosto­
padłe SE i SE' nieskończenie zbliżają się do równości; czyli 
raczój SE' zostaje stałą i niezmienną a SE bez końca ro­
snąc ma za granicę swego wzrostu SE', której jednak nigdy 
dosięgnąć a tem mniej przewyższyć nie może. Zupełnie 
toż samo rozumowanie względem MN i M'N', żc MN rosnąc 
żbliża się bez końca do M'N'. Oprócz tego za każdem po­
dwojeniem liczby boków obu wielokątów, tak MA jako i 
M'A' maleją,«a malejąc mają za granice każda punkt czyli 
zero geometryczne. A  kiedy ilości, przez któro są wyrażone 
obie powierzchnie, zbliżają się bez końca do siebie, a w nie­
skończoności stają się sobie równe, przeto tem bardziej środ­
kująca między niemi, powierzchnia kuli przez półokręgu zro­
dzona, równa będzie jednej lub drugiej. Położywszy pro­
mień koła rodzącego, a zatórn i promień kuli SE =r r, będzie 
M'N' =  2r, oraz według tego co powiedzieliśmy, S E = S E ’~ r  
MN zn 2r. Położywszy te ważności w powyższe wyrażenia 
obu powierzchni, znajdziemy powierzchnią zrodzoną przez
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M A B C D N ................=  2 « (r. 2r - f  MA* ) =  4 nr* - f  2tt.MA5
M'A'B’C'D ’N' . . . .  z=2n(r.2r-łpW^^)zzAnr*-\.2n.WK'^- 
Ale według powyższego rozumowania w przypadku gdy licz­
ba boków każdego z wielokątów stanie się nieskończenie 
wielka, każda z prostych MA i M’A' zamienia się na punkt
czyli zero, zatem 2tz.MA‘ = 0 i 2tt.M'A' = 0 ,  a w takim 
razie obie powierzchnie stają się sobie równemi, więc tern 
bardziej i sprawiedliwiej wnieść możemy, że środkująca po­
wierzchnia kuli jest każdej z nich równa

Powierzchnia zatem, kuli = 4 nr*.
A że nr2 wyraża powierzchnią koła z promienia r §. 163 
imiiosek, zatem prawdą jest, że powierzchnia kuli równa się 
cztery razy wziętej powierzchni koła wielkiego.

W n io s e k . Ponieważ 4nr'-— 2nr.2r a 2nr, wyraża okrąg 
koła wielkiego, zaś 2r średnicę kuli, zatem powierzchnia kuli 
róiona się też iloczynowi z okręgu kola toielkiego przez jej 
średnicę.

Uwaga. Nie od rzeczy tu będzie zwrócić uwagę uczących 
się, że wyrażenie powierzchni krzywej" zrodzonej przez obrót 
połowy wielokąta opisanego t. j. wyrażenie wyżśj otrzymane 
powierzchnia zrodzona przez A 'B ’C 'D ’ . . . —  2ff.SE'.M'N’ 
przechodząc według powyższego na 2n. r. 2r — 4nr* uczy nas, 
iż jakakolwiek będzie liczba boków wielokąta opisanego, zaw­
sze powierzchnia krzywa przez jego połowę u) obrocie około 
osi zrodzona, równa się powierzchni kidi, nie rachując 
atoli do niej dwóch powierzchni płaskich t. j. koła górnego 
i dolnego.

§. 280.
W  poprzedzającym §. widzieliśmy, iż powierzchnia krzy­

wa zrodzona przez bok AB równa się 2n. SE. Mó, a powierz­
chnia zrodzona przez A 'B ’ równa się 2n. SE'. M'ó'. Lecz sko­
ro liczba boków obu wielokątów będzie nieskończenie wielka, 
dwie te powierzchnie stają się prawie między sobą równe, 
więc tern bardziej powierzchnia krzywa zrodzona przez luk 
AE'B jako między temi bokami środkujący, będzie tern bar­



381

dziej równa jednej z tych powierzchni. A że w przypadku 
nieskończonej liczby boków wielokątów, SE =  SE' a M ó=M 'ó', 
zatem powierzchnia krzywa zrodzona przez rzeczony łuk 
:=  2n. r. Mó. Ale taką powierzchnię nazwaliśmy pasem sfe­
rycznym, zaś M i jego wysokością §. 271, zatem powierzchnia 
•pasa sferycznego równa się iloczynowi z okręyu koła icielkiego 
przez jego icysolcość.

Przeciąwszy kulę dwiema płaszczyznami od siebie rów- 
noległemi jednę przez środek kuli przechodzącą, a drugą 
w odległości od tegoż środka Ss =  d fig. 264, tedy 

sA ~  SA —  d ~ r  — d.
Położywszy r — d ~ h , gdzie jak widzimy, h wyraża wy­

sokość czaszki BAC, aby znaleść jej powierzchnią, dosyć jest 
od powierzchni połowy kuli odjąć powierzchnią pasa zawar­
tego między dwiema poprowadzonemi płaszczyznami. Ale 
według powyższego powierzchnia pasa, którego wysokość d 
jest = 2 nr.d, zaś powierzchnia połowy kuli — 2 w 2, zatóm 
powierzchnia czaszki TiAC—2ar2— 2 nrd ~ 2  nr (r— d) —2 nrh 
t. j. powierzchnia czaszki róiona się także iloczynowi z okrę­
gu koła wielkiego przez jej wysokość.

Kiedy tak powierzchnia pasa sferycznego jako i czaszki 
równa się iloczynowi z okręgu koła wielkiego przez wyso­
kość pasa lub czaszki, zatem jeżeli średnicę kuli podzieli­
my na ilekolwiek części równych, a przez punkta podziału 
poprowadzimy płaszczyzny prostopadłe do tejże średnicy, a 
przeto równoległe do siebie, te podzielą całą powierzchnią 
kuli na tyleż pasów wraz z dwiema czaszkami między sobą 
równych co do powierzchni.

§. 281.
Znalazłszy wyrażenie powierzchni kuli, możemy teraz 

w miejsce podanych w §. 277 i 278 wyrażeń powierzchni 
dwukąta sferycznego i powierzchni trójkąta sferycznego dać 
inne. I tak: powierzchnią dwukąta znaleźliśmy D =  2A a to 
z proporcyi D : 8 =r A : 4. w której 8 wyrażało powierzchnię 
kuli a 4 znaczyło 4R i dla tego to ostrzegałem tamże, iż 
w tćm wyrażeniu są dwie jednostki t. j .  jednostka powierz-
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chni i jednostka kątowa. Tę proporcyją możemy teraz tak 
napisać D :4nr2 =  A°: 360°, jeżeli przez r rozumiemy promień 
kuli, na którćj dwukąt D uważamy. Z tej proporcyi wypada 

A  A
D =  36(V =  "90"m'1' Zastanowiwszy się nad tern wy­

rażeniem, dostrzeżemy zaraz, że ot-3 jest czwartą częścią po­
wierzchni kuli czyli jest powierzchnią dwukąta o kącie pro-

A
stym, zaś jest rzeczywiście liczbą oderwaną pokazu­

jącą, jaką jest częścią dwukąt D, którego kąt A , względem 
pierwszego, który tóż dwukątem prostokątnym nazwać można. 
Biorąc dwukąt prostokątny za jednostkę powierzchni a kąt 
prosty czyli 90° za jednostkę kątową, mielibyśmy D == A. 
Nic łatwiejszego, jak sobie zdać sprawę z wyrażenia D = A ;  
podzieliwszy bowiem dwukąt prostokątny na ilekolwick części 
równych przez prowadzenie kół wielkich, kąt jego podzieli 
się także na tyleż części równych; jaką więc częścią będzie 
kąt jednego z tych dwukątów względem kąta prostego, taką 
tćż częścią będzie powierzchnia jego względem powierzchni 
dwukąta prostego. Oznaczając powierzchnią dwukąta pro-

D A
stego przez D ' będzie yy- =  a biorąc D ' za jednostkę

. D A
powierzchni, zaś 90 za j  ednostkę kątową, będzie —r  —  —y—

czyli D =  A. Z tego też jeszcze widzimy, że powierzchnia 
dwukąta prostokątnego równa się powierzchni koła wielkie-

A  2A ot-2
go kuli. Ponieważ D =: . nr- — ■ ^  ^ , gdzie czynnik

nr'1 4 nr*
~~2 ~ — —g—  t. j. równa się ósmej części powierzchni kuli,

OT*2 . . . .
przeto wziąwszy tu _ ^ czyli powierzchnią trójkąta sferycz­

nego o trzech kątach prostych za jednostkę powierzchni, a 
kąt prosty znowu za jednostkę kątową, otrzymamy D “ 2A



383

t. j. wyrażenie §. 277. Z togo wszystkiego wniesiemy, że 
wyrażenie powierzchni dwukąta sferycznego D , którego kąt 
A, może być D =  A lub D =  2A. W  obu wyrażeniach je­
dnostką kątową jest kąt prosty, jednostką atoli powierzchni 
w pićrwszćm, jest dwukąt sferyczny prostokątny, a w dru- 
gióm trójkąt sferyczny o trzech kątach prostych.

Co do powierzchni trójkąta sferycznego, tę znaleźliśmy 
równą przepełnieniu sferycznemu; które wyrażenie nic inne­
go nic znaczyło tylko, że powierzchnia trójkąta sferycznego 
jest taką częścią powierzchni trójkąta sferycznego o trzech 
kątach prostych, jaką częścią jest przepełnienie jego sfery­
czne względem kąta prostego. Oznaczając zawsze przez S 
powierzchnią trójkąta sferycznego ABC, wyrażenie w przy­
wiedzionym wyżej §. znalezione S = Ą + B + C — 180 wy-

. , , . S A + B  +  C — 180raźniej tak powinno byc napisane - j -z = ----------- -r—------------- .11 yo
Jeżeli teraz w miejsce 1 położymy Jnr! t. j. powierzchnią

S A  +  B +  C — 180
trójkąta jednostkowego, będzie

SM s =  Ą + B + C -i80
3 90

2.90 -nr , __A ~f-B -j~ C 180__2
180

W  tćm wyrażeniu powićrzchni trójkąta sferycznego jasno wi- 
.............................. A +  B +  C - 180

dzimy, iż czynnik ---------y—̂ ----------  wyraża stosunek prze­

pełnienia sferycznego do dwóch kątów prostych i jest rzeczy­
wiście liczbą oderwaną wskazującą, jaką częścią jest po­
wierzchnia trójkąta sferycznego względem takiegoż trójkąta 
o trzech kątach prostych; bo \nr'1 wyraża powierzchnią tego 
ostatniego trójkąta. \

W  użyciu powyższego wzoru potrzeba tylko następu­
jącą uwagę mieć na baczności: przepełnienie sferyczne 

A +  B +  C — 180
może być w stopniach, minutach i sekundach, lub w minu­
tach i sekundach, lub nareszcie w samych tylko sekundach, 
w każdym jednak przypadku przepełnienie to możemy do­
wolnie wyrazić w stopniach, minutach lub sekundach. Jeżeli
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przepełnienie wyrażamy w stopniach, tedy przez stósunek
A +  B -f-C — 180 , , , , .
----------jgPj----------potrzeba rozmnożyć nr2, a iloczyn będzie

powierzchnią trójkąta sferycznego. Jeżeli zaś przepełnienie 
wyrażamy w minutach, potrzeba tćż 180 obrócić na minuty 
a stósunek przepełnienia będzie

A  +  B +  C — 180 A + B  +  C — 180
180.60 —  10800 5

przez ten stósunek rozmnożywszy nr", mieć będziemy po­
wierzchnią trójkąta sferycznego. Jeżeli nakoniec przepeł­
nienie wyrażamy w sekundach, potrzeba też i 180 obrócić 
na sekundy, a stósunek przepełnienia będzie

A - f  B +  C — 1 8 0 _ A  - f B  +  C — 180
180.60.60 — 648000 ’

przez który rozmnożywszy nr", otrzymamy żądaną powierz­
chnią trójkąta sferycznego. Za przykład tego postępowania 
wziąść można podany w §. 278. Ale jako trójkąt sferyczny 
o trzech kątach prostych jest połową dwukąta sferycznego 
prostokątnego, tak też używając w przywiedzionym §. poda­
nego wyrażenia, potrzeba za nr2 wrziąlć Inr2, kiedy za
A - f B  +  C — 180 . A - f B - f C  — 180

— bierze się — -180 90.
§. 282.

Przystąpmyź nareszcie do znalezienia objętości kuli. 
Jak w dochodzeniu każdej prawdy najpewniejsza, a zatem 
najbezpieczniejsza jest droga porównywania, jak to już 
wielokrotnie wspomniałem, tak i tu taż sama droga zapro­
wadzić nas może do pewnego wypadku. Kula swym kształ­
tem najpodobniejszą jest do wielościanu foremnego o nies­
kończonej liczbie ścian, przeto jak znaleźliśmy objętość wie- 
lościanów foremnych, tak tćż i objętość kuli znaleść możemy.

Na ten koniec wystawiwszy sobie przez którykolwiek 
punkt powierzchni kuli poprowadzoną nieskończoną liczbę 
południków, te podzielą nam całą powierzchnią kuli, jak wie­
my, na nieskończoną liczbę bardzo wązkich dwukątów; jeże­
li potem do wspólnej średnicy, wr której się wszystkie co do-
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pióro poprowadzone południki przecinają, poprowadzimy zno­
wu nieskończoną liczbę płaszczyzn prostopadłych, które jak 
także wiemy, przetną powierzchnią kuli w nieskończonej 
liczbie równoleżników, przez wzajemne przecięcie się okrę­
gów południków, z okręgami równoleżników, cała powierzch­
nia kuli podzieloną zostanie na same nieskończenie małe czwo­
rokąty sferyczne, a przy biegunach równoleżników, na trój­
kąty sferyczne również nieskończenie małe. Dla tej nieskoń­
czonej małości tak czworokątów, jako i trójkątów', uważane 
będą być mogły tak pierwsze, jako i drugie, za płaskie czy­
li prostokreślne. Pomyśliwszy sobie dalej przez każdy bok, 
tak czworokąta jako i trójkąta, tudzież przez środek kuli, 
poprowadzone płaszczyzny, te przez wzajemne przecięcie się 
z sobą, podzielą całą kulę na ostrosłupy sferyczne czworo- 
ścienne i trójścienne. Podstawy tych ostrosłupów, można bez 
znacznego błędu, jako już wspomniałem, uważać jako płas­
kie. Ze środka kuli wystawriw'szy sobie na każdą podstawrę 
spuszczoną prostopadłą, ta spotkają w jej środku i będzie wy­
sokością ostrosłupa. Ta wrysokość, jak nie trudno dostrzedz, 
będzie oraz promieniem kuli, gdyż wszystkie podstawy leżą 
na jej powierzchni. A że objętość każdego takiego ostro­
słupa, według §. 235 wniosek 4 , równa się iloczynowd z po­
wierzchni jego podstawy przez trzecią część wysokości, za­
tem kiedy wysokości wszystkich ostrosłupów są sobie równe 
i rówme promieniowi kuli, summa objętości wszystkich ostro­
słupów, równa się iloczynowi z summy powierzchni ich pod­
staw' przez trzecią część wspólnej ich wysokości. Ale sum­
ma powierzchni podstaw ostrosłupów równa się powierzchni 
kuli, zatem objętości kuli równa się iloczynowi z jej powierz­
chni przez trzecią część promienia.

W n io s e k . Nazwawszy promień kuli r , jój powierzch­
nia — 4tit2 §. 279, zatem objętość kuli będzie 

=  47rr2X 3 » ’ — ^ r 3.
Uwaga. Prostszego i bardziej przekonywającego dowo­

du nad powyższy nie znam, nie przeczę jednak, że nie jest
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ścisły geometryczny; żądający przeto ściślejszego dowodu, 
zechcą poprzedzić go rozwiązaniem następującego zagadnienia.

§. 283.
Z agadnienie. Przez wierzchołek którykolwiek, jakiego­

kolwiek danego trójkąta prostokreślnego poprowadziwszy id ja­
kimkolwiek kierunku prostą nieograniczonej długości i około 
niej jako około osi obracając trójkąt dany dopóki nie powróci 
do pierwszego swego położenia, znaleśó objętości ciała zrodzo­
nego, przez obrót tegoż trójkąta.

Niech ABC fig. 2G5 będzie trójkątem danym, niech przez 
wierzchołek jego C poprowadzoną będzie prosta PQ nieo­
graniczonej długości, obracając ten trójkąt około PQ, ale tak, 
iżby kąt BCQ, lub ACQ był w całym obrocie stałym i nie­
zmiennym, mamy znaleść objętość ciała zrodzonego przez 
tenże trójkąt.

Dla rozwiązania tego zagadnienia przedłużmy bok AB 
trójkąta danego, aż do spotkania się z osią obrotu PQ , w 
punkcie D; z punktów A i B spuściwszy prostopadłe AE i 
BF na oś obrotu; bez trudności widzimy, że obracając trójkąt 
CAD około PQ, ciało przez niego zrodzone składać się będzie 
z dwóch ostrokręgów prostych: t. j. ostrokręgu zrodzonego przez 
trójkąt AEC i ostrokręgu zrodzonego przez trójkąt AED. Te 
ostrokręgi mają za spoiną podstawę koło z promienia AE, a 
wysokość pierwszego jest CE, a drugiego DE; objętość prze- 
to pierwszego =  ;rAE .£CE, a drugiego ~  jtAE .^DE. Ob­
jętość przeto ciała zrodzonego przez trójkąt ACD

=  ^ .A E 2(CE -f-D E ) =  arAE2.jCD.
Ale w obrocie tym trójkąt CBD rodzi również ciało z dwóch 
prostych ostrokręgów złożone t. j. ostrokręgu zrodzonego przez 
trójkąt CBF i ostrokręgu zrodzonego przez trójkąt BFD. Te 
ostrokręgi mają za spoiną podstawę koło z promienia BF, a 
wysokość pierwszego jest CF, a drugiego FD. Objętość pićr-
wszego ostrokręgu =  ttBF .jCF, objętość zaś drugiego 

=  jtB F . JF D ;
przeto objętość ciała zrodzonego przez trójkąt CBD

=  J^BF2(CF - f  DF) =  BF2. JCD.
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A że objętość ciała zrodzonego przez trójkąt ABC jest ró­
żnicą między ciałem zrodzonem przez trójkąt ACD, a ciałem 
zrodzonem przez trójkąt CBD, zatem objętość ciała zrodzo­
nego przez obrót trójkąta ABC

=  *A E 2.JCD —  *rBFa.$CD =: ’ ttCD(AE* — BF2)
=  $wCD(AE -+- BF)(AE —  BF)

Z punktu B poprowadziwszy równoległą do PQ, aż do prze­
cięcia się jej z prostopadłą AE w punkcie G, będzie 

A G -=  AE —  GE =  AE —  BF, 
a następnie objętość ciała zrodzonego przez trójkąt ABC 

=  Jff.CD.AG(AE -J- BF).
Figura ĄEFB jest trapezem, którego dwa boki AE i BF są 
równoległe; podzieliwszy przeto jeden z dwóch pozostałych 
np. AB na dwie części równe w punkcie H, i z tego punktu 
poprowadziwszy HI równoległą do AE i BF, a zatem pro-

AT? T>T̂
stopadłą do PQ, wiemy z §. 123, że HI — ----- -------- , skąd

Z
A E -j-B F  =  2HI, przeto objętość ciała zrodzonego przez trój­
kąt A B C = ^ .C D .A G .2 H I=  jjjrCD.AG.HI.
Z wierzchołka C spuściwszy prostopadłą CK na AB, trójkąt 
CKDcwAGB bo są równokątne, zatem AB ; AG =  CD ; CK, 
skąd CD.AG =  AB.CK
a objętość ciała zrodzonego przez trójkąt ABC 

=  ij7rAB.CK.HI =  2xHI.AB.^CK.
Ale iloczyn 27tHI.AB , wyraża powierzchnią krzywą ostro- 
kręgu ściętego przez bok AB zrodzoną, przeto objętość ciała zro­
dzonego przez obrót trójkąta około osi przez jeden z jego wierz­
chołków poprowadzonej, równa się iloczynowi z powierzchni 
zrodzonej przez bok przeciwległy kątowi przez który oś obrotu 
przechodzi, przez trzecią część wysokości tegoż trójkąta, uwa­
żając bok rodzący powierzchnią krzywą za podstaioę.

Ponieważ AB.CK =  2ABC t. j. ten iloczyn równa się 
dwarazy wziętej powierzchni trójkąta ABC, zatem objętość 
tyle razy rzeczonego ciała przez trójkąt ABC zrodzonego 

— ABC.|«.HI =  ABC.§.2ttHI,
t. j. objętość ta równa się iloczynowi z powierzchni trójkąta,

25.
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rozmnożonej przez j  okręgu kola z promienia równającego się 
prostopadłej na oś obrotu, ze środka podstawy trójkąta spusz- 
czonśj.

W  przypadku, że trójkąt ABC jest równoramienny, t. j. 
że A C =B C , prostopadła z jego wierzchołka C pada na środek 
boku AB jig. 266, a powierzchnia trójkąta ABC =  AB.|HC 
którą ważność położywszy w ostatniem wyrażeniu, znajdzie- 
my objętość ciała zrodzonego przez obrót trójkąta równora­
miennego

— AB4 HC.jl.7rHI =  §ttAB.HC.HI.
Ale trójkąt ABGcvCHI, bo boki jednego są prostopa­

dłe do boków drugiego, zaś z podobieństwa ich mamy 
AB : BG =  HC :H I, skąd A B .H I~B G .H C  =  EF.HC. W ło­
żywszy tę ważność w ostatnie wyrażenie, będzie objętość cia­
ła zrodzonego przez trójkąt równoramienny

=  jj7rHC.EF.HC =  §*.HCS.E F = jrHC®. ~
3

t. j. ta objętość' równa się iloczynowi z powierzchni kola z pro­
mienia równającego się wysokości trójkąta, przez § rzutu je ­
go podstawy na oś obrotu, §. 208.

W  dwóch poprzedzających przypadkach braliśmy poło­
żenie osi takie, że podstawa trójkąta przedłużona spotykała 
tęż oś w pewnym punkcie; lecz to nie jest koniecznym wa­
runkiem okazanej prawdy. Weźm^ bowiem położenie osi 
równoległe do podstawy, jak nam jig. 267 przedstawia, tedy 
z punktów A, B, spuściwszy prostopadłe AE i BF na oś 0- 
brotu i wystawiwszy sobie, że cała figura CABF obraca się 
około PQ, w tym obrocie prostokąt ABFE zrodzi walec, któ- 
rego objętość = : 7rAE .EF =  ,-rHC .EF, gdzie HC jest wyso­
kością trójkąta ABC. Trójkąt ACE zrodzi ostrokrąg, któ­
rego objętość =  ttAE 24 CE =  jtH C ^ C E . Podobnież trójkąt 
BCF zrodzi ostrokrąg którego objętość

=  TrBF^CF -  ttH Ć I.C F .
A że ABC ~  ABFE -j- ACE —  BCF, zatem i objętość ciała 
zrodzonego przez trójkąt ABC
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jest =  nHC2.EF + 7rHC‘2.^CE — ttH C ^ C F

=  7lHCa(E F +  ^CE— ^ C F )-^ H C 2[EF +  J(CE — CF)] 

= ^ H C 2[EF -  J(CF— CE)] =  ̂ HCa(EF — iE F )= ^ H C 2.§EF
jak w poprzedzającym przypadku.

Uwaga. Lubo do naszego zamiaru tylko drugi przypa­
dek jest nam potrzebny, rozwiązaliśmy atoli to zagadnienie 
w każdym innym przypadku dla pokazania, jak sobie w po­
dobnych zdarzeniach radzić można.

§. 284.
Po takićm przygotowaniu, w piszmy w półkole i na niem 

opiszmy połowę wielokątów foremnych i podobnych ABCDEFG 
i A 'B '0'D 'E 'F 'G* fig. 268, a prowadziwszy promienie SA, 
SB, SC i t. d. i te przedłużywszy aż do boków wielokąta 
opisanego t. j. do A', B', C' i t. d. ponieważ środek koła S 
jest oraz środkiem obu wielokątów, zatem nie tylko

SA =  SB =  SC =  i t. d.
ale też SA' =  S B '= S C ' =  i t. d., tudzież SH;=  SI := SK =: i 
t. d. §. 103 wniosek 1. Jeżeli teraz wszystkie te trzy figu­
ry obracać będziemy około średnicy AG, jako około osi, dwa 
wielokąty zrodzą każdy powierzchnię krzywą złożoną z dwóch 
ostrokręgów prostych zwyczajnych i samych ostrokręgów u- 
ciętych, a półokręgu zrodzi powierzchnię kuli; każdy więc 
z wielokątów ograniczy pewną przestrzeli, czyli zrodzi ciało 
ograniczone powierzchniami krzywemi, a półkole zrodzi kulę. 
Obrachujmy objętość ciał zrodzonych przez połowy wielo­
kątów. Na pićrwszy rzut oka widzimy, że każde z tych ciał 
złożone jest z tylu ciał zrodzonych przez trójkąty równora­
mienne równe, ile połowa wielokąta ma boków, zatem obra- 
chowanie objętości, każdego według poprzedzającego §. jest 
nader łatwćm.

r
I tak: objętość ciała zrodzonego
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przez trójkąt ASB jest ' =  j}/r.HSa.Aó

n rj BSC n * • * • =  fjrSI *.6c =  §*.HS9.&c

n n CSD n =  §*ŚKa.cS =  §*.HŚa.cS

r> n DSE r> * • • • — 37tSL .Se — jj7T.Hte2.Se

n n ESF r> • • • =  §nSM2. e / =  §tt.HŚ2.e /

n » FSG n • • • • =  S^SŃ2-/G = §* .H S a./G

objętość przeto ciała zrodzonego przez ABCDEFG jest

= § wŚH2(A H -6 c+ cS -| -S e+ e /+ /G )= | «.Ś H 2.AG. 
Na mocy zupełnie podobnego rozumowania znajdziemy, że 
objętość ciała zrodzonego przez obrót połowy wielokąta

A ’B’C 'D 'E 'F 'G ' jest =  ^ .S H 'a.A'G'.
Aby teraz zrobić wniosek na objętość ciała zrodzonego przez 
obrót półkola, czyli na objętość kuli, uważmy tylko, że ta 
przypada pomiędzy dwie znalezione objętości, które, skoro 
ciągle podwajać będziemy liczbę boków obu wielokątów, co­
raz bardziej a bardziej zbliżają się do siebie, gdyż SH cią­
gle dążyć będzie do SH' a AG do A 'G ’. Pomyśliwszy so­
bie liczbę boków wielokątów nieskończenie wielką, w takim 
razie, jak to już mieliśmy sposobność przekonać się dowo­
dnie , SII stanie się równe SH', zaś AG =  A ’G' i objętości 
obu ciał wyżćj znalezione zrównają się z sobą; a przypuściw­
szy nawet między niemi różnicę, ta koniecznie jest tćj natu­
ry, iż się wyznaczyć nie da, mogąc być mniejszą niż wszel­
ka jakkolwiek mała ilość. Kiedy więc przy nieskończonej 
liczbio boków wielokątów, objętości ciał przez też wielokąty 
zrodzonych, są sobie prawie równe, więc bez żadnego pra­
wie błędu wnieść możemy, że objętości ciała między niem 
środkującego czyli objętość kuli, równa się objętości jednego 
z nich. Tak tedy przez ścisłe geometryczne rozumowanie i 
dowodzenie znajdujemy, że
objętość kuli =  jj;rSH'a.AG.
Położywszy promień kuli =  r, będzie

SH' =  SH =  r, AG =  A 'G ' =  2r,



a objętość kuli =  ^ńr^SrzzzĄnr^Ąr —  |srr3
t. j.  objętość kuli równa się iloczynowi z jej powierzchni przez
J promienia tejże kuli, jak w §. 282 znaleźliśmy.

§. 285.
D efiniCYJA. Część kuli zrodzona przez obrót wycinka 

kołowego nazywa się wycinkiem kulistym (sector sphaericus).
Aby znaleść objętość takiego wycinka kulistego, uważ- 

my np. wycinek kołowy BSD fig. 268; ten w obrocie około 
AG zrodzi ciało, którego objętość według poprzedzającego 
przypada pomiędzy g?rHS '.bS i §«H'S .b‘S; w razie atoli, źo 
liczba boków obu wielokątów staje się nieskończenie wielką, 
dwie te objętości stają się prawie sobie równe, bo HS=:It'S, 
óSr=ó 'S , a tćm bardziej objętość wycinka kulistego, równa 
się którćjkolwiek z nich; przeto położywszy i tu H ’S =  r, 
będzie objętość wycinka kulistego —  §7rr2.óS n  2m\bSĄr. 
Lecz 2rtr.bS jest powierzchnią pasa sferycznego przez łuk 
BCD zrodzonego §. 280, zatem objętość icycinka kulistego ró­
wna się iloczynowi z jego powierzchni przez trzecią część pro­
mienia kuli.

§. 286.
Od objętości połowy kuli, której promień r, odjąwszy 

objętość wycinka kulistego zrodzonego przez wycinek koło­
wy BSE Jig. 269, pozostanie się jak widzimy ostrokrąg ma­
jący za podstawę czaszkę sferyczną ACB. Ostrokrąg ten 
właściwiej nazwaćby należało wycinkiem kulistym niż poprze­
dzający; atoli ponieważ ostatnia nazwa we wszystkich dzie­
łach tak naszych, jako i obcych nadawana jest bez różnicy 
tak pierwszemu, jako i drugiemu, zatem zachowramy dla pierw­
szego tęż sarnę nazwę, a ostatni nazywać raczej będziemy 
ostrokręgiem sferycznym, dając przez przymiotnik sferyczny 
poznać, iż podstawa ostrokręgu nie jest płaską, ale częścią 
powierzchni kuli.

Szukajmyż więc wyrażenia objętości ostrokręgu sfery­
cznego. Według tego co dopiero powiedzieliśmy, objętość 
ta jest =  r3— §7n’2.S D = ^ r 2(r— SD)-=:g^r4CD ~2m\CD.!jr.
A że 2nr.CD jest wyrażeniem powuerzchni czaszki służącej
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za podstawę ostrokręgowi, zatem objętość ostrokręgu sferycz­
nego równa się iloczynowi z powierzchni jego podstawy przez 
trzecią część promienia kuli.

§• 287.
Część kuli ograniczona czaszką sferyczną i płaszczy­

zną, nazywa się właściwie odcinkiem kulistym, jak to już 
w §. 271 wspomniałem. Aby znaleśe jego objętość, dosyć 
będzie od objętości ostrokręgu sferycznego, odjąć objętość 
ostrokręgu zwyczajnego, którego podstawą jest podstawa od­
cinka a wysokcścią odległość tejże podstawy od środka kuli. 
Zatem objętość odcinka kulistego ACBA jest

=  S «r«.C D - -ttA D 2. j d s = t { ‘Zr"1 CD —  A D 2. DS

2r2 C D — AD (r — CD) }•
Ale według §.90 AD 2= D F .C D = (C F — C D )C D =(2r— CD)CD 
położywszy więc C D ~ w , będzie objętość odcinka

S =  -jj- | 2r2w —  ( 2r — w ) (r  —  w ) w j =  nw j rw —  3W2 j.
Położywszy promień podstawy odcinka AD :=r p jest

p24 -w 2 (>2—j—w2
p2= w (2 r— w) § .9 0 , skąd r —  - 2 w zatem rw = -

zas rw -
e2 w2 

>w2= T + - 2

" 2 w2

w 2 w 2
= : (T -j- —w— a następnie

S =  ?rw ( -s -  +  —w~) =  £jre2w -j- £ttw3 =  Jff?2w -f- jjjrw 3

=  7̂T(52w «(t )
t. j . objętość odcinka kulistego o jednej podstawie, składa się 
z summy objętości dwóch ciał, a mianowicie z połowy obję­
tości walca mającego podstawę i wysokość równe podstawie i 
wysokości odcinka i z objętości kuli z promienia równającego 
się połowie wysokości odcinka.
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§. 288.
Znalazłszy objętość odcinka kulistego, łatwo teraz zna- 

leść objętość odcinka o dwóch podstawach czyli kloca kuli­
stego. Na fig. 269, skoro kulę przetniemy jeszcze inną płasz­
czyzną A 'B ' do pierwszćj równoległą, otrzymamy kloc ku­
listy zawarty między dwoma kołami A ’B' i AB i pasem sfe­
rycznym przez łuk B ’B zrodzonym.

Dla znalezienia objętości tego kloca, którą przez K, 
a promień podstawy A'B' przez p’, wysokość odcinka o pod­
stawie A'B' przez w ', a wysokość kloca przez w oznaczy­
my, u ważmy tylko iż, oznaczając jeszcze objętość odcinka 
kulistego o podstawie A' B przez S', objętość o którą chodzi,

p ' 2 w ' 2
jest różnicą między S' i S, ponieważ zaś S’~ ? r w ' —g~)

stosownie do poprzedzającego §. więc
p'2 w '2 p2 w 2

k = s' - s = . w* ( Y + - 6 - ) - ™ ( V + n r )  =
(w ' — w ) ( p 'a-j-p2— w 'w ) t w '3— w3

2 ' +  6
Ale z Arytmetyki §. ł l  wiadomo, że

w'3 —  w3 =  (w' —  w )(w '2-|-w2-|-w’w)
( e '2- !" ? 2 ( w' —w ) 2zatem K r  ar( w’—  w ) j ------ -̂----+ -------- g—  '

Ponieważ wysokość kloca nazwaliśmy w, zatóm w' —  w — w
p ' 2 - j - p 2 w 2  ̂ 7 1 W 3

a następnie K~nw {----- -̂---- +  ~g~) — \^q' g—

/ w \ 3
=  J ?rp’2w  -{ -  iw p 2M! - f -  ^Ttw3 ■= J ( iiq'*w - f -  STp2w  )  -4 - { - g - J ;

skąd się pokazuje, że objętość kloca kulistego równa się po­
łowie summy objętości dwóch walców mających toysokość rów­
ną wysokości kloca, a za podstawy jeden dolną a drugi gór­
ną podstawę kloca, powiększonej objętością huli z promienia 
równającego się połowie wysokości kloca.
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§. 289.
Pozostaje nam jeszcze znaleść objętość klina kulistego 

§• 271.
Poprowadziwszy dwie- do siebie prostopadłe płaszczyzny 

południków, ^ę podzielą całą objętość kuli na cztery kliny 
kuliste między sobą równe, a których podstawami są dwu- 
kąty prostokątne §. 281. Objętość takiego klina kulistego 
prostokątnego, jest oczywiście czwartą częścią objętości kuli 
czyli ytrr3, jeżeli przez r jej promień oznaczymy. Kąt rze­
czonej podstawy podzieliwszy na ilekolwiek części równych 
i przez te podziały poprowadziwszy płaszczyzny tyluż połu­
dników, te podzielą klin prostokątny na tyle mniejszych kli­
nów między sobą równych, na ile części kąt dwukąta pod­
stawy był podzielony; każdego zatem z tych ostatnich klinów 
objętość taką częścią będzie objętości klina prostokątnego, 
jaką częścią jest kąt dwukąta służącego mu za podstawę 
względem kąta prostego czyli 90°. Oznaczywszy przeto ob­
jętość klina kulistego przez M£, a'kąt jego podstawy przez A, 
objętość zaś klina prostokątnego przez JŁ', będzie

A
JSC K  =  A :90  skąd M£= ^  . K'

A  A
Ale JK'=rJffr3, zatem JK==-q q .Jjzr3= -g Q » r a . Jr

AA że wyraża powierzchnię dwukąta służącego za pod­

stawę klinowi §. 281, zatem objętość klina kulistego równa 
się iloczynowi z powierzchni jego podstawy t.j. z powierzchni 
dwukąta służącego mu za podstawę przez trzecią część pro­
mienia kuli. , -

§. 290.
T wierdzenie. Powierzchnie dwóch kul różnych pro­

mieni są w stosunku kwadratów tychże promieni lub średnic, 
a ich objętości w stosunku sześcianów tychże samych wymiarów.



395

Powierzchnie dwóch kul oznaczmy przez P i p, ich pro­
mienie przez R i r, a objętości przez K i i ,  tedy, ponieważ 
według §. 279 jest

P =  4;tR2, a p — 4jw2 
zaś według §.282 K = § » R 3, a k —  \nr3
zatem P :p  =  4wR-:47rr2~  R 2:r 2

K :A  =  4»rR3:4 »r3 =  R3:r 3.
S s •

Położywszy R ~  a r ~  , gdzie S i s wyrażają śre-

S2 s2
dnice tych kul, będzie P r y z - j :  j -  =  S2:s2

S3 s3
tudzież K :k —  - g - : -g- =  S3: s3

co należało dowieść.
W niosek. Z §. 169 wiemy, co są wycinki koła. po­

dobne; jeżeli takie wycinki obracają się około osi, tedy ich 
łuki rodzą powierzchnie pasów sferycznych, a same wycinki 
rodzą wycinki kuliste. Tak pasy sferyczne jako i wycinki 
kuliste przez takie wycinki kołowe zrodzone, nazywają się 
także podobnemi. Ze powierzchnie pasów sferycznych podob­
nych, są w stosunku kwadratów z promieni lub średnic, lub 
nareszcie ich wysokości, a wycinki kuliste w stósunku sze­
ścianów z tychże samych wymiarów, sądzę iż nie potrzebuję 
dowodzie, bo ten dowód każdy łatwo znajdzie wyraziwszy 
tylko tak powierzchnie pasów jako też i objętości wycinków 
według §§. 280 i 285.

Zakończenie rozdziału o ciałach okrągłych.

§• 291.
Dla łatwiejszego dostrzeżenia stósunku trzech ciał okrą­

głych, mianowicie zaś stósunku ich objętości, zbierzmy tu 
pod jeden widok to co w poprzednich §§. o tych objęto- 
ściach dowiedliśmy.

Niech r będzie promieniem kuli, tudzież promieniem tak 
podstawy walca jako też i ostrokręgu, niech oprócz tego w 
będzie wysokością tych dwóch ostatnich ciał lecz tak, że
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w ~ 2 r t. j. wysokość tak walca jako i ostrokręgu niech 
będzie równa średnicy kuli, tedy te trzy ciała będą wzglę­
dem siebie tak jak nam je  fig. 210 przedstawia. Z tych 
pierwsze t. i. walec możemy tu nazwać opisanym na kuli a 
ostrokrąg wpisany w kulę, lubo ta nazwa nie zupełnie mu 
przystoi, gdyż nie cały ostrokrąg objęty jest kulą. Z ta- 
kiemi wymiarami objętości każdego z tych trzech ciał są jak 
następuje, oznaczając je  przez W , O, K,

objętość walca =  2nv3 
„ ostrokręgu —  \nr3 
„ kuli =  %7tr3

przeto W : O : K =  2: § : | =  1 : $ : jj =  j j ; $ : | = 3 : 1 ; 2  
albo 0 : K : W =  1 : 2 : 3
z czego widzimy, iż w takim przypadku objętość kuli jest 
2 razy, a objętość walca 3 razy większa od objętości ostro­
kręgu.

Jeżeli ostrokrąg jest ścięty płaszczyzną równoległą do 
podstawy, a promień wyższej jego podstawy oznaczymy przez 
r', a wysokość przez w objętość ostrokręgu ściętego będzie 
=  ^mv ( r 2- j-r '2-f-rr' ).

Oznaczywszy promień podstawy odcinka przez ę a wy­
sokość przez iv,
objętość jego jest =  l.nr^w-^lnw3.

Jeżeli r jest promieniem kuli a w wysokością czaszki, 
natenczas objętość ostrokręgu sferycznego mającego tęż czasz­
kę za podstawę jest =  %nr2w.

Nakoniec niech q będzie promieniem dolnej a q' promie­
niem podstawy górnej kloca kulistego, zaś w jego wyso­
kością czyli odległością podstaw, tedy

p'2 ęa-f-p'a w2
objętość tegoż kloca n (----- -̂---- ic-j-^w3) ~m v(----- ^

§. 292.
Opisawszy na okręgu koła kwadrat ABCD i trójkąt 

foremny czyli równoboczny LMN fig. 271 tak, iżby podsta­
wy tak kwadratu AB jako i trójkąta LM były stycznemi do 
okręgu koła w jednymże punkcie E, a potem obracając tak



półkole jako też prostokąt BCFE i trójkąt ENM około osi 
NE, w tym obrocie trzy te figury zrodzą nam trzy ciała 
t. j .  kulę, walec i ostrokrąg, których stosunek jest dosyć 
ciekawy i dla tego tu jeszcze podać go przedsięwziąłem.

Samo spojrzenie na figurę przekonywa nas, że 
AB =  E F =r2r, jeżeli przez r promień tego tu kola rozu­
miemy. W  §. 161 położywszy a, — r, będzie at bokiem 
sześciokąta foremnego w koło wpisanego, zatem a bokiem 
trójkąta foremnego w toż koło wpisanego. Ale z wzoru

a, — V2ra — rV4ra —  a- w tymże §. otrzymanego, przez pro­
ste arytmetyczne działanie znajdziemy

a — —  Vdr 2 —  a, 2 
r 1 #

skoro więc położymy ai ~ r  znajdziemy, a =  rV3, a to jest 
ważnością boku trójkąta foremnego w koło wpisanego. Kła­
dąc teraz w §. 162 rV3 za a, otrzymamy A —  2rV3, a to zno­
wu jest ważnością boku trójkąta na kole opisanego , z któ­
rej widzimy, iż bok trójkąta na kole opisanego jest dwa razy 
większy od boku trójkąta w toż koło wpisanego. W  obecnym 
przeto przypadku jest NL =  LM =  2rV3, 
zaś ŃE2 =  LN2 —  LE 2 =  LN2 —  (,lLM)2= 9 r 2 skąd N E=3r. 
Mając już przygotowane potrzebne ilości, porachujmy tak 
powierzchnie jako i objętości tych trzech ciał, a znajdziemy

Powierzchnią k u l i ...............................................=  4nr*
Objętość k u l i ..........................................................zzĄnr3
Powierzchnią boczną czyli krzywą walca . . r i  4itr"

„ całkowitą tegoż walca , . . . ^s'6nr'1
Objętość w a l c a ....................................................zrścl7ir 't
Powierzchnią boczną czyli krzywą ostrokręgu =  6jrr2

A że powierzchnia podstawy tego ostrokręgu —  n . ("SLM^" 
=  n ( ry3 ) 2 — 7i3r2, zatem

całkowita powierzchnia tegoż ostrokręgu . A — 9^r2 
objętość tegoż samego ostrokręgu = 3 jrr2X n  — 3nr3.

Porównywając więc kulę z walcem na nićj opisanym, wi­
dzimy, że jej powierzchnia równa się powierzchni bocznej



walca, a calkowitój powierzchni walca jest częściami,
objętość kuli jest też § częściami walca na niej opisanego, 
jak to już z poprzedzającego §. wiemy, skąd wniesiemy, że 
objętości 4wóch tych ciał mają się do siebie w tymże sa­
mym stosunku jak całkowite ich powierzchnio.

Porównywając następnie kulę z ostrokręgiem, dostrze­
żemy, że powierzchnia kuli jest § częściami powierzchni bocz- 
nćj ostrokręgn a £ całkowitej jego powierzchni. Ale i ob­
jętość kuli jest | częściami ostrokręgn, przeto i tu objętości 
są w stosunku całkowitych powierzchni.

Nareszcie porównywając walec z ostrokręgiem, przeko­
namy się, że tak boczne jako i całkowite powierzchnie są 
w tymże samym stosunku jak ich objętości t. j. w stósunku 
2 :3 .

Uwaga. Własność tegoż samego stósunku objętości i 
powierzchni nie jest wyłączną tylko dla walca i ostrokręgu 
na kuli opisanych, ale jest własnością ogólną dla każdego 
wielościanu, którego ściany są stycznemi do kuli. Albowiem 
każdy taki wielościan rozebranym być może, jak to już wie­
my, na tyle ostrosłupów, ile wielościan ma ścian mających 
wierzchołek spoiny w środku kuli wpisanej i wysokości ró­
wne i równające się promieniowi tójżo kuli wpisanej. Ozna­
czywszy więc objętość wielościanu przez W , jego powierz­
chnią przez P, a promień kuli wpisanej przez r, według §.
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