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01) TŁOMACZA.

Profesor E. Pascal jest autorem cennych, wydanych nakła­
dem zasłużonej firmy medyolańskiej Ul r i co Hoepli podręczni­
ków matematyki wyższej, które szybko pozyskały sobie uznanie 
w literaturze matematycznej. Jego lekcye Rachunków: różniczko­
wego, całkowego, waryacyjnego i różnicowego wydane zosta- 
przed kilkoma laty w przekładzie polskim; „Rachunek warya- 
cyjny“ wydano świeżo w przekładzie, niemieckim, a „Reperto- 
ryum“ niniejsze, któi ego tom 1 oddajemy do użytku czytelników 
polskich, ma wyjść niezadługo i po niemiecku.

W przedmowie, którą poniżej dajemy, autor wyjaśnia cel 
i zadanie swej pracy. W uznaniu jej zalet i w przekonaniu, że 
przynieść ona może pożytek naszej młodzieży, podjęliśmy ten 
przekład, kierowani nadto przeświadczeniem, że w naszej lite­
raturze, tak niezasobnej dotąd w dzieła, poświęcone wyższym czę­
ściom matematyki, książka podobna do niniejszej może być pożą­
danym nabytkiem.

Stan obecny literatury matematycznej polskiej, zwłaszcza 
w dziedzinie wykładowej — mimo pewnego ożywienia w ostat­
niej dobie —, daleki bardzo od stanu tejże literatury w innych 
krajach, potrzebom naglącym młodzieży naszej bynajmniej nie 
czyni zadość. W wielu dziedzinach matematyki wyższej nie posia­
damy dotąd wcale podręczników, a brak ten odbija się niekorzyst­
nie i na rozwoju języka naukowego polskiego; rozwój ten bowiem 
—nawet obok żywego słowa wykładowego—trudnym się staje bez 
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utrwalenia myśli naukowej w postaci wykładu książkowego we 
wszystkich przedmiotach, nad któremi pracuje matematyka nowo­
czesna. Otóż w książce tej, obejmującej w treściwym zarysie 
najważniejsze dobytki nauki, czytelnik znajdzie wyrażone w mo­
wie ojczystej niejedno w tych jej działach, o których w książ­
kach matematycznych polskich dotąd wcale nie pisano. <

W porozumieniu z autorem uzupełniliśmy przekład licznemi 
dopełnieniami oraz wskazówkami bibliograficznemi, odnoszącemi 
się do literatury matematycznej polskiej.

Pragniemy, aby ta .książką mogła stąć się pożytecznym prze­
wodnikiem dla młodzieży naszej w studyach nad nauką, „z której 
początkową tylko znajomością, jak słusznie mówi Jan Śnia­
decki, żaden kraj ani do jej pożytków nie trafi, ani do rzędu 
narodów gruntownie uczonych nigdy należeć nie będzie.“

S. I).

PRZEDMOWA AUTORA.

Celem tej książki jest podanie na możliwie niewielkiej prze­
strzeni zarysu prawie wszystkich głównych teoryj matematyki no­
woczesnej, a mianowicie z każdej teoryi tyle tylko, aby czytelnik 
mógł się w niej zoryentować i znaleść zarazem wskazówki, do 
jakich dziel ma się zwrócić, jeżeli pragnie szczegółowiej ją poznać.

Dla studenta książka niniejsza ma być rodzajem v a d e m e- 
c u m, w którem znajdzie on treściwie zestawione wszystkie po­
jęcia i rezultaty, które w czasie swych studyów przyswoił sobie 
lub zamierzał przyswoić. W błędzie byłby ten, ktoby mniemał 
że zadaniem naszem było ułożenie encyklopedyi matematycz­
nej; praca podobna przekraczałaby siły nasze i nie godziłaby się 
z rozmiarami tej książki. Dajemy w niej tylko skromne repertoryum, 
które, jak śmiemy mniemać, przynieść może skromny pożytek stu- 
dyującym matematykę.
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Porządek, jakiego trzymaliśmy się w układzie różnych części 
każdej teoryi jest wszędzie mniej więcej taki: najprzód podajemy 
definicye i pojęcia zasadnicze; potem przytaczamy (bez dowodów) 
twierdzenia i wzory oraz związki, zachodzące pomiędzy utwo­
rami i wielkościami, wprowadzonemi przez definicye zasadnicze; 
wreszcie podajemy krótką bibliografię prac, odnoszących się do 
danej teoryi.

Nie mogąc dać wszystkiego, ograniczamy się wielokrotnie na 
rzeczach najważniejszych. Trudności wyboru były tu liczne i nie­
małe i nie zawsze udało się nam pokonać je szczęśliwie: dla tego 
też ośmielamy się prosić o pobłażliwość w sądzeniu szczegółów tej 
pracy.

Z dziel pokrewnych tego rodzaju istnieją następujące: 
Laska „Sammlung von Formeln der reinen und angewandten 
Mathematik“ (trzy części, Brunświk, 1888. 1889, 1894), Hagen 
„Synopsis der höheren Mathematik“ (2 części, Berlin 1893, 1894), 
wreszcie wychodzące obecnie pod redakcyą H. B u r k h a r d t a 
i W. Fr. Meyera dzieło zbiorowe p. t. „Encyclopaedie der ma­
thematischen Wissenschaften“ (Lipsk od r. 1898). Lecz pierwsza 
z tych książek jest właściwie tylko niezbyt obszernym zbiorem 
wzorów; druga, jakkolwiek obszerna i pełna cennych wiadomości, 
nie wydaje się nam ułożoną w ten sposób, aby mogła być przy­
datną dla tych czytelników, jakichjmamy na myśli; trzecia wreszcie 
mająca być rozległą encyklopedyą matematyczną,'podającą wyczer­
pujące wiadomości o wszystkich teoryach specyalnych, będzie 
cenną bezwątpienia dla badaczy, ale ze względu na rozmiary nie­
dostępną dla początkujących zwłaszcza matematyków.

Ernesto Pascal.





ROZDZIAŁ I.

TEORIE WSTĘPNE.

§ 1-

Liczby niewymierne.

Dajmy, że mamy dwie klasy liczb wymiernych: kla­
sę A i klasę B, takie: 1° że każda liczba klasy A jest mniej­
sza od każdej z liczb klasy B; 2° że dawszy sobie liczbę o do­
wolnie małą, możemy zawsżze znaleść dwie liczby: jednę a 
w klasie A, drugą b w klasie B, aby ich różnica b— a, była mniej­
sza od u, ale nierówna zeru.

Takie dwie klasy A i В określają liczbę, która może albo 
należeć do jednej tylko z tych klas, albo nie należeć do żadnej 
i być wy m iern ą; jeżeli zaś nie zachodzi żaden z tych dwu przy­
padków. mówimy, że dwie klasy A IB określają liczbę 
ni ewymierną.

Liczba niewymierna przedstawia się tym sposobem jako 
liczba, oddzielająca klasę A od klasy B, co oznaczać będziemy 
w ten sposób: a — (//, B).

Liczbą wymierną n nazywamy mniejszą od liczby a, 
jeżeli w klasie A istnieją liczby większe od n; większą od a, 
jeżeli w klasie В istnieją liczby mniejsze od n.

Pascal. Rep. I. J



2 Rozdział I. — § 1.

Dwie liczby niewymierne a, a' nazywają się r ó w n e m i, 
jeżeli każda liczba wymierna mniejsza od a jest także mniejsza od 
a', i każda liczba wymierna większa od a jest także większa od a'.

Aby dwieliczby niewymierne ot = (A, B), 
a' = (J', B'), były równemi, jest koniecznem i do­
stateczne m, by każda liczba klasy A była mniej­
sza od jakiejkolwiek liczby klasy B' i aby każ­
da liczba klasy A' była mniejsza od jakiejkol­
wiek liczby klasy B.

Aby liczba ot była większa od liczby ot', jest 
koniecznem i dostateczne m, by istniała liczba 
klasy A, przewyższająca wszystkie liczby 
k 1 a s y A'.

Liczba fi nazywa się sumą dwu liczb a=(A, B), a'=(A', B'), 
jeżeli jest określoną przez dwie klasy liczb, które otrzymać mo­
żna, dodając wszelkiemi możliwemi sposobami wszystkie liczby 
klasy A i wszystkie liczby klasy A*, a następnie wszystkie liczby 
klasy B i wszystkie liczby klasy B'. Piszemy to symbolicznie;

fi — a. —j— Ot' = (A -j— A', B —B').

Jeżeli liczby a i a' są równe, to i a-f-y, a'-}-y 
będą równe; tu y jest liczbą, określoną przy 
pomocy klas, a-\- y i a' -j- y zaś są określone jak 
wyżej. . _

Różnica i iloczyn dwu liczb, określonych za pomocą 
klas, określamy w sposób podobny do powyższego, wykonywając 
te działania wszełkiemi możliwemi sposobami na liczbach, two­
rzących klasy. W symbolach będzie:

a — a’ = (A — A', B — B')

aa' = (A. A', B.B').

W dzieleniu dwu liczb niewymiernych a — (A, B), 
a' — (A', B') możemy przyjąć, że obie liczby są dodatnie, bo 
gdy jedna lub obie są ujemne, to dość zmienić znaki, ilorazowi 
zaś nadać znak według znanego prawidła dla liczb wymiernych. 
Możemy tedy przyjąć, że wszystkie liczby klas A, B, A', B' są 
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dodatnia i różne od zera: Dzielenie określamy za pomocą 
symbolu:

a I A B\ --T~ = I — . --- T“ I . a \ B ’ A /

Podnoszenie do potęgi i wyciąganie pier­
wiastku można określić sposobem analogicznym, po okaza­
niu, że nowe określenia nie są w niezgodzie z danem już okre­
śleniem iloczynu. W symbolach będzie:

an = (A*, B"); Va — ( V A, VB).

Przejdźmy do wykładnika niewymierne go. Niechaj 
n będzie liczbą jakąkolwiek, a zaś liczbą niewymierną: 
a— (J, B). Liczbę, określoną za pomocą dwu klas, które two­
rzymy, podnosząc n do potęg, wskazanych przez wszystkie liczby 
dwu klas A i B, nazywać będziemy potęgą a— tą liczby n 
w symbolach będzie:

na = (nA, nB), jeżeli n 1 . ,
ua = (nB, nA), jeżeli n 1 .

Własności zasadnicze liczb wymiernych i działań na nich 
wykonywanych pozostają, na podstawie nowych określeń, nie­
zmiennemu

Ogół wszystkich liczb wymiernych i niewymiernych two­
rzy obszar liczb rzeczywistych.

Są trzy główne teorye liczb niewymiernych: Dedekind a 
(Stetigkeit und irrationale Zahlen, Brunświk 1872,1892), Weie r- 
strassa (patrz Kossak, Die Elemente der Arithmetik, Berlin 
1872, i niżej cytowaną pracę P i n c h er le go) i G. C a n t o r a 
(wyłożona np, w dziele S t o 1 z a, Vorlesungen über allge­
meine Arithmetik I, § VII).

Bozprawy o teoryi liczb niewymiernych wymieniamy następujące: 
G. Cantor (Mathern* Annalen, V; Acta mathem. II), Heine (Journ.
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Crelle LXXIV), Pincherle (Giornale di matem. XVIII) D i n i, 
Fon.damen.ti par la teorica delle funzioni di variabili reali, Piza, 1878, 
przekład niemiecki Lürötha i Schepsa (Lipsk 1892); Pasch 
Differentialrechnung, 1882, Ricci (Istituto Veneto, 1893, Griorn. di 
mat. 1897); B e t a z z i (Periodico di matem. 1888, Teoria delle gran­
dezzę, Piza 1890); Dubois-Reymond Functionentheorie, Ty­
binga 1882, przekład francuski Milhauda, Paryż 1887; Tan- 
nery, Introduction à la théorie des fonctions, Paryż 1886; Bach­
mann, Irrationalzahlen, 1892, B i e r m a n n, Elemente der höheren 
Mathematik 1895). Jasny wykład teoryi można też znaleźć w dziele: 
Capelli-Garbieri, Analysis algebr., Padwa 1886.

Liczby niewymierne dzielą się na dwie kategorye: do pier­
wszej należą liczby, zwane algebraicznemi, które są 
pierwiastkami rzeczywistemi równań o spółczynnikach całko 
w i t y c h; do drugiej liczby niealgebraiczne lub prze­
stępne. Liczbami drugiej kategoryi są np liczba n i liczba e. 
Istnienie liczb przestępnych wykazał po raz pierwszy L i o u- 
ville, następnie G. Cantor. Patrz niżej rozdział XXI.

§ 2.

Liczby zespolone.

Jeżeli wprowadzimy jednostkę urojoną i, określo­
ną za pomocą wzoru i2 = — 1, to liczbą zespoloną bę­
dzie liczba postaci a -f- ib, gdzie a i b są liczbami rzeczywistemi; 
a nazywa się częścią rzeczywistą tej liczby, b—s p ó ł- 
czynnikiem części urojonej.

Dla zachowania prawideł zasadniczych rachunku należy 
przyjąć, że:

Dwie liczby zespolone są równe wtedy 
i tylko wtedy, gdy oddzielnie sąrównemiich 
części rzeczywiste i części urojone. Liczba 
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zespolona jest zerem wtedy tylko, gdy od­
dzielnie jest zerem jej część rzeczywista 
i część urojona.

Liczby zespolone dodaj emy i odejmujemy, 
dodając i odejmując oddzielnie icłiczęści rze­
czywiste i urojone.

Liczba a—ib nazywa się sprzężoną względem liczby 
a ib.

Suma dwu liczb zespolonych sprzężonych 
jest liczbą rzeczywistą. Iloczyn dwu liczb 
zespolonych sprzężonych jest liczbą rzeczywi­
stą, którą nazywamy kwadratem modułu lub nor mą licz­
by zespolonej.

Liczbę zespoloną można przedstawić w postaci t r y g o - 
metrycznej q (cos a -j- i sin a), gdzie q jest modułem, 
który można uważać zawsze za liczbę rzeczywistą dodatnią, 
a zaś nazywa się a r g u m e n t e m.

Liczby zespolone można przedstawić geometrycznie za po­
mocą punktów płaszczyzny w ten sposób, że liczbie zespolonej 
a -f- ib odpowiada punkt P o odciętej a i rzędnej b w prostokąt­
nym układzie spółrzędnych (Gauss, Werke II, str. 171, III, 
str. 6). Wtedy moduł q wyraża odległość punktu P od początku 
0 spółrzędnych, argument zaś a jest kątem, który prosta OP 
tworzy z osią odciętych.

Moduł sumy dwu liczb zespolonych jest 
m n i e j s z y o d s u m y a większy od różnicy ich 
modułów.

Moduł iloczynu lub ilorazu jest równy ilo­
czynowi lub ilorazowi modułów.

Argument iloczynu lub ilorazu równa się 
sumie lub odpowiednio różnicy argumentów.

Potęgę n-tą (n—liczba całkowita) liczby zespolo 
nej, wyrażonej w postaci t r y g o m e t r y c z n e j, 
otrzymujemy, podnosząc do potęgi n-tej moduł 
i mnożąc argument przez liczbę n (wzór M o i - 
vre'a).
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Dla liczby n wymiernej ułamkowej, po- 
27

s t a c i — , potęga n - t a, licbzy zespolonej

q (cos a -j- i sin a) jest równa:

-1— / p . . P
o ^cos — (cz —2/ijt) —j— i sin — (tz -b 2Zf7t) 

gdzie k jest jakąkolwiek liczbą całkowitą do­
datnią. Wyrażenie to ma tylko skończoną licz- 
bę różnych wartości, a mianowicie ą wartości, któ­
re otrzymujemy, kładąc za k liczby 0, 1, 2, . . q—1.

Jeżeli n jest liczbą niewymierną, określoną 
przez dwie klasy A, B, t. j. gdy n=(A, B), wt edy modu­
łem n-tej potęgi liczby zespolonej będzie q"=(Ah.B") 
(patrz § 1), jej argumentem zaś będzie liczba okre­
ślona przez dwie klasy (liczb w ogóle niewymiernych).

A (a -j- 2 Je n), B (cc -p 2 Ic ri)

gdzie j ak zwykle Je jest liczbą całkowitą dowolną. 
W tym przypadku rozwiązań jest nieskończenie wiele. 
Rozwiązanie, odpowiadające takiej wartości liczby Zr, że a-\-2Jtji 
zawiera się pomiędzy —jt i nazywa się rozwiązaniem
głó wnem.

Co do określenia wykładnika i logarytmów zespolonych 
patrz Rozdział XIII.

Przy pomocy przedstawienia geometrycznego liczb zespo­
lonych można na liczbach tych wykonywać geometrycznie dzia­
łania zasadnicze. Jeżeli A i A' są punkty płaszczyzny, 
przedstawiaj ące dwie liczby zespolone, to dla otrzy- 
maniaich sumy kreślimy równoległobok o bokach 
OA i OA' (O jest początkiem spółrz ędnych); wierz­
chołek tego równoległoboku, przeciwległy wierz­
chołkowi O, przedstawia sumę liczb zespolonych.

Różnicę wykreślamy za pomocą podobnej kon- 
strukcyi, zastosow anej nie do punktów A i A', lecz do 
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punktu A i do punktu symetrycznego względem 
punktu A' w odniesieniu do punktu 0.

Dla utworzenia iloczynu dwu liczb zespolonych 
przedstawionych przez punkty A i A', bierzemy 
na osi rzeczywistej, t. j. na osi odciętych. punkt 1 
i kreślimy trój kąt 0A1, potem trój kąt do niego podo­
bny OA’P taki, że gdy obrócimy go około punktu 0 
aż do zlania się boku OA' z bokiem Ol, to bok PA' sta­
nie się równoległym do boku Al. Wtedy punkt P 
przedstawiać będzie iloczyn liczb zespolonych.

Nakoniec iloraz dwu liczb zespolonych, przed­
stawionych przez punkty A i A', tworzymy za pomo­
cą następującej konstrukcyi: Kreślimy trójkąt 
0A1 i na OA bierzemy odcinek równy OA'; z punktu 
końcowego K tego odcinka prowadzimy prostą ró­
wnoległą do Al, która spotyka prostą Ol w punkcie 
Q, obracamy trójkąt OKQ około punktu O, póki OK 
nie zejdzie się z OA'; położenie, które zajmie wtedy 
punkt Q będzie punktem żądanym, przedstawiają­
cym iloraz liczby A' przez liczbę A.

Z przedstawieniem geometrycznem liczb zespolonych wią- 
że się rachunek, zwany rachunkiem ekwipolencyj.

Najważniejszemi pracami o tej teoryi (prócz cytowanych już prac 
Gaussa) są: Wessel C., Essai sur la théorie analytique de la»y 
direction (1799, przedruk w 1897). Argand, Essai sur la manière 
de représenter les quantités imaginaires 1806* (przedruk w Paryżu
1874) . Mourey, Vraie théorie des quantités imaginaires, 1828, 
przedruk w 1861. Cauchy, Mémoires sur les quantités géomé­
triques, Exercices d’Analyse, IV. Bellavitis, Sul calcolo delle 
equipollenze 1833—1834 (lista tych prac znajduje się w cytowanej 
niżej książce Laisanta). Hankel, Theorie der complexen Zahlen- 
systeme, Lipsk 1867 (porów. Hertz i Dickstéin, Teorya liczb 
ogólnych, w Pamiętniku Towarzystwa Nauk ścisłych w Paryżu, t. VII,
1875) . Hoüel, Théorie des quantités complexes, Paryż 1874, Lai­
san t, Théorie et applications des equipollences, Paryż 1887. Tan­
nery, Introduction etc. (patrz§ 1 ). Stolz,Vorl.üb. Arithm. t. II(patrz§ 1 ).
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§ 3.

Kwatern i o n y.

Jedno z uogólnień teoryi liczb zespolonych stanowi rachu­
nek tak zwanych kwaternionów, w którym, prócz jednostki 
zwyczajnej liczb rzeczywistych, wprowadzamy jeszcze trzy jed­
nostki źa, «3 i tworzymy wyrażenie:

«0 + «1 ai + h + «3 a3 •

Pragnąc zachować własność ogólną, że iloczyn dwu kwa­
ternionów jest kwaternionem, musimy przyjąć, że iloczyn dwu 
jednostek daje się wyrazić liniowo przez same jednostki. Przyj­
mujemy tedy, że

Ą2 = — 1, V — — 1, i32 = — 1,
h^'2 == == ^'3^'2 == z== ^2’

Stąd widaćjuż. że własność przemienności iloczynu nie utrzy­
muje się w ogólności dla tych nowych liczb. Gdy ax=a2=a3, 
kwaternion nazywa się s k a 1 a r e m, gdy a0 = 0 nazywa się 
wektorem. Modułem kwaternionu j e s t liczba doda­
tnia rzeczywista Liczba

i ai __ I i a‘2 ___ I i _as
1 Yat 2-j-a32-j-a32 2 * Ya^-j-a^-Ya.^

nazywa się osią kwaternionu
Każdy kwaternion można przedstawić w posta­

ci q (cos ot+2 sin a) gdzie q jest modułem, a—argumen­
tem, 2—osią.

Kwaternion q (cos a—2 sin a) nazywa się sprzężonym 
względem kwaternionu q (cos a-|-2 sin a).

Kwadrat osi równa się jednostce ujemnej.
Iloczyn dwu kwaternionów sprzężonych rów­

na się kwadratowi modułu.
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Iloczyn dwu kwater nionó w, mających oś 
wspólną, otrzymujemy, mnożąc moduły i do­
dając argumenty. W tym przypadku iloczyn 
nie zależy od porządku czynników.

Jeżeli kwaterniony dane do mnożenia, są 
równe, otrzymujemy wzór podobny do wzoru 
M o i v r e'a.

Kwaternion z==a04-«1a1-|-?aa3 -H3«3 czyni zadość 
równaniu:

z3 — (3«02—«J2 — u22—ft32) z 4- 2tf0 ^/02 + ft124«22+«32) = 0.

Można pomyśleć ogólniej liczby zespolone o n jednostkach, 
t. j. liczby postaci

ft = ?iftx 4" ?2ft2 4" .... 4” 4—lft'M — 1 4-

gdzie ?j, z2 . . . ?w_x, in są jednostkami.

Z literatury o liczbach zespolonych ogólniejszych i o kwaternionach 
wymieniamy dzieła: Grassmann, Ausdehnungslehre (Szczecin 1862), 
oraz Gesammelte Werke, Lipsk 1894, 1896; Hamilton, Lectures on 
quaternions Dublin 1853, Elements of quaternions, Londyn 1866, prze­
kład niemiecki Glana, Lipsk 1882; Hankel, Theorie der complexen 
Zahlensysteme, Lipsk 1867. Tait. Quaternions 1882, wydanie fran­
cuskie 1884; Weierstrass (Gotting. Nachr. 1884), Schwarz, De­
dekind, Holder (tamże 1884, 1885, 1886); Berloty, Théorie des 
quantités ccmplexes à n unités principales, 1886; Houël, Théorie des 
quatern. 1874; Laisant, Introduction à la méthode des quatern., Pa­
ryż 1881; Stolz, Vorl über Arith. II, Lipsk 1886; Hertz,Pierwsze za­
sady kwaternionów Hamiltona, Warszawa 1887; Dickstein, Pojęcia 
i metody matematyki, Warszawa 1891, str. 171 i nast.
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§ 4.

Teorya grup punktowych {agregatów, zbiorów).

Ustaliwszy jednostkę miary i oznaczywszy na prostej 
(w ogólności w jakiejkolwiek rozmaitości jednowymiarowej) 
punkt początkowy (zerowy), możemy do każdej rzeczywistej 
wartości pewnej ilości zmiennej dobrać punkt prostej, i odwrot­
nie. Nieskończonej lub skończonej liczbie punktów prostej od­
powiadać będzie nieskończona lub skończona liczba wartości 
zmiennej, i odwrotnie. Ogół ten nieskończonej i skończonej 
liczby punktów tworzy tak nazwaną grupę nieskończoną 
lub skończoną punktów, jednowymiarową lub 
liniową. Jeżeli zamiast jednej zmiennej rozważamy dwie 
zmienne i obrawszy układ spólrzędnych Descarte s’a, jak to 
się czyni w geometryi analitycznej, do każdej pary wartości obu 
zmiennych dobierzemy odpowiadający jej punkt płaszczyzny, to 
nieskończonej lub skończonej liczbie par wartości zmiennych od­
powiadać będzie grupa dwuwymiarowa nieskoń­
czona lub skończona. W tenże sposób możemy określić 
grupy o dowolnej liczbie n wymiarów.

Punktem granicznym takiej grupy nazywa się 
punkt, w którego każdem dowolnie malem otoczeniu istnieją 
zawsze punkty należące do grupy.

Każda g r u p a n i e s k o ń c z o n a punktów ma 
zawsze przynajmniej jeden punkt graniczny. 
Grupa skończona niema wcale punktów gra­
nicznych.

Jeżeli grupa punktów ma więcej niż jeden punkt granicz­
ny, to ogól tych punktów tworzy grupę pocho­
dną. Podobnym sposobem otrzymaćby można z niej i inne 
grupy pochodne, jeżeli pierwsza grupa pochodna jest 
nieskończoną.

Przykłady: Grupa ■£, . . . ma jako punkt gra­

niczny punkt zero. Grupa, której punkty są typu----- 1- —
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(n, tu = 1, 2, 3 . . .), ma za punkty graniczne punkty typu 

—- , tworzące znowu grupę nieskończoną.

Grupa punktów wymiernych ma za pierw­
szą grupę pochodną ogól wszystkich punktów.

Każdagrupa pochodna zawiera w sobie 
wszystkie następne grupy pochodne.

Jeżeli jedna z grup pochodnych jest skończoną, wtedy 
przerywa się szereg grup pochodnych i grupa pierwotna nazywa 
się grupą pierwszego gatunku. W przeciwnym ra­
zie nazywa się g r u p ą drugiego gatunku.

Grupa nazywa się zgęszczoną lub w s z ę d z i e—g ę- 
s t ą w pewnym przedziale, jeżeli w każdym dowolnie małym 
przedziale, zawartym w poprzednim, znajduje się nieskończenie 
wiele jej punktów.

Dwie grupy nazywają się grupami równej mocy, je­
żeli pomiędzy ich elementami można ustanowić odpowiedniość 
wzajemną i zupełną. Jeżeli punkty grupy odpowiadają w spo­
sób jedyny i zupełny punktom grupy, utworzonej z szeregu liczb 
całkowitych 1, 2, 3 ... , grupa nazywa się o d 1 i c z a 1 n ą.

Jeżeli pierwsza grupa pochodna grupy 
liniowej punktów jest odliczalną, to wszyst­
kie punkty grupy dają sie zawrzeć w odciu- 
kach, których sumę można uczynić dowolnie 
małą.

Grupa nazywa się doskonałą, jeżeli zlewa się ze swoją 
pierwszą grupą pochodną, a więc i ze wszystkiemi następnemi 
grupami pochodnemi

Powyższe pojęcia należą do pierwszych w teoryi grup. Teoryę 
tę utworzył G. Cantor (Math. Ann. V, str. 123, 1872, Crelle, 
LXXVłI, str. 258, LXXXIV, str. 242, Acta math. II, IV, V). Wprzed- 
miocie tym ogłoszono liczne prace, jak to można widzieć z artykułów 
V i v a n t i ’ ego: „Notice historique sur la théorie des ensembles“ 
(Biblioth. math. VI, 1892, str. 9) i „Teoria degli agregati“ (Rivista di 
maternatica, III, 1893, str. 189). Borel. Théorie des fonctions, 1898.
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§ 5-

Pojęcie ogólne funkcyi.

Jeżeli pomyślimy zmienną y, związaną z inną zmien­
ną o? w ten sposób, iż nadawszy na x pewną wartość, zawartą 
w ustalonym przedziale lub, ogólniej, zawartą w oznaczonej gru­
pie nieskończenie wielu wartości, otrzymujemy jednę określoną 
wartość na y, mówimy, że y j e s t f u n k cy ą zmiennej x 
w przedziale lub grupie określonej. Zmienna a; 
nazywa się zmienną niezależną. Podobną definicyę 
utworzyć można dla funkcyi y, zależnej od większej liczby 
zmiennych x^, x2, . . .

Funkcya y zmiennej a; nada je się do przedsta­
wienia analitycznego, wtedy, jeżeli można ustanowić 
układ działań analitycznych, które należy wykonać już to na 
samej zmiennej a?, już to równoczeście na zmiennych x i y, aby 
wybrawszy pewną wartość na x i wykonawszy wskazane działa­
nia, módz dojść do wartości y.

Funkcya y zmiennej x nadaj e się do przedstawie­
nia geometrycznego wtedy, gdy po przyjęciu x i y za 
spółrzędne Descartes’a punktu na płaszczyźnie, miejscem 
geometrycznem punktu o spółrzędnych x i y będzie krzywa 
w zwykłem znaczeniu tego wyrazu.

Przedstawienia analityczne mogą być dwojakie: wyraźne 
i niewyraźne lub uwikłane. Przedstawienie analityczne 
nazywa się wyraźnem wtedy, gdy, wskazane działania anality­
czne mają być wykonane wprost na zmiennej x, a wykonawszy 
je, otrzymujemy odrazu wartość zmiennej y. Jeżeli zaś przyj- 
miemy, że mamy daną analitycznie funkcyę dwu zmiennych x 
i y, t. j. pewien układ działań analitycznych, które należy wy­
konać równocześnie na obu zmiennych x i y, i że szukamy tym 
sposobem wszystkich par wartości, dla których ta funkcya obu 
zmiennych jest zerem, wtedy y można będzie uważać w ogóle za 
funkcyę zmiennej x, lecz daną za pomocą równania, t. j. 
niewyraźnie.
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Jeżeli funkcya nadaje się do przedstawienia analitycznego 
wyraźnego, a symbole działań analitycznych, do tego przedsta­
wienia wchodzących, należąc tylko do pierwszych czterech dzia­
łań rachunku, oraz do potęgowania z wykładnikiem całkowitym, 
są w liczbie skończonej, wtedy funkcya nazywa się wy­
mierną.

Najogólniejszą postacią funkcyi wymiernej 
jednej zmiennej jest:

-j- ClyC ~j- -j- d-AX^ -|- . . . . —
—|— bxx —1~ b2x~ —j— ó3sc3 —j- .... —|— bn x''

g dzie p0, a1? . . . &n, bA . . . są stałemi.
Jeżeli w przedstawieniu analitycznem funkcyi znajduje się 

symbol pierwiastkowania, zastosowany do zmiennej x lub do 
funkcyi wymiernej tej zmiennej, wtedy funkcya nazywa się 
niewymierną.

Funkcya nazywa się przestępną, jeżeli do jej przed­
stawienia analitycznego wchodzą symbole i innych działań, 
prócz wyżej wymienionych np. działanie lagflLrytmowe, dzia­
łanie wskazane przez funkcye zwane trygonometrycznemi i t. d.; 
te działania wykonywają się albo na samej zmiennej x, albo 
na jej funkcyi.

Jeżeli y jest funkcyą zmiennej z, ta zaś zmienna z jest znowu 
funkcyą zmiennej x, wtedy y nazywa się funkcyą złożoną 
zmiennej x za pośrednictwem funkcyi z. Podobną definicyę 
tworzymy dla przypadku, w którym y jest funkcyą większej 
liczby zmiennych Zj, z2, z.A, . . . , każda zaś z nich jest znowu 
funkcyą innych zmiennych.

Jeżeli y jest funkcyą zmiennej x, to zmienną x można uwa­
żać za funkcyę ilości ?/; funkcya taka nazywa się odwrotną.

Funkcya zmiennych xlf x2, . . . nazywa się jednorodną, 
jeżeli po pomnożeniu każdej ze zmiennych przez ilość nieokre­
śloną t, t. j. po podstawieniu tx{, tx2, . . . zamiast xlt x2, . . . , 
wartość funkcyi przy nowych argumentach będzie równa war­
tości funkcyi przy argumentach pierwotnych, pomnożonej 
przez pewną potęgę ilości t . . . Wyraża tę własność wzór:



14 Rozdział I.—§ 6.

/' (to17 tea, . . . ) = trf (xlf x2, . . . ), 

zachodzący dla jakiegokolwiek t i dla każdego układu wartości 
xv a?2, . . . Liczba r nazywa się stopniem jednorodności.

Wyrazu funkcya używali pierwsi: Leibniz (Acta Erudito- 
rum, 1692). Bernoulli (Mémoires de Paris, 1718), Euler (Introduc- 
tio in analysin intinitorum, 1748).

Pomysł oddzielenia pojęcia funkcyi od pojęcia jej przed­
stawienia analitycznego zawdzięczamy L e j e u n e - D i r i c h 1 e- 
t o w i.

§ 6.

Funkcye całkowite i wymierne jednej zmiennej.

Niechaj będą dane dwie funkcye całkowite (wielomiany) 
jednej zmiennej x, mianowicie F(x) i fix'), pierwsza stopnia hi, 
druga stopnia n (tu ri); można wyznaczyć jednoznacznie dwa 
inne wielomiany, mianowicie Q(x) stopnia m—n i //(x) stopnia 
mniejszego niż n, aby było toż tożsamościowe:

F (x) — f (x) Q, (a?) -f- R (x).

Q(x) nazywa się ilorazem, R(x) zaś resztą. Jeżeli R—0, 
mówimy, że funkcya F jest po dzielna przez f.

Utworzywszy kolejne równości:

f(x) = R (x) QA (a?) 4- Rx (x)

R (x) = Rl (x) Q2 (.t) 4- R2 (x)

■dojdziemy napewno do takiej równości, w której reszta, dajmy 
na to, R'i+i, jest równa stałej. Jeżeli ta stała jest zerem, 
to reszta Ri jest największym spólnym dzielnikiem 
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funkcyj Fif. Jeżeli nie równa się zeru, wtedy 
funkcye F i f są względnie pierwszemi.

Jeżeli wielomiany F,n i są względnie pierw­
szemi, to można zawsze wyznaczyć jedyne dwie ta­
kie funkcye całkowite Gm^i, //»—i. aby było:

R/n fu — 1.

Możność wyznaczenia dwu funkcyj całkowi­
tych Hm-k, hn_k takich, aby było:

Fm k„—k fu Hm—k — 0

stanowi warunek konieczny i dostateczny na to, by 
dwie funkcye F, f miały dzielnik wspólny stopnia co 
najmniej k.

Resztą z podzielenia funkcyi f(x) przez x—a jest 
f(a). Jeżeli f\x) znika dla ./—a, to jest przez x—a po- 
dzielne.

Jeżeli (x—d)a jest czynnikiem funkcyi /’(.t), (x—a)0^1 zaś nie, 
to mówimy, że a jest pierwiastkiem wielokrotnym 
o wielokrotności a funkcyi/(a?) lub ró wnania f(x)=O.

Ogólna funkeya wymierna zmiennej x ma postać
F(x) , . „. , . , . , . ,у-- у , gdzie F if są symbolami dwu wielomianów ze zmienną x.

Jeżeli a jest pierwiastkiem wielokrotności a równania

/(ж)=0, wtedy funkeya ~y~ •> gdzie R jest stopnia niższego 

niż f, można rozłożyć w ten sposób:

R (x) _ a _______ R) (x)'
f (x) \x—u)a ' (x—a,“-1 («) ’

tu A jest stałą, Ą(x‘) jest wielomianem całkowitym stopnia o je­
dność niższego od stopnia wielomianu R(x), f(x) zaś jest ilora­
zem z podzielenia funkcyi f(x) przez (x~ a)*.

Niechaj aą, x% . . . , xr będą pierwiastkami równania /’(a?)=0 
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wielokrotności odpowiednio ą, i2 . . . ir\ funkcyę wymierną -~ 

gdzie R jest stopnia niższego niż /*, można rozło­
żyć w ten sposób:

___ -dl  I ______d 2________ i I_____ Af, 

f(x) (x—xx)'' ' (x—’ x—xx

_L___51__ 1___ 5?___ 4 ... 4__ B--
(x—x2Ya (x—x2)’<‘~1 ‘ ' x—x2

+............................................

gdzie A, B, ... są stałemi.
Spółczynniki d2 . . . wyznaczają się zapomocą następu­

jących wzorów zwrotnych (gdzie znaczki przy R i f służą do 
oznaczenia pochodnych, patrz Rozdział VII):

u - A /(o (ą) = o,

R } “ (> mu /(Zl+1) (iZ!>) ”• JT Z01' > = 0
vi ~r-U- 4 •

A AA

Analogicznie napisać można wzory na B2,..........
Jeżeli {j =x23 =........... — 1, będzie wprost:

A R D ___ R (^2^

/■(^1) ’.......................

W przypadku, gdy f(x) ma wszystkie pierwiastki różne, 
(t. j. gdy żaden z nich nie jest wielokrotny), otrzymujemy na­
stępujący wzór godny uwagi:
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(^-’1) i R (^2) 1 . R __q
fM /’(a;2) "i"’” f(xn) ~-

Jeżeli trójmian x2-\-px~\-q jest czynnikiem mia­
nownika f(x), t. j. gdy

f (x) = (.r* + px -f- q)r f\ (x),

wtedy będzie tożsamościowe:

R (K) = f\x 4- Qt___ (_________ Rj(x)_______
f (.r) (x* px q)r (x2 4“ Px "+■ 9)r_1 ’

gdzie //Ja:) jest nową funkcyą całkowitą stopnia niższego od sto­
pnia funkcyi R, zaś P15 są ilościami stałemi.

W temże założeniu będzie:

P\ x 4- Qi , P.> x -4- Q2 i i Prx 4- Qr . Rr(x) 
(X2-\-px-\-qY "T" (x2-Ypx-\-qY~x ' ' ’ ' ‘ x2-\-px-\-q ' fx (x)

gdzie Rr jest stopnia niższego niż f.
Jeżeli równanie /‘(a;)=0 ma pierwiastki urojone, to wzór

yy
poprzedni służy do przekształcenia funkcyi —r- na sumę ułam­

ków elementarnych rzeczywistych.

Rozkład funkcyi ułamkowej wymiernej na ułamki proste znajdu­
jemy już u Jana Berno uli i’ego (Dzieła t. I); potem przedmiotem tym 
zajmowali się Euler, Cauchyiinni.

Teorya granic.

Mówimy, że funkeya y zmiennej x ma dla x równego a 
granicę A, jeżeli dawszy sobie o dowolnie małe, możemy

Pascal. Rep. I. 2
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zawsze znaleść otoczenie punktu a takie, że dla każdej wartości x 
w niem zawartej, wartość bezwzględna funkcyi y różni się od A 
o ilość mniejszą od o.

Rozróżniać będziemy granicę z prawej strony i gra­
nicę, lewej strony stosownie do tego, czy własność powyższa 
spełnia się po stronie prawej, czy też po stronie lewej od a; to 
rozróżnienie jest zbytecznem, jeżeli spełnia się ona po obu stro­
nach.

Warunkiem koniecznym i dostatecznym istnie­
nia granicy jest, by, dawszy sobie o dowolnie małe, 
można było znaleść otoczenie punktu a takie, że 
różnica bezwzględna dwu wartości, które przyjmu­
je funkcya y w dwu jakichkolwiek punktach tego 
otoczenia, jest mniejsza od o.

W przypadkach, gdy A lub a są nieskończonościami, na­
leży dać definicye następujące:

Mówimy, że granica funkcyi y jest + 00 dla a? dążącego do 
a, gdy, dawszy sobie co dowolnie wielkie, można znaleść takie 
otoczenie punktu a, że dla każdej wartości x w niem zawartej, 
wartość funkcyi y jest zawsze stałego znaku, a co do swej war­
tości bezwzględnej większa od co.

Mówimy, że funkcya y ma granicę A dla x dążącego do. 
+ 00, gdy, dawszy sobie o dowolne małe, można znaleść liczbę 
xf taką, że dla każdej wartości x^>xr (lub mniejszej od x') róż­
nica A — y jest co do wartości bezwzględnej mniejsza od o.

Mówimy, że funkcya y ma granicę + 00 dla x dążącego do 
+ 00, gdy, dawszy sobie co dowolnie wielkie, możemy znaleść 
takie x', że dla każdej wartości x^>x' (lub funkcya y jest 
znaku stałego i co do wartości bezwzględnej większa od co.

Jeżeli trzy funkcye y1? y2, zmiennej x są ta­
kie, że, dawszy sobie o dowolnie małe, można zna­
leść otoczenie punktu a takie, iż dla punktów tego 
otoczenia wartość funkcyi y2 jest zawsze zawarta 
pomiędzy wartościami funkcyj yt i y3 i jeżeli te 
dwie ostatnie funkcye dążą do jednej i tej samej 
granicy A dla x — a. to i y2 dążyć będzie do granicy 
dla x=a i tą granicą będzie A.
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Jeżeli funkcya y, gdy x zbliża się do a, rośnie 
bez przerwy, a przynajmniej nie maleje, pozostając 
wciąż mniejszą od liczby A, to wtedy funkcya ta 
ma granicę dla x=a i granicą tą jest albo ilość A, 
albo liczba mniejsza od A.

Granica sumy algebraicznej, iloczynu, ilorazu 
funkcyj, mających granice dla x = a, jest równa su­
mie, ilo czyno wi, il orazo wi granic.

lim < n

lim
n — oo

],n

—— — 0 
n\

lim
n = oo

/ii x\n 
1 -j----- =

\ nl

lim
x = 0

sin x __i
X

iim
n = oo

n (y~a — 1) = log, a.

lim
x — 0

1 — cos X_
X

lim 
m - 0

i
Z \ m
i m ) =6,

lim
« = 0 X •’

lim
m = 0

log (1 + m) _ 
m ’ ’

lim
x =s 0

• 1x sm — — 0, X
lim

>n = 0
log (1 -i- wr) 

m

lim
y = o

ay —1 .—-— = log a, lim 
y = 0

ylogy — 0;

lim
(i + yW _ „

m
lim
n = oo

n
„2T = e' 
Vn\

(a n — 1)? — log a,

n\ 
nne-nV2jtn
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lim (1 j ; lim x j Vf(x) — 1 i —logjim f[x),
й=оо\ % I a = oo '

lim — V (n 1) (n ~h 2) . . 2 n — — , 
n = 00 W в

log (1 ~k n X) _ ..lim —- --------------- = 0 : lim n e ~ n x — 0,
n = 00 %

lim ——— | i ’ Jeżeli r + 1 jest dodatnie

................................................. ......... • • === , T) П Г) »

lim J + ł + f + • • . + 7 = o
n =s 00 W

Jeżeli /*(«-j-1) — f(x) dąży do granicy ozna­
czonej J, gdy x dąży do nieskończoności, i je­
żeli funkcya f(x) jest skończoną dla każdej 
skończonej wartości a?, stając się nieskoń­
czoną tylko dla x=00, wtedy:

r f M Alim ------ — = A.
a — 00

Jeżeli mamy funkcyę /’(a?) różną od zera 
i od nieskończoności dla każdej skończonej 
wartości пал, większej od pewnej liczby ozna- 
czonej, i stawaj ącą się zerem lub nieskończo­
nością jedynie dla х = оэ, i jeżeli nadto:

lim
X = 00

f(x-h 1) 
/■(«) =

to będzie także:

H ________

lim V / (x) =
X = 00
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Twierdzenie Gaussa, Niechaj będą dwie ilości a 
i fi<^a. Utwórzmy wyrażenia kolejne:

«1 = 2 (« "ł~ fix = V a fi

«3 = 2 («1 + fil), fi2 fil

«3=2 («2 + fil\ fi3 = «2 fi2

to będzie:

lim are=lim fin (średnia ary tmety czno-geometryczna.)

§ 8.

Granica wyższa i niższa wartości funkcyi.

Jeżeli f(x) jest funkcyą stale skończoną w całym prze­
dziale od a do b, to: albo istnieje jeden lub więcej punktów prze­
działu. w których funkcya ma wartość największą, albo ist­
nieje wartość A taka, że lubo przy zmienianiu ilości x w prze­
dziale, f(x) nie może ani dojść do tej wartości, ani jej prze­
kroczyć, to jednak dawszy sobie o dowolnie małe, można zaw­
sze znaleść taką wartość x w przedziale, że różnica pomiędzy A 
a wartością funkcyi w tym punkcie będzie co do wartości bez­
względnej mniejsza od a. W tym drugim przypadku 
mówimy, że A jest granicą wyższą wartości f 
w punkcie x. Analogiczna definicya określa granicę niższą.

Jeżeli istnieje maximum wartości funkcyi, to funkcya 
może albo czynić zadość warunkowi cechującemu granicę wyż­
szą, albo też może warunku tego nie spełniać.

W tym ostatnim przypadku nie istnieje 
granica wyższa w ścisłem znaczeniu tego wy­
razu; w przypadku pierwszym będziemy mieli 



22 Rozdział I.—§ 9.

granicę wyższą, która jestzarazem maximum 
f u n k c y i.

Jeżeli funkcya ma w przedziale granicę 
wyższą A, to istnieć będzie napewno przy­
najmniej jeden punkt w przedziale taki, że 
w dowolnie małym odcinku punkt ten ota­
czającym granica wyższa wartości funkcyi 
jest także A (Twierdzenie Weierstrassa).

Nazywamy oscylacyą (wahaniem się) funkcyi w prze­
dziale różnicę pomiędzy największemi i najmniejszemi warto­
ściami, jakie przyjmuje ta funkcya w przedziale, lub jeżeli te 
maxima i minima nie istnieją—różnicę pomiędzy granicą wyższą 
i granicą niższą.

Bolzano pierwszy miał myśl uważania granicy wyższej i niż­
szej (patrz Stolz, Math. Annalen, XVIII), lecz dopiero później 
Weierstrass rozwinął szeroko te pojęcia analizy.

§ 9.

Teorya funkcyj ciągłych i nieciągłych.

Funkcya / (a?!, d?2, . . . ) nazywa się ciągłą w punkcie 
xx=ax, x2=a2, . . . , gdy jej granica dla xx=ax, x2=a2......... równa
się wartości f (a15 a2 . . . ). Inaczej: jeżeli damy sobie o dowol­
nie małe, to można zawsze znaleść układ wartości hx, h2, . . . taki, 
że dla każdego układu xx, x2 . • . , czyniącego zadość warunkom:

ax — hx ax -f- hx; a2 — h2 x2 a2 h2;............

różnica pomiędzy wartością, jaką przyjmuje f, a wartością 
f (a15 a2 . . . . an) jest bezwzględnie mniejsza od o.

Funkcya ciągła i skończona jednej zmien­
nej, czyniąca zadość warunkowi

f (x 4- y) = f (X) + f (y)
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ma postać najogólniejszą:

f (#) = a x.

Funkcya ciągła jednej zmiennej spełnia­
jąca związek

f^Ą-y) = f (x) f (y)

ma postać najogólniejszą:

/■(.r) = Aax,

gdzie A i a są ilościami stałem i.
Najogólniejszą postacią f u n k c y i c i ą g ł e j 

jednej zmiennej, gdy ma spełniać związek:

f y> = f (®) + f (*/)
jest f (x) — A log« x.

Twierdzenia powyższe podał C a u c h y.
Jeże li szereg nieskończony funkcyj cią­

głych jest s z e r e g i e m j e d n o s t a j n i e zbieżnym 
(patrz Rozdział IV), to przedstawia on funkcyę cią­
głą tych zmiennych.

Szereg potęgo wy wewnątrz obszaru swej 
zbieżności przedstawia funkcyę ciągłą zmiennej.

Jeżeli szereg potęgowy jest zbieżny i na 
kresach obszaru zbieżności, to i na tych kre­
sach przedstawia on funkcyę ciągłą (Twierdzenie 
A b e 1 a).

Funkcyę zmiennej ciągłej w całym przedziale nazywamy 
jednostajnie ciągł ą lub równociągłą, jeżeli dawszy 
sobie o dowolnie małe, możemy znaleść taką liczbę <5, by dla 
każdej wartości x w przedziale i dla każdego ói d było 
stale:

/■(a? ± ÓJ — /■(«)< o.
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Definicya dla funkcyj wielu zmiennych jest analogiczna.
Funkcya wprost ciągła jest zarazem i ró- 

wnociągła (Twierdzenie Cantora).
Jeżeli funkcya jest ciągła w przedziale, 

to można podzielić ten przędziałna skończoną, 
liczbę takich przedziałów cząstkowych, aby w każ­
dym z n i c h o s c y 1 a c y a funkcyibyła mniejsza 
od jakiejkolwiek ilości o, dowolnie danej.

Dla funkcyi ciągłej granica wyższa sta­
nowi jej maximum, granica niższa jej minimum.

Jeżeli funkcya ciągła jest oznaczona 
w nieskończonej liczbie punktów, to jest też 
oznaczoną i w ich punktach granicznych.

Jeżeli funkcya ciągła jest oznaczona we 
wszystkich punktach wymiernych pewnego 
odcinka, to jest też oznaczona i w jego pun­
ktach niewymiernych.

Jeżeli funkcya ciągła w przedziale ma. 
w dwu jeg° punktach wartości przeciwne­
go znaku, to w punkcie pośrednim ma war­
tość zero.

Jeżeli funkcya ciągła przyjmuje dwie 
wartości .4 i Bwdwu punktach a i przedzia­
łu, to w punktach pośrednich przyjmuje wszel­
ką wartość, zawartą pomiędzy .4 i I?. (W iadomo 
że ta własność nie charakteryzuje funkcyj ciągłych; patrz Dar- 
boujx, Mémoire sur les fonctions discontinues, Annales de l’Ecol, 
normale, IV).

Funkcya jest nieciągłą lub przerywaną w pun­
kcie a, jeżeli granice wyrażeń/(a-d) i/’(«-j-ó) dla ó—0 są: 
1) albo nieoznaczone, 2) albo nierówne, 3) albo będąc równemi, 
nie są równe wartości funkcyi /’ w punkcie a. W ostatnim 
przypadku można znieść nieciągłość, zmieniając war­
tość funkcyi w punkcie a. W pierwszym przypadku nieciągłość 
nazywa się nieciągłością gatunku drugiego, a 
w pozostałych przypadkach—n ieciągłością zwykląlub 
gatunku pierwszego.
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Jeżeli funkcya / jest nieciągłą w punkcie 
a, to istnieje zawsze liczba dodatnia a', różna 
od zera i taka, że dla każdego o^>o' można zaw­
sze znaleśó przedział w otoczeniu punktu a, 
t ak, ż e f(x)—f(a) <Zg, lecz nie może to być dla każ­
dego o<Zo'. Liczba o' nazywa się skokiem fun- 
kcyi. Jeżeli nieciągłość jest gatunku pierw­
szego, to skok jest różnicą pomiędzy f (a) i lim 
f (a + ó).

Jeżeli funkcya ma nieskończenie wiele punktów przerwy 
to punkty te mogą albo tworzyć grupę taką, że dają się zaw­
rzeć w przedziałach, których sumę można uczynić tak małą, jak 
się podoba, albo tego uczynić nie można. W pierwszym razie 
nazywamy funkcyę punktowo nieciągłą (lub pun­
któw o-p rzerywaną); w drugim zaś 1 i n i o w o-n i e c i ą- 
g ł ą (lub 1 i n i o w o-p rzerywaną). Przykładem drugiego 
gatunku funkcyi jest funkcya, będąca nieciągłą we wszystkich 
nieskończenie wielu punktach odcinka skończonego.

Czytelnika, pragnącego bardziej szczegółowo poznać ten przed­
miot, odsyłamy do cytowanych w§ 1 dzieł Dini’ego i Tannery’ego. 
Porów, też Pascal „Notę critiche et esercizi i t. d.“ Medyolan 1895, 
gdzie podano wiele przykładów i odnośne wskazówki bibliograficzne.

§ 10-
Teorya kombinacyj. Spółczynniki dwumianowe.

Liczba różnych sposobów, jakiemi można rozmieścić n 
przedmiotów na n miejscach ustalonych, nazywa się liczbą 
przemian n przedmiotów. Wyrażamy ją tak:

Pn = = 1.2.3 . . . . (n — 1) . n.
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Ustalmy dla n przedmiotów pewną kolej następstwa 
i uskutecznijmy po tern przemianę; powiemy, że w otrzymanej 
przemianie dwa przedmioty tworzą odwrócenie (inwer- 
syę), jeżeli następują po sobie w porządku odwrotnym, niż 
w przemianie pierwotnej. Przemiana nazywa się parzystą 
lub n i e p a r z y s tą, stosownie do tego, czy zawiera parzy­
stą lub nieparzystą liczbę odwróceń.

. . u\Istnieje— przemian parzystych i tyleż 

nieparzystych.
Liczba sposobów, jakiemi k przedmiotów, wybranych z po­

między n danych (k<Z n), można rozmieścić na k miejscach sta­
łych, nazywa się liczbą rozmieszczeń n przed­
miotów po k. Liczba ta wyraża się tak:

Z>n, k — n (n — 1) . . . (u - k 4- 1) = ——77(n — //)'

Jeżeli k = n, rozmieszczenia staj ą się przemianami.
Liczba sposobów, jakiemi pomiędzy n przedmiotami dane- 

mi można wybrać k przedmiotów, nie uwzględniając porządku, 
w jakim je wybrano, nazywa się liczbą prostych kombi- 
n a c y j z n przedmiotów po k. Jest ona:

r _ n (n — 1) . . . (n —- k -|- 1) _  in\
Cn’k ~ 1 . 2 . . . /r “U/

D„,k A
A ’ A • K-k '

Odrazu widać własność:

Cn, k ------ Cn, n—k

Jeżeli w rozmieszczeniach element może powtarzać się 
pewną liczbę razy, mamy wtedy rozmieszczenia z pow­
tórzeniem. Liczba ich wynosi:

//«.a- = nk.
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Jeżeli w kombinacyach każdy element może powtarzać się 
pewną liczbę razy, mamy kombinacye z powtórze­
niem. Ich liczba wynosi:

„ _  (n-\-k—1) (n 4~ k — 2) . . . (n 1). n
Cn'k~ 1.2.śT77k~

== ---
H -j- li — 1

li

Liczby C,^k nazywają się także spólczynikami dwu­
mian o w e m i (lub binomialnemi), ponieważ są spól- 
czynnikami różnych wyrazów rozwinięcia potęgi dwumianu.

Pomiędzy niemi istnieje bardzo wiele związków; wymie­
niamy następujące:

0, jeżeli n<zk/ n \ 
\ k /

I n \ i I n \
U 4-1/ U 4-1/ ’

ln\ I n \lk+l\,l n I 1W- |n\ ln\
\kr U+1H k Kh + 2/l /f )>-•••-4-( D

1—L ) 4- L I—....4-(—1) ) = (—1)2 L , jeżeli n parzyste ,
\1 / \2 / \W/ '.a nI

.......................................................... =0 ,jeżelin nieparzyste;
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1

Spółczynniki dwumianowe liczby----- mają ciekaweA
wyrażenia:

/-'M 1 13 l-3-5
11/ 2’12/ 2.4 ’ 1 3 / 2.4.6

/—'Al 1.3.5.7
1 4 2.4.6.8 i t. d.

Inne związki bardziej złożone pomiędzy spółczynnikami 
dwumianowemi wyrażają wyznaczniki Zeipela (Patrz E. 
Pascal, Determinant!, Medyolan, 1897),

Liczbę całkowitą 7V można zawsze i jednym 
tylko sposobem wyrazić jako sumę n spółczy n- 
n i k ó w d wu mian owych, w który cli skażnikisą 
ustalonemi i są liczbami naturalne mi od 1 do 
do n, przyczem podstawa mniejsza odpowiada 
skaźnikowi mniejszemu. (W spółczynniku dwumia- 

(72 \jnazywamy n— podstawą, k— skaźnikiemp 

Tym sposobem wzór 

/ \

1 n /
, (•£* +1)

ma zawsze jedno jedyne rozwiązanie w licz­
bach całkowitych dodatnich • • • •

Jeżeli przez J oznaczymy liczbę j , bę­

dziemy mieli twierdzenie:
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Jeżeli .ZV jest liczbą całkowitą dodatnią, to

gdzie xk<^ ma zawsze jedno jedyne rozwią­
zanie w liczbach całkowitych xu x3, .. . . xn. (Patrz 
E. Pascal, Giorn. di mat. XXV.)

Spółczynniki dwumianowe można otrzymać za pomocą tak 
zwanego trójkąta arytmetycznego Pascala

1 1
1 2 1

13 3 1
1 4 6 4 1

w którym liczby każdego wiersza tworzymy, dodając dwie bezpo­
średnio nad nią stojące liczby wiersza poprzedzającego. Liczby 
każdego wiersza poziomego są spółczynnikami dwumianowemi, 
odpowiadającemi liczbom całkowitym dodatnim, liczby znajdu­
jące się na przekątnych odpowiadają (bez uwzględnienia znaku) 
liczbom całkowitym ujemnym.

Co do innych wzorów, odnoszących się do spółczynników dwu­
mianowych, patrz Hagen, Synopsis der höheren Mathematik, Berlin 
t. I, 1891, str. 64 i nast.

Liczby figuryczne. Liczby figuryczne są przypadkiem 
ogólniejszym spółczynników dwumianowych. Aby je otrzymać, 
uogólniamy konstrukcyę trójkąta arytmetycznego Pascala 
w sposób następujący: Tworzymy figurę:

<5, 1
<5, 1 + <5, 1

(5, 14-2(5, 2 +<5, 1
<5, 14-3(5, 34-3Ó, 34-ó, .1

Ö, 14- 4(5, 4-j-6(5, 6-|-4d, 4H-(5, 1 
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w której każdy element danego wiersza jest sumą dwóch bezpo­
średnio znajdujących się nad nim elementów wiersza poprzedza­
jącego. Dla <5=1 otrzymujemy trójkąt arytmetyczny Pascala

Elementy, znajdujące się na trzeciej przekątnej (pierwszą 
jest przekątna, złożona z elementów <5) są liczbami wielo- 
kątowemi (poligonalnemi) rzędu 1-go, 2-go, 3-go, stosownie 
do wartości <5); elementy, położone w czwartej przekątnej, są 
liczbami wielościanowemi (poliedralnemi) rzędu 
1-go, 2-go. 3-go . . . dla <5=1, 2, 3. i t. d. Te wszystkie liczby 
nazywają się liczbami figury c znemi.

Liczby wielokątowe rzędu 2-go są kwadra­
tami.

Liczby wielokątowe wyraża wzór :

4~ (1 + <2 -ł- <J)

liczby wielościanowe zaś wzór:

-L 1 + n) (2 4- n) (3 n ó).
o

Suma n pierwszych liczb wielokątowych wynosi:

-S = -^- n m 4- 1) — 1) <5 4- 3^ ,

sama zaś n pierwszych liczb wielościanowych :

s = A „ (n 4-1) + 2) L+1) & + 4
I _I

Każda liczba całkowita dodatnia jest su- 
mątrzech (albo mniej) liczb wielokątowych 
rzędu 1-go, c z t e r e ch (a 1 b o mniej) liczb wieloką­
towych rzędu drugiego i t. d., w ogóle jest su­
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mą n (albo mniej) liczb wielokątowych rzędu 
n—2) - go. (Twierdzenie Fermata).

Rozważania nad liczbami figurycznemi zawdzięczamy przeważnie 
Eulerowi. Powyższe twierdzenie podał był Fermat bez do­
wodu; dowód ten dla pierwszych przypadków znajduje się u Eulera 
(Acta Petrop., II, str. 48, 1777), L a g r a n g e’a (Mem. Beri. 1770), 
Gaussa (Disqu. arithm, art. 293) i u innych.



ROZDZIAŁ II.

TEORYA GRUP PODSTAWIEŃ.

§ I-

Wiadomości ogólne.

Mamy danych n elementów i tworzymy dwie ich przemia­
ny; działanie, stanowiące przejście od pierwszej przemiany do 
drugiej, nazywa się podstawieniem pomiędzy n ele­
mentami.

Istnieje n\ podstawi eń pomiędzy n elemen­
tami.

Jeżeli do n elementów zastosujemy najprzód jedno podsta­
wienie, następnie drugie i t. d., to ostatecznym wynikiem będzie 
nowe podstawienie elementów. To ostatnie nazywa się ilo­
czynem podstawieńdanych. Jeżeli dane podstawie­
nia są wszystkie równe, iloczyn ich nazywamy potęgą pod­
stawienia.

P. odstawieniem tożsamościowem (iden- 
t y c z n e m) nazywamy takie, które pozostawia bez zmiany 
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wszystkie elementy. Podstawienie takie oznaczamy symbo­
lem 1.

Jeżeli iloczyn dwu podstawień jest niezależny od porządku 
czynników, podstawienia nazywamy wzajemnie przemien­
ne m i.

Jeżeli iloczyn dwu podstawień jest jednością, podstawienia 
nazywamy wzajemnie odwrotnemi: jeżeli jedno z nich jest 
s, to drugie oznaczamy przez s-1.

Istnieje zawsze potęga podstawienia równa jedności; wy­
kładnik tej potęgi, gdy wszystkie poprzedzające ją potęgi nie 
dają wyniku równego jedności, nazywamy rzędem podsta­
wienia.

Podstawieniem kolowem lub cyklem nazy­
wamy podstawienie, którego elementy wszystkie lub niektóre 
przemieniają się w porządku kołowym.

Każde podstawienie da je się zawsze roz­
łożyć na iloczyn podstawień kołowych.

Podstawienie, które za elementy a, b, c . . . podstawia ele­
menty a', bf, cf . . . wyraża się symbolem

/ a, b, c..................... \
..................... /

Tu a', //, (/..........stanowią przemianę elementów a, &, c . . . .
Jeżeli podstawienie jest kołowem, wtedy za elementy 6, ó, 
c......... podstawiają się odpowiednio elementy b, c, d.............
takie podstawienie oznacza się wprost za pomocą symbolu

(a, b, c, . . . . m),

gdzie w nawiasie stoją jeden za drugim elementy w porządku ta­
kim, że za każdy poprzedzający podstawia się następny, za osta­
tni z elementów—pierwszy.

Rząd podstawienia kołowego równa się 
liczbie jego elementów.

Podstawienie kołowe rzędu drugiego nazywa się p r z e- 
stawieniem.

Pascal, Rep. I. 3
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Każde podstawienie można wyrazić jako 
iloczyn samych przestawień.

Podstawienie nazywa się parzystem lub nieparzy­
ste m, stosownie do tego, czy liczba przedstawień, na które się 
rozkłada, jest parzystą lub nieparzystą.

Jeżeli podstawienie sjest rzędu m, to je­

dna z jego potęg sm' będzie rzędu-—, gdzieś jest 

największym wspólnym dzielnikiem liczb 
m i mr.

Mówimy, że ogół podstawień tworzy grupę, gdy ilo­
czyn dwu jakichkolwiek podstawień tworzy jedno z pomiędzy 
podstawień danych.

Liczba podstawień grupy stanowi rząd grupy
Rząd grupy jest zawsze dzielnikiem li­

czby n\.
Jeżeli wszystkie podstawienia grupy H zawierają się po­

między podstawieniami innej grupy ćr, wtedy H nazywa się 
podgrupą grupy G. Rząd podgrupy H jest dziel­
nikiem rzędu grupy G. .

Rząd grupy jest wielokrotnością rzędu 
każdego z j ej podstawień.

Grrupa wszystkich n\ podstawień nazywa się grupą syme­
tryczną.

Wszystkie podstawienia parzyste tworzą 
grupę, która nazywa się naprzemienną; jej 

rzędem jest n !j

Jeżeli xx, x2 , . . . xn są n elementami grupy, 
to każda grupa, zawierająca n— 1 przestawień

(&a *^1), ^-2)? • • • —l)j (Xa «^a+1) • • •

jest identyczna z grupą symetryczną.
Te podstawienia jakiejkolwiek grupy, któ­

re należą do grupy naprzemiennej, tworzą pod­
grupę, która albo zlewa się z grupą daną, albo 
jest rzędu równego połowie rzędu grupy danej.
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Jeżeli grupa zawiera n—2 podstawień ko­
łowych

(#1 3?2 #3), (X-[ 3*2 ^4)’ • • • , *^2

to jest albo naprzemienną albo symetryczną.
Potęgi podstawienia tworzą grupę, której 

rząd jest równy rzędowi podstawienia.
Podstawienia wspólne dwóm grupom two­

rzą nową grupę.
Jeżeli/? jest liczbą pierwszą, pk zaś naj­

wyższą potęgą liczby/), zawartą w łi!, to ist­
nieje grupa rzędu pk. Jeżeli rząd grupy jest 
podzielny przez liczbę pierwszą/), to grupa 
zawiera podstawienia rzędu p. (Cauchy).

Dwa podstawienia nazywają się p o d o b n e m i, jeżeli róż­
nią się jedynie nazwą elementów, które zawierają.

Dwie grupy nazywają się p o d o b n e m i, jeżeli składają 
się z jednakowej liczby podstawień podobnych i jeżeli do każ­
dego z podstawień grupy pierwszej można dobrać jednoznacznie 
podstawienie z drugiej grupy w ten sposób, że zmieniając jedna­
kowo dla wszystkich nazwy elementów, od podstawień jednej 
grupy dochodzimy do podstawień drugiej.

J e ż e 1 i d w a p o d s t a w i e n i a lub dwie grupy 
są podobne, to istnieje zawsze podstawienie 
s takie, że iloczyn s_] . ^4 . s (w którym A jestje- 
dnem z podstawień danych lub podstawieniem 
jednej z grup danych) będzie równy drugiemu 
z danych podstawień lub odpowiedniemu pod­
stawieniu drugiej grupy danej.

Iloczyn s nazywa się podstawieniem 
przekształconem z podstawienia A (lub prze­
kształceniem podstawienia A) przy pomocy 
podstawienia s.

Każde podstawienie jest podobne do jedne­
go ze swych przekształceń.

Jeżeli s, s' są dwa podstawienia, to iloczy­
ny ss' i s' s są dwoma podstawieniami podobnem i.
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Jeżeli s i s' są podstawieniami przemien­
ne m i, to podstawienem przekształconem z s 
przy pomocy s' j e s t samo podstawienie s.

Przeksztalcenie iloczynu jest równe iloczy­
nowi przekształceń czynników.

J e ż e 1 i d w a p o d s t a w i e n i a są przemienne- 
mi, to ich przekształcenia przy pomocy tego 
samego podstawienia będą też przemiennemi.

Wszystkie podstawienia, przy pomocy któ­
rych grupa dana przekształca się na siebie 
samą, tworzą grupę.

Jeżeli przekształcamy grupę przy pomocy 
jednego podstawienia, to podstawienia prze­
kształcone tworzą grupę podobną do danej.

Jeżeli podstawienie jest takiem, że ogół iloczynów s A, 
gdzie A jest jakiemkolwiek podstawieniem grupy G, nie różni się 
od ogółu iloczynów B.s, gdzie B jest także podstawieniem gru­
py ćr, wtedy podstawienie s nazywa się przemiennem 
z grupą G.

Jeżeli wszystkie podstawienia grupy H mają dopiero wła­
sność co określoną względem grupy G, wtedy cała grupa H na­
zywa się przemienną zgrupą G. W tym przypadku, jeżeli 
H jest podgrupą grupy G, to nosi nazwę grupy charakte­
rystycznej lub wyróżnionej.

Wszystkie podstawienia n elementów, prze­
mienne z danem podstawieniem tychże ele­
mentów lub z grupą daną, tworzą grupę, do 
której grupa dana należy jako podgrupa cha­
rakterystyczna.

Jeżeli liczba elementów jest większa od 4, 
to grupa przemienna z jakiemkolwiek podsta­
wieniem zawiera wszystkie podstawienia pa­
rzyste, a więc jest grupą naprzemienną.

Dla n = 4 grupa czterech podstawień
[ 1, (#i ^2) (^3 ^3) (#2 (#1 ^4) (^2 ^3) ]

posiada tęż samą własność.
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Grupa G nazywa się złożoną, jeżeli zawiera w sobie 
podgrupę charakterystyczną H.; ta ostatnia nazywa się naj­
większą, jeżeli nie jest zawarta w innych charakterystycz- 
n y c h podgrupach grupy G.

Utwórzmy szereg grup

G, G2 1.

w ten sposób, aby każda z nich była grupą charakterystyczną 
największą prprzedzającej, to będziemy mieli to, co się nazywa 
szeregiem składu (kompozycyi) grupy G.

Jeżeli
r r,r, rx — ----- , r2 = —— , . . . .1 e2 ’

są rzędy grup szeregu, to liczby , e2 . . . nazywają się czyn­
nikami liczbowemi składu grupy G.

Jeżeli mamy dwa szeregi składu jednej 
grupy złożonej, wtedy liczba wyrazów obu 
szeregów musi być jednakowa, a czynniki 
liczbowe składu, jeżeli nie uwzględniamy po­
rządku, są jedne i te same.

Szereg składu grupy symetrycznej skła­
da się zgrupy naprzemiennejizl, gdy n 4; 
czynnikami liczbowemi składu są przeto 2 

i -Ę- n\. Grupa naprzemienna więcej niż 4 ele- 

mentów, nie jest złożoną.
Każda grupa, niezawarta w grupie naprze­

miennej, jest złożona; jednym z czynników 
składu jest 2.

Dla n = 4 szereg składu grupy symetry­
cznej jest następujący: 1) grupa symetryczna; 
2) grupa naprzemienna; 3) G2 — [1, (xlx2) (o?3o;4), {xxxi} (x2x^, 
(xxXt) 4) 6t3 = [l. (a?3«4)], 5)^=1.
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§ 2.

Przechodni ość.

Jeżeli podstawienia grapy są takie, że za ich pomocą k 
elementów dowolnie wybranych może przejść na k innych ele­
mentów, również dowolnie wybranych, grupa nazywa się k- 
krotnie przechodnią. Jeżeli Zc = l, grupa nazywa się 
pojedyńczo-przechodnią. W przeciwnym razie na- 
zywa się nieprzechodnią.

Rząd grupy przechodniej jest wielokrot­
nością rzędu tej jej podgrupy, której podsta­
wienia nie zmieniają miejsca jednego jakie­
gokolwiek elementu np. xx.

Grupy przechodnie, których rząd jest rów­
ny ich stopniowi, mają tylko takie podstawie­
nia, które zmienia ją miejsca wszystkich ele­
mentów.

Każda grupa przechodnia ma przynajmniej 
n—1 takich podstawień, które zmieniają miej­
sca wszystkich elementów.

Grupa naprzemienna jest (n — 2)-krotnie 
przechodnia.

Rząd grupy 7c-k rotnie przechodniej jest 
równy n(n— l)(n—2) . . (n—/c-j-l) »?, gdzie m jest
rzędem podgrupy, pozostawiającej bez zmiany 
Iz ■ elementów.

Podgrupa charakterystyczna grupy prze­
chodniej nie zawiera wszystkich elementów.

Jeżeli grupa dwu lub więcej krotnie prze­
chodnia zawiera podstawienie kołowe 3-go 
rzędu, to zawiera wszystkie takie podstawie­
nia i zawiera zarazem grupę naprzemienną.

Jeżeli grupa A:- krotna przechodnia nie za­
wiera w sobie grupy naprzemiennej, to każde 
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podstawienie porusza z miejsca więcej niź k 
elementów i zawiera wi ę cej niź 2k— 4 elementów.

Rząd grupy k-krotnie przechodniej i nie 
zawierającej w sobie grupy naprzemiennej, jest 

dzielnikiem liczby , gdzie m jest większa 

z dwu liczb Zr, 2 k—4.
Grupa, nie zawierająca w sobie grupy na­

przemiennej nie może być więcej niź ę-krotnie 
przechodnią, gdzie //jest mniejsza z dwu liczb 
n -j- 4 n 
~3~ ’ T ’

Grupa przemienna z podstawieniami gru- 
p y &-k rotnie przechodniej jest co najmniej 
(k—1) - krotnie przechodnią.

§ 3.

Niepierwotność.

Niechaj G będzie grupą pojedynczo - przechodnią o n 
elementach. Jeżeli elementy te możemy podzielić na 

układów po — elementów, źe gdy podstawienie grupy prze­

kształca element układu A na inny tegoż układu, to prze­
kształca też i wszystkie elementy w A na inne elementy w’ A, 
podstawienie zaś przekształcające element w układzie A na 
element w układzie R, przekształca wszystkie inne elemen­
ty w A na wszystkie inne elementy w R, wtedy grupa na­
zywa się niepierwotną, a powyższe układy nazywają się 
układami niepierwotność i. W przeciwnym razie 
grupa nazywa się pierwotną,

Jeżeli w grupie podział elementów na ukła­
dy jest możliwy dwoma różnemi sposobami, to 
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będzie możliwy i trzecim sposobem przez ze­
branie w jeden układ wszystkich elementów 
wspólnych układowi z pierwszego i drugiego 
podziału.

Jeżeli grupa niepierwotna posiada m ukła­
dów niepierwotności, to rząd jej będzie dziel- 

(Yb \fn 
----- !m I

§ 4.

Izomorfizm.

Jeżeli podstawienia dwu grup mogą odpowiadać sobie 
w ten sposób, że iloczynowi dwu podstawień jednej odpowiada 
iloczyn odpowiednich podstawień drugiej, wtedy obie grupy na­
zywają się izomorficznemi (r ó w n o p o s t a ci o wemi). 
Jeżeli jednemu podstawieniu jednej odpowiada tylko jedno 
podstawienie drugiej, izomorfizm jest j e d n o s t o p n i o w y; jeżeli 
jednemu podstawieniu pierwszej odpowiada więcej podsta­
wień drugiej, izomorfizm jest wielostopniowy. Te izo­
morfizmy można nazwać jeszcze holoedrycznym i me- 
riedrycznym (Jordan).

Jeżeli grupy ffifsą izomorficzne w sto­
pniu pierwszym, to ich rzędy są równe.

Jeżeli izomorfizm grupy G i .F jest wielo­
stopniowy, a podstawieniu 1 grupy G odpo­
wiadają podstawienia a2, . . . om grupy /*, to 
tworzą one podgrupę grupy F

W przypadku izomorfizmu wielostopnio- 
wcgogrupGiJ, każdemu podstawieniu gru­
py G odpowiada jednakowa liczba m podsta­
wień grupy F, rząd grupy /'jest równy m razy 
wziętemu rzędowi grupy G', m nazywa się sto­
pniem izomorfizmu.
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Jeżeli L jest podgrupą charakterystycz­
ną, grupy G, to grupa odpowiednia A grupy r 
izomorficznej z G będzie także grupą cha­
rakterystyczną w r. Jeżeli L jest grupą naj­
większą, to i A będzie największą.

§ 5.

Funkcye. należące do grup podstawień.

Wyobraźmy sobie funkcyę wymierną cpi elementów xx, 
rc2, . . . xn. Jeżeli do tej funkcyi zestosujemy wszystkie moż­
liwe podstawienia pomiędzy elementami, to wartość funkcyi cpj 
może się zmienić lub nie. Ogól wszystkich podstawień, 
dla których wartość pozostaje bez zmiany, sta­
nowi grupę, którą nazywamy grupą funkcyi.

Do każdej funkcyi należy grupa, a do każ­
dej grupy należy nieskończenie wiele funkcyj.

Funkcye, nie zmieniające się przy wszyst­
kich podstawieniach, są funkcyami symetry­
czne m i.

Każda f u nkcy a, należąca do grupy naprze­
miennej, funkcya naprzemienna), ma postać

? = $ 4- S2 FA,

gdzie A jest wyróżnikiem n elementów, t. j.

1,2,. . n

A = II (xi — ay)2,
V

Ą i zaś są funkcyami symetrycznemi ele­
mentów.

Zastosowawszy do funkcyi cpj wszystkie możliwe podsta­
wienia, otrzymujemy m różnych jej wartości , cp2, . . .
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Liczba m j e s t dzielnikiem liczby n!; jeżeli 
r jest rzędem grupy f u n k c y i , to iloczyn rm 
równa się n\

Grupy, należące do (fi , cp2 . . . ym, są wszyst­
kie do siebie podobne.

Jeżeli n^>4, to grupy te mają jedno
tylko podstawienie wspólne, które jest je­
dnością.

Jeżeli n — 4, to mogą one mieć cztery pod­
stawienia wspólne

[1, (^#2) (#3#4), (®i®3)'#2#4), Cw) (#2«3) ]

Wartości funkcyi m-wartościo wej są pier­
wiastkami równania stopnia m - go, którego 
spólczynniki są funkcyami symetrycznemi ele­
mentów xx, x2 ... xn.

Wyróżnik m wartości <p ma jako czyn­
nik wyróżnik elementów#, Stąd i wszystkie 
funkcye, mające więcej niż jedną wartość, 
przyjmują wartości równe, gdy dwie ilości# 
stają się równemi.

Przy n elementach niezależnych od siebie 
funkcyenaprzemiennesąjedynemifunkcyami, 
których potęgi mogą być symetrycznemi, jak­
kolwiek same one symetrycznemi nie są.

Jeżeli n^>4, wtedy nie istnieje funkcya 
o większej liczbie wartości, której by potęga 
miała tylko dwie wartości w założeniu, że po­
między elementami nie zachodzą związki spe- 
c y a 1 n e.

Jeżeli n = 4, to funkcya

(#x#2 + #3#4) + e (#j#3 -f- #2#4) 4- e2 (#j#4 -j- #2a?3), 
gdzie£3=l, jestfunkcyą, której sześcian ma 
dwie wartości.

Jeżeli n = 3, to
X/ £ x2r £2#3r



§6. — Przedstawienie analityczne podstawień. 43

jestfunkcyą, której sześcian ma dwie war­
tości.

Dwie funkcyę, należące do tej samej gru­
py, dają się wyrazić wymiernie jedna przez 
drugą, i odwrotnie. (Twierdzenie L a g r a n g e’a).

Jeżeli jedna funkcya pozostaje niezmie­
nioną przez podstawienie grupy innej fun- 
kcyi, a nie zachodzi własność odwrotna, to 
pierwsza funkcya daje się wyrazić wymiernie 
przez drugą; druga zaś jest pierwiastkiem ró­
wnania stopnia m (jeżeli m jest liczbą jej wartości), któ­
rego s p ó ł c z y n n i k i s ą f u n k c y a m i w y m i e r n e m i 
pierwszej. Każdą funkcyę wymierną n ilości 
xx, x3 ...a?„możnawyrazićwymiernieprzezkaż- 
dą funkcyę n ilości, posiadającą n\ wartości; 
w szczególności zaś za pomocą funkcyj linio­
wych typu apTj-f-ajiTa-J- . . . + anxn, gdzie 04, a2 . . . a„ są 
stałemi dowolnemi.

§ 6.

Przedstawienie analityczne podstawień.

Podstawienia n elementów można przedstawić jeszcze ana­
litycznie następującym sposobem:

Niechaj będzie podstawienie

l/y* SY* rf» »
*^1 , ^2 *> **'3 • • • • '

ItŁ/, , Xty ....

Utwórzmy funkcyę cp zmiennej z taką, że kiedy z staje się 
kolejno 1, 2 ... n, to q(z) staje się kongruentnem z , i2, . . . in 
według modułu n. Wtedy symbol | z, 9 (2) | może wyobrażać 
podstawienie dane; rozumiemy przezeń to, że skutkiem danego 
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podstawienia każdy skaźnik z ilości x przechodzi na skaź- 
nik tp(^).

Niechaj n = mk} wtedy każdy element może być przedsta­
wiony z k skaźnikami, z których każdy przybiera wszystkie 
wartości od 1 do n:

Z2, ... Sk >

Podstawienie pomiędzy temi elementami możemy wyobra­
zić symbolem:

| ^1, Z2 . . . zk\ . zk) I (mod. m);

rozumiemy przezeń to, że zamiast istotnej wartości funkcyi należy 
brać wartości kongruentne z niemi według modułu m i mniej - 
sze od m.

Wszystkie podsta w i e n i a postaci

| zx.............zk’, zx-\-ax, . . . . , zk -|- ak\ (mod. ni)

tworzą grupę, która nazywa się arytmetyczną.
Warunkiem koniecznym i dostatecznym, 

na toby, symbol

zx . . . Zk- axzx + • • • + cizk- . • • + c2zk, • • ■ | (mod m)

wyobrażał grupę, j eśt to aby wyznacznik

j Oj , Ćj , . . . . , Cj

; , &2 > • • • • > ^2

I Uk, bk,................................. (‘k

był względnie pierwszy z modułem m. W tym 
przypadku podstawienia postaci poprzedza­
jącej nazywają się podstawieniami liniowe- 
mi lub także podstawieniami geometryczne- 
mi. Tworząonegrupę, która nazywasięgrupą 
liniową.
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Podstawienia gruPy liniowej są przemien- 
nemi k grupą arytmetyczną.

Rząd grupy liniowej o m* elementach jest:

r — [m, k] mk~y \m,k—1] mk~2 .... [wi, 2] m [m. 1]

gdzie symbol \in, p| oznacza wogóle liczbę roz- 
wiązań zagadnienia o wyznaczeniu q liczb 
mniejszych od m i względnie pierwszych z m.

Jeżeli w szczególności spółczynniki a, 6, .... c czynią za­
dość warunkom:

aia2 H- ^1^2 4~ • • •

(mod m).................................................. ..  (modni)

axbx-\-aib/,=O i

. • • 4-c,2^ i 

“H + • • • H- <^2si 

+ ^22 + - • ? +^À2—1

wtedy podstawienia liniowe nazywają się ortogonalnemi 
(prostokątnemi).

Jeżeli k=<2k1 skaźniki zaś, których jest 2/z, są rozmieszczo­
ne parami

lh •> z2 V2..........................zh yh i

to podstawienia liniowe tych skaźników, mające własność taką, 
że zastosowane do funkcyi

h
— ( zc 1] i ye Ci}
i = v

(gdzie t, V są symbolami skaźników, podległych tym samym wa­
runkom co z} mnożą je tylko przez czynniki stałe, nazywają 
się podstawieniami abelowemi. Tworzą one 
grupę, która nazywa się abelową (Hermite).

Teoryę grup podstawień utworzyli Abel (Crelle, VI) i Cauchy 
(Exercices, 1844). Temu ostatniemu zawdzięczamy większość twier­
dzeń podstawowych tej teoryi, której późniejsze badania Galois’a 
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(Journ. de Lionville, XI, 1846) nadały wielką ważność, zwłaszcza 
w zastosowaniu do równań algebraicznych.

Do nowszych i zupełnych dzieł o tym przedmiocie należą: J o r- 
dana, Traite des śńbstitutions etc., Paryż, 1870; Netto, Substitu- 
tionentheoyiß, Lipsk, 1882 (przekład włoski Battaglini'ego, Turyn, 
1885); Peters ena, Algebraische Gleichungen“, Kopenhaga, 1878, 
(przekład francuski, Paryż, 1897). W „Algèbre supérieure“ Serreta 
(przekład niemiecki Wertheima, Lipsk, 1868), teorya ta jest dosta­
tecznie rozwinięta. W rozdziale V-ym przedstawimy teoryę Galois’a, 
t. j. zastosowanie teoryi podstawień do równań algebraicznych, w roz­
dziale zaś IX podamy teoryę grup przekształceń, która ma 
wiele węzłów, wspólnych z teoryą podstawień.
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Liczba:

ROZDZIAŁ III.

TEORYA WYZNACZNIKÓW.

§ I-

Wiadomości ogólne.

Niechaj będzie n2 ilości ułożonych w kwadrat:

5 ®12 > • • • • ^In

#21 i #22 i • • #2n

, #r>2 , .... Unn •)

Utwórzmy wszystkie iloczyny typu

airt i ^2r* «... dnr^ ,

gdzie rt, r2 .... rn stanowią jakąkolwiek przemianę liczb 
1, 2 . . . . n; każdemu z iloczynów nadajmy znak -j- lub — , 
stosownie do tego, czy przemiana skaźników r jest przemianą 
parzystą, czy też nieparzystą; weźmy wreszcie sumę algebraicz­
ną nl w ten sposób utworzonych iloczynów. Suma ta nazywa 
się wyznacznikiem n2 ilości i przedstawia się za pomocą 
symbolu:
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#14 > #12 • • • i ^ln

#21 i #2 2 • • • 5 #2«

#«1, #»2 • • • i Clnn

Zbiór wszystkich n2 elementów, ułożonych w kwadrat, sta­
nowi macierz (matrycę) kwadratową; przekątna, złożona 
z elementów au, a2a, . . . , a„n nazywa się przekątną głó­
wną, same zaś elementy alt, a22 . . . ann —elementami 
głównemi.

Jeżeli w wyznaczniku wszystkie elementy je­
dnego wiersza (lub kolumny) są zerami, wyznacznik 
jest zerem.

Jeżeli w wyznaczniku przemienimy wiersze na 
kolumny, wyznacznik nie zmieni się.

Jeżeli w wyznaczniku przestawimy dwa wier­
sze (lub kolumny) równoległe, otrzymamy nowy wy­
znacznik równy pierwotnemu ze znakiem przeci­
wnym.

Jeżeli dwa wiersze (lub dwie kolumny) równo ległe 
w wyznaczniku są jednakowe, wyznacznik jest 
zerem.

Jeżeli elementy j ednego wiersza lub kolumny 
pomnożymy przez k, to i sam wyznacznik zostanie 
pomnożony przez k.

Wyznacznik nie zmienia się, jeżeli zmie­
nimy znak wszystkich elementów, stojących 
na miejscach nieparzystych, rozumiejąc przez 
miejsca nieparzyste te, dla których suma ska- 
źnikówjest nieparzysta.

Wyznacznik nie zmienia się, jeżeli każdy 
element a,k pomnożymy przez p‘~k, gdzieś jest 
liczbą dowolną.

Wyznacznik jest zerem, jeżeli elementy 
jednegowiersza (lub kolumny) sąj ednakowemi wie­
lokrotnościami elementów wiersza równole- 
g ł e g o (lub kolumny równoległej).
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Wyznacznik, w którym elemen ty jednego 
wiersza (lub kolumny) są wyrażeniami wielo- 
m i a n o w e m i, równa się sumie wyznaczników, 
których elementy są wyrażeniami jednomia- 
n o w e m i.

Wyznacznik nie zmienia się, jeżeli do ele­
mentów jednego wiersza (lub kolumny) dodamy 
elementy wiersza równoległego (lub kolumny), 
pomnożone przez jakąkolwiek liczbę.

Wyznacznik jest zerem, jeżeli elementy 
jednego wiersza (lub kolumny) są kombinacyami 
liniowe mi podobnemi elementów wierszy (lub 
kolumn) równoległych, i odwrotnie.

Z macierzy kwadratowej rzędu n-tego, po usunięciu m
wierszy i m kolumn, pozostaje macierz kwadratowa rzędu n—ni. 
Wyznacznik, którą taka macierz przedstawia, nazywa się 
minorem, p o d w y z n a c z n i k i e m, wyznacznikiem
cząstkowym lub wyznacznikiem pochodnym 
wyznacznika danego. Jeżeli jego elementy główne są elemen­
tami głównemi danego, nazywamy go minorem głó wnym. 

Istnieje^ Zij| minorów rzędu m-tego.

Istniej e minorów głównych rzędu\ m
m-tego.

Minor jest klasy parzystej lub nieparzystej, 
tosownie do tego, czy suma liczb porządkowych, odpowiadają­
cych wierszom i kolumnom go składającym, jest parzysta lub 
nieparzysta.

Każdemu minorowi rzędu in odpowiada jeden minor rzędu 
n—m, utworzony przez usunięcie kolumn i wierszy, składających 
minor dany. Te dwa minory nazywają się wzajemnie d o p e ł- 
niającemi. Dopełnieniem algebr aicznem (ilo­
ścią dołączoną) minoru jest jego minor dopełniający, wzięty 
ze znakiem -j- lub —, stosownie do tego, czy jest klasy parzystej 
czy nieparzystej.

Wyznacznik równa się sumie iloczynów 
minorów, zawartych w m wierszach lub kolu-

Pascal, Rep. I. 
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mnach przez odpowiednie dopełnienia alge­
braiczne.

Wyznacznik równa się summie algebra­
icznej iloczynów elementów wiersza lub ko­
lumny przez odpowiednie dopełnienia alge­
braiczne.

Suma iloczynów minorów, zawartych w m 
wierszach, przez dopełnienia algebraiczne od­
powiednich minorów, zawartych w innych m 
wierszach równoległych, jest zerem. Godnem 
uwagi jest to twierdzenie w przypadku m— 1.

Jeżeli wyznacznik jest zerem, dopełnienia 
algebraiczne elementów jakiegokolwiek wier­
sza są proporcjonalne do elementów jakie­
gokolwiek innego wiersza równoległego.

Po wprowadzeniu minorów rzędu 2-go, każdy wyzna­
cznik rzędu n - tego można przedstawić w po­
staci wyznacznika rzędu (n—l)-go.

Jeżeli wszystkie 
są podzielne przez p, 
podzielny przez pn.

Jeżeli wszystkie 
znacznika są p 
znacznik jest

elementy wyznacznika 
to sam wyznacznik jest

minory rzędu 2-go w y - 
odzielne przez p, to sam w y- 
podzielny przez p*-1.

Iloczyn dwu wyznaczników tego samego 
rzędu o elementach odpowiednio ars, otrzy­
mujemy, tworząc wyznacznik o elementach 
Cy, gdzie c może mieć jedno z czterech wy­
rażeń:

('v = «»i 4~ ai2 bJ2 -f- aIH bJn

e,,j — J- a2ibj2 4- ... 4- anibj„

. -J- fiinbnj

\
l (prawidło

>
i B i n e t a.)

-j- ^2/ • • • -j- anibnj
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Jeżeli wyznaczniki nie są tego samego rzędu, to wyznacz­
nik rzędu niższego można zamienić na wyznacznik rzędu wyż­
szego, dołączając wiersze lub kolumny, których elementy, znaj­
dujące się na miejscach niegłównych, są zerami, elemen­
ty zaś, znajdujące się na przekątnej g ł ó w n e j, są rów­
ne jedności.

Nazywamy macierzą prostokątną—tablicę, w której 
n m elementów układa się w prostokąt. Jeżeli mamy dwie macierze 
prostokątne o m wierszach i n kolumnach, to utworzywszy sumę 
iloczynów elementów wierszy macierzy pierwszej przez odpowie­
dnie elementy w wierszach drugiej, otrzymamy m2 elementów 
ułożonych w kwadrat i mogących utworzyć wyznacznik rzędu 
m-tego. Ten wyznacznik nazywa się iloczynem według li- 
nij macierzy prostokątnych.

Każdy minor wyznacznika, będącego iloczynem dwu danych 
wyznaczników, jest iloczynem dwu macierzy prostokątnych.

Iloczyn według linij dwu macierzy prostokątnych o n ko­
lumnach i m wierszach równa się zeru, jeżeli m^>n; jeżeli 
równa się sumie iloczynów minorów rzędu m, zawartych w pierw­
szej macierzy, przez odpowiednie minory zawarte w drugiej.

Wyznacznik //, którego elementy Ars są dopełnieniami ele­
mentów ars wyznacznika 7>, nazywa się wyznacznikiem układu 
dołączonego lub wzajemnym względem danego.

Jeżeli wyznacznik jest zerem, to jego wyznacznik wza­
jemny wraz ze wszystkiemi minorami (aż do minorów rzędu 
2-go), jest zerem.

Wyznacznik układu dołączonego ma wartość 
równą potędze (n— l)-ej wyznacznika danego.

Jeżeli nazwiemy homologicznemi dwa minory wyznacznika 
ff i R, zamknięte wierszami i kolumnami tych wyznaczników 
o odpowiednio równych liczbach porządkowych, to:

Jakikolwiek minor M rzędu m-tego, zawarty 
w wyznaczniku R, równa się minorowi wyznaczni­
ka />, homologicznemu z dopełnieniem algebraicz- 
nem minoru M w R, pomnożonemu przez potęgę 
(wi—l)-ą wyznacznika danego.
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Dopełnienie elementu Ars wyznacznika H rów­
na się elementowi a,-s, pomnożonemu przez potęgę 
(n—2)-ą wyznacznika D.

Jeżeli pomnożymy przez siebie dwa wyznacz­
niki Z), Df, a następnie w sposób analogiczny1 po­
mnożymy ich wyznaczniki wzajemne Jii/i', to dru­
gi iloczyn będzie wzajemnym względem pierwszego.

§ 2-

Wyznaczniki symetryczne i skośne. Pfafiany.

Jeżeli ars —asr , wyznacznik nazywa się symetrycznym; 
jeżeli ars — — ngr , nazywa się skośnym; jeżeli wreszcie 
ars =—asr , przyczem arr — 0, nazywa się półsymetry cz- 
nym.

Kwadrat wyznacznika jest wyznacznikiem sy­
metrycznym.

W wyznaczniku symetrycznym minory dopeł­
niające dwóch elementów sprzężonych są równe.

Wyznacznik układu dołączonego wyznacznika 
symetrycznego jest symetryczny.

Wyznacznik półsymetryczny rzędu nieparzy­
stego jest zerem.

Wyznacznik półsymetryczny rzędu parzyste­
go jest kwadratem zupełnym wyrażenia wymier­
nego całkowitego swych elementów.

Wyrażenie takie nazywa się pfafianem n2 elementów, 
lub także półwyznacznikiem (Scheibner).

Pfafian rzędu n (parzystego) elementów an , a12, . „ ozna­
cza się symbolem (123 . ri). Symbolem (12 ... . ri) oznacza się 
właściwie ten z dwu pierwiastków wyznacznika półsymetrycznego, 
który zawiera ze znakiem -}- wyraz a12a34 . • . a»—i, »•
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Liczba wyrazów pfafianu rzędu M-tego jest; 
(n—1) (n—3) ...3.1.

Pfafian zmienia znak skutkiem przestawienia 
d w u element ów. . ....

Pfafian rzędu ?i-tego rozwija się według wzoru:

(12 ... m) — (12) (34 . . . n—1, n) 

+ (13)(45 . . . m2) 

4- (1 n) (23 , . . n—1).

Każdy minor rzędu (n—l)-go wyznacznika rzę­
du parzystego równa się iloczynowi pfafianu (12...«) 
przez pfafian rzędu (n—2)-go, otrzyma,ny z pierw­
szego przez zniesienie dwu skaźników.

Równanie
1 *^'1 2 ?

Ć4g j G/ij 2 y

• , n

■ , «2»
*

* i Cl nj 2 dnu ~ &

ma same pierwiastki rzeczywiste, jeżeli wyznacz­
nik ilości a jest symetryczny. (Twierdzenie Sylve- 
stera).

Każdy wyznacznik skośny, którego elementy 
główne są równe 1, jest sumą kwadratów.
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§ 3.

Wyznaczniki specyaine.

Wyznacznik Hankela utworzony jest sposobem nastę­
pującym:

«0 i • • • • i

CL^ 7 ^*2 * * * * *>

—1 ] , (^2n—2

Nazywa on się także wyznacznikiem ortosymetrycz­
nym (Hankel) lub persymetrycznym (Sylvester).

Wyznacznik ten ma tę własność, że może być 
wyrażony przez różnice kolejne ilości a. Poło­
żywszy :

A/D = aj — a0,

A2(D = a3 — «i, AJ2) = Aa(1) —

^=ak-ak^

znajdujemy:

«0, AJ», 12(2).............................A„_ó“-D
AJ2), A;J3).....................AJ")

A„_J”-», . A8„_2<2*-2)

Jeżeli w szczególności elementy tworzą po­
stęp arytmetyczny rzędu (n—1)-go, będzie:

n(n—l) 
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jeżeli ten postęp jest rzędu niższego niż n—1, 
wtedy P — 0.

Jeżeli elementy tworzą postęp geometrycz- 
n y, to F — 0.

Wyznacznik kołujący (cyrkulant) jest postaci:

al , > • • ■ , «u ;

a2, a3, • • -,«1,

= a3y Un, . • • • ,«2,

«n «1 , . • • • • , a»-i,

Wyznacznik kołujący rzędu n-tego rozpada 
się na n czynników wymiernych względem swych 
elementów według wzoru następującego:

(n -1) (w—2)
P—(—1) 2 ? (aj <p (a2) • • • ? (a«),

gdzie

(z) = a, + a2 z -j- a3 z2 -j- . . . -f- a„ zn~'; 

a}, a2 . . . an są n pierwiastkami równania x* — 1 — 0.
Wyznacznik kołujący

1,2, . . . . . , n

2, 3,..................... ,1

n, 1,....................., n— 1

równa się :

(-^2^+2. n2
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Wyznacznik Vandermonde’a lub Cauchy’ego jest 
postaci: c

D =

1,

«1,

1, . . .

a2, ....

• - , 1

, - , an

«l2, «22 . . . . ■ , an2

a/‘- ka/-1, . . . a«”"1
i równa się:

*(«* — !) i,N
( — 1) 2 ZZ(a,—rty)

Kwadrat wyznacznika Cauchy’ego jest wyzna­
cznikiem Hankela.

W yznacznik

równa się jedności
Wyznacznik Zeipela

1, 1, • /1,

/ m \ / w-|-l \
\ 1 /’ \ 1 r ■

m 4- 1 \ / m-j~2 \ / m + n 4- 1 \
■ / ' 22 / ’ 1 2 / ’ /

( m--H—1)\
n ) ’ \ n / ’ ’

/ m-ł-2n—1) \
' ’ \ n I

1 ni l m \
U+l / ’ ’ ’ AH-r)

/m+1 \
1' \r+l) ’ ’ ’ \p+r /

\ hn^-r\
r \p+i)’ ■
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równa się:

równa się:
D

2«-2 3«-3 4».-4 / .. (n_i) ’

gdzie D jest wyznacznikiem Cauchy’ego, utworzonym z ilo­
ści •/'.

Wyznacznik

-jy ,1, O . Ó

1 1 1___ 1
n\ 1 (n — 1)! ’ (n — 2)!’ * * ’ 1!

, 1równa się -----r .n!
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Wyznacznik Smitha

(1,1), (1, 2) . . . . . (1, n)

(w, 1), 2) .. . . . (n, n)

gdzie (z, j) oznacza największy wspólny dzielnik 
liczb całkowitych z, j, równa się tp (1) cp (2) . . . <p(n), 
gdzie cp(Zc) jest liczbą liczb mniejszych od k i pier­
wszych względem k.

Kontynuanty

ax, 1, 0, . . . . , 0

1 j a2 j d, . • , 0

0,-1, ff3, . . • , 0

0, 0, 0, . . .

czynią zadość wzorowi zwrotnemu:

C» = an Cn—i -j- Cn— 2 •

Kontynuant ma wyrazów

gdzie k = -5- , gdy n parzyste, k — —~, gdy u nie- 

parzyste.
Jeżeli pomiędzy elementami wyznacznika zachodzą 

związki
fli»2 a2i~ d"......................................... d" = 1»

^1/ H- a2i a2j ........................................“ł~ J

wyznacznik nazywa się ortogonalnym.
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Kwadrat wyznacznika ort ogon alnego j es t j e- 
dnością dodatnią. Dopełnienie algebraiczne ele­
mentu w wyznaczniku ortogonalnym równa się 
samemu elementowi, pomnożonemu przez wyzna­
cznik. Każdy minor wyznacznika ortogonalnego 
równa się swemu dopełnieniu algebraicznemu, po­
mnożonemu przez wyznacznik dany.

Iloczyn dwu wyznaczników ortogonalnych 
jest ortogonalny.

Jeżeli a są elementy wyznacznika ortogonal­
nego D, to równanie

all

“21

ć,12 ,

a.j2 •

• • ł

n

.... Ujw
= 0

a„j 5 a»2 • • . • "ł"

jest równaniem odwrotem takiem, iż dla n nieparzystego ma ono 
pierwiastek x — — Di me ma żadnego innego pierwiastka rze­
czywistego: dla n parzystego i D = — 1 ma pierwiastek x— 1
i nie ma żadnego innego pierwiastka rzeczywistego. (Twierdze­
nie Brioschi’ego.)

Jeżeli b,j są elementy dwu wyznaczników 
ortogonalnnych o wartości c = -|-1 i tego same­
go rzędu, i jeżeli wyznacznik o wyrazie ogólnym 
a,y -J- jest zarazem zerem, to i wszystkie minory 
rzędu (n—l)-go będą z er a m i. (Twierdzenie StieltjesaJ

Co do wskazówek bibliograficznych patrz rozmaite rozdziały 
E. Pascala, Determinant! (Medyolan, 1896.)
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§ <■
' ■ li : ' W ■' ■: . ■ ■

Wyznaczniki Wrońskiego.
, . ■ . . ’ . r •■ • . ■ ■ . :

Wyznaczniki Wrońskiego albo wrońskiany two­
rzą się w sposób następujący:

W pierwszym wierszu mamy n funkcyj zmiennej w wier­
szach następnych ich pochodne pierwsze, drugie i t. d.

u2 (x) . . •• , Un (x)

W «
u'i (a?), WZ2 («) . ,u'„(X)

U^n-^(x), 11^-^ (x), .

Pochodną wrońskianu tworzymy, zastępując 
elementy ostatniego wiersza pochodnemi n-temi 
fu n k cyj.

Jeżeli funkcye u pomnożymy przez jakąkol­
wiek ilość v(x), to wyznacznik zostanie pomno­
żony przez

Znikanie wrońskianu W jest warunkiem ko­
niecznym i dostatecznym na to, by pomiędzy n 
funkcyami ux(x), u2(x) ... un(x) zachodził związek 
liniowy jednorodny o spółczynnikach stałych.

Wyznacznik

(x) . .. . . . , U„(x)

ux (iC-j-l) , . . .

h; - (a?+2), • . • . , un (u;-ł-2)

ux (x-\-n—1) . . • , (x -4- n — 1)
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równy

ux (a?) , ... . . , «« (x)

A ux (xj .... . . , bun (x)

A“-1 ux (x) , . . . , A"-1 u„

gdzie A jest symbolem różnicy u (x -J- 1) — u (#), A2 u (.z;) 
= Aw(a:-J-1) — Azó(o;),............., nazywa się wyznacznikiem
różnicowym Wrońskiego (wronskianem różnico­
wym).

Znikanie wyznacznika Wx jest warunkiem ko­
niecznym i dostatecznym na to, aby pomiędzy n 
funkcyami u istniał z wiązek liniowy j ednorodny 
o spółczynnikach, które są funkcyami peryodycz- 
nemi zmiennej x, t. j. takiemi funkcyami i F(x), dla 
których = F(x) przy wszelkich wartościach
na x. (Twierdzenie C as ora ti’ego).

Co do literatury o wronskianacłi patrz: Dickstein, Własności 
i niektóre zastosowania wrońskianów (Prace matem.-fizyczne t. I, 1888); 
Peano, (Mathesis, IX, str. 75 i str. 110, 1889); Peano, Sul deter­
minantę wronskiano (Acc. Lincei, 1897); Vivanti, Sul determinanto 
wronskiano (Acc. Lincei, 1898).

§ 5.

Jakobiany czyli wyznaczniki funkcyjne .

Niechaj będzie n funkcyj yx, ?/2............ yM, zależnych od
zmiennych xx, x2,.............xn.
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Wyznacznik

Syi 3yx 3?/i
3x{ ’ 3x2 ’ ’ 3xn

3y2 3?/2 3y2
3x1 3x2 ’ ’ dxH

3 y» 3y»
9xx ' 5sr3 ’ ’ 3xn

który zwykle wyobrażamy za pomocą symbolu

s (za, • • • , y»)
9 , x2, . . . , xn)

nazywa się wyznacznikiem funkcyjnym lub jakobia- 
n e m f u n k c y j y.

Jeżeli yx, y2, . . . , yn są funkcyami zmiennych 
zx, z2, . . . , z„, te zaś ostatnie—funkcyami zmien­
nych Xj, x2, . . . , x„, wtedy mamy wzór

g (yt,y2, • • -,?/») _ 2d (zt, z2,.. .,z„)
9 (xlfx2,... ,xn) d(z1,z,,...,zn)d(x1,x2,...,x№)

Jeżeli yt, y2, . . . , yn są funkcyami zmiennych 
xs , x2, . . . , xn, to odwrotnie te ostatnie są funk­
cyami pierwszych, i będzie:

d (y^ y2, , y„) = __________ 1______
d(xvx2, . . . , xn) 3 (xA, x2, . . . , x№)

3 (yi, y2, • • • , y^

Warunkiem koniecznym i dostatecznym na to, 
by pomiędzy n funkcyami n zmiennych zachodził 
związek, jest, aby jakobian ich był tożsamościo- 
wo zerem.
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Uj (x1,X2, ... , Xn)
t<o (^1 ; 2, • • • , Xn

c>U0
U°' ’ • • • ’ 2xn

3u< <?zt.

3x} 3x»

dun 3uyi
Są;, 1 * ’ ' ’ 3xn

Twierdzenia powyższe zawdzięczamy J aco bi’emu.
Nazwawszy K wyznacznik po stronie drugiej poprzedniego 

wzoru, mamy następujące twierdzenie (Casorati’ego):
Jeżeli K jest tożsamościowe zerem, to zwią­

zek pomiędzy n-}-l funkeyami «0, , a,H jest
związkiem jednorodnym, i odwrotnie.

Jeżeli mamy n -j- 1 funkcyj jednorodnych o n 
zmiennych i kombinując je ze sobą po n, utwo­
rzymy n + 1 jakobianów, z tych znowu utworzymy 
n-J-1 nowych jakobianów, kombinując je po n; wte­
dy te ostatnie, poza czynnikiem wpólnym, przed­
stawiać będą funkeye, z których wyszliśmy. 
(Twierdzenie C1 e b s c h a.)

Niechaj będzie n funkcyj yx, y2, . . . , yn o «4-1 
zmiennych , x9, . . . , #„44. Utwórzmy n 4~ 1 jako­
bianów funkcyj, uważanych za funkeye n zmien­
nych; naz wijmy te j ako biany: y>l5 Wtedy
zachodzić będzie związek:

3 3 . 3
s; v' ~ + • ■ • +<_ J)" 3547 ’*’*+'°-
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§ 6.

H e s y a n y.

Jakobian n pierwszych pochodnych funkcyj n zmiennych 
nazywa się h esy a nem funkcyi danej.

Jeżeli funkcya dana F (Xi,x^ . . . , xn) jest fun- 
kcyą jednorodną stopnia m-tego n zmiennych i je­
żeli przyj mierny, że jedna ze zmiennych xn jest 
równa jedności, tak że F stanie się a;2, . . . , xn_-\ 
wtedy oznaczając przez f,j pochodną drugą funk­
cyi f względem xt i Xj, otrzymamy hesyan (bez 
uwzględnienia czynnika liczbowego) w postaci :

/11 > • • • , /1, M-l 1 fu—i

/II—1 , • • . .. /» — 1, n—1 fil—}

fu- ■ . .

Jeżeli funkcya jednorodna n zmiennych może 
za pomocą przekształcenia liniowego zmiennych 
przejść na inną funkcyę z mniejszą o 1 liczbą 
zmiennych, wtedy hesyan jest tożsamościowe ze­
rem. (Twierdzenie Hessego.)

Twierdzenie odwrotne jest prawdziwem tyl­
ko dla przypadków n 4 (patrz Gordan-Noether, 
Math. Ann. X, str. 547, a co do innych szczegółów: Pas ca. 
Determinant!, str. 327 i nast.

Zastosowania jakobianów i hesyanów do geometryi krzy­
wych j powierzchni podamy w drugim tomie niniejszego dzieła.

Teorya wyznaczników wypłynęła z zagadnienia o rozwiązywaniu 
równań liniowych. Za pierwszych jej twórców należy uważać Leib­
niza, Cramera, Laplace’a, Cauchy’ego, Ja co bi’ego, a pierw­
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szy traktat zupełny systematyczny teoryi napisał Brios chi. Szcze­
góły bibliograficzne u E. Pascala, Determinanti.

Oprócz dwu inonografij Cayleya (Trans. Cambridge, VIII) 
i Spottiswoodea Crelle, t. LI) do ważniejszych dzieł o teoryi wy­
znaczników należą- Brioschi (Pawia, 1854), Baltzer (Lipsk. 1857 — 
1882), Trudi (Neapol, 186'2), Trzaska (W. Kretkowski, 1870 
(w dodatku do „Rachunku różniczkowego“ Wł. Folkierskiego); Sta­
dnicka (Praga, 1871), Hoüel (Paryż, 1871), Hesse (Lipsk. 1872), 
D ô 1 p (Darmstadt 1874), M a n s i o n ( Gandawa, 1876), G ü n th e r (Erlan- 
gen, 1877), M. A. Baraniecki „Teorya wyznaczników, kurs uniwersy­
tecki“ (Paryż, 1879), jedno z najobszerniejszych w tym przedmiocie; 
Gordan (Lipsk, 1886), Porów. S. Dicksteiu „Pojęcia i metody ma­
tematyki“ (Warszawa, 1891, str. 159, 192).

Rozważano także i wyznaczniki rzędu nieskończonego. 
Co do tych patrz E. Pascal, c., oraz najświeższą monografie Cazza- 
niga; „Sui determinanti d’ordine intinito“ (Annal, di mat. 1897. 
no ad uno tipo di determ. nulli d’ordine infinit, tamże 1898.)

1’ascal. Rep. I. 5
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TEORYA SZEREGÓW, ILOCZYNÓW NIESKOŃCZONYCH 
I UŁAMKÓW. CIĄGŁYCH.

§ 1-

Wiadomości ogólne o szeregach.

Niechaj będzie szereg nieskończenie wielu liczb 
wx, u2, .... Utwórzmy sumę Sn pierwszych n z tych liczb, t. j.

Sn = Wx -j- w2 -j- . . . + un.

Granica ilości Sn dla n— oo nazywa się sumą szeregu, 
utworzonego z nieskończonej liczby wyrazów u w porządku ozna­
czonym. Mówimy, że szereg jest zbieżny, rozbieżny lub 
nieoznaczony, stosownie do tego, czy ta granica istnieje 
i jest skończoną, czy istnieje i jest nieskończoną, albo wcale nie 
istnieje.

Suma ilukolwiek wyrazów, począwszy od n-tego, na­
zywa się resztą szeregu; jest ona:

-j- Un-lf-2 + U;ł4-u •
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Można wyobrazić sobie, że ilości u zależą od dwu lub wię­
cej skaźników, zamiast od jednego; wtedy przy pomocy podo­
bnej detinicyi otrzymujemy szeregi podwójne, potrójne 
i t. d., w odróżnieniu od których poprzednie nazywają się po­
je d y ń c z e m i.

Jeżeli wyrazy szeregu są ilościami z e s p o 1 o n e m i, otrzy­
mujemy szereg z e s p o 1 o n y; oddzieliwszy w nim część rzeczy­
wistą od czysto-urojonej, powiemy, że szereg zespolony jest zbież­
ny, jeżeli każdy z tych dwu szeregów jest zbieżny.

Szereg może być zbieżny tylko wtedy, gdy uważamy każdy 
jego wyraz z jego własnym znakiem4! może przestać być zbież­
nym, gdy bierzemy wartości bezwzględne wyrazów. W takim razie 
szereg nazywa się wprost lub zwyczajnie zbieżnym.

Szereg może pozostać zbieżnym i wtedy, gdy zmieniamy 
znaki wszystkich jego wyrazów ujemnych; w tym przypadku 
szereg jest bezwzględnie zbieżnym.

Jeżeli szereg jest bezwzględnie zbieżny, to 
jest także i zwyczajnie zbieżny.

Szereg o wyrazach zespolonych nazywa się b e z w z g 1 ę- 
dnie zbieżnym, jeżeli jest zbieżnym szereg modułów, t. j. 
bezwzględnych wartości jego wyrazów.

Jeżeli wszystkie wyrazy szeregu są funkcyami jednej lub 
więcej zmiennych, otrzymujemy wtedy szereg funkcyj.

Jeżeli dawszy sobie o dowolnie małe, można znaleść skaźnik 
n taki, aby, przy każdej wartości (zawartej w pewnym ob­
szarze) ilości zmiennej lub zmiennych, reszta Rm dla każdego 
m^>n była zawsze co do wartości bezwzględnej mniejsza od a, 
wtedy mówimy, że szereg jest jednostajnie zbieżny lub 
równozbieżny.

Z dwu szeregów jeden nazywa się szybcej zbieżnym
Rniż drugi, jeżeli stosunek ich reszt dąży do zera dla w ros- 
-R n

nącego nieograniczenie.

Dla zbieżności szeregu jest koniecznem i do- 
statecznem, by dawszy sobie o dowolne, można
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było znaleść taki skaźnik n', aby dla każdego 
m^n było co do wartości bezwzględnej.

By szereg był zbieżny, jest koniecznein, aby 
granica wyrazu ogólnego un była zerem.

Jeżeli szereg jest bezwzględnie zbieżny, to 
pozostaje takim, gdy wszystkie wyrazy jego po­
mnożymy przez ilości mniejsze od liczby danej.

Szereg jest zbieżny, jeżeli wyrazy jego są co 
do wartości bezwzględnej odpowiednio mniejsze 
od wyrazów szeregu zbieżnego.

Szereg o wyrazach dodatnich jest rozbieżny, 
jeżeli wyrazy jego są co do wartości bezwzględ­
nej odpowiednio większe od wyrazów szeregu 
rozbieżnego.

Jeżeli wyrazy szeregu naprzemian dodatnie 
i ujemne maleją co do wartości bezwzględnej 
i dążą do zera, szereg jest zbieżny.

Jeżeli szereg

u, -|- -j- -j-.....................

jest zbieżny, szereg zaś

1,1 1--- ----- 1- -—-
«1 (l2

o wyrazach dodatnich—rozbieżny, to granica ilo­
czynu an u„. jeżeli istnieje dla n=oo, musi być ze­
rem.

W szeregu zbieżnym o wyrazach dodatnich 
iloczyn nun jeżeli ma granicę, to dąży do zera dla 
n = oo. Olivier (Crelle, II) uważał to kryteryum za 
konieczne i dostateczne, Abel (Crelle, III) wykazał, 
że jest tylko koniecznem.

W szeregu zbieżnym o wyrazach dodatnich 
wciąż malejących, iloczyn n un dąży do zera. Ca­
talan, Comptes rendus 1886; patrz co do tego Giudice 
(Riv di mat, IV, str. 165).
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Jeżeli dla n 
wyrażenie

rosnącego nieogranie zenie

Un+i

war­
wę i ą ż większe od pewnej 
szereg 2' w» jest zbieżny; 
począwszy od pierwszej

(gdzie 2^un jest szeregiem danym o wyrazach 

dodatnich, 2? --- szeregiem rozbieżnym o wyra- 
G>n

zach dodatnich) począwszy od pewnej 
t o ś c i n, pozostaje 
liczby dodatniej, 
jeżeli przeciwnie, 
wartości, n pozostaje wciąż ujemne, to szereg 
jest r o z b i e żn y. (Twierdzenie K u m m e r a, Crelle, 1835.)

Szereg jest bezwzględnie zbieżny, jeżeli 
granica stosunku wyrazu do poprzedzające­
go) o ile istnieje) jest co do wartości bezwzglę­
dnej ilością mniejszą odjedności(Cauchy).

Szereg o wyrazach dodatnich jest rozbie­
żny, jeżeli granica s t o s u n ku wyrazu do po­
przedzającego (o ile istnieje) jest ilością wię­
kszą od jedności (C a u c h y).

Szereg o wyrazach dodatnich jest zbież­
ny lub rozbieżny, stosownie do tego, czy wyra-

—----- .1 dla n — oo dąży do granicy wyż-

szej lub niższej od 1. (Twierdzenie Ra ab ego, Crelle, XI).
Szereg o wyrazach dodatnich jest zbież­

ny lub zbieżny, stosownie do tego, czy wy ra­
żę n i e 

dąży do granicy większej lub mniejszej od 
j e d n o ś- c i.
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AV szeregu zbieżnym o wyrazach dodat­
nich liczba

rośnie nieograniczenie wraz z n.
Jeżeli wszeregu o wyrazach dodatnich ilość 

n___
Vun, począwszy od pewnej wartości n, p o z o- 
staje wciąż mniejsza od liczby danej, mniej­
szej od 1, szereg jest zbieżny; gdy pozostaje 
wciąż większa od 1, — jest rozbieżny.

Jeżeli istnieje granica stosunku
n

to istnieje też granica wyrażenia 
na się poprzedniej.

Szereg o wyrazach doda tnich mo ż 
zbieżny, chociaż nie istnieje granic 

s u n k u • W tym przypadku stosunek ten 

waha się pomiędzy granicami, z kt ó r y c h jedna 
jest największa.

Szereg jest zbieżny lub rozbieżny, sto­
sownie do tego, czy granica wyrażenia

i r ó w-

e być 
a s t o-

log n

jest większa lub mniejsza od 1 (kryteryum lo- 
g a r y t m o w e Cauc h y’ego).

Szereg

u (1) —j- u (2) —-j— 
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jest zbieżny wtedy i tylko wtedy, jeżeli
it-f-m

lim / u (®) dx = 0
n = oo , /

n

(kryteryum całkowe Caucb y’ego).
Szereg un jest zbieżny, jeżeli można zna­

le ś ć liczby dodatnie , a2,.......... takie, że
OO

lim ! log ------------  : X* —-— ] )> 0
11 = OO ' Clfl ((r I

0
(kryteryum Pringsheim a).

Szereg u„ jest zbieżny, jeżeli można 
znaleść liczby dodatnie a2, . . . takie, że

lim j a„+1 log —.. 1 > 0
W =• OO «n-j-l *

(kryteryum Pringsheim a).
Szereg o wyrazach dodatnich jest zbież­

ny, jeżeli wyrażenie

/ "—\ 'll

1-1 .\ / log n

począwszy od dostatecznie wielkiej warto­
ści«, p o z o s t a j e wciąż w i ę k s z e m od 1; j e s t ro z- 
bieżny, jeżeli począwszy od pewnej wartości 
n, nie przewyższa jedności (kryteryum J a m e t a, 
Mathesis, 1892,str.80. Porów. Cesaro,(Analisi Algebrica,str. 489).

Inne kryterya podali: Gauss (Werke, III. str. 139; kryteryum 
Gaussa wypływa z kryteryum Raab e go), De Morgan, (Dif­
fer. Calculus, Londyn 1836), Bertrand (Joum. de Liouville, II, 
str. 37), Bonnet (tamże, VIII, str. 19—99), Pauker (Crelle, 
XLH, str. 138), Din i (Annal. delle Univ. Toscane, Piza 1867), Du 
Boi s—R e y m o u d (Crelle, LXXVI), Pringsheim (Math. Ann. 
XXXV), G i u d i c e (Rend, Palermo, 1890) i t. d.
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Aby szereg pozostał zbieżnym przy ja­
kiejkolwiek zmianie porządku jego wyrazów, 
jest koniecznem i dostatecznem, by był bez­
względnie zbieżnym (twierdzenie Dirichleta, 
Crelle, IV); w tym przypadku suma szeregu pozo- 
staje też niezmienioną dla każdego odwró­
cenia (inwersyi) wyrazów.

Jeżeli szereg o wyrazach dodatnich i ujem­
nych jest bezwzględnie zbieżny, to będą też 
oddzielnie bezwzględnie zbieżnemi: szereg 
utworzony z samych wyrazów ujemnych i utwo­
rzony z samych wyrazów dodatnich.

Niechaj będzie szereg, dla którego lim uH — 0; niechaj

ai 4“ 4~ .............. (1)
4~ ^2 4" ^3 4~................. (2)

będą sumy wyrazów dodatnich oraz bezwzględnych wartości 
wyrazów ujemnych, wziętych w tym porządku, w jakim istotnie 
zachodzą.

Jeżeli dwa szeregi (1), (2) są zbieżne, to 
szereg dany będzie bezwzględnie zbieżny; 
jeżeli oba szeregi są rozbieżne, to, można zaw­
sze tak rozmieścić ich wyrazy, aby szereg 
całkowity był zbieżny, r ozbieżny lub nieo­
znaczony. i w przypadku gdy jest zbieżny, 
mógł mieć wartość zupełnie dowolną. (Twier­
dzenie Eiemanna, Werke, str. 221).

Jeżeli ^u„ . są dwa szeregi dane, to szeregi

-1' (U„ 4- V„),

-i (h„Vj -j- Un^.\l‘2 -j- . . . , • ~F
nazywamy odpowiednio: sumą albo iloczynem dwu sze­
regów danych.

Suma i iloczyn dwu lub więcej szeregów 
bezwzględniezbieżnych jest szeregiem bez­
względnie zbieżnym (Cauch y).
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Aby iloczyn dwu szeregów zbieżnych byl 
zbieżnym, wystarcza, by jeden z nich przy­
najmniej byl bezwzględnie zbieżnym (patrz 
M e r t e n s, Crelle, LXXIX).

Jeżeli iloczyn dwu szeregów zbieżnych 
jest zbieżny, to wartością jego jest iloczyn 
wartości szeregów danych.

Szeregi specyalne. Postępy.

1 J—ł_ -1----1—L
1 23r 32r 1 • '

22r-i
' ’ ~ (2r)! 71 Bir 1

1 + 7 + 7 + ■ • ■ 22r - 1
' * “ 2.(2r)!71 Bir'

i. 1 + 1 _
2!' T 32,

22r — 1 
• • - <2,,!

1 i------ 1----- L -------
32/-+1 > 52r+i • - • • — (■2r)!22/+2

gdzie B i E są tak zwanemi liczbami B e r n o u 11 i’e g o i E u- 
1 e r a (patrz Rozdz. XVIII).

Jeżeli sp oznacza szereg odwrotności p-tych potęg liczb na­
turalnych, to:

7Z2 ___ TT4 ___ TT® __

’ 64 = W ’ ó’6 = 945 ’ *8 = 9450 ’

= 1 202 056 903 159 594 285 40 ,3 25,7946...
__  Tl5

S'3 = 29571215777 '
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n*
S1 ~ 2295, 286...

* ■ ‘ ~ 4 ’

— 0, 91596559417721905460357.

ti3
• • ' = ~32~ ’

7t:’
■ ■ ■ ■ = 1536

Co do tych szeregów'liczbowych patrz: Stieltjes (Acta math. 
1887), Brisse (Compt. rend., LXTV, str. 1339), Novi, Algebra etc. 
str. 118), 

1 - log -+ + -L-10g 4+ 4 - •••••- G

Jest to t. zw. stała Eulera = u. 577215664 . . .

172.3 + 5.It7 + 9.10.11 + ' ' • = T10g2= °’17328679■

17273 + 37475 + 57677 + • • ■ = ,r® 2 — T ’

1 1 I 1 _ 1 , .>

1 I 1 I 3 1 . 3.5 1 , _
3.23 + 4 ' 5.25 + 4.6 ’ 7.27 3. ’

1.2.3 3.4.5^ 5 6.7 2 °g2’

1 , 1 , 1 , _ 32.3.4+ 4.5.6 + 6.7?8+ " ' 4 °g2,

1 11 71—3
2.3.4 4.5.6 6.7.8 “ 4
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1,1.3 1.3.5.7 , 1
1 “ 2 “i’ 2.4 “ "2.4.6.8 + • • • = ’

. . 1 1.1 . 1.1.3 1.1.3.5 .
1 + 2 2.4^ 2.4.6 2.4.6.8 + ---~ V2,

! 1 3 ■ 13-5-7 _J_ //i-ra
2.4 + 2.4.6.8 * * “ 2 f 1

1.1 1.1.3.5 1.1.3.5.7.9
'2.4 2.4.6.8 2.4.6.8.10.12 ”” f 2

1 + -fT + J, + Jr + • • • = e = 2> 718281828459045 . . . , 

1 " 4 + 2! ~ 31! + 4 + • • * = 4 = °’ 3678794312 • • , 

arctg. ~ + arctg + arct£- ^3^ + ‘ * * = ~T f 

^-^ + 4- 4 + -- - = 4- lo« 2 -».129819...

Szereg 1 —|— . . . jest zwyczajnie 

zbieżny; ma on sumę zależną od porządku wy­
razów. Jeżeli po m wyrazach doodatnich na­
stępuje m ujemnych, wtedy suma szeregu wynosi:

(Dirichlet, Beri. Abh. 1837),

Szereg

1
(a-Ą-rbY1 
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nazywa się harmonicznym (E u 1 e r) rzędu m-tego; dla 
n=\ szereg ten jest rozbieżny, dla n dodatniego i większego od 
1 jest on w ogóle zbieżnym.

Kolej wyrazów, w której różnica każdych dwu sąsiednich 
jest stała, nazywa się postępem arytmetycznym; 
jeżeli r-ta różnica wyrazów jest stała, otrzymujemy postęp 
arytmetyczny rzędu r.

Suma 9i pierwszych wyrazów postępu aryt- 
metycznego 1-go rzędu równa się połowie ilo­
czynu liczby wyrazów przez sumę wyrazów 
pierwszego i ostatniego.

Jeżeli -V'"> oznacza różnicę m-tą, odnoszącą się do wyrazu 
pierwszego (patrz rozdz. X), to suma n pierwszych wy­
razów postępu arytmetycznego r-tego rzędu 
wynosi:

«•-2(4.1 w=0
gdzie jest zerem dla m^>r.

Suma postępu arytmetycznego

p + 2 (p+1) + 3 (p4-2) + 4 (p+8) + . . .

w y n o s i :

8„ = -g- 9t (n -j- 1) (3 p 2 n — 2)

Suma postępu arytmetycznego

pq -4- 1 ('/ — l)+ (P~ 2) (9 — 2) 4- . . .

wynosi:

S)t = -i- n | 6 p q — (n — 1) (3p 4- — 2n 4- 1) |
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Postępem geometrycznym rzędu r-tego nazy­
wamy kolej wyrazów, które są potęgami jednej zmiennej o wy­
kładnikach, stanowiących postęp arytmetyczny rzędu r-tego.

Suma n pierwszych wyrazów postępu geo­
metrycznego 1-go rzędu wynosi:

o" — 1I + q 4- q2 + . + qn-i = JL___

0 sumach postępów geometrycznych rzędów wyższych patrz: 
Cauchy, Exercices. 1827, Jacobi, Fundamenta nova, Kummer 
(Crelle, XVII), Glaisher (Quart. Journ. of Math. 1871, XI) etc.

Szereg
X X2 X3 ,
1 — x ' 1 — x2 ' 1 — æ3 '..........

nazywa się szeregiem Lamberta. Suma tego szeregu wynosi:

x 6 (1) 4- x2 6 (2) 4- a?3 Ô (3) -j-................ *

gdzie 6 (p) oznacza w ogólności liczbę dzielników liczby p, włą­
czając w nie 1 i samą liczbę p (patrz S c h e r k, Crelle, IX, X, 
C u r t z e, Ąnnal. di Mat. I i t. d.).

Jeżeli stosunek nie jest rzeczywisty, 

to szereg podwójny

^4 (2mco 4~ 2uco')2'' 
mt n

gdzie suma rozciąga się na wszystkie warto­
ści całkowite, dodatnie i ujemne liczb m i n 
(p r ó c z k o m b i n a c y i m = 0, n — 0) jest bezwzglę­
dnie zbieżny przy r^> 1.

Szereg S2r można wyrazić za pomocą fu 11- 
kcyj przestępnych eliptycznych. Jeżeli y3, y, 
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są niezmiennikami funkcyj eliptycznej p, której półperyodaini są 
a) i co‘ (niezmienniki te można wyrazić za pomocą funkcyj 
o argumencie zero, patrz Rozdział XVI), otrzymamy wzory:

Q - 1
4 ' 60 9-'

= 5T28 9> ’

ę  ____ 9 i2 __
8 24?3.52.7 ’

« _ 3 92 9-3
,0— x4.5.7.9.11 ’

8' - 1 / —l— 1
12 24.11.13 \ 7 2.3.53/ ’

W następnych paragrafach, podamy wiadomości, odnoszące 
się do szeregów funkcyj, szeregów potęgowych, róźniczkowalności 
i całkowalności szeregów, rozwijalności funkcyj na szeregi, do 
szeregów funkcyj zmiennej urojonej i t. d.

Podręczniki algebry i rachunku różniczkowego obejmują najczę­
ściej i wykład o szeregach; istnieją nadto traktaty specyalne: Lacroix 
(Paryż, 1800), Catalan (Paryż, 1860), Lsurent (Paryż, 1862), 
Novi (Algebra, Florencya 1863). Historyi szeregów nieskończonych, 
poświęcone jest dzieło Reiffa (Geschichte der unendlichen Reihen, 
Tybinga 1889). Por. też odpowiednie rozdziały w dziele M. Cant ora: 
„Vorlesungen über Geschichte der Mathematik.“
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§ 3-

Iloczyny nieskończone.

Niechaj będzie ciąg nieskończony ilości tą, u2 . . . ; utwórz­
my iloczyn TIn pierwszych n z pomiędzy nich.

Jeżeli dla n rosnącego nieograniczenie IIn dąży do granicy 
skończonej, powiadamy, że iloczynnieskończony ilości 
danych jest iloczynem nieskończonym zbieżnym.

W iloczynie zbieżnym jest lim un — 1, stąd 
wynika, że począwszy od pewnej wartości n, 
wszystkie u„ są dodatnie.

Aby iloczyn nieskończony byl zbieżny 
i nierówny zeru, jest koniecznem i dostatecz­
ne m, by szereg log ~F l°g u2 + • • - był zbieżny.

Jeżeli ten szereg dąży do — oo, iloczyn U 
dąży do zera,

Aby iloczyn nieskończony, którego czyn­
niki są wszystkie dodatnie i wszystkie mnie j- 
sze lub większe od 1, był zbieżny i nierówny 
zeru, jest koniecznem i dostatecznem, by szereg

(W1 — 1 (ua — 1) +

byl zbieżny.
Iloczyn nieskończony u2 . . . , którego 

czynniki są jakiekolwiek, jest zbieżny i nie­
równy zeru, jeżeli zbjeżnemi są dwa szeregi:

(ut — OH- (M2 — 1) -j- .
— i)2 -F (w2 — i)2 ~F •

Gdyby tylko pierwszy szereg byl zbież­
ny, drugi zaś był rozbieżny, szereg byłby 
zbieżny lecz miałby wartość zero. Gdyby oba 
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szeregi były rozbieżne, nie możnabynic w ogó­
le powiedzieć o zbieżności iloczynu nieskoń­
czonego, o ile ilości Uj, u2 . . . nie byłyby wszy­
stkie większe od 1; w tym bowiem przypad­
ku można twierdzić, że szereg jest rozbieżny.

Jeżeli Wj, w2 . . . są ilościami zespolonemi, 
iloczyn nieskończony jest zbieżny, jeżeli 
tylko zbieżność szeregu

(Uj — 1) 4- (u2 — 1) -J- . . .

jest zbieżnością bezwzględną (W e i e r s t r a s s).
Jeżeli iloczyn nieskończony zachowuje tęż samą wartość 

przy zmianie porządku czynników, nazywamy go iloczynem nie­
skończonym bezwzględnie zbieżnym.

Iloczyn będzie bezwzględnie zbieżny, je­
żeli i szereg log ux -j- log u,; 4~ • » • j e s t bezwzglę­
dnie zbieżny.

Jeżeli czynniki . u2 . . . są wszystkie 
mniejsze od 1, zaś u'2, u‘2 . . . wszystkie więk­
sze od 1 (przyjmujemy wszystkie za d.odatnie, 
co zawsze założyć wolno), to iloczyn będzie 
bezwzględnie zbieżnym, jeżeli takiemi są od­
dzielnie iloczyny nieskończone ut . u2,.............
u\. u\, .............

W tym przedmiocie patrz prace: Kummer (Crelle, XIII), 
Arndt (Archiv Grunerta, XXI), Weierstrass (Crelle, XI, Functio- 
nenlehre, str. 206), Dirichlet (Berliner Abhand, 1837), Novi 
Algebra).

Podajemy niżej najważniejsze wzory teoryi iloczynów nie­
skończonych.

oo I X’2 1 oo i “1
sin x = x n 11 — —I ; sinh x — x II11 -I----- 5—z- ;L r2 TT2 J 11' r* n* J
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m л m 2n — w 2>i -+- m 4n — ш
n 2 n—tu u --j- ni 3n — nt ' 3n m

_ Ti n 1 2n— m 3 2 '-\- ш
2 n — m 2 'n -j- m ' 2 2n—m

Wzory te podał Euler (Introductio etc. ); zachodzące w nich 
iloczyny nieskończone nie są bezwzględnie zbieżne, wartość ich 
przeto zmienia się przy zmianie porządku czynników. Dla innego 
rozmieszczenia czynników wartość iloczynu obliczył C a y 1 e y. 
Tak np. we wzorze na wstawę mamy czynniki

I' Л I
uporządkowane w ten sposób, że sąsiadują ze sobą czynniki od­
powiadające tej samej bezwzględnej wartości skażnika r; jeżeli 
zaś uporządkujemy je w ten sposób, aby po m czynnikach, od­
powiadających wartościom dodatnim r, następowało n czynni­
ków, odpowiadających skażnikomr ujemnym, to wartością iloczy­
nu będzie:

/ I \"I hd •SI"

Ti 2 2 4 4 6 (>
2 = T'T’ 3 ’IPWT (wzór W a Ili sa) ,

2 [4 a /6.8\| / 10.12.14.16 \| 
e “1 ЛЗ / ’ \5. 7/ ' V 9. 11. 13.15 ) '

tal an a, Journ., de Liouv. 1875.)

, . (Wzór Ca-

Oznaczywszy przez C stałą Eulera (patrz wyżej § 2, 
oraz niżej Rozdział XVIII) mamy:

OO p n
C — log II —, ,

1 1-Hr
Pascal, Rep. I. 6
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(2n—l)2 _ . x- l2 . a?2
i (2n-l)2—2* ~ ' ' 12— x2^ (l2—a?2) (32—'^y

4-____ ?L£L______+ . .
‘ (1-—x'A) (B2—x2) (5a—x3)

oo n ("+D

00 X 2
7/ (l-RcM.z) — y —.----- --------- =---------------- - z". (E u 1 e r).i 1 ’ X-(l—x) (1—x2) . . . (1—./") v ’

o
oo

Xn
II . = z ’r-i---------------(Euler).i (1—a,nz) (1—x) (1—X-) . . . (1— xn)

o

II ( 1 — <?2r+2) (1 — 2(?2''+1 cos 2x ę4r+2) 
z=o

co

= (— l)r cos 2 r x ; j q j 1. (J a c o b i).
v= i

Wzory na rozwinięcie funkcyj eliptycznych na iloczyny 
nieskończone podamy w rozdziale XVI.

§ 4.

Fakultety analityczne-, czynnikowe (faktoryalne)

Nazywamy zwykle fakultetami (r ó ż n o c z y n n i- 
kowemi) analitycznemi iloczyny których, czynniki 
kolejne tworzą się według pewnych praw określonych.

Różnoczynnikowe Heinego (Handbuch der Kugelf., I, 
str. 109) są iloczynami postaci:

(1 - 9) (1 - /)......................... (1 - r)

Fakultety Krampa (Ann. de G-ergonne, ITT, 1812) są ilo­
czynami typu

x (x -j- d) (x -j- 2d) . . . (x 4- (»<—1) d)
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W przypadku d = 1, lub d — — 1 otrzymujemy tak zwa­
ne czynnikowe (f a k t o r y a 1 n e). Jeżeli jeden z czyn­
ników skrajnych jest jednością, otrzymujemy czynnikową 
liczb y całko witej; oznaczamy ją przez n\ .

Czynnikowa n! zawiera się pomiędzy dwiema 
granicami:

n\ / n -J- 1
\ 2 I ‘

(C a u c h y, Exerc. IV, str. 207).
Uogólnienie czynnikowych dla liczb niecałkowitych pro­

wadzi do funkcyi „gamma“ Eulera; uogólnienie dla liczb 
zespolonych rozważał C a y 1 e y.

Fakultetami anality cznemi W e i e r s t r a s s a są ilo­
czyny nieskończone typu (Functionenlehre, str. 200):

(z, d)m = d,n
? co

-T—□ n z -f - m d r=1
r _|_ 1 \« z-[-rd

r I z-\-(m+r)d

dla jakichkolwiek wartości rzeczywistych lub zespolonych ilo­
ści z, d, m.

Dla z, m rzeczywistych i d dodatniego otrzymujemy fakul­
tet B e s s e 1 a.

Czynnikową W eierstrassa jest (tamże str. 193 i d.).

Ta czynniko wa jest funkcyą analityczną ilości z, 
skończoną i ciągłą.

Fakultetami i czynnikowemi zajmowali się: Wroński (Réfut. de 
la Théorie des fonct. anal. de Lagrange, Paryż; 1812); Clausen 
i Grelle (Grelle, VU), Bessel, (Abhand. II); Ohm (Grelle, XXXIX); 
Oettinger (tamże XXXIII, XXXV, XXXVIII, XL1V); Schaefli 
(tamże XLIII, LXVII), Wei erst rass (tamże LI). Dawniejsze prace 
są: Vandermonde’a (Mém. de Paris, 1772) i Kr amjpa, już wy­
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żej cytowane. Vandermonde nazywał fakultety ilościami nie- 
wymiernemi różnych rzędów. Najnowsze badanie o tym 
przedmiocie ogłosił Capelli (Giorn. di Baltt. XXXI, XXXIII).

§ 5.

Ułamki ciągłe.

Wyrażenie postaci

4- di,
H~ a?.

+.............
/

nazywa się ułamkiem ciągłym zstępującym; wy­
rażenie zaś

a* 4~.............
a2 ~ł~ ^3

ai ^2
T

ułamkiem ciągłym wstępującym.
Poniżej, o ile nie będzie wyraźnego zastrzeżenia, mówić bę­

dziemy tylko o pierwszym.
Liczba wyrazów może być skończona lub nieskończona.
Ilości a i b nazywają się licznikami i miano­

wnikami c z ą s t k o wemi, Jeżeli zatrzymamy się na wy­
razie n-tym, to ułamek cząstkowy, który w ten sposób otrzymu­
jemy, nazywa się w-tym ułamkiem przybliżonym lub 

n-tern przybliżeniem(reduktem);oznaczamy go przez —.

Możemy przyjąć, że wszystkie liczniki są równe 1.
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Przybliżenia czynią zadość następuj ą-
cem u związkowi zwrotnemu:

An I>H -Li i п Лм -d/, 2
Bu btl Bu i -f* Bn—•>

Licznik An i mianownik B,t przybliżenia 
można wyrazić za po mocą wyznaczników for­
my s p e c y a 1 n e j, t. j. tak zwanych kont ynua ntó w 
(patrz wyżej str. 58). Jest mianowicie :

<h, o, o, 0 . . . 0, o (>!, (i.,, 0, 0, . . 0, 0

—1, ó2, 0 ... 0, 0 —1, b2. ,0, ... 0, 0

0, —1, ńt, а.л ... 0, 0 0, —1. b.,, a4 . . . 0, 0

0, 0, 0...............—1, bn 0, 0, 0, 0 . . . -1, bn

.Różnica dwu przybliżeń kolejnych w y- 
r a ż a się wzorem:

1 An _ , . . n
BT ~ > bTb^ '

Różnica dwu przybliżeń rzędu m-tego 
i /i-tego (m > n) jest:

_ /_1a»+i
Bllt Bn ~ BmBn

gdzie ([ jest mianownikiem ułamka

P i--- = «n+l "T a"4-2
^n-f-2 <l|»+3

^»4-3 + •••“}“ am
km
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Przybliżenie można zawsze wyrazić wzorem:

An _  ai«2 |

Bn Bt B, B2 B2 Ba
ćZjH/2 • • . (f^i 

~1^b~. 4-

Jeżeli 
to różnice 
mi tworzą

wszystkie ilości aiósą dodatnie, 
pomiędzy kolej nem i przybliżenia- 
szereg o wyrazach malejących i są

naprzemian dodatnie i ujemne.
Jeżeli ilości /• i 1) są dodatnie, to p r z y b 1 i- 

żenia o skażnikach parzystych tworzą sze­
reg rosnący, przybliżenia o skażnikach nie­
parzystych tworzą szereg malejący.

Jeżeli ilości a i b są dodatnie, to każde 
przybliżenie zawiera się pomiędzy dwoma 
następujące mi po sobie przybliżeniami o ska­
żnikach mniejszych.

Przybliżenia ułamków ciągłych, mają­
cych wszystkie liczniki cząstkowe równe 1, 
a za mianowniki cząstkowe liczby całko­
wite dodatnie, są ułamkami n i e p r z y wi e d 1- 
n e m i.

Przybliżenia ułamkaciągłego 

gdzie ilości a i b są wszystkie dodatnie i czy­
nią zadość związkowi ar Z>r + 1, są wszyst­
kie dodatnie, mniejsze od 1 i rosnące.

Jeżeli br = (ir -J- 1, to

— = ai + "i «2 4~........................................................ q2 , . . aH
Bn 1 —Oj —-f-........................................ -{- . ti„



§ t>. — Ułamki ciągłe. 87

Jakiekolwiek przybliżenie ułamka cią­
głego, którego wyrazy są liczbami eałkowi- 
temi, zbliża się do wartości ułamka ciągłe­
go więcej niż jakikolwiek inny ułamek o wy­
razach prostszych (Euler, Introductio § 382).

Jeżeli dla n = oo istnieje g r a n i c a u ł a m k a 
A„
Bn , to mówimy, że ułamek ciągły jest zbieżny.

Jeżeli liczniki c z ą s t k o w e a s ą w s z y s t k i e 
dodatnie, mianowniki zaś b są jednego zna­
ku, to ułamek ciągły jest zbieżny wtedy, 
i tylko wtedy, gdy przynajmniej jeden z dwu 
szeregów

axa.A 
a2ai

+ ^5
a2a4afi

ó, -Ł + b. + J,
3 1 5 a.,a5 1 7

'W'«

j e s t r o z b i e ż n y (kryteryum S e i d ó 1 a, Habilitationschrift, 
Monachium. 1846 i Sterna, Crelle. XXXVII); tenże uła­
mek jest nieoznaczony, jeżeli oba te szeregi 
są zbieżne.

Ułamek ciągły o elementach dodatnich 
jest zbieżny, jeżeli 

lim
M=OO 1

o,

lub — gdy kła dąc

bn-\-i bn
a»+i = —- -------

— otrzymujemy szereg

' 1 -j- 1 otn+2

rozbieżny (Novi, Algebra, ).
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Ułamek ciągły nieograniczony, którego 
elementy są liczbami całkowitemi i dodat- 
niemi, czyniącemi zadość warunkowi bn^ an, 
ma wartość niewymierną mniejszą od 1.

Ułamek ciągły

.....................

gdzie ilości a i b są dodatnie, jest zbieżny, 
jeżeli br ar -j- 1.

Ułamek ciągły

K - 1

gdzie ilości b s*ą dodatnie, jest zbieżny, je­
żeli, począwszy od pewnej wartości skażnika 
n, jest zawsze bn 2.

Ułamek ciągły nazywa się peryodycznym, jeżeli 
ułamki cząstkowe powtarzają się w nim w tym samym porządku.

Każdy ułamek ciągły peryodyczny, ma­
jący liczniki cząstkowe równe 1, za miano­
wniki zaś cząstko we, liczby całkowite, jest pier­
wiastkiem równania stopnia 2-go, którego dru­
gi pierwiastek jest ułamkiem ciągłym peryo­
dycznym o tym samym peryodzie, napisanym 
w porządku odwrotnym (Euler, L a g r a n g e).

Dla prostoty oznaczać będziemy ułamek ciągły, którego 

ułamkami cząstkowemi są —- , ~~~ , , za pomocą sym-
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Mamy wtedy wzory:

/ A 1.
■ .

V a2 '+ * == a + ( 2d ’ 2a . . . •

1 1
\ 1 ’

1»
’ 1 ’

22
T~ ’ ! , • • . i = log 2,

/ 1
' 1 ’

,7’
“ 1 ’

X
2 ’ ~

X. X X
3 ’ 2 ’ “ 5 ’

X
T ’ ■

•) =

J.
x 1

1
■ 2 ''

1.1
2.3

2.2
:r TAX

2.2 a4.5
. 1 ’ 1 ’ 1 ’ 1 1 ; • • J ---- IO . Ł 1 )

/ X
~ 3" 1

X2
5 tg r

(b X2 
~3" ’

Xs
T ’

X1 \-7- ’ • • ) =‘g 11 X.

Pierwiastkami równania x2-\-ax — b są:

b
a a

b_ 
a

twórcę teoryi ułamków ciągłych możnaZa uważać Eulera 
(Comm. Petrop. IX, XI, Novi Comm. Petr. IX, XI, Introductio etc.). 
Potem zajmowali się niemi: Lagrange (Mém. de Beri. 1769 —1770); 
Legendre, Théorie des nombres; Moebius (Crelle VI), Gauss 
(Werke, III); Wroński (Introd. à la phil. des math. 1811), Stern 
(Crelle X, XI, XXXVII), Heine (Kugelfunctionen). Większe szcze­
góły i wiadomości historyczne znaleść można u Günther a (Grunert’s 
Archiv. LIV, Math. Ann. VII; Beiträge zur Geschichte der Ketten­
brüche, Weissenburg 1872);Darstellung der Näherungswerthe von Ket- 
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tenbr., Erlangen 1873). Przedstawienie geometryczne ułamków 
ciągłych podał Sylvester (p. Novi, Algebra, gdzie teorya ta trak­
towana jest szczegółowo i jasno). Uogólnienie ułamków ciągłych po­
dali: Jacobi (Grelle LXIX), Fürsten au (Progr. Wiesbaden 1872), 
Günther (Grunerts Archiv, LVII), Pincherle (Acc. Bolog).

O ułamkach wstępnych patrz pracę Günther a w „Zeitschrift“ 
Schlömilcha, XXI.



ROZDZIAŁ V.

TEORYA RÓWNAŃ ALGEBRAICZNYCH.

§ I-

Wiadomości ogólne

Jeżeli przyrównamy do zera wielomian ze zmienną x, t. j. 
funkcyę wymierną całkowitą zmiennej x. będziemy mieli równa­
nie algebraiczne Stopień wielomianu nazywa się
stopniem równania.

Nazywamy pierwiastkiem równania liczbę, która 
podstawiona zamiast x, zamienia równanie na tożsamość.

Każde równanie o spółczynnikach rzeczywi­
stych lub zesp ol onych ma z aw s z e pi er wi astek (twier­
dzenie d’Alemberta) i ma tyle pierwiastków rzeczy­
wistych lub zespolonych, ile wynosi jego stopień.

Wskazówki historyczne co do tego twierdzenia znaleźć można 
w studyum G. Loria, II teorema fundamentale della teoria delle equ. 
alg. (E.ivista di matem. I).

Jeżeli równanie ma spółczynniki rzeczywiste i jeżeli 
a i (i jest jego pierwiastkiem, to będzie nim także a — i (i.

Jeżeli równanie ma r pierwiastków równych sobie i rów­
nych a, liczba a nazywa się pierwiastkiem wielokrotnym 
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równania o wielokrotności r. W tym przypadku 
strona pierwsza równania jest podzielna przez (j; — a)'’.

Stosunki spółczynników równania do spółczynnika przy 
najwyższej potędze zmiennej a?, są funkcyami symetrycznemi 
elementarnemi pierwiastków równania; t. j. jeżeli mamy równanie

CI-^Xn 1 —j— . 4- ci» — 0

i jeżeli a15 a2, . . . ult są jego pierwiastkami, będzie:

"i ii i~ — ai "F a3 ~F • • • + j
«0

I . ! .
4---- — = a{a., 4- ai«3 4- • • • 4- aj«>, 4* 4- • • . 4" ,

( — 1)" =. .............a„ .

Jeżeli przez , s2............ oznaczymy sumy pierwszych,
drugich i t. d. potęg pierwiastków, to funkcye symetryczne s 
można wyrazić przez spółczynniki równania (wzory Newtona 
lub Girarda), a mianowicie:

u() 4* u, ==~ 0,
(to s., ——j— —u.> == 0,

^0 *3 “F ~F l,2b\ ~F == Oj

«0 S>1 “F -j- . . . -f- Tin,! = 0,

~F i “F • • • d~ (M7.- = 0; (k = 1, 2 . .

Funkcye symetryczne zupełne lub funkcye alef Wroń­
skiego są to funkcye, które otrzymać można, podnosząc do 
potęgi 1-ej, 2-giej, 3-ej............ i t. d. sumę pierwiastków
iii -j- a,, .............a„ (według wzoru na potęgę wielomianu)
i zastępując w rozwinięciu wszystkie spółczynniki jednościamr
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Jeżeli fimkcye alef, odpowiadające kolejnym wartościom 
n — 1, n = 2 . . . oznaczymy przez A,, A2, . . . , to pomiędzy 
temi ilościami A a spólćzynnikami zachodzić będą związki 
następujące, analogiczne do wzorów Newtona:

4- u2.-l «-2 J-..........................................— 0'
(i = 1, 2 ...... , Jo = 1)

Każda funkcya symetryczna całkowita pier­
wiastków równania jest funkcya wymierną całko­
witą stosunków pomiędzy s pół czynu i kam i a a spół- 
czynnikiem a0 pierwszego wyrazu. To twierdzenie od­
powiada następującemu: .

Każda funkcya symetryczna całkowita n ilości 
jest funkcya wymierną całkowitą funkcyj syme­
trycznych elementarnych tych n ilości.

Co do sposobów przedstawienia funkcyj symetrycznych przez fun­
kcye elementarne, patrz Salmon, Algebre superieure, wyd. francuskie, 
str. 50), por. D i c k s t e i n. Pojęcia i metody matematyki, str. 210 i dalsze.

Rozwiązawszy powyższe wzory względem ilości a lub 
względem ilości s otrzymujemy wzór Waringa:

(2] -1- 22 4- ... -f- x„ — 1V'1 / «2
2,.' 22! . . . 2„! \ (i, / \ a.

gdzie rozciąga się na wszystkie wartości całkowite dodatnie
wykładników 2, czyniące zadość warunkowi:

2] -f- 222 4— . . . 4- w2» — i.
Nadto:

a, V (—l)z,+-1 z
a, "*■ Zj P-2^ . . . ih 2t! 2,.! . . . 2,4 " S' ‘

gdzie 2, 4- 222 -f- . . . 4- ii,- — i.
Analogicznie otrzymać można wzór Wrońskiego na wy­

rażenie funkcyi alef. a mianowicie:

iU, 4-+• ■ ■+ ;->! / «■ V'/jłV’’ X,! AJ . . . AJ \ a. / \ «.Z'’' 1 a, I ’

2j 222 —|— . . . 4- ^2« = i.
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Jeśli we wzorach Newtona zamiast a0 , at . . . an weż- 
miemy odpowiednio an, an_i, . . . a0, a skaźniki przy ilościach 
s zamienimy na ujemne, otrzymamy sumy jednakowych potęg 
odwrotności pierwiastków.

§ 2-

Przekształcanie równań.

Położywszy w równaniu f (a?) = 0, y + e zamiast x, otrzy­
mamy równanie F(y) = (), którego pierwiastki są o e mniejsze 
od odpowiednich pierwiastków równania f—0.

Spółczynniki funkcyi F są postaci:

F(«>.

Jeżeli położymy naoe -j- ax = 0, to e wyznaczymy w ten 
sposób, aby równanie ze zmienną y nie miało wyrazu drugiego 
(t. j. z potęgi 7/”“1).

Aby otrzymać równanie, którego pierwiastki są odwrotno- 
ściami pierwiastków równania danego, trzeba , an za­
stąpić odpowiednio przez u„, an—i . . . a0.

Przekształcenie Tschirnhausena. Niechaj 
będzie równanie

xn + ax xn~l +.....................+ an = 0;
połóżmy:

y = Po + Pi* +.....................+ Pm < n),

następnie rozwińmy kolejne potęgi ilości y, a w rozwinięciu ich 
obniżmy ich stopień względem x poniżej n przy pomocy równa­
nia danego. Otrzymamy tym sposobem:

y2 = y'o H- +.....................
y2 = P\ + P\ * +.....................
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Mamy w ten sposób n równań liniowych względem 
x, . . x"-1. Rugując te ilości, otrzymamy równanie:

yH H~ ?i +.....................+ *7» = 0,

którego spółczynniki q będą fuukcyami wymiernemi ilości p i a. 
Za pomocą tegoż procesu elimnacyi można wyrazić x wymiernie 
przy pomocy y, mamy zatem rezultat następujący: Pierwiastki 
równania ze zmienną x i pierwiastki równania (tego samego 
stopnia) ze zmienną y, wyrażają się wymiernie pierwsze przez 
drugie, i odwrotnie. Przekształcenie to nazywa się przekształ­
ceniem T s c h i r n h a u s e n a.

Można, korzystając z dowolności spółczynników p, spra­
wić, by znikały niektóre ze spółczynników q. Grdybyśmy 
wszakże chcieli, aby równanie ze zmienną y było dwumien- 
nem, to równania, jakie należałoby rozwiązać celem wyzna­
czenia spółczynników p, nie dałyby się w ogóle rozwiązać alge­
braicznie. Na tern przekształceniu oparte sę rozważania J e r- 
r a r d a i B r i n g a (patrz Klein, Ikosaeder, str. 143).

Równanie, którego pierwiastkami są kwadraty różnic pierwia­
stków równania danego, t. j. (a,—a7)2, nazywa się równaniem 
kwadratów różnic pierwiastków; jest ono stopnia 
n —— . Spółczynniki jego są fuukcyami symetrycznemi

—
pierwiastków równania danego, a więc dają się wyrazić wymier­
nie przez spółczynniki tegoż. Przy pomocy metody Lagran- 
ge’a znajdujemy te spółczynniki sposobem następującym: Nie­
chaj i>t oznacza sumę /-tych potęg pierwiastków równania dane­
go, s'i — sumę takichże potęg pierwiastków równania przekształ­
conego; będzie wtedy:

(r = 0,1,2. . .2/)

Znalazłszy s't, wyznaczymy przy pomocy wzorów N e w- 
t o n a spółczynniki szukane.
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§ 3.

Obniżenie stopnia równania. Równanie odwrotne.

Za pomocą podstawienia, wykonanego na zmiennej .r, mo­
żna rozwiązanie równania danego sprowadzić niekiedy do roz­
wiązania równania stopnia niższego; nazywa się to obniże­
niem stopnia równania.

Równanie nazywa się o d w r o t n e m, jeżeli jego pier­

wiastki dają się uporządkować w pary typu a, —— .

Spółczynniki równania odwrotnego, rów­
no oddalone od wyrazów skrajnych, są równe 
(i j e d n e g o znaku).

Jeżeli równanie odwrotne jest stopnia 
nieparzystego, to jednym z jego pierwiastków 
j e s t x — — 1.

Podzieliwszy pierwszą stronę takiego równania przez x-pi, 
sprowadzamy je do równania odwrotnego stopnia parzystego.

W równaniu odwrotnem stopnia 2n dzielimy stronę pierw­

szą przez xn, potem kładziemy x + i dochodzimy tym

sposobem do równania stopnia n-tego ze zmienną y. W tern 
przekształceniu wyrażamy przez y ilości

i 1 YXr —ł— —■— = ,xr

obliczamy je za pomocą wzorów zwrotnych

X+i = y Xr — X-i.

Historya teoryi równań jest w swych początkach historyą samej 
algebry. Pierwsze próby rozwiązania równań stopnia 3-go znajdujemy 
u F i b o n a c c i’ego (Leonardo Pisano, Liber Ab aci, 1202, 
1227); po tern rozwiązanie ich istotne znalazł Scipione del Fer- 
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r o w r. 1545 (jak o tern mówi Cardano, De arte magna, 1545, 
Rozdz. I), Równaniem stopnia 3-go zajmowali się następnie C a r- 
d a n o (1. c.) i T a r t a g 1 i a (Wenecya 1546). Ludwik Fe r- 
r a r i znalazł rozwiązanie algebraiczne równań stopnia 4-go (wspomina 
o tein Cardano (1. c. Rozdz. XXXIX).

Listę zupełną wszystkich dzieł dawniejszych i nowszych o teoryi 
równań znajdujemy na końcu cennej książki Matthiessena (Grund­
züge dor Algebra-der- litt^_Gleichungen, Lipsk, 1896); tu wymienimy 
tylko najważniejsze w porządku chronologicznym: Vieta (Lugd. 
Batav. 1646), Cartesius (Leyden, 1637. Lugd. Bat. z komentarzem 
Schootena), Delahire (Paryż 1679), Tschirnhausen (Acta 
Erud. Lipsk II, 1683;, Halley (Phil. Trans. 1687). Roberval 
(Mém. de Paris VI, 1693), Rolle (Algebra, Paryż 1690), Mém. de 
Paris 1708, 1709, 1711), Nicole (tamże, 1738, 1741, 1743), Euler 
(Comm. Petr 1739, Novi Comm. Petr. IX, XIV, Mém. de Berl. 1764 
etc), Bezout (Mém. de Paris 1762, 1764, 1765, 1768, Théorie des 
équat. Paryż .1779), Waring (Miscell. analyt. Méditât, alg., Cantabri- 
giae 1762—1770), Lagrange (Traité de la résolut, des équ., Paryż 
1798, Mém. de Berlin od 1768 - 1773), Vandermonde (Mém. de Pa­
ris, 1773—1774), Ruffini (Teoria generale delle equaz, Bologna 1798 
Mem Soe. Ital 1803—1805, Mem.Ist. Nazionale 1806 i t d.), Budan 
(Paryż 1807), Wroński (1827,1847), Fourier(Paryż 1831),Gauss, 
(Auflösung der binom. Gleichung. Gött. Abh. 1849), Abel (Oeuvres,II), 
Galois (Journ. deLiouville, XI, 1846), Cauchy (Sur la résol deséqu. 
numériques etc., Paryż 1829. Comptes rendus 1836—1840 i t. d.), 
Sturm (Sur la résolution des èqu. numer, Paryż 1835). Do tego trze­
ba dołączyć wszystkie prace z teoryi niezmienników, o której mówimy 
w rozdziale XII.

Specyalne dzieła, odnoszące się do teoryi równań, są: cytowane 
wyżej dzieło Matthiesena, dalej: Petersena (Kopenhaga, 
1878, przekłady włoski i francuski), T o d h u n d t e r a; zaliczyć tu 
należy ogólne dzieła, obejmujące algebrę wyższą, a mianowicie: $ e r- 
ret, Bertrand, Cesar o, Capelli, Weber. Netto, 
W języku polskim mamy Algebrę wyższą Wł. Zajączkowski e- 
go (Lwów 1884), oraz „Rozwiązywanie równań liczebnych“ J. S o- 
chockiego (Warszawa, 1884).

Pascal. Kep. I. 7
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§ 3.

Wypadkowe lub rugownikr. wyróżniki.

Niechaj będą dwa równania:

<p = a0 xM + aj a;'"-1 4- . . . 4- am — 0,

ip = ó0 .z*“ + b1 -j- . . . -4 — o*

Warunkiem koniecznym i dostatecznym na to, aby one mia­
ły przynajmniej jeden pierwiastek wspólny, jest znikanie funk- 
cyi wymiernej całkowitej spółczynników, którą nazywamy wy­
padkową lub rugów nikiem dwu równań danych.

Wypadkowa jest stopnia n-tego względem 
spółczynników funkcyi <p, stopnia zaś m-tego wzglę­
dem spółczynników funkcyi ip.

Wypadkowej można dać postać wyznacznika 
rzędu

«o, «1, «2........................ I
0, a0, «i.....................

^0 > K > ^2 
0, ó0,

Do takiej postaci dochodzimy metodą Eulera lub metodą 
dialityczną Sylvestera.

Za pomocą metody Bez out a dochodzi się do wypadko­
wej w postaci wyznacznika rzędu n-tego, gdzie n jest wyższy ze 
stopni dwu równań danych.

Jeżeli położymy dla krótkości

(if) = ttibj — Ujbi,
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t 0 w przypadku tn — n, otrzymujemy:

(10), (20), (30), .... , (n 0)

(20), (80)+ (21), (40)+ (31), .... , (ni)

(30). (40 4- 31), (50) + (41) 4- (32),. . . . , (»2)

.........................................................
(n 0), (n 1), (n 2),.......................... (n, 11—1)

Jeżeli m <( n, to pierwsze m wierszy p o z o- 
stają bez zmiany, pozostałe zaś n-m tworzymy 
przy pomocy spółczynników równania stopnia 
niższego sposobem następującym:

«o, «1 , «2,.................................................

0, a0, cq,...............................

O 1 0 i .................................................

Gdy „charakterystyką“ wyznacznika li 
jest m -j- n — 7f, t. j. gdy wszystkie minory rzędu 
wyższego niż m + n — k są zerami, minory zaś 
rzędu m n — k nie są wszystkie zerami, wtedy 
równania mają k pierwiastków wspólnych.

Jeżeli fi — 0, to dopełnienia algebraiczne 
elementów któregokolwiek wiersza, o ile nie 
s ą z e r a m i, są proporcyonalne do potęg kolej- 
n y c h tej samej zmiennej.

Warunki konieczne i dostateczne na to, 
by równania miały p pierwiastków wspólnych 
wyrażamy w ten sposób: macierz wyznacznika 
B ma charakterystykę n—p. (Twierdzenie Dar- 
boux’a).

Nazywamy wyróżnikiem równania danego funkcyę 
wymierną i całkowitą jego spółczynników, która przyrównana 
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do zera, wyraża warunek konieczny i dostateczny na to, aby 
równanie miało przynajmniej dwa pierwiastki równe.

Kładąc

— otl> a2p -j-......................... -j- n“P->

gdzie a są pierwiastki równania, otrzymuje­
my w y r a ź n i k w postaci

| s0, «1,

si i *3 , • ■ • , -Si

—1 •s«+l , • • • , ® 2n — 1

gdzie ilości s, jak wiadomo, wyrazić można 
z a pomocą spół czynnik ów równa ni a. W funk- 
c y i p i e r w i a s t k ó w wyróżnik przedstawia się 
tak:

1. 1, . . . . , 1

a2 , ■ • , a„

a,2. . . • , a«2

af-’ r/ 1, «2 • • . , aZ"1

Wyróżnik jest funkcyą wymierną całkowitą 
stopnia2n—2spółczynników równania stopnia n-tego.

W funkcyi spółc zy nn ików wyróżnik wyraża 
si ę tak:

Uj , «2 i . . . .
0, «0, «1, •

0, 0, . . . .
D

w, (w—l)a0, (u— 2)«! . . .
0, (11— l)a1 . . .

. . . .
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Iloczyn wszystkich sum a/-|- a, zwykle nazywa się gem i- 
nantem równania. Geminant wyraża się wymier­
nie przez spółczynniki równania. Przyrównany 
do zera wyraża on warunek na to, aby równanie miało dwa pier­
wiastki równe i znaku przeciwnego.

Inne własności wypadkowych lub rugowników i wyróżni­
ków podajemy w rozdziale XII-ym o niezmiennikach.

Wypadkową otrzymali po raz pierwszy Euler, Bezout 
i Lagrange. Jacobi zastosował w tym celu wyznaczniki. Listę 
prac, odnoszących się do tego przedmiotu, podaje E. Pascal, „De­
terminant!“. Pracą klasyczną o rugownikach jest rozprawa Gorda- 
na (Math. Ann III).

Rugowniki i wyróżniki po za równaniami, które spełniają 
na zasadzie własności niezmienniczej, czynią zadość pewnym 
równaniom różniczkowym. Równania te znalazł Brioschi 
(Crelle. LIII). Patrz Faa di Bruno, Crelle XIV i Binare For- 
men, Lipsk 1881). 

§ 4-

Układy równań liniowych.

Niechaj będzie układ m równań pomiędzy n niewiadomemu 

«11 A + «12 x2 + • • • + «1» = 2/1,

| • • • | ---- {Jn-

Macierz wszystkich spółczy uników « nazywa się macie­
rzą u k 1 a d u. Załóżmy, że wszystkie wyznaczniki rzę­
du p -j- 1, zawarte w tej macierzy są zerami (są zerami tedy 
i wszystkie wyznaczniki rzędu wyższego), nie są zaś zerami 
wszystkie wyznaczniki rzędup. Liczba p nazywa się cha­
rakterystyką macierzy.

Aby macierz miała charakterystykę p, jest 
koniecznem i dostateczne m, by miała przy­
najmniej j e d e n ni e r ó w n y zeru wyznacznik A 
r z ę d u p -1 e g o i aby były zerami wszystkie wy­
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znaczniki rzędu p +1> które tworzą się z 4 przez 
dopisanie nowego wiersza i nowej kolumny.

Niechaj charakterystyką macierzy układu danego będzie p, 
i niechaj nierówny zeru wyznacznik A rzędu p-tego, w niej za-; 
warty, będzie:

......................... ? a12'

i apt i........................................  ,lPiP i
Aby równania dane nie były ze sobą sprze- 

cznemi, jest koniecznem i dostatecz nem, by by­
ły zerami wszystkie wyznaczniki A

®11 i • • • •

A =

a,-i, • - . • • , ttrp < 1/r

W tym przypadku układ m równań danych 
sprowadza się do układu p pierwszych z p o- 
między tych równań.

W innej postaci można, to twierdzenie wypowiedzieć tak:
Aby równania dane były zgodnemi ze sobą, 

t. j. aby miały jedno lub więcej rozwiązań 
wspólnych, jest koniecznem i dostateczne m, 
by macierz spółczy uników i macierz

i «!1 ,......................... 2 ?/ ,

tl/ZI, H, //zzz |

miały jednę i tę samą charakterystykę (Cape 1 li).
Dla spółistnienia równań pomiędzy 

n niewiadomemi potrzeba, by wyznacznik 
spółczynników i wyrazów znanych był zerem.
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Wartości , x, ,............... , xt„ czyniące zadość
równaniom danym, wyrażają się za pomocą 
wzorów (Cramera)

•gdzie A, jest wyznacznikiem, który otrzymu­
jemy z wyznacznika A, znosząc jego kolumnę 
2-tą i pisząc zamiast jej elementów wyra­
żenia:

// 1 ~ ^'r-2 • • • a\n xn

!/ p — !Jp • • • fl>pn xn •

Jeżeli p=n, wtedy ilości y' s ą s a m e m i i 1 o- 
ściami ?/, a strona druga będzie niezależna od 
ilości x. W tym przypadku na xx , xt , . . . ;r„ otrzy­
mujemy jedyny układ wartości, czyniących 
zadość równaniom.

J e ż e 1 i p n, wtedy układ równań p — n roz- 
wiązań.

Jeżeli strony drugie równań yr. y.iy . , . yn są wszyst­
kie zerami, otrzymujemy równanie jednorodne.

A b y u k ł a d r ó w n a ń j e d n o r o d n y c li miał roz­
wiązanie różne od rozwiązania, oczywistego 
xt ~ x2 — • • •— -"'n = ji e s t k o n i e c z n e m, by cha­
rakterystyka macierzy s p ó ł c z y n n i k ó w, t. j. p 
była mniejsza od n.

Aby układ n równań jednorodnych o n n i e- 
wiadomych miał rozwiązania wszystkie rów­
ne z e r u, powinien wyznacznik układu być 
z e r e m.
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Jeżeli mamy n—1 równań liniowych pomię­
dzy n niewiadomemi o macierzy, której cha­
rakterystyką jest n—1, to wartości niewiado­
mych są proporcyonalne do minorów rzędu 
n— 1, w tej macierzy zawartych.

Nie może być więcej nad n równań linio­
wych jednorodnych i niezależnych pomiędzy 
n niewiadomemi.

§ 6.

Rozwiązywanie równań.

Równanie stopnia trzeciego. Równanie 

'3 = O,x

po podstawieniu
1

?/----- 3- 

zamienia się na równanie:

4" 2/ 4“ <2 = °-
Jeżeli:

■ Q~ pA
—-~-=- > 0, to dwa pierwiastki będą urojone sprzę- 

żonę, jeden zaś rzeczywisty:
... .---- 1- “=- -C 0, wszystkie pierwiastki są rzeczywiste;

-4 -j- — 0, dwa pierwiastki są równe.
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Pierwiastki wyrażają się za pomocą wzoru (który podał 
T a r t a gl i a):

Należy tu zauważyć, że każdy z pierwiastków sześciennych ina 
trzy wartości i że należy tak kombinować wartości jednego pier­
wiastka z wartościami drugiego, aby ich iloczyn był rzeczywisty 
• > Pi równy — .

Wzór powyższy jest niedogodny z tego względu, że daje 
pierwiastki rzeczywiste równania (w przypadku, gdy wszystkie 
są rzeczywiste) pod postacią urojoną (t. zw. przypadek nie- 
przywiedlny). Jest on jeszcze niedogodny i dlatego, że 
daje często pod postacią niewymierną pierwiastki w y- 
mierne, które zresztą, jak to zobaczymy niżej, możemy otrzy­
mać i na innej drodze.

Połóżmy:

ą Ł 7 ■
— = £cos 6- e = /------

= — Q2 Sin 2 6,2 27 Ł

wtedy pierwiastki równania wyrażą się sposobem następującym:

Inne metody rozwiązania równania stopnia trzeciego podali: L a- 
grange (Oeuvres, VIII), Eisenstein (CrelJe, XXVII), E i- 
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senlolir (tamże XL1I), Clausen (Astron. Nachrichten N. 446), 
Grunert (Archiv, II str. 446), Reidt (Zeitschrift Schlömilcha. 
XVII), Cjyy 1 e y (patrz prace Gordana i Clebs.cha o nie­
zmiennikach), W e i c h o 1 d (Americ, Journal, I) i t. d.

Równanie stopnia 4-go. Jeżeli w równaniu

.X'4 + axx3 -j- a2x2 = 0.

. . ' 1położymy x — y — - - aj, otrzymamy:

y* 4- py* 4" <?// 4- r — o.

Rozwiążmy za pomocą wzorów poprzedzających równanie 
stopnia 3-go (rozwiązuj ą c e): 

i niechaj zx, z2, z3 będą trzy pierwiastki tego równania. Roz­
patrzmy wartości + V z\ , ± Vz2 > 4z ^<3 i nadajmy każdemu 
z tych pierwiastników znak + lub —, tak, aby iloczyn wszystkich 

trzech pierwiastników był równy — —■ . Można uskutecznić to 

czterema różnemi sposobami: jeżeli mianowicie Z2, są war­
tościami pierwiastników. to warunkowi

możemy oczywiście zadość uczynić, dobierając, prócz powyższej, 
kombinacye:

, Z2, Z3; Zt, Z2, Z3\ ZXi Z2. Z3.

Czterema pierwiastkami równania danego będą :

öj — Zx -i- Zx. Z,; cij — Zi — Z2 — Z3\

== Zx -f- Z2 Z3: a4 = Z^ Z2 -j-- Z3.
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Inne metody podali Lagrange (Oeuvres, VIII), Euler (Comm. 
Petrop. VI), Ampère (Archiv Grunerta, II), Aronhold (Grelle, 
TjLI), Eisenstein (tamże XXVII), Hermite (Equations modulaires, 
Paryż 1859), Matthiessen (Zeitschrift Schlömilcha, VIII), Faàdi 
Bruno (Amer. Journ. III). Rozwiązanie, oparte na teoryi niezmien­
ników, znal eść można w pracach Clebscha i G or dana o niezmien­
nikach.

, B. ó w n a n i a stopnia 5-go i G-go. Równanie stopnia 
5-go (ogólne) nie daje się rozwiązać algebraicznie; rozwiązujemy 
je przy pomocy funkcyj eliptycznych. Rozwiązanie to po raz 
pierwszy podał Her m i t e.

Równaniem stopnia 5-go zajmowali się: Wroński (Canon de lo­
garithmes 1827. Wydanie polskie, Warszawa 1890); Jacobi (Grelle, 
III, XIII); Cayley (Phil, Trans. CLI), Galois (Journ. de Liouv. XI, 
str. 412), Betti (Ann. di Tortolini 1853), Hermite (Compt.. rend. 
1858, t. XLVI), Brios chi (Annali di Tortolini 1858), Kronecker 
(Compt. rendus 1858, t. XLVI, Berlin. Monatsb. 1861, Grelle LIX), 
Joubert (Compt. rend. 1859, t. XLVIII), Hermite (tamże, 1866), 
Roberts (Annali di mat. (2), I), Brioschi (Comp, rend 1866, 
Ann. di mat. (2), I, 1867, w dodatku do przekładu dzieła Cayleya 
o funkcyach eliptycznych, Medyolan 1880, Comptes rendus LXTII, 
LXXIII, LXXX, Acc. Napoi. 1866), Klein (Ikosaeder, Lipsk 1884). 
W ostatniem dziele znajduje się rys historyczny zagadnienia o rozwią­
zaniu równania stopnia 5-go.

Równanie stopnia 6-go nie daje się rozwiązać i za pomocą 
funkcyj eliptycznych. Potrzebne są tu funkcye hypereliy tyczne.

Do tego przedmiotu odnoszą się prace: Maschke-Brioschi 
(Acc. Lincei, 1888), Brioschi (Acta math. XII, 1888). Dawniejsze 
rozwożania są: Brilla (Math, Ann. XX), Cole’go (Amer. Journ. 
VIII, 1866).

O równaniach stopnia 7-go i 8-go istnieją badania Kleina, Nö- 
t liera i Gordan a (Math. Ann. XV, XX).
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Równania dwum i enne.

Każde równanie typu

X’"' — A = 0,

t. j. równanie dwumienne można za pomocą łatwego przekształ­
cenia sprowadzić do postaci

yn — 1 — 0.

Jeżeli a jest pierwiastkiem równania dwo­
rni e n n e g o tego typu, to i am (gdzie m j e s t licz­
bą całkowitą jakąkolwiek), będzie pierwiast­
kiem tego równania.

Jeżeli n jest liczbą pierwszą, a zaś róż­
nym od jedności pierwiastkiem równania 
z/’4— 1=0, to a, a2, a 1 . . an są n pierwiastkami tego 
równania; jeżeli n nie jest liczbą pierwszą, to 
pierwiastek a, mający tę własność, nazywa się 
pierwiastkiem pierwotnym. Istnieje cp(n) pier­
wiastków pierwotnych; <p(n) jest liczbą liczb pierw­
szych niniejszych od n i względem n pierwszych.

Rozwiązanie równania a;"--1 = 0, gdzie n 
jest iloczynem różnych liczb pierwszych za­
leży od rozwiązania tejże postaci równań, 
w których wykładniki ilości x są właśnie t e m i 
liczbami pierwsze mi.

J e ż e 1 i n j e s t liczbą pierwszą, to pierwiast- 
kirównania d a j ą s i ę p r z e d s t a w i ć za pomocą 
wzoru trygonometrycznego:

2 k n . 2 k 3Tx — cos----------- L- i sin --------- ,
n n

gdzie k przyjmuje wartości 0, 1, 2 ... n — 1.
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Pierwiastki równania dwumienuego, przedstawione geome­
trycznie, odpowiadają punktom podziału podziału okręgu na n 
części równych i dlatego to równanie dwumienne </'"— 1 — 0 na­
zywamy też równaniem podziału koła. Wykreśliw­
szy geometrycznie pierwiastki, uskuteczniamy podział okręgu 
koła.

Równanie

ic" — 1 i , , , ,= xu~1 4- x'!~i 4- . . • 4- x -f- 1 — 0, x — 1

1 03 1 0 3
2'2’ 2 2

Równanie O— 1—0 ma pierwiastki:

1, — 1, z, — i.

Równanie xa— 1 = 0 ma pierwiastki:

g d z i e n j e s t ] i c z b ą p i e r w s z ą, j e s t równaniem 
niepr zy wiedlnem, t. j. nie posiada czynników 
wymiernych.

Jeżeli n jest liczbą pierwszą, to dla roz­
wiązania równania xn~y xn~'L . -f- x -j- 1 = 0 
rozkładamy liczbę n — 1 na czynniki pierwsze 
pA, p2 . . . i rozwiązujemy równania

zv' ~ 1 0, zv* — 1=0,.............

Równanie dwumienne d a j e się rozwiązać 
algebraicznie.

Jeżeli u —1 jest potęgą liczby 2, to równanie dwu­
mienne d a j e się rozwiązaćza pomocą samych rów­
nań stopnia drugiego. W tym przypadku podział 
okręgu można uskutecznić za pomocą linijki i cyrkia.

Równanie xA— 1=0 ma pierwiastki:
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1, -J- (- 1 - 15 + i j"lO-2 I 5 ) ,

Ą (— 1 -4- I' 5 — ' V i<> + - >' 5 ) , 
4 \ /

4 (- 1 + ]/5 4- i // 10 + 2 J/T ) ,

I / _ /----------------- ---- — \
. _ i _ j/5 _ i ]/ io 2 V 5 .

4 \ I

Wartości pierwiastków w przypadku ?z=17 i n=19 podał 
Gauss (Werke I). Więcej szczegółów o tym przedmiocie znaleść 
można w dziele Bachmanua „Die Lehre von der Kreistheiluirg“ 
Lipsk 1872; w tym dziele zna jdujemy też konstrukcye geometryczne, 
Konstrukcye dlan=17 podali: v.Staudt (Grelle XXIV i Schröter 
(tamże LXXV). Dla w=257 część analityczną rozwinął Richelot 
(Crelle IX), geometryczną E. Pascal (Acc. Napoi. 1887). Inne 
przypadki patrz: E. Pascal (Giorn. di Batt. XXV), Amaldi 
(tamże XXX).

§ 8.

Pierwiastki wielokrotne równania.

Aby liczba a była pierwiastkiem r —kro­
tnym równania /'(x) =0, jest k o n i e c z n e m i d o- 
stateczem, by a było pierwiastkiem same­
go równania oraz r—1 pierwszych jego rów­
nań pochodnych (patrz Rozdz. VI).

Warunkiem koniecznym i dostatecznym 
na to, aby równanie nie miało pierwiastków 
wielokrotnych, jest, aby największy wspólny
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dzielnik funkoyi f(&) i jej pierwszej pochod­
nej był ilością stałą.

Jeżeli podzielimy funkcyi f(x) przez naj­
większy wspólny dzielnik funkcyi danej f 
i .1 ej pochodnej f, otrzymamy funkcyi któ­
rej pierwiastki są równe co do wartości pier­
wiastkom funkcyi f, lecz są wszystkie p o je­
dyne z e m i.

Oznaczmy przez l)x największy wspólny dzielnik funkcyi 
f i jej pochodnej przez D, -- największy wspólny dzielnik 
funkcyi Dt i jej pochodnej D\ ; będzie:

D2 — stałej jest 
i d ostatecznym na 
miała pierwiastków

Jeżeli utworzymy ilorazy

w a r u n k i e m koniecznym 
to, aby funkcya f nie 
t r ó j k r o t n y c h, i t. d.

f Dx D.2A = = =
to równania

-Ś--0, -&- = 0................
¥>2 ' <P3

będą miały odpowiednio jako pierwiastki po­
jedyncze: wszystkie pierwiastki pojedyn­
cze danego, wszystkie pierwiastki podwój­
ne, wszystkie pierwiastki potrójne it. d.

§ 9.

Pierwiastki rzeczywiste i zespolone równania.

Pomiędzy kolej nemi pierwiastkami rze- 
czywistemi równania f — 0 za w i era się nie­
parzysta liczba pierwiastków równania po­
chodnego /'=0. (Twierdzenie Roli ego.)



H2 Rozdział V.

Pomiędzy dwoma kolej n e m i pierwiast­
kami równania f = 0 nie może się zawierać 
więcej nad jeden pierwiastek równania f=0.

Jeżeli wszystkie pierwiastki równania 
/’=0 są rzeczywiste, to toż samo zachodzi 
i dla f = 0.

Jeżeli wyrazy równania są uporządkowane według ich sto­
pnia, to mówimy, że dwa wyrazy następujące po sobie dają 
zmianę lub następstwo znaków, stosowniej do tego, 
czy są znaku tego samego czy przeciwnego.

W każdem równaniu f(x)=0 liczba pierwia- 
s t k ó w r z e c z y w i s t y c h d o d a t n i c h nie przewyż­
sza liczby zmian znaków funkcyi /‘(.r), liczba zaś 
pierwiastków ujemnych nie przewyższa licz­
by zmian znaku funkcyi /(—x). (Twierdzenie Des- 
carte s’a.)

Nadmiar liczby zmian znaków po nad 
liczbę pierwiastków dodatnich równania, f(æ)=0 
jest zawsze parzysty.

Jeżeli f(x) ma tylko jednę zmianę, to /'(œ)= 0 
ma tylko jedenpierwiastek dodatni.

Równanie, mające wszystkie pierwiastki 
rzeczywiste, ma tyle pierwiastków dodatnich, 
ile ma zmian znaków.

Równanie posiada przynajmniej 2 Zr pier­
wiastków zespolonych, jeżeli brak w nim 2k 
wyrazów kolejnych, lub jeżeli brak ich 2k—1 
pomiędzy wyrazami jednego znaku.

Liczba pierwiastków rzeczywistych rów­
nania f(x)=0, większych od liczby dodatniej a 
nie przewyższa liczby zmian, jaki daje dla 
x — a szeregu wielkości

A = 1 + +.....................+ «n-l,
A = aüxn~2 a^’—2 -j-.....................-b an-2,

fn-X   (IqX ^1 ?

fn --- , 
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i w każdym przypadku różnica pomiędzy te- 
mi dwiema liczbami jest parzysta. (Twierdzenie 
L a g u e r r s’a.)

Liczba pierwiastków rzeczywistych rów­
nania f (a?) = 0 pomiędzy, x — a i x = b (a </ b) nie 
przewyższa liczby zmian, straconych w sze­
regu f", f'”, Jj. . . . (kolejnych pochodnych) w przej­
ściu od x = a do x = b] w każdym przypadku róż­
nica pomiędzy temi dwiema liczbami jest pa- 
r z y s t a. (Twierdzenie B u d a n a.)

Jeżeli podzielimy funkcyę / przez jej pierwszą pochodną f 
i resztę otrzymaną, po zmienieniu jej znaku, oznaczymy przez /2; 
następnie podzielimy f przez /'2 i resztę, po zmienieniu jej znaku, 
oznaczymy przez f.A i t. d.; wtedy szereg

/•> f't /21 /3,.................................

nazywa się krótko szeregiem S t u r m a.
Liczba pierwiastków rzeczywistych rów­

nania f(x) = 0 pomiędzy x = a i x=b jest dokła­
dnie równa liczbie zmian znaku, straconych 
w szeregu Sturma wprzejściu o d x — a d o x—b. 
(Twierdzenie Sturma).

Jeżeli położymy « =— 00, 6 = -}-00, będziemy mieli licz­
bę wszystkich pierwiastków rzeczywistych.

Jeżeli s0, slt s2, . . . oznaczają sumy jednakowych potęg 
pierwiastków i położymy:

S0 1 «1,
S0 1 sl

■ — Sl, S2 » S3

S1 >' S2
*2, 53 » «4

to będziemy mieli twierdzenie:
Liczba par pierwiastków urojonych rów­

nania f(x) = 0, pozbawionego pierwiastków w i er
Pascal. Rep I. 8
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lokrotnych, równa się liczbie zmian znak u 
w szeregu ol , o2 ■> .............

Warunki konieczne i dostateczne rze­
czywistości wszystkie li pierwiastków rów­
nania algebraicznego o s p ó 1 c z y unikach rze­
czywistych są:

o2 > 0, o3 > 0 . . . on > 0.

§ 10.

Pierwiastki wymierne równania.

Aby liczba całkowita a mogła być pier­
wiastkiem równania o spółczy unikach cał­
kowitych, jest koniecznem i d o s t a t e c z n e m, 
by ta liczba była dzielnikiem ostatniego spół- 
czynnika an; dalej aby, jeżeli pj jest ilorazem 
tego dzielenia, liczbą a dzieliła spółczynnik 
<in_2 powiększony o p2, gdzie p2 jest ilorazem 
poprzedniego dzielenia i t. p.

Każde równanie, w którem spółczynnik 
przy najwyższej potędze .%■ nie jest jednością, 
nie ma pierwiastków ułamkowych wymier­
nych.

Jeżeli równanie o spółczynnikach wymier­
nych ma tylko jeden pierwiastek k -krotny, 
to pierwiastek ten nie może być wymierny.
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§ 11.

Przybliżone wyznaczanie pierwiastków rzeczywistych równania.

Granicą wyższą pierwiastków rzeczywistych rów­
nania nazywamy liczbę większą od każdego z pierwiastków. 
Analogicznie określamy granicę niższą.

Jeżeli przy x — a wszystkie funkcye fj". . . 
są dod atniemi, to liczba ta jest granicą wyższą 
pierwiastków równania f— 0 (Newton).

Celem wyznaczenia granicy wyższej wyznaczamy liczbę 
całkowitą, bezpośrednio wyższą ‘ od pierwiastka równania 
/■("-ń _ 0; tę wartość podstawiamy w funkcyi f<n-w i, jeżeli re­
zultat jest ujemny, dodajemy do niego tyle jedności, aby otrzy­
mać liczbę dodatnią. Dalej tak postępując, dochodzimy do liczby 
całkowitej, przy której wszystkie pochodne są dodatnie.

Inne granice wyższe otrzymujemy za pomocą twierdzeń na­
stępujących:

Jeżeli iit jest wartość bezwzględna spół- 
czynnika ujemnego, mającego największą war­
tość liczebną, wtedy granica wyższa wyraża 
się tak:

L — 1 — (M a c 1 a u r i n).«o

Jeżeli as jest pierwszy spółczynik ujem­
ny, to granicą wyższą jest:

L = 1 + f (Lagrangej

Jeżeli arjest największy z pomiędzy spół- 
czy uników, poprzedzających pierwszy spół- 
czynnik ujemny, to granica wyższa jest:

L = l+J/+-^- (Tillot).
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Przy pomocy twierdzenia S tur m a można rozdzielić 
pierwiastki, t. j. znaleść przedziały, wewnątrz których za­
wiera się jeden tylko pierwiastek rzeczy wisty ^równania.

Niechaj a i b będą dwa krańce, pomiędzy któremi zawiera 
się jeden pierwiastek rzeczywisty równania; niechaj a 
będzie wartością, przy której /(a) i f’(a) są jednego znaku.

Jeżeli utworzymy kolejno ilości: 

ax — a — fia)
7W

«2 = al —
/"(M ’

----  Cln
f\«n) ’

t o- liczby a„^ będą szybko, dążyły do warto­
ści pierwiastka funkcyi /', zawartego pomię­
dzy a i & (Twierdzenie Newtona).

Jeżeli utworzymy kolejno ilości

, b„ f(«„) — a„ f(b„) ,
= f{a.} _ f(b—■ («» = “’ «*=»).

to liczby będą również dążyły do war­
tości pierwiastka, zawartego pomiędzy a i &. 
Jeżeli się zatrzymamy na danym skaźnikuw, 
to błąd popełniony będzie mniejszy od an—bn.

Co do metod przybliżonego obliczania, opartych na rozważaniach 
geometrycznych, patrz Catalan, Mélanges math. I, str. 79. Metoda 
Lagrang e’a (Mem. Beri. 1769, Oeuvres, II. III) daje rozwinięcie 
pierwiastka na ułamek ciągły. Istnieją metody Eulera (Calcul, diff. II, 
1755. § 234) Wr o ńs kie go 1827, 1847 (patrz S. Dickstein, „Ome- 
todzie teleologicznej rozwiązywania równań“, Rozprawy Akad. Krak. 
XVIII, XIX), W. Krauze, (Prace mat.-fiz. III). Cauchy’ego 
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(Oeuvres, IV, p. 41—99), Jacobi’ego (Grelle VI, str, 257), Heisa 
(Sammlung v. Beisp. und Aufgaben aus. der allgem. Arithmetik und 
Algebra, Kolonia 1882, § 102).

§ 12.

Teorya G a / o i s a.

Załóżmy, że istnieje związek pomiędzy pierwiastkami rów­
nania , .r2, . . . se„, lub inaczej, że można utworzyć funkcyę 
wymierną całkowitą pierwiastków, której wartość jest zerem lub 
ilością znaną. W takim przypadku równanie nazywa się spe-' 
cyalnem; grupa zaś, należąca do funkcyi pierwiastków, na­
zywa się grupą równania (patrz wyżej Rozdział II).

Grupa równania ogólnego jest grupą symetryczną.
Równanie nazywa się nieprzywiedlnem, jeżeli nie 

posiada czynników, których spółczynniki wyrażają się wymier­
nie przez spółczynniki samego równania.

Grupa równania nieprzywiedlnego jest 
przechodnią, i odwrotnie.

Rząd grupy równania nieprzywiedlnego 
stopnia w, którego pierwiastki są funkeyami 
w y m i e r n e m i jednego z nich, równa się n, i od­
wrotnie.

Utwórzmy funkcyę

t ~ “i" a2 a;2 ~F............................... a«

o n spółczynnikach nieoznaczonych at, a3, . . . an, w której 
x2. . . . xn są pierwiastkami równania. Jeżeli zastosujemy 

do tej funkcyi wszystkie r podstawień grupy, otrzymamy r 
wartości •

fl, ..........................Cr;

równanie F (t) = (f — ) (f — £,) . . . (f —C,) = 0 
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nazywa się równaniem r o z w i ą z u j ą c e m G a 1 o i s’a 
dla równania danego.

Wszelkie pierwiastki równania F — 0 są 
funkcyami wymiernemi jednego z nich; za^ 
ich pomocą można wyrazić wszystkie pier­
wiastki równania danego f(x] = 0.

W ogólności roz wiązuj ącem nazywamy każde równa­
nia, za pomocą pierwiastków którego wyrazić można pierwiastki 
danego.

Równanie o g ó 1 n e s t o pn i a n można
rozwiązać przez rozwiązanie równania roz­
wiązującego stopnia wyższego niż 2, lecz nie 
istnieje równanie rozwiązujące stopnia niż­
szego od n i większego od 2. Jeżeli n jest róż­
ne o d 6. to nie ma równania rozwiązującego 
stopnia ?/, różnego od równania danego f(a;)=O. 
Jeżeli n = 6 istnieje równanie rozwiązujące 
stopnia 6-g o. Równanie stopnia 5 -go posiada 
rozwiązujące stopnia. 6-go; równania, stopnia 
n 4 mają rozwiązujące stopni niższych.

Niechaj G będzie grupą równania; utwórz­
my szeregi składające G, t. j. zbudujmy szereg pod­
grup G, I, I'. . ., z których każda następuj ąca jest pod­
grupą charakterystyczną największą poprze­
dzającej; jeżeli rzędami tych podgrup są r,

— , ------- , . . . , to rozwiązanie równania f = 0n n rz - '
zależeć będzie od równań, których grupy są 
jjojedyńczemi i odpowiednio rzędów rlf ra, ....

Równanie ogólne stopnia n j> 4 nie daje 
się rozwiązać algebraicznie. (Twierdzenie R u f- 
f i n i’ego i Ab e 1 a).

Historyę tego twierdzenia czytamy w pracy Burkhard ta (Zeitsch. 
f. Math, und Physik XXXVII, 1892 lub Anuali di matem. 1894, prze­
kład Pascala).
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Warunkiem koniecznym i dostatecznym
na to, aby 
rozwiązać 
icznie) j e s t,

równanie stopnia n Z> 4 dało się 
za pomocą pierwiastników (algebra- 
by czynniki składu grupy były

wszystkie liczbami pierwszemi.
Równaniami abelowemi nazywamy takie równania

nieprzywiedlne, których każdy pierwiastek daje się wyrazić wy­
miernie za pomocą innego, a symbole tych f u n k c y j wy­
miernych są przemiennemi, t. j. jeżeli

to będzie:
Xi — Ri , Xj — Rj (x,) ,

//, (/6(^1) = l/j (/6(^)).

Równania 
b r a i c z n i e.

Równania

takie dają się rozwiązać a 1 g e-

— 1 typu------- . - — 0,J 1 x — 1 (t. j. równania po-

działu koła) są równaniami abelowemi
Podstawienia grupy równania a helowe­

go są wzajem przemiennemu
Rozwiązanie równania ab el o w ego nie przy­

wiedli! eg o stopnia n — paQ3 . . . , gdzie p, q ... sa 
liczby pierwsze, sprowadza się do rozwiąza­
nia równań a b e 1 o w y c h stopni pa, q$,............

Rozwiązanie równania abelowego n i e - 
przywiedlnego stopnia pa, gdzie p jest licz­
bą pierwszą, sprowadza się do rozwiązania 
r ó w n a ń a b e 1 o w y c h, których g r u p y z a w i e r a j ą 
tylko podstawienia rzędu p (nie licząc pod­
stawienia 1).

Rozwiązanie równania abelowego nieprzy­
wiedlne go stopnia/)“, którego grupa zawiera 
tylko podst awi enia rzędu p, sprowadza się do 
r oz wiązania a równań abelowych nieprzy- 
w i e d 1 n y c h rzędu p.

Większe szczegóły o niniejszej teoryi znaleść można w Roz­
dziale II i w traktatach Jor da na i Netto.
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ROZDZIAŁ IV.

RACHUNEK RÓŻNICZKOWY.

§ I-

Nieskończonostki i nieskończoności.

Zmienna, której granicą jest zero, nazywa się nieskoń- 
czonostką lub i 1 oś cią nieś k o ń c z e n i e m alą; z mien- 
na, której granicą — nieskończoność—nazywa się nieskoń­
czonością lub ilością nieskończenie wielką.

Niechaj a i fi będą dwiema nieskończonostkami;

jeżeli lim = 0, mówimy, że a jest rzędu wyższego niż fi;

jeżeli lim —— — co, mówimy, że a jest rzędu niższego niż fi;

jeżeli lim — A (skończone), mówimy, że a i fi są tego 

samego rzędu.
Dla nieskończoności utrzymuje się przypadek trzeci, a dwa 

pierwsze przypadki zmieniają się jeden na drugi.

Jeżeli a jest rzędu wyższego niż fi, zaś lim -E_ jest ilością 

skończoną, wtedy mówimy, że a jest rzędu n-tego względem fi; 
n może być liczbą dodatnią jakąkolwiek, całkowitą lub niecał­
kowitą.
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Jeżeli a jest nieskończonostką lub nie­
skończonością, to pozostanie nią, nie zmienia­
jąc swego rzędu, i po pomnożeniu lub po­
dzieleniu przez j a k ą k o 1 w i e k i 1 o ś ć s k o ń c z o n ą 
różną od zera.

Suma algebraiczna skończonej liczby nie- 
skończonostekjest nieskończonostką, której 
rząd jest równy rzędowi nieskończonostki 
rzędu najniższego.

Jeżeli nieskończonostką a jest sumą alge­
braiczną skończonej liczby nieskończono- 
nostek, t. j. jeżeli

u — «i «2 ~F................................."F

gdzie niechaj będzie rzędu najniższego, to 
można zawsze znaleść takie otoczenie warto­
ści granicznych tych zmiennych, od których 
zależą te nieskończonostki, że dla każdego pun­
ktu tego otoczenia znak ilością będzie taki 
sam, jak znak ilości at.

Granica stosunku dwóch nieskończono- 
stek nie zmienia się, jeżeli dodamy do nich 
nieskończonostki rzędów odpowiednio wyż­
szych.

Analogiczne twierdzenia istnieją dla nieskończoności, po­
trzeba tylko wyraz: niższy zastąpić wyrazem wyższy, 
wyraz najwyższy — wyrazem najniższy.

Jeżeli różnica dwóch nieskończoności dą­
ży do granicy skończonej, to obie są tego sa­
mego rzędu i granicą ich stosunku jest jedność.

Mówimy, że szereg nieskończony nieskończonostek

«1 j ? • • • > • • •

dążą jednostajnie do zera, jeżeli dawszy sobie o dowol­
nie małe, możemy znaleść takie otoczenie wartości zmiennych, 
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od których te nieskończonostki zależą, że dla wszystkich pun­
któw otoczenia wszystkie ilości a są mniejsze od o.

Jeżeli mamy dwa nieskończone szeregi nieskończonostek:

«11 «2 1 ' • • «»»i • • • j A'l i 1*2 i • • • 1 • • •

gdzie każde 0, jest rzędu wyższego niż at, mówimy, że ilości 
są jednostajnie rzędu wyższego niż ilości a, 
jeżeli stosunki

@2 fi,n
5 j • • • ? •at a2 am

zdążają jednostajnie do zera.
Jeżeli suma nieskończonostek

oti -j- a 2 —. -j- am d-

dąży do granicy skończonej i jeżeli nieskoń­
czonostki

A i l^> ■ •. • i • fi*

są jednostajnie rzędu wyższego niż ilością, 
wtedy suma ilości dąży do zera i będzie:

oo oo

lim X* a, — lim X1 («z -p ^z), 
jiaaK Jad

1 1

t. j. suma ilości a nie zmienia s i ę, j e ż e l i do każ­
dej nieskończonostki a, dodamy n i e s k o ń c z o- 
c z o n o s t k i r z ę d u w y ż s z e g o 0,.
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§ 2-

Teorya pochodnych funkcyj rzeczywistych jednej lub wielu 
zmiennych rzeczywistych.

Jeżeli y jest funkcyą zmiennej x i jeżeli tej zmiennej 
nadamy przyrost dowolny lx, wtedy y dozna w ogóle 
przyrostu, który oznaczmy przez A y. Granica, stosunku 

Aw . ......... , . , . . , . ,—-— , w założeniu ze istnieje, ze jest skończona i niezależna od 

znaku przyrostu Ar, nazywa się pochodną fu n k c y i w p u n- 
kcie x. Jeżeli ta granica istnieje tylko dla Ar dodatniego, 
nie istnieje zaś dla Ar ujemnego lub odwrotnie, albo też istnie­
jąc w obu przypadkach, nie ma w nich tej samej wartości, wtedy 
mamy odpowiednio pochodną po prawej stronie 
i pochodną po lewej stronie punktu x.

Warunki konieczne istnienia pochodnej 
są: 1) funkcya powinna, być ciągła w punkcie; 
2) funkcya powinna być skończona w otocze­
ni u punktu i w samym p u n k c i e.

Jeżeli przyrost Sy zmienia nieskończenie 
w i e 1 e r a z y z n a k w j a k i e m k o 1 w i e k otoczeniu 
punktu, wtedy pochodna w tym punkcie albo 
nie istnieje albo jest zerem.

Przykładem jest funkcya /(r)_ rsin —- ; f(o) — 0; fun­

kcya ta w punkcie x = 0 nie ma pochodnej; funkcya zaś 

f(r) — r2 sin — , /'(o) — 0, w punkcie r = 0 ma pochodną rów- iZz 
ną zeru.

Co do funkcyj o nic mających pochodnej patrz dzieło E. Pas- 
cala „Notę critiche di calcolo etc.“ Medyolan 1895, od str. 85 —128.

Dla funkcyi, nadającej się do przedsta­
wienia geometrycznego, pochodna w punkcie 
przedstawia, styczną trygometryczną kąta,
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jaki styczna geometrycznadokrzywej two­
rzy z osią x.

Jeżeli dla x=oo istnieje granica stosunku

—r— i jest stalą dla wszelkiej wartości Air, to

wtedy równa się ona wartości

lim —----- (Twierdzenie Cauchy’ego).
X— oo X

Co do tego przedmiotu patrz: Dubois-Reymond, Ann. di 
mat. IV, Math. An. XVI; Stolz Math. Ann. XV; Rouquet, Nouv. 
Ann. XVI, str. 67; E. Pascal, Notr. critiche, etc.

Jeżelipochodna funkcyi ma granicę dla 
x— a, to funkcya jest ciągła dla x—a.

Pochodna ilości stałej jest zerem.
Pochodna sumy algebraicznej funkcyj ró­

wna się sumie algebraicznej pochodnych fun­
kcyj

Pochodna iloczynu pewnej liczby czyn­
ników jest równa sumie iloczynów pochodnej 
każdego czynnika przez wszystkie czynniki 
pozostałe.

P o c h o d n a i 1 o r a z u d w u funkcyj równa się 
ułamkowi, m aj ą c emu za licznik różnicę pomię­
dzy iloczynem pochodnej licznika przez mia­
nownik a iloczynem pochodnej mianownika 
przez licznik, a za mianownik kwadrat mia­
nownika danego ułamka.

Jeżeli yjest funkcya zmiennej z, ta zaś 
jest funkcya zmiennej x, to pochodna funkcyi 
y względem x równa się iloczynowi pochodnej 
funkcyiy względem z, pomnożonej przez po­
chodną funkcyi z względem x.

Pochodna funkcyi odwrotnej równa się 
odwrotnej arytmetycznej pochodnej funkcyi 
prostej.
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Jeżeli szereg pochodnych wyrazów sze­
regu funkcyi jest szeregiem równozbieżnym. 
wtedy wartość jego jest pochodną, szeregu 
danego.

Pochodną, szeregu potęgowego otrzy­
mujemy tworząc szereg pochodnych wyrazów 
szeregu danego.

Pochodną funkcyi y względem x oznaczamy symbolem 
dy „ n . . ,. Zasadniczemu wzorami rozniczkowemi są następujące:

dyy = xm, —= inxm~'v ’ dx

y — V XI, dy 1
2 V~x ’dx

y ■— sin x, dy = 
dx = cos x; dyy = cos x, —— —J dx - sin x,

y = t^x, dy 1 dy y — sec x, —~~ — J ' dx tg x . sec x,dx cos2 a; ’

y = cotgx, dy 1 dy; y — cosec x, —/— =’J dx cotg x . cosec x.
dy sin2 x

= — ax log, adx

y — aro sin x,. i y zawarte pomię-

y = \QgeX, - dy _ J_
dx x ’

?/ = log8a?, - dy 1 ,-s— = ---- log,, e ,dx • x °
i ’-idy. — ' 1  . i . :

y = arc cos x dy = __ 1 l dzy 0 i .
dx |/1 _ x2
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dy 1y — arc tg x , — — -r——tt& ’ dx l+x2

, , dy 1 iy arct cotg x, - , = — ——■J & ’ dx 1-1-x 2

dy ,1y — arc sec x, —— — —==-.tte a.yx2 _ i

y = arc. cosec x,~' —------- -------
dx xl/x*— 1

y zawarte pomię­

dzy O i —- .

y zawarte pomię­

dzy 0 i | .
Li

y = ’ ~dT = 7'x (log ® + 1 )•

Pochodna wyznacznika, którego elementy 
są funkcyami zmiennej x, równa się sumie wy­
znaczników tegoż samego rzędu, które two­
rzymy, podstawiając, zamiast elementów da­
nego szeregu, pochodne tych elementów.

Niechaj będzie funkcya f(xx, x2............ ) pewnej liczby
zmiennych; zamiast x2, x:t. . . . podstawmy pewien układ war­
tości a2, a:, . . . ; pochodna funkcyi f względem xx nazywa się 
pochodną cząstkową pierwszego rzędu lub 
pochodną cząstkową pierwszą. Analogicznie okre­
ślamy pochodne cząstkowe względem innych zmiennych. Po­
chodne cząstkowe oznaczamy za pomocą notacyi (Jaco bi’ego):

dxt- ’ 3^2

Funkcya n zmiennych ma u pochodnych 
cząstkowych 1-go rzędu.

Powtarzając na pochodnych rzędu 1-go działanie tworze­
nia pochodnych, otrzymujemy pochodne rzędu 2 go, 3-go i t. d., 
lub pochodne drugie, trzecie i t. d. Te pochodne wyrażają się 
symbolami:
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d*y 
d.z;2 ’-gdy y jest funkcyą samego a?, 6vtZ/ u

ó-'?/ 33//
1^7 ■ aró .....  gdy •" jest funkcyą w,elu

zmiennych.

t • T j • i j j 1 i?Jeżeli dwie pochodne rzędu 1-go tun-
C>JL 2

kcyi dwu zmiennych są skończone w calem 
otoczeniu punktu o spólrzędnych u,, a2 i gdy 

32/ 32/
jedna zdwu pochodnych drugich -r—~— , - •

jest ciągłą w tym punkcie i istnieje woalem 
otoczeniu punktu, wtedy te dwie drugie po­
chodne są równe; porządek tworzenia pocho­
dnych lub różniczkowania jest, jak się mówi, 
dowolny, i Twierdzenie o zmianie porządku brania pocho­
dnych.)

Podaj emy kilka najważniejszych wzorów, odnoszących się 
do pochodnych rzędu wyższego.

— xm — m (m—1).....................(m—n-j-1) ,

dn . I 1171 \—— sin x — sm —h----F xl ,dxn \ 2 / ’
dw I n?i . \—  cos X = COS —K r , dxn \ 2 1 /’

= .1.3.5... (2)i-D
WAS | " /£/

(Jacobi, Crelle, XV, str. 3, Hermite, Math. Ann. X).

dn ,
— (ax dxM v

exsm .x) =--------
71SI n’' —7-4

1171 \
~4~l

d /v 1 e I t nn\-T-- (ex cos x) —-------- cos lx -4------- .dxn . 71 \ 1 4 /sm«T

W tym przedmiocie patrz E. Pascal„Note critiche di calcolo“ (str. 148).
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Jeżeli y jest funkcyą złożoną, t. j. gdy y jest funkcyą 
zmiennych xv, #3, . . . , które są funkcyami zmiennej x, wtedy 
pochodnafunkcyi y względem a wyraża się 
wzorem:

♦ dy = 
dx 3x^

dxx 3// dx2 
dx ‘ 3a'2 dx

Jeżeliyjest funkcyą uwikłaną zmiennej 
x, daną przez równanie f (X, y) =■ 0; wtedy po­
chodna f u n k c.y i y względem x wyraża się 
wzorem:

3/'
dy   3x
dx 3/'

3//

Jeżeli yjest funkcyą uwikłaną dwu zmien- 
n y c h , X,, daną przez równanie / Jy, .q, x2) = 0, 
wtedy pochodne cząstkowe funkcyi y wyra­
żają się wzorami:

df
3y   3xt ciy   3x2
3a:1 df ' 3x’2 3/’

3y 3y

Pochodne cząstkowe funkcyi jednorod­
nej są funkcyami jednorodnem i, których sto­
pień jednorodności jest o 1 zmniejszony.

Suma iloczynów pochodnych cząstkowych 
funkcyi jednorodnej przez same zmienne rów­
na się funkcyi, pomnożonej przez stopień je­
dnorodności (Twierdzenie Eulera).

V . . . =rf

gdzie rjest stopniem jednorodności. Ta wła­
sność przedstawia warunek konieczny i do­
stateczny, aby funkcyą była jednorodną
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§ 3.

Teerya różniczek funkcyi jednej i wielu zmiennych.

Nazywamy różniczką zmiennej niezależnej x przyrost 
jakikolwiek nadany tej zmiennej; oznaczamy tę różniczkę przez dx.

Nazywamy różniczką funkcyi?/ zmiennej x 
iloczyn pochodnej funkcyi y przez różniczkę zmiennej niezależ­
nej. Oznaczamy ją przez dy\ jest tedy :

dy = /' (x) dx .

Różniczka funkcyi różni się o nieskoń- 
czon ostki rzędu wyższego od przyrostu, ja­
kiego doznajefunkcya, jeżeli zmiennej nie­
zależnej nadaj emy przyrost dx.

Jeżeli przyj mierny, że różniczka pierw­
sza zmiennej niezależnej jest stała dla każ­
dej wartości x, to różniczka ?^-ta funkcyi równa 
się iloczynowi pocliodej ?z-tej przez n-t ą potę­
gę różniczki zmiennej niezależnej.

Nazywamy różniczką zupełną funkcyi wielu zmien­
nych sumę iloczynów jej pochodnych cząstkowych przez róż­
niczki zmiennych niezależnych:

df — dxt -4- j - dx2 -|-.....................
1 11 ć-r2 2 1

Jeżeli pochodne cząstkowe rzędu 1-go f u n- 
kcyi są ciągłe, to różniczka zupełna różni się 
od przyrostu funkcyi o nieskończonostki rzę­
dów wyższych. (Twierdzenie o różniczce zupełnej).

Można uważać za stałe różniczki zmiennych, od których 
zależy wprost funkcya f (ma to miejsce, gdy zmienne te są nie­
zależne, lub też gdy są funkcyami liniowemi jednej lub wielu 
zmiennych niezależnych); wtedy różniczka ?z-ta funk­
cyi wyraża się wzorem:

Pascal. Rep. I. 9
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dxf ~ ((4rdx' + (h'2 +

\ ' C,.Z>2

gdzie symbol po stronie drugiej wyobraża po- 
tęgę symboliczną, eoznaezy, że po rozwinię­
ciu zwykłym sposobem tej potęgi należy wy­
kładniki potęg uważać za skaźniki rzędu po- 

3 /' 3 /
chodnycli ,.............J da-j cx2

W innych przypadkach różniczka rzędu wyższego funkcyi 
f tworzy się według tego samego prawa, według którego two­
rzymy różniczkę pierwszą, t. j. uważając dxx, dx2, .... za 
funkcye określone wszystkich zmiennych.

§ 4

Teorya funkcyj różniczkowalnych w całym obszarze. Twierdzenia
Rollego o wartości średniej i wnioski z niego.

Jeżeli funkcya zmiennej x j e s t skończoną 
i r ó ż n i c z k o w a 1 n ą wcałkowitym obszarze od 
a do b i ma tę samą wartość w punktach krań­
cowych, wtedy w przedziale istnieje przynaj­
mniej jeden punkt, w którym pochodna funk­
cyi jest zerem (Twierdzenie Rollego).

Jeżeli funkcya /'jest stale skończona i róż- 
niczkowalna we wszystkich punktach prze­
działu od a do Z», a na krańcach jego ma war­
tość zero, to dawszy sobie jakąkolwiek war­
tość Zr, z n a j d z i e m y zawsze punkt wewnątrz 
przedziału, w którym

= (Twierdzenie Waringa.)
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Przy tych samych założeniach o funkcyi 
f(x). w całym przedziale od xK, do rr0 + h zacho­
dzi wzór:

/>0 -4- /i) —* t (#o) — f'(^0 + 6/0
0 6 <C 1. (Twierdz, o wartości średniej).

Jeżeli funkcya w całym przedziale ma 
wartość zero, to jest ilością stałą.

Jeżeli funkcya w całym przedziale ma 
pochodną stałą, t o j e s t funkcya liniową zmien­
ił ej ;r.

Jeżeli funkcye <f(a;), xp (rr), % (a0 są skończone 
i mają pochodne w całym przedziale (a, Z»), 
wtedy istnieje przynajmniej jeden punkt j' 
w którym

® («), 7,(a)

(&), V (/0-

Jeżeli /’(<ą, #2’^35 • • • ) jest funkcyą skoń­
czoną i mającą pochodną w całym przedzia­
le i jeżeli

(«t, a, • . • • ), («i + «2 + ^2, • • • ) 

są spółrzędnemi dwu punktów, zawartych w ob­
szarze i takich, że prosta j jg, ł ą c z ą c a znaj­
duje się cała w obszarze (w ogóle i analitycznie), 
tak, że położywszy

j-j = x]»x, rc2 = a, -f- — a3 xh.A . . .

otrzymamy punkty, odpowiadające wartościom 
0<^a wszystkie zawarte w obszarze, to 
będzie:
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\ 2.r, /

f(a>i 4- a2 + 7z2, . . . ) — f(aly a2, . . . )

x, = a, -H Gh, 

xt = a,-\- 6>/i3

0 < 0 < 1.

Jeżeli funkcya / (iCj , a?2, . . . czyniąca za­
dość warunkom twierdzenia poprzedzającego, 
ma w całym obszarze pochodną równą zeru, 
to funkcya ta jest w całym obszarze ilością 
stałą.

§ 5.

Teorya wzoru Taylora-Maclaurina. Rozwijalność funkcyj na szeregi.

jest skończon
w e m i n— 1 pierwsze mi 

od x'o do tr0 + h, wte-

Jeżeli funkcya /\x\ 
niczkowalną wraz ze s 
pochodnemi w przedziale 
dy ma miejsce wzór:

ą i roz-

h.
h) = /W + -jT + "TT f"M + • •

(n—1)!
hn (1—0)"-^' 
p (n—1)!

gdzie p jest dowolną liczbą całkowitą d o d a- 
tnia. O < 6 < 1.

Jeżeli p = n lub p ~ 1, to ostatni wyraz przyjmuje po­
staci specyalne:

hu
4-, (Lagrange),

7y>‘ 71 __ A V'-l
R>------- (u — !)!—/’(">(;z'o + ez0, (Cauchy).
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Wzór powyższy nazywa się wzorem Taylora, a ostatni 
wyraz jego nazywa się resztą lub wyrazem dopełnia­
jącym. Kładąc xo = O, h = x, otrzymamy wzór M a c 1 aur i na.

Jeżeli f(x) i F<x) są dwie funkcye skończo­
ne i różniczkował ne w całym przedziale (a?0, 
x0 4” h) 1 jeżeli pochodna f u n k c y i F nie staje 
się nigdy zerem w tym przedziale, wtedy:

i • i dl CT • • 1 1gdzie symole . . . oznaczają, ze pochodne są

obliczone dla punktu (»j, a2, ... ), a nawiasy symboliczne
// df df x\(') . ...

( h2 4" • • • ) wyrażają, że po rozwinięciu po-
\ ' ^^1 ^ ^2 I

f (o?n -f- 7/) — f (j;n) 
F(rro4-/0 — F(x0)

f' (-j- 6 li)
F' (x0

Jeżeli f u n k c y a , rr3, . . .•) w i e 1 u z m i e n-
n y cli jest skończona i różniczko walna wraz 
ze wszystkiemi swemi pochodnemi aż do po­
chodnej rzędu 11—1 włącznie w całym uważa­
nym obszarze, i j e ż e 1 i (et,, a2 . . . ), (a^^i, + ^2, . . .)
s ą t a k i e dwa punkty obszaru, że punkty po­
średnie p r o s t e j 'j e łączącej (t. j. wszystkie punkty 
o spółrzędnych -j- , «■a4_®^a , • • • , gdzie 0 0 nale­
żą do obszaru, wtedy ma miejsce wzór:

f , a2 ^2 1 • ■ ■ )) ~ • • •)
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tęgi n-tej wielomianu należy zamiast potęg i-tych lub iloczynów
df ?f ' .pochodnych -x' ■■ , . podstawić odpowiednie pochodne

vć6j ^^2

rzędu i-tego funkcyi f, gdzie wreszcie R„ ma jednę z dwu nastę­
pujących postaci:

Rn

Rn

X; = <ł2 + 
......

(n—1)! dxt 2-r • ■ y)x, = a.+ ^,
x.j = «2 -f-' SA3

Wzór powyższy nazywa się wzorem Taylora dla 
funkcyi wielu zmiennych.

Jeżeli wskazane wyżej warunki dla wzoru Taylora za­
chodzą dla każdej wartości n i jeżeli granica reszty R„ jest ze­
rem dla n~oo, wtedy f(xv + A) i f(ai -|-Ą, a2 . . . ) roz­
winąć można na szereg według rosnących potęg ilości 7/ w przy­
padku pierwszym, ilości hx, h , . . . w przypadku drugim, 
i otrzymujemy wtedy tak nazwany szereg Taylora.

Aby funkcya, dała się rozwinąć na sze­
reg Taylora, jest koniecznem, by ona sama 
i jej pochodne jakiegokolwiek rzędu skoń­
czonego były zawsze skończone w każdym 
punkcie przedziału, t. j. we w s z y s t k i c h pun- 
k t a c h a:0 -j- 67«, lub (a, , -p 6 hx, aA -j-67<,gdzie, 
jak zwykle, 0 < 6 <1.

Jeżeli /■(”)(./•(,-}-67«) lub /'<“)(at 6hx, «2-]-67«2, . . . ) dla 
jakiegokolwiek 6, czyniącego zadość warun­
kowi i jakiegokolwiek n, pozostaje
co do wartości mniejsze od liczby skończo­
nej, J» jeżeli f<a) nie dąży do co wraz z n, 
wtedy funkcya daje się rozwinąć na szereg 
Taylora.
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Warunkiem koniecznym i dostatecznym 
rozwijalności na szereg Taylora funkcyi je­
dnej zmiennej jest, by reszta

tt-= - -

dążyła równomiernie do zera, gdy n rośnie 
do nieskończoności (Pri ngsheim).

Patrz co do tego Pringsheim (Math. Ann. XL1V), oraz E. 
Pascal, Notę critiche, str. 176—214.

Jeżeli funkcya jednej zmiennej d aj e się 
rozwinąć na szereg według potęg rosnących 
całkowitych zmiennej, to szereg ten może 
być tylko szeregiem Taylora.

Szereg dwumianowy (b i n o m i a 1 n y)

(1 + ,T)*‘ = y + 0«)^' -T (««>2 X2 + •

ma znaczenie
n

n

dla )ic dowolnego i (rr) 1, 
„ m dodatniego i x — — 1, 
„ m-j-1 „ i x = -j-1.

Szereg geometryczny

----- Y — 1 + a; -j- x2 x — 1 ma znaczenie dla x <Z I.

Jest to przypadek szczególny poprzedniego.

Szeregi wykładnicze:

, , x log a , a;2 dog«)2 , a:8 (log a)3 
= 1 + —~y— + ------21 3!

mają znaczenie dla każdego x i każdego a.
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Szeregi goniometryczne!

xA xhsin X = X - -I- -gy- -

, X2 x>
008 ^=1--^-+ -

mają znaczenie dla 

wszystkich wartości x.

Szeregi logarytmowe:
zy»2 zy»3 zy»4

log (1 4- X) = X - +.....................

(dla — 1 < x -j- 1).

og x = (x — 1)------i- (x—l)2 4---- i- fa-1)3 . . . . ,
z o

(O x < 2).

Szereg cyklometryczny:

ZV‘ zy>3 zy»6

arctg ® ---------5- + -§- +.....................

( - 1 5 * < + 1 )■

Inne szeregi Taylora:

. 1 2.7 . 6.r 1382 .
tg x = x + 3- ^S + K^ + SIS'1 +2835X +1-55925 “ + -

oo

_ V fi }
~m (2m—1)! ’

( — n x -j- 71

22,n (22m — 1)
gdzie p2m = -------- ------------- BIWI ; tu liczby B2ln są liczbami

Bernoulli’ego (patrz RozdziałXVIII),
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. 1 1 1 ,cotg X------- —------X-------- X"x 3 4o
2 5 JL_ .7_ 2_

945 X' " 4725 93555

22"1
B-"' x2m-'

. a?a 
sec x = 1 4- -jF +

5a?4
TT

61 x6 
“6T

X-"'

(2w)!

gdzie E-im są liczbami Eulera (patrz Rozdział XVIII).

1 x . 7 x3
COSeC X — ---  — „• —i— xx 3! ‘3.0!

29j?5
3T7T ‘

arc sin x

(‘2m + 2)!

3
40

1.3.5... (2n — 1)
2.4.6...2n

1
6

o
2>n-f-l

xex

log sin x = log x —

Bz4
2! 4!

J.
2

B, x2 
~21~

2 2;/i — 1 
m

&c5
TT
B4x* 

4!

E-im

3a;6
ITT

’ (2//i)!

p sin x

(Szereg tworzący liczb Bernoul I i’ego B2,
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X 1 1 . B»X2 B4x>
e—i = 1 - V x + .....2 !------- Ti- +...........................

i / i i/~i—i—5~\ la;3 1 . 3 . u;5log + V 1 4- x2 | = x - — -4- T —5........ ...............

( K I < I) • '

. (dla każdego x).

1 m2 „ . m2 (m2 — 22) 
cos (m arc sin x) = 1 — p x~ 4~ --------j]------ ~ x

m2 (m2— 22) (m2— 42) ,
----------------------------------g!-----------------------------------*'•" + .

(t® I .< I )•

7 , I’2 COS2 CP „ ,

e"x cos bx = 1 + r COS <p, X -f-------m — 4“ •

gdzie a = r cos cp, b = r sin <p .

§ 6.

Teorya wzorów nieoznaczonych.

Jeżeli stosując zwykle twierdzenia o granicach i szukając 
granicy funkcyi, znąjdziemy, że ona przedstawia się pod 
postaciami:

, -0?- 0 . oo, oo 0, 1°°, 0 0, co — oo ,
0 oo

wtedy mamy zagadnienie o wzorach nieoznaczonych; rozwiązać 
to zagadnienie jest to znaleść w jakikolwiek sposób, czy za po­
mocą odpowiedniego sztucznego środka granicę funkcyi danej 
(o ile istnieje).
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Rozwiązanie wszystkich powyższych nieoznaczoności spro­
wadza się do wyznaczania pierwszej z- nich.

n v . 0O rozwiązaniu wzoru nieoznaczonego — możemy wypo­

wiedzieć twierdzenia następujące:
Jeżeli funkcye <p (ćc), ip(x) określone w p u n- 

kcie a i w jego otoczeniu, są zerami w a iw tym 
punkcie mają pochodne, i jeżeli nadto po­
chodne i nie 
nieskończone śiciami, 
^(«4-A) . . :- ,—— n i e zmieniali

ilości It, wtedy:

są obie zerami lub obie 
a gdy y' (u) =0 , stosunek

znaku wraz ze zmianą

cp(x) <p(a) ... 1 1■  r — —T Pvzy PrzyjęclU, zc —7. = 4-oo,  ------  =y(x) y>\a) V 4- 0 — 4-00

Jeżeli granice funkcyi <p 
zerami, jeżeli istnieje w tym 
ca stosunku ich pochodnych

i y> są przy x=a 
punkcie grani- 
i jeżeli w cał­

ko witem otoczeniu punktu a pochodna 
k c y i y> j e st różna o d z e r a, wtedy istnieje

fun- 
gra-

nica stosunku———i równa się granicy sto- y>(x) & J
s u n k u pochodnych.

O nieoznaczoności------możemy wypowiedzieć twierdzenie:

Jeżeli granice funkcyj <p i y> dla x = a są 
równe 00, jeżeli istnieje granica stosunku 
pochodnych i jeżeli wreszcie y>'(a?) nie tylko 
nie jest zere m, lecz ma nadto znak stały w c a ł» 
kó witem otoczeniu punktu a, wtedy istnieje 
granica stosunku funkcyj i równa się sto­
sunkowi pochodnych.

Oto jest rozwiązanie niektórych nieoznaczoności :

lim
X=.CQ

x — sin x
X -J- cos X

X 
lim xe x = 00

JC — 00
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Porówn. E. Pascal „Rachunek różniczkowy“ przekład polski 
str. 163 176, Notę critiehe ctc. str. 238. Stolz, Grundzuge etc. 1, 
str. 72—83.

• 1 a- sm - -
lim ------- = 0 :

JC — » log (l-j-.r)

.. tg a r — ax   a3
x *2^ tg b x — b x li' ’

(lx _ fox
lim ------ ------= log a — log b

X = u
..x__ z, sin x

lim ------L------= 1 ;
x — 0 X — sin X lim x» log — = 0; (p 1)

a; =0 &

lim xx = 1 ;
u ■ — 0 lun xm ~ °’ > 0)>

x = 0 •

§ 7.

Funkcje rosnące i malejące. Maxima i minima funkcyi jednej 
lub wielu zmiennych

Funkcya fix') jednej zmiennej nazywa się w punkcie a?0 
rosnącą, jeżeli istnieje zawsze wartość Ic taka, że dla każ­
dej wartości h <Z Ic istnieją równocześnie dwie nierówności:

fUo—/<) — fM<0, f(x0 -r //) — /’(.r0>0.

Funkcya nazywa się malejącą, jeżeli zachodzą równo­
cześnie dwie nierówności przeciwne :

/‘(»o — li) — /'(#„) >0 , f (a?0 + /0 — /' (x0) < 0 .

Jeżeli w punkcie x0 pochodne pierwsza, 
druga, . . . . , (n—1)—a są zerami, pochodna 
zaś M-ta zerem nie jest, w t a k i m razie, jeżeli 
n jest liczbą parzystą, funkcya nie jest ani 
rosnącą, ani malejącą w tym punkcie; jeżeli 
zaś n jest liczbą nieparzystą, wtedy funkcya 
jest rosnącą, gdy pochodna M-ta jest dodatnia 
w punkcie xQ, malejącą, gdy ta pochodna jest 
u j e m n a.
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Funkcya jednej zmiennej (lub wielu zmiennych , x2 . . .) 
ma m a x i m u m w punkcie xQ (lub w punkcie o spółrzędnych 

, a3, . . . ), jeżeli można znaleść takie k (lub układ wartości 
h\ . /;2, . . . ), żc dla każdego h <^lc (lub dla każdego układu 

<Z ki, h2 <Z k, , . . . ) jest zawsze :

/ (#o ±h) — f < 0

( lub f (u, + A, , u2 -f- A2 . . . ) — f (^, a2, . . . ) < 0 )

Przeciwnie funkcya ma w tym punkcie minimum, jeżeli 
spełniają się powyższe nierówności ze znakiem • zamiast )

Aby funkcya miała maximum lub mini­
mum w punkcie, trzeba, aby pochodna rzędu 
1-g o lub wszystkie pochodne cząstkowe rzę- 
d u 1-go były w tym punkcie równe zeru.

Aby f u n k c y a b y ł a m a x i m u m lub minimum 
w p u n k c i e, j e s t k o n i e c z n e m, by rząd n pierw­
szej z pochodnych, której wartość w tym pun­
kcie jest różna od zera (lub rząd pierwszych 
z pomiędzy pochodnych cząstkowych, które 
nie znikają wszystkie w tym punkcie), był 
liczbą parzystą.

W przypadku funkcyi jednej zmiennej, 
jeżeli n jest rzędem pierwszej z niezn łka­
jących w tym punkcie pochodnych, otrzymu 
jemy maximum, gdy jest ujemne, mi­
nimum zaś, gdy f^(x) jest dodatnie.

W przypadku funkcyi wielu zmiennych, 
jeżeli liczba (parzysta) n jest rzędem p o c h o d 
nych cząstkowych, które nie znikają wszyst­
kie w uważanym punkcie, należy rozważać 
wyrażenie:

2Z3f
3«] (patrz § 4)
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K o z w i n ą w s z y to wyrażenie, otrzymamy 
formę stopnia w-tego ilości Jix, Ji2, . . . ; j e ż e 1 i 
forma ta jest znaku stałego dla każdego ukła- 
d u w a r t o ś c i hx, h2 . . . i s t a j e się zerem jedynie 
dla A, = 7/2 = . = Ó (forma' określona), wtedy 
w tym punkcie mamy istotni emaximum, gdy 
forma ta jest stale ujemna, minimum zaś, gdy 
jest stale dodatnią.

Jeżeli forma powyższa może się stawać zerem i dla innych 
wartości prócz hA — //3 = . = 0 (forma półokreślona), wtedy po- 
trzebnem jest specyalne badanie w celu rozstrzygnięcia pytania 
o maximum i minimum. Jeżeli ta forma nie jest stałego znaku 
(forma nieokreślona), wtedy w tym punkcie nie istnieje ani maxi­
mum, ani minimum.

W przypadku specyalnym, w którym n — 2 
i liczba zmiennych jest także 2, otrzymujemy:

a2fI 7, 2 I O   '
dax2 1 ' ~ li, W >1 2 1 3a22 2 ’

aby ta forma była o k r e ś ś 1 o n ą, potrzeba, aby 
wyrażenie

32f d2f 32/ 
daxda2

było 

mieli
dodatnie i różne od zera; będziemy 
wtedy maximum lub.minimum, stoso-

wnic do tego, czy ——- j e s t ujemne lub d o -

d a t n i e .

Teorya maxlmów i minimów funkcyj wielu zmiennych pobudziła 
do wielu ważnych badań. Porównaj: Scheeffer, Math. Ann.

i XXXV; Dantscher, tamże, XLII,LI; Stolz, WienerBerichte 1868— 
U 1890—1891—1893. Wskazówki co do tego w książce Pascala,

„Notę critiche di calcolo11 str. 226.
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RACHUNEK CAŁKOWY.

§ 1.

Całko walność.

Niechaj f<x) będzie funkcya skończoną od x=a do x=b. 
Podzielmy przedział («, Z*) na n przedziałów Ó1, ó2,............... <5»
i niechaj fr będzie wartością, którą przybiera funkcya f w pew­
nym punkcie przedziału <5,- lub granicą wyższa albo niższą war­
tości funkcyi f w tym przedziale. Utwórzmy sumę

W
-r /; r=1

i zmniejszajmy nieograniczenie wielkość przedziałów cząstko­
wych, zwiększając nieograniczenie ich liczbę.

Jeżeli dla n — oo powyższa suma ma granicę i zawsze tę 
samą, niezależnie od prawa, według którego przedziały dążą do 
zerapraz niezależnie od prawa,według którego wybieramy wartość 
fr w przedziale <5,., mówimy wtedy, że funkcya f jest całko­
wi al n ą w przedziale a, b. i że wartością tej granicy jest 
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całka określona funkcyi od a do b. Taką całkę 
wyrażamy symbolem

b

I f (x) dx .
a

Wartości a i b nazy wają się granicami wyższą i niższą całki. 
Określenie to wymaga zmiany w dwu przypadkach:
1- o, kiedy funkcya staje się nieskończoną w jednym lub

wielu punktach przedziału;
2- o, kiedy jedna z granic całkowania jest nieskończoną.
Jeżeli funkcya f(x) staje się nieskończoną dla x = c, 

{a <^c <^b); wtedy całką określoną funkcyi f(x) od a do b na­
zywamy wyrażenie

c — e' b

]im | f(x) d-r -j- lim I f(x) dx, 
s" = Oj a c + e"

w założeniu oczywiście, że granice tu zachodzące istnieją i są 
zawsze te same,bez względu na sposób, w jaki ilości e', e" zdążają 
do zera, niezależnie jedna od drugiej.

Taka całka określona nazywa się niewłaściwą.
Jeżeli zdarzy się, że granica sumy powyższych dwóch 

całek istnieje tylko wtedy, gdy ilości e, e” są związane pewnem 
prawem, wtedy otrzymujemy całki niewłaściwe oso­
bliwe (Cauchy).

Jeżeli jedna lub obie granice są nieskończone, wtedy całką 
określoną niewłaściwą funkcyi f (x) będzie:

x’ a x"

lim I f(x)dx lub lim j I f \x) dx -j- l f(x) dx\
x' = oo./ x' = — oo I,/

a x"= -f- oo x' a

w założeniu oczywiście, że te granice istnieją, niezależnie od 
sposobu, w jaki x', x" dążą do oo.

Jeżeli w tym drugim przypadku granica .stnieje tylko wte­
dy, jeżeli x' i x'' są związane pewnym warunkiem, otrzymujemy 
całkę niewłaściwą, -osobliwą.
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Calka niewłaściwa nazywa się bezwzględnie zbie­
żną, gdy granica, o której mowa w określeniu, istnieje i wte­
dy, jeżeli funkcyę f(x) zastąpimy wszędzie jej wartością bez­
względną; nazywa się zwyczajnie zbieżną, jeżeli ta 
własność miejsca nie ma.

Warunkiem koniecznym i dostatecznym 
na to, aby funkcya skończona była całkowal­
na w całym przedziale jest, by granica

n
lim V Dr ó 
i = oo

gdzie D, przedstawia oscylacyę funkcyi w prze­
dziale ór, była zerem.

W arunkiem koniecznym i dostatecznym na to, 
aby funkcya skończona była całkowalna, jest 
b y Jim r = 0, gdzie t oznacza sumę przedzia- 

H =oo
łów dr, w których oscylacya funkcyi jest wię­
ksza od jakiejkolwiek liczby ustalonej.

Każda funkcya ciągła jest całkowalna.
Każda funkcya punktowo-nieciągła (patrz 

wyżej str. 24) jest całkowalna, 
mann a).

Wartość całki określonej 
walnej nie zmienia się, jeżeli
tość funkcyi w jednym lub więcej punktach 
a nawet w nieskończenie wielu punktach, by­
leby one tylko były tak rozmieszczone, że 
w każdym dowolnie małym przedziale znaj­
duje się zawsze punkt, w którym wartość fun­
kcyi nie uległa zmianie.

Jeżeli funkcya skończona jest stale ros­
nącą lub stale malejącą w całym przedziale 
całkowania, wtedy jest funkcyą całkowalną.

Funkcya ciągła innych funkcyj całko­
walnych (w szczególności suma i iloczyn) jest

Pascal, Rep. I. 10

(Twierdzenie R i e -

funkcyi całko- 
zmienimy w a r-
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sama fu nkcyą całkowalną. (Twierdzenie O u B o i s 
Reymonda)

Całka określona posiada następujące własności:
• b fi

I f(x) dz — — I f(x) dx, 

a b

I f(x) dx

• 11
fr

I f(x) dx = (/> — a) lim —— .
n = oo n

a r " ' ,

Całka określona iloczynu dwu funkcyj da je 
się przedstawić w postaciach następujących:

1. J f(x) f\(x) dx = f (a -J-# (b—a)) I f\(x) dx.

a a

gdzie zawiera się pomiędzy 0 a 1, f i f0 są 
funkcyami c i ą g ł e m i, z a ś n i e z m i e n i a znaku 
pomiędzy granicami całkowania:

b a -f- &(b — a)

2. I /-(x) ft(x) dx = /‘(a) I f/x) dx ,
a a

przy tych samych warunkach;
b

J /■(«) fl Cr) (b‘

3.
<1 fr (b — a) . b

= f(x) I fx(x) dx 4- /(6) I f^x) dx , 

a *~]-&(b — a)
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w założeniu, że f u n k c y e są ciągłemi i że
druga nie zmienia znaku w granicach całko- 
wania.

Zauważyć należy, że wartość & jest w o- 
góle odmienna w każdym z trzech powyższych 
wzorów.

Twierdzenia, odnoszące się do przypadków zbieżności ca­
łek niewłaściwych, są następujące:

Niechaj funkcya f(x) staje się nieskoń­
czoną w punkcie b i będzie całkowalną w ca­
łym przedziale od a do b—e; jeżeli można zna- 
ląść liczbę dodatnią v<^l, taką, że (x—b)v f(x) 
dąży do granicy skończonej dla x=b lub 
waha się pomiędzy granicami skończonemi, 
to wtedy wnieść można, że całka określona 
od a do b jest bezwzględnie zbieżna.

Jeżeli funkcya f(a?) twierdzenia poprze­
dzającego jest funkcya stałego znaku, to wa­
runkiem koniecznym zbieżności całki od a 
do b jest, by:

lim (x — b) f (x) 
a>= b

było zerem lub wahało się pomiędzy dwiema 
granicami, z których jedna jest zerem (gra­
nice te, na zasadzie założeń, nie mogą być 
przeciwnego znaku).

Jeżeli danafunkcyajest całkowalna w pe­
wnym przedziale (aż do oo), i jeżeli można zna­
le ś ć takie r i> 1, aby

lim xv f(x)
X oo

było skończone (lub zere m), lub, w razie nie­
istnienia granicy, byiloczyn ten wahał się po­
między granicami skończonemi, wtedy całka 
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funkcyi /’ (a?) od a do co jest bezwzględnie 
zbieżna.

Przy założeniach poprzednich i przy do­
łączeniu założenia, że funkcya f(x) nie zmie­
nia znaku od pewnego punktu aż do co, wa­
runkiem koniecznym, aby granica całki była 
skończona, jest, by iloczyn x f(x') dla x = co miał 
granicę skończoną lub‘wahał się pomiędzy 
dwiema granicami, z którychjed na jest zer ein.

O całkach niewłaściwych patrz: Riemann, Werke str. 229; Da 
Bois-Reymond, Crelle LXXVI, Math. Ann. XIII; Pringsheim, 
Math. Ann. XXXVII i t. d., por. Pascal, Note critiche etc.

Jeżeli w całce określonej granicą wyższą jest x, to całka 
przedstawia funkcyę zmiennej x, zwaną funkcyą całkową.

Jeżeli do funkcyi całkowej dodamy ja­
kąkolwiek stałą, dostaniemy funkcyę, którą 
możemy też przedstawićprzez całkę określo­
ną o granicy wyższej równej x i o granicy 
n i ż s z e j, r ó ż n e j od poprzedniej.

Niechaj y(x) oznacza funkcyę całkową; funkcya nieokre­
ślona, objęta wzorem

F (æ) = <p (x) + c ,

(gdzie c jest stałą nieoznaczoną), nazywa się całką nieo­
kreśloną funkcyi i oznacza się symbolem

F (x) — I f (x) dr .

Jeżeli znamy całkę nieokreśloną, to cał­
kę określoną obliczymy za pomocą wzoru

I f(x) dx =. F(b) — F (a)

- u

Funkcya całkowa jest zawsze funkcyą ciągłą 
Jeżeli funkcya f \x) pod znakiem całko­

wym jest funkcyą ciągłą, wtedy funkcya cał­
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kowa jest funkcyą r ó ż n i c z k o w a 1 n ą ajej po­
chodna jest równa funkcyi danej f(x).

Jeżeli funkcya f (x) j e s t ciągłą, to

I f(x)dx = f(b)-, ~aa \f(x)dx = — f(a). 

a a

Przekształcenia całki pojedynczej. Jeżeli
b

1 = I f(x) dx

i położymy x ~ ip (?/), gdzie ip jest także funk­
cyą różniczkowa Iną zmiennej y, ijeżeli w prze­
dziale od a do b można uważać y za f u n k c y ę 
samej zmiennej x, wtedy

.b' 
i' dr/ = fMM^dy, 

J ^y
a'

gdzie a' i b' są wartościami zmiennej y, otrzy- 
manemi z równań a = ip(y), b = y>(x).

Niechaj będzie

® (y) = / y) dx,
’« W

gdzie a(y), b(y) oznaczają dane funkcye zmien­
nej y. J e ż e 1 i z a ł o ż y m y, ż e /' (x, y) j e s t f u n k c y ą 
ciągłą dwu zmiennych, że f(x, y), a(y), b{y) mają 
pochodne względem?/, i że pochodna j e st 
ciągła względem obu zmiennych, wtedy:

-Łj V) dr - + f(b, y) ,

«(y)
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Jeżeli a i b są ilościami stalemi, to znak 
różniczkowania względem yjest przemienny 
ze znakiem całkowania, t. j. 
równa się całce pochodnej, 
niczkowaniu pod znakiem.)

Twierdzenie to zachodzi

pochodna 
(Twierdzenie o

całki
róź-

zawsze, gdy

y) = I f(a y) dx,

jest taką funkcyą zmiennych #,’?/,[że dla niej 
utzymuje się twierdzenie o przemianie po­
rządku dwu różniczkowań względem x i y.

Jeżeli granice a i b są stałem i, jeżeli sta­
łe mi są ilości ci rf, funkcya zaś f(x,y) jest cią­
głą, wtedy:

d b b d

j dy J y) dx =* I dx I f(x, ?/) dy 

ca a c

(Twierdzenie o całkowaniu pod znakiem.)

§ 2-

Całki nieokreślone.

Całki nieokreślone podstawowe.

J* m +1
xm dx = —r.... — 1),m -j- 1

I ~ dx = log x ; j ex dx = e*,

y* sin x dx = — cos x ; J cos x dx = sin x ,
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—— dx = tg x ; / 
s2x ’ J — dx — — cotg x , Sin2 X

, dx = arc sin x — — arc cos x + const , 
V 1 — x2

arc tg x = — arc cotg x -j- const ,

dx - dx = Sin X
. . x /' (to , . i' 1 4 a;2
lo« ‘S -2- ; ./1=55 <te = l0g 1 + j:

log x dx — x log x — x; I tg x dx = — log cos x,

arc sin x dx — x arc sin x -j- V 1 — x2

arc tg x dx = aretg x-----— log (1 -j- o?2),

arc sec x dx = x arc sec x — log (x + ]/ x2 -f~ 1 ) ,

Całki nieokreślone funkcyj wymiernych.

dx
-j~ bx2

1—7— arc 
a b

jeżeli i b są jednego znaku,

lub = — ab lo£ x j/ _ b _ \/ a ’

Ą—- dx =

x

a

jeżeli a i b są znaków przeciwnych.
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dx 1 , x* i 2 ------------------ _ — ----  jog--------------- 
x (a b x2) 2a a -j- bx2

a6 — x6 6 a3 °g a3 — x*

Dla obliczenia całki funkcyi wymiernej 
rozkładamy tę funkcyę na funkcye elemen­
tar n e (patrz Rozdział I, § 6), a potem wykonywamy 
całkowanie.

Całki funkcyj niewymiernych

i-----——— = -I- —B=^ arc tg // — , jeżeli a i b są jednego
.h«Ą-bx^x Vab I «■ znakUi

1 , a — bx~\-2Vx . ]/—ab . , .. . ,= — log ----------- !—j—5—------------ , leżeli a i b sa zna-
a Z7 ków przeciwnych,

/* ^x dx _  2 yx a i’ dx
Ja-]- bx b b J ]/x (a-]-bx)

i' dx 1 , Va-]-bx — V a . . „I— — _ ——=r- log — 1—-------=. , leżeli a>0,
J xVa Ą-bx V a Va-]-bx -f- ]/ a

2 Va-4-bx . . ,. n= — arctg —==- , jeżeli a C U.
V—a V — a

dx
a+bx-\- cx2

1 , b-4-2cx—^b2—4ac . . .. .„, ... =- log —!, jeżeli b2 
Vb2 — 4ac b-]-2cxĄ-Vb2-4ac _±ac>{y

2
b 4- 2 cx jeżeli b2 —4ac — 0,

2 , b—l— 2cx ’'tło a r\— — arc tg -—!-------- jeżeli b2 — 4ac <z 0.
V 4ac — b2 &V4ac — b2’

x2 dx 1 a3 * a:3
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I dx VI—x2 = V1—x2 ~ arc sin x.
J u £

i   'Y'   1 ____
I dx F'1-J-rc2 = — Fl-j-a?2 -]—~ log (x -J- Fl—|-r»2) , J & U

J-^L Vi+^2 = j/14^ — log 1 ,

I-d'* V x2—1 — V x2—1 — arc cos — .
J x x

C dx n, 1 — V 1 — x2I------11—x2 = VI—x2 -4- log------- — ------- -----  .I x x

—--------= -= log (x V b -4- V a 4- ^x’2) i jeżeli b Z> 0,Va-\-bx2 Vb 6 J

= p=- arc sin ^J/------Ł . jrj , jeżeli ó<0.

I —____ = == —= log (a 2bx 2 Vb Vax-\-bx2), jeżeli b^>0
JVax-\-bx2 Vb

1 . a + 2bx . . .= —---- arc sin--------------- , jeżeli b < 0.
V—b —a

Całki funkcyj trygonometrycznych

dx x
----------- = t£ -TT- • l-j-cos x ^2

dx 1 z , , / x n \
sin x -p cos x V~2~ °to & \ 2 8 / ‘

’ x -j- sin x
1 cos x

i . xdx = x tg -x- ,
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i sin2 x dx = — 4- sin 2x -|- x , 
l 4 1 2

sin ax cos bx dx — —— { b sin bx sin ax -{- a cos bx cos ax}

r dx 2 f .
J a + b cos x ]/ a2 _ i/ a i,

1 . x
= T tg ~ ’

1 V b—a tg ~ 4- Vb-\-a
= - -------- log--------------- - -------------- ,

J/62—«2 J/b__atg^__J/y,+a
&

I 1---- Vi ’ 2— = ~ arc tg ( ^1—• tg x) .
J 1—fc2sin2o; |/1—A-2

Całki funkcyj zawierających logarytmy.

j xH log x dx = icn+1 ( log 1
in -f- 1) 2 n 1

’ log x dx
(a 4~ bx')m

log x
(m—1) b {a-\-bx)"1-'

(m — 1) ab
------------ =_________ I_________ =---- ------- - 4.
(w—2) (a-\-bx)m-2 1 (m - 3) a {a-\-bx)’,,-~3

____ 1_________
1 . a"*-3 (a 4“ bx)

i 1 , ___
t °£ a -j-

sin (log x) dx = | sin (log x) — cos
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# | |
cos (log x) dx — -x- | sin (log x) + cos (log <r)> ,

log (log x) dx = log x log (log x) — log x ,

log (a 4- cos x") dx = 1 + a cos x 
a 4~ cos x

Całki funkcyj, zawierających funkcye wykładnicze.

nax x*~'1 , n (n—1) xH-2axxn
log a log2 a log3 a

n(n—1) ...2.1 r
4- ---------, T axlog 1 u

Z* dx
= log t4

dx
I = mV—b

dx
J a-\-bemx ~

i" dx
J ]/a-j-bemx

I ’ xeJS dx   ex
J(1 4-r»)2 ~ 1+®’’

I xex dx = e® (x — 1),

arc

—-— { vix — log (a 4- ł>e,nx a m v .6 v '

log 
inV a

J/a + bemx — 
Va-]-bemx+ V~a '

1

eax(a sin x — cos x)
eax sin x dx — --------- z—:—o---------

------  2144-efla; , 1 , l/l+e“*4-li + ^ = __±_ + _ log
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Całki funkcyj, zawierających funkcye kołowe odwrotne.

x arc sin x -------
---- ■_......   ax = x — V 1 - x2 arc sin x , 

H-rr2

arc sin x .

x arc sin x

x arc sin a? 1
~,7,".---- V log 1-3;}'VI—x9 4

arc sin x , 1 . 1 — x■ -..  - 4- -tt- log -,--- :----- ,
VI z2 2 1 +

dx = xarctgx— log (l-pr2) — ~ (arc tgtf-)2,

• x arc ng x ,=----- _ x y----- -----—— dx = — VI—x2 arc tg x 4~F 2 arc tg —=-
VI—x2 VI—x2

— arc sin x .

’ arc tg x _ x arc tg x 
(Va-j-órr2)3 a fa-j- bx2

1 , 1/ a~\~bx2 j eżeli
—■  arc tg // -j------ , ,
aVb-a f b—a a<b

x arc tg x 
aVa-\-bx2

1 , Va-[-bx2 - Va—b
—_____ log -... ........... ....... ...........
aVa — b Va-Vb.r2 -ł- Va — b

a~>b.

Całkowanie przez szeregi. Szereg, którego wy­
razy są funkcyami zmiennej rc, równozbież- 
ny w całym przedziale, przedstawia funkcyę 
całkowalną zamiennej x; całkę zaś tego szere­
gu przedstawia szereg całek pojedynczych je­
go wyrazów.

W szczególności:
Szereg potęgowy jest całkowalny wyraz 

po wyrazie w przedziale, zawartym w obsza­
rze całkowania całego szeregu

Sin X dx = x x3 . x5 
3T3+ 5T5X
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Funkcya zmiennej x, określona za pomocą poprzedniego 
szeregu, jest nową funkcyą przestępną, które nazywają ,,wsta­
wą całkową54 (Integralsinus).

f ex _ . . x2 x8 .
— !og® + x + 2T2 + -3TS +.....................

Ten szereg przedstawia również nową funkcyę prze­
stępną, którą nazywamy „logarytmem całkowym (Inte- 
grallogarithmus).

I log (1—2 q cos x q2) dx = — 2 sin (11.7), (q < 1)

/ log (a-j-kr) b 1 / b 2I — -—!------  dx — log a log x d------x------— x-J x 6 a 22 \ a /

f dx log X , 1 log2 X . 1 log:!«r ,jkii = loe <'°e «)+-!-+ -2- -2V + -3- -3T-+....

I ten ostatni szereg jest, jak łatwo widzieć, logarytmem cał­
kowym o argumencie log x zamiast x.

§ 3.

Całki określone i niewłaściwe.

Całki określone pomiędzy granicami 0 i 1.
1 1

dx n C dx _  2
3K3 ’ J 1 — M-x'2 ~ 3J/IF

o
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i
C dx
I log (log x)

i _
/ * e-* dx   2 -j- e \n

./ KT7 47“’
o

’ log CC . 713
1-Hr tlx ~ 12" ’

t i
/ ‘ log X 3I —— dx — / 1 —x o

/ ’ log X dx =

Całki określone pomiędzy 0 i ~ , pomiędzy 0 i -y-, pomię­

dzy 0 i Ti.

J tg x dx = -i- log 2 ,

o

I l—xI 2
2

i i

j log (log cc) dx — — A (stała Eulera, patrz Rozdz. XVIII), 
*2
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tg"’ x dx =7 (— 1)*---- i—s--- j—t-J Zj v ' m 2n 1
*o o

- 2
------(n — Z) cosec 2 .1—sin x cos X

o

(2 dx 1 qI -------------------- — ____ _ arc cos _L_
/ P4_9cosa; Vp2 — q2 P

jeżeli

_ ~= log 9 + l/92 -P* 
Vq2—p2

1
9 »>

P 9 = F

/’2
j x tg x dx — oo,

o

(' 2
| log sin x dx — — -x- log 2 , 
/ " o

2
log tg x dx = O .

•2 , i
sin’1 x dx =

o

(n_l) (n—3) ... 4.2 
n (n—2) ...5.3 jeżeli n parzyste.

(n—1) (n—3) ..3.1 Ti 
n (n—2) ...4.2 ‘2 „ n nieparzyste.
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I sin a x sin b x dx = 
‘o

n
I cos a x cos b x tlx = 0, 

o
(a^b)

f_*L_ = o.
J COS X
o

n 
dx __ n

p+q cos x ~ Vp2__q2 1 jeżeli p2 q2,

p2 <Z q2 ■

/' dx
I — p -ł~ q cos x

— ti

V p2— q2
jeżeli p2 q2 ,

= 0 P2<?2.

i' dx _ ti

— 2 o cosx-Pi?2 1 — Q2
’o

jeżeli o2<l ,

7t
“ ^=1 e*>i.

I log (1 — 2 p cos x -j- e2) dx = 0, 
*3

= 2 71 log Q ,

jeżeli q 1,

,, Q 1 •

Całki niewłaściwe o granicach nieskończonych.
oo

dx __ 71
a -j- bx2 2]/ a b 

o
(a >> 0, b > 0).

----
a , , y 71 e-s x dx == —2 Q
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I e~a* cos (2 p x) dx = e~pi . 
o

e~x xn dx = n\ (n całkowite).
b

dx = r (n); funkcya Eulera 2-go gatunku 
{n jakiekolwiek).

°°—1 __
ex' dx — V 71.

‘2

sin2® x dx — I cos2® x dx —
o2

CO

(' sin b x 7 „—-------- d x = O .
J sin a x
3

a).

7t2

12
o

/' x 7 Tl2
—i = "c“/ ex—1 6

o

a?2a~1 dx =
Q2a__ 1

(Bsą liczby Bernoulli’ego).
4aJ ___  g ~~

o

sin p X , ----- ł— dx 2 ’/ x 
o

jeżeli q O ,

= 0 (? = o,
'2 ’ Q <0.

00

dx — 00 ;
o

Pascal. Rep. I.

00
I ■_tgę2L<ia: = 4

J x 2
o 11
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cos q x -i----- 2—- = —- sin ą ,
1 — x* 2 1 '

o

I e
o

1 — COS (p x)
X

log (1 +^2),A

sin ax dx £
2J 1 -f- cos ax -r q2 1-H? ’

1

o

oo
COS Q X -Tj------------- ł™- dx = — I 2 Q n
X ] X

e~x — 1 da­

to

e~-
dx

A jest stalą*o
e~x

dx — A Eulera.1 \— e X I

— A

/

<•
e~xlog x dx — — A

'o

-7— e4pl/

P

— = i cos (p x9) dx 
P J
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dx = n 1

4- CO 4- 00 4-00

sin px _  i' smpx dx _  i xcospx

— oo — oo — co

cos px d-c = — ,

CO
x sin px _ 
ż|-. dx=ne~^.

4" oo

I e~eir xe* dx —— zł (stała Eulera).
—OO

Najbogatszy zbiór całek określonych znajduje się w dziele Bie- 
rens de Haana „Tables d’intégrales définies“ Leiden 1867.

§ 4.

Całki eliptyczne. ])

Niechaj będzie związek algebraiczny f ($, y) = 0 pomiędzy 
dwiema zmiennemi i niechaj krzywa, którą to równanie wyobra­
ża, będzie rodzaju p = 1. Całka

’’ Dla lepszego zrozumienia tego paragrnfu oraz znaczenia użytych tu 
eymbolów, patrz rozdział XVI.
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I F (x, y) dx,

w której F jest symbolem jakiejkolwiek funkcyi wymiernej 
zmiennych x, y, związanych powyższem równaniem, jest całką 
eliptyczną ogólną.

Jeżeli funkcya f ma postać specyalną y2 = X, gdzie JTjest 
wielomianem ogólnym stopnia 1-go względem ir, wtedy całkę 
eliptyczną można przedstawić w postaci

i ‘ fi dx

gdzie U jest jakąkolwiek funkcya wymierną zmiennej x.
Całka ta, jeżeli założymy, że funkcya R nie 

ma pierwiastków wielokrotnych, daje się zawsze 
przedstawić jako kombinacya liniowa całek trzech 
typów różnych, mających odpowiednie charak­
terystyczne własności. Te trzy typy można przedstawić 
w po staci, nadane j im Legendre'a, lub przez Weier- 
s trass a.

Forma Legendre’a trzech typów jest następująca:

1.
/’ dx

J]/(l-x2)(l—k2x2) ’ całka 1-go gatunku.

2. /'Vl—k2xa ,1 - dx ,, 2-go „J VI—X2

dx
3. „ 3-go „

(l-f-wc2)k(l—x2) (l—k2x2) ’

Możemy przyjąć, że we wzorach tych /r jest liczbą, której 
wartość bezwzględna jest mniejsza od 1.

Kładąc £r=sin otrzymujemy powyższe całki w postaci na­
stępującej :
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/' dę?
J V1—Ze* sin2 cp 
o

~F{k, cp),

pp

I 1/ 1 — Ze8 sin2 <p . dy = E (k, <p), 
‘o

t<r
i' d<p

J (1-j-n2 sin2 (p) V 1 — k2 sin2 cp — n (n, k, cp).

Liczby k i cp nazywają się odpowiednio: modułem i am­
plitudą.

W formie Weierstrassa typy poprzednie przed­
stawiają się tak:

1. r ........ t

• ’ V — P — (E 
oo

p

2.
V 4p'A—g.2 p — q.2

3 1 7~.7?, dP
P — 7 ]/4pa—g2 p—

OO

W trzeciej calce q jest stalą dowolną. Zamiast tej całki roz­
ważać można tak zwaną całkę normalną 3-go gatunku (całkę 
Kleina):

p ------------- --- ------------ ---------- -------------------------------------------------------------

n _ X /’ f y^P3—,7‘2 p —.73 — J 473—.72 7 - .73
L p-7

OO

_ y ^p3 — //2 p — gA— y 4 q} :1' g2 f/} —g:l 1 dP_ __ _
P — 7i J I dk/;3 — g2p— ’
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Można tę całkę przedstawić pod postacią całki podwójnej :
u1 u

Q = I du' I du p {u' — a), 
ff/ o

gdzie ą=p{u'\ ąx=^v^'\.
Przekształcenie Land en a służyć może (patrz Rozdział 

XVI) do przybliżonego obliczania całek eliptycznych 1-go ga­
tunku.. Mamy:

,9’ < •<p*i dcp _  1 / d<p
• Fi—k2sin2(p ^■■^■^ < 7/1 /1 — k'\2 .* 7 1 - (i+T')sm- t 

gdzie
(1 //) sin (p cos <psin <pl = -----  • :.. ...........

Fi — lc2 sin2 99
j 97 Z> <i1 — (1 -i- //) sin2 ą> cos (pi =------

F 1 — k2 sin2 <p

Jeżeli k < 1, to moduł całki drugiej, t. j. /7 — 1—7?
l-j-fc'

jest

mniejszy od k. a kolejne stosowanie tego wzoru doprowadza do 
całki o bardzo małym module i o bardzo wielkiej amplitudzie» 
Stosując wzór odwrotny, doszlibyśmy do całki eliptycznej o mo­
dule tak blizkim 1, jak chcemy, i o bardzo małej amplitudzie.

Jeżeli k}, /r2, k3.... są kolejne moduły, c/4, (p?, (pi} ... —
kolejne amplitudy, K zaś jest całką zupełną Legendre’a, t. j-

wartością całki przy (p — yy- i przy prostoliniowej drodze całko- Z
wania, będzie:

x = (i -j- /7) (i A'2) (14“ k3)..........

F /f) = 2 K
TT

<Pr

Jest to wzór przybliżony dla wartości r, dostatecznie wielkich.



§ 4. —• Całki eliptyczne. 167

Do obliczania ilości cpr służyć mogą wzory zwrotne:

tg — (p) = cos # tg cp; sin # = k, 

tg (?a — <P) = cos Ą tg cp, ; sin = k{, 

tg (9’.< - ?2) = cos &2 tg y2; sin = k,

Stosując odwrotne przekształcenie Landena, dochodzimy 
do wzoru :

F ^,k) = I log tg — 4- j ,

gdzie
_ 2H< _ 2U? _ 2KĘ

1 ~ i+k ’ 2 ~ i-p, ’ ih-a3 ’.............

sin — cp~) — k sin cp, sin (2^ — Y*i) — si*1 W

sin (2ip3—ip2) -z Z2 sin .............

Stosowanie przekształcenia Gaussa do obliczania całek 
eliptycznych 1-go gatunku prowadzi do następującego wzoru 
Jacobi’ego. Nadawszy całce eliptycznej postać

d<p___________ = 7».
./ F7Ma COS2 <p 4- COS2 <p

i kładąc:
, m 4- n m _ — , h' — 1 mn ,

m' -|- n' n" — 1 m' n',

A = J'm2 cos3 cp + n9 sin3 cp ,
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A" n' + A' 
m' -j- A'

otrzymujemy :

tg /z <2 = tg <p A' A" A" 
m mf m’’

gdzie /z jest granicą wspólną, do której dążą ilości i n 
(t. zw. śrdpnia arytmetyczno - geometryczna Gaussa, patrz 
rozdz. I, § 7).

Przy pomocy przekształcenia Gaussa rachunek cały 
prowadzi wprost do całki

v y>'
dtp / dy _  cp

Vm2 cos2 <p n2 cos2 ? y jua cos2 (p 4 sin ?

gdzie/z jest średnią arytmetryczno-geometryczną, <p' zaś jest 
granicą ilości 99, cpj, % , . . . , określonych za pomocą wzorów

m sinSin tp = --- ----- ---- 5m cos2 <pt 4- m2 sin2 <px 

m sin <p2 
m" cos2 <ps 4” m' si*12 ?2

Co do tego obliczenia patrz artykuł J. Kowalczyka w ,,Wiado­
mościach matematycznych“ II, 1898, str. 21—31.

Liczne są dzieła o całkach eliptycznych; dzieło ,,Elliptische Func­
tionen“ Ennepera, zawierawiele szczegółów oraz wskazówek history­
cznych i bibliograficznych.
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Całki wielokrotne.

Niechaj funkcya z dwu zmiennych x i y będzie określona 
w pewnem calkowitem polu plaskiem. Podzielmy to pole na pola 
cząstkowe, dowolnie obrane: a2, ... on. w każdem z nich obierz- 
my punkt dowolny i obliczmy w nim wartość fr funkcyi Z] na­
stępnie utwórzmy sumę fr o,- i weźmy granicę tej sumy, 
zmniejszając nieograniczenie wszystkie pola cząstkowe 04, ... o».
Jeżeli ta granica istnieje i posiada wartość, niezależną od wyboru 
wartości fr od wyboru pól o oraz od sposobu, w jaki one zdążają 
do zera, to nazywamy ją określoną całką podwójną 
dla pola danego i oznaczamy symbolem

f (x, y) dx dy .

Podobnież określamy całki potrójne, poczwórne i t. p.
Całkę podwójną można zawsze przedsta­

wić za pomocą dwu kolejnych c a ł e k pojedyn­
czych: j e d n e j, o d n i e s i o n e j d o j e d n e j zmiennej 
i wziętej w granicach, które są funkcya mi 
drugiej zmiennej, oraz drugiej całki, odnie­
sionej do d r u g i e j zmiennej i wziętej pomię­
dzy granicami stałe mi.

Jeżeli całkę wielokrotną

I............... I .f(xt, x2,.............xn) dxx . dx, ..... dx„,

g <1 z i e ilości x u w a ż a m y za f u n k c y e n zmie 11 ny ch 
y}, y2,......... yn, c h c e m y przekształcić na inną c al­
kę, zawierającą zmienne y, to przekształcamy 
najprzód funkcyę f pod znakiem całkowym 
w ten sposób, aby zawierała te nowe zmien­
ne, potem m n o ż y ni y j ą przez wyznacznik f u n- 
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k c y j n y danych zmiennych //. (Twierdzenie 
o przekształcaniu całek wielokrotnych).

Można zawsze znaleść funkcyę F zmien­
nych x i y taką, aby wartość całki podwój­
nej określonej

/ /’ (*, //) d.r d.y ,

w polu danem zależała tylko od wartości, 
jakie funkcya Fprzybiera na obwodzie pola, 
nie zaś od wartości f u n k c y i w punktach we­
wnętrznych.

Całkowanie różniczek zupełnych.

Niechaj będzie wyrażenie różniczkowe 
typu:

Aj dx{ -J- Aj dx2 .....................A,, dxM,

gdzie A\, Ajj, . . . A„ są funkcya mi zmiennych 
itj, • • • xtń warunki konieczne i dostateczne 
na to, aby to wyrażenie było różniczką zu­
pełną dokładną pewnej funkcyi tp zmien­

nych ;/f, ;rs, . . . a"„, składają się z związków:

dXr _ 3A, i
3xs dxr

W przypadku, gdy te warunki spełniają się, powyższe wy­
rażenie nazywamy różniczką zupełną dokładną 
lub całkowalną.
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Aby zcalkować to wyrażenie, t. j. aby znaleść funkcyę ę?, 
której ono jest różniczką zupełną, postępujemy w ten sposób. 
Obliczamy najprzód całkę 

I
w której uważamy tylko za zmienną, pozostałe zaś zmienne 
a;.,, .z3. . . . ./■„ za ilości stałe. Znalazłszy po zcal kowaniu funkcyę 

(?•], .r2, . . . a;,,), tworzymy różniczkę zupełną i odejmujemy 
ją od różniczki danej; otrzymamy w ten sposób nowe wyrażenie 
różniczkowe, mające o jeden mniej wyrazów i o jednę mniej 
zmienną, t. j. zawierające tylko zmienne a2, a?3, . . . x„. Z tern 
nowem wyrażeniem postępujemy tak samo, jak poprzednio, i do­
chodzimy do funkcyi A2 (;r2, xt, . . . ,rH). Tak postępując, otrzy­
mujemy n funkcyj Aj, L2, . . . z których pierwsza zawiera 
wszystkie zmienne .ą. a;2, . . . x,t, druga zmienne .r2. ,r3, . . . a;„, 
trzecia zmienne ,r3, .r4, . . . xn i t. d. Suma

Zżj —J— L3 —j~ />3 -j-..................... --j- A,., —const

jest całką szukaną.
Wyrażenie o dwu zmiennych X, dxt -j- X.> clx2, po 

pomnożeniu przez odpowiedni czynnik u, zależ­
ny od dwu zmiennych (czynnik całkujący), daje 
się zawsze zamienić na różniczkę zupełną.

Wyrażenie o trzech zmiennych

Aj , A o dx2 —|— A.> dx2

po pomnożeniu przez pewien czynnik, daje się za­
mienić na różniczkę dokładną, jeżeli staje się za­
dość warunkowi:

. I IX, 3Xa \ axt\ i sx,
1(fę “ FaT,"-aĘ“/ + aĘ-- sg/_0
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Dla n 3 czynnik całkujący istnieje przy 

spełnieniu się - —— warunków, podobnych do 
2j

poprzedniego, a dających się łatwo z niego otrzy­
mać przez ustalenie jednego skaznika, i przemie­
nianie dwu pozostałych wszelkiemi możliwemi 
sposobami.

Warunki całkowa/ności wyrażeń, zawierających pochodne jednej 
lub wielu funkcyj jednej zmiennej.

Niechaj będzie funkcya

F (x, y, y', y"......................... y^ ),

w której zakładamy, że y jest funkcya zmiennej x\ chcemy zba­
dać, kiedy, bez uprzedniej znajomości tej funkcyi, można wyra­
żenie F zcałkować, t. j. kiedy F jest pochodną dokładną pewnej 
funkcyi zmiennych x, y. y' . . . z/ó—b.

Warunkiem koniecznym i dostatecznym na to 
jest:

3F __ cl 3F d2 dF _ dF
dy dx dy' dx2 dy" ••••"!( )

Jeżeli funkcya F zawiera jeszcze inną f u n k- 
cyę z i jej pochodne, to do tego warunku przyby­
wa warunek analogiczny, w którym zamiast y pi- 
szemy z i t. d.

Zagadnienie to ma związek z rachunkiem waryacyjnym. 
Twierdzenie samo wypowiedział Euler (1764), lecz pierwszy 
jego dowód podał Condorcet (Acad. de Paris, 1765).

Co do szczegółów patrz E. Pascal, ,,Rachunek waryacyjny“ 
przekład polski, Warszawa, 1897, str. 150—156.



ROZDZIAŁ VIII.

RÓWNANIA R Ó Ż N L C Z K O W E.

§ I-

Wiadomości ogólne.

Związek pomiędzy funkcyą niewiadomą y, jej pochodnemi 
aż do pochodnej rzędu n-tego względem zmiennej niezależnej 
oraz samą zmienną stanowi to, co nazywamy równaniem róż­
ni czkowem zwyczaj nem rzędu n-tego

Jeżeli zakładamy m związków pomiędzy x, m funkcyami 
//n ?/-2» • • • lim zmiennej x i ich pochodnemi, to mamy układ m 
równań różniczkowych zwyczajnych.

Zcałkować lub rozwiązać równanie czy też układ 
równań jest to znaleść tę funkcyę y albo funkcye y3, y2, . . . y„t.

Jeżeli funkcya niewiadoma lub funkcye niewiadome zależą 
od wielu zmiennych i jeżeli istnieje jeden lub więcej związków 
pomiędzy niewiadomą lub niewiadomemi, zmiennemi oraz po­
chodnemi cząstkowemi funkcyi, wtedy mamy układ równań 
o pochodnych cząstkowych.

Każde równanie lub układ równań ma zawsze całkę, je­
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żeli założymy ciągłość funkcyj, stanowiących pierwsze strony 
tych równań.

Dowody tego twierdzenia podali: Cauchy (patrz Moigno, 
Calcul diff. 1844, LI; Briot et Bouquet, Journ. de 1’Źcol. polyt. 
cah. XXXVI); Lipschitz (Ann. di Mat, II, Bulletin Darboux X); 
Volterra ((Horn, di Matem. XIX); Peano (Acc. Torino, 1886, 
Math. Ann. XXXVII), Arze! a (Ace. Bologna 1896) j t. d.

Całka y równania różniczkowego zwyczajnego rzędu n-tego 
nazywa się ogólną, jeżeli zawiera u stałych c.,,..........c„, tak
że jakobian funkcyj y, y\ y" . . . y(u~V względem ilości q, c.,.... c„ 
jest różny od zera.

Całką szczególną nazywa się całka, którą otrzymujemy 
z całki ogólnej, nadając stałym wartości szczególne lub zakła­
dając pomiędzy niemi pewne związki.

Całką osobli wą nazywa się całka, której nie można otrzy­
mać z całki ogólnej przy pomocy postępowania, wskazanego 
w poprzedzającem określeniu; można ją wszakże otrzymać zaw­
sze z całki ogólnej, nadając ilościom stałym wartości, które są 
funkeyami zmiennej x.

Jeżeli, mając równanie różniczkowe rzędu n-tego, znaj- 
dziemy związek pomiędzy stałą dowolną, zmienną x, funkcyą y 
i pochodnemi tej funkcyi aż do pochodnej rzędu (n l)-go włą­
cznie, to związek taki nazywa się eałką p i c r w s z ą równania 
danego.

R ó w n an i e różniczkowe z w y c z a j n e r z ę du n tego 
ma»różnych całek pierwszych; jeżeli jednę z nich 
rozwiążemy względem stałej, a następnie weż- 
miemy pochodną, znajdziemy dane równanie róż­
niczkowe; jeżeli zaś pomiędzy tern i całkami wy­
rugujemy ?/, y" . . . znajdziemy całkę ogólną.

Obreślenia analogiczne, odnoszące sią do równań różnicz­
kowych cząstkowych podajemy w § 7 niniejszego rozdziału.
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§ 2.

Równania różniczkowe zwyczajne rzędu 1-go. Czynnik całkujący. 
Rozwiązania osobliwe.

Niechaj będzie równanie rzędu 1-go, sprowadzone do postaci

M dx -j- A’ dy = 0.

Niechaj y będzie wyrażeniem takiem, że

y M (l-r -j- y N dy

jest różniczką dokładną: wtedy y nazywa się czynnikiem 
całkującym (Euler, patrz wyżej § 6 rozdziału poprzedniego). 
Rozwiązanie danego równania można uczynić zaleźnem od zna­
jomości czynnika y.

Istnieje nieś ko ń czeniei w i el e czynników cał­
kuj ący cli.

Jeżeli znamy jeden z nich y, to inne możemy 
wyrazić przez y /’(?)> gdzie

dtp — y M dx y N dy.

Jeżeli znamy dwa czynniki całkujące różne 
y, y', to stosunek ich, przyrównany do stałej, daje 
całkę równania.

Czynnik całkujący y czyni zadość równaniu:

Hf AT \ n
dy dx ‘ \ dx. dy I

Jeżeli

N \ dx dy I 
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jest funkcyą samej zmiennej x, np. równa się 
wtedy istnieje czynnik całkujący, będący funkcyą 
samej zmiennej a?, a mianowicie:

= e/ v (*) ; .

Jeżeli wyrażenie

1 I dN _ 3J/ j 
J7 \ 2 x 3y |

jest funkcyą samej zmiennej y, np. równa się ^(y), 
wtedy istnieje czynnik całkujący, będący funk­
cyą samej zmiennej y, a mianowicie:

fi = eJ f d,J,

Jeżeli wyrażenie

3M _ SN 
Sy d x

można przedstawić w postaci

N <P (x) — M (y),

wtedy istnieje czynnik całkujący, będący iloczy­
nem funkcyi samej zmiennej x przez funkcyę sa­
mej zmiennej y.

Jeżeli funkcye M, N są postaci

JZ .= <P1 (r) <p2 (y), N = (x) (y),

wtedy czynnikiem całkującym jest^-^y-—— ^rów­

nanie należy do typu tych, w których zmienne 
mogą być oddzielone.
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Jeżeli M i N są funkcyami jednorodnemi tego 
sameg.o stopnia, wtedy

___ 1 ____
Mx -j- Ny

jest czynnikiem całkującym.

W przypadku tym kładąc-^- = z, możemy rów- 00
nanie dane przekształcić na formę bezpośrednio 
całkowalną:

i_________N U, z> ______ dz = 0
x -T J/(l, z) + zN (1, z)

Równania liniowe postaci

< + Py = Q,

gdzie P i Q są funkcyami samej zmiennej x, całku­
jemy przy pomocy wzoru

y — e-fpdx\ f dx + const].

Równanie postaci

= f 
dx J

ax by + c
a!x b'y 4- c'

gdzie abr—fl'ó§0,sprowadza się do typu równań je­
dnorodnych, jeżeli położymy:

ax by c = x'y 4- b'y -j- c' = y'.
Pascal. Rep. I. 12
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Jeżelizaś ab' — a'b = 0, wtedy

a'x 4- b'y c' = m (ax -}- by -|— c) -ł- n,

a wprowadziwszy zmienną x' zamiast x, docho­
dzimy do typu równań, w których zmienne są od­
dzielone.

Równanie Bern on 1 li ’ego

-4- = /'?/ -F Qy‘"> 
d;f

gdzie Pi ty są funkcyami samej zmiennej zamie­
ni a się na równanie liniowe, jeżeli położymy?/1 z. 

Równanie

= P +

daje się spro^wadzić do typu równania Bernoulli’e- 
go. jeżeli znamy jednę jego całkę szczególną u 
i położymy następnie y = u-Y-v .

Równanie

Xdx -j- Ydy -j- Z (xdy — ydx) = O.

gdzie X, l7, Z są funkcyami jednorodnemi, przy tern 
dwie pierwsze j e d n e g o s t o p n i a, p r z e z podstawienie 
y = zx przekształca się na równanie Bernoulli’ego.

Równanie R i c c ati’ego jest postaci:

—t— + b//2 = cxin~i, 
okt

gdzie b, c są stałemi. Połóżmy najprzód y = — , a następnie:

1 . xm m-\-1 . xm 2m-4-l . x,n
Z> — -v [- --- , —------- j— --- , Z» — ——F —,....o 2| ‘ c 1 z2 2 b 1 z3
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Jeżeli —----- jest liczbą całkowitą równą 7;, to po k takich

podstawieniach dojdziemy do równania, w którern po jednem 
jeszcze podstawieniu

Z); == xkm + x o

zmienne zostaną oddzielone.
Jeżeli zaś uskutecznimy podstawienia

xM ni—1 , x'n 2m—1 xm

to, gdy ----- jest liczbą całkowitą równą k, po k podstawie­

niach i po podstawieniu
Z k = X km ■‘-1 V , 

dojdziemy do równania, którego zmienne są oddzielone.
Przypadki

“ = całkowitej, ~ ca^owritej ,

są dwoma przypadkami, w których równanie Riccati’ego da- 
je się całkować w postaci skończonej. O całkowaniu go przez 
szeregi patrz niżej.

Poisson dal rozwiązanie równania Ric c a t i ego przy po­
mocy całki określonej (Journ. de PEcole polyt. Cah. XVI). O równa­
niu Riccati’ego pisali Cayley (Phil. Magaz. XIX VI, 1868), S chi a f li 
(Annali di mat. I), Catalan (Bull, de Belg. 1871. XXXI), Glaisher 
(Quart. J. XI—XII), Bach (Ann. de I’Ecol. norm,, (2) i III).

Literaturę tego przedmiotu znaleśó można w pracy M. Feldbluma 
„Teorya równania Riccati’ego“ i t. d. (po rosyjsku), Warszawa 1898, 
(patrz „Wiadomości matematyczne“, 11, 1898).

Równanie Jacobi’ego

(A -|- .l'.r 4- A"//) (xdy — ydx) — (/>-+- B'x -j- B"y) dy

4- (C+ C'x-\- C"y) dx = 0,
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za pomocą podstawień

gdzie a i (i określają się ze związków

A + A'a + A"fi = C -V C a —(- C fi
~~r

B + B'a + B"fi _ ,
-------------------------------------------- --------- /1 ,

a

k zaś jest pierwiastkiem równania

A k, A',

B, B’ — k,

C, C\

sprowadza się- do równania, w którem spółczynniki różniczek są 
funkcyami jednorodnemi. (Patrz Winki er, Wiem Ber., LXIV.)

Podobnego typu równanie, w którem spólczynniki róż­
niczek są w ogóle funkcyami wymiernemi zmiennych x i y, 
nazywa się równaniem Darboux’a (patrz Darboux, Buli, 
des Sciences math. (2), II).

Równanie Eulera

dx . dy

gdzie f\x) = (1 — x2) (1 — k2x2) ma całkę

y ]/ f(x) — xV f[y) — C (1 — k2x2y3).

Równania, nie zawierające ani x ani y a za­
wierające tylko y', całkują się, jeżeli w nich za­

miast y położymy y — — , gdzie c jest stała.
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Równanie typu

całkuje się przez wyrugowanie ilości p pomiędzy 
niem a równaniem

y = J P<?'(V)dP + const.

Równanie typu

i dt/ \y = f 44 = f'2"
całkuje się przez wyrugowanie ilości p pomiędzy 
niem a równaniem

= i' <p'<p)
J p (Ip 4“ const.

Równanie typu (równ. Mongea)

f I dy \ | / dy \22 = *4 )+ UH
= J‘ f(P) 4- 99^)’

ca łkuje się, jeżeli wyrugujemy p pomiędzy równa­
niem da nem a następuj ącem:

x —e J JW-f — / ■ - z 1 — eJ dp 4- const
I f(P^—P I

Ró wnanie C1 a i r a u t a

y = ^P 4" 94?) . (? =
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całkuje się, jeżeli położymy 
zamiast p stałą, dowolną.

Całkę osobliwą równania 
jemy, rugując p pomiędzy 
a związkiem x tp' (p) = 0.

w równaniu da nem

C1 a i r a u t a o t r z y m u- 
[równaniem danem

W ogólności, aby otrzymać całkę osobliwą równania róż­
niczkowego zwyczajnego rzędu 1-go, trzeba wziąć pochodną 
względem stałej dowolnej strony pierwszej związku, przedsta­
wiającego całkę ogólną, przyrównać tę pochodną do zera, a na­
stępnie wyrugować stałą pomiędzy tak otrzymanem równaniem 
a całką ogólną.

Otrzymane w ten sposób rozwiązanie osobliwe 
przedstawia geometrycznie obwiednią krzywych, 
które przedstawia całka ogólna.

R ó w n a n i e r ó ż n i c z k o w e rzędu 1-go i stopnia 
1-go względem y' me ma rozwiązania osobliwego.

Jeżeli strona pierwsza równania różniczkowego jest alge­
braicznie wymierną i całkowitą względem ;r, //, y' i jeżeli A jest 
wyróżnikiem tego równania względem zmiennej ?/', wtedy roz­
wiązanie osobliwe spełniać musi warunek A = 0.

Rozwiązania osobliwe były przedmiotem licznych badań. Przy­
taczamy tu prace: Darboux’a (Comptes rendus LXX, 1870), Cay- 
ley’a (Messenger .1882), Casorathego (Ist. Lomb. 1874—1875). 
Lincei, 1876—1879 (Ann. di mat. XIX). Listę prac o tym przedmio­
cie i najważniejsze rezultaty dotąd otrzymane pomieścił Lia Predella 
w rozprawie, ogłoszonej w Giornale di Matem. XXXIII, L895). Porów. 
Z aj ą c z k o w s k i „Teorya ogólna rozwiązań osobliwych różniczkowych 
zwyczajnych“ (Pam. Akad. Um. w Krak. III, 1877), oraz „Wykład 
nauki o równaniach różniczkowych“, Paryż 1877, str. 171—206.
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§ 3.
" •:

Równania różniczkowe liniowe.
<• ' r .

Równanie typu

gdzie ilości X są funkcyami tylko zmiennej x. nazywa się rów­
naniem różniczkowem linio we m; jeżeli = 0, na­
zywa się jednorodnem, jeżeli Abi-i^O — zupełnem.

Równanie liniowe jednorodne za pomocą pod­
stawienia

// = 

przekształcić można na inne równanie rzędu (n—1)- 
go, które już nie jest li ni o w em.

Jeżeli ?/] , У-л . . - Уп s ą n r o z w i ą z a n i a mi szczegół- 
nemi równania liniowego jednorodnego, takie mi, że 
ich wrońskian jest różny od zera, wtedy rozwiąza­
nie ogólne przedstawia wzór:

У — c'i У1 ~Ь c’a У2 + • • • c»‘ !J<> •

Rozwiązaniu ogólnemu zawsze tę postać na­
dać można.

Jeżeli znamy jedno rozwiązanie szczególne 
У — У\ równania liniowego jednorodnego rzędu li­
tego, wtedy za pomocą podstawienia y = yx całko­
wanie równania zupełnego sprowadzić można do 
całkowania innego równania tegoż typu i rzędu n—1.

Dla rozwiązania równania jednorodnego 
o spółczynnikach stałych a0, a1} . . . , należy roz­
wiązać równanie algebraiczne, zwane charaktery- 
stycznem:

z" -j- zn 1 —J— . . . ~j— — 0.
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Jeżeli a jest pierwiastkiem pojedynczym rze­
czywistym tego równania, to y = eax będzie całką 
szczególną równania różniczkowego danego.

Jeżeli a jest pierwiastkiem rzeczywistym r- 
krotnym równania charakterystycznego, to 

są całkami szczególnemi danego równania róż­
niczkowego. Wreszcie każdej parze pierwiastków 
zespolonych sprzężonych a — m+ni odpowiadają 
dwie całki szczególne

y = cos (nx) emx, y = sin (n x) emT.

W ten sposób, rozwiązawszy równanie charakterystyczne, 
możemy znaleść n całek szczególnych niezależnych; z nich zaś 
tworzymy całkę ogólną.

Dla zcałkowania równania liniowego zupełnego, całkujemy 
odpowiadające mu równanie jednorodne, t. j. równanie, otrzy­
mane przez zastąpienie funkcyi zerem. Jeżeli całką ogólną 
tego równania jest

y — ct {/i 4" Ił* 4~ • • • 4 c>> y><,

to rozwiązujemy według ilości - , równania:

(l('i , dc.> dc„
+ di + ■ ■ ■ + ~dT ?/” =

d(‘\ . | dc 2 f . dcn f
,1. !l' > d, ■ ■ ■ ■

dx 1 dx 1 (ix J

dc* z -. c/Ca /iii i dc i> z .
■ • • +-sr ’
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Całkując otrzymane związki

dźc. z , dc,
= (x}' '

llCn 
dx

= Tu (#),

znajdziemy n funkcyj Cj, c.2,........., cn zmiennej x, które podsta­
wiwszy w wyrażeniu na y, otrzymamy całkę ogólną.

Jeżeli znamy całkę szczególną równania 
zupełnego i całkę ogólną odpowiedniego rów­
nania jednorodnego, to b i o r ą c ich sumę, znaj­
dujemy całkę ogólną danego równania zu­
pełnego.

Jeżeli równanie różniczkowe zupełne ma 
spółczynniki stałe, a j e g o strona druga jest 
postaci PeP, gdzie Pjest wielomianem ze zmien­
ną a?, wtedy całką szczególną równania zupeł­
nego jest

Q xv- etx,

gdzie /z jest liczbą pierwiastków równania 
danego, równych ź (lub zeru, jeżeli 2 nie jest 
pierwiastkiem równania charakterystyczne­
go), Q zaś j est wielomianem tego samego sto­
pnia co P, o s p ó ł c z y n n i k a c h, które o t r z y m u je­
my, podstawiając za, y to w y r a ż e n i e i wyznacza­
jąc warunki, przy których równanie spraw­
dza się tożsamościowe (Patrz Jordan, Cours d’ana­
lyse, III str. 158).

Jeżeli znamy całkę szczególną równania 
zupełnego, wtedy całkowanie sprowadzić mo­
żna do całkowania równania liniowego tego 
samego r z ę d u. lecz jednorodnego

Jeżeli znamy całkę szczególny równania 
jednorodnego, wtedy całkowanie równania 
zupełnego sprowadzić można do całkowania 
równania zupełnego rzędu niższego.

Jeżeli /ą , y.À, . . . ya są całkami szczególne- 
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mi liniowo-niezależnemi równania jednorod­
nego, wtedy ich wrońskian wyraża się nastę­
pującym wzorem L i o u v i 11 e’a:

- I---
W.= Ce J .

Jeżeli mamy równanie zupełne rzędu 2 - go:

//" 4- Cy' -j- = X,

i j eż e 1 i yx jest całką szczególną równania

y" + ty' + Qy = 0,

wtedy kładąc

y^y' ~ yyC = z,

znaj d z i e m y:

a całką ogólną równania danego będzie:

// = dx + C2
vi

Jeżeli yx, y-t są dwie całki szczególne li­
niowo-niezależne równania liniowego rzędu 
2 - g o, to punkty zerowe f u n k c y i yx są przedzie­
lone punktami f u n k c y i y3: mianowicie pomię­
dzy dwoma punktami z e r o w emi f un kcy i yx z na j- 
duje się zawsze punkt zerowy fu n kcy i y2, pomię­
dzy zaś dwoma punktami z e r o w e m i f u n k c y i ?/2 
znajduje się zawsze jeden punkt zerowy fu n- 
k c y i yA (Twierdzenie S t u r m a .

Równania liniowe postaci

a0 (ax + by* y(M} al (ax ~j- b) n~l y(,l~v an y — o 
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sprowadzają się do typu równań o spółczyn- 
nikach stałych za pomocą podstawienia ax-\-b~ ef.

Równania L a p 1 a c e’a są postaci

(a -j-bx) yW 4- (ttj 4- Z»!^) ?/"~ń _|_.............4- l)ux) y — 0.

Położywszy

aoz"4-«|2,‘-1 + = y>(c); bz*-\-bxz*-x + . . . 4-ó„=ę9(2),

O, at ... .
or&zT=——j e*7 vW , gdzie Cjest stałą, otrzymujemy całkę 

ogólną w postaci:

{ cj'+cj‘+........... +C.^T'} e" TM,
3« A' i^O

gdzie ilości Cx, (?2 , . . • są związane jednym warunkiem, ilości 
zaś fi mają dające się wyznaczyć wartości. (Patrz Jordan, 
1 c. t. III, str. 253; d’Arc ais, Calcolo inńnit, t. II, str. 565).

Równaniu

i i-< i d2(lcy ■ . i > <. d (ku) . „
- ll + A 1 dir +- •" = °’

czynią zadość peryody tak zwanej całki eliptycznej Legendre’a

' dx .■
. ' F(l—rr2) (1 —/Ar2; ’

uważane za funkcye ilości Ze. (Patrz rozdział XVI)
Równanie

(xz — 1) y" — 3xx2yff 4- 3a (a 4~ 1) xy — a (a + 1) (a 4~ 2) y — 0 

ma całkę ogólną

y = Cx (x — 1)’+2 4- C2 (x — 4~ C3 (?' — e2)8+2, 

gdzie £ jest pierwiastkiem sześciennym z jedności.
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Równanie y" = x*y ma całkę ogólną

-f-1 k 4-1 Z
e^x cü „ i' e^x M------ — + .

(1—22)7 -L, (1— Z’)T

(patrz Spitzer, Archiv Grunerta LII).
Równanie

yW = Ax2y" Bxy' + Cy

badał Spitzer (Math. Ann. III, Archiv Grunerta LIII) i wyra­
ził rozwiązanie jego za pomocą całki określonej.

Równanie

y" + By' + Qy -- 0,

w którem P, Q są funkcyami wymiernemi zmiennej x, badał 
Euler; całka tego równania wyraża się za pomocą całki okre­
ślonej. Przypadek, w którym te funkcye są liniowe, badał 
Winkler (Wiener Berichte, LXVII).

Równania rzędu wyższego nad pierwszy.

Równanie typu

t (.V(*-1) y(’*)) = 0, lub ?/<") — ę; (//("-10 

jeżeli w niem położymy = daje

x — I - 4- const .
<p(?)

Rugując p z tego i poprzedzającego równania, otrzymujemy 
wyrażenie funkcyi y(n~n przez rr, a za pomocą kolejnych kwa­
dratów możemy znaleść y.
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Równanie typu

y(*} — f (y(n~t} ),

jeżeli położymy:
•y(n-2) — p y(n~1) __ q , 

daje :

I *?2 — S f (p) dp 4- const,

i'dp I XX = I —— const.
J <ł

Otrzymujemy tu p w funkcyi zmiennej x, stąd zaś znaj- 
dziemy yO*-’) w funkcyi tejże zmiennej, a przez kolejne kwadra­
tury dojdziemy do funkcyi y.

Jeżeli będziemy uważali x i y za funkcye liniowe zmien- 
. J dy _ . , . d2y r .nej b za źunkcyą stopnia zero, za tunkcyę(l/JT (Lif' 

— lit. d., to wszystkie wyrazy równania będą tego samego sto­
pnia, a rząd równania obniży się, jeżeli położymy

x — e&, y = z e&.

Rząd równania jednorodnego względem ilości y i jej po­
chodnych obniża się, jeżeli położymy:

dz , i ,
y — e:, ~ u’ bib d ~ uy‘

stopnia

Rząd równania, nie zawierającego wyraźnie zmiennej x, mo- 
, 1 -i . 1 V > , dyzna obniżyć, kładąc y = — p i uważając y za nowąU/JU
zmienną.

Jeżeli nadamy ilości x wymiar 1, ilości y wymiar n, 
pochodnej y' wymiar n—1 it. d., wtedy y(n) będzie wymiaru zero; 
równanie będzie jednorodnem stopnia r, a kładąc X—y=ert. z 
obniżymy rząd o jedność.
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Rząd równania

?/" + Py' + Qy'> = 0,

w którem P i Q zawierają tylko y i a?, można obniżyć o jedność 
w następujących przypadkach:

1) jeżeli P i Q są funkcyami tylko zmiennej tr; kładąc
tZy . . ■ • n •,—-—— p, otrzymujemy równame Bernoulli ego;u/J

2) jeżeli P i Q są funkcyami tylko zmiennej y; kładąc
1 ił/"

y' — ~, y" =------ Ty-, przychodzimy do przypadku poprze-

dzającego.
3) jeżeli P jest funkcyą tylko zmiennej .r, Q zaś funkcyą 

tylko zmiennej y. Całką pierwszą jest wtedy:

log ( j- j 4- i Pdx -J- I Qdy = const,

a całką ogólną:

i Sw i' —fr,lx
I dy e J e dx + r3.

Jest to przypadek równania, zwanego równaniem L i o u- 
v i 11 e ’ a.

§ 5-

Całkowanie równań różniczkowych przez szeregi.

Najzwyklejszą metodą całkowania różniczkowego zwyczaj­
nego rzędu n-tego przez szeregi jest następująca: Rozwiązujemy 
równanie względem biorąc pochodne otrzymanego wyraże­
nia, otrzymujemy kolejno y(w+2) . . . wyrażone przez x, y, 
y' . . . y^ A\ nadajemy wartości dowolne ilościom y, y'...y("*h 
dla x = xn i tworzymy szereg
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// — i/o 4~ (a- — #o) 2/ o 4-----------qj— ?/»> 4~ • • • •

Jeżeli ten szereg jje s t zbieżny w pewnym 
obszarze na około punktu xfl, wtedy przedstawia on 
całkę równania danego.

Jeżeli nadawszy wartości zupełnie dowolne na y. y'o . . yoln~v, 
nie otrzymamy niezgodności pomiędzy wartościami pochodnych 
yow, l/o^.......... , szereg zaś jest zawsze zbieżny, wtedy wyo­
braża on całkę ogólną; jeżeli zaś niemożna nadać ilościom 
y0, 2/o ■ • • //(/"“1) wartości zupełnie dowolnych, lecz tylko pe­
wne wartości, wtedy szereg (o ile jest zbieżny) przedstawia, 
całkę szczegółu ą.

Równanie Riccati’ego w przypadkach, w których nie 
daje się całkować w postaci skończonej, może być całkowane 
przy pomocy szeregów.

Niechaj będzie równanie Riccati’ego

?/ -j- y* = c.r«’-2.

Połóżmy y = ; będzie :Z

z" — cx’n~2 z = 0.

Jeżeli zt, z2 są dwiema całkami szczególnemi tego równa­
nia, to całką ogólną równania danego będzie:

Z\ -j- C z2
4-

Połóżmy : 

i

będzie
1 m .

u” 4- 2(!2 X 2 1 u' -ł- ~
. 1 >n

— 1 C2 X 2 u = 0.
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Dwiema całkami szczególnemi tego równania, uporządko- 
wanemi według potęg rosnących zmiennej x (przy założeniu 

łH------ 1 = n ) są:

U = 1 + V /_ir J »(3>H-2)(5»+4>■ ■■I(2r-l)n+2(r-1)]
1 ' 7 r!(n+l)r.n(2n+l).(2n+2). ...(rn+r-1)

U2 — X

oo
i + V I- tu„i (n+2)(3n+4),..[(2r-l)n+2r] ,(,+I)

du ' r! (n+l)r. (n+2)(2n+3).... (rn+r+1)
r—1

Te szeregi są zbieżnemi dla wszystkich wartości x.
Catką szczególną równania

n \ 7 — (a + fi + 1)x f a fi n
v + ■ ^-g(l-»)y = 0

zwanego równaniem Gaussa, jest tak nazwany szereg hyper- 
geometryczny

22> = 1 + 4^ * + a (a -f- 1) (/?4~ 1) a < 
1.2.z(z+b

zbieżny dla wartości x, dla których |o:|<^l. (Patrz Rozdz. XVIII).
Równanie Legendre’a

(1 — a?a) y" — 2 x y' -j- n (?i -j- 1) y = 0, 

ma całki szczególne :

—1) noi—l)(n-2)(n—3)
X 2(2n --l):Z “+ 2.4.(2n li(2n—3) £

y3 = I (n4-l(M-2) (W4.8) I Ml) (n+3) ^5)
2(2n4-3) 2.4.(2n-|-3)(2n-h5)

zbieżne dla Jeżeli 2n jest liczbą nieparzystą dodatnią
lub ujemną, to te dwie całki nie są niezależnemi.

Równanie

4- y' + U = 
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ma całkę szczególną (przy każdej wartości x):
/• ./-2 -*>3_g | «X - «X<

= 1 - p- + p72^ - P.2>.8» +................

Równanie Bessel a

x2 y" 4~ x y’ 4“ kx~ — ni) y —

ma całkę szczególną

h _ -r~ . ______________________ I .
i 25,(n-|_l) 2! 24 (n1) (n + 2) ' ' I ’

drugą całkę szczególną otrzymujemy, zmieniając n na —n. Je­
żeli n jest liczbą całkowitą, to otrzymujemy w ten sposób jednę 
tylko całkę szczególną

Jeżeli w równaniu B e s s o 1 a napiszemy:

y = ta z, x = yt^,

to równanie przekształci się na następujące :

t2 z” + (2a 4- 1) t z' 4- (a2 — fi2 n2 4- fi2 f W) z = 0.

Do tej postaci można sprowadzić, przy odpowiednim do - 
borze ilości a, /?, /, każde równanie typu

t2z" 4- mtz' 4~ z — 0.

Tak np. jeżeli 

otrzymamy równanie:

t2z" 4~ mtz1 -j- qt2 z — 0,

którego całką szczególną jest:
Pascal, Rep. I. 13
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7/ — 1 — _|____ : ‘ _____ 7i ±
2! [m -f~ 1) ‘ 4 ! (m -f-1 )(m -j- 3)

W przypadku szczególnym, gdy

2 fi -f-1 == 0, a- — n2 = 0, 

otrzymujemy równanie Riccatfego przekształcone.

§ 6-

Układy równań różniczkowych jednoczesnych.

Układ m równań różniczkowych, zawierających zmienną 
a?, m funkcyj i ich pochodne aż do pewnego rzędu względem x, 
nazywa się u k ł a d e m równań r ó ż nicz ko wy ch j e- 
d n o c z e s n y c h. Jeżeli w układzie tym zachodzą pocho­
dne rzędu wyższego nad pierwszy, to kładąc:

dx ' d.c ~ '.............

i przyłączając te nowe równania do danych, sprowadzamy układ 
dany do układu n równań pomiędzy n funkcyami y(, . ?/„,
zawierającego pochodne stopnia nie wyższego nad pierwszy.

T a k i układ d a j e się zawsze całkować za 
pomocą n związków skończonych pomiędzy 

, y2. . , . yH z n s t a ł e ni i d o w o 1 n e m i.
Jeżeli z układu tego wyrugujemy n — 1 funkcyj nie­

wiadomych wraz z ich pochodnemi, dojdziemy do równania róż­
niczkowego zwyczajnego rzędu n-tego, którego całka zawiera n 
stałych dowolnyrh. Aby to uskutecznić, stosujemy metodę 
następującą:
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Rozwiązujemy ró wnania względem pochodnych

li' = fi (x, , Z/2 ,......................... ZA),

y* ~ f* (x, !/\ > !/■>,..................... y»)'

b i e r z e m y pochodną pierwszego z nich wzglę­
dem x; podstawiamy po stronie drugiej, za­
miast poch o dnyc h f u n k c y j y, ich wartości, wzię­
te z powyższych r ó w nań: bierzemy w taki spo­
sób pochodną n—1 razy i otrzymujemy yx'yx‘ ...
wyrażone p rzez .7-, yx , y2 , . . . yn . Rug u j ą u y2, y.A.. .yn, 
znajdziemy równanie różniczkowe z f u n k c y ą 
yx. Znając n pierwszych całek tego równania 
r ó ż n i c z k o w e g o, t. j.

!h,yv - ■ = ei;........ ; Ca yi • y/, ■ ■ ■ yi(n~i})=a.

i podstawiając w nich wartości poprzednie, 
otrzymane na yx, yx" . . . z n aj dz iemy n związ­
ków pomiędzy ilościami x. yx, z/2, . . . yn, ct, c2x . .. cH.

Jeżeli równań danych nie m o ż e m y r o z w i ą- 
z a ć względem pochodnych pierwszych, to każ­
de z nich różniczkujemy n—1 razy, i o t r z y m u- 
j e m y n9 równań pomiędzy x a ilościami

z/i- :<//, • • • 2/i(n); ?/2, yJ> • ■ • za(w);........... ; za, - • • yn(n\

R u g u j ą c pomiędzy temi równani a m i n(n—1) 
ilości ,//2; y2, . . . y2["\..........yn, yn' ■ . • ZA("), o t r z y m a m y
równanie różniczkowe rzędu n-tego wzglę­
dem yx. Rugując pomiędzy c alkami pierwsze- 
in i tego równania i n- równaniami poprzedza- 
j ącemi ilości y/ . . . yxCn\ y2 . . . Z/2(M); . . . ZA, • - • , 
znajdziemy związek pomiędzy o- i, yx , y/2 . . . yu 
a stalą.
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Układ równań .

= a/Ą + /?//., -f y ; = a'y{ + fiy2 + y,

gdzie a, /5, y, fi, fi, y’ są stałe, ma całki następujące:

2/i + h I/2 + /h = G e

!/i 4- *2 //2 +^2=64 e<* + H'^x

gdzie 2t, 23 są pierwiastkami (różnemi) równaniami stopnia dru­
giego /5 —|— /5' A — A (a-f-« 'U, zaś y\ i y-> są odpowiedniemi warto- 

ściemi ułamka y = y'J~ ' 4 = 4 > a yl = y.2,

wtedy jedna z całek jest postaci poprzedzającej, drugą zaś jest:

>/2 + = e<" + ''U • ((\ + C1 <*) •(a + a AJ'

W przypadku, gdy po stronie drugiej równań danych wy­
stępuje jeszcze wyraz, będący funkcyą samej zmiennej «r, wtedy 
rozwiązujemy zadanie, zakładając, że wpoprzedniem rozwiązaniu 
C-l i (?2 są funkcyami tej zmiennej, i oznaczamy warunki, przy 
których czynią zadość danemu równaniu (metoda w a r ya- 
cyi stałych).

Niechaj będzie układ równań jednoczesnych

dr dyx dy2
x = "17 = “Z” =............... ’

gdzie

X = ux -j- byx -f- cy2 -|-......................... -|~ e,

Y1 — a',£ 4~ < ’y<i 4-...........................+ ,

ł j — b"x 4~ br y 4- c"y^ -j-........................... J- e",
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Niechaj każdy z powyższych stosunków równa się dt] otrzy­
mujemy przez to n — 1 wyrażeń typu

i
~j~ viUi -j-............... /</)§ ** ,

§ 7.

Równania o pochodnych cząstkowych.

Jeżeli dany jest związek pomiędzy funkcyą y, zmiennemi 
./2> • • • , i pochodnemi cząstkowemi pierwszego rzędu 

Pi, p2, . . . p« funkcyi y względem tych zmiennych, to związek 
F=0 pomiędzy y,x}, x2, . . . xn i » stałemi dowolnemi, ta­
ki, że obliczając z niego n pochodnych funkcyi y i rugując

gdzie lit są n-j-l pierwiastkami równania

a — Ic, a',
b, . b — k,
c, r1,

Cl’, 
b", 
c"—k,

ilości zaś ż, r, . . . li są dane przez równania

k,ci —j~ fUjCi' —j- ViCi —}-......................... =■ żjfc/,
ź< ■ —j- [iib' —V{bv —..................... fi/ki,

ktc “F w' ~F ~r................ — v‘^<i

ke -j- W' ~F Vib" -j-................ — Wi ,

Rugując t pomiędzy w-j-1 w ten sposób otrzymanemi wy­
rażeniami, znajdziemy ii całek niejednorodnych z n stałemi 
(n-j- 1 całek jednorodnych).
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stale, dochodzimy do równania różniczkowego danego, nazywa 
się całką zupełną.

Jeżeli F jest całką zupełną ze stałemi Cj, . . ., cn, to
kładąc: 

^=0. d)F 3F

1 ~ °
rugując z tych równań i z równania F=() wszystkie stałe do­

wolne, otrzymujemy całkę osobliwą.
Jeżeli zaś jednę ze stałych np. a uczynimy równą funk- 

cyi dowolnej wszystkich pozostałych i wyrugujemy stałe po­
między całką zupełną F— 0, funkcyą 0 i n—1 związkami

dF SF 90 __ 9F dF
da-i dau da-L »••••> 3aH-i da,, dan_i 

otrzymamy rozwiązanie, w które wchodzi funkcya dowolna. 
Rozwiązanie to nazywa, się rozwiązaniem ogólnem 
łub całką ogólną.

Znając całkę zupełną, możemy z n ać w s z y- 
s t k i e inne całki.

Każde rozwiązanie jest zawsze zawarte 
w j e d n e j z powyższych trzech k a t e g o r y j.

Równanie o pochodnych cząstkowych 1-go rzędu, liniowe 
względem pochodnych, jest postaci

J\1>l 4“.....................4“ Fnpn — P,

gdzie P\, . . . Pn, P są funkcyami zależnemi od y i od zmien­
nych o?i, a?2, . . . />,, p2, . . .p zaś są pochodnemi cząstkowemi
funkcyi y odpowiednio względem asj, .za. . .

Utwórzmy układ równań różniczkowych liniowych zwy­
czajnych

d'Jb „ dij
W ~ 17 =............... = p. = ’
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Całkując ten układ, otrzymamy n całek u} = const, 
w2 — const,.............= const,, gdzie ux, u3, . . . un są fun-
kcyami ilości ?/, .'4, a‘2, . • , «£». Funkcya dowolna wszystkich 
ilości u, przyrównana do zera, stanowi całkę ogólną równa­
nia danego. (Rozwiązanie Lagrange’a).

W przypadku, gdy równanie nie jest liniowem względem 
Pi, p2, . . . . p„, całkowanie sprowadzić można, do całkowania 
równań liniowych. Metody, do tego celu służące, znane są pod 
nazwą metod Pfaffa i Jacobi’ego.

Niechaj będzie równanie

F (^, .r3. . . . , x,„ ?/, pt, p„ . . . ,p„) = 0;

postarajmy się znaleść n—1 związków podobnych z n— 1 
stalemi:

Fj (a'j, X.,. . - . , X„, tj, jM|, • • • , P") ^1»

—i (xx, X2. . . . j XflJ Pj Pi , j^2, . . . , p„) = tln—i,

takich, abyj^, , jP«, otrzymane z powyższych n równań,
zamieniały drugą stronę równania

dy = p{d.rx -j- p.2dx.2 -j- . . . -j- padx„ 

na różniczkę zupełną. Zcalkowawszy to ostatnie równanie, znaj- 
dziemy funkcyę y, wyrażoną przez ilości x i nową stałą.

Znalezienie funkcyj Fx . . . Fn-\ zależy od całkowania 
równania różniczkowego liniowego o pochodnych cząstko­
wych. Jeżeli położymy

/ $F„, \ dF .
( a,, ) = ^7 + (< = 1,2 ...w)

to Fx zależeć będzie od równania o pochodnych cząstkowych
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F2 od dwu równań analogicznych

[FFS] = 0, |F,K|=0.

Ft od trzech równań:

]ff3] = o, [f,fs| = o,

i t. d.
Nie potrzeba wyznaczać całek ogólnych tych równań, wy­

starczy wyznaczenie ich całek szczególnych. Szczegóły musimy 
tu pominąć.

Metoda Pfaffa sprowadza rozwiązanie danego równania 
do zagadnienia następującego: „Zcałkować przy pomocy w ca­
łek wyrażenie postaci

Aj (lxx —j- A3 “j-.........................-j~ Ai/,, ==

gdzie ilości A są funkcyami zmiennych x. J a c o b i pierwszy 
zajął się metodą Pfaffa (Crelle, 11), zmodyfikował ją i wydo­
skonalił. Wreszcie stworzył metodę nową (patrz niżej wskazówki 
bibliograficzne).

W rozwiązaniu przy pomocy metody Pfaffa napotyka­
my wyrażenia zwane p f a f f i a n a m i, które są pierwiastkami 
kwadratowemi wyznaczników półsymetrycznych rzędu parzy­
stego (patrz wyżej, Rozdział III, § 2).

Równanie Eulera

a + 26 .. +■ c 4^ = °

0Xx dxx ćx2 dx.>-

ma całkę ogólną

y = f (xx 4- x.j.r2) -j~ <p (xx -f- L2x2), 
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gdzie f i (p są symbolami funkcyj dowolnych, żri ż2 zaś są pier­
wiastkami równania

a + 262 + cl2 4- 0.

Jeżeli x = x2, całka ogólna ma postać:

/(^i 4“ ^2 ) “P <P (^i ~p ) (z;/'i 4" &?•,), 

gdzie y i <5 są stałe dowolne.
Jeżeli 6 = 0, otrzymujemy tak zwane równanie s t r u n 

dźwięczących (równanie B e r n o u 1 1 lego, w którem y 
jest wysunięciem miejsca punktu o odciętej xx ; aa oznacza czas)

Równanie L a p 1 a c e’a

^7/ IW9// I A’ 9-'/ !> | n A
x---------- p Al --------- ~ A —— ------ 1 / 7/ -4- (.) — O .3vT2 3.74 3.7? 2 1 • 1 c

w którem J/, N. P, Q są funkcyami samej zmiennej całkuje 
się w ten sposób:

Jeżeli P----- -------- MN— A —0, wtedy całkowanie spro-

wadzić można do całkowania równania

óu,
-----P Nu -P Q = 0,

które, nie zawierając pochodnej względem całkuje się jak rów­
nanie różniczkowe zwyczajne, pod warunkiem, że stałą dowolną 
uczynimy równą funkcyi dowolnej zmiennej tr2. Znalazłszy tym 
sposobem w, podstawiamy tę wartość av równaniu

4- j/y = u.
2.7-, 1 17 ’

całkujemy je podobnie, jak poprzednie, i znajdujemy ?/ z dwiema 
funkcyami dowolnemi, z których jedna zależy tylko od a\, druga 
tylko od x2.
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Jeżeli JL nie jest zerem, wtedy przy pomocy podstawienia

+ My = u

otrzymujemy równanie ze zmienną u tegoż typu, co dane. Do 
tego nowego równania stosujemy tożsamo postępowanie, t. j. 
badamy, czy nowa ilość A nie jest zerem i t. d.

Do równania typu powyższego daje się sprowadzić i takie 
równanie, w którem zachodzą liniowo i pozostałe pochodne dru­
gie funkcyi y.

Patrz Lacroix (Calcul intégral), Imszenieckij (Archiv Gru- 
nerta LIV), oraz notę Boussinesqa (Comptes Rendus LXXIV), 
który sądził, że pierwszy uskutecznił powyższą redukcyę (porów. Ser- 
ret, Comptes Pendus LXXIV)

Ró wnanie 1 j i o u v i 11 e’a

92// __

ma całkę ogólną:

1 ! /'(./•,) ç'(^)
;<z 2ż og ’

gdzie f, <p są dwiema funkcyami dowolnemi; pierwsza zmiennej 
a?2, druga zmiennej :x\ .

Darboux (Comptes rendus 1882) rozważał równanie na­
stępujące:

3x2
m ( 1 — m) 
(.Tj —x.,}- '

Jest to przypadek szczególny równania

(#i — x2)
3..U _ 3it

clxï 3x2
Su- = o,

ÖX.
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gdyż, kładąc w pierwszem y ~ ( — x2)mu, otrzymujemy przy­
padek szczególny drugiego (w którym ß—ß’m}.

Całką równania ogólniejszego jest ;

u — f <p (a) (ic2 — a)-3' («—rrj da 
Xx

-j- f y; (a) (a?2 — ap (a — ata)3'-1

gdzie <p i y> są fimkcyami dowolnemi.

Rezultat ten zawdzięczamy Appel owi (Bull. Darboux 1882. 
str. 314). Równaniem tein zajmowali się już Euler (Calculas integr. 
III) i Poisson (Journ. de l’Ecol. polyt XII). Inne wskazówki zna- 
leść można u Darboux’a (Théorie des surfaces, II str. 54) i Jameta 
(Bull. Darboux, 1895, str. 208),

Równanie jeszcze ogólniejsze

d'-u u du ni du p _
dxxdx2 xx—x2 3x{ (a-j—x'2) S.r2 (xt—x2)-

badałjuż La place (Acad, des sciences 1773); sprowadzić je 
można do poprzedzającego.

Sposób całkowania równania

3"ii
= X'"‘ + F1(Z/) + xF‘̂ } +..........+

znaleść można u Spitz era (Archiv Grunerta LI, 1870).
*

Całkowaniem równania

?;r-j $X2‘2

zajmowali się Sc lilä fl i (Crelle LXXII) i Le Roux (Bull. 
Darboux, 1895).
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Literatura o równaniach różniczkowych jest bardzo rozległa.
Rys historyczny tej teoryi znaleść można w dziele Schlesin­

ger a: „Theorie der lincaren Differential gleichungen“ (Lipsk 1895—97 ), 
gdzie znajduje się także dość zupełna bibliografia.

Pierwszy Euler (1769) zajnąował się wyczerpująco równaniami 
różniczkowemi; po nim D’Alembert. Legendre, Cauchy i inni.

W ostatnich czasach zajmowano się szczegółowo równaniami róż­
niczkowemi liniowemi, badając ich związek z teoryą funkcyj oraz teoryą 
grup przekształceń (patrz Rozdział IX). W tym nowym kierunku ba­
dań należy wymienić przedewszystkiem prace Fuchs a (Crelle, LXVI, 
LXVIII, Beri. Akad. 1884 i t. d.). Inne cytaty podajeiny w rozdziale 
następnym. Celem prac doby najświeższej jest nietyle znajdowanie 
całek, ile badanie zachowania się tychże w sąsiedztwie danego punktu.

Z książek, traktujących o równaniach różniczkowych, wymieniamy 
dzieła: B o o 1 e’a (Londyn 1865 — 1872) Wł. Zajączkowskiego 
(Wykład nauki o równaniach różniczkowych. Paryż 1877). Forsytha 
(Londyn 1885, Cambridge 1890, przekład niemiecki Masera, 1889). 
Schlesinger a wyżej cytowane, C r a i g a (New-York, 1889) i t. d, 

Równaniami o pochodnych cząstkowych zajmowali się: d’A 1 e m- 
b e r t, Euler, Lagrange („Théorie des fonctions analytiques 
i ,Calcul des fonctions“): Cauchy (Comptes rendus XIV, XV, XVI) 
i inni.

Pierwsze prace o równaniach liniowych 1-go rzędu zawdzięczamy 
L a g r a n g e'owi, C a u c h y’emu, Jacob i’ernii (Crelle II, XXIII, 
Werke IV); o równaniach nieliniowych—L a g r a n g e’owi, Charp i- 
towi (w pracy przedstawionej Akad, paryskiej w 1784, lecz nieogłoszo- 
nej; metodę jej wyłożył Lacroix w swoim „Rachunku“ t. II; 
str. 548). Następują potem metody Pfaff a (Beri. Abh. 1814—1815), 

metoda charakterystyk Cauchy’ego (Exercices II, 1841 ), J a c o b i’e- 
go (Crelle XVII, Lionville Ill), nowa metoda tegoż (Crelle LX), prace 
Mayera (Math. Ann. Ill, V, VI, VIII) i L i e g o (tamże V, IX, XI). 
O rozwiązaniach osobliwych pisał D a r b o u x (w Mém. des Sav. 
étrang. XXVII, 1883). Inne ważne prace są A m p è r e’a (Journ. 
de l’Écol. poi. cah. XVII—XVIII), C1 e b s c h a (Crelle LXV), K o- 
Walewskiej (tamże LXXX).

Zbiór metod całkowania równań o pochodnych cząstkowych po­
dają: I m s c h e n e t z k y (Sur l'intégration des équ. du 1 ordre, prze 
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kład Hoüela. Paryż 1869; tegoż Sur l'intégr. des'equ. du 2 ordre, 
Greifswald 187'2 i Archiv Grunerta 1869, 187'2), Graindorge ^Mém. 
delaSoc. scient, de Liège ('2), V, 1872), Goursat (Paryż, 1891—1896), 
Mansion (po po francuku i w przekładzie niemieckim, Berlin 1892, 
gdzie przedrukowano rozprawy Kowalewskiej, Imsze nieć kiego 
i Dar bon x’a).

Badania, dotyczące istnienia całek równań o pochodnych cząstko­
wych, ogłosili: Riquier (Ann. de 1’Ecol. Norm. (3), X, 1893), Kö­
nigsberger (Math. Ann. XLII), Bendixon (Bull, de la So­
ciété math, de France, 1896) i inni.

Biblioteka
matematyczno-fizyczna

-^ANTONIEGO 1/VILKAj

Liczba:



ROZDZIAŁ IX.

rE O R Y A G K u r 1* lt Z E K 8ZTAŁC U Ń.

§ 1-

Grupy przekształceń punktowych

Niechaj będzie n zmiennych :rx, ,r2 . . . ,r„; przekształćmy 
je na zmienne xx', x2, . . . , x,' za pomocą wzorów:

(1) x'i = fi (xx, x2. . . . ,x„. at, a.,, . . . ,ar),
(< = 1,2, ... „)

gdzie fi są funkcyami analitycznemi w pewnym obszarze.
Każdemu układowi wartości alt a2, . . a, odpowiada prze­

kształcenie. Przekształcenie x'i — xt nazywa się zwykle 
przekształceniem t o ż s a m o ś c i o w e m.

Przyjmijmy: 1) że te funkcye są odwracalne, t. j. że 
z wzorów powyższych możemy wyrazić ilości jako funkcye 
ilości x'i. 2) że ilości a jest i s t o t n i e r, t. j. że zmieniając 
je wszystkiemi możliwemi sposobami, otrzymujemy oor prze­
kształceń: 3) że przekształcając za pomocą jednego z powyż­
szych wzorów ilości x' na xf a następnie za pomocą innego lub 
tegoż wzoru ilości x' na x", otrzymujemy zawsze przekształce­
nie, zawarte we wzorze (1). Mówimy wtedy, że przekształcenie
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powyższe (1) w liczbie cc'' tworzą grupę ciągłą prze­
kształceń. Grupa ta nazywa się ciąg ł ą dla tego, że 
zmieniając sposobem ciągłym parametry a, możemy przejść od 
jednego przekształcenia grupy do każdego innego. Przeciwnie,
grupy podstawień pomiędzy n elementami można w tern zna­
czeniu uważać za nieciągłe.

Jeżeli r jest liczbą skończoną, grupa nazywa się s k o ń- 
c z o n ą k lasy r - t e j lub r - p a r a m e t r o w ą (r-gliederig).

Jeżeli w szczególności funkcye f są funkcyami wymiernemi 
ilościi a, są, a są także wymiernemi ich odwrócenia, mamy wtedy 
przekształcenia. zwane p r z e k s z t a ł c e n i a m i Cremony.
Tworzą one oczy wiście grupę, zwaną grupą Cremony, do 
której stosuje się następujące twierdzenie:

Grupa Cremony zawiera przekształcenie 
tożsamościowe 1, a przekształcenia jej mo­
żna u p o r z ą d k o w a ć parami w ten sposób, że każ­
de mu przekształceniu odpowiada drugie tak i e, 
którego iloczyn przez pierwsze d a j e 1, (to drugie 
nazywa się przekształceniem odwrotnem względem pierwszego).

Nie wszystkie grupy posiadają własność pierwszą i drugą.
Jeżeli wszystkie przekształcenia f two­

rzą grupę, to ich odwrócenia tworzą też 
g r u p ę.

Dwie grupy nazywają się podobne m i, jeżeli od wzo­
rów jednej można przejść do wzorów drugiej, zakładając, że pa­
rametry dawne są funkcyami nowych, oraz że dawne zmienne 
są funkcyami nowych zmiennych.

Jeżeli przekształcenia f tworzą grupę, 
w t e d y i 1 o ś c i a:', u w a ż a n e z a funkcye parame­
trów a, czynią z a d o’ś ć p e w n y m r ó w n a n i o m r ó ż- 
niczkowy m.

Jeżeli grupa j e d n o p a r a m e t r o w a zawiera 
p r z e k s z t a ł c e n i e t o ż s a m o ś c i o w e, to jej prze- 
k s z t a ł c e n i a s ą p r z e m i e n n e (t. j. iloczyn i c h- 
jest niezależ n?jy od porządku czynników) i da­
ją s i ę podzielić na pary przekształceń w z a­
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rrzeKszrai cenią r, a
razi ó tak:

X'i = i *X‘ + T & Oi , ■

n

gdzie symbol X oznacza 2L
i

j e ni n i e odwrotnych; nadto każda taka, grupa 
jest podobna do grupy przesunięć

'!/■>' = y\,...............y'»-\ = yn-i, y'n = y„ t.

k i e j g r u p y można w y-

/2 /3
~^T X{^ + 3fX(X(^))+....

Jeżeli uczynimy t nieskończenie matem, będziemy mieli 
przekształcenie zwane ni eskończon ostko w em Jest ono:

= + + “fr *(*(&» +.............

Przekształcenie nieskończonostkowe jest określone przez 
funkcye £, a więc i przez symbol X.

Możemy powiedzieć:
Każda grupa jedn ©parametrów a, zawie­

rająca, przekształcenie tożsamościowe, określa 
przekształcenie nieskończonostkowe i sama 
jest przez takież przekształcenie określona.

Przekształcenia nieskończonostkowe, wyrażone symbolami

..................... , x,

nazywają się niezależnemi od siebie, jeżeli związek

ei ^-1 (/) + e2 (f) -j-.....................,4- er Xr (/i = 0.

w którym ilości e nie zależą od zmiennych a?, może zachodzi tyl­
ko wtedy, gdy wszystkie te ilości e są zerami.

Każdej grupie r -parametrów ej odpowia­
da r niezależnych przekształceń nie skończo- 
nostkowych Jij, X2.............Xr\ jeżeli posiada ona
nadto przekształcenie tożsamościowe, to mo- 
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ż n a przekształcenia jej wyrazić za pomocą 
wzoru

r 1 . . r
■t 'i — Źki 4“ —g j— X/c 4-..............

z=i V
gdzie 2P ż2 . . . Xz- są r parametrami d o w o 1 n e m i.

Grupa r - paramétré w a z podstawieniem 
tożsamościowem zawiera, r przekształceń nie- 
skończonostkowych niezależnych, i nie wię­
cej niż n.

Ważną grupą przekształceń punktowych jest t. z. grupa 
przekształceń rzutowych (czyli grupa rzuto- 
w a); przekształca ona zawsze prostą na prostą, jeżeli ilości a 
uważamy za spółrzędne punktu w przestrzeni n—wymiarowej. 
Jej wyrażenie jest następujące:

"j“......... 4~ i

fflun+i 4~......... 4- S« + i Xn 4- n-H
Jej podgrupa, dla której

= — »-j-i — t),

nazywa się grupą 1 i n i o w ą.

Niezmienniki skończone i różniczkowe grup/ jednoparametrowej.

Nazywamy niezmiennikiem skończonym wzgl. 
różniczkowym grupy funkcyę samych zmiennych, albo 
też i ich pochodnych, która nie zmienia się przez przekształcenia 
grupy.

Pascal. Rep. I. -14
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Aby ±*u n k c y a. 12 , x2] nie zmieniała się przy
wszystkich podstawieniach grupy j e d n opa­
rametrowej, jest k oniecz u em i dostateczne m, 
by było X(!2) — 0. gdzie A jest symbolem prze­
kształcenia n i e s k o ń c z o n o s t k o we g o grup y. N i e- 
zmienni k £? jest p r z e t o r o z w i ą zanie m r ó w n a- 
ni a różniczkowego o p och o d ny c h c z ą s t k o w y c h

. fc
S1 C)Xx 9.7'2

Aby ogół wszystkich ooł krzywych., które 
przedstawi a r ó w n a n i e co(.r1.x2)=const., pozostał nie­
zmienny p r z y w s z y s t k i c h podstawieniach g r u- 
p y jedno p a r a m e t r o w ej, j e s t k o n i e c z n e m i do­
stał, e c z n e m. by X( co) b y ł o f u n k c y ą samego co. 
Jeżeli W szczególności X(co) = 0, to i każda po­
jedyncza krzywa p o z o s t a j e niezmienioną.

R ó w n a n i e różniczkowe rzędu 1-go

Jfi dxx — M2 dx2 = 0 

pozostajeniez miennem co do postaci (prócz 
ewentualnego czynnika) dla wszystkich prze­
kształceń grupy wtedy i tylko wtedy, jeżeli 
kła, dąc symbolicznie 

mamy tożsamościow o:

X(Y) — Y (X) = ż. V,

gdzie ź j e s t f u n k c y ą tylko ilości i .
Równanie różniczkowe Mx dx{ — M2 dx 2 — 0 

należy do gr u py j e d n o p ar a m e t r o w e j, i jeżeli 
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znamy niezmiennik grupy x2), to całko­
wanie "równania różniczkowego sprowadza 
się do k w a d r a t u r y.

R ó w n a n i e różniczkowe 1 - g o rzędu

/d <Z1 , X.2 d.Z‘2 |
dx1 /

należy do grupy jednoparametrowej, której 
przekształceniem u i e s k o ń c z o n o s t k o w em j e s t

wtedy i tylko wtedy, gdy wyrażenie

3F 3F
1^7 + aĘ

i I 1 / 1 ^£1 i d*£a c£i / dx2 V 1 3 F
1 I dx{ ' ' óx'2 ‘ dxl I dxx dx2 \ dxx I J / dx2

\ dxx

jest zerem przy F = 0, 
d a n e j e s t takie m, i ż t

w z g 1 ę d e m xx , x.. dx2 
dxx

w założeniu, ż 
r z y pochodne 

nie znikają

e równanie 
f u 11 k c y i F 

wszystkie

wskutek równania F — ().
Jeżeli znamy n i e z m i e n 11 i k. s k o ń c z o 11 y Q (xx ) 

g r u p y j e d n o p a r a m e t r o w e j pomiędzy dwiema 
ziniennemi, to za pomocą kwa dr atur otrzymać mo­
żna wszystkie możliwe niezmienniki różniczką we 
rzędu 1-go (z a w i e r a j ą ce tylko pochodną pierw- 
s z ą i 1 o ś c i x2 względem x1): a przyrównawszy 
do zera te niezmienniki różniczkowe, otrzy­
mamy wszystkie możliwe równania różnicz­
kowe rzędu 1-go, należące do tej grupy.
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§ 3.

Przekształcenia stycznościowe.

Przekształcenia, o których mowa w dwu poprzednich para­
grafach, nazywają się przekształceniami punktowemi; różnią się 
one od tak z w. przekształceń stycznościowych, które są 
w pewnej mierze przekształceniami ogólniejszemi. Dla prostoty 
przyjmijmy, że mamy dwie tylko zmienne; przekształcenie pun­
ktowe określa się za pomocą wzorów

*^1 --- /'(•^'1, ^2), --  /2 » *^2) •

Na podstawie tych wzorów pochodną zmiennej x'2 wzglę­
dem x\ można wyrazić przez pochodną zmiennej x2 względem x{, 
a mianowicie:

^/2 1 ^/2 ^’2

dx'2 __ cxx ' 3x2 dxy __ / dx2 1
dx\ dfx 3/, d>2 *2, j ’

dxi ‘ ćte3 dj\

Skutkiem tego forma

dx>, 
dx2------— dxt = 0

zamienia się (przy pominięciu czynnika) na

-------,i.r\ = 0.
dx\ 1

Połóżmy -- = p; wyobraźmy sobie poprzednie prze­

kształcenie, jako przypadek szczególny przekształcenia ogólniej­
szego pomiędzy trzema zmiennemi, mającego postać
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= 9?] (a'1? xiyp) xr2 — (p2(Xy,x2yp\ p' = (p.. (x}, x2, p)

i załóżmy, że te trzy związki pozostawiają bez zmiany formę 
różniczkową

ćfcr2 — pdxx — 0,

t. j. przekształcają ją (przy pominięciu czynnika) na

dx\ — p . dx\ — 0. »

Mówimy wtedy, że uskutecznione przekształcenie jest s ty­
cz n o ś c i o w e m.

Jeżeli pomiędzy trzema powyższemi z wiąz­
kami można wyrugować 72 tak, aby otrzymać 
x\, x'2, wyrażone jedynie przez x1} x2, wtedy 
przekształcenie stycznościowe staje się pun­
ktowe m.

W y k o n y w a j ą c k o 1 e j n o dwa przekształce­
nia stycznościowe, otrzymujemy znowu prze­
kształcenie stycznościowe.

Odwrotność przekształcenia stycznościo­
wego je st przekształceniem stycznościowem.

Funkcye <p1} <p2, określające przekształce­
nie stycznościowe, czynią zadość związkowi:

r i +p
D JC | WtZ'2

0.

e ż e 1 i dwie funkcye <p j, <p2 s praw­
ili, 993] = O, to z a p o m o c ą nich 

o k r e-

I odwrotnie, j 
d z a j ą z w i ą z e k 
m o ż 11 a z a w s z e, i to sposobem jedynym, 
ślić przekształcenie stycznościowe.
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§ 4.

Niezmienniki i parametry różniczkowe.

Niechaj będzie n-|-m zmiennych xt, x2, . . , x„\ z{, z2 .. . zMy 
z których zmienne z' są funkcyami zmiennych x\ niechaj bę­
dzie nadto grupa przekształceń wszystkich zmiennych. Funk- 
cya wszystkich zmiennych i pochodnych ilości z względem 
pozostającą bez zmiany, gdy wykonywamy wszystkie prze­
kształcenia grupy, jest u i e z m i e n ni kie m r ó ż n i c z k o- 
w y m g r u p y. Jeżeli grupa jest grupą całkowitą, mamy nie­
zmiennik różniczkowy bezwzględny. Jeżeli funk- 
cya ta obejmuje nadto funkcye dowolne i ich pochodne, mamy 
to, co nazywamy zwykle paramétré m r ó ż n i c z k o w y m; 
jest to wyrażenie, przejęte z teoryi powierzchni.

Niezmiennikiem różniczkowym grupy rzutowej jest nie­
zmiennik Schwarza

z'" z' — 3 z"2 
z'3

Ponieważ niezmiennik ten ma własność, polegającą na 
tern, że pozostaje on niezmienionym (prócz czynnika), gdy prze­
mieniamy z i .r, Syl weste r nazwał go recyprokan- 
tem (wzajemnikiem) i rozciągnął później tę nazwę na wszyst­
kie niezmienniki różniczkowe rzutowe.

Można pomyśleć niezmiennik różniczkowy w innem znacze­
niu, odnosząc go mianowicie do form y różniczkowej zasadniczej; 
mamy wtedy pojęcie niezmiennika różniczkowego, które zbliża się 
bardzo do pojęcia niezmiennika w teoryi form algebraicznych. 
Niechaj będzie dana forma różniczkowa

JL' Z,j .... (h j...................... ,
ij . . .

t. j. funkcya jednorodna całkowita określonego stopnia wzglę­
dem ctoj, dx2 . . . dxn ze spółczynnikami, które są funkcyami 
wszy s t k ici i zm ienny ch.
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Dla wszystkich przekształceń grupy, forma ta różniczkowa 
przekształca się na inną tego samego stopnia; spółczynniki Z 
przechodzą na inne, lecz w ten sposób, że w ogólności każdy nowy 
spółczynnik Z/;... jest w ogóle nie wprost przekształceniem spółczy n- 
ników dawnych, lecz pewną kombinacyą przekształceń wszystkich 
dawnych Z. Funkcya zmiennych tr, ilości Z i funkcyj dowolnych, 
która przy wszystkich podstawieniach grupy zachowuje tę samą 
postać co do ilości x i Z nowych, nazywa się wogóle para m e- 
metrem różniczkowym, należącym do g r u p y.

Przypadek ten można uważać za za szczególny względem 
poprzedzającego, jeżeli przyjmiemy, że przekształcenia, którym 
poddajemy ilości z (będące funkeyami zmiennych a?) są właśnie 
takiemi, jakie wynikają z przedstawienia nowych spółczynników 
Z formy różniczkowej przez spółczynniki dawne i przez zmienne.

Pod tą ostatnią postacią szczególną zadanie o wyznaczeniu 
parametrów hib niezmienników różniczkowych wiąże się z ba­
daniami. rozpoczętemi przez Gaussa, L a m e g o, Jaco- 
bi’ego i rozwiniętemi w najnowszych czasach przez Beltra- 
n i’ego i. innych, którzy za punkt wyjścia wzięli teoryę powierz- 
ni. Badania te należy uważać za przypadek szczególny zaga­
dnienia wyżej wysłowionego i dla tego jeszcze, że w niem nie 
rozpatrujemy grupy specyalnej przekształceń, lecz grupę całko­
witą wszystkich przekształceń. Nazwa „p a r a m e t r różnicz­
kowy“ pochodzi od L a m e g o.

Według wyłożonych tu pojęć, niezmiennikiem różniczko­
wym jest tak z w. krzywizna Gaussa powierzchni (patrz 
„ Geometry a różniczko wa“).

Jeżeli mamy formę różniczkową kwadratową

CL/'^ dxr dXg,

i przez a oznaczymy wyznacznik ilości przeze—wyznacznik
układu dołączonego, przez Arjt — jego elementy, wtedy wryrażenie 

Aj U = J
3U $U 

dxr d.rf ’
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(gdzie U jest fu иксуą dowolną zmiennych) 
jest parametrem różniczkowym rzędu 1-go.

Wyrażenie 

jest parametrem różniczkowym rzędu 1 -go, z a- 
w i e r a j ą c y in dwie f u n k c y e dowolne. •

Wyrażenie

jest parametrem różniczkowy m r z ę d u 2-go.

Głownem dziełem o grupach przekształceń i ich zastosowaniach 
do równań różniczkowych jest dzieło Li eg o: „Theorie der Trans- 
formationsgruppen“ i t. d., 3 tomy, Lipsk 1891 — 93.; dalej tegoż: 
„Vorlesungen über contuierliche Gruppen mit geometrischen und an­

deren Anwendungen“ Lipsk 1893, herausg. von G. Scheffers; „Vor- 
lesungen über Differentialgleichungen mit bekannten infinitesimalen 
Transformationen, herausgegeben“ von G, Scheffers, Lipsk 1891 
(streszczone przez J. P a c z o w s к i e g o w „Pracach matematyczno- 
fizycznych“, t. VII, Warszawa 1896); Geometrie der Berührungs­
transformationen“, Lipsk 1896 (streszczone przez E. Wierzbickiego 
w „Pracach matematyczno-fizycznych“ t. IX, Warszawa 1898), Nie 
cytujemy tu licznych rozpraw Li ego w różnych tomach Rozpraw 
Akademii w Chrystianii i w dzienniku „Mathematische Annalan“. 
Z polskich autorów w przedmiocie tym ogłosił rozprawy K. Zoraw- 
ski, („Acta mathematica“ t. 17, 1891 i w „Rozprawach Akademii 
krakowskiej“ t. XXlii i następne).

O bibliografii tego przedmiotu, zwłaszcza będącej w związku 
z teoryą równań różniczkowych, można znaleśó dane w помет dziele 
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Schlesinger a „Handbuch der Theorie der linearen Differential­
gleichungen,,, Lipsk 1895—97).

W pracach o niezmiennikach i parametrach różniczkowych win­
niśmy odróżnić dwie kategorye: jedne z nich mają swój punkt wyjścia 
bezpośrednio w teoryi grup, inne zaś wychodzą z badania form różnicz­
kowych, specyalnie kwadratowych.

Do kategoryi pierwszej należą rozważania Schwarza uad nie­
zmiennikiem różniczkowym grupy rzutowej (Bestimmung einer speciel- 
len Minimalfläche, Beri. Abh. 1871), Brioschi’ego (Annali di mat. 
XIII, Acta math. XIV it. e.), Sylvestera (Am, Journ. VIII, X), 
Halp hen a nad niezmiennikami różniczkowemi rzutowemi (Journ. de 
de l’Ecole polyt. 1880, Comptes rendus LXXXVI, Journ, de Liouv. 
1876, 1880, 1883, Acta math. III). Forsytha (Phil. Transact. 1888), 
ogólne badania Li eg o (Math. Ann. XXIV, (w związku z niemi cytowa­
na wyżej rozprawa Zo rawskie go o przekształceniu powierzchni, 
Acta math, XVII, 1891, Rozprawy Akad. krak. 1893).

Do kategoryi drugiej badań należą rozważania Gaussa nad 
krzywizną powierzchni, następnie badania Lam égo (Leçons sur les 
coordonnées curvilignes), Jacobi’ego (Werke II), Casorati’ego 
(Annali di mat. (1), III, IV; (2), XII) i Beltrami’ego (Acc. Bologna 
(2), VIII, 1896), który rozciągnął na przypadek n zmiennych badania 
poprzednie. W dziele Brioschi’ego o wyznacznikach (1854) rozpa­
truje się już przypadek niezmiennika różniczkowego rzędu 2-go dla 7i 
zmiennych, lecz dla specyalnego przypadku do formy kwadratowej zasa­
dniczej. Wreszcie na leży tu wspomnieć o nowszych badaniach: Ricci’ego 
(Annali di mat. XII, XIV, Lincei, 1888, 1889. 1st. Veneto 1893), Pa- 
dova’y (Lincei 1887), Frobeniusa (Crelle CX), Knob la ucha 
(tamże CXI) i innych.



ROZDZIAŁ X.

RACHUNEK RÓŻNIC SKOŃCZONYCH.

§ Ł

W i a d om o ś c i ogólne.

Wyobraźmy sobie kolej wartości x0, aj, x.,, . . . zmiennej x 
i niechaj /(.r) będzie funkcyą tej zmiennej; różnice /(aj ) - /(a^), 
f(X2)—fixf)............ nazywają się r ó ż n i c a m i p i er w s z e m i
funkcyi fi oznaczają się za pomocą symbolów A/^aj,), A/(aj), . . ,

Wykonywając podobne działania na różnicach pierwszych, 
otrzymujemy różnice drugie: A3/(a?0). A3/‘(aj) . . . .-it. d.

Różnicę 11—tą funkcyi f {x) p r z e d s t a w i a 
wzór:

A" fM = f(x„) — (n\ f(,rn~f) -j- (n)2 4-..........4- (—1)7H)-

Wartość funkcyi w punkcie .r„ przedstawia 
wzór:

/(a:,,) = /(ac0) 4~ {n\ A/‘(a-0) + (n)2 As/(a0) 4- .... 4- A’/'(a;, ).
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Mamy nadto następujące wzory (Studnie k i):

A’VCwd = 2’ (M !"’+'•/-(ai/j.
1=0

Aw+V(a?A) = 2 (—!)'(«)< ±"lf(Xh+>. -i), 
1=0

2 A'^-M-d 2 (’0<41 ±'*+if(xh), 
s=0 j -o

2 /‘Od = 2 (n),+i 1‘ffa). 
«=0 4=0

Przyjmijmy. że

«Z I c^' () — the, 1 —~ 2

wtedy różnice m-te wielomianu stopnia m - tego 
są stale, t. j. niezależne od a i równe (nie uwzglę­
dniamy wyrazu /i*a0, gdzie a„ jest s p ó ł c z y n n i 
k i e m pierwszego wyrazu wielomianu) czynni­
kowej liczby m :

/

Snex = ex(e,t — 1)"-,

1 h“A" — = (—?/)" n!------------------------------------------
x ' (x-}-2h) . . . nh) ’

A" sin (/th \n . I 
2 sin —2~j si11

A" cos (ax -j- ó) = 2 sin n{cih-t-7i)

Rozważając potęgi n-te liczb naturalnych i ich różnice ko­
lejne odnośnie do pierwszego elementu 0", otrzymujemy róż­
nice wyrazu 0“. Mamy tu wzory :
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A’" O"*1 = m (A 0" -f- A”'+’ O"),

frn Qm _ mi _ Ulm — --  2)'" — . . . .

+ (-I)"”1 (łM)m-l,

A” (Oh)» = hn A'" 0n ,

Am 0"‘ A”0HA* /Po) = h’n —f’n(x0) 4-...............4- h» -yp fn (rr0)

AW,O”+1 
+ O.+l)!

gdzie j e s t punktem i zawartym pomiędzy rr0 
i a0 — nh.

g d z i e rx, r2 . . rni są liczby całkowite dodatnie,
których suma równa s i ę m, i g d z i e s u m a r o z - 
ciąga się na wszystkie możliwe kombinacye 
tych liczb.

Jeżeli B„, oznacza liczbę B e r n o u 11 i’ego (patrz 
Rozdział XVIII), to

w 1 I” 1 1 1
Bm = (—ip —, 0"‘— -4- A0"‘ + A2(b'— ... 4- (-1)’"---- — A’" 0

ml i 2 3 w?4~l

Oto tablica różnic wyrazu 0m aż do A10O10:
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o o o O . o o o ° °
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Interpolacya. Funkcje interpolacyjne.

Wyrażenia

/1 (AlH ^1) ■7:i 7'o

/2 ^1» X2> fi foo, y2) — A (7a )
f)Cc)

są funkcyami interpolacyjnemi 1-go, 2-go i t. d. 
rzędu. Zajmował się niemi pierwszy Ampere (Gergonne, 
XVI). później Ca uchy, Bellavitis, Genocchiit. d.

Wskazówki bibliograficzne co do tego znaleść można w tomie Tli 
„Rachunku nieskończonościowego“ Pascala, przekład polski. 
Warszawa 1897, str. 186).

F u 11 k c y e interpolacyjne są symetryczne- 
mi względem w s z y s t k i c h zmiennych, które 
zawieraj ą. (Twierdzenie A m p e r e’a.)

Każdą funkcyę interpolacyjną można 
przedstawić w ten sposób:

f (x. T x ) = ___________ L^o)
1 ’ " (»0 —»1) (ir0—a?2) . . . —a;,,) ’

1_______________ />1))_______________
"i (a\ — o?0) (aj — a-.J . . . (®j — a?„)

.........................................................

______________ _______________ _
(xn — ^0) («» — aj) . . . (x„ — .T„_1) ’
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Pomiędzy trzema f u n k c y a m i interpola- 
c y j n e m i tego samego rzędu zachodzi związek:

/>' (®j , *^2J ^3, ’ • •) G'l '' 8 1 “F /n *^3, • ' •) 2 *^o)
J

+ fn (rr0, Xx, xs . . .) (;r0 — ^) — 0.

F u n k c y ę interpolacyjną dla elementów r ó- 
wnoodleglych można wyrazić za pomocą wzoru

fn (^, -j- A, . . ., xt, 4- nh) = — 

lub też za pomocą wzoru

/« (*^o, —F • • •, ^o ~F ^0 — 

gdzie

x0 < £ < -Ą) “F nh-

Jeżeli elementy xlt, xlx , . . zlewają się, 
wtedy f u n k c y a interpolacyjna rzędu n-t ego 
staje się--jeżeli pominiemy czynnik liczbo- 
w y—p o c b o d n ą n-t ą f u n k c y i.

F u n k c y a interpolacyjna o j a k i c li k o 1 w i e k 
elementach wyraża się za pomocą wzoru Ge- 
n o c c h i’e g o:

i i i
fn (®0, a:If . . . , xn) = I . I.............I if1-' tf'~2 . . .

ó ó o

X f“> (x’o 4- (x*j — a'o) tx ~F (^‘2 — xx) tx t3 +.........

—j— (iC# ■'/’w—]) /j, ^^1 • ^^2 • • • •

Wartość funkcyi f w jakimkolwiek pun­
kcie x d a j e się w y r a z i ć za pomocą wzoru, w k t ó- 
rym spółczynniki rozmaitych wyrazów są 
f u n k c y a m i i n t e r p o 1 a c y j u e m i, mianowicie:
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• • /■(«) = fM +'(» — ^o) t\ (»o, «4

4" (*—«») (x~-ri) /2 (^0, *'1> *2)

+ ••••,................................

| (^— ̂ 0) (^'—,,U1 /ŁX
+ («4-1)! '

gdzie £ jest zawarte pomiędzy najmniejszą 
a największą z wartości a?0, x'p , . . x„,x. Wzór ten 
można nazwać uogólnionym wzorem Newtona 
lub Gaussa.

Jeżeli przedziały pomiędzy kolejnemi 
punktami x są wszystkie równe A, wtedy otrzy­
mujemy wzór:

fU) = / (a?0) ———5- A/ (&0) .............

, k'—*0) ) • • • (x—— (n—1)70 A„ /•/ 1
4 ~T^" A

I (&‘ x0) (x xt) . . . (x .'Zo nh) fc
(«4-1)! 1

gdzie l jest zawarte pomiędzy najmniejszą 
największą z trzech wartości x^ x0 -Ą~nh, x.

Jeżeli wszystkie punkty x0, . x„ schodzą się w pun­
kcie a?0, otrzymujemy wzór Taylora.

Poprzedniemu wzorowi ogólnemu można 
nadać postać:

) (a--—a;<+1, . . . (x—xM)
) {Xi— xi+\)... (x—x„) 

gdzie R oznacza resztę, t. j. wyraz ostatni.
Wzór ten nazywa się wzorem interpolacyj- 

nym Lag rang e’a i d a j e się nap isać w ten snosób:

(x—xo) . . . (if—O?,--!

z=o
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y У i
<p'(Xi) X—X '

gdzie
99 (ж) = (X — ж0) (ж — хп).

Zagadnienie interpolacyjne polega na tem: 
dajmy, że są dane wartości funkcyi w nieokreślonej liczbie pun­
któw; jak wyrazić wartość funkcyi w jakimkolwiek punkcie 
przy pomocy powyższych wartości ?

Poprzednie dwa wzory mogą oczywiście służyć do rozwią­
zania zagadnienia, jeżeli reszta R d 1 a n = 00 dąży 
do zera.

Jeżeli zamiast wartości funkcyi w nieskończenie wielu 
punktach mamy dane wartości nieskończenie wielu pochodnych 
w jednym punkcie (który to przypadek może być pod pewnym 
względem uważany za przypadek szczególny poprzedzającego, 
przy przyjęciu, że punkty, w których mamy dane wartości fun­
kcyi, są nieskończenie blizkie), wtedy zagadnienie interpolacyjne 
staje się zagadnieniem, odnoszącem się do wzoru Taylora. 
Większe szczegóły i wskazówki bibliograficzne znajdują się we 
wspomnianym już traktacie „Rachunku różnic“ (§ 17).

§ 3.
JFzory na kwadratury przybliżone.

Wzór Simpsona jest następujący:

; /(„)+if («+^‘)+4+2^j

+4/,(“+3 +2/'(<,+4 W')

+......................
+ /'(&) ( + R',

Pascal, Rep. I 15
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gdzie reszta R' (gdy jest skończone i ciągle) jest:

= ~ 15X4!

Dla wartości h dostatecznie wielkich R' będzie dostatecz­
nie małe i część pierwsza poprzedniego wzoru (bez reszty) daje 
wartość dostatecznie przybliżoną całki.

Wzór C o t e s a jest:

b it

I f(x) dx — (ó—a) h,y>f a ) R',

a i =0

gdzie hn‘ są spólczynniki liczbowe, niezależne od a i 6, a mia­
nowicie :

h,^ = (—1)«-’
n

---77“-- X7-/ Tdt 
n.i\(n—1)! /

o

T — t(t— 1) . , . (t — z'4-1, (Z—-z —1) . . . (/ — n).

Liczby li czynią zadość związkowi

Tablica wartości /z jest następująca:
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Wzór Gaussa na kwadraturę jest:

= V -/!*Ł f* <&, 

./ <P U'z) J x — Xi
a i—F> a

gdzie <p (.'«) = (<z; — rr0) (x — a-J . . . (r — x0, x1} . , . , xn są
pierwiastkami funkcyi kulistej L e ge n dre’a:

t/«+i r 
y(«)= “ °)”+l

Wzór ten jest w ogóle wzorem przybliżonym; wszakże jeżeli / 
jest funkcyą całkowitą stopnia nawet wyższego od n, lecz 
niższego od 2n-1-1, wtedy wzór jest dokładny, t. j. reszta 
j e g o j e s t w tym przypadku zerem.

Aby módz zastosować wzór Gaussa, trzeba znać pier­
wiastki funkcyi kulistej <p(x). Dla większej dogodności rachun­
ku połóżmy x — a -f-(b— a)/, tak aby całkowanie rozciągało się 
od / —0 do t — 1. Funkcya /'(®) staje się/'’(a?), a całka przy­
biera postać:

(/< -«) I = (ó-«)V (U,
J w) J f — ''i0 i=0 0

gdzie ilości f< są pierwiastkami funkcyi

Pierwiastki te Cr ans s obliczył (Werke III, str. 1931 
z 16-ina znakami dziesiętnemi; podajemy je w poniższych ta­
blicach (z 10-ma cyframi dziesiętnemi) :
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П = О 7/ = l u = 2 11 = 3

<0 0,5 0,2113248654 0,1127016653 0,0694318442

0,7886751345 0,5 0.33000П4782

/3 0, 8872983346 0,6699905217

0,9305681557

n — 4 n =■ 5 » = 6 1 
ł

^0 0, 0469100770 0, 0337652428 0,0254460438

0, 2307553449 0, 1693953067 0,1292344072

0,5 0,3806904069 0, 2970774243

0,7692346550 0, 6193095930 0.5

*• 0,9530899229 0,8306046932
0,7029225756 |

0, 9662347571 0, 8707655927 |

0,9745539561 j
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§ 4.

Rachunek odwrotny różnic.

Funkcya h'(x), której różnica (gdy kolejne wartości zmien­
nej mają różnicę stałą 1), jest funkcya daną f(x), nazywa się 
całką różnicową nieokreśloną funkcyi danej. Czyni 
ona zadość związkowi:

— F(x) = f(x)

dla każdej wartości x i oznacza się symbolem £
Różnica F(a4-n) — F(a) równa się /(a) —/(a —|— 1) —|—..........

-j- t\fJ n — 1)? oznacza się symbolem £ f(x) i nazywa się 
a

całką różnicową określoną.
Podajemy wzory następujące:

X? 11.1▼ _ ____  zyiW? I _____ nil ry* )n- 1 -
i | -f Cl I -1 O * ........................2 12

#=1

„a__ n (n + O
— *----------------- 3! ’
u;=l

X? , n2(n-4-l)2
~ 4 ’

a»±=i

X? . n (n 4- 1) (6n3 4- 9n2 4- u — 1),/■ — go

X7 - n2 (n -|-1)2 (2n2 4-2n — 1)
—Jx" ~~ ~~ ' 12 ’
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Kładąc s—^Sx, mamy (Seitz und Gander, The Analyst, 

VI, 1879) 

n
2 æ9=4- (6*5 -20s4+i2®3—3s2>’ 

i
Suma sześcianów pierwszych n liczb na­

turalnych równa się kwadratowi sumy tych 
i c z b.

Całkę różnicową określoną można wyrazić za pomocą całki 
różniczkowej określonej tejże funkcyi; wzór na to nazywa się 
wzorem Eulera i ma postać następującą:

b

h £ — I f(x)dx
a J

a

= - 4- * t/w + fts irwi.......
Li & •

—^-ft‘[/"'wj: + -fp’irw.......
gdzie B^, B4, .............są liczbami Berno u 11 i’ego,
symbole [/"(æ)]«6» [f'(&) la6 ■>.................. oznaczają różnice
/•(&) — f\a), — ............

Co do innych rozważań, odnoszących się do rachunku odwrot­
nych różnic, odsyłamy czytelnika do cytowanego już „Rachunku róż­
nic“ Pascala (Warszawa, 1897).

Najważniejszemi traktatami rachunku różnic są następujące: 
Lacroix, Traité des différences, Paryż 1800; Hers ch ell, Collec­
tion of Examples etc., 1820; Schlomilih, Differenzeu und Summen, 
1848; Boole, Finite diff., 1860, i najnowsze dzieło: Markoff, Dif- 
ferenzenrechnung, Lipsk 1896.



ROZDZIAŁ XI.

RACHUNEK W A K Y A C Y J N Y.

§ I-

Wiadomości ogólne. Waryacya pierwsza całki.

Niechaj będą dwie krzywe, których równaniami są: 
y = f(x\ y} — f\ (^i)« Jeżeli pomiędzy punktami (rc, y) pierwszej 
i punktami (^, drugiej można ustanowić odpowiedniość do­
wolną, lecz taką, że odległość pomiędzy odpowiadającemi sobie 
punktami będzie nieskończonostkową, t. j. dążącą do zera, mó­
wimy wtedy, że przy przejściu od pierwszej krzywej do drugiej, 
spółrzędne tr, y doznają waryacyi. Różnicę pomiędzy odcię- 
temi odpowiednich punktów, t. j. xx —x, oznaczamy za pomocą 
symbolu L a g r a n g e’a óx i nazywamy w a r y a c y ą zmien­
nej niezależnej x. Różnica pomiędzy rzędnemi odpo­
wiadających sobie punktów będzie w ogóle sumą nieskończono- 
stek różnego rzędu; część rzędu najniższego nazywamy w a - 
ryacyą ilości y i oznaczamy przez dy.

Jeżeli F jest funkcyą ilości x, y, y', y", . . , to w przej­
ściu od pierwszej krzywej do drugiej, funkcya ć doznaje w ogóle 
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przyrostu nieskończonostkowego, którego część rzędu najniż­
szego nazywa się waryacya f unkcy i f i oznacza się 
przez dF.

Waryacya funkcyi F równa się waryacyi, 
wziętej w przypadku, gdy x pozostaje bez 
zmiany (t. j. gdy odpowiadające sobie punkty 
mają tę samą odciętą) i powiększonej o wyraz, 
będący iloczynem całkowitej pochodnej fun­
kcyi F względem x przez dx.

Waryacya funkcyi F w przypadku, g d y z 
pozostaje bez z mi a n y, jest:

dF = — dy + 4^- ~F V +........................
oy J 1 dy J 1 dy y 1

gdzie dy, dy', dy" ... są w y r y a c y a m i ilości y, y', y"... 
w przypadku niezmieniającego się x. G-d y b y fun- 
k c y a F z a w i e r a ł a inne jeszcze funkcye z, u . . . 
zmiennej x, wtedy należałoby dodać i odno­
szące się do tych f u n k c y j wyrazy, podobnie 
do powyższych utworzone.

Waryacyę całki określonej
z»#'

1 = I F (x, y, y', y" . . . y(r)) dx
x"

przedstawia wzór

dl = / dFdx -F |' Fdx} ,
a"

gdzie przez dF należy rozumieć waryacyę, obli­
czoną dla przypadku, w którym x pozostaje 
bez zmiany.

Jeżeli funkcya F zawiera nadto granice 
a;', x", wtedy do strony drugiej należy dodać 
jeszcze:

x' t
e , /’ dF „ /’ dF
dx —-7- dx 4- dx dx .

J dx J dx
x,f
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Waryacya całki określonej poprzedniego 
typu, w założeniu ogólniej szem, iż F zawiera 
nadto funkcye z. u . . . i ich pochodne, a miano­
wicie pochodne f u nkcyi y aż do rzędna włą­
cznie, pochodne f u nkcyi z aż do rzędu r włą­
cznie i t. d., wyraża się w ten sposób:

<51 = | + K.óy + K/óy' 4- . . . -H K^-"dy(,-v

-p k2óz + k2'óz' 4- ... 4- óz^
• ' I~r „............................................. I

4~ I (#ióy 4~ H2óz 4~ • • • ) da;, 
x' *

gdzie:

clM' , d2M" „ .. dNf , dN"
dx dx2 • • ■ ’ dx ' dx2

,7 dM" . d2M"'
Z' = M ' • ’ 2 dx 1 dx2

1 dx dx/
. dN"' dNl'

dF Hf
M = —— , M = 

ćy
N = ^-,N' = 

dz

__ dF

dy' 1 " dy”

N„ = oF^ 

dz ’ dz"

Jeżeli całka
Xn

y (H}óy 4- H2dz 4-.................) >!x

X*
jest tożsamościowe zerem, bez względu na war­
tości, nadane f u n k c y o m dowolnym <5y, .......... ,
wtedy każda z ilości Hx, H2,....................... , musi być
osobno zerem. (Twierdzenie pomocnicze główne.)
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Jeżeli chcemy wyznaczyć funkcye y, z ... 
zmiennej x, oraz g r a n i c e x', x" t a k, aby całka 
I mi a ł a wartość maximum lub minimum, na­
leży położyć <51 =0, co stanie się, gdy

Hx = 0, = o,.............
oraz

r~. I Fdx 4- Kxdy 4- K.'dy' 4- ... 4- A/"1
4- k2óz 4- k.:óz' + . . . 4- a^-1»^-1

ix”
= 0.

x’
Równanie F = 0 nazywa się równaniem, o d no­

szą c e m się do granic.
Równania = 0, H2 = 0,............ , są, równaniami róż-

niczkowemi, które po zcałkowaniu dają nam funkcye y, z . . . 
z pewną liczbą stałych dowolnych; stałe te wyznaczamy przy 
pomocy równania, odnoszącego się do granic.

Jeżeli dane są wartości funkcyi y i jej pierwszych r—1 po­
chodnych dla granico;', ,r", wartości funkcyi z i s—1 jej pierwszych 
pochodnych i t. d., jeżeli nadto same granice są z góry dane, wtedy 
óx' = dx" = 0, <5y=<5y'==........= 0, dz=dz' =..........— 0,........... ,
równanie zaś, odnoszące się do granic, sprawdza się samo przez 
się tożsamościowo.

Jeżeli powyższe wartości nie są z góry oznaczone, wtedy 
równanie 7’—0 rozpada się na równanie następujące :

Fn. = 0, F^, = 0,

—- 0, A',,.- = 0, . . . Aj, x" = 0, = 0, . . .

Ao,«' = 0,a K-2,X' = 0, . . . K-2,x"~ O, A'2> x"~ 0, • •

Zagadnienie ogólne rachunku waryacyjnego, gdy wartości 
granic, funkcyj i ich pochodnych na granicach nie są z góry 
oznaczone, można rozłożyć na dwa zagadnienia: jedno, należące 
właściwie do rachunku waryacyjnego i podobne do zagadnienia 
danego, lecz w założeniu, że granice, wartości funkcyach i ich po­
chodnych są na granicach oznaczonemi; drugie zaś należące do ra­
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chunku różniczkowego, jest zwykłem zagadnieniem na ma­
ximum i minimum funkcyj wielu zmiennych.

Jeżeli między funkcyami niewiadomemi y, z . . . zachodzą 
związki różniczkowe:

ę>i = 0, <p2 = 0,.............cp„, = 0, (m < //).

wtedy zagadnienie na maximum i minimum całki określonej na­
zywa się zagadnieniem na maximum i minimum 
względne; w przypadkach pozostałych mamy zaga­
dnienie na maximum i minimum bezwzględne.

Zagadnienie najogólniejsze rachunku waryacyjnego można 
zawsze sprowadzić do następującej postaci kanonicznej.

Sprawić, by całka

I Fdz,

gdzie /'’zawiera zmienną er, funkeye yx, y2, ... ,y* 
tej zmiennej i ich pierwsze pochodne, zwią­
zane r ó w n a n i a m i r ó ż n i c z k o w e m i rzędu 1-go

— 0, cp2 — 0 , . . . = 0, było m a x-i m u m lub m i-
n i m u m.

Zagadnienie to rozwiązujemy za pomocą 
wyżej wskazanej metody, szukając maximum 
lub minimum bezwzględnego całki

4r"

I £2 dx,

gdzie
£2 = F 4- ki <p,';

ilości! sąnowemi funkcyami niewiadomemi 
zmiennej x (Metoda mnożników L agr ang e’a).

Zadanie izoperymetryczne, (które można 
uważać za przypadek szczególny poprzedźa- 
j ą c e g o), jest następujące:
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Sprawić, by całka

F clx

b y ł a m a x i m u m 
śnie całki:

lub m i n i m urn i aby jednoczę-

Fx cl x, F, dx, . . . Im Fm cl x

góry oznaczone l. 
©związujemy,

maximum lub minimum

przybrały wartości z
Zagadnienie to r

'2; • • •

szukając
bezwzględnego całki:

gdzie ilości 2 m o ż n a u 
Eulera).

waźać za stałe. (Metoda

clx,

Jeżeli idzie o maximum i minimum bez­
względne, funkcya zaś podcałkowa Fz a w i e r a 
najwyżej pochodne pierwsze funkcyj niewia­
domych, to aby zagadnienie było w ogóle rozwią­
zał n e m,j est konieczne m, by hesyan f u n k c y i F, 
uważanej za funkcyę pochodnych pierwszych, 
był różny od zera.

W szczególności, gdy mamy jednę funk­
cyę niewiadomą, jest konieczne nij by pocho­
dna f u n k c y i F w z g 1 ę d e m y' była r ó ż n a od zera.

W warunkach twierdzenia poprzedzają­
ce g o, j e ż e 1 i założymy, że funkcya F zawiera 
pochodne funkcyj niewiadomych aż do rzędu 
r-te go, dla rozwiązalności zagadnienia jest 
konieczne m, by hesyan funkcyi F, uważanej za 
funkcyę pochodnych r-tych. był różny od zera.

W szczególności gdy n=l, jest koniecznem 
by pochodna druga funkcyi F w z g 1 ę d em yć) by- 
ł a r ó ż n a o d z e r a. ,
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W zagadnieniu o g ó 1 n e m na maximum i mi­
ii im u m względne, sprowadzonem do postaci 
kanonicznej, t. j. gdy w danych zagadnienia 
występują najwyżej pochodne rzędu pierw­
szego i u n k c y j niewiadomych, dla rozwiązał- 
n ości zagadnienia jest konieczne m, by wy­
znacznik:

32Z2 22 O dtp Stp,,,
fyj2 ’........ 'ty'&y'n ' ’.................... ’ ^y\

dtp] 3tp,„
’....................’ 2 ’ Sy',, ’.................... . a?/„
..o............................o, 

dy\.........................................dg'n

dtp,,, 

dy\ '........................ ’ 0y'n ’ ’........................ ’

by 1 różny od zera (/2 ma tu znaczenie wyżej wskazane)).
W reszcie w zagadnieniu izop ery met rycz nem 

(gdy funkcye F, F], . . . , Fn zawierają pocho­
dne najwyżej rzędu pierwszego funkcyi nie­
wiadomych), warunkiem koniecznym rozwią- 
zalności jest, by hesyan funkcyi (F (patrz wy­
żej), uważany za funkcyę pochodnych pierw­
szych, byl różny od zera.

§ 2.

jy a ry a cy a druga.

Warunki, poprzednio podane, są konieczne; celem znalezie­
nia warunków dostatecznych istnienia maximum lub minimum 
należy zwrócić się do rozważania t. z. w a r y a c y i d r u g i ej.
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Waryacya druga całki określonej jest wyrażeniem typu

I Q> (<5/Ą i *5.^2, • • • tyin 5 fyj'? • • • ni óy i • • • ) ć&e» 

gdzie Cl jest formą kwadratową ilości óyx,............ óy„,
............
W przypadku jednej tylko funkcyi nie­

wiadomej y, waryacya druga da je się spro­
wadzić do postaci (Twierdzenie Jacobi'ego, Crelle XVII):

j -do óy —
dx

óy') , d\A2óy") 
dx2

dr(Aróy^) j
dxr I óy dz,

gdzie i
Jeż

lości A są funkcyami 
eli położyw

e n n e j x.
szy:

z m i

óy — zx

t, _. c■ _SJL
- c > dc.

2?/c.2r 9c2r

—g dzie ilości C sąnowemistałemidowolne- 
m i, ilości zaś c stałem i, otrzymanemi z cał­
kowania równania różniczkowego, wynika­
jącego ze znikania waryacyi pierwszej—zało­
żymy, że funkcya nie może znikać wraz ze 
swemi pierwszemi r — 1 pochodnemi w dwu 
jakichkolwiek punktach drogi całkowania 
(w szczególności na obu granicach) wtedy 
waryacya druga przybiera postać:

d(b2z'\) 
dx dx'~^ i

Przekształcenie to nazywa się przekształceniem Jacobi’ego.
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Stosując kolejno to przekształcenie, doj­
dziemy wreszcie do postaci

<521 = (—l)'-1 p'r2 Br dx,

d2F I d. / i \ I27? = t 2 I t2 I I 
dy<r’2 1 I . dx\ /1

jest u t w o r z o
lecz z innemi stałe mi C.

gdzie funkcya /8 
jak i-
my wyznaczyć ilości U w t e n 
pod znakiem całkowym nie 
skończoną dla wartości .r, 
na drodze całkowania;

na podobnie 
Jeżeli może- 
sób, aby ilość 

n i e- 
się

nie ma takieh 
!2 i wszystkie

z

s p o 
stawała się 
n a j d u j ą c y c h 

j e ż e 1 i 
wartości C. dla których t, lub t.
ich pierwsze pochodne aż do pochodnych rzę­
du r—1, znikają w dwu punktach drogi 
i ...... , , ÓF .kowania; jeżeli pochodnajest zawsze 

c a ł -

jed-
nego znaku i nie staje się nieskończoną dla 
wartości x na tej drodze, wtedy znalezione 
rozwiązanie dawać będzie z pewnością ma­
ximum lub minimum, stosownie do tego, czy

(-1)-’' ' óy,r)2
jest stale ujemnem lub stale dodatniem.

W przypadku r=l waryacya druga sprowadza się do postaci;

/• d2F T t' l2
ó2 I = ------ --  <5y dx,

./ ny2 L t J

a kryteryum na maximum i minimum wyprowadza się z łatwo­
ścią z twierdzenia poprzedzającego.

Dane historyczne i bibliograficzne o różnych twierdzeniach, poda­
nych w tych dwu paragrafach, znaleść można w tomie III „Rachunku 
nieskończonościowego “ Pascala (przekład polski. Warszawa 1897). 
Najnowszą pracę o wyprowadzeniu dostatecznych warunków maximum 
i minimum całek pojedynczych ogłosił A. Kneser (Math. Ann. LI., 
str. 321-345, 1898).
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§ 3.

Różne zagadnienia rachunku waryaeyjnego.

Zagadnienie Newtona. Znaleść krzywą, 
płaską o stycznej ciągłej, przechodzącą przez 
dwa punkty dane i obrotem swym około osi 
danej wytwarzającą bryłę, która zanurzo­
na w cieczy w kierunku swej osi, napotyka 
opór najmniejszy. (Ciało okrągłe o najmniej­
szym oporze.)

Wprowadza się hypotezę, że opór, jaki napotyka ciało 
przy zanurzeniu, jest proporcyonalny do kwadratu rzutu pręd­
kości na normalną do powierzchni i ma kierunek tej normalnej. 
Znajdujemy krzywą, której spółrzędne y, wyrażają się w fun- 
kcyi ilości y' sposobem następującym (sc jest osią obrotu/

•'■•=« + og +b’ y = —T7—
Krzywa ta posiada ostrze w punkcie, dla którego y‘ — F3.

Zagadnieniem tem zajmował się Legendre (Mem. de Paris, 
1786), patrz August, (Crelle CII, 1888) i § 30 „Rachunku warya­
eyjnego“ E. Pascala, Warszawa. 1897).

Zagadnienie o brachystochronie. Jaką 
drogę powinno opisy w ać ciało, ożywione pręd­
kością p o c z ą t k o w ą r0 i poddane jedynie sile 
ciężkości, aby w czasie możliwie najkrótszym 
przeniosło się z punktu o spółrzędnych xQ. y0, 
z0 do punktu o spółrzędnych xt, yx, w założe­
niu, że ośrodek, w którym się porusza, jest al­
bo próżnią, albo stawia opór, który jest funk- 
c y ą prędkości ciała?

Krzywa jest cyklojdą o podstawie poziomej.
Pascal Rep. T. 16
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Jeżeli punkt końcowej krzywej ma się znajdować na krzywej 
z góry danej, wtedy trajektorya przecina ortogonalnie tę ostatnią.

Zagadnieniem tem zajmował się Lagrange (Mise. Taur. II, 
1760—61). Co do szczegółów patrz § 31 „Rachunku waryacyjnego“ 
Pascala.

Wyznaczyć krzywą długości danej, prze­
chodzącą przez dwa punkty dane, i taką, że gdy 
nakreślimy między tem iż punktami drugą 
krzywą, której rzędne są potęgą lub pierwiast­
kiem odpowiednich rzędnych krzywej pierw­
sze j 1 u b odpowiednich łuków tejże, to pole 
drugiej będzie m a x i m u m. W przypadku szczególnym 
tego zagadnienia t. j. gdy rzędna drugiej krzywej ma być równa 
łukowi odpowiedniemu danej, otrzymujemy linię łańcuchową.

Zagadnieniem tem zajmował się Jakób Bernoulli w jednej 
z pierwszych prac swoich nad rachunkiem waryacyjnym (Acta Erudi- 
torum, 1697).

Pomiędzy wszystkie mi wielokątami z a m- 
kniętemi, mającemi za boki odcinki dane, zna­
le ś ć wielokąt o polu n a j w i ę k s z e m. Dowodzi się, 
że wielokątem tym jest wielokąt wpisany w koło.

Zagadnienie to przy pomocy rachunku waryacyjnego traktował 
Lagrange w drugim dodatku do swej rozprawy: „Noüvelle methode 
etc.“ (Mise. Taur., t. II); drogą syntetyczną badał je już Cramer 
(Akad. Beri. 1752). Analogiczne zagadnienie dla wielościanów o danej 
powierzchni i największej objętości badał Lindelöf (Math. Ann. II, 
str. 150).

Jeżeli zamiast wieloboku mamy krzywą o danym obwo­
dzie, wtedy otrzymujemy koło.

Twierdzenie to udowodnił już Zenodot, a przekazał nam Pap- 
pus (patrz Cantor, Geschichte der Mathematik, I, str. 208). Le­
gendre w § VIII swej rozprawy (Acad. de Paris, 1786) bada to zaga­
dnienie szczegółowo przy pomocy rachunku waryacyjnego. Znajduje 
się ono także u Eulera „Methodus inveniendi etc.“ Rozdz. V, § 41.
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O zagadnieniach tego rodzaju na płaszczyźnie, na kuli, i w prze­
strzeni, lecz z punktu widzenia czysto geometrycznego, istnieje obszerna 
rozprawa Stein er a (Crclle, XXIV, str. 93 i 189; Lionville, VI).

Pomiędzy dwoma punktami danemi lub 
dwiema krzywe mi poprowadzić taką krzywą, 
aby ciało po niej spadające osiągało w końcu 
swego spadku prędkość największą.

Zagadnienie to rozwiązuje Lagrange w ostatniej lekcyi swego 
„Calcul des fonctions“ (Oeuvres, X, str. 448).

Jeżeli punkty skrajne mają się znajdować na dwu krzy­
wych danych, wtedy znajdujemy, iż styczne do tych krzywych 
w punktach skrajnych powinny być równoległe. Jest to rezul­
tat analogiczny do tego, jaki znajdujemy dla brachystrochrony.

Pomiędzy krzywe mi o jednakowym obwo­
dzie, mającemi te same dwa punkty skrajne, 
znaleść krzywą, dla której środek ciężkości 
linii jest najbardziej odległy od podstawy.

Zagadnienie to błędnie rozwTiązał Galileusz (1638), który 
mniemał, że krzywą szukaną jest parabola; później zajmowali się tern 
zagadnieniem bracia Bernnulli’owie Jan i Jakób, Huygens i Leib­
niz (Acta Eruditorum, 1690—1692).

Znajdujemy, że krzywą szukaną jest łańcuchowa, t. j. 
krzywa, której promień krzywizny równa się długości linii nor­
malnej, pomiędzy krzywą a osią odciętych lecz jest położony po 
stronie przeciwległej tej normalnej. Jeżeli «jest stalą nieozna­
czoną, to należy sprawić, by całka

J‘ (y + «) ds

była maximum, gdyż ^-iyds, jak wiadomo z mechaniki, równa 

się rzędnej środka ciężkości linii.
Zagadnieniem tern zajmował się także Legendre (§ 7 rozpra­

wy z r. 1786, Acad, de Paris). Patrz Mayer, Math. Ann. XIII, str. 65.

Wiele z następujących zagadnień podał i rozwiązał Euler 
w sławnej rozprawie ,,Methodus inveniendi etc.“ 1744.
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Przez dwa punkty przeprowadzić krzywą 
taką, aby pole, zawarte pomiędzy tą krzywą 
jej r o z w in i ę t ą i n o r m a 1 n e m i w punktach skraj- 
n y c li, było możliwie najmniejszem.

Znajdujemy, że krzywa jest gałęzią cyklojdy (Euler 1. c. 
Rozdz. II, § 51).

(Jo do tego zagadnienia patrz .Teilet „Variationsrechnung4, 
(przekład niemiecki, Brunświk 1860, str. 191 i 422) i Todhundter 
„Researches i t. d.*‘, Londyn 1871, str. 250.

Pomiędzy w s z y s t k i e m i k r z y w e m i, łączą- 
ceini dwa punkty i wytwarzaj ą cem i przez obrót 
około osi powierzchnię o polu jednakowe m, 
znaleść krzywą, dla której ta powierzchnia 
zamyka objętość największą (Euler, Rozdz. V 
§ dd )•

Zagadnienie to dało powód do wielu kontrowersyj. Patrz Lin- 
delöf, Calcul des variations, str. 218 i Greve „Ein Problem aus der 
Variationsrechnung“, Getynga, 1875.

Pomiędzy wszystkie mi krzywemi, prze­
chodzą c e m i przez dwa. punkty i zamykające- 
m i pole jednakowe, znaleść krzywe, które obro­
tem swym około osi wytwarzają powierzchnię 
o polu najmniejszem (Euler, Rozdz. V. § 45).

Otrzymujemy krzywą rzędu trzeciego z punktem podwój­
nym, podaną pod numerem 68 w klasyfikacyi krzywych rzędu 
3-go, utworzonej przez Newton a.

Pomiędzy krzywemi o j e d n a k o w y m obwo­
dzie i przechodzące mi przez dwa punkty, zna­
leść krzywe, które obrotem swym około osi 
wytwarzają ciało o największej objętości 
(Euler, Rozdz. V, § 46).

Otrzymujemy tak nazwaną krzywą sprężystą, ma­
jącą tę własność, że jej promień krzywizny jest odwrotnie pro- 
porcyonalny do odciętej.
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Pomiędzy krzywemi o jednakowym obro­
cie znaleść krzywą, która obrotem swym około 
osi wytwarza powierzchnię o polu najwięk­
sze m lub n a j m n i e j s z e m (Euler, 1. c. Rozdz. V, § 47).

Znajdujemy linię łańcuchową. Powierzchnia wytworzona 
jest powierzchnią łańcuchową lub k a t e n o i d ą (Plateau).

Patrz Goldschmidt (Determinatio superf. min. etc., Getynga, 
1831; Lindelof („Sur les limites entre lesquelles la caténoide est une 
surface minima“, Math. Ann. Vol. Il, st, 60; 1870).

Pomiędzy krzywemi o jednakowym obwo­
dzie i zamykaj ącemi tożsamo pole, znaleść 
krzywą, która obrotem swym około osi wy­
twarza powierzchnię, zamykającą objętość 
najmniejszą (Euler, Rozdział VII, § 22).

Znajdujemy krzywą sprężystą.

Pomiędzy krzywemi o tych samych odcię­
tych, zamykaj ącemi pole jednakowe i wytwa­
rzaj ącemi obrotem około osi powierzchnie 
zamykające jednakową objętość, znaleść krzy­
wą, której środek ciężkości z n a j d u j e się naj­
niżej lub n a j w y ż ej (Euler, 1. c. IV, § 23).

Znajdujemy linię prostą.

Danesą dwie płaszczyzny równoległe 
i punkt na jednej z nich; poprowadzić z tego 
punktu do drugiej płaszczy zny linię długości 
danej taką, aby pole powierzchni walcowej, 
którą otrzymujemy, prowadząc z rozmaitych 
punktów linie prostopadłe do dwu płaszczyzn 
i pomiędzy tern iż płaszczyznami zawarte, było 
największe.

Znajdujemy helisę.
Prtrz Moigno: „Calcul des variations“, (Paryż, 1861, str. 299).

Ustaliwszy dwie rzędne, poprowadzić 
z punktu jednej do punktu drugiej krzywą ta­
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k ą, aby figura, określona przez oś, przez dwie 
rzędne i przez krzywą, miała obwód z góry da­
ny i zarazem pole największe.

Patrz Challis: On the solution of three problems etc. (Phil. 
Mag. 1872.

Z n a 1 e ś ć p o w i e r z c h n i ę o polu d a n e m, zamy­
kającą objętość największą.

Patrz: Sarrus (Mém. des Sav. étrang., t X, 1846), Sabinin 
(Zbiornik mat., Moskwa, XIV, str. 451, 1890).

Znaleść krzywą, mającą krzywiznę pierw­
szą stalą i punkty' skrajne na dwóch danych 
krzywych lub powierzchniach, a której .dłu­
gość jest największa lub najmniejsza.

Zagadnieniem tern zajmowali się; Dalaunay, Je Het, Tod- 
hunter. Nową pracę o tym przedmiocie ogłosił Venske, Getyn­
ga, 1891.

Wyznaczyć krzywą, mającą moment bez­
władności względem punktu danego, najwięk­
szy lub najmniejszy.

Euler rozwiązał zagadnienie to błędnie. Rozwiązanie dokła­
dne podał Ossian Bonnet (Lionville. IX, str. 97, 1S44). Analo­
giczne zagadnienie w pracy: „Sur le minimum du potentiel de l’arc“, 
rozwiązał De la Goupil Here (Assoc. Franc. Besançon, t. XXII. 
str. 164, 1893).



ROZDZIAŁ XII.

T E O RY A NIEZMIENNIKÓW.

§ 1.

Formy dwójkowe. Przedstawienie symboliczne.

Funkcya wymierna całkowita jednorodna stopnia n-tego 
o zmiennych xt, x2 nazywa się formą dwójkową stopnia 
n-tego. Przedstawić ją możemy w ten sposób:

n / \
f(xx,xj) = I ar xi*~r x2rt

gdzie dla dogodności rachunku nadajemy spółczynnikom postać 
( j ar, uwidoczniając przez to spółczynniki dwumianowe.

Symbolicznie piszemy tę formę tak:

f = («i -F a2x2)n =

przyjmując, że

= a0, axn~i — ft1: .... , u2” = ci„, 
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i rozumiejąc, że strony pierwsze ty cli równości są tylko symbo­
lami do oznaczenia stron drugich; ilości xv x2 są więc także 
symbolami, którymi można nadawać znaczenie tylko wtedy, gdy 
są skombinowane ze stopniem n.

Ilości a są spółczynnikami istotnemi formy f, ilości a-~ 
spółczy nnikami symboliczne mi.

Każda funkcya ilości a daje się wyrazić jako funkcya ilości 
a, lecz nie odwrotnie. Jeżeli wprowadzimy symbole równo­
ważne symbolom a, t. j. napiszemy :

f = —................

wtedy funkcya ilości a, /3, y . . . , której każdy wyraz zawiera 
ilości a aż do stopnia n, ilości aż go tegoż stopnia i t. d. może 
być odrazu sprowadzona do funkcyi spółczynników istotnych a. 
Stopień jej co do spółczynników istotnych równa się liczbie sym­
bolów a, /3, y . . . , występujących w danem wyrażeniu.

Przez W) + - (fia)

oznaczamy wyznacznik symboliczny

/?2,

Pomiędzy czynnikami liniowemi symbolicz- 
nemi a wyznacznikami symbolicznemi zachodzą 
następujące tożsamości zasadnicze:

(aft) 7* + (£/) ax (ya) = 0,

O-x ^y <*y == (a/?) (^) ł

W) (?d) 4~ (^/) (ad) 4~ (ya) (£d) = 0.

Jeżeli położymy

X^ ---- /Igi •' 1 4" -^2ł *^2’

^11 ,

A.,

J-12 

-4 22
(moduł),
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to forma

f = a0 »i* + ( i ) ai xin~lx2 +...............= aZ

.przejdzie na następującą:

/ yl \
f — a'ox\m -j- I x I a\ x^'-1 x\ +............... = a'Z .

Spólczynniki o! wyrażają się liniowo przez 
spólczynniki a. Jeżeli wyrazimy spólczynniki «'symbo­
licznie przez ilości to związki, zachodzące pomiędzy spól- 
■czynnikami a' i a można, wyrazić w ten sposób:

«'1 = A11 «1 + A a2; A = A12al + A22<*2, 
skąd:

J «2 == A22 @ 1 ~F ’* 21 ® 8 ’ A«, = J]2«, Al®2'

§ 2.

Niezmienniki i spółzmienniki.

Niechaj będzie układ form stopni n, n‘, . . . . Wyobraźmy 
; sobie funkcyę wymierną spółczynników form danych oraz zmien­
nych x i uskutecznijmy wskazane przekształcenie liniowe, t. j. 
podstawmy zamiast zmiennych x ich wartości, wyrażone 
w zmiennych xf, lub zamiast dawnych spółczynników ich warto­
ści, wyrażone w nowych.

Jeżeli funkcya przekształcona daje się wyrazić jako iloczyn 
potęgi r-tej modułu przez wyrażenie, utworzone ze spółczynni­
ków przekształconych i ze zmiennych, przekształconych w ten sam 
sposób, w jaki funkcya dana utworzona została ze spólczynni­
ków dawnych i zmiennych dawnych, wtedy mówimy, że funkcya 
ta ma własność niezmienniczą. Jeżeli zawiera zmienne, 
to jest spółzmie unikiem; w przeciwnym razie nie­
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zmiennikiem. Jej stopień co do zmiennych nazywa się 
rzędem; liczba r - s k a ź n i k i e m. Ogół form danych na­
zywa się układem zasadniczym.

Można rozszerzyć pojęcie spółzmiennika, pomyśliwszy 
taką funkcyę niezmienniczą, która, prócz zmiennych x} , x2, za­
wiera jeszcze inne szeregi zmiennych y1? y2, £j, z2, . . . ; przytem 
wszystkie mają podlegać tym samym podstawieniom (o tych sa­
mych spółczynnikach), którym podlegają zmienne x. Mamy 
wtedy spółzmiennik o wielu szeregach ilości 
zmiennych.

Jeżeli skaźnik r jest parzysty, forma niezmiennicza nazywa 
się formą o charakterze parzystym; w przeciwnym 
razie nazywa się formą o charakterze nieparzystym.

Jeżeli n, n'. . . są rzędami form zasadniczych, Ar, k‘ . . . 
stopniami formy niezmienniczej co do spółczynników różnych 
form, m zaś rzędem tej formy, t. j. stopniem jej co do zmien­
nych, wtedy zachodzi związek:

2r 4" m — nk 4~ n'k‘ -j-.....................

Jeżeli wszystkie formy dane są rzędu pa­
rzystego, to ich niezmiennik nie może być 
rzędu nieparzystego.

Każda forma dwójkowa rzędu nieparzy­
stego ni>3 posiada co najmniej dwa niezmien­
niki liniowe, których wypadkowa jest różna 
od zera (C 1 e b s c h).

Każda forma dwójkowa rzędu parzystego 
n>4posiada conajmniej dwa s p ó ł z m i e nn i k i 
stopnia 2-go, któryeh wypadkowa jest różna 
od zera (C 1 e b s c h).

Wkażdym wyrazie formy niezmienniczej, wyrażonym przez 
spółczynniki istotne formy lub form zasadniczych, t. j. przez 
a0, Oj, a2, . . . , ó0, ftj, Z*2, . . . , utwórzmy sumę iloczynów skaź- 
nika każdego ze spółczynników a, b . . . przez odpowiedni wy­
kładnik. Ta suma nazywa się wagą wyrazu.
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Własność zasadniczą form niezmienniczych wyrażają 
twierdzenia:

W każdej formie niezmienniczej waga 
każdego wyrazu jest stała, co wyrażamy mó­
wiąc, że formy niezmiennicze są funkcyami 
iz oba rycz nem i spółczynników form zasadni­
czych. Waga niezmiennik ći lub spółzmienni- 
ka zlewa się z wyżej określonym skażnikiem r.

Każda forma, niezmiennicza J czyni za­
dość następującym równaniom różniczkowym:

v, dJ SJ
2ah—r)ar~--------2 x, —— = rj.

>■ °ar x Sx

V V 37 v 37 T2 2 rar ----- 2 x<> -=— = rj,
a r oar ,r ‘ dx2

„ v<z V d'T V 372 2 (n — r) '1,^-^----- 2 xx = 0,
a r Otl'r x

2£ 2^ rar-i S.J

Su,-
2: x2 = 0,Sx{

gdzie: sumowanie względem r rozciąga się na wszystkie spół- 
czynniki formy; wyrazy względem a zmieniają się od jednej for­
my zasadniczej do drugiej; sumowanie względem x oznacza, że, 
gdy idzie o spółzmiennik o kilku szeregach zmiennych y . . . , 
to należy utworzyć tyleż wyrazów podobnych, jeden względem 
;/•, drugi względem y i t. d.

Jeżeli w szczególności idzie o niezmiennik, to odpowiednie 
równania różniczkowe otrzymujemy z poprzednich, znosząc su­
mowanie względem x.

Powyższe równania różniczkowe znalazł Cayley (1854), potem 
badali je Sylvester, Aronhold i inni.

Niezmienniki, uważane jako funkcye pierwiastków zasa­
dniczej formy dwójkowej, czynią zadość pewnym równaniom 
różniczkowym, które znalazł Br i os chi (Ann di mat. V).
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Najważniejszą własność form niezmienniczych streszcza 
następujące twierdzenie Clebscha.

Forma niezmiennicza, wyrażona za pomo­
cą spułczynników symbolicznych, przedsta­
wia się zawsze jako suma wyrazów, z których 
każdy jest iloczynem symbolicznym wyzna­
czników typu (a/?), (aaj i czynnikówsymbo- 
licznych typu ay , alx .. . . , gdzie: a, fi . . .
są symbolami równoważnemi pierwszej for­
my zasadniczej; an , takiemiż symbolami
drugiej it. d. i gdzie naturalnie stopień wzglę­
dem każdego ze symbolów a, /? . . . j e s t n, wzglę­
dem każdego ze symbolów . jest n' i t. d.;
n, nf . . . są stopniami form danych.

Liczba czynników liniowych symbolicz­
nych przedstawia rząd formy niezmienniczej; 
liczba wyznaczników symbolicznych jest ró­
wna skaźnikowi lub wadze r.

Działania nie zmieniające własności nie­
zmienniczej. Niechaj, jak zwykle, tt0, a^, a2 . . ■ będą 
spółczynniki jednej, b0, b1, b2 . . . spółczynniki drugiej formy 
tego samego rzędu.

Jeżeli J jest niezmiennikiem lub spół- 
zmiennikiem układu, do którego należy pierw- 
sz a forma, to wyrażenie

będzie miało również wartość niezmienniczą 
i będzie niezmiennikiem lub s p ó ł z m i e n n ik i em 
układu pierwotnego, rozszerzonego przez do­
łączenie formy drugiej.

3Działanie b, nazywa się działaniem lub proce­

sem A r o n h o 1 d a.
Jeżeli J jest spółzmie unikiem rzędu m-tego, 

to wyrażenie
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1 / SJ , IJ \ m r X? + 2/2 X?)

jest również spółzmiennikiem.
Działanie

1 5T1 2
m dxt

nazywa się działaniem biegunowe m o biegunie y; 
nie zmienia ono, jak to wynika z poprzedzającego twierdzenia, 
własności niezmienniczej.

Przez symbol A/’ rozumiemy działanie biegunowe o biegu­
nie y, powtórzone k razy

Jeżeli oznaczymy symbolicznieprzez px"* 
spółzmiennik rzędu m-tego, to będzie:

A/ = PxM-kpyk,

Jeżeli J jestspółzmiennikiemodwu sze­
regach ilości zmiennych y, stopnia m-tego 
względem pierwszych zmiennych stopnia wi'- 
tego względem drugich, to działanie

i /2!J____ ó2J 1
m m ’ \ dx1 3y2 $x2 3t/1 I

nie zmienia własności niezmienniczej. Dzia-
t ■ 1 / 38 32 \ i • i • 11łanie-------r——-— x—-r— nazywamy działaniem lub proce-

mm\dx1di/2 ox2oyj
s e m D.

Jeżeli funkcyę dwu zmiennych przedstawimy symbolicz­
nie w postaci f(x, y) = axn b,jn\ to będzie:

(axn bym) = (ab)* axn~* b™~k .

Istnieją jeszcze dwa działania niezmiennicze symboliczne; 
jedno z nich zwane fałdowaniem (Faltung, piega), wprowa­
dził Gordan; polega ona na tern, że w iloczynie symbolicznym, 
złożonym z wyznaczników symbolicznych i czynników linio­
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wych symbolicznych, zastępujemy dwa czynniki liniowe a.z, bx, 
wyznacznikiem (ab).

Drugie działanie t. z w. nasunięcie (Ueberschiebung, spinta) 
wprowadził Clebsch, polega ono na twierdzeniu z dwu form 
danych axM, bxm wyrażenia

(a b) ax*~y bxm~x .

Działanie Clebscha daje się w ten sposób wyrazić przy po­
mocy działania 12:

(ab) axn~s b^"-1 — \ te (axn bv,n)]y=x .

Działanie to powtórzone k razy na formach f, <p, wyraża się sym­
bolem (f, <p)k.

Tożsamości, odnoszące się do działania 
Clebsch a. Pomiędzy trzema formami f, <p, y 
zachodzi tożsamość:

(/;ns (A <p)2,

ta ty, (<P, <P)2 • (p, y>y)» <p
= 0.

f)2, <py, (v>, v>y,

f, <P ,

Pomiędzy czterema formami /, ęj, / za­
chodzi związek:

(f, <py, (f, vd2, (f, %y

f)2 (v, ^y, (.Tz y>y, (<p, %y

fy, (w, ^y» (V1; ^y , %y

(z,/*)2, (z, <p)2, (z- y>y, (Z) %y
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§ 3.

Wzór Clebseha-Gordana.

Jednym z najważniejszych wzorów do symbolicznych prze­
kształceń form niezmienniczych jest wzór Clebscha-Gror- 
d an a, dający rozwinięcie funkcyi o dwu szeregach ilości zmien­
nych x, y przez biegunowe wyrażenie o jednym tylko sze­
regu, pomnożone przez potęgi całkowite dodatnie wyzna­
cznika (a;y). Niechaj /'{x,y) będzie funkcyą o dwu szeregach 
ilości zmiennych stopnia m względem jednych, stopnia n wzglę­
dem drugich. Jeżeli przez A oznaczymy działanie biegunowe 
o biegunie y i zmiennej x, przez J)—działanie biegunowe o bie­
gunie x i o zmiennej y, będzie:

f = №Dnf + a^(xy) A*-1 Dk~x Qf

4- a^(xyy A«-2 7>-2 +.............ak™ Qk f.

Spółczynniki a są liczbami, czyniącemi zadość wzorom 
zwrotnym:

«„<•+■> = ,_____ (”-P+Dł________ a(»
1 7 (m-]-k— 2p-}-2) (m-J-Zr — 2p-f-3) *-1

Dla k = n będzie :

/ n \ / m \
an=___

p \m 4- n — p + 1 j

Dla symetryi co do skażników m, n można wyrażenie to 
oznaczać też przez ap ,n-n .

W przypadku k — n wyrażenia Dkf, Dk~'Qf,. . . nie za­
wierają zmiennej y i wtedy otrzymujemy wyrażenie funkcyi f 
za pomocą samych biegunowych A funkcyj zmienne,] x.
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Oto tablica wartości liczb apm' n dla różnych wartości skaź- 
ników m, n :

P = 1 P = 2 P=3 p=zi

m = 1, n = 1 1

m = 2, n = 1 2 i

m — 3, n = 1 3
4

j

m — 4, n = 1 4_
5

m = 5, n — 1 5
6 i

m = 6, n = 1 6
7

m = 2, n — 2 1 1
3

»4 = 3, n = 2 6
5

1
2

m = 4, n = 2
5 o.

 «

7/i = 5, n = 2 10
7

2^
3

m = 6, n =. 2

to
j w

> 5
7

m = 3, n — 3

tc
 w 9

10
1
4

m — 4, n = 3 21
7

6
5

2
5

7/4—5, n = 3 15 
~8"

10 _1_
2

m — 6, n = 3 2 45
■28

4
7

m = 4, n = 4 2 J2 
7

_4_
5

1
»

m = 5. n = 4 2<> 
9

21 
7

_8_
7

1
3

m = 6, n — 4 12 5 
I"

iO 3
7
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Każda f o r m a (/, x. y.) t y 1 k o jje d n y m spos o b em daj e 
się rozwinąć na szereg uporządkowany według po­
tęg rosnący ch wyznacznika (xy); spółczynniki tego 
szeregu są biegunowemi. Jeżeli forma/jest syme­
tryczna względem x i y, to spółczynniki potęg pa­
rzystych wyznacznika (xy) są zerami.

§ 4.
Zestawienie nazw, używanych w teoryi form.

Do teoryi form różni autorowie, zwłaszcza angielscy, wpro­
wadzili wielką liczbę nazw, których znaczenie dobrze jest rozu­
mieć.

Quantics (quantica) — tak anglicy zwykle nazywają 
formę.

2. Konkomitanty. Jest to nazwa, nadana przez 
Sylvestera utworowi niezmierniczemu ogólnemu.

3 Niezmiennik widoczny. Jest to ilość stała.
4. Niezmiennik bezwzględny. Jest to niezmiennik 

wymierny ułamkowy o skaźniku zero.
5. Przeciw zmiennik (kontra wary ant) jest to 

utwór, mający własność niezmienniczą, wtedy gdy ilości x w nim 
zawarte poddajemy przekształceniu liniowemu nie prostemu, lecz 
odwrotnemu; jest to zatem utwór, który odtwarza się, pomnożo­
ny przez potęgę modułu, jeżeli zamiast spółczynników dawnych, 
podstawimy ich wyrażenia w spółczynnikach przekształconych, 
zamiast zaś ilości xt, x2 wyrażenia:

-422D' — ^-2 = — + A 1^'1 ■

6. Ko n k omi t an ty ,mi esz ane. Nazwę tą nadaje 
Sylvester utworowi o dwu szeregach ilości zmiennych, ma­
jącemu własność niezmienniczą wtedy, gdy jedne zmienne podda-

Pascal. Rep. I. 17
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jemy przekształceniu prostemu, drugie zaś odwrotnemu. Utwo­
ry te nazywamy także

7. Formami po ś red niemi (Z wischenformen, Ar on- 
h o 1 d) patrz § 6.

8. Diwarianty (S a Im on) patrz § 6.
9. Nadwyznaczniki (Hyperdeterminants). Tak 

C a y 1 e y nazywał pierwotnie niezmienniki.
10. Spółpodstawieniowemi (cogredienti) nazy­

wają się dwa szeregi zmiennych, które pod dajemy tym samym 
podstawieniom.

11. Przeciw podstawie n i o wemi (contragredienti) 
nazywają się dwa szeregi zmiennych, z których pierwsze podda- 
jemy podstawieniom liniowym prostym, drugie—odwrotnym.

12. Eman anty. Stosując Ic razy działanie Aro nh olda 
do niezmiennika formy f, dochodzimy do niezmiennika formy f 
i formy, której spółczynniki wprowadzają się przy powyższem 
działaniu. Utwór ten nazywa się emanantem form f 
i <P (Cayley).

13. K o m b i n a n ty. Są to niezmienniki lub spółzmien- 
niki jednoczesne układ u form jednego stopnia, do których stosując 
działanie Aron hołd a. odniesione do obu form układu, otrzy­
mujemy na rezultat zero (patrz Gr o r d a n, Invariantentheorie, 
II. str. 60).

Ko'mbinant zmienia się o czynnik liczbowy, je­
żeli zamiast układu form danych weźmiemy układ, 
którego formy są kombinacjami liniowemi form > 
przewrotnych.

14. E w e k t a n t y. Jeżeli w procesie A r o n h o 1 d a, za­
miast mnożyć każdą pochodną przez spółczynnik br o tym sa­
mym skażniku, jaki ma spółczynnik, względem którego wzięto 
pochodną, mnożymy pochodną przez (—l)r£Cs"~rxtr, t. j. jeżeli 
tworzymy

o j
- rx1r -—, 

c'Ur

gdzie a,- są spółczynnikarai istotnemi danej formy rzędu n-tego, 
której J jest niezmiennikiem, .otrzymujemy t. z. ewektant 
(Cay ley).
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15. K a t aI e kt y k a n t y. Forma rzędu nieparzy­
stego —1 daje się zawsze wyrazić jako suma m po­
tęgą form liniowych

a?”-1 = +...............+ bm(xx-amx^m~\

Równanie, od którego zależy wyznaczenie 
spółczynników oą, . . . , am jest postaci

flp , ...... , 1

, ...................... f dm i U

U m -1 <i........................................ ) O-”

i nazywa się katalektykantem (Sylvester).
Też same rozważania stosować można i do form rzędu 

parzystego (patrz Cayley, Grelle LIV).
16. S y z y g i e. Tak nazywają się związki, zachodzące 

pomiędzy formami niezmienniczemi układu zupełnego.
17. Formy skośne (schiefe Formen, formes gaudies, 

forme gobbe, skwew); są to formy niezmiennicze o charakterze 
nieparzystym (patrz wyżej § 2).

18. Półzmienniki (Seminvarianten, peninvarianti), są 
to utwory, mające własność niezmienniczą nie dla wszystkich 
możliwych podstawień liniowych, lecz tylko dla podgrupy grupy 
całkowitej.

§ 5.

Układy zupałne form niezmienniczych.

Każdy niezmiennik lub spółzmiennik spół- 
z m i e n n i k a j e s t niezmiennikiem lub s p ó ł z m i e n- 
nikiemukładuzasadniczego.

Każda forma niezmiennicza układu form 
da je się zawsze złożyć przy pomocy kolejnego 
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stosowania procesu fałdowania (Twierdzenie Gor- 
d a n a.)

Dla danej formy lub danego układu form 
zasadniczych istnieje zawsze liczba skończona 
niezmienników i spółzmie uników, których k[a ż- 
dy inny niezmiennik układu jest funkcyą cał­
kowitą (Twierdzenie Gordan a).

Ogół tych niezmienników i spółzmienników tworzy to. co 
nazywamy układem zupełnym.

Liczba form układu zupełnego nie jest znana a priori. 
Granicę jej wyższą wskazał Gordan (Jour, de Lionville, 1879).

Liczba spółzmienników J stopnia m i rzę­
du p tomy rzędu n równa się liczbie spółzmien­
ników stopnia n i r z ę d u p formy rzędu m (Twier­
dzenie o wzajemności Hermit e’a>.

Inne ważne twierdzenie (Brios chi’eg o, Tow. naukowe 
w Erlangen, 1895) jest następujące:

Jeżeli dwie formy dwójkowe mają wspól­
ny czynnik liniowy, to ich spółzmie nnik jedno­
czesny stopni p, q i rzędu w wy r aź a się przez 
niezmienniki i s p ó ł z mienniki form, które otrzy­
mujemy z form danych, opuszczając ich czyn­
nik w spóIn y (Zastosowanietego twierdzenia podał Brioschi 
Acc. Torino. 1896).

Układ zupełny układu form liniowych. Każdy spółczyn- 
nik lub niezmiennik układu form liniowych ax, bx, . . . tworzy 
się z agregatów czynników trzech następujących typów:

1) niezmienniki typu (ab), . . .
2) spółzmienniki typu ax, bx, ay, by.
3) spółzmienniki typu (wy), . . .

Układ zupełny jednej lub dwu form kwadratowych. Układ 
zupełny formy kwadratowej ax2 tworzy się ze spółzmiennika 
ax2 oraz z niezmiennika (wyróżnika) (aa')2. Niezmiennik (aa')2 
wyraża się przez spółczynniki w ten sposób: 2(aoa2— a}2).
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Układ zupełny dwu form kwadratowych /* = ci^2, <p — b*2 
tworzy się:

1) z dwu form danych;
2) z wyróżników

A// = (a«')2, Av><f,= (bb'y;

3) z niezmiennika
Afv = {ab)2 = anb2 -i- a,b0 — :

4i z jakobianu form danych:

& = (ab\axbp= (aobl —b3) 2A-(aob2—a2b0) at b2—a2bt) x2-'

Pomiędzy temi formami zach'odzi związek: 

= — i (4/y <p2 — 2A/,, f<p-\- AV(p f2).
i :

Jeżeli jest tożsamościowo zerem, wtedy funkcye f i (p są 
proporcyonalne.

Jeżeli Ajj-Atp^,—A2J(p jest tożsamościowo zerem, wtedy 
obie formy mają czynnik wspólny.

Układ zupełny trzech lub więcej form kwadratowych 
f*—bx2y <p = bx2, ip = cx2, . : . tworzy się:

1) z n form danych;

2) z form AfV . . .

n (-‘-A) , . . ,
3) z ——x—- spólzmienników kwadratowych

(/■, ę?) = (/; . ■. . .

n (n—1) i u—2)
—6~ niezmienników typu

= 94 V7)? = (<IC) ~

ói0,

a,,

bo, ^0

Cl

a2 , b2 , c2
n(n2 4-3n-|-8) „ .....Razem —------- ----------- form niezmienniczych, wliczając 6

w to formy dane.
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Pomiędzy temi formami, prócz związków 
powyższych, odnoszących się do spólzmien- 
ników pomiędzy każdemi dwiema formami, 
istnieją związki następujące:

A// > A< <p, .4/ y,

—
A<p f 4, cprp , -^rp ip

A>pf 

•
, Aifjtp,

tp

Aff Af V 5 y } t

A<pf <P<P ,
A,py,, (p

= o,
Ay zlyl;), ip

fi <P, łp, 0

/ $yy A~ -F v^/y — A

f ~F ~F #y/+ A’y$<prp .

Pomiędzy niezmiennikami 4 lub 5 forpi 
istnieją nadto związki:

4r/> A^y, 21/-y, AJZ

^y/> 4 Afpyr ^y z
«04 -uyy 1

4 -1 ipyp , ^yz '
■^efi 4 A Qip, 4 ^ex

gdzie p może być w szczególności samą formą/;nadto mamy zwią­
zek

■^-fr ^ne ~F ^/z ^ew ^fe == ■>

i inne podobne.

Pomiędzy niezmiennikami sześciu form 
zachodzą (prócz poprzedzających) następujące związki:
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Rf<p<i>Rxea Kf(p% Rfiaij’ ^a<fx VłZCT i’xe — 0

Af q 1 f a

2R, fpy’Rxe° — A A -4 g> a

A V» Z» A " ip (T) ■A y> a

Oto niektóre związki pomiędzy niezmien­
nikami 4 lub więcej form:

2

2

-4/v, 4/ Z, f

A -4 <p xi V7

Z- 0

^/z, ■4/e
4 ĴTX1

4

Q

t <pRxl>xj -j- 0 ,

t 'P'I'X == H~ Ax'l’ $X<P “ł~ ^fx^v,i) •

Znikanie niezmiennika /7, należącego do trzech form kwa­
dratowych 99, ip ma znaczenie następujące:

Jeżeli RftpV jest tożsamościowe zerem, to 
trzy pary punktów, przedstawiających pier­
wiastki trzech form kwadratowych, przy rów­
nanych do zera, należą do tej samej inwolu- 
cyi, i odwrotnie.

Układ zupełny formy rzędu 3-go. Układ zupełny 
my f=z.axA~ax‘A. . . . tworzy się z form następujących :

i- /;

for-

2. A — (aa')8 axa'x — 2

j?2-

- <z\a?2
rr,2
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3. R = (AA')2 — (aa')2 (a"a"')2 (aa'") (a‘a")
= 2[4(aoa2—cp) (axa3—a22) — (a0a3—a,a2)2];

4. Q — (aA)aar2AjE = <aa')2 (ar a!')axa"x2
= (a02 a3 — 3aoa,a2 -j- 2ax 3) xx3 
-j- 3 (aoaxa3 — 2a0a22 ax2a2) xx2 x9
— 3 (aoa2a3 — 2ax2 a3 + ax a22) xx x22
— (aoa32 — 3axa2a3 -|- 2a23) x23.

Ilości A, R, Q są odpowiednio: hesyanem, wyróżni­
kiem i j a k o b i a n e m; pomiędzy niemi zachodzie 
związek

2 Q2 -P A3 4- Rp = 0.

Wyróżnik formy /’, jeżeli pominiemy czynnik stały, równa 
się wyróżnikowi formy A, t. j. R.

Jeżeli R = 0, wtedy f i A mają podwójny czynnik liniowy, 
wspólny obu tym formom; Q zaś jest zupełnym sześcianem tego 
czynnika liniowego.

Jeżeli A jest tożsamościowo zerem, wtedy Q jest sześcianem 
zupełnym formy liniowej.

Punkty, przedstawiaj ące pierwiastki f=0 i Q=0, 
są trzema parami punktów w inwolucyi, której 
punktami podwójnemi są pierwiastki równania 
A = 0.

Układ zupełny formy kwadratowej i sześciennej. Układ 
zupełny form f — ax2 = a'x2 =.............■ (p — bx3 = b'x3 = . ..
tworzy się:

1. z pięciu niezmienników:

Aff = (aa')2, = (AA')2, 2/A= (aA)2,
F — (ap)2, M — — (bp)2;

2. z czterech spółzmienników liniowych :
p = (ab)2 bx-, q = (ap)ax: r -= (pA)A^; s = (Op)O^

3. z trzech spółzmienników kwadratowych:
f; A = ((’ó')2^'^; 6 = (a A) ax A^ :

4. z trzech spółzmienników sześciennych :
(P j Q — A) bx2 A^ ; $ = (a b) ax bx2.
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Wszystkich f or m j es t 15. Znakowanie powyższe 
pochodzi od Gordana; znakowanie C 1 e b s c h a jest nieco 
odmienne.

Pomiędzy pięcioma niezmiennikami za­
chodzi związek:

- 2JP = Aff LA — 2Af^F. L + F2, 
gdzie

F = 2 “ A^f^ ) .

Niezmiennik Ljest wyróżnikiem formy 0. 
Inne związki są:

fF- r’=AL-WA^ —s2 = 0Jf+|p2A

Formę 6 można, zamiast przez nasunięcie (/', A), wyrazić 
przez nasunięcie (99, p) tak, że:

6 = (f, A) = (99, p).

Wypadkowa form f i 99, wyrażona przez niezmienniki za­
sadnicze, równa się F— 2Af^Aff.

Układ zupełny dwu form sześciennych.
Układ zupełny dla form f—Ug3 — a'xA = . . . ; 99 = bxA = b'^3=... 
składa się z następujących 26 form:

J) siedmiu niezmienników:

-4aa, A^o,
J = (f.cpY, fl=(AV)(V«)(A6).

2) sześciu spótzmienników liniowych:

Ti = (/■, V)‘-. p = (<p, A)2,
(A, p), (A, 71), (V, p), (V, 71)

3) sześciu spółzmienników kwadratowych:

= .(/■, Z’»2. <p;8, Q ~ (A ę9)2,
(aV), (7?, 93)2, z);
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4) sześciu spółzmienników sześciennych:

/•, <p, Q = (f,b), К=(ч>.^), (fj), (<M);

5) spółzmiennika stopnia czwartego:

# = (Л ?0-

Zachodzi tuzwiązek zasadniczy bardzo 
prosty

(f, л) + (<p, p) = 0.

Wyróżnikiem formy 6 jest:

Лее = ;

nadto jest:
(/■, л) = V, A); 2.0 = (p. л).

Pomiędzy 7 niezmiennikami zachodzą dwa związki:

Лдд , А во , Л?д

20s - Лдн , А ее , dęe

Aqv ,

2 JaV) — 4 (AS»A^ — .

Wypadkowa form/, cp równa się 2— 2J’.

Dawniej mniemano, że układ zupełny dwu form sześcien­
nych składa, się z 28 form (patrz np Clebsch: „Binäre For­
men“), potem odkryto, że dwa spółzmienniki liniowe były zby­
teczne, bo można je wyrazić wymiernie przez inne (patrz Sylve­
ster C.R. 1877, D’Ovidio i Gerb al di, Acc. Torino, 1880).

Można tworzyć i inne spółzmienniki liniowe; wyrażenia ich 
za pomocą niezmienników układu zupełnego są:

(<?, V)2 = (^ A); (A, A)2 = (p, V);

(ę?, A9)3 * * * * * = (p. A); (f\ V2)3 — (a, V);
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— (A nP)2 — (P) P2)2 — n H~ №00 + I J2) P (A, j

— {<p. ^p)2 = (A ^2;a = 4a p + (--ie@4-№) — J (?, p);

(A p2)2 = 4^ + p + '7 (A,p) ;

(<p, Ti2)2 — A^p --|- Agę n -p J(y, n).

Jeżeli /2 = 0, a nie są zerami minory wyznacznika 2-go 
rzędu, przez który wyraża się/22 (patrz wyżej), wtedy istnieje 
kornbinacya liniowa /4-ży form f i (p, będąca sześcianem zupeł­
nym spółzmiennika, liniowego p lub ti; te dwie formy w tym 
przypadku (po za czynnikiem) zlewają się. Zachodzi również 

twierdzenie odwrotne.
Jeżeli są zerami wszystkie minory 2-go rzędu wyznacznika, 

za pomocą którego wyraża się /22 (a więc jest zerem i /2), wtedy 
cp jest typu f + (jest spółzmiennikiem formy /) lub f i cp są
sześcianami zupełnemi. W obu przypadkach p i n są tożsamo­
ściowe zerami.

Układem trzech form sześciennych zajmował się v. Gall (Math. 
Ann. XLV, 1894).

Układ zupełny formy dwójkowej dwukwadratowej. Układ 
ten dla formy f= tworzy się z utworów następujących:

1) Dwa niezmienniki:

i — (a a')* — 2 (a0 a4 - 4a4 a.A -f- 3 a22);

• 7 = (/, Hy = • a a'y (aa")2 (a'a")2;

a„, «i,

«i, a,,

^2, ^3’

a^

(<3

aA

2) Dwa spółzmienniki dwukwadratowe f,

H — (aa'yaa2n'x2 = 2[ (a0o3—- (aoa3 ay^x^.r^ 

+ (flo — 3e22) + 2(ut a4 — n2 rtahqa:;,3

—(<fo ^4 ---- J ^2^ .1 •

4
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3) Spółzmiennik rzędu 6-go:

T — (fx H} = (aa')2

= (a02 a3 — 3c/0 «j a2 -J- 2ax 3) xt 6

4- (a02a4 4~ 2o0ft1 a3 — 9aQa22 + 6«i2«2) o.‘|5a?2

4~ 5 (a„ r/j a, — 3 a0 a2 a3 4~ 2ax2 a3) xx 4 x22

4~ 10 (aj2a4 — a0 a32) xi3 £C23

+ 5 (— a3 u4 4- 3 a, a2 a4 — 2a{ n32) xx2 x24 
9

-f- (9 a4 <i22 — a24 (i0 — 2 a, a3 aĄ — 6 a32 a2) xx x2i

(3u, a3 a4 — ax a4‘ — 2«33) .

Formy Hi T Gordan oznacza przez A i t. Pomiędzy wy- 
pisanemi formami zachodzi związek :

7>2= - .ł.[7/»._-Łfl/2+2-/-3|.

Jeżeli przez m" oznaczymy trzy pierwiastki równa­
nia sześciennego

1 j . . .
z---- = 0, (równanie rozwiązujące)

Z r)Q = 23

i położymy:

// + mf= — 2<p2- H-irm'f==2ip2] H 4- m" f — --2Z2, 

będzie:
T = 2(py.>x.

Trzy formy kwadratowe ę?, Z mają ciekawą własność, 
mianowicie, że każda z nich jest jakobianem dwóch pozostałych

z m'—m" . . m" - m . m — m'
---- 2—" ^,<p^ = —2—^’V/)==—2—
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Wyróżnikiem formy/jest:

Kj = 1 - 6/) .

Rugownik form fi R, pomijając czynnik liczbowy, równa 
się kwadratowi wyróżnika formy f.

Jeżeli wyróżnik formy / jest zerem, to f ma czynnik po­
dwójny, i ten sam czynnik jest zarazem czynnikiem dwukrot­
nym dla H, pięciokrotnym dla T.

Jeżeli f iH. różnią się czynnikiem stałym, wtedy i tylko 
wtedy / jest kwadratem zupełnym formy rzędu 2-go.

Jeżeli R jest dokładną czwartą potęgą, nie znikającą tożsa­
mościowe, wtedy i — 0, j — 0, / zaś ma czynnik potrójny. Od­
wrotnie, jeżeli / ma czynnik potrójny, H będzie czwartą potęgą 
dokładną, i i j zaś będą zerami. W tym przypadku T będzie 
potęgą szóstą dokładną tego samego czynnika, który w / wy­
stępuje trzykrotnie.

Jeżeli jEfjest tożsamościowo zerem, to / jest dokładnie po­
tęgą czwartą wyrażenia liniowego i odwrotnie; w tym przypad­
ku T, i, j są oczywiście zerami.

Układ zupełny formy kwadratowej i dwukwadratowej. 
Niechaj będzie

/ = = a'x2 — ... ; <p = by = b'^ — ... ;

układ zupełny składa się z 18 form następujących :
1) Sześciu niezmienników:

■/./ (jak wyżej),

D — (</a')2, A — (ab)2 (a'b)2 — (ya)2,

B = (aH)'- (a'R)2 =■ C= (t/>%i yja) (%a) = (za)2.

2) Sześciu spółzmienników kwadratowych:

/; y = (a bf-bf2, x = (aH}2Rx2,

t == (yz) W = (ya)yxax, X = (%a)%xa .
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3) Pięciu spólzmienników dwukwadratowych:

<p, H = (6Ó',2 VZ42,

L == (bci^bAa*, M = (Ha) HA ax, K — (ip H) (px HXA .
9

4) Spółzmiennika stopnia 6-go:
T = (<r, H).

Wszystkich form jest 18.
Pomiędzy temi formami zachodzi związek:

B, A, B,

C2= i A, B+^- , i A , jD 
~Q~ “i" ~3~

B, i A . .7l) 
-g- 4- -3- ,

JA iB iD
3 6 "1" 18

Rugownik form f i <p ma postać

A2 — 4DB + j i /P.

Jeżeli C jest zerem, wtedy i tylko wtedy istnieje forma kwa­
dratowa g taka, że cp można wyrazić jako funkcyę kwadratową 
form f i g. Tym układem zupełnym zajmował się Harbordt 
(Math. Ann. I, 1869 \

Inne układy zupełne
Układ dla formy sześciennnej i d w u kwa­

dra t o w e j obliczał G u n d elfin ger (Tybinga 1885); potem 
Sylvester C. R. 1878 sprowadził układ do trzech formacyj. 
Układ ten składa się z 61 form, mianowicie: 20 niezmienni­
ków, 15 spółzmienników liniowych, 10 niezmienników kwadra­
towych, 8 niezmienników sześciennych, 5 niezmienników dwu­
kwadratowych, 2 niezmienników rzędu 5-go, jednego nie­
zmiennika rzędu 6-go.

Wypadkową dla formy sześciennej i kwadratowej obliczył 
Brioschi (Collect, math, in memoriam Chelini, Medyo- 
lan 1881).
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Dwie formy dwukwadratowe. Układ, obliczonyprzez Gor- 
dana (Math. Ann. II, patrz przekład niemiecki dzieła Faa di 
Bruno), składa się z‘28 form, a mianowicie: ośmiu niezmien­
ników, ośmiu spółzmienników kwadratowych, siedmiu spół- 
zmienników rzędu 4-go, pięciu spółzmienników rzędu 6-go.

Gordan początkowo wprowadził dwa utwory zbyteczne, jak to 
później zauważył Sylvester (C, R. 1887). Pomiędzy ośmiu nie­
zmiennikami zachodzi związek, którego obliczenie rozpoczął Bertini 
(Math Ann. XI, 1877) a ukończył d’Ovidio (Acc. Torino XV, 1880). 
I inni autorowie zajmowali się tern pytaniem (patrz wiadomości, za­
warte w nocie d’Ovidio „Sopra alcune classi di sizigie binarie“, Acc. 
Torino 1893) i notę Brioschi’ego (Acc. Torino, 1896). Wy­
padkową dwu form kwadratowych obliczył d’Ovidio (Acc. Torino, 
1880).

Forma rzędu piątego posiada najwyżej ‘23 formy niezmien­
nicze, a mianowicie :

4 niezmienniki stopni 4, 8, 12, 18
4 spółzmieuniki 1-go rzędu ,, 5, 7, 11, 13
3 2 „ 2, 6, 8
3 3 „ 3, 5, 9
2 4 „ 4, 6
3 „ 5 „ U 3, 7
2 6 „ „ 2, 4
1 spółzmiennik 7 ,, stopnia 5
1 9 jj „ 3.

Niezmienniki są tedy stopni 4, 8, 12, 18 co do spółczynni- 
ków formy rzędu 5-go; przez dwie pierwsze z pomiędzy nich 
wyraża się wyróżnik, obliczony przez Sal mon a (Camb.math 
Journ. V, 1850).

Układ zupełny dla formy rzędu 5-go znajduje się u Clebscha 
Patrz: Grordan „Invariantentheorie“: Faa di Bruno (przekład) 
„Binare Formen“ str. 328—355; Cayley; d’Ovidio (Acc. Torino, 
1880). Co do wypadkowej formy 5-go rzędu i kwadratowej patrz 
d’Ovidio (Mem. Soc. ital. delle scienze, t. IV, 1881), a co do wypad­
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kowej formy 5-go rzędu i dwukwadratowej lub dwu form 5-go rzędu 
d’Ovidio (Mem. Lincei IV, 1888).

Układy zupełne dla form rzędu 5-go i wraz z inną formą 
nie są jeszcze zupełnie znane, jeżeli wyłączymy tylko pracę 
W intera (Progr. Darmstadt, 1880), gdzie badany jest przypa­
dek formy kwadratowej i formy rzędu 5-go.

Układ zupełny formy dwójkowej szóstego rzędu składa się:

z 5 niezmienników stopni 2, 4, 6, 10, 15
„ 6 spółzmienników 2-go rzędu ,, 3, 5, 7, 8, .10, 12
„5 „ 4 „ „ 2, 4, 5, 7, 9
„5 „ 6 „ „ 1, 3, 4, 6
,, 3 ,, 8 ,, ,, 2, 3, 5
„ 1 „ 10 „ „ 4
„ 1 „ 12 „ „ 3

Ten układ zupełny znajduje się u Clebscba (Binäre Formen), 
u Gor da na (1. c.) i innych. Wyróżnik tej formy obliczył pierwszy 
Brioschi (Crelle LIII, Ann. di Math. I). Związki pomiędzy forma­
mi układu zupełnego znaleźli: Clebsch, Gordan, Stephanos 
(Comptes rendus XCVI), Maisano (Lincei XIX, Math. Ann. XXXI), 
d’Ovidio (Acc. Torino 1889, 1892, 1863). Wypadkową formy 6-go 
rzędu i formy sześciennej obliczył d’Ovidio (Acc. Torino 1892); 
układem formy 6-go i 4-go rzędu zajmował się v. Gall (Progr. 
Lemgo, 1873).

Układ zupełny formy dwójkowej rzędu 7-go składa się 
z utworów, przedstawionych w poniższej tablicy, gdzie widać 
odrazu numer kolejny, rząd i stopień każdego z nich.
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Rząd w zmiennych.

ä
a

*

O

CÖ

| U | 1 | z | Ó I 4 | Ó 1 6 1 7 1 8 I H | lu | 11 I 12 ! 13 14 I 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

_2 1 1 1 1 1 1 1 1 11 1 1 1
3 | | 1 | 1 | 1 11 PI Ul

1 1 1 1
1 1 1 1

1____1____
1 1 1

4 | 1 1 1 1 Ul Ui PI 1 Uli 1 1
5 1 1 1 1 1 2 | | 2 | | 2 | | 2 | i 1 1 1 1
6 1 i 1 3 | | 2 | | 2 | | 2 | | 1 1 1 1 1 1
7 1 1 3 | | 2 | | 4 | | 2 - | | 1 1 1 |
»|3| |3| |3| |3| | | | 1 1 1 1 1
9 | | 3 i | 5 | | 2 | | | | 1 1 1 1 1 1

10 | | 1 4 | | 4 | | | |l| 1 1 1 1 1 1
11 I i 5 | | 3 | 1 1 |1 1 1 1 1 1 1 1 1
12 | 6 | | 6 | | | | 1 | | | | | | | | |
13 | | 7 | |1 1 U 1 1 1 1 1 1 1 1 1 1
14 | 4 | | | !2| | | | | | 1 1 1 1
15 | | 3 | | 1 1 1 1 1 1 1 1 1 1 1 1
1612| |3| | | | | | | | ' 1 1 1. 1
17| |2| | | | | | | | | 1 1 1 1
181 9 | |1 1 1 I 1 1 1 1 1 1 1 1 1
19 | | 2 | | | | | | | I | | | | | |
20 | 2 | | | | | | | | | | | | | I |
22 | 3 | | | | | | | | | | 1 1 1 1
23| |1| | | | | | | | | 1
25 i u i i i i i ; i i i 1 1 1 1
26 |2| 1 | | 1 1 | 1 1 1 1 1 | 1 1
30 |1 1 1 1 1 1 1 ł 1 1 1 1 1 1 1 1 1

Układ zupełny dla formy 7-go rzędu badali: Krey (Diss. Ge­
tynga, 1874), Gordan (Ueber das Formensystem binarer Fonnen, 
Lipsk, 1875); Sylvester (Am. Journ. of. Math., II, 1879) podał 
tablicę form układu zupełnego, lecz wymagała ona poprawek;
(Math. Ann. XXXI, str. 318) traktował zagadnienie ogólniej i podał 
tablicę, wyżej umieszczoną.

Gall

Układ zupełny dla formy rzędu 8-go jest następujący :

Pascal. Rep I. 18
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Rząd w zmiennych.
St

op
ie

ń w
zg

lę
de

m
 sp

ół
cz

yn
ni

kó
w

.

0 2 4 6 8 10 12 14 18

1 1

2 1 1 1 1

3 1 1 1 1 1 1 1 1

4 1 2 1 1 2 ■ 1 1 1

5 1 1 2 2 1 3 1

6 1 1 2 3 1 1

7 1 2 2 3
8 1 2 2 2 —9 1 3 1

10 1 2 —
11 2

12 1

Razem form 69.
Układ ten znalazł Sylvester (Am. Journ. II); później badał go 

v. Gall (Math. Ann. XVII, str. 31, 149, 456), który początkowo mnie­
mał, iź znalazł trzy utwory zbyteczne w tablicy Sylvestera oraz 
brak jednego utworu (Cin4, t. j. spółzmiennika 4-go rzędu i 10 stopnia); 
potem na str. 456 t. XVII poprawił się co do utworów zbytecznych; 
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wreszcie co do C'1O4, to Sylvester (C. R. 1881) uznał jej zby- 
teczność.

Co do innych układów zupełnych patrz pracę Sylvester a (Am. 
Journ. II), które dla 9-go rzędu znalazł utworów 415, dla rzędu 
10-go zaś 475.

Wyróżnik formy rzędu 7-go badał Gordan (Math. Ann.XXXI). 
Co do związków pomiędzy dziewięcioma niezmiennikami formy rzędu 
8-go patrz A lag na, Rend. Palermo VI.

Ważną pracą o utworzeniu układów zupełnych jest praca Gor- 
d a n a: ,,Ueber des Formensystem etc.“, Lipsk, 1875.

§ 6-

Przedstawienia typowe form dwójkowych. Formy stowarzyszone.

Przedstawieniem typowem jednej lub wielu form 
nazywamy takie przedstawienie, którego zmienne są spółzmien- 
nikami wymiernemi, spółczynniki zaś niezmiennikami wymier- 
nemi form danych.

Dla formy axn rzędu nieparzystego dochodzimy do 
przedstawienia typowego w sposób następujący:

Wiemy, że dla takiej formy, gdy n>3, istniej ą zawsze dwa 
spółzmienniki liniowe, których wyznacznik jest różny od zera; 
niechaj temi formami będą ax. ßx. Podnosząc do potęgi n-tej 
obie strony tożsamości symbolicznej

ax (aß) = (aß) — ßx(aa), 

otrzymamy po stronie pierwszej f.(aß)n, po drugiej zaś formę 
rzędu n-tego ze spółzmiennikami ax i ßx, której spółczynniki 
są niezmiennikami. Pozostaje tedy tylko wyrazić te spółczyn­
niki przez niezmienniki zasadnicze.

Toż samo można uczynić dla układu form zasadniczych, 
ile razy istnieją dwa spółzmienniki liniowe.

Do przedstawienia typowego formy ixn rzędu parzyste­
go dochodzimy sposobem następującym:
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Wiemy, że dla n parzystego i >>4 istnieją, zawsze dwa 
spółzmienniki kwadratowe, których wypadkowa jest różna od 
zera. Za ich pomocą można zawsze utworzyć trzeci, liniowo od 
pierwszych niezależny, t. j. ich jakobian.

W każdym przypadku możemy tedy pomyśleć trzy spół­
zmienniki: a2^, y2x. Za ich pomocą można otrzymać 

przedstawienie typowe, podnosząc do potęgi obie strony 

związku tożsamości©wygo

Uzd — ot (tz, A)2 + fi ('/, B)~ -j- y (a, C)2, 

gdzie zł, B, C są odpowiednio jakobianami dla /5, y; y, a; a, /?. 
Jeżeli w szczególności y = Cl wtedy:

Kpz = ł { (a, ot)2 (^,/5)2 — | (a, fi)2]2},

a podnosząc do potęgi , otrzymujemy:

/’ ■ I = I \a («, -4)2 + fi («, B)2 -f- y (a, Cj2]2 .

Rozwijając, otrzymamy przedstawienie funkcyi / za pomocą 
zmiennych a, fi, y ze spółczynnikami, które są niezmiennikami.

Formy (niezmienniki, spółzmienniki), za pomocą których 
otrzymujemy przedstawienie typowe, nazywają się formami 
sto warzyszonemi (Schwesterformen).

Liczbą form stowarzyszonych jest /ć—j—3, 
jeżeli k liczba spólczynników form danych 
ijeżeli za nowe zmienne wybieramy spół­
zmienniki liniowe; jeżeli zaś wybieramy spół­
zmienniki kwadratowe, to liczba form stowa­
rzyszonych wynosi k10.

Każdy niezmiennik lub spółzmiennik ukła­
du danego może być wyrażony wymiernie (lecz 
nie w f u n k c y ą c h całkowitych) za pomocą f o rm 
stowarzyszonych przedstawienia typowego.
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§ 7.

Przedstawienie kanoniczne form.

Przedstawieniem k a no ni c z n em form nazywa 
się takie przedstawienie, w którem liczba spólczynników jest moż­
liwie najmniejsza; daje się to uskutecznić za pomocą odpowie­
dniego podstawienia liniowego (liczba spólczynników podsta­
wienia liniowego jest 4, a więc liczba, do którego zredukować 
można liczbę spólczynników, wynosi najwyżej 4).

Jeżeli w szczególności nowe wprowadzone zmienne i nowe 
spólczynniki są spólzmiennikami i niezmiennikami formy, mamy 
wtedy przedstawienie kanoniczne typowe.

i. Forma sześcienna.
Każdą formę sześcienną można przekształ­

cić w ten sposób:

tu £2, wyrażone przez x}, x0, są dwoma czynnikami liniowemi 
spólzmiennika kwadratowego A; A = — 2 £1 £2 •

2 Forma dwukwadratowa
Każda forma dwukwadratowa daje się 

sprowadzić do postaci

f = 6^£22 + f/,

gdzie m jest pierwiastkiem równania

P _ 2 (1 -4-3m2)3
j 2 9 m2(l — >n2)2

stopnia 3-go względem m2; £2 są czynnikami liniowemi jednej
z trzech form kwadratowych (p, ip, na które rozkłada się nie­
zmiennik rzędu 6-go (patrz wyżej str 268).
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Moduł (rs) podstawienia

1 *^1 “T" 2 *®2 ? £2 --- ^'1 d~ '’’2 ^‘2 ,
oblicza się z wzoru

1 4- 3 m2 j 
ł ó 3 m (1 - w/2) i ’

gdzie 7, i należy obliczyć dla formy kwadratowej ogólnej (nie- 
zredukowanej do postaci kanonicznej).

Aby forma dwu kwadratowa dala się prze­
kształcić na formę £i44-£24> j est koniecznem, by j—0.

3. Forma rzędu 5-go.
Każda forma rzędu 5-go da je się przedsta­

wić w postaci:

A-i (£1 mi ) ’ "4“ ^'2 (£1 ^2^2) '~ł- ^‘3 (£1 Wi3^2)55
t. j. jako suma trzech potęg piątych (Sylvester).

Ilości £2 są dwoma spółzmiennikami liniowemi formy 
rzędu 5-go, a mianowicie spółzmiennikami, które oznaczamy 
przez a, <5;

a = jest spółzmiennikiem liniowym stopnia 5-go
ó == £2 ,, >» >, ” 13 ,, ,

mJf m2, >n3 są pierwiastkami spółzmiennika sześciennego stopnia 
3-go (który oznaczamy zwykle przez 7), ilości Ze są określone za 
pomocą trzech związków:

+ A-2 + AJ R5 = I26 = - (/; £i5)5

5 (Z^JHj ~j~ /4-2^2 “T R 5 ~ ^3i — — (fi £/ ^25)

10 (kx + k2m2- -j- k3 w32) R 5 = Ii2 = = (f, ^2)5;

strony drugie są tu wyrażone jako nasunięcia formy f na kom- 
binacye liniowe £2, zaś R jest niezmiennikiem, który otrzy­
mujemy, tworząc nasunięcie drugie spółzmiennika kwadrato­
wego stopnia 8-go 'O' na formę :

R = (Ą^)3^ (6,7, fi)2-

Szczegóły znaleść można u Go rd an a (Invariantheorie).
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Jeżeli j ma jeden pierwiastek podwójny, który będzie wów­
czas pierwiastkiem równania <5 = 0, wtedy poprzedzająca forma 
kanoniczna nie jest możliwa. Będzie wtedy R2j — <52p, a kła­
dąc dla symetryi d = 7]l, q = otrzymamy formę kanoniczną 
(Bringa 1786):

6R'f = Bm* + 5^*% - ±A2^, 

gdzie A, Bsą niezmiennikami formy rzędu 5-go stopni 4, 8. Pod­
stawiając tu

5 B = — 4 A2Z, T]3 = rll X*Vl,

otrzymujemy formę H e r m i t e’a

1 --x5 — x — 4-1 4.o

4. Forma rzędu 6 go.
Forma ta może być sprowadzona do postaci kano­
nicznej

u6 w6 4~ w6 --J- 2 u vw (u — v) v — w) (w— u), 
gdzie u, w są trzema formami liniowemi, 2 zaś pier­
wiastkiem równania

«i, a2, ci 3 2

«1, u2, a3 + 3 «4
= 0

U3 3 Cl 4, «5

-j- 2, «4> ci„ «6

Jeżeli niezmiennik stopnia 4-go

«0, «i, (^2,

<h, «5, «6

jest zerem, wtedy forma rzędu 6-go sprowadza się 
do postaci

u6 -j- v6 -w6.
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O redukcyi formy 6-go rzędu do sumy czterech potęg szóstych 
patrz Salmon, Lessons, art. 246).

Inne tormy kanoniczne w przypadku ogólnym podali: B r i 11 
(Math. Ann. XX, str. 330), Brioschi i Maschke (Math. Ann. 
XXX, str. 496, Acc. Lincei 1888, Acta math. XII). Forma ostatniego 
jest postaci

x6 -|- ax5 + Px3 ■+■ x2 -j- yx -j- d ,

gdzie a, /3, y, ó są czterema niezmiennikami formy; to przedstawienie 
jest typowem i kanonicznem.

Inne jeszcze przedstawienie kanoniczne podał Brioschi (Ann. di 
mat. XI, 1883).

Co się tyczy historyi teoryi niezmienników, powiemy, że—jeżeli 
pominiemy pewne rozwiązania G-aussaiLagrang e’a)—wzięła ona 
początek swego rozwoju od Aronholda, Cayle y'a i S y 1 v e - 
stera. Potem Clebsch i Goordan wprowadzili rachunek tak 
zwany symboliczny i doprowadzili go do możliwego rozwinięcia; jakkol­
wiek pierwszy pomysł rachunku symbolicznego, pod inną—co prawda— 
formą, pochodzi od matematyków angielskich.

Szczegółowa historya teoryi niezmienników' mieści się w pracy 
Fr. Meyera („Bericht über den gegenwärtigen Stand der Invarian­
tentheorie“, Jahresbericht der Deut. Mathem.-Vereinig. II, 1892), prze­
kład S. Dicksteinaw „Pracach matematyczno-fizycznych“ t. VII, 
VII, IX i X).

Najwrażniejszemi dziełami, traktującemi o teoryi niezmienników’ 
są: Salmon „Lessons to the modern higher Algebre“, Dublin 
1859—1885 (przekład niemiecki Fiedlera, Lipsk 1863—1877, 
polski S ą g a j ł y, w t. II Algebry, Paryż, 1875): Brioschi, An- 
nali di Tortolini, I, 1861; Fiedler, Lipsk 1862; Clebsch, Binäre 
Formen, Lipsk 1872; Faä di Bruno, Formes binaires, Turyn 
1876. przekład niemiecki Waltera i Noether a, Lipsk 1881; 
Gordan, „Invariantentheorie“, Lipsk 1887; Ellis, „Algebra of 
Quantics, Oxford 1895.



ROZDZIAŁ XIII.

FUNKCYE ZMIENNYCH ZESPOLONYCH.

§ 1-

Wiadomości ogólne.

Do prostoty i dogodności przyjmiemy, że zmienną zespoloną 
xĄty przedstawia według znanego sposobu punkt na płasz­
czyźnie.

Zmienna zespolona X-\-iY nazywa się funkcyą m o n o- 
geniczną (lub wprost funkcyą) zmiennej zespolonej x-\-iy, 
jeżeli X i Y są (w pewnej części płaszczyzny, której punkty 
mają za spółrzędne x i y) funkcyami rzeczywistemi ciągłemi dwu 
zmiennych rzeczywistych x i y,czyniącemi zadość dwóm związkom:

a F _ 3 y a y _
3y dx 1 óy 3x

(określenie
Cauchy’ego);

albo inaczej: jeżeli w — X -j- i Y zależy w pewnej części 
płaszczyzny od z — x -f- iy w ten sposób, iż stosunek odpowied­

nich przyrostów, t. j. , ma granicę określoną i jedyną, bez 
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względu na sposób, w jaki Az dąży do zera, t. j. bez względu na 
to, w jaki sposób punkt, przedstawiony przez zmienną zespoloną 
(a:zbliża sią do punktu, przedstawionego 
przez x-\-iy (określenie Riemanna).

W § 3 podamy definicyę funkcyj anajitycznych we­
dług Weierstrassa.

Jeżeli X, Y są funkcyami rzeczy wistemi j e dno warto­
ści o w em i zmiennych sc, y, wtedy funkcya nazywa się jedno- 
wartościową, jednoznaczną, lub j ednopostacio wą 
(mo no dromiczną lub monotropową); jeżeli zaś są to fun- 
kcye, mające więcej wartości, to funkcya nazywa się wielo- 
znbczną, wielo wartościową, lub wielopodstacio- 
wą, (polidromiczną lub politropową).

W przypadku pierwszym, jeżeli dla wszystkich wartości 
lub wszystkich punktów wewnątrz uważanej części płaszczyzny 
funkcya w jest skończoną, mamy funkcyę holomorficzną, 
albo inaczej funkcyą o charakterze funkcyi całkowi­
tej, albo wreszcie regularną (Weierstrass).

Jeżeli funkcya iv staje się nieskończoną w jakimś punkcie 
z = P, lecz w ten sposób, że istnieje zawsze otoczenie tego pun­

ktu, wewnątrz którego funkcya — jest holomorficzną, wtedy 

funkcya w nazywa się meromorficz ną, a punkty, w któ­
rych staje się nieskończoną, nazywają się biegunami.

Przypadkiem szczególnym funkcyi holomorficznej jest fun­
kcya wymierna, całkowita; przypadkiem szczególnym 
funkcyi meromorficznej jest funkcya wymierna; przypadkiem 
szczególnym funkcyi monogenicznej jest funkcya algebra­
iczna, którą można określić ogólniej w sposób następujący. 
Załóżmy, że pomiędzy ilościami w i z zachodzi związek całko­
wity wymierny 92 (w,/) =0; wtedy w będzie w ogóle funkcyą 
wieloznaczną zmiennej 2; funkcya wymierna z) dwu zmien­
nych tu i z nazywa się funkcyą algebraiczną ogólną 
zmiennej z. Funkcyom algebraicznym poświęcamy roz­
dział XV.

Funkcya monogeniczna niealgebraiczna jest funkcyą prze­
stępną.
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Powiadamy, że z = a jest pierwiastkiem lub z e- 
rem rzędu k funkcyi jednoznacznej f(z), gdy /’(u)=0, oraz

I z )
gdy ---------r-j nie staje się ani zerem ani nieskończonością dla

\z a) ‘
z — a.

Powiadamy, że z — oo jest pier wiastkiem lub ze­
rem rzędu k funkcyi jednoznacznej f(z), gdy /’(oo) = 0 
nadto zkf(z) nie staje się ani zerem, ani nieskończonością dla 
z — oo.

Nazwiemy punkt z — a b i e g u n e m r z ę d u k funkcyi f(z) 

gdy funkcya ma w punkcie z — a punkt zerowy rzędu 

A:-tego Jeżeli w jest funkcyą jednoznaczną zmiennej z, wtedy 
tak część jej rzeczywista X j a k i spółczynnik 
części urojonej, tj. I”, czynią zadość równaniu 
różniczkowemu (Laplac e’a)

ó2u . 32u _
dx2 ' C>y2

części

Każda funkcya dwu zmiennych rzeczywistych //, czy­
niąca zadość równaniu L a p 1 a c e a, nazywa się f u n k c yą 
potencyalną lub funkcyą harmoniczną.

Odwrotnie: jeżeli X, Y są funkcyami cią­
gle mi ilości x, y i czynią zadość powyższemu 
równaniu różniczkowemu, to mogą one stano­
wić część rzeczywistą! spółczynnik 
urojonej funkcyi jednoznacznej.

Jeżeli część rzeczywista zmiennej w jest 
dana, to można wyznaczyć część czysto uro­
joną (z dołączeniem stałej dowolnej).

Jeżeli znanym sposobem przedstawimy za pomocą punktów 
na płaszczyźnie (w) wartości zmiennej zespolonej w, to ustano­
wimy odpowiedniość pomiędzy punktami płaszczyzny w a pun­
ktami płaszczyzny z. Mówimy wtedy, że płaszczyzna z jest 
odwzorowana na płaszczyźnie w.
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Rozpatrzmy część płaszczyzny z, na której funkcya w jest 
funkcyą jednoznaczną; punktowi z odpowiada punkt u\ 
linii ciągłej w obszarze zmiennej z odpowie linia ciągła w ob­
szarze zmiennej ?c. Odwzorowanie posiada wtedy następującą 
ważną własność.

Kąt między dwiema liniami, spotykają- 
cemi się na płaszczyźnie z, równa się kątowi 
pomiędzy o d p o w i e d n i e m i liniami na płasz­
czyźnie w.

Takie odwzorowanie nazywa się p o d o b n e m (conforme, 
patrz „Geometrya różniczkowa“) i odpowiada przekształceniu, 
zwanemu ortomorficznem (Cayley).

Trójkąt nieskończenie mały na płaszczy­
źnie z jest (pomijając nieskończenie małe 
rzędów wyższych) podobny do odpowiedniego 
trój katu nieskończonostkowego na płaszczy­
źnie W.

W punktach, w których jest ■ = 0, odwzorowanie po­

dobne ustaje.
Linie płaszczyzny z, dla których X= stałej, nazywają się 

liniami poziomemi, to dla których Y = stałej — liniami 
prądu (przepływu), obie — liniami równego poten­
cy a łu (e k w i p o t e n c y a 1 n e m i).

Linie poziome są prostopadłe do linij 
przepływu.

Zamiast na płaszczyźnie, można zmienną zespoloną przed­
stawić na kuli, rzucając stereograficznie punkty płaszczyzny na 
kulę. Otrzymujemy wtedy tę dogodność, że punkt w nieskoń­
czoności staje się jedynym punktem na kuli.
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§ 2.

Szeregi potęgowe zmiennych zespolonych.

O działaniach na zmiennych zespolonych, mianowicie o do­
dawaniu, odejmowaniu, mnożeniu, dzieleniu, podnoszeniu do po­
tęgi rzeczywistej mówiliśmy już w rozdziale I-ym; funkcye al­
gebraiczne tej zmiennej określiliśmy w § 1 rozdziału niniejszego. 
Pozostaje jeszcze rozpatrzenie podnoszenia do potęgi zespolonej, 
logarytmu, funkcyj trygonometrycznych zmiennych zespolo­
nych i t. p., co pozwoli nam na wprowadzenie funkcyj przestęp­
nych tych zmiennych. W tym celu zajmiemy się najprzód sze­
regami, a mianowicie szeregami potęgowemi.

Określenie szeregów o wyrazach zespolonych podaliśmy 
wyżej w rozdziale IV ym.

Określenia i twierdzenia zasadnicze o szeregach funkcyj 
zmiennych zespolonych są analogiczne do określeń i twierdzeń 
o szeregach funkcyj zmiennych rzeczywistych. W tenże sam 
sposób określamy zbieżność i zbieżność bezwzględną; należy 
tylko wszędzie w określeniach dawniejszych przez wartość 
bezwzględną rozumieć to, co nazywa się modułem 
lub wartością bezwzględną liczby urojonej (patrz Rozdz. 1, § 2).

Obszarem zbieżności takiego szeregu jest nie już odcinek 
prostej, lecz pole płaskie.

Równozbieżność danego szeregu funkcyj zmiennej 
zespolonej określamy w ten sposób: zachodzi ona wtedy, gdy 
dawszy sobie cf>0, można znaleść takie n, że dla każdego 
reszta Rn(z\ szeregu ma moduł mniejszy od o, dla wszelkiej war­
tości z w obszarze zbieżności:

Rozpatrzmy szereg potęg całkowitych dodatnich zmiennej 
zespolonej t. j.

'o 4- Z -j- flj z» 4- .
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Jeżeli dla z = z0 moduły różnych wyrazów 
szeregu potęgowego pozostają mniejsze od 
liczby A, wtedy dla każdej wartości 2, której 
moduł jest mniejszy od z0, szereg potęgowy 
jest zbieżny bezwzględnie, a więc niezależnie 
od porządku wyrazów.

Jeżeli dla z — z0 szereg jest zbieżny nie 
bezwzględnie, wtedy dla każdej wartości z 
o module mniejszym niż moduł c0, szereg bę­
dzie zbieżny bezwzględnie, a dla każdej war­
tości z o module większym od modułu z0 będzie 
rozbieżny.

Obszar zbieżności szeregu potęgowego 
tworzy koło, którego środek znajduje się w p«o- 
czątku spół rzędnych. Na punktach okręgu 
tego koła szereg może być zbieżnym bezwzglę- 
dnie, zwyczajnie, albo też być rozbieżnym. 
Mogą być szeregi zbieżne jedynie zwyczajnie 
dla wszystkich punktów okręgu (Pringsheim, 
Math. Ann. XXV).

Jeżeli spółczynniki a0, a2, ... szeregu
potęgowego są takie, że począwszy od pewne-

1 > • 1 4. i 1 jgo skaznika %, stosunek ---- p-~— daje się roz­

wiń ą ć na szeregi typu:

a n + z- 4-1 _ | 1 Zh ~l~ ri z 1 e2 1
+ t r n n2 • • • ’

tokoło zbieżności szeregu potęgowego ma 
promień równy 1. W punktach okręgu szereg 
jest rozbieżny, jeżeli jest zwyczajnie
zbieżny (wyjąwszy dla z = 1), jeżeli — 1
jest bezwzględnie zbieżny, jeżeli <Z. — 1; 
(Twierdzenie W eierstrassa, Crelle, LI).

Suma szeregu potęgowego jest funkcyą 
ciągłą zmiennej z dla każdego punktu we­
wnątrz koła zbieżności.
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Granica dla x — 0 sumy wyrazów, począw­
szy od wyrazu n-tego (n>>!) szeregu potęgowego 
zbieżnego, jest zerem.

W kole, znajdującem się całkowicie we­
wnątrz koła zbieżności, szereg potęgowy jest 
równozbieźny.

Jeżeli dwa szeregi potęgowe mają toż­
samo koło zbieżności i jeżeli dla każdej licz­
by dodatniej a znalesć można taką war­
tość z o module mniejszym od o, że warto­
ści obu szeregów będą równe dla tej wartości 
z, to wtedy spółczynniki odpowiednie obu sze­
regów są równe. Twierdzenie to utrzymuje się i wtedy, 
kiedy oba szeregi mają skończoną liczbę wyrazów z potę­
gami ujemnemi całkowitemi

Pochodna szeregu potęgowego jest sumą 
pochodnych jego wyrazów i ma to samo koło 
zbieżności co i szereg dany.

Szereg potęg ujemnych, jeżeli jest zbie­
żny dla wartości z0 zmiennej z, to jest bezwa­
runkowo zbieżny dla każdej wartości z, któ­
rej moduł jestwiększy od mod z0. Obszar zbie­
żności takiego szeregu przedstawia cała pła­
szczyzna,po wyłączeniu z niej pola koła, którego 
środek znajduje się w początku spółrzędnych.

Jeżeli szereg potęg dodatnich i ujemnych 
-|-oo

t. j. 2 nn zv j e s t z b i e ż n y d 1 a z — z0, to z dwu s z e- 
—oo

oo oo

r e g ó w 2 zn, 2 a~n z~n, pierwszy będzie zbież ny 
o i

bezwzględnie dla każdej w a r t o ś c i z, której 
moduł jest większy od m o d z0. Obszar zbież­
ności uważanego szeregu stanowi wogóle pier­
ścień kołowy, zawarty pomiędzy dwoma ko­
łami, mającemi środek w początku spółrzęd­
nych. W szczególności obszarem tym być mo­
że cala płaszczyzna lub tylko punkty okręgu.
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Jeżeli dwa szeregi potęgowe (o potęgach 
dodatnich i ujemnych) mają ten sam obszar 
z bieżno ści, w którym istniej e przynajmniej j e- 
denpunktctaki, żegdy opiszemy około tego pun­
ktu, jako środka, koło o dowolnie małym pro­
mieniu, będziemy mieli zawsze wewnątrz te­
go koła taki punkt/, że wartości obu szere­
gów dla z—z' będą równe, wtedy spółczynniki 
odpowiednie obu s z e r e g ó w m u s z ą by ć r ó w n e.

Jeżeli mamy nieskończoną liczbę szeregów 
potęgowych bezwzględnie zbieżny ch w obsza­
rze, zawartym pomiędzy dwoma okręgami; 
m ianowicie:

-f-oo 

f(z) = Z am,n zn ,
— co

i szereg

m
Ź fm (z) — f0 (z) 4" /j (z) /2 (*) +.............

3

jestrównozbieżny w tymże obszarze, wtedy 
szeregi nieskończone

tton + 4- Ct2n 4"..............................

są zbieżne dla każdej wartości n, a oznaczyw­
szy ich wartości przez an, będziemy mieli:

4-00 00
(ltl Zn ---- fm (z),

— 00 m = O

(Twierdzenie Weierstrassa, Beri. Akad. 1880; Stolz, Math. 
Ann. XXIV).

Jeżeli szereg potęg całkowitych dodat-
00

nich £ttn zn jest zbieżny dla wszystkich pun- 
0

któw z' koła ze środkiem w początku spółrzę- 
dnych, to sumę tego szeregu można wyrazić 
za pomocą szeregu potęg, odniesionego do pun­
ktu z' t. j.
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oo

/(*) = f\z') +2 (2 —

1

a obszarem zbieżności tego szeregu będzie 
koło, opisane około punktu z'.

Jeżeli z' jest punktem okręgu pierwszego kola o promieniu 
R i jeżeli on porusza się na tym okręgu, to promień zbieżności 
R' drugiego koła będzie się zmieniał i będzie miał swoją granicę 
wyższą.

Warunkiem koniecznym i dostatecznym na to, 
aby R było prawdziwym promieniem zbieżności 
szeregu pierwszego, jest, by ten szereg nie 
był już zbieżnym dla punktu zewnątrz koła 
o promieniu R i aby granica niższa dla R' była 
zerem.

Jeżeli granicą niższą dla R' jest r, wtedy 
prawdziwym promieniem zbieżności p erwszego 
szeregu j est R + r.

Jeżeli weźmiemy z' na obwodzie pierwszego koła lub 
blizko obwodu, to drugi okrąg będzie mógł obejmować punkty, 
nie zawarte w pierwszym.

§ 3.

Jeszcze o definicyi funkeyj zmiennych zespolonych. Funkcye 
analityczne Weierstrassa.

Funkcye zmiennych zespolonych określiliśmy wyżej sposo­
bem szczególnym i otrzymaliśmy t.z. funkcyemonogeniczne. 
Własność zasadnicza tych funkeyj polega na tern, że w każdym 
punkcie mają one pochodną jedyną, t. j. że granica stosunku 
przyrostów nie zależy od sposobu, w jaki przyrost zmiennej nie­
zależnej dąży do zera.

Pascal. Rep. I. 19 •
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Lecz możnaby oczywiście rozważać funkcyę zmiennej ze­
spolonej z punktu widzenia ogólniejszego: można mianowicie 
powiedzieć, że zmienna rzeczywista lub zespolona jest funkcyą 
zmiennej z = x-\-iy, gdy dla każdej wartości z (w pewnym 
obszarze) ma wartość oznaczoną. Wtedy wszeika funkcya 
rzeczywista lub zespolona dwu zmiennych x, y może być uwa­
żana za funkcyę zmiennej zespolonej; gdyż dawszy .sobie 2, 
mamy jednoznacznie wartość x oraz wartość y, a stąd i wartość 
funkcyi zmiennych x i y. Pozostaje jeszcze zbadać warunki, 
przy których tak określona funkcya jest ciągłą i ma pochodną. 
W ten to sposób ogólny można wprowadzić do analizy funkcye 
zmiennych zespolonych (patrz np. Stolz, „Vorlesungen über 
allgemeine Arithmetik“ II, oraz „Grundzüge der Diff. und Inte­
gralrechnung“ II. Lipsk, 1893). Wprowadzając następnie róż­
niczkował noś ć, przychodzimy do funkcyj monogenicznych; 
dla pozyskania tedy funkcyj monogenicznych wprowadzamy po­
jęcie różniczkowalności, lecz nie wprowadzamy przed­
stawienia analitycznego, od którego to pojęcia funkcya 
monogeniczna jest jeszcze niezależna.

Lecz wtedy powstaje myśl postępowania odmiennego, t. j. 
uprzedniego wprowadzenia drugiego pojęcia, aby dopiero z niego 
wypływało pojęcie pierwsze. Dochodzimy tym sposobem do 
funkcyj monogenicznych analitycznych Weierstrass a.

Nrechaj będzie szereg potęg całkowitych dodatnich ilości 
z—zo'i jeg° prawdziwe koło zbieżności około punktu zQ niechaj 
ma promień R. Weżmy na okręgu punkt z} i przekształćmy 
szereg na inny, odniesiony do punktu zx (patrz § 2). Niechaj 
promień nowego koła zbieżności będzie Rx (załóżmy, że jest on 
różny od zera); tym sposobem rozszerzamy funkcyę pierwotną 
na obszar, którego szereg pierwotny nie obejmował. Dla tych 
punktów szereg nowy jest dalszym ciągiem analitycz­
nym lub przeprowadzeniem analitycz nem pierwszego. 
Tak postępując, możemy przeprow adzić funkcyę w obszar 
rozleglejszy. Ogół tych wszystkich funkcyj, które przedsta­
wiają te różne szeregi stanowi funkcyę jedyną, którą, według 
W eierstrassa, nazywamy funkcyą monogeniczną- 
analityczną; różniczkowalność jej jest zapewniona skut­
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kiem różniczko walności szeregu potęgowego, Jest jasnem, że 
wybierając odpowiednio różne środki różnych kół zbieżności, 
po sobie następujących, można wyobrazić sobie różne drogi, 
prowadzące do tego samego punktu. Jeżeli na każdej z tych 
dróg dochodzimy zawsze do tej samej wartości funkcyi, ta funk- 
cya będzie jednowartościowa; w przeciwnym razie będzie 
ona wielo wart oś ci o w a.

Szereg pierwotny, dający początek wszystkim innym sze­
regom, rozszerzającym kolejno obszar pierwotny, nazywa się 
elementem początkowym lub pierwotnym fun­
kcyi analitycznej. Jeżeli tu i owdzie na pewnej linii 
przeprowadzenie nie jest możliwe, wtedy mamy f u n k c y ę 
o obszarze osobliwym.

Funkcya analityczna w pojmowaniu powyższem jest oczy­
wiście zarazem funkcyą monogeniczną w tern znaczeniu, o jakiem 
mowa w § 1. Naodwrót, funkcya monogeniczną w tern ostatniem 
znaczeniu niezawsze jest funkcyą analityczną; może ona (jak to 
zobaczymy) dać się rozwinąć na szereg potęgowy w otoczeniu 
pewnych punktów i wtedy obszar jej zbieżności przypada w ob­
szarze zbieżności funkcyi analitycznej. Lecz może się zdarzyć: 
albo że ta funkcya analityczna nie daje się przeprowadzić po za 
ten lub ów obszar, chociaż funkcya po za tym obszarem istnieje; 
albo też, mimo że daje się przeprowadzić, nie daje wszakże wartości 
równych wartościom funkcyi zewnątrz obszaru.

O funkcyach analitycznych W eierstrassa cytujemy prace 
następujące: W eierstrass (Functionenlehre, Berlin, 1886) 
Pincherle (Giorn. di Batt., XVIII), Biermann (Analytische 
Functionen, Lipsk, 1887), Puzyna (Teorya funkeyj analitycznych, 
t. I, Lwów, 1898).

Przykłady, odnoszące sią do uwag w ustępie poprzedzającym, 
znajdują się u Tanneryego (Beri. Akad. 1882), Schródera 
(Schlóm. Zeitsch. 1876), Pringsheima (Math. Ann. XXII, 1883) 
i innych.

Funkcyami o obszarach osobliwych zajmują się głównie: Poin­
care (Acta Soc. Fennicae, 1881), Appel (Acta math. I, 1882), 
G o u r s a t (Comptes rendus XCIV, 1881, Bulletin des Sciences math. 
XI, 1887), Lerch (Rozprawy Czesko - Król. Tow. nauk w Pradze, 
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dze, 1887, Dziennik Teixeiry 1892), Stieltjes (Bull, des sciences 
math., XI, 1887) Krygowski (Bull, de la Société math, de France, 
1897, Prace mat.-fiz. IX, 1898).

Najprostsze funkcye przestępne.

Funkcyae*, gdy z jest liczbą zespoloną, określa się przez 
szereg

zbieżny dla każdej wartości z.
Własność główna tej funkcyi e:. e** = 

utrzymuje się tu bez zmiany, jak również w 1 a- 
. , ds n o s c —— e- = e-.dz
Funkcye sin z, cos z, gdy z jest liczbą zespoloną, określają 

się przez wzory:
Z'3 . z5

= —............

1 z2 I z*
cos z = 1 - -gy + -..........

Twierdzenie o dodawaniu funkcyi ,,w s t a- 
w a‘‘ i „dostaw a“ i twierdzenia z niem zwią­
zane, pozostają bez zmiany i dla argumentów 
zespolonych.

Wzorem zasadniczym jest wzór:

e« + w_ e«(cos l) i sin J),
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Funk cy a e-jest peryodyczna, t. j. nie zmie­
nia swej wartości, jeżeli z powiększamy o 2kni 
(k j e s t liczbą całkowitą jakąkolwiek).

Każdy pierwiastek równania e'= A-\- iB n a- 
zywa się logarytmem neperowym liczby ze­
spolonej AĄ-i B. Równanie to ma nieskończe­
nie wiele pierwiastków, które są w ogóle 
wszystkie zespolone; jeden z nich otrzymuje­
my z drugiego, dodając liczbę postaci 2kni 
(k c a ł k o w i t e), Możemy nazwać wartością główną 
logarytmu neperowego wartość, w której spółczynnik przy i 
jest zawarty między —n a -\-n (włączając: -f-Tr); oznaczamy 
ją przez log e (A -|- i B).

Funkcyę (^określamy za pomocą wzoru

a: = e^(iog(,«4-2ArjrO.

W ten sposób a: może mieć w ogóle nieskończenie wiele warto­
ści; uważać będziemy tylko wartość, odpowiadającą wartości 
k = 0 i nazywać ją będziemy wartością główną po­
tęgi az.

Jeżeli położymy z = x -j- i' y, a — p (cos a-\-i sin a), będzie

az = q [ cos x (a -f- 2 kri) -j- i sin x (a -j- 2 kn) J

X e-y(«+2^) [cos (y logo sin (y logfp) |.

Jeżeli przez az rozumiemy jedynie wartość główną, wtedy 
az nie czyni już zadość wszystkim głównym własnościom potęg, 
t. j. związkom:

az. aZi — a:+% (a* )-< — aZZi, log az = z log a, 

gdyż wartość główna np. wyrażenia (a-')-* jest jedną z wartości 
wyrażenia a"<, lecz nie jest jego wartością główną.

Co do różnych określeń funkcyj wykładniczych i logarytmowych 
patrz: Durège, Théorie der Fnnctionen, Lipsk, 1864, rozd. V; Briot 
et Bouquet, Fonctions elliptiques II; Stolz, Arithmetik II, i t. d.
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§ 5-

Granica, ciągłość, różniczkowanie i całkowanie w obszarze zespolonym.

Określenie i twierdzenia zasadnicze, odnoszące się do gra­
nic i ciągłości, pozostają bez zmiany dla funkcyj zmiennych ze­
spolonych.

Pochodna, jak powiedzieliśmy, określa się, jak zwykle, 
jako granica stosunku przyrostów i można dowieść, że twierdze­
nia, odnoszące się do sumy, iloczynu i ilorazu, funkcyi złożonej, 
funkcyi odwrotnej i t. d., pozostają bez zmiany, jak również 
prawidła, odnoszące się do różniczkowania funkcyj elemen- 
towych-

Gro dnem jest uwagi twierdzenie: Istnienie pierw­
szej pochodnej funkcyi zmiennej zespolonej 
pociąga za sobą istnienie pochodnych wszel­
kiego rzędu.

Jeżeli funkcya jednowartościowajest z e- 
remrzędufc wpunkcie (nie znajdującym się 
w nieskończoności), to jej pochodna jest ze­
rem rzędu A;— 1; jeżeli punktem tym jest nie­
skończoność, wtedy pochodna dla z — oo będzie 
zerem rzędu It -j- 1.

Jeżeli funkcya je dnowartościowa ma bie­
gun rzędu k wpunkcie, znajdującym się w od­
ległości skończonej, to pochodna jej ma w tym 
punkcie biegun rzędu Zc —|— 1; jeżeli tym pun­
ktem jest nieskończoność, to pochodna ma 
w nim biegun rzędu li — 1.

Podamy kilka spostrzeżeń, odnoszących się do całkowania.
W przypadku zmiennych rzeczywistych droga całko­

wania jest z góry ustalona przez to, że zmienna przebiega zaw­
sze po osi odciętych. Weźmy teraz dwa punkty na płaszczy­
źnie zespolonej i połączmy je linią. Podzielmy tę linię na n 
części i niechaj ó(, ó2, . . . oznaczają różnice pomiędzy wartością- 
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mi zmiennej zespolonej, odpowiadaj ącemi kolejnym punktom 
podziału. Niechaj /i, f2, . . . oznaczają wartości funkcyi / w pun­
ktach, znajdujących się pomiędzy temi punktami podziału. Gra­
nica sumy £frdr, w założeniu, że ó,, J,, . . . dążą do zera, gdy 
n rośnie do nieskończoności, jest całką określoną funkcyi. 
Jeżeli zmieniamy granicę górną całki, mamy funkcyę całko­
wą. Otóż tu ujawnia się fakt nowy, jakiego niema w przypad­
ku zmiennych rzeczywistych, t. j. że do każdego punktu dojść 
można w nieskończenie wielu kierunkach, gdy tymczasem 
w przypadku zmiennych rzeczywistych dochodzi się do pewnego 
punktu, wychodząc z innego, tylko w jednym kierunku (jeżeli 
wyłączymy przejście przez nieskończoność.

Całka funkcyi monogenicznej jest rów­
nież funkcyą mon ogenicz n ą. Będzie ona jedno - lub 
wielo wartościowa, stosownie do natury funkcyi danej.

Jeżeli funkcya dana jeśt monogeniczna, 
jednowartościowa i holomorficzna w obsza­
rze jedno obwodowym, to całka jej ma zaw­
sze w danym punkcie jednę wartość, niezależ­
nie od drogi, którą do tego punktu dochodzimy. 
Twierdzenie to zawdzięczamy Cauchyemu; powrócimy do 
niego w paragrafie następnym, w którym podamy różne twier­
dzenia, odnoszące się do funkcyj monogenicznych.

§ 6.

Różne twierdzenia o funkcyach monogenicznych, holomorficznych 
i meromorficznych.

Funkcya holomorficzna w danym obszarze 
nie może mieć wszystkich pochodnych rów­
nych zeru w pewnym punkcie, nie będąc w ca­
łym tym obszarze ilością stałą.



296 Rozdział XIII.

Funkcya holomorficzna w danym obsza­
rze i stała dla wszystkich punktów linii choć­
by najmniejszej, jest stałą w całym obszarze.

Funkcya holomorficzna wdanym obsza­
rze ma wszystkie pochodne również holomor­
ficzne.

Funkcya holomorficzna w obszarze skoń­
czonym ma skończoną liczbę zer stopnia skoń­
czonego i całkowitego.

Jeżeli funkcya jest meromorficzną w pe­
wnym obszarze, to ani ona sama, ani jej pocho­
dne nie mogą znikać w punkcie.

Funkcya meromorficzną w obszarze skoń­
czonym m a p i e r w i a s t k ó w i biegunów liczbę 
skończoną i wszystkie one są stopnia skoń­
czonego i całkowitego.

Funkcya meromorficzną w danym obszarze 
równa sięfunkcyi wymiernej, powiększonej 
o funkcyę holomorficzną w tymże obszarze 
Jeżeli «1, a2, ... są biegunami funkcyi danej, to rozłożywszy 
funkcyę wymierną ua ułamki proste (patrz Rozdział I), wyra­
zimy ją w ten sposób:

11 _L . . w _l_ I _|_ . . . _|_ -4- . . . .
(x~ ' x—ax (x—a2)h ’ ’ * x—aa 1

gdzie stałe Bx, . . , będące licznikami ułamków, których mia­
nowniki są pierwszemi potęgami dwumianów x— ax, x — a2, . . . , 
nazywają się pozostałościami (residua) funkcyi 
(Cauchy).

Funkcya holomorficzna na całej płasz­
czyźnie, której moduł jest wszędzie mniej­
szy od liczby danej, jest ilością stałą.

Funkcya holomorficzna na całej płasz­
czyźnie, mająca jako jedyny biegun z =■ oo, 
jest funkcya wymierną całkowitą.
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Funkcya meromorficzna na całej p ł a s z- 
czyżnie (i dla z — oo) jest funkcyą wymierną, mo­
że więc mieć tylko skończoną liczbę pierwiast­
ków i biegunów stopnia skończonego.

Jeżeli funkcya f(z) jest holomorficzną 

w obszarze jednoobwodowym, to całka jf(z)dz, 

wzięta po krzywej zamkniętej wewnątrz tego 
obszaru, jest zerem. (Twierdzenie Cauchy’ego).

Przy założeniach twierdzenia poprzedza­

jącego, całka lf(z)dz ma wartość zależną jedy­

nie od granic a niezależną od drogi całko- 
w a n i a.

Jeżeli funkcya f (z) jest holomorficzną 
w obszarze o obwodzie zespolonym, to całka 
lf(z)d:, rozciągnięta od jednego punktu do dru­

giego, a także od punktu do tegoż samego pun- 
ktupolinii zamkniętej, zachowuje wartość 
stałą przy zmianie drogi całkowania wtedy, 
gdy nowa droga daje się sposobem ciągłym 
otrzymać z dawnej i gdy na wszystkich sta- 
dyach odkształcenia pozostaje wewnątrz ob­
szaru, nie spotykając nigdzie obwodu.

Mówimy, że zmienna przebiega obwód w kierunku doda­
tnim, jeżeli podczas przebiegu pozostawia obszar zawsze po 
stronie lewej.

Jeżeli funkcya jest holomorficzną w ob­
szarze, mającym postać pierścienia, t. j. w ob­
szarze o dwóch obwodach, z których jeden 
znajduje się wewnątrz drugiego, wtedy całka 
jej, rozciągnięta w kierunku dodatnim po ob­
wodzie zewnętrznym, równa się całce, rozcią­
gniętej w kierunku ujemnym po obwodzie we­
wnętrznym.

Jeżeli funkcya jest holomorficzną wpe- 
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w n e j części płaszczyzny o obwodzie pojedyn­
czym, to jej wartość w pewnym punkcie a daje 
się wyrazić w ten sposób:

f(a) = 5—. ——— dz,v J z—a

gdzie całka jest rozciągnięta wkierunku do­
datnim po obwodzie pola.

Jeżeli funkcya f (z) jest m e r o m o r f i c z n a 
w obszarze o obwodzie pojedynczym, to całka 

wzięta po obwodzie w kierunku dodatnim, ró­
wna się sumie pozostałości funkcyj wzglę­
dem biegunów, znajdujących się w obsza­
rze.

Jeżeli funkcya f(ź) jest meromorficzna 
w obszarze i jeżeli 7W0, w/c. ...są r z'ę d a m i j e j zer, 
Woo, 7n'oo, rzędami jej nieskończoności, wtedy 

1 f fW 
f(z) dz —

gdzie całka rozciąga się po obwodzie obszaru 
w kierunku dodatnim. Toż samo twierdzenie można 
wypowiedzieć w ten sposób:

Jeżeli funkcya f(z) jest meromorficzna 
w o b s z a r z e o p o j e d y ń c z y m obwodzie i jeżeli 
wychodząc z pewnego punktu obwodu, przebie­
gamy go w kierunku dodatnim i obliczamy 
zmianę, jakiej w sposób ciągły doznaj e argu­
ment, gdy powracamy do punktu wyjścia; wte­
dy różnica pomiędzy temi dwoma argumenta­
mi jest wielokrotnością liczby 2?r. a mianowicie
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równa się 2 ku, gdzie k — —^Woo (C a s o r a t i, Teori-
ca etc., str. 43(1).

Wfunkcyi meromorficznej na całej pła­
szczyźnie liczba zer równa się liczbie nie­
skończoności, jeżeli zero lub nieskończoność 
rzędu i uważamy za zjednoczenie i zer lub 
nieskończoności. Stąd otrzymuje się łatwo twierdzenie 
zasadnicze algebry, że wielomian wymierny ma tyle pierwiast­
ków, ile wynosi jego stopień.

Funkcya holomorficzna w kole, którego 
środek jest w punkcie z0, daje się rozwinąć 
na szereg według potęg całkowitych dodat­
nich dwumianu z— z0, zbieżny w tern kole. Sze­
reg ten można napisać w postaci, nadanej mu 
przez Cauchy’ego (Acc. Tor., 1831-2,Comptesrendus 1846).

1 r f^Jz , /• (W
2ai J z — z0 0 2TiiJ (z — z0)2 

+ (z — z0)2. I f (z) dz 
(2 —^0)3

gdzie całki rozciągają się w kierunku dodat­
nim po obwodzie koła lub po jakimkolwiek 
obwodzie spółśrodkowym, zawartym w obsza­
rze. Można ten szereg przedstawić też w po­
staci wzoru Taylora-Maclaurina:

7U)=/U)+(*-<) + +.....

Jeżeli funkcya jest holomorficzna w ob­
szarze pierścieniowym, zawartym pomiędzy 
dwoma kołami spółśrodkowemi o środku zto 
daje się rozwinąć na szereg, postępujący we­
dług potęg dodatnich i ujemnych dwumianu 
z — z0, zbieżny w tern polu. Otrzymujemy wtedy 
szereg Laurenta (Comptes rendus 1843, t-XVII, str. 939)
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+ oo

— OO

gdzie całka rozciąga się wzdłuż jednego z ob­
wodów w ki,e runku dodatnim lub wzdłuż okrę­
gu spółśrodkowego i zawartego w pierścieniu, 
ograniczonym dwoma okręgami.

§ 8.

Punkty osobliwe istotne.

Niechaj będzie funkcya dana na całej płaszczyźnie; jeżeli 
funkcya ta, nawet w nieskończoności, nie posiada innych pun­
któw osobliwych prócz biegunów (t. j. punktów, w których od­
wrotność jej pozostaje jedno wartościową i jest zerem), t. j. jeżeli 
jest funkcyą meromorficzną na całej płaszczyźnie (porów. § 1), 
wtedy, jak wiemy, jest funkcyą wymierną.

Jeżeli mamy funkcyę przestępną, określoną dla całej 
płaszczyzny, to muszą istnieć takie punkty; w których ani ta 
funkcya, ani jej odwrotność, nie pozostają jednopostaciowemi; 
takie punkty nazywająsię istotnie osobliwemi. Źe mogą 
istnieć punkty, mające taką własność, okazuje odrazu rozważa­
nie jednej z najprostszych funkcyj przestępnych, mianowicie 
funkcyi wykładniczej.

Jeżeli pewien punkt jest punktem osobli­
wym istotnym funkcyi, to punkt ten jest za­
razem punktem istotnie osobliwym jej odwro­
tności.

Granica funkcyi, jeżeli zmienna jej zbli­
ża się jakimkolwiek sposobem do punktu isto­
tnie osobliwego, jest nieoznaczona.

Przy zbliżaniu zmiennej do punktu isto­
tnie osobliwego można sprawić, by moduł róż­
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których w a r-w

nicy pomiędzy wartością funkcyi i jakąkol­
wiek daną wartością A był mniejszy od wszel­
kiej ilości danej dowolnie

Jeżeli damy A, to możemy w ogóle znaleść 
w otoczeniu punktu istotnie osobliwego nie­
skończenie wiele punktów, 
t o ś ć f u n k c y i r ó w n a się A; mogą wszakże ist­
nieć dwie i nie więcej niż dwie wartości w y- 
j ątk owe nad, dla których niema w otoczeniu 
punktu a żadnego takiego punktu, wktórymby 
wartość funkcyi była A. (Twierdzenie P icard a, Com- 
ptes rendus LXXXVIII, LXXXIX; Ann. de l’Ecole Normale 
1880; Traite d’Analyse, t. II, str. 122).

Według tego ostatniego twierdzenia punkty istotnie oso­
bliwe dzielą się na trzy kategorye:

1) punkty, dla których wartości wyjątkowe A, o których 
mowa wyżej, nie istnieją;

2) punkty, dla których istnieje jedna taka wartość wy­
jątkowa. Takim naprzykład jest punkt 2=0 dla funkcyi

1
. 1 ’sm —- 

a wartością wyjątkową A w tym przypadku jest A = 0;
3) punkty, dla których istnieją dwie wartości wyjątko- 

i
we A. Takim jest punkt 2=0 dla funkcyi e '■, a wartościami 
wyjątkowemi są A = 0, A == oo.

Funkcya j ednopostacio w a, mająca nieskoń­
czenie wiele biegunów, ma, jako punkt istotnie oso­
bliwy, punkt graniczny biegunów

Funkcya, nie mająca bieguna w odległości skończonej na 
płaszczyźnie, jest funkcyą całkowitą lub holomorficzną na całej 
płaszczyźnie, oprócz w punkcie nieskończonym Jeżeli w nieskoń­
czoności nie ma bieguna, to nie może być wielomianem całkowi­
tym: jest funkcyą przestępną całkowitą i ma 
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w nieskończoności punkt istotnie osobliwy. Fun- 
kcya taka daje się rozwinąć na szereg potęg cał­
kowitych dodatnich, zbieżny dla każdego punktu 
płaszczyzny.

Funkcya taka może mieć nieskończoną liczbę 
zer w odległości skończonej.

Jakie jest wyrażenie ogólne takiej funkcyi, mającej zera 
z góry dane? Na pytanie to odpowiada sławne twierdzenie 
Weierstrassa (Beri. Akad. 1876), będące rozszerzeniem twier­
dzenia, podanego przez Cauchyego. Twierdzenie Cauchy’ego 
brzmi.

Jeżeli aj, z2, .. są punktami zerowemi funkcyi, 
jeżeli lim aH = co i szereg | — 'jest zbieżny, to 

funkcya, mająca za zera tylko punkty powyżej da­
ne, nie mająca żadnego bieguna a jakojedynypunkt 
osobliwy punkt w nieskończoności, ma postać

oo / 2 \
f(z) = ceG^H\\----- — ,

1 \ ttn I

gdzie G(z) jest funkcyą holomorficzną na całej pła­
szczyźnie.

Twierdzenie Weierstrassa jest następujęce:

Jeżeli szereg]^ — nie jest zbieżny, to mo- 

źna dobrać zawsze liczbę całkowitą dodatnią co, 
stalą lub zmieniającą się wraz z n, w ten spo­
sób, aby szereg

a» (z—an) n

był równozbieżny na całej płaszcz-y żnie, i wtedy 
będzie:
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gdzie

W każdym przypadku a> — n — 1 czyni zadość 
powyższemu warunkowi.

. / z \ Z"(^)
Czynnik I 1---- e nazywa się czynnikiem

pierwszym lub pierwotnym. W twierdzeniach poprze­
dzających zakładamy, że punkt —zero nie zawiera się pomiędzy 
punktami a„. Jeżeli jest tam k-razy, to do iloczynu przybywa 
czynnik zk.

Jeżeli o) jest stałe, to otrzymujemy funkcye holomorficzne, 
mające rodzaj; liczba to nazywa się rodzajem, gdy niezmierna 
się wraz z n i jest najmniejszą pomiędzy wezystkiemi liczbami, 
czyniącemi zadość powyższemu warunkowi (Laguerre, Com- 
ptes rendus, XCIV, XCV, XCVIII; Ces ar o, Comptes rendus, 
XCVIII i t. d.).

Funkcya jednowartosciowa na całej płasz­
czyźnie, mająca w odległości skończonej tylko 
biegun, jest zawsze ilorazem dwu funkcyj całko­
witych; można przeto, przy pomocy powyższego 
otrzymać wyrażenie takiej funkcyi.

Jeżeli chcemy w podobny sposób przedsta­
wić funkcyę j edno wartościową na całej płaszczy­
źnie (nawet w nieskończoności) i mającą jedyny punkt 
istotnie osobliwy z = a w odległości skończonej, 
to można zastosować wzór podobny do poprze­

dniego, kładąc tylko zamiast — wyrażenie ——- , (In z—Cl
Z poprzedniego twierdzenia wypływają wnioski nastę­

puj ące:
Funkcya j edno warto ściowa, która nie ma ani 

zer*ani biegunów wodległości skończonej, a jako 
punkt istotnie osobliwy ma punkt w nieskończo­
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ności jest postaci gdzie ćr(^) jest funkcyą 
całkowitą.

Funk c y a jednowartościowa, która ma skoń­
czoną liczbę zer w nieskończoności, nie ma bie­
gunów, a w nieskończoności ma jedyny punkt 
istotnie osobliwy, jest postaci

P(z)eG<‘\

gdzie F (z) jest wielomianem
Funkcya jednowartoścowa, mająca skończoną 

liczbę zer i skończoną liczbę biegunów, w nieskoń­
czoności zaś jedyny punkt istotnie osobliwy, jest 
postaci

(z)

gdzie /’, Q są dwoma wielomianami.
Postępowanie, za pomocą którego dowodzi się wzoru 

Weierstrassa, może służyć do wyrażenia funkcyi, mającej 
na płaszczyźnie nieskończenie wiele biegunów, których punktem 
granicznym jest punkt w nieskończoności, za pomocą sumy 
funkcyi holomorficznej i szeregu zbieżnego na całej płaszczy­
źnie, którego każdy wyraz jest funkcyą wymierną zmiennej zr 
mającą jeden tylko biegun w jednym z biegunów funkcyi da­
nej. Tym sposobem otrzymujemy przedstawienie funkcyi o nie­
skończenie wielu biegunach, różne od przedstawienia pod posta­
cią ilorazu iloczynów.

Rozszerzenie tego wzoru na przypadek, w którym istnieje 
nieskończenie wiele punktów istotnie osobliwych (zamiast bie­
gunów), stanowi twierdzenie Mittag- Lefflera.

Twierdzenie Weierstrassa daje wyrażenie funkcyi je- 
dnopostaciowej, mającej jeden punkt istotnie osobliwy; na­
suwa się tu przeto, odrazu zagadnienie o przedstawieniu funk­
cyi ze skończoną lub nieskończoną liczbą osobliwości istotnych.

Można otrzymać zawsza wyrażenie takie, jaku 
sumę pewnej liczby funkcyj, z których ka żda ma tyl­
ko jednę osobliwość istotną.
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Tym sposobem rozszerzamy twierdzenie o rozkładzie funk- 
cyi wymiernej na ułamki prostsze.

Każda funkcya j ednowartościowa holomor­
ficzna w całej płaszczyźnie, prócz w punktach 
tt], a2, . . . an, w których posiada bieguny lub osobli­
wości istotne, daje się zawsze przedstawić, jako 
suma n fu nkcyj, maj ący ch po j ed n y m tylko biegunie 
lub punkcie osobliwym istotnym wjednym z pun­
któw danych. Jeżeli jeden z punktów danych a jest 
w nieskończoności, wtedy odpowiednia funkcya 
jest holomorficzną nacałej płaszczyźnie z pun­
ktem istotnie osobliwym w nieskończoności.

Jeżeli mamy nieskończenie wiele punktów 
tóg, • ■ • j mających punkt graniczny w nieskończo­

ności, to funkcya, mająca tylko w tych punktach 
punkty istotnie osobliwe lub bieguny, wyraża się 
za pomocą szeregu

oo

2 I I + L \ I J
?<=1

gdzie G„ są funkcy ami, mającemi j edyny punkt isto­
tnie osobliwy w a„; Fn są wielomianami, których sto­
pnie zawsze oznaczyć można; wreszcie G jest funk­
cya holomorficzną na całej płaszczyźnie, mającą 
jedyny punkt osobliwy punkt w nieskończoności.

Wielomiany Fi G nie w jedyny tylko sposób wy­
znaczyć się dają. Jeżeli punkty a są wszystkie bie­
gun am i, to j est rzec z ą naturalną, że wyrazy szere­
gu staj ą się wszystkie funkcyami wymiernemi.

Co do tych twierdzeń cytujemy prace Mittag-Lefflera (Comptes 
rendus 1882, Acta mathem. IV); Weierstrassa (Functionenlehre, 
str. 23, 67, 102); Hermite’a (Crelle XCI); Casorati’ego (Annali 
di mat. X), traktat Forsytha (Theory of tunctions 1893), gdzie za­
gadnienie to traktowąne jest obszernie i w wielu przypadkach szczegól-

Pascal. Rep. T. 20
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nych; dalej lekcye analizy Her mit e'a i Pi carda. Co do przypadku, 
w którym zamiast punktów osobliwych są linie osobliwe, patrz Picard 
(Compt. rendus 18S1), a co do rozszerzenia twierdzenia W eierstrassa 
na funkcye wielowartościowe (funkcye jednowartośćiowe na powierz­
chni Riemanna) patrz Appel (Acta math. I).

Teoryę funkcyi zmiennej urojonej ugruntował, rzec można, głó­
wnie C a u ch y w sławnej rozprawie: Sur les intégrales définies, prises 
entre les limites imaginaires 1825, Comptes rendus 1846. Drugi krok 
ważny uczynił Riemann (1851) genialnym pomysłem swym, za po­
mocą którego z największą prostotą i elegancyą badać można funkcye 
wielowartościowe, czego nie można było czynić dość prostym sposobem 
za pomocą metod Cauchy’ego, jakkolwiek nie jednemu z piszących 
dawniej o tej teoryi zdawało się z początku inaczej (patrz np. przedmowę 
do drugiego wydania wyżej cytowanego dzieła Br iota i Bouquet a).

Z innego stanowiska i prawie równocześnie z Rie mannem 
Weierstrass utworzył teoryę funkcyj.

Różnica obu poglądów, zarówno głębokich, polega głównie na 
tern, że Riemann bierze za punkt wyjścia przedstawienie geometryczne 
lunkcyi i uważa utwór, który ją przedstawia, jakby coś wcześniejszego 
niż sama funkcya, Weierstrass wychodzi znów z analitycznego 
przedstawienia funkcyi i rozważa tylko takie funkcye, które dają się 
przedstawić analitycznie sposobem danym. Zresztą głębokie badania 
nad osobliwościami istotnemi funkcyj analitycznych zawdzięczamy 
tylko Weierstrassowi i jego uczniom.

Sławnym traktatem o teoryi funkcyj, napisanym prawie wyłącznie 
pod wpływem pomysłów Cauchy’ego, jest cytowane już dzieło Brio ta 
i Bouqueta, „Théorie des functions elliptiques“ (2 ed., Paryż, 1875; 
pod wpływem pomysłów Cauchy’ego i Riem anna powstały dzieła: 
D ur èg e „Elemente der Theorie der Functionen “Lipsk 1864, Neumann, 
„Vorlesungen über Riemann’s Theorie der Abel’schen Integrale“, Lipsk 
1867, w którem wprowadzono przedstawienie funkcyj na kuli; Caso- 
rati „Teorica delle functioni di variabili complesse“, Pawia, 1868; 
Holzmüller „Theorie der isogonalen Verwandschaften und conf- 
Abbildungena, Lipsk 1882. Pomysły Weierstrassa, rozwinięte na 
jego lekcyach i w „Functionenlehre“ (Berlin 1886) przedstawia, lubo 
niezupełnie poprawnie w wielu punktach Biermann „Theorie der 
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analytischen Functionen4, Lipsk 1887. Najnowsze dzieła starają, się 
godzić idee Riemann a i Weierstrass a; do nich należy przed e- 
wszystkiem obszerne wyżej cytowane dzieło Forsytha, dzieło Pi- 
carda (Paryż 1893), dzieło Burkhardia „Einführung in die Theo­
rie der analytischen Functionen“, (Lipsk 1897), dalej Petersena 
„Functionstheorie“ Kopenhaga 1898 i cytowane wyżej dzieło Puzyny 
„Teorya funkcyj analitycznych“. Lwów 1898.

Biblioteka 
matematyczn -fizyczna 
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ROZDZIAŁ XIV.

TEOKYA FUNKCYJ W ZWIĄZKU Z TEORYĄ GRUP; PERYODYCZNOŚĆ;

AUTOMORFIZM.

§ I-

Podstawienia liniowe.

Podstawienie liniowe ogólne, uskutecznione na 
zmiennej z, jest postaci

z’ (ad — bc = 1),

co wyrażamy symbolem :

' a z z, — lub też

Jeżeli z jest zmienną zespoloną, przedstawianą sposobem zwy­
kłym na płaszczyźnie, to podstawienie liniowe każdemu punktowi 
przyporządkowuje punkt tejże płaszczyzny, i ta odpowiedniość 
jest d w u j e d n o z n a c z n ą. (Przekształcenie homogra- 
ficzne).
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Dla tego podstawienia istnieją dwa punkty 
których każdy odpowiada sobie samemu; są 

niemi punkty:

fi — d + ]/ (a — d)2-f- 4/>c 
z,,Zs--------------------- 2e

Podstawienie, w którem te dwa punkty podwójne 
(Fixpunkte, według Kleina) zlewają się, nazywa się p a r a- 
bolicznem.

Jeżeli dla danego podstawienia dwa punkty 
podwójne są rożnem i, to podstawienie daje się 
sprowadzić do postaci

z' — z. , z — z.—------ I- = li---------- ,z — z2 z - z^
gdzie

y. _ [ a d — F (a — tZ)2 -|-4 bc ]2
4 (ad — bc)

.Jeżeli k jest liczbą rzeczywistą dodatnią, podstawienie na­
zywa się hyper bolicznem; jeżeli jest liczbą zespoloną 
o module 1, nazywa się elip tycz nem; wreszcie jeżeli k jest 
liczbą zespoloną o module różnym od 1 i o argumencie różnym 
od zera, podstawienie nazywa się loksodromicznem.

Każde podstawienie loksodromiczne mo­
żna złożyć z podstawienia hyperbolicznego 
w połączeniu z eliptyczne m.

Nazwy te napotykamy poraź pierwszy w pracach Kleina 
(Math. Ann. XIV, str, 142, XXI, § 3).

Aby lepiej zrozumieć różnicę pomiędzy temi trzema pod­
stawieniami, rozpatrzmy ich postacie prostsze:

z‘—kf, k rzeczywiste dodatnie,

z' — eaiz ; a jakiekolwiek,

z/=Qea‘z; o 1, a =4=0.
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Jeżeli w pierwszem z nich zmieniamy A’sposobem ciągłym, 
to punkt z' poruszać się będzie po prostej, wychodzącej z po­
czątku spółrzędnych. Jeżeli w drugiem podstawieniu zmieniamy 
a, to punkt z' poruszać się będzie po okręgu, mającym środek 
swój w początku spólrzędnych. W loksodromicznem podsta­
wieniu wreszcie punkt doznaje przemieszczenia, które jest kom- 
binacyą przemieszczeń poprzednich: mamy tu przedłużenie pro­
mienia wodzącego w połączeniu ze zmianą kierunku.

Podstawienie eliptyczne posiada tę wła­
sność. że jest albo peryodycznem, albo nie- 
skończonostkowem, t. j. wychodząc z punktu danego» 
albo powracamy do tego samego punktu po całkowitej liczbie 
kolejnych podstawień, albo też, kolejno stosując to podstawienie, 
można zbliżyć się do punktu wyjścia tak blizko, jak chcemy 
(patrz Forsyth, Theory of functions, str. 521).

Przekształcenie za pomocą promieni od­
wrotnych lub odwrócenie (inwersya), jest to działa­
niem, w którem, mając koło na płaszczyźnie, danemu punktowi 
przyporządkowujemy inny, leżący na prostej, łączącej punkt 
dany za środkiem koła i po tejże jego stronie tak, aby iloczyn 
dwu promieni wodzących równał się kwadratowi promienia 
koła.

Przeksztcenie przez odbicie jest to przekształ­
cenie, przy pomocy którego, mając prostą daną, każdemu jej 
punktem przyporządkowujemy punkt symetryczny z nim odno­
śnie do prostej.

Każde podstawienie liniowe można zaw­
sze złożyć z odwrócenia w połączeniu z odbi­
ciem.

Iloczyn dwóch odwróceń daje podstawie­
nie liniowe, które jest hyperbolicznem, para- 
bolicznem lub eliptyczne m, stosownie do te­
go, czy dwa koła, stanowiące podstawę odwró­
cenia, nie mają wcale punktu wspólnego, lub 
mają 1, 2 punkty wspólne.

Każde podstawienie liniowe przekształca 
koła na koła.
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Każde podstawienie liniowe da je się przed­
stawić nieskończenie w i e 1 u s p o s o b a m i, jako 
wypadkowa parzystej liczby odwróceń.

Można wraz z Po ince rem wprowadzić pewne pojęcie 
użyteczne do określania własności, charakteryzujących rozmaite 
gatunki podstawień liniowych. Rozłóżmy podstawienie liniowe 
na parzystą liczbę 2 ni odwróceń względem 2 m kół płaszczyzny 
(co można uskutecznić nieskończenie wielu sposobami). Każde 
koło zastąpmy kulą o tym samym środku i promieniu i, dawszy 
sobie punkt w przestrzeni, utwórzmy w tym samym porządku 
odwrócenie względem wszystkich kul. Można dowieść, że 
bez względu na sposób, w jaki uskuteczniono 
pierwszy rozkład podstawienia na odwróce­
nia, otrzymamy zawsze ten sam punkt, jako 
odpowiadający punktowi danemu. (Poincare, 
Acta math. III, str. 53). Mamy tedy środek interpretacyi pod­
stawienia liniowego jako przekształcenia punktów w przestrzeni. 
Otrzymujemy stąd następujące wyniki:

Jeżeli dane podstawienie jest eliptyczne 
to przekształca same na siebie punkty koła, 
które przechodzi przez dwa punkty pod w ójne 
podstawienia, ma za średnicę prostą te pun­
kty łączącą i znajduje się na płaszczyźnie 
prostopadłej do płaszczyzny danej (koło po­
dwójne); dalej przekształca na siebie same 
wszystkie koła takie, że kule, przez nie prze­
chodzące, przecinają ortogonalnie koło po- 
d w ó j n e.

Jeżeli podstawienie jest hyperboliczne, 
to istnieją tylko dwa punkty przestrzeni, po­
zostające stał e m i; są to punkty podwójne, a 
podstawienie przekształca same na siebie 
wszystkie okręgi i kule, przechodzące przez te 
p u n k t y.

Jeżeli podstawienie jest paraboliczne, to 
jeden tylko punkt pozostaje stały; jest to je­
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dyny punkt podwójny; podstawienie prze­
kształca same na siebie wszystkie o kręgi i ku­
le, przez punkt ten przechodzące i styczne 
w nim do pewnej prostej na danej płaszczyźnie.

Jeżeli podstawienie jest loksodromiczne, 
to ono przekształca na siebie samo każde koło, 
mające za średnicę prostą, łączącą punkty po­
dwójne i położone w płaszczyźnie prostopa­
dłej do danej, lecz zmienia punkty tego koła 
jedne na drugie, prócz oczywiście punktów 
podwójnych.

Każde podstawienie, nie zmieniające pun­
ktu, położonego zewnątrz płaszczyzny, jest 
koniecznie podstawieniem eliptyczne m.

Niechaj kula o promieniu 1 będzie styczną w początku 
spółrzędnych 0 do płaszczyzny zmiennej zespolonej z; nie­
chaj każdemu punktowi płaszczyzny odpowiada punkt na 
kuli, otrzymany za pomocą rzutu punktów płaszczyzny z gór­
nego bieguna kuli, t. j. z punktu kuli wprost przeciwległego pun­
ktowi styczności O. Obracajmy kulę około jednej z jej średnic, 
wtedy zmienna z doznaje przekształcenia liniowego. Wzór od­
nośny znalazł Cayley (Math. Ann. XV, 1879), jest on:

, == z — (/3 —za)
(/5 -J- za) z -j- (d — iy)

gdzie a. /3, y, ó są liczby rzeczywiste dowolne, czyniące tylko za­
dość związkowi a- -j- /32 + y2 -|- ó2 — 1, wyrażającemu, źe wy­
znacznik podstawienia jest jednością dodatnią.
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§ 2-

Grupy podstawień liniowych.

Grupy podstawień liniowych można tworzyć ze skoń­
czoną lub z nieskończoną liczbą podstawień. Grupy 
z nieskończoną liczbą podstawień mogą być ciągle lub nie­
ciągłe; grupy są ciągłe wtedy, gdy w nich znajduje się 
podstawienie nieskończonostkowe; rozumiemy 
przed to takie podstawienie, w którem moduły ilości a—1, A, c, 
d— 1 są nieskończenie małe.

W stosowaniu do teoryi funkcyj niema potrzeby rozważa­
nia grup ciągłych, gdyż funkcya analityczna, która należałaby do 
takich grup, musiałaby przyjmować tęż samą wartość w punktach 
nieskończenie blizkich, a więc mogłaby być tylko ilością stałą. 
Należy rozważać przeto jedynie grupy nieciągłe; lecz i pomiędzy 
temi trzeba uczynić nowe wyróżnienie. Istotnie można wyobrazić 
sobie grupy ciągłe dla punktu ogólnego płaszczyzny, które 
w specyalnych punktach zezwalają na przekształcenie nieskoń­
czonostkowe, t. j. można wyobrazić sobie, że istnieją punkty pła­
szczyzny takie, iż punkty, odpowiadające im sktttkiem pewnych 
podstawień grupy, stają się tak do nich blizkiemi, jak chcemy. 
W tym przypadku grupa nazywa się n i e w ł a ś c i w i e n i e - 
ciągłą; w przypadku przeciwnym mamy grupy właści­
wie nieciągłe (Klein, Math. Ann. XXI, str. 176; Poin- 
caró, Acta math. III, str. 57).

Naprzykład, grupa utworzona z podstawień, 
których spółczynniki są liczbami całkowite- 
mi dodatniemi, jest niewłaściwie nieciągłą 
dla punktów z rzeczywistych, a właściwie nie­
ciągłą dla punktów z zespolonych. Każda gru­
pa, utworzona z podstawień o spółczynnikach 
rzeczywistych, jest zawsze właściwie niecią­
głą dla każdej wartości z zespolonej i może 
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być niewłaściwie nieciągłą tylko dla warto­
ści z rzeczywistej. (Poincare, Actamath.III,str.58).

Rozważmy grupy, których wszystkie podstawienia można 
utworzyć przy pomocy podstawień zasadniczych 
w liczbie skończonej.

Jeżeli mamy grupę nieciągłą, to może zdarzyć się, że pła­
szczyzna z dzieli się na pewną liczbę pól skończonych lub nie­
skończonych, które przekształcają się wzajemnie 
za pomocą podstawień grupy. Jedna z takich części może się 
dzielić na nieskończoną liczbę obszarów w ten sposób, że kiedy 
punkt z przebiega ten obszar, to punkt, przekształcony przy po­
mocy podstawienia grupy, przebiega inny obszar, który możemy 
nazwać kongruentnym z pierwszym. Każdemu obszarowi 
odpowiada tedy podstawienie grupy; linia, oddzielająca dwa sty­
kające się obszary, nazywa się bokiem. Te boki są po dwa za 
sobą sprzężone, t. j. podstawienie przekształca punkty je­
dnego na punkty drugiego; punkt przecięcia dwóch boków ko­
lejnych nazywa się wierzchołkiem obszaru.

Można zawsze sprawić, że obszar będzie 
wielokątem, ograniczonym okręgami lub łu- 
kami okręgów koł; przytem wielokąt taki mo­
że nie być pojedyńczo-spójny.

Na spójności tego wielokąta polega pojęcie rodzaju 
grupy.

Badanie grup i ich istnienia sprowadza się do badania po­
działu płaszczyzny na obszary kongruentne: jeżeli znamy jeden 
taki obszar (wielokąt początkowy lub tworzący), oraz 
rozkład jego boków na pary boków sprzężonych, to grupa jest 
określoną.

Podstawienia zasadnicze są te, które od­
powiadają wszystkim obszarom sąsiednim 
wielokąta tworzącego.

Pomiędzy grupami o skończonej liczbie podstawień miesz­
czą się grupy wielością nowe (dwuścianowe, czworościa- 
nowe, ośmiościanowe, dwudziestościanowe, patrz § 3).

Pomiędzy grupami o nieskończonej liczbie podstawień naj­
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prostszą jest grupa peryodyczna, do której należą f u n- 
kcye peryodyczne (patrz § 4).

Następnie idzie grupa, utworzona z podstawień, która na­
zywa się g r u p ą m o d u ł o w ą; do niej należą funkcye modu­
łowe. Potem idzie grupa, której podstawienia mają spółczyn- 
niki rzeczywiste (jest to grupa Fuchsa, a odpowiadające 
jej funkcye nazywają się funkcyami Fuchsa, Wreszcie 
idzie grupa, złożona z podstawień o spólczynnikach zespolonych; 
jest to grupa Kleina (jak ją nazywa Poincare), a odpo­
wiadające jej funkcye nazywają się wogóle funkcyami auto- 
m o r f i c z n e m i (Klein).

Należy zauważyć, że Poincare zachował nazwę 
grup Fuchsa, dla pewnych przypadków specyalnych grup 
o spółczynnikach zespolonych. Jeżeli przyjmiemy, że

— k, 2 4~ (ii \ 
y< z -j- di I

są podstawieniami grupy o spółczynnikach rzeczywistych, to 
podstawienia, wyrażone symbolem

gdzie a, /3, y, d są liczbami jakiemikolwiek, spełniającemi waru­
nek ad — yfi = 1, tworzą również grupę o spółczynnikach ze­
spolonych. Tę grupę nazywa Poincare grupą Fuchsa.

Grr u pa podstawień o spółczynnikach rze­
czywistych pozostawia bez zmiany oś rzeczy­
wistą płaszczyzny z i przekształca na same 
siebie dwie półpłaszczyzny. Ta grupa Fuch­
sa w znaczeni usze rszem przekształca na sie­
bie samo koło (koło zasadnicze), k t ó r e g o równaniem 
jest

Część rzeczy w. wyraź, ----- — — 0.
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W przypadku grupy Fuclisa w znaczeniu ściślejszem 
suma pól wszystkich obszarów jest nieskończona: w przypadku 
grupy Fuchsa, w znaczeniu obszerniejszem, suma ta jest skoń­
czona, gdyż obszary rozciągają się tylko wewnątrz kola zasadni­
czego i mogą pokrywać cale koło lub tylko część jego.

W przypadku najogólniejszym grupy Kleina suma pól 
obszarów jest w ogólności skończona.

Co się tyczy historyi i bibliografii teoryi funkcyj automorficznych 
zauważymy, że—pomijając funkcye peryodyczne—pierwsze przykłady 
funkcyj, należących do grup o nieskończonej liczbie podstawień znalazł 
Schwarz w r. 1872 (Crelle LXXV), badając funkcye, które powstają 
z szeregu hypergeometrycznego Gaussa, Potem Klein i inni ba­
dali funkcye modułowe. Poincare i Klein z dwóch różnych pun­
któw widzenia utworzyli teoryę funkcyj, należących do grup liniowych. 
Z pomiędzy prac Poincarego w tym przedmiocie wymieniamy naj­
ważniejsze i najobszerniejsae, ogłoszone w Acta math I, III, IV, V, oraz 
w Math. Ann. XIX, prócz ogłoszonych w Comptes rendus w r. 1881 
i później. Z prac Kleina wymieniamy ogłoszone w Math. Ann. XIV, 
XYII, XIX, XX, XXI i t. d. Do tegoż przedmiotu odnoszą się też 
prace Dycka (Math. Ann. XX, XXII), Bolza’y (Am. Journ. XIII), 
najnowsze Ritt era (Math. Ann. XLV). Funkcyom automorfieznym 
poświęcone jest osobne dzieło: R. Fricke und F. Klein „Vorle­
sungen über der Theorie der automorphen Functionen “.którego t. I p. t. 
„Die gruppentheoretischen Grundlagen“ ukazał się w r. 1897 (Lipsk, 
Teubner).

§ 3.

Grupa anharmoniczna. Grupy i funkcye wielościanowe.

Pierwszą grupą, złożoną ze skończonej liczby podstawień, 
jest grupa, wynikająca z podstawień:

, , 1 , , , 1 z’ —z. z — — , Z —1 — Z, Z — -T------,Z l — z 
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których strony drugie odpowiadają sześciu wartościom, jakie 
przyjmować może stosunek anharmoniczny czterech ilości. Fun- 
k c y ą, nie zmieniającą się przy podstawieniach 
tej g r u p y, j e s t

Do grup skończonych należą t. z w. grupy wielością- 
nowe (polyedralne).

Wyobraźmy *sobie wielościan foremny, wpisany w kulę 
o promieniu 1; istnieją pewne obroty wielościanu takie, że po ich 
uskutecznieniu wierzchołki wracają w swe położenia pierwotne. 
Jeżeli rzucimy tedy kulę stereograficznie na płaszczyznę styczną, 
na której rozmieścimy zmienną z, to każdy taki obrót kuli 
odpowiada specyalnemu przekształceniu liniowemu zmiennej z 
(patrz § 1). Funkcya. której pierwiastkami są wartości 2, odpo­
wiadające wierzchołkom wielościanu, pozostanie oczywiście nie­
zmienioną dla wszystkich obrotów, utworzymy tym sposobem 
grupę wielościanową i oJpo władającą jej funkcyę.

1. Grupa cykliczna, jest to grupa, utworzona z n podsta­
wień

z' — a '* . z; (/f— O, 1, . . . , n —1).

Najprostsza funkcya, do tej grupy nale- 
Z <1 C JGSt

azn b.

gdzie a i b są stałe jakiekolwiek.
2. Grupa dwuścianowa (diedralna) tworzy się z 2n pod­

stawień
2A7.T

2 ikn ------- ~

z' — e n . z; z' = ——------; (/r_O,1,..., u— 1)

Funkcya, należąca do tej g r u p y, j e s t:

1)’ : ■
Za
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3. Grupa czworościanowa (tetraedalna). Stosownie do poło­
żenia czworościanu wpisanego w kulę, są dwie różne grupy, któ­
rych podstawienia przemieniają pomiędzy sobą wierzchołki 
czworościanu. Grupy te zawierają 12 podstawień 
isąholoedrycznie izomorficzne z grupą na­
przemienną o 4 elementach. Pierwsza z tych grup 
tworzy się z 12 podstawień:

druga zaś z 12 podstawień:

z' = ± z ,

z, = (1
“ (i — «) ’

z, = + (i--z>4-k2
“ J/2.z-(l-]-2) ’

— (14-z)^4-r2 ’

t ^-(l-M)
“ (1-0*4-

Dla pierwszej grupy pozostają bez zmiany (przy pominię­
ciu czynnika) dwie funkcye:

z4± 2 fZT3.z24- i;

przy drugiej zaś grupie dwie funkcye:

z4 ± 2 ^3 . z2 — 1.

Te wielomiany, przyrównane do zera, dają równania, któ­
rych pierwiastki odpowiadają wierzchołkom czworościanu, wpi­
sanego w kulę i znajdującego się w czterech różnych położę- 
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niach. Dla tego to każde z tych równań nazywa się równa­
niem czworościanu.

4. Grupa ośmiościanowąg (oktoedralna). I tych grup jest 
dwie. Składają się one z 24 podstawień i są h o- 
loedrycznie izomorficzne z grupą sy metry cz- 
ną 4 elementów. Pierwszą z grup ośmiościanowych jest

z' — tk Z , z — — .z

r -k Z “ł- 1
* 7±l •

z — 1y = 0,1, 2,3)
z i +

, -k z —z‘ — r ----- .z — i ' Z —j— 2

Równanie, którego pierwiastki pozostają bez zmiany przy 
podstawieniach grupy, jest

z (z4 — I) = 0. (równanie ośmiościanu.)

Drugą grupą ośmiościanową jest:

z' = ik z, z ’

(1i) z-j-1/ 2
V2.z — (1 — i)

z' = ik 1^2.z —(1 - i) 
(l + i)z^-V2

(k=0,1, 2, 3)

,s (l + iU + V2 n, = ,t n.z-(l + i)
K2.i—(!+»)’ — '

Odpowiedniem równaniem jest:

z (z4 4" 1)— 0, (równanie ośmiościanu).

5, Grupa dwudziestościanowa (ikozaedralna) zawiera 
60 podstawień i jest izomorficzna z grupą sy­
metryczną 5 elementów. Podstawienia te są:



320 Rozdział XIV.

_  <?4 k
z’ — EkZ, z’ = ----- — ,

Z

• _  k ---  (e — fi*) fi4. Z 4“ (fi2 --- fi3)
(fi2 — fi3' Ek. z -p (e — fi4) ’

z' = ~ E^ (e‘j — £3)£<: - C + (£2 — fi4)
— (fi — fi4) Ek. Z -|- (e2—£8) 1 

2» Ti
gdzie e — e 5 ; k \k' przybierają wszystkie wartości O, 1, 2, 3, 4. 

Równaniem dwudziestościanu jest:

z (z10 4- 1) 1 (35 - 1) = 0.

Teorya grup skończonych, a w szczególności grup wielościanowych, jest 
rozwinięta w dziele Kleina „Vorlesungen über das Ikosaeder“, Lipsk, 
1894, gdzie znaleść też można odnośne wskazówki historyczne i biblio­
graficzne. Wymieniamy nadto prace Kleina „Binäre Formen mit 
linearen Transformationen in sich selbst“, Math. Ann. XX, dalej prace: 
Gor dana (Math. Ann. XII), Brioschi’ego (Lincei 1889), Ann. di 
mat. VIII, Comptes rendus XCVI i t. d.; Cayley’a (Quart. Journ. of 
maih. XVI, 1879) i t, d.

§ 4.

Funkcye p e ry od y c z n e.

Grupy, utworzone z jednej lub z dwu podstawień typu (pa­
rabolicznego)

z' — z 4“ 2 co , z' — z 4~ 2 co'

można nazwać grupami peryodycznemi, a funkcye. 
im odpowiadające, funkcyami pojedynczo lub podwój­
nie peryodycznemi. Ilości 2co, 2co' nazywają się pe- 
r y o d a m i
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Grupę, utworzoną z powyższych dwu pod­
stawień, można utworzyć przy pomocy jedne­
go podstawienia tejże postaci, jeżeli stosu-

i O)' . . ,nek —-jest rzeczywisty, wymierny; jest to

U)' grupa ciągła, jeżeli — jje s t liczbą zespoloną.

Grupa, utworzona z trzech lub więcej pod­
stawień typu poprzedzającego, albo daje się 
zbudować za pomocą dwu podstawień tegoż, 
albo jest grupą ciągłą. Inaczej mówiąc, można 
zawsze znaleść liczby całkowite m, m', m" takie, 
ż e mw -f- m'a>' + m"a>" albo będzie zerem, albo część 
rzeczywista i urojona tego wyrażenia będą 
mniejsze o d j a ki e j k o 1 w i e k ilości danej, t. j. bę­
dą nieskończenie małe.

Te twierdzenia ogólne w formie nieco odmiennej można 
znaleść u Clebscha-Gordana (Abel’sche Functionen, §38).

Nie istnieją funkcye j e d n o w a r t o ś c i o w e 
jednego argumentu więcej niż dwuperyody- 
c z n e. (Twierdzenie J a c o b i’ego, Werke II, str. 202).

Każda funkcyajednowartościowa 2p — pe- 
ryodyczna musi być funkcyą przynajmniej p 
argumentów (Jacobi).

Stosunek peryodów funkcyi podwójnie pe- 
ryodycznej niemoże być liczbą rzeczywistą 
(J a c o b i, Werke II, str. 5).

Wielokąt tworzący dla grupy podwójnie peryo- 
dycznej można sprowadzić do równoległoboku, którego jednym 
z wierzchołków jest początek na płaszczyźnie z, a jeden z bo­
ków przypada na osi rzeczywistej. Równoległobok ten nazywa się 
równoległobokiem zasadniczym. Cała płaszczy­
zna pokrywa się siecią równoległoboków, przystających do rów­
noległoboku tworzącego.

Funkcya podwój nie peryodyczna nie może 
być holomorficzna.

Pascal. Rep. I. 21
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Summa pozostałości (rezyduów) w każ­
dym równoległoboku funkcyi meromorficz- 
n e j podwójnie peryodycznej .jest zerem.

Każda taka funkcya posiada przynajmniej 
dwa b i e g u n y w każdym równol eg ło b o ku.

Dla każdej takiej funkcyi suma punktów 
zerowych w każdym równoległoboku elemen­
tarny m r ó w n a s i ę sumie rzędów jej nieskoń­
czoności w tymże równoległoboku.

Dwie funkcye merom orficz ne podwójnie 
peryodyczne, mające te same p e r y o d y, te same 
zera i te same nieskończoności, różnią się tyl­
ko czynnikiem stałym.

Suma punktów zerowych, zmniejszona o s u- 
mę punktów nieskończoności funkcyi podwój­
nie peryodycznej w równoległoboku elemen­
tarnym, r ó w n a s i ę w i e 1 o k r o t n o ś c i per y o d ó w. 
(Twierdzenie Lionville’a).

Mając dane p e r y o d y, h punktów zerowych 
i tyleż punktów nieskończoności, możemy za­
wsze znaleść odpowiadającą im funkcyę po­
dwójnie p e r y o d y c z n ą.

Suma punktów, w których funkcya podwój­
nie peryodyczna posiada tęż samą wartość 
w równoległoboku elementarnym, jest sta­
łą (jeżeli pominiemy wielokrotności peryodów).

Funkcya podwójnie peryodyczna nazywa się f u n k c y ą 
rzędu n - t e g o, jeżeli w równoległoboku zasadniczym ma n 
nieskończoności.

Funkcya podwójnie peryodyczna rzędu 2-go 
czyni zadość związkowi /’<a —|— /5 — z) = f(z), gdzie 
a i fi są punktami jej nieskończoności.

Pochodna funkcyi podwójnie peryodycz­
nej rzędu 2-go znika w czterech punktach (co i co' 
są półperyodami):

a a-j-/?. a fi . , a fi , ,--,----- ----T co, ---2---P co , -- --  + co + co'.
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F u n k c y a F(z), mająca te same nieskończo­
ności i peryody co funkcya f(z) w twierdzeniu 
poprzedz ającem iczyniąca zadość równaniu 
F(a-{-/?- z) = F^z), wyraża się wymiernie przez 
funkcyę f(z}.

Każda funkcya podwójnie peryodyczna 
rzędu n wyraża się wymiernie przez funkcyę 
rzędu 2-go, mającą te same przyrody, i przez 
jej pochodną. (Twierdzenie Liouvill e’a.)

Dwie funkeye podwójnie peryodyczne, dla 
których sieci równoległe boków mają współ- 
ńąjednę sieć wierzchołków, są związane rów­
naniem algebraiczne m.

Funkcya podwójnie peryodyczna i jej po­
chodna są związane równaniem algebraicznem.

Powiadamy, że funkcya analityczna posiada twierdze­
nie o dodawaniu algebraicznem, jeżeli pomiędzy 
wartościami f{z), f(z‘), f(z-\-z'\ gdzie z i z' są jakiekolwiek 
punkty na płaszczyźnie, istnieje związek algebraiczny.

Jeżeli funkcya, posiadająca twierdzenie 
o dodawaniu, jest jedno wartościową, wtedy 
f{z-\-z') wyraża się wymiernie przez 
rw, m

Każda funkcya podwójnie peryodyczna 
m e r o m o r f i c z n a j ednowartościowa posiada 
twierdzenie o dodawaniu algebraicznem. Od­
wrotnie: każda funkcya meromorficzna na ca­
łej płaszczyźnie (z wyłączeniem p-unktu oo), 
dlaktórej istnieje twierdzenie o dodawaniu 
algebra.icznem (ponieważ nie ma innych pun­
któw istotnie osobliwych prócz oo), jest f u n- 
kcyą wogóle podwójnie peryodyczną.

Funkcya meromorficzna na całej płaszczyźnie (prócz oo) 
i podwójnie peryodyczna, a więc mająca twierdzenie o dodawa­
niu algebraicznem, nazywa się w ogóle funkcyą elipty­
czną jednowartościową.
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Funkcya p(u) może być nazwana funkcyą eliptyczną ele­
mentarną. Jest ona rzędu 2-go, za pomocą niej i jej pochodnej 
można wyrazić każdą inną funkcyę eliptyczną (na podstawie po­
wyższego twierdzenia).

Widzimy tedy, że teorya funkcyj podwójnie peryodycz- 
nych sprowadza się do teoryi funkcyj eliptycznych; do tej więc 
odsyłamy czytelnika po szczegóły (patrz Rozdział XVI).

Dodajemy, że teoryę funkcyj eliptycznych, opartą głównie na 
pojęciu podwójnej peryodyczności, wyłożył Lionville w r. 1847 
i ogłosił w Comptes rendus w r. 1851 (patrz też Crelle, LXXXVII1); 
potem tąż drogą poszli Briot i Bouquet (Journ. de 1’Ecol. Polyt. 
1856), oraz Móray. Wykład jasny twierdzeń o funkcyach podwójnie 
peryodycznych znajdujemy w dziele: Briot et Bouquet „Théorie 
des fonctions elliptiques“ (Paryż, 1872).

Funkcye, nie pozostające bez zmiany przy powiększaniu 
argumentu peryodu, lecz pozyskujące wtedy czynnik stały lub 
wykładniczy stopnia 1, nazywamy zwykle fankeyami p odwój- 
nie peryodycznemi 2 go i 3-go gatunku, stosownie 
do tego, czy czynnik ten jest stałym, czy też wykładniczym 
stopnia 1-go co do zmiennej.

O związku tych funkcyj z fuiikcyami peryodycznemi zwyczajnemi 
znaleść można wiadomości w pracach Hermite’a (Comptes rendus 
1861—62, 85), Mittag-Lefflera (tamże 1880), Brioschi’ego 
(tamże 1881), Frobeniusa (Crelle XCIII) i t. 1. Porówn. też dzieło 
Forsytha „Theory of functions etc., Cambridge, 1893, Cap. XII, str. 
273 i nast.

§ 5-

Funkcye modułowe.

Funkcya jednopostaciowa nazywa się modułową, jeżeli 
nie ulega zmianie przy wszystkich podstawieniach grupy lub- 
podgrupy modułowej
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------—7- , (di — b, c, = 1) z + d^ I

gdzie a, b, c, d są liczby rzeczywiste dodatnie. Nazwa „mo­
dułowa“ pochodzi stąd, że moduł lc2 funkcyj eliptycznych, uwa- 

ĆZ)Z żany za funkcyę stosunku peryodów przestępnych z ----jest

właśnie funkcyą tego gatunku.
Grupa modułowa jest niewłaściwie niecią­

głą dla wartości z rzeczywistych (patrz § 2).
Jeżeli F(z), f(z) są funkeye modułowe, na­

leżące do grup G, G', gdzie G‘ jest podgrupą 
grupy G, to f u n k c y a F wyraża się wymiernie 
przez funkcyę f.

Dwie funkeye modułowe, należące do tej 
samej grupy, wyrażają się wymiernie jedna 
przez drugą.

Niezmiennik bezwzględny funkcyj elip­
tycznych (patrz Rozdział XVI)

4 (1 —- 7»2 —f-7r4)3
' ~ 27 7^(1—7c2)3

jestfunkcyą modułową, należącądo grupy 
całkowitej.

Podstawieniami tworzącemi grupy cał­
kowitej są podstawienia

z, z -j- 11, Iz,

z których pierwsze jest paraboliczne m, dru­
gie zaś eliptycznem peryodycznem.

Wielobok początkowy lub tworzący dla funkcyi 7r2 jest 
czworobokiem krzywokreślnym nieskończonym na półpłaszczy- 
znie dodatniej; dwa jego boki są równoległe do osi rzędnych 
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i mają odcięte —1, —1? dwa drugie są półkolami na płaszczy­
źnie dodatniej o promieniu |,mającemi środki w punktach -j-|, —

W tym wieloboku funkcya k2 przyjmuje raz jeden wszyst­
kie swoje wartości; t. j. wartości, jakie przyjmuje w innych czę­
ściach płaszczyzny, są równe tym, jakie ma wewnątrz wielo­
boku.

2 7 —42)2

ma trzy boki; jednym jest łuk koła o promieniu 1 ze środ­
kiem w początku, rozciągającego się od punktu z odciętą —f 
do punktu z odciętą 4 |; pozostałe boki są prostemi, wycho- 
dzacemi z końca tego boku i rozciągającemi się dó -j-oo równo­
legle do osi rzędnych. Funkcya J(z} w punktach z — it

Grupa funkcyi modułowej k2k'2 tworzy 
srę z dwu podstawień^ z, z -j- 2 j, (z,-----— j .

1 _ . 4 _

Dwie fukcye <p = ]/k, y — Vk' s ą funkcyami m o- 
dułowemi, naleźącemi odpowiednio do grup 
następujących. Funkcya (p należy do podgru­
py grupy funkcyi k2, tworzącej się z trzech 
podstawień

(z \ / z \2' —2z + l) ’ 2z4-l) ’

lecz w ten sposób, że w każdym iloczynie licz­
ba czynników A jest kongruen t.n ą z z e r e m 
według mod. 8. Funkcya ^należy do podgru­
py grupy funkcyi k2, tworzącej się z tychże trzech 
podstawień, lecz w ten sposób, że w każdym 
iloczynie liczba czynników^, zm niej szonaoli- 
czbę czynników C, j estssO (mod. 8).

Wielobok tworzący dla niezmiennika bezwzględnego
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—- i oo, t. j. w wierzchołkach pół trój kąta tworzącego,

przyjmuje odpowiednio wartości 1, O, oo.
Grupa funkcyi modułowej k2 imoduł Legen- 

dre’a) jest utworzona z podstawień:

la b\ 11 0\• V dl = (o 1) <mod- 2);

jej podstawieniami tworzącemi są

(z’-2TTr)’ (z' z + 2>-

Teorya funkcyj modułowych jest najściślej związana z teóryą 
przekształceń funkcyj eliptycznych (patrz Rozdz. XVI).

Nazwa: „funkcye modułowe eliptyczne“ pochodzi od Dedekin- 
da (Grelle LXXXIII. 1877). Badaniem w niej zasadniczem jest to, 
które odnosi się do podgrup grupy zasadniczej i do funkcyj do nich na­
leżących. Klein zbadał rozległą klasę tych podgrup.

Głównemi pracami o tej teoryi są prace: Kleina (Math. Ann.
XVI, XVII),Hurwitza (tamże XVIII), Dycka, Gierstera (tamże
XVII, XX), Frick ego (tamże XXI, XXYIII, XXIX), Kiep er ta 
(Grelle LXXXVII).

Punktem wyjścia prac Kleina były jego własne badania nad 
grupami skończonemi, a potem studyum rozprawy Schwarza (Grelle 
LXXV) o szeregu hypergeometrycznym. Niedawno wyszło obszerne 
dwutomowe dzieło o funkcyach modułowych, opracowane przez Eri­
che go, według wykładów Kleina ( „Vorlesungen über die Theorie der 
elliptischen Modulfunctionen“, Lipsk, 1890—92)
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' § 6.

Funkcye Fuchsa i Kleina (automorficzne).

Teoryę funkcyj podwójnie peryodycznych rozpoczynamy 
od zbudowania funkcyi 0, których stosunki właśnie funkcye te 
wyrajają. Poincare usiłował pójść tą samą drogą dla funk­
cyj ogólniejszych, które nas w tej chwili zajmują.

Zauważywszy, że szereg

£‘ | (c, z+ | <* całkowite > 1)

jest zbieżny, zbudował on szereg zbieżny

Z-A »-< TT / ~i“ 1 10 (z) = G2 »

(gdzie H jest symbolem jakiejkolwiek funkcyi wymiernej), przed­
stawiający funkcyę jednopostaciową, którą nazwał teta-fuch- 
sową lub teta-kleinową stosownie do tego, czy grupa zasa­
dnicza jest grupą Fuchsa czy Kleina Można tę funkcyę 
nazwać także pseudo-automorficzną.

Liczba punktów zerowych i nieskończo­
ne ś c i o w y c h t ej funkcyi wewnątrz wieloboku 
początkowego lub tworzącego jest zawsze 
skończona

Funkcya 6 sprawdza związek:

0 I—2 + ) = 0(2) (<‘iZ 4- (Z,)2'".
\ Ci z -f- di I

Każda taka funkcya analityczna istnieje tylko w tej części 
płaszczyzny, do której należy wielobok początkowy oraz wszyst­
kie wieloboki w liczbie nieskończonej, które otrzymują się z nie­
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go przez podstawienia grupy. Tak np. w przypadku grup fuch- 
sowycli w znaczeniu obszerniejszem funkcya istnieje tylko w kole 
zasadniczem lub w części tego koła, którego okrąg jest linią oso­
bliwą dla tej funkcyi. Mamy tu funkeye o obszarach 
osobliwych. (Patrz Rozdział XIII).

Iloraz dwu takich funkcyj, odpowiadają­
cych tej samej liczbie jest funkcyą*auto- 
morficzną, mającą nieskończoną liczbę zer 
i nieskończoności wewnątrz f?0. Odwrotnie, 
funkcyj automorficzną można zawsze wyra­
zić za pomocą funkcyj 0.

Pomiędzy dwiema funkeyami automor- 
ficznemi, odpowiadające mi tej samej grupie, 
zachodzi zawsze związek algebraiczny, i każ­
da inna funkcya tej grupy wyraża się wymier­
nie przez dwie takie funkeye.

Spół rzędne punktów krzywej algebraicz­
nej jakiejkolwiek dają się zawsze wyrazić 
jako funkeye fuchsowe jednego i tego samego 
parametru.

Każde równanie różniczkowe liniowe o 
spółczynnikach algebraicznych daje się zaw­
sze całkować przez funkeye fuchsowe i teta - 
f u c h s o w e.

Co do innych szczegółów patrz prace, cytowane w § 2.



ROZDZIAŁ XV.

FUNKCYE ALGEBRAICZNE 1 CAŁKI ABELOWE.

§ 1-

Ogólne wiadomości o funkcyach algebraicznych. Rozgałęzienie.

Wyobraźmy sobie związek z) = 0, gdzie /' jest funk­
cyą wymierną całkowitą pomiędzy dwiema zmiennemi zespo- 
lonemi wiz. Ilość w. określona jakof u nkcya ilości z, 
będzie w ogóle wielo wartościową, a mianowi­
cie będzie miała n wartości, jeżeli n jeststo- 
p n i e m równania względem w. Funkcya taka nazywa 
się funkcyą algebraiczną z mień ej z. Ogólniej: 
Każda funkcya w y m i er n a i 1 o ś c i w i pomię­
dzy któremi zachodzi związek powyższy, na­
zywa się funkcyą algebraiczną zmiennej z.

Zresztą od drugiego określenia można powrócić do pierw­
szego, gdyż, jeżeli położymy w1 = li (w, z) i wyrugujemy w po­
między tern równaniem i danem f(w,z) — 0, otrzymamy rów­
nanie wymierne z) = 0.

Jeżeli zmiennej z nadamy wartość z = z0, wtedy równanie 
stopnia n-tego względem zc, f\w, z) —0, da nam n pierwiast-
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ków w, które mogą być wszystkie różne, lub też niektóre pomię-
dzy niemi mogą być i równe. Jeżeli przyjmiemy, że jest w ogó­
le m pierwiastków równych, będziemy mieli twierdzenie Ca li­
ch y’ego (Exercices, 1841).

Jeżeli dla z = z0 równanie mam pierwiastków 
w równych ?c0, wtedy dla wartości ^.blizkiej z0 
m pierwiastków równania posiadać będzie 
wartości nieskończenie mało różniące się od ?r0•

Gdy dla z = z0 pierwiastek w = w(> nie jest 
wielokrot ny, wtedy: jeżeli w płaszczyźnie z 
zmienna z opisze koło dostatecznie małe około 
punktu z^, tu zmienna w w płaszczyźnie a: opi­
sze koło dostatecznie małe około punktu /'0; 
jedne mu obrotowi w płaszczyźnie z odpowiada 
jeden obrót lub całkowita liczba obrotów 
w płaszczyźnie w. W otoczeniu punktu zQ f u n- 
k c y a w=w0 da je się rozwinąć na szereg, upo­
rządkowany według potęg całkowitych ro­
snących różnicy z— z0, poczynając od potęgi 
pierwszej,lub od potęgi wyższej, niż pierwsza.

Gdy dla z ~ z0 funkcya/ma m pierwiast­
ków równych ?t;0, w t e d y: j e ż e 1 i zmienna z opi­
suje w swej płaszczyźnie około punktu z0 koło 
dostatecznie małe, wartość w okrąży punkt 
m0, lecz w ten sposób, że gdy z czyni jeden 
obrót w swej płaszczyźnie, w przechodzić bę­
dzie od jednego z pierwiastków nieskończe­
nie blizkich w0 (zgodnie z twierdzeniem Cauchy’ego) 
do i n n e g o. J e ź e 1 i po uskutecznieniu pewnej 1 i- 
c z b y mx obrotów w płaszczyźnie powrócimy
wpłaszczyźnie w do pierwiastka, z którego wy­
szliśmy, przeszedłszy przez mx z pomiędzy m 
pierwiastków, mówimy wtedy, że Wj p i e r w i a s t- 
ków tworzy cykl. Z pozostałych pierwiast­
ków znowu w2 tworzy nowy cykl i 

m2 -}- . . • równa się oczywiście
t. d.; suma 
liczbie m.
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Pierwiastki w liczbie , tworzące cykl, dają 
się w otoczeniu punktu e0 rozwinąć na sze­
regi, których pierwszym wyrazem jest £0, 
a po z osta 1e wyra zy postępują według potęg 

i 
całkowitych dodatnich czynnika (z—z0) ; podo- 
bniesię rzecz ma dla w2 pierwiastków, two­
rzących cykl drugi i t. d. Wartość tedy funkcyi w 
w punkcie najbliższym punktu z0 wyobraża tyle szeregów, ile 
jest cyklów, na które rozpadają się pierwiastki uważanego ró­
wnania.

Jeżeli wszystkie liczby w2, ... są równe jedności, wte­
dy w otoczeniu punktu z0 otrzymujemy m rozwinięć szerego­
wych, odpowiadających m różnym wartościom funkcyi w tym 
punkcie. Jeżeli przedstawimy związek f(w, z) — 0 za pomocą 
krzywej na płaszczyźnie, to przypadek ten odpowie rozważaniu 
punktu wi-krotnego krzywej o stycznych różnych.

Jeżeli nie wszystkie liczby m są równe jedności, punkt z0 
nazywa się punktem rozgałęzienia rzędu —1 dla tnl 
wartości funkcyi w, stanowiących cykl pierwszy, rzędu — 1 
dla ni2 wartości, stanowiących cykl drugi i t. d. W przedsta­
wieniu geometrycznem punkt rozgałęzienia odpowiada punktowi 
takiemu krzywej, że przechodząca przezeń rzędna przecina 
w dwu przynajmniej punktach nieskończenie blizkich tęż samą 
gałęż krzywej; w szczególności zaś punktowi, w którym styczna 
do gałęzi linii krzywej jest prostopadła do osi odciętych.

Jeżeli w szczególności rozwinięcie funkcyi v: na szereg we- 
1

dług potęg ilości iz—z0)rozpoczyna się od wyrazu z czynni- 
Wj

kiem (z—z0)Wi = z—z0, t. j. jeżeli są zerami pierwsze — 1 
spółczynników rozwinięcia, to i wtedy <?0 będzie punktem roz­
gałęzienia, lecz natury bardziej złożonej. W przedstawieniu 
geometrycznem krzywej ten przypadek zachodzi dla ostrza, lub 
ogólniej dla punktu wielokrotnego o zlewających się stycznych. 
Takie rozgałęzienie nazywać będziemy rozgałęzieniem 
ostrz ó we m.
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Jeżeli zQ nie jest punktem rozgałęzienia lub jeżeli jest pun­
ktem rozgałęzienia, ostrzowego, wtedy otoczenie tego punktu 
i otoczenie punktu w, odpowiadają sobie wzajemnie w odtwo­
rzeniu podobnem; jeżeli zaś 2n jest punktem rozgałęzienia zwy­
kłego rzędu wq—1, odtworzenie nie jest podobnem.

Punkt rozgałęzienia zwykłego rzędu «q—1 można uwa­
żać jako zjednoczenie —1 nieskończenie blizkich punktów roz­
gałęzienia rzędu 1-go.

Dzieje się to (jeżeli wyłączymy rozważanie rozgałęzienia 
ostrzowego) na podstawie następującego twierdzenia Noethera 
(Math. Ann. IX; por. także rozprawę Halphena: Sur les points 
singuliers des courbes algébriques“, gdzie można znaleść też 
wskazówki bibliograficzne):

Można zawsze, za pomocą przekształceń Cre­
mony przekształcić krzywą algebraiczną płaską 
/‘(w,z) = O na inną, mającą tylko punkty wielokro­
tne o stycznych różnych.

Liczba punktów rozgałęzienia pojedyńczych, 
zwyczajnych i ostrzowych, odpowiadających ró­
wnaniu f (w, 2 ) = 0, wynosi n ( n — 1 )—— 2r, gdzie n jest 
rząd krzywej, którą przedstawia to równanie, ćZjest 
liczba punktów podwójnych krzywej, r liczba 
ostrzy. Jeżeli krzywa ma punkty wielokrotne, to 
każdy z nich powinien być liczony w tym wzorze 
za pomocą swego równoważnika w punktach po­
dwójnych i ostrzach, jak tego uczy teorya krzy­
wych algebraicznych.

Dla każdego punktu rozgałęzienia być musi:

3/ n i i ^tv— 0, lub -v— = oo . 3io dz

Nie jest to wszakże warunek dostateczny roz­
gałęzienia, gdyż jeżeli np.

—-- = 0, i oprócz tego ~~ = 0, Sio r 6 3z

wtedy rozgałęzienia niema.
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Jeżeli równanie zasadnicze jest postaci

z — (aown w”-1 4- . . . 4- a„) — 0.
wtedy punktami rozgałęzienia jest punkt z=oo, 
który jest punktem rozgałęzienia^ rzędu (n—1) go, 
oraz punkty z, którym odpowiadają wartości w, będą­
ce pierwiastkami równania

nci^ 1 4~ (w 1) (iiicn ~ 4~...... 4“ 2 — o,

którego strona pierwsza jest pochodną strony 
pierwszej równania /= 0.

Jeżeli równanie zasadnicze f—0 jest postaci 

iv2 — {a,oz 4- ajZ"-1 4-....... 4- an) = 0,

to punktów rozgałęzienia jest w i są niemi pier­
wiastki równania:

c^qZv 4* 1 4~........4- == 0.

Większą część twierdzeń w tym paragrafie podaje klasyczna 
rozprawa Puiseux’go (Journ. de Liouville, XV, 1850).

§ 2.

Konstrukcja powierzchni R i eman na.

Do badania funkcyj algebraicznych nadają się dość dobrze 
tak nazwane powierzchnie Ri eman na, wprowadzone po raz 
pierwszy przez tego uczonego. Powierzchniom tym poświęcamy 
specyalny rozdział w tomie 2-gim tej książki, gdzie mówić bę­
dziemy o nich ze stanowiska geometrycznego („Teorya spójno­
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ści powierzchni“); tu damy pojęcie o nich o tyle tylko, o ile to 
jest potrzebne do przedstawienia funkcyj algebraicznych.

Dajmy, że funkcya algebraiczna ma n wartości. Zamiast 
jednej płaszczyzny z, wyobraźmy sobie n płaszczyzn z, poło­
żonych jedna na drugiej w ten sposób, aby punkty, dla których 
z ma tę samą wartość, znajdowały się na sobie. Na każdej 
z płaszczyzn połóżmy jedną z n wartości, jakie przyjmuje w dla 
tej samej wartości z\ następnie spójmy płaszczyzny w ten spo­
sób, aby wyszedłszy z pewnego punktu i obiegłszy płaszczyzny 
po pewnej drodze, można było powrócić do punktu wyjścia z tą 
samą wartością na w.

Płaszczyzny, leżące na sobie i tworzące powierzchnię Rie­
manna, nazywają się jej liśćmi.

Dla ustalenia myśli, przyjmijmy, że mamy tylko dwie płasz­
czyzny (n=2); oznaczmy na nich punkty rozgałęzienia, których 
liczba powinna być w tym przypadku parzysta,i połączmy je po 
dwa(t.j. 1-y z 2-gim,potem3-iz4-ym i t. d.) za pomocą jakichkol­
wiek linij (które mogą być i prostemi), nie przecinających się ze 
sobą (linie spójności). Przetnijmy płaszczyzny wzdłuż tych 
linij, a następnie złączmy brzeg prawy płaszczyzny górnej z brze­
giem lewej płaszczyzny dolnej, oraz brzeg lewy płaszczyzny 
górnej z brzegiem prawym płaszczyzny dolnej. Skutkiem 
takiego spojenia płaszczyzn można przejść od jednej z nich 
do drugiej, lecz nie można okrążyć punktu rozgałęzienia w je­
dnej i tej samej płaszczyźnie; przebiegając tedy po okręgu około 
punktu rozgałęzienia, przechodzimy od płaszczyzny górnej do 
dolnej, aby po tern po obrocie wrócić do płaszczyzny górnej.

Niechaj w ogólności będzie n płaszczyzn z. położonych na 
sobie i niechaj z—zQ będzie punktem rozgałęzienia, w którym mx 
rz pomiędzy w wartości w przemienia się wzajemnie kołowo, inne 

tworzą cykl drugi i t. d. (patrz § 1), wtedy poczynając z pun­
ktu z0, robimy tyleż cięć w rozmaitych płaszczyznach i spajamy 
je ze sobą w ten sposób, aby z pomiędzy nich stanowiło cykl 
pierwszy (1-y z 2-gim, 2-gi z 3-im, . . . w^-ty z 1-ym), —cykl
drugi i t. d

Jeżeli krzywa, przedstawiona przez równanie 
f(w,z)=O, jest ni ero z kła dalii ą, t. j. nie może rozpadać 



336 Rozdział XV.

się na krzywe niższe, wtedy układ tak spojonych 
n płaszczyzn stanowi powierzchnię jedyną, któ­
ra może się przekształcać sposobem ciągłym w ten 
sposób, żepowstaje stąd powierzchnia zwykłego 
wyglądu różnie spleciona i na której z jednego 
punktu można, sposobem ciągłym, przejść do każ­
dego innego.

Jeżeli funkcya /'jest rozkładalna, wtedy mamy 
nie jednę lecz tyle powierzchni, na ile czynni­
ków rozkłada się f; na każdej z nich możnaprzejść 
z jednego punktu do innego sposobem ciągłym.

Jeżeli krzywa nierozkładal na, przedstawiona 
przez równanie /(?,p, z) — 0, jest rodzaju p (patrz „Teo- 
rya krzywych“), wtedy odpowiadająca jej powierz­
chnia Riemanna jest także rodzaju p. Ta liczba 
całkowita dodatnia przedstawia największą liczbę 
cięć zamkniętych, które można uskutecznić na po­
wierzchni, nie doprowadzaj ąc jej do rozpadnięcia 
(patrz „Teorya spójności“).

Powierzchnia Riemanna rzędu p może być- 
sposobem ciągłym przekształcona na kulę p— powło­
kową, t. j. na kulę, w której uczyniono otworów 
i połączono je dwa po dwa powierzchniami postaci 
rur zwiniętych.

Powierzchnia nazywa się pojedyńczo-spójną lub j e- 
dno-spójną, jeżeli rozpada się skutkiem jakiegokolwiek usku­
tecznionego na niej cięcia zamkniętego, albo skutkiem cięcia, 
łączącego punkt brzegu z innym punktem tegoż brzegu, gdy po­
wierzchnia posiada brzegi. Tak np. jednospójną jest kula (po­
wierzchnia bez brzegów lub część płaszczyzny ograniczona 
kołem).

K a ż d ą po w ie r z chnię Riemanna ro d z a ju p mo­
żna uczynić jednospójną za pomocą p cięć zamknię­
ty ch (cięcia A), p cięć otwartych (cięcia R), łączących 
dwa punkty całkowitego brzegu, które powstały na 
powierzchni skutkiem pierwszych cięć, wreszcie za 
pomocą innychp—1 cięć otwartych (cięcia C).
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Ogól tych wszystkich cięć przedstawia 
brzeg jedyny, który można przebiedz całko­
wicie, wychodząc z pewnego punktu; jest to 
brzeg powierzchni, która stała się jedno- 
spójną.

Jeżeli powierzchnia Riemanna rodzaju p daje się za­
mienić na inną, mającą tylko dwa liście, to nazywa się hyper- 
eliptyczną.

Typem kanonicznym powierzchni h y per­
eł i p t y c z n e j Riemanna rodzaju p jest powierz­
chnia, złożona z dwu liści i mająca 2p-2 pun­
któw rozgałęzienia.

Dla p = l każda powierzchnia Riemanna 
jest hyper eliptyczną; właściwie mamy wtedy 
tak zwaną powierzchnię eliptyczną Riemanna.

Dla powierzchni hypereliptycznęj o dwu liściach, układ 
cięć A, B, C, zamieniających ją na jednospójną, tworzy się spo­
sobem następującym. Niechaj punkty a15 a2, . . ., a2p+i będą 
punktami rozgałęzienia a proste a2), (a3 a4) . . . (a21>+la.a2/,4_2) 
liniami spójności. Wykreślmy na jednej z płaszczyzn krzywe zam­
knięte, zawierające w swem wnętrzu pierwsze p z pomiędzy 
linij spó jności, otrzymamy tym sposobem linię A2... J_p. Nastę­
pnie tworzymy £?], kreśląc krzywę zamkniętą, która wychodząc 
z jednej z płaszczyzn z punktu linii ax a2, dochodzi do punktu 
linii «2H-1 i, przeszedłszy następnie do drugiej płaszczyzny, 
wraca do tegoż samego punktu linii (a, a2). Podobnież tworzy­
my B2, ... Bp i kreślimy te linie tak, aby się nie przecinały. 
Wreszcie tworzymy linie CA,.........., Cp_lf łącząc punkt linii ^42
z punktem linii Bv punkt linii A3 z punktem linii B2 i t, d

Pascal. Rep. I. 22
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§ 3.

Funkcje na powierzchni Rietnanowskiej.

Dla każdego punktu powierzchni Riemanna mamy jednę 
wartość z i jednę wartość w, ta ostatnia pozostaje bez zmiany 
bez względu na drogę, jaką na powierzchni dochodzimy do 
punktu.

Niechaj będzie funkeya monogeniczna zmiennych z i w 
taka, że dla każdej pary wartości z, w, czyniących zadość związ­
kowi f (w,z) = 0, t. j. dla każdego punktu powierzchni Rieman­
na ma ona jednę wartość. Taka funkeya nazywa się funkcyą 
jednopostaciową na powierzchni Riemanna.

Każda funkeya jednopostaciowa na po­
wierzchni Riemanna, nie mająca innych oso­
bliwości prócz biegunów (t. j. punktów, w których 
staje się nieskończoną tak, że jej odwrotność jest w tych pun­
ktach zerem i funkcyą ciągłą) jest funkcyą wymierną 
ilości w i z (funkcyą algebraiczną ilości zY

Każda funkeya jednopostaciowa na po­
wierzchni Riemanna musi koniecznie posia­
dać bieguny, t. j. nie może być skończoną na 
całej powierzchni, chyba że jest stałą.

Każda funkeya algebraiczna (funkeya jedno­
postaciowa na powierzchni Riemanna) przyj mu je każdą 
wartość k razy; w szczególności zaś ma tyle 
zer, ile ma biegunów. Li czba k nazywa się stopniem 
funkcyi.

Grupa k punktów, z w których funkeya algebraiczna przy­
biera tę samą wartość, nazywa się równoresztną (korre- 
s y d u a 1 n ą), z grupą innych k punktów, w których taż sama 
funkeya przybiera inną wartość.

Nie istnieje funkeya algebraiczna, mają­
ca m n i e j niż p-|-l biegunów dowolnie danych, 
gdzie p jest rodzajem zasadniczej powierz­
chni Riemanna.
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Funkcya algebraiczna ogólna, mająca p-1-1 
biegunów dowolnie danych, zawiera liniowo 
dwie stale jednorodne, t. j. jest postaci cl F-|- c2, 
gdzie Fjestfunkcyą określoną tejże natury.

Funkcya algebraiczna ogólna, mająca k 
biegunów dowolnie wybranych, zawiera linio- 
w o k-p-\-l stałych dowolnych, t. j. istnieje k—p 
prawdziwych funkcyj (wyłączamy ilość stałą) li­
niowo niezależnych, mających bieguny swoje 
wszystkie lub niektóre w tych k punktach. 
(Twierdzenie Riemann a,Grelle LIV, Abel sehe Functionen n. 5.)

Uogólnienie tego twierdzenia odnosi się do przypadku, 
w którym punkty dane mają położenie specyalne.

Jeżeli równanie /‘(w,/) = 0 rozważamy jako równanie krzy­
wej płaskiej rzędu //-tego, to krzywą dołączoną rzędu 
(n—3)-go nazywamy taką krzywą tego rzędu, która przechodzi 
(r—1)-krotnie przez punkty r-krotne krzywej zasadniczej.

Krzywa dołączona rzędu (n—3) - go m a 2p—2 
zmiennych punktów przecięcia (prócz pun­
któw wielokrotnych) zkrzywą zasadnicząiist- 
niejep krzywych dołączonych rzędu (n—3) - go, 
liniowo od siebie niezależnych.

Jeżeli 7ć punktów należy do przecięć (zmiennych) krzywej 
dołączonej rzędu (n—3)-go z krzywą f, mówimy wtedy, że t e k 
punktów tworzy grupę specyalną.

Jeżeli przez k punktów danych przecho­
dzi t krzywych rzędu (n—3) - go liniowo nieza­
leżnych, to funkcya algebraiczna, mająca bie­
guny swe wszystkie lub niektóre w tych k 
punktach, zawierać będzie liniowo k—p-1-t-)-1 
stałych dowolnych jednorodnych. (Twierdzenie 
Riemanna-Rocha, Grelle LXIV.)

Jeżeli t—0, mamy wyżej przytoczone twierdzenie R i e- 
m a nn a.

Funkcya algebraiczna, której bieguny tworzą grupę spe­
cyalną, nazywa się funkcyą specyalną.
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§ 3.

Funkcje na powierzchni Rietnanowskiej.
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Liczba biegunów funkcyi specyalnej jest 
co n a j w y ż e j równa 2/9—2 i może dosięgnąć tej 
granicy.

Każdą funkcyę specyalną można przed- 

stawić w postaci—, gdzie 0 i ’Z7 są pierwsz e- 

m i stronami równań dwu krzywych dołączo­
nych rzędu n—3.

Teorya funkcyj algebraicznych jest ściśle związana z teoryą grup 
punktów na krzywej. O tej teoryi istnieje pierwsza praca klasyczna 
Brilla-No et h er a (Math. Ann. VII); po szczegóły odsyłamy czytel­
nika do drugiego tomu tej książki.

O twierdzeniu Riemanna-R o cha, oprócz prac wskazanych, 
patrz jeszcze Linde mann: „Untersuchungen iiber den Riemanu- 
Roch’schen Satz“ (Lipsk 1879), Noether (Spraw. Erlangen 1879).

Przed zakończeniem tego paragrafu winniśmy jeszcze do­
dać, że można utworzyć teoryę funkcyj monogenicznych na po­
wierzchni, uogólniając pojęcie funkcyi zmiennej urojonej na 
płaszczyźnie.

Na powierzchni danej rozważajmy układ spółrzędnych 
krzy wokreślnych p, 7 i niechaj E, F, G będą spółczynniki formy 
różniczkowej, wyrażającej kwadraty elementu liniowego po­
wierzę hni (patrz tom II rozdział o „Geometryi różniczkowej“).

Jeżeli p', q' są funkcyami rzeczywistemi ilości p i 7, czy- 
niącemi zadość dwom związkom:

E
c)q'   dq dp

~ /EG — F~

dq___ . Sp 3q
d(l IEG — F*

wtedy zmienna zespolona p‘ -J- i ą’ będzie funkcyą punktu po­
wierzchni o spółrzędnych p i 7, taką, że jej wartość jest nieza­
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leżna od kierunku, w jakim porusza się na powierzchni punkt 
p, nie będzie zaś funkcyą zmiennej zespolonej pĄ- i </, chyba że 
p, q stanowią układ spółrzędnych izometrycznych. W ogóle 
wszakże będzie funkcyą innej kombinacyi zespolonej zmiennych 
p i q; Zcombinacya ta jest mianowicie całką różniczki dokła­
dnej, którą otrzymujemy, mnożąc

VE dp 4- (F + i VEG 4- F'2)y=r

przez czynnik całkujący postaci ogólnej zespolonej
Powyższe związki są związkamikoniecznemi i dostateczne- 

mi na to, aby zmienna zespolona była funkcyą innej; z nich 
otrzymujemy dwa związki następujące:

/> W F S(l' 
d i dp_____ dg |,jl 3? Jp_
3p \ ]/EG-^F2 / ' dq \

/r 3y /p 3pf F
3 1 dp dg I 3 / ?9 3/9

dP ' l'EG^F^ ' 39 V ]/EG~F* 

zastępujące związki A2 = 0 teoryi zwykłej (patrz Rozdz. XIII).
Jeżeli przedstawimy p' 4- iq‘ przoz punkty płaszczyzny, 

to zmienna ta będzie funkcyą punktu powierzchni (w znaczeniu 
wyżej wskazanem), jeżeli powierzchnia i część płaszczyzny od­
powiadają sobie w odtworzeniu podobnem. Ogólniej, 
jeżeli p\ q’ są spółrzędnemi krzywokreślnemi punktu innej po­
wierzchni, wtedy zagadnienie: „uczynić punkt jednej powierz­
chni funkcyą monogeniczną punktu drugiej“, odpowiada: „od­
tworzeniu podobnemu“ jednej powierzchni na drugą (patrz roz­
dział odpowiedni w tomie 2-gim).

Poprzednie rezultaty znaj ujemy po raz pierwszy w klasycznej roz­
prawie Beltrami’ego (Annali di mat. I, str. 329); inne wskazówki 
i szczegóły u Neumanna (Abel’sche Integrale, Lipsk, 1865, 1884) 
i Kleina (Algebraische Functionen, Lipsk 1892).
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§ 4.

Całki a b e i o w e.

Niechaj li (w, z) będzie funkcyą algebraiczną zmiennej z, 
która ze zmienną w połączona jest związkiem wymiernym 

z) — 0; całka

j K (w, z) dz

nazywa się całką abelową.
Funkcya z, którą ta całka przedstawia, 

jest w o g ó 1 e f u n k c y ą o nieskończenie wielu 
wartościach: to znaczy, że, idąc na powierz­
chni Kie mann a po różnych drogach całkowa­
nia, można dojść do tego samego punktu zróż- 
nemi wartościami całki.

Jeżeli za pomocą cięć A, B, C uczynimy powierzchnię je- 
dnospójną (patrz § 2), to różnica wartości całki w dwu odpowie­
dnich punktach brzegów, utworzonych za pomocą cięcia, A jest 
ilością stałą, która nazywa się modułem peryodyczno- 
ści pierwszego gatunku; dla cięć B mamy moduły 
peryodyczności drugiego gatunku, dla cięć 
C ta różnica jest zerem.

C a ł k a a b e 1 o w a m a najmniej 2p modułów 
peryodyczności; różnica dwu wartości, jakie 
ona może mieć w punkcie, jest sumą wielokrot­
ności jej modułów peryodyczności.

Całki abelowe rozróżniają się według natury funkcyi 
li (w, z), lub lepiej według natury biegunów tej funkcyi.

Jeżeli funkcya R nie ma innych biegunów, 
prócz punktów rozgałęzienia, wtedy całka mo­
że być stale skończoną, i mamy całkę gatunku 
pierwszego. Jeżeli funkcya R ma biegun rzędu 
wyższego nad 1 w punkcie (w0, Zq), wtedy całka 
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staje się w tym punkcie nieskończoną, podo­
bnie jak f unkcy a algebraiczna (punkt nieskąńczo- 
ności algebraicznej) i otrzymujemy całkę gatunku 
2 - g o. Jeżeli wreszcie B ma biegun rzędu 1 - g o 
w punkcie (w0, z0), wtedy całka staje się w tym 
punkcie nieskończoną, jak logarytm funkcyi 
algebraicznej (punkt nieskończoności logarytmowe j) i b ę- 
dziemy mieli całkę gatunku 3-go,

Całki dwu pierwszych gatunków mają jako moduły peryo- 
dyczności tylko wyżej rzeczone moduły w liczbie 2p; całki ga­
tunku 3-go mają, prócz tych, jeszcze inne moduły, zależne od 
nieskończoności logarytmowych. Jeżeli okrążamy takie nie­
skończoności, to wartość całki powiększa się o iloczyn liczby 2m 
przez wieJokrot ność pozostałości, która tej nieskończoności od­
powiada (patrz Rodział XIII, § 6).

Suma pozostałości całek 3-go gatunku jest zawsze zerem.
Każda całka abelowa daje się zawsze przed­

stawić za pomocą kombinacyi liniowej całek
1-go,  2-go i 3-go g a t u n k u.

Jeżeli zmienna całki abelowej przebiega sposobem ciągłym 
ogół trzech układów cięć J, B, C, t. j. kontur całej powierz­
chni Riemanowskiej jednospójnej , otrzymujemy na re­
zultat tożsamościowe zero.

W przypadku rodzaj u p=0, t. j. w przypad­
ku zwyczajnej płaszczyzny zespolonej nie­
ma całek 1-go gatunku; oznacza to, że całki 
funkcyj wymiernych zmiennej są zawsze cał­
kami gatunku 2 go lub 3-go; a więc dla p—0 nie 
ma funkcyj, które pozostają skończonemi dla 
całej płaszczyzny zespolonej (nawet dla z —.oo).

Jeżeli powierzchnia zasadnicza Riemannowska jest 
hypereliptyczną lub w szczególności eliptyczną, wtedy odpo­
wiednie całki abelowe nazywają się hypereliptyczne- 
mi lub eliptycznemi.
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Ś 5.

Całki abelowe gatunku 1-go-

Istnieje y całek a helowych 1 -go gatunku 
liniowo -niezależnych, jeżeli powierzchnia 
zasadnicza Riemanna .jest nierozkładalna 
i r o d z a j u p.

Jeżeli /’(?<;, £■) = 0 rozkłada się na Uczynni- 
ków. wtedy istnieje y — Zj—|—1 całek abelowych 
1-go gatunku linio wo-niez ależnych (Christof- 
f e 1, Ann. di mat. X).

Każda całka abelowa 1-go gatunku od po­
wiada jednej z y krzywych dołączonych r z ę- 
d u (n—3) - go.

Oznaczmy przez w15 w2, . . . , we całki 1-go gatunku i nie­
chaj o),/-, + będą ich moduły peryodyczności. Niechaj mia­
nowicie co/;a- będzie wartością całki co/, gdy zmienna całkowania 
przebiega w kierunku dodatnim (t. j. w kierunku przeciwnym 
ruchowi skazówekzegarowych) linię By i podobnie co,-,-,+a- niechaj 
będzie wartością tejże całki, gdy zmienna przebiega linię At. 
Ilości mik można też określić jako różnice dwu wartości całek na 
dwu brzegach linii Aa; i podobnie określić można cm,^.

Pomiędzy modułami peryodyczności ist­
nieją związki dwu liniowe, znalezione przez 
Riemanna (Werke, str. 124). Są one następujące:

p
((Oik (Oj, p+A’ CO/, j)-|-A'CO/A' ) = ,k—k

, . , y (y—1 » a jest ich ——.

Jeżeli razem z temi związkami będziemy rozważali związki 
analogiczne pomiędzy modułami peryodyczności całek 2-go ga­
tunku (patrz niżej), to przy pomocy pewnego rozwiązania można 
mieć związki, w których drugie skażniki ilości a> są stałe, pier­
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wsze zaś zmienne w sumowaniu, gdy tymczasem poniżej jest 
przeciwnie. Związki te otrzymał Weierstrass (Progr. Grymn. 
Braunsberg. 1849, patrz § 6).

Jeżeli położymy

= a <k -j- i fiu ,

to suma

p
(a/jt Pi, k+p — di, k^p pik )

ł=2

będzie z pewnością różna od zera i dodatnia; 
przedstawia ona pole całego odtworzenia po­
dobnego powierzchni Riemanna na płaszczy­
źnie całki u>i . Wyznacznik

CO 1 1 5 CO 12 J • • • • • ? CO 1P

COgi 5 COg2 i...........................................? CO*2p

COpj , CO^2* • • • • • ł ^PiP

musi być różny od zera.
Moduły 1-go gatunku nie mogą być wszyst­

kie rzeczywistemi, jak również nie mogą być 
wszystkie czysto-urojonemi.

Nie istnieje całka 1-go gatunku, dla której 
;są zerami wszystkie moduły peryodyczności 
względem cięć A, ani wszystkie moduły pe­
ryodyczności względem cięć B.

Można uważać p całek v pierwszego ga- 
ko kombinacye liniowe poprzednich całek 
i takie, że tablica modułów peryodyczności 
odnośnie do cięć A jest następująca:
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A, A2 , • • • • • ? -'1 p

1, 0, 0

0, 1, ..................... ..... 0

..........................

0, 0, .......................... 1

Te całki nazywają się normalnemi. Riemann za­
miast tych całek normalnych rozważał inne, dla których tablica 
poprzednia ma za elementy przekątnej głównej liczby in zamiast 
1. Clebsch i Gordan (Abebsche Functionen str. 408) uwa­
żali za całki normalne takie, w których te elementy są 2ćzr.

Jeżeli przez ry oznaczymy moduły peryo- 
dyczności całek normalnych względem cięćB, 
będziemy mieli związki r „y = t y,-, nadto części 
urojone modułów i ti powinny być wszystkie 
ze znakiem dodatnim.

Jeżeli położymy r,y = y tj 4“ «0 to forma 
kwadratowa da n, nj, gdzie liczby n sąjakiekol- 
wiek liczby rzeczywiste, powinna być zawsze 
różna od zera (forma kwadratowa określona).

§ 6.

Całki abelowe 2-go gatunku.

Istnieje p całek gatunku 2-go, liniowo od 
siebie niezależnych i stających się nieskoń- 
czonościami 1-go rzędu w tym samym punkcie 
oznaczonym z—i.
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Różniczkując jednę z takich całek r—1 
razy względem/, otrzymujemy całkę gatunku
2-go,  która staje się oor w punkcie t.

Całka gatunku 2-go, stająca się oo1 w dwu 
punktach, daje się wyrazić jako suma dwu ca­
łek, z których każda staje się co1 w jednym tyl­
ko punkcie.

Możemy wyznaczyć całki 2-go gatunku 
takie, że moduły ich peryodyczności wzglę­
dem cięć A są wszystkie zerami; wtedy moduły 
peryodyczności względem cięćR będą funk­
cjami alg e braicznemi ilości/, równemi mia­
nowicie —2ijr, Y7(Z), gdzie ipi(z) jest pierwszą st ro- 
ną równania krzywej dołączonej rzędu n — 3, 
odpowiadającej całce normalnej 1-go gatunku

Jeżeli;? punktów /', /", . . . , /(p) nie leży na 
krzywej dołączonej rzędu n—3 względem krzy­
wej zasadniczej f(w, £■) = 0, wtedy każda całka 
V(/) gatunku 2-go z nieskończonością jakąkol­
wiek w/rzędu pierwszego i mająca moduły 
równe zeru na cięciach A, daje się wyrazić za 
pomocą całek analogicznych, mających nie­
skończoności w punktach /', /",..........

Wzór odnośny otrzymujemy, rozwijając 
wyznacznik

. , Y№

= Funke, alg. ilości /,

^(0,

gdzie ilości y mają znaczenie wyżej określone.
Jeżeli Ylf Y2, . . . , Yp oznaczają minory, zawarte w' ma­

cierzy ostatnich p kolumn poprzedzającego wyznacznika, po­
dzielone przez wyznacznik
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C = -

Vb(^j

wtedy zachodzi związek

T<0 = tpt (0 I’, 4- funkcya algebr, ilości t.

Całki Y,, Y2, , Yp można nazwać normalnemi;
zachowują się one w sposób specyalny odnośnie do peryody- 
czności.

Ich moduły na cięciach A są wszystkie 
zerami; moduły na cięciach B s ą zerami, prócz 
jednego równego 2ór; dla I’,- jest moduł wzglę- 
dem cięć równy 2?ti: moduły tych całek są nie­
zależne od punkt ó.w nieskończoności.

Jeżeli zmienimy punkty nieskończoności, 
tonowe całki różnić się będą od dawnych 
o funkcye algebraiczne.

Różniczkując wzór poprzedni r — 1 razy, 
otrzymujemy całkę drugiego gatunku, stawa- 
j ą c ą się oor w punkcie t, wyrażoną liniowo przez 
p całek normalnych.

Jeżeli Z{ł> jest jakąkolwiek całką 2-go gatunku z punktem 
nieskończonościowym w t rzędu 1-go, to utworzywszy Zl,'\ 
podobnie jak w twierdzeniach poprzedzających, dojdziemy do 
takichże rezultatów, pamiętając tylko o tern, że należy ilości Y 
zastąpić ilościami Z, ilości zaś ip ilościami cp. Przez <p rozumie­
my tu strony pierwsze równań krzywych dołączonych rzędu 
(w—3)-go, odpowiadających całkom 1-go gatunku w, nie zaś 
całkom normalnym v (patrz § poprzedzający).

Całki 2j. Z2, . . . , Zp, w ten sposób utworzone, 
nazywają się też całkami normalnemi; mają 
one moduły, niezależne od punktów nieskończo­
ności.
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Jeżeli przez—, —»/z, a-h> oznaczymy moduły peryody- 
czności całek 7, na cięciach A/-, Bp, będziemy mieli związki 
d w u 1 i n i o w e :

p

a-+p—= o, dla i A=j, 
A-l

--  2 l J c „ t j ,

gdzie ilości co są modułami całek g a t u n k u 1 -go.
Nadto pomiędzy modułami całek gatunku 

2-go zachodzą związki:

p
2 (rpi<(Oj,k+p ~ vP,*+p'l№) = 

A=1

1 4- ' t • x P ( P — 1) których j e s t ----- =-----  .

Jeżeli napiszemy co^-p, a- zamiast ^z. a-, to wszystkie 
związki poprzednie wraz ze związkami § po­
przedzającego zawrzeć będzie można w związku 
jedynym:

p

■A. ((O/k-COj, COj\ lc CO', k-}~p ) — 0, J 4- ^~\~p
A=1

= j i-\~p

g d z i e i, j p rz y j m u j ą wszelkie wartości 1,2,..., 2p. 
(Związki Riemanna).

Odwracając te związki, otrzymamy związki 
Wei erstrassa:

p

(cOk,i COi+pJ   COA,/COA + p, z) = 0. j=i=i-]-p
/4=1

= 2i^, j —

i ' x K (2^—1)związków tych jest —------------ .

Wyznacznik rzędu 2p, utworzony ze wszyst­
kich ilości co, odnoszących się do całek 1-go i 2-go 
gatunku:
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> i ............................ » «h 7-P

0)-2p,l , ; CO2/>l2j9

jest różny od zera.
Funkcya algebraiczna ogólna, stająca się 

nieskończoną w r punktach t', t", . . . , №, m o ż e być 
wyrażona zawsze za pomocą wzoru 

F=c’ + № Z W) -f- C;

gdzie liczba stałych dowolnych określa się na 
podstawie twierdzenia B i e m a n n a - Bo c:h ą.

§ 7.

Całki abetowe gatunku 3-go.

Z twierdzenia, podanego w § 4, według którego w całce
3-go  gatunku suma pozostałości logarytmowych jest zerem, wy­
nika, że całka taka ma co najmniej dwie nie­
skończoności logarytmowe.

Granicą całki trzeciego gatunku o dwu 
n i e s k o ń c z o n o ś c i a c h, gdy tezbliżają się do 
siebie nieograniczenie, jest całka gatunku 
2-go, mająca w tym punkcie nieskończoność 
algebraiczną.

Całkę gatunku 3-go o r nieskończ on ościach 
algebraicznych można wyrazić liniowo przez 
r całek gatunku 3-go, z których każda ma tyl­
ko dwie nieskończonoś ci.

Aby całkę gatunku 3-go o dwu nieskończ o- 
nościach uczynić jednowartościową na po­
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wierzchni Riemanna, zamienionej najedno- 
spójną, dość połączyć obie nieskończoności 
cięciem; na powierzchni tak przeciętej cał­
ka jest jednowartościową.

Pochodna całki gatunku 3-go względem 
jednego z punktów nieskończoności 1 o ga­
ry t m o w ej jest całką gatunku 2 - g o, mającą 
tylko jeden punkt nieskończoności algebra­
icznej rzędu pierwszego.

Jeżeli przez P(zt) oznaczymy całkę gatunku 3-go z dwoma 
punktami nieskończoności logarytmowych i, przez Z(t} całkę 
gatunku 2-go z nieskończonością algebraiczną będziemy 
mieli wzór

ptK = j Z&dt.
't

Wyrażenie jest znów całką pomiędzy dwoma punkta­
mi z. zx powierzchni Riemanna, której oznaczamy przez skaź- 
niki dolne, będzie wtedy:

ą
tt. /’ (O

P_: = ZzZi clt.
't

Wprowadziwszy całki normalne gatunku 
2-go, będziemy mieli

Ą
pztl = wa zi + • • • • + WP 4 + p d ł > 

gdzie F jest funkcyą algebraiczną ilości z, 
wszystkich punktów t, tf, . . . , W, z a p o m o- 

cą których tworzymy całki normalne Zx, ź?a,...» Zp’, 
ostatni wyraz jest funkcyą algebraiczną je­
dnowartościową względem z, gdyż całkowa­
nie odbywa-się tylko względem zmiennej t.

Moduły peryodyczności całki P^ są:
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— £ w"' r/ik , dla cięcia Ak,
«=i

Wi 7]/, £_|_p , j, „ Bk.
»=1

Jeżeli wyjdziemy z całek Y, zamiast z całek ź/,, otrzyma­
my całkę trzeciego gatunku, którą, według Clebscha i Go r- 
d a n a, oznaczamy przez U .

Moduły peryodyczności całek mają 
wartość zero na cięciach A, i równają się 
2 i 7i vłt.1 na cięciach Bi.

Całka U czyni zadość równości:

U = U \

nazywa się to przemiennością parametrów 
t tx, z argumentami z, zx .

Mamy także wzór:

ii"' + nf'ts + ii2' = o, ZZt ' ZZy 1 zz± ’K
jeżeli droga całkowania od z do zx nie prze­
cina drogi t t2 t.

t
Dla każdej całki trzeci e‘g o gatunku Pzz 

suma
pttl I płj* I pv 

zzt i zzt 1 zzt

jest całką gatunku pierwszego

Całki gatunków 2-go i 3-go, rozważane w poprzednim i ni­
niejszym paragrafie, zamieniliśmy na normalne, by uczynić 
możliwie najprostszemi ich moduły peryodyczności Nowsze 
badania Kleina i jego uczniów mają cel odmienny; idzie 
w nich o zbudowanie całek 2-go i 3-go gatunku w ten sposób, 
aby ilości podcałkowe były wyrażeniami niezmienniczemi wzglę­
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dem formy podstawowej /(ty, z) — 0, przedstawiającej powierz­
chnię Bierna nn a.

Należy wtedy zamiast w, z wprowadzić trzy zmienne je­
dnorodne, utworzyć całkę trzeciego gatunku Q, która również 
jak i całka II Clebscha-Gor dana posiada własność niezmien­
ności przy przemianie parametrów i argumentów.

Nie możemy tu wchodzić w szczegóły i dlatego ograni­
czamy się na podaniu wskazówek bibliograficznych, odnoszą­
cych się do całek abelowych.

Abel pierwszy znalazł sławne i ważne twierdzenie, o którem 
mówimy w paragrafie następnym. Teorya całek abelowych jest po­
krewna z teorya fnnkcyj abelowych, o których mówimy w rozdziale 
XVII, tak że bibliografie obu tych działów wiążą się ze Sobą. Dziełami 
podstawowemi są tu: rozprawa Riemanna (Crelłe, LXIV), lekcye 
Weierstrassa o funkcyach abelowych, dzieło Neuman na (Lipsk 
1865, 1884), oraz dzieło Clebscha-Gordana (Lipsk 1866), które 
szczęśliwie zapoczątkowało związek pomiędzy pojęciami geometrycznemi 
i analitycznemi w tej dziedzinie. Najnowsze prace Kleina mieszczą 
się w Math. Ann. XXVII, XXXII. XXXVI.

§ 8.

Twierdzenie A b e / a.

Niechaj będzie funkcya algebraiczna i na 
powierzchni Riemanna i niechaj x2, . . . , ;
i/n • • • ; będą ó d p o w i e d n i o j e j punkty zero­
we i punkty nieskończoności o we (dwie grupy 
punktów spółresztowych); jeżeli Z jest jaką­
kolwiek całką abelową, to suma

m /•

2 dii—l.I

y<

rascal. Rep. I 23
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jest f u n k c y ą algebraiczno-logarytmową ilo­
ści t z dodaniem wielokrotności modułów p e- 
ryodyczności całki Z (Twierdzenie A b e 1 a).

Jeżeli Z jest całką 1-go g a t u u k u, to p o w y ż- 
sza suma jest zerem (nie licząc wielokrotno­
ści modułów peryodyczności).

Jeżeli Z jest całką gatunku 3 - go, mającą 
dwa punkty tj nieskończoności logar yt mo­
wę j, to suma powyższa ma wartość, niezależną 
od specyalnego wyboru całki; wartość ta rów­

£(£) . . .
(P 0 m 1J a J c wielokrotności modu­na s i ę log

łów peryodyczności).
Jeżeli Z jest całką gatunku 2-go z punktem 

nieskończoności algebraicznej £, to wartość
sumy (jeżeli pominiemy wielokrotności mo- 

d u ł o w) jest —- .

Jeżeli n a p i s z e m y l w postaci

t = Z (w’
V {w, z) ’

i jeżeli istnieje taka wartość 2, dla której krzy­
wa (p (w, z) — iyj (wt z) =0 przechodzi p rzez ab a pun­
kty 7], wtedy strona druga wzoru w twier­
dzeniu Abela dla całek gatunku 3 - g o jest ze­
rem (jeżeli pominiemy wielokrotności peryo- 
d ó w).

Za pomocą twierdzenia Abela suma k całek

J I dl,
/=1 ,/

.7'

gdzie k > p 1, .z zaś i y są jakiemikolwiek war 
teściami, daje się zawsze wyrazić-jako suma 
analogicznych p całek (p jest „rodzajem“ powierzchni 
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R i e m a u u a), pomijając (jeżeli idzie o całki 2-go 
i 3-go gatunku) pewną f u n k c y ę algebraiczne- 
logarytmową.

W przypadku e 1 i p t y c z n y m p = 1 mamy: su­
ma dwu lub więcej całek eliptycznych da je 
się zawsze wyrazić za pomocą jednej całki, 
przyczem jedna z granic może być wybrana 
dowolnie. (Twierdzenie o dodawaniu Euler a.)

Twierdzenie A b e 1 a d 1 a c a ł e k pierwszego 
g a t u n k u w y r a ż a w a r u n e k konieczny i dosta­
teczny na to, aby dwie grupy punktów były 
s p ó ł r e s z t o w e.. (Riemann, Weierstrass).

Jeżeli we wzorze, wyrażającym twierdze­
nie Abela, zmienimy odpowiedniość pomiędzy 
granicami wyższe mi i niższe mi, to cała suma 
powiększysięalbo zmniejszy o wielokrotności 
całkowite modułów p e r y o d y c z n o ś c i.

Za pomocą twierdzenia Abela można udowodnić twierdze­
nie Riemanna-Boclia i inne twierdzenia zasadniczeteoryifun- 
kcyj algebraicznych, np. tak nazwane „t w i e r d z e n i e o r e s z c i e“ 
którego twierdzenie Abela jest tylko formą przestępną. „Twier­
dzenie o reszcie“ brzmi jak następuje:

Jeżeli x19 x2l . . . , xm\ yr, y2, , . ., yin są d w i e g r u p y 
punktów spółresztowych, to gdy przez punkty 
x p r z e c h o d z i j a k a k o 1 w i e k krzywa, przecina­
jąca krzywą zasadniczą w innych Ic punktach 

z2, . .., £7■, wtedy punkty z i y stanowić będą 
przecięcie zupełne innej krzywej z k r z y w ą 
zasadniczą.

Jeżeli powierzchnia Rie manna ma r liści, 
to suma wartości, które przyjmuje ta sama 
całka abelowa 1 - go i 2-go gatunku przy opisa­
niu dróg zamkniętych, sprzężonych we wszy- 
s t k i c h r 1 i ś c i a c h, jest zerem.

Twierdzenie A bela jest najbardziej zasadniczem w całej 
teoryi funkcyj algebraicznych i ich całek.
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Odkrył je Abel najprzód dla przypadku hypereliptycznego 
(Crelle III), a następnie (1826) dla przypadku ogólnego (Mémoire sur 
une propiété générale d’une classe très-etsndue de fonctions transcend.; 
Mémoires des Sav. étrang, t. VII, 1841).

Dowód tego twierdzenia znaleść można w dziele Glebach a- 
Grordana oraz w innych dziełach, cytowanych w § poprzedzającym.
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TEORYA FUNKCYJ ELIPTYCZNYCH

§ 1.

Funkcje & Jacobiego.

Funkcye l) Jacobi’ego są następujące:

& (j;) — 1 -J- 2 (—1 )vqv' cos 2 vx
V=1

= jT (—l)r/2 ,
— oo

Ąfse)—2-£ (—l)”-1 (fi <?’''1)’sjn (2r—1) r 
r=l

- (—1)” i
— oo

Ą(.^) = 2 1 ęT(2’’-,)’cos(2v-l)5C 
V=1

+ °° 1 ,o 1U= 2: q^v-V ,
— oo
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&Ax') = 1 4~ 2 (f cos 2 v x 
r-1

+ 00
.— — V

— 00 .

Te szeregi są zbieżne d ] a każdej wartości 
;/•. j e ż e 1 i mod q <Z 1 .

Funkcya ■&l jest nieparzysta, wszystkie 
pozostałe są parzyste mi:

# (x zt 2 (x 4- | Ti.    — 4- ■&i(x),1**

1
& (rc i 71 zt I log 7) — 9 4 e ± xi (x),

1
(x I 4z 1 z l°g ?) — 9 4 e-x‘ ‘^;i (^) >

1

t>2(o? 4- 1: ji 4z I«log 9) = 4 ei*' &G4»
1

• ^3(a; 4" i ± I«l°g 9) — + q~ ie±asi'&1(x).

'd (x 4~ n) = $■ (.%■); (x 4~ tt) = — $! (x‘),

^(^ zt71) ~ — ^'Ąx) 5 $3 O'ztz =

^(^zt ^'log9) = — q~1e^-x' d’(x),

Ą'vx‘ 4z i log 9) — — 9—1 e±2x ’ #1 (x).

~ 4- — ^(x)-

1

$■ (x + j i log q') — 4- « 9 ~ < e±*'Ą (rr),
_ 1

zt £ * log 9) — 4- z9 4 e±x‘ d (x),

Ą(a? 4: 4-4’log 7) = 4? 1 e±xi fi. (x),
__£

&.t(x zt I* log 9) = 4-9 4 e+x‘fh (rr),
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#2(sc + i log 9) = 4* 9-1 e ±2 x' #2(4),

^3(ic + 2 log 9) = -f- 9-1 ' &3 (x).

Wszystkie funkcye # i'ich pochodne czy­
nią zadość równaniu różniczkowemu:

I !
'Sx- ~ 3 (log 9)

Jeżeli ilości x' są połączone z ilością mi x 
związkami:

^•'1 = I (^1 + ^2 + X3 + »4), X>2 = I (®1 + X2 — ~ ®4),

<3 = 2 (^1 “ X2 + #3 “ XJ, X\ = 2 (#« — X2 — X3 + -r4)-

to wtedy mamy następujące trzy wzory Ja co bi'ego :

ZZ (X,) 4-II Ą(^) = Tl 4 h ^y'K\
*■=1 k—1 A—1 k—1

11 №7 ) — H^x(xk} = II ^(x\) — J/
k-1 k—i k=1 k—1

U &Sxk) — ) = II '&1(x,/T) 4- II &fjc'k).
k=l k— 1 ' /.=1 k—1

Jeżeli przez (ijJik) oznaczymy iloczyn ^(^i) ^(^2) ^4(^4),

a przez (ijhky takiż iloczyn dla argumentów x\ to zachodzić bę­
dą związki następujące:

(0033) 4 (1122) = (0033)' 4- (1122)',

(0033) — (1122) = (2211)' 4 (3300)',

(0022) 4- (1133) = (0022)' 4- (1133)',

(0022) — (1133) = (2200)' 4- (3311)',

(3322) 4- (0011) = (3322)' 4- (0011)',

(3322) — (0011) = (2233)' -j- (1100)',
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(3021) — (2130) = (3021)' — (2130)',

(2031) — (3120) = (2031)' — (3120)',

(1320) + (2013) — (1320)' -P (2013)'.

^(O) ^!^)^-^) = $2(a?i) ft\x.,} — Ą^) Ą2(#2) .

= '^3"(a?1) ^3"(a?2) $22(®i) ^22(*c2)ł

#2(0) (^ 4-;r2) Ą (x1—x2) = ) tf2^) — ^2(3?!) Ą2Cr2),

fl2’(0) &i(xx— xt) = Ą2(iCi) $22C»8) —

^3'(0) $i(«rx-px2) ,&i(x1 x2). = *(iC]) #23(;r2) ^32(^i) “ (^'2)7

<V(°) ^2(^1-p^2) ^(^--.^2) =- #32W '<V(^2) — ^4) ^{Xi\

= ?W1) *№)

7%,2(O)^(^+^)^(^-^) = №)^2(^2) +

= ^33(2?j) Ą2(aj2) _p ^2(^0 ^j2(sc2),
♦

£3(0) ^(2,r) = ^4(.t) — ^4(.r) = T>34(iC) — Ą4(.r),

#23(O) Ą(2^) = ^4(rr) — ft\x) = ^a4(rc) - ^4(a-),

^’(0) Ą,(2x-) = ^4(x) -p #24(o;) = V(*) + M*),

^(0) #2(0) Ą(0) ^(2») == 2^(o?) ^i(or) ^(x) ^x).

Pomiędzy funkcy a mi ^jednego argumen- 
tu istniej ą dwa niezależne od s i e b i e z w i ą z k i 
algebraiczne. Można je przedstawić przez 
dwa z pomiędzy czterech związków następu­
jących:

^2(0)^) — ^2(O)^32(x-) + Ą?(0)^-'(£C),

^,2(0)^i-(x) = ^0) ^T) — ^2(0M^3(a;),

#32(0) ^2(-/-) = ^-'(0) Ą(2(«) — tf2.0) ^2(r),

?9;.2(O) &:}2(x) — l7-’(0) //-'(aj -P #2J(Ó) 1%-(X).
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Pomiędzy funkcyami ■O- parzystemi i po­
chodną funkcyi dla argumentu zero istnie- 

ą dwa następujące związki algebraiczne:

i%4(0) = ^(0) + {>/(0); ^(0) = ^(0)^(0)^(0).

Zachodzą jeszcze następujące związki 
pomiędzy pochodnemi funkcyj O dla argu­
mentu zer p:

*3
A/' AIV A"2

__  _ Ł_ = }}4 • ______ 3 ______— _ 21)' 4 4-

A " fi. IV fi "2
__  :! ---- A 4 • ___ __  3 _2_ = __  9$ 4 „Q4 •

~ 2 ’ A ’

,Q" fi IV fi "2_________  = __  fi 4 . Jf3_______ 3 Y3_ _ 1 2,44 fi 4.
■ # 3 ’ 'd... Ą2 + 2 ’

A V fi "'2
3 ię 4 5= + ^8-

Funkcya $1 czyni zadość następującemu 
związkowi, który nazywa się równaniem trój- 
wyrazowem:

Ą -j- a?2) Ą (a?, — x2) Ą (^3 4- x^ dx — a?4)

-4 &x (^«4-^) Ą (%4 — .r:t) (z4 4- x2} 0x (x> — a2)

4“ #i + ^4) (xi — ^1 (a2 + ^3) (#2 — #3) = 0-

Pochodne stosunkó w funkcyj & wyrażają się 
przez stosunki samych funkcyj za pomocą wzo- 

ó w następujących:

d = .,,() »2fo) JW_
dx ^{x} 1 ' B-(sc) &(«) 1

d « •> zfp
dx &(x) 3 ' Ofa?) $(:») ’
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£ frąfo) = ą 2/()) ^(^‘)
dx &(x) 2 9-(sc) 9-(x’)

£ 9-Ja;) 9-fo) 9-;t(aQ

dx 9-2(a?) 2 9-2(£r) ^Ax) ’

d fr/a?) = 2(0 9-(aQ ^(^')
dx 9-.((#) 3 9-., (a?) ’

d = a2/01 ^O) frjfc)
dx 9-.. (a?) 1 'Ma') ’SC®)

Pochodne logarytmo we rzędów drugiego i wyż- 
szych. funkcyj 9- wyrażają się przez same fun- 
kcye $ za pomocą wzorów:

-^iogw = £121 _ ££21 £M 
dx2 g J 9-(0) 9-2(0) ■ 9-2(aQ

d2 i . .._9-"(0) 9ą'2(O) 9-2(a>t
dx'> °g l(x) £ (Oj ł>2(0) ’ ’

d2 , a.. . 9-"(0) 9-/^0) ^2(a?)
^log^(^)==w- W)

dx^
» b.( _ »"(°> _ »'.8(0) »»łW

B s' • »(0) 4»(0)' «■,=(»>'

log »(.) = - 2»', w ,
060/ ir (,JC )

log d,(x) = -r 2»,---(0) ,
dx3 & ’ 1 1 v 7 9-13(ic)

log »/«) = - 2»/«(0) !■
dx3 ^/(^)

d3 1 „ , oo. 9-(a?) 9-j(x-) 9-.,(.r)log »,(»•) = + 2», -(0)------- it’.; r) ,

Funkcye 9- są funkcyami ’całko witem i, 
które nie stają się nieskończonemi dla żadnej skończonej war­
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tości ж; ich punktami z er o we mi, t. j. punktami płasz­
czyzny, w których funkcye Э- znikają, są następujące:

dla funkcyi punkty х = тл — ni log q

„ я й(ж) „ х = I i log q + ттг — n i log q ,

„ „ В2(ж) „ x = — | л m л — n i log q I

„ „ ^:t(ic) „ x= — ^4-|ilogr/4-w^ — ni\ogq,

gdzie m i n mogą przyjmować wszystkie wartości całkowite 
dodatnie i ujemne.

Rozwinięcia funkcyj B- na iloczyny nieskończone mają 
postać:

В-(ж) == B(0) ZZ (1 — ------j ,
' l„,n \ Vl7t— (n-j-l)zlog/?/

&.(ж) = В-.'(О) xTL li------------ --------- j,

^2(ж)”= l>2(0) Tl (1----------- . • X—nj ,
^,»1 — nt\ogq I

»,(«) = Л,(0) 7/(1 - - - ,-n----- ,
»hn\ (m-[-^)7i—(n-\~K)dogq!

gdzie iloczyny ZZ rozciągają się na wszystkie wartości m, n całko­
wite, dodatnie i ujemne, nie wyłączając zera; tylko dla iloczynu 
nieskończonego, przedstawiającego funkcyę , należy wyłączyć 
kombinacyę m — 0, n — 0.
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Funkcye eliptyczne Jacobi ego.

Połóżmy:

f/7 = MP)
MO) F/? = «•(O) 

MO) ’
/^4-7/2 = 1,

Vk. sin (p , M^)frifo)
P . cos 99,

M^) 1
M) ~ lic7

V 1 — k2 sin2 <p — A (p , 
1 k' 

v = M(O) • l

Wzory te określają ilość cp jako pewną funkcyę zmiennej y, 
nazwaną funkcyą-amplitudą i oznaczaną symbolem am, 
tak że

cp — am v.

Funkcye sin 99, cos 99, A 99 oznaczają się odpowiednio przez

sn w, cn v, dn v,

i nazywają się wstawą—amplitudą, dostawą—am­
plitudą, delta—amplitudą. Są to trzy funkcye elip­
tyczne J acobi’ego; pomiędzy niemi zachodzą związki alge­
braiczne :

sn2 v -j- cn2 v = i ; • dn2 r + k2 sn2 v — 1.

Funkcya odwrotna względem funkcyi—amplitudy wyraża 
się przez całkę określoną :

<z> y
i' d 99 /‘ 4/99

fl — k2 sin2 (p . (P
0 o

i nazywa się całką eliptyczną gatunku 1-go.
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Wzory odnośne są :

Funkcye te posiadają twierdzenie o dodawa­
niu algebraiczni em, t. j. wartość funkcyi dla ar­
gumentu + v2 wyraża się algebraicznie przez 
jej wartości dla argumentów pojedynczych v1, ?;2.

Sn cn v2 dn V2 + SU v2 cn Vj dn
1 — k2 sn2 Z?J sn2 v2 ’

cn cn v.t + sn Vi sn v2 dn »! dn v2
1 — /c2 sn2 sn2 r2 ’

sn (vt + V<[) =

dn (v I v )__  /?l dn ^2 ^2sn Vl sn v'2 tn cn r2
1 — 7<;2 sn2 sn2 v2

Inną własność tych funkcyj eliptycznych stanowi to, że pochodne 
ich wyrażają się algebraicznie przez same funkcye :

d
—t— sn v = cn v . dn v, dv

—-— cn v = — sn v . dn v. dv

—— dn v — — k2 sn v dn v. do

Wprowadźmy ilości :

K = I i 2 - , K' = I i2 --------,
.’I —k2 sin2 (p FI—dc2 sin ap

(t. t. całki zupełne Legendrea, gdzie znak Jj ma ozna­

czać, iż całkowanie odbywa się na drodze prostoliniowej 
pomiędzy wskazanemi granicami. Mamy wtedy wzory:
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Ponieważ q ma mieć moduł mniejszy od 12 przeto część rzeczy­

wista stosunku powinna być dodatnia i różna od zera.

Trzy funkcye eliptyczne sur, cny, dn v są fun­
kcjami podwójnie peryodycznemi; wartości ich nie 
zmieniają się, jeżeli argument v powiększymy 
©wielokrotności całkowite następujących ilości:

dla sn v o 4 A, 2iK',
„ cna „ 4A, 4iKf,
„ dnv „ 2K, 4iK',

Przy powiększeniu argumentu o pół lub o ćwierci 
peryodów otrzymujemy:

sn (y-p^A) = — sn v; cn (v-\-2K) — — cn v; dn (v-|-2 A)=-dn v,

sn sn v; cn (y-\-2iKf) — — cn a; dn (y-\-2iKf) — —dn v.

en^K)=-k’^dn(v+K') =

sn(v4-/Ay) = ~~ 5 cn(/>4-zA : dn(iM4£')=-^—-•
Asna ^Asnv ?snr

Wszystkie trzy funkcye stają się nieskończo- 
nemi w tych samych punktach

v = 2mK 4- (2?z-j-1) i A'

i stają się zerami:

funkcya snv w punktach v — 2mK -j- 2niA',

,, cna ,, „ r = (2m-\-l) K-\-2niKf

„ dn a „ „ v ~ (2jn-j" 1) A4-(2n-f-l)« A'
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W punktach, w których argument ma wartość połowy lub 
ćwierci peryodu, funkcye mają wartości następujące:

dn v

f K+iK'

^iK'

K + i K'

i-

x+-| iJL' 

Ia+F*' 

ł*+ 2 tK'

CII Vsn V

1
r n-H'

1 r/7
l/l-i-k'

1 2 J//?
Ki^J? hi—k'

i iVkf
yi-/? • VT^17

i VT+k
Vli Vk

1 i }T-lc
Vk V7c

i VT+k
Vk

1 VT—lc
Vk Yk

? fppF7/_L’Fi_/ry 1—/ l k'
/2 Vk

_L_{ rr+I-iF F—Ą 1—? Vl?

\‘k'

7/7

— i Vk‘

i h/7

lFpc

1 F- k

— flf

— VT—k

K2X
VĄ{fi+F+iVi=k'}

4K+ 4 1x+* -,yi—lc'<

2 A-T 2 a'+2,/|~ /r '
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Przypadki zniekształceeia. Dla k—O mamy;

cp = am v — v K‘ — q = 0, k' = 1,

sn v = sin v, cn v — cos v, dn v = 1,

& (a;) = 1, (a?) = 0, il2 (a?) — 0, t>3 x) = 1.

Dla k' 0 mamy:

w — log

14-tg2!

1 — tg -0-CA
e” — 1‘«4

ev—e~vsn v =------------pv _L p- v

TC
2--1 7 = 1’ 7^ = 1,

cn v = dn v2 2

szeregi zaś B- stają się rozbieżnemi.

Cztery funkcye a Weierstrassa.

Kładąc

u 1 n2 ^/"(O)
x = ~ 12 V “MóT ’

mamy:

Z X 2o (u) —------e
v_

^'(0) ’
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a( (u) — 3 i
(0) ’

02 (u) =
.4 ź - W

»3 (0) ’

(u) =
4 -

i. 2 co v '

Te cztery funkcye o (u) są funkcyami cał­
ko w i t e m i zmiennej u, dającemi się rozwinąć 
na szeregi według potęg całkowitych rosną­
cy c h t e j z m i « n n e j; pierwsza znichjestfunk- 
cyą nieparzystą, trzy ostatnie — parzyste mi. 
Wyraz przy potędze pierwszej u w r oz win i ę- 
c i u o (u) m a s p ó ł c z y n n i k 1, a w y r a z u d r u g i e g o 
(zawierającego ?t3) nie ma. Wyraz pierwszy 
rozwinięcia pozostałych funkcyi o jest je­
dnością, a w rozwinięciu iloczynu (u) o2(u) a3(u) 
brak wyrazu, zawierającego u2.

Wzory peryodyczności. Połóżmy:

log q = inx = ijt - - , m" — (D -j- m'.

Stąd i na zasadzie znanych własności wynika, że spółczyn- 

nik części urojonej stosunku — m u s i b y ć do­

datni i różny od zera. Połóżmy nadto:

>]Wf — q'co =
in
T ’ + v'-

Ilości a), co' nazywają się modułami gatunku p i e r w- 
s z e g o, r/, rf moduł a m.i g a t u n k u drugie g o. Mamy 
wtedy wzory:

O (u -j- — — G (li) »•-'’/(«+») ,f

o (u + 2cu') — — o (u) ?

g (u 2co") — — g (u) ?
l iiSCal. I.ep.l. 24
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Oj (u -f~ 2co) =. — cf( (u) e2»?f«+<u), 
Oj (u 4 2co') — a, (?<,) ei,’'(u^cu"1, 

a8 (?t 2co) — 4- a2 (u) ;
a2 (u -j- 2co') = + o2 (u) ,
o3 |w -]- 2co) — 4' a3 (u) e2^"^, 
a3 (u -|- 2co') = — o3 (u) ?
<j'(co) , o'(co) , o'(co")
o (co) ’ o (co') ’ <r(ft>")

O (u co) = O (co) C^*O1(?C), 
o (u -f- co') — o (co') e’'"a3 (?<), 
o (cc co") — o (co") e^""o2(u).

Funkcya o czyni zadość następującym związkom:
o (cc( cc2) o (nx — u2) a3 (cc8 -j- ?c4) a (u3 — cc4)

4- o (Wj 4 U3) O (CCj — U.A) O (ux 4- W2) O (?/4 --  t*2)
4- O (th 4- u4) (J (?ą — u4) (J (u2 4- U.A) o (u2 — u3) = 0.

Jest to t. zw. równanie t r ó j w y r a z o w e.
Wzór:

------ z \------ Z \ = tA log O (O == 3^2 log 0 0^2 )• 02 (ux) o2 (u2) dux2 0'1/ (lu^ &

nazywa się wzorem na dodawanie.
Dalej jest:

a (u,4-^ą) . "14(" 1 )Q/("2 )<>a( )--ji(u2)o(a2 }oj(ux)ok(UiJ_
<j (?c14-«<3) "1 )^/’(^2) — o2{u2)o^(ux)

gdzie i, j, k przedstawiają jakąkolwiek przemianę skaźni- 
ków 1, 2, 3.
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Wprowadźmy oznaczenia następujące:

'■ - (V-n *=-4{£)\<*+V;

będzie :

ei + e2 + <°3 — O,

v = Pet — ea . u; K = \'c\—r3 . w, iKf = Vel -e3 . co’.

Połóżmy jeszcze:

A == 16 (a—e2)8 (e2-e3)2 (et—e3)2, (wyróżnik)

= — 4 -f- e2e3 + e3^)i
i , (niezmienniki) 

//3 = 4 ej (?2 e3; 1

otrzymamy stąd:

A = fa> - 27ff,» - V2j/ (0),

zl / 77 \4 2 / TT
(v-^4V)= -a-Gr- (^8+v-w), O \£i(Ol o \Zcjd'

4 / ji \ g= - 97 A (3W28- 3W./4-2{}212-2^).

Wyrażenie nazywa się niezmienniki e m bez­

względnym; w funkcyi modułu L e g e n d r e’a wyraża się 
ono tak:

t- — 4 (i-/*2-P4)8 
J ~ A ” 27 ~k\l—№>* •

Pomiędzy czterema funkcyami o istnieją dwa związki alge­
braiczne; mamy mianowicie cztery wzory następujące, z których 
dwa są następstwem dwóch pozostałych :
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O12(u) — a32(u) + (Cf - e3) o2 (u) = 0, 

a22(u) — o,2(M) (''2—ei) °2 (”) —
W

o3-'(?0 — o22(u) (e3—e2) o2 00 = 0,

(e3—e^o^u) 4- (<?,— e3)o2-’(u) 4~ (<%—G>32(?') = 0.

Pomiędzy funkcyami sn, 
dzą związki:

cn, dn i funkcyami o zacho-

/------- o (u)sn v — \ex — c3——-,
o3(«0

O|(») _

cn V —
<7100

o3(u) ’

o2(u)dn ?; —

o(u)

O, (u) = 
o(U)

o3(h) _
o(10

^-e3—- sn V

-------dn v
F <';j sn V

14i—e3—— sn v

Punktami ze rowem i funkcyj o są :

dla funkcyi o punkty 2nia> 4“ 2nco' = w,

„ „ oj „ (2m4-l)<o -r = wi,

n n o-2 v> (2m4_1)co H- (2w4"l)ct>' — ,
„ o3 r, ‘itnut 4“ (2)i4~l)c</ = w3 ;

tu m i n są dwie jakiekolwiek liczby całkowite dodatnie lub 
ujemne.

Rozwinięcia na iloczyny nieskończone są:
\ u 1 «»

a(u) = uTI (1-----— | e10 2 ,v'!,
w, n\ w I

_ 1 eiU. i u \ JL + 1 JĆ
o,00 = e 2 H 1------— le"* 2 .

m, u \ /

Kładąc;

D = -2>z 4 - 2>?' 4, = 12-/, 4+ I '/■■■
ca) cco 173 dg2 1 3 c'^3
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otrzymujemy:
o

De i = 4e,2----- ys; DA = 0;
O

D// = -i- </2a>, = * y2w', Dr]" = -i- y2co",

Dm = — 2t], Dm‘ = — 2rj\ Dm" = — 2r]", 

oraz równania różniczkowe dla funkcyi o:

o"(u) — Do(u) y2 u2 o (u) — 0, IZ

0i" (u) — D(Ji(u) + —|- 12 u'2) °«(M) = 0.

Pochodne modułów jednych względem drugich:

CM

392

1 / 1 2 I
\—4~ '0> +

9<y 1/9
~3g^ ~ Tl2" 9iW

3?] 1
<?//2 A

/ 3 . 1 2 \
l" "g- 92 9-i m + -^^22??p

/1 , 9
^<72 M — Y o

dr] 2i 11 , A
-y - = —ho 9iw — w ; —, oco n \12 ] cm

2£ 
n

iji 3 log A ,
9 = ‘24’ 3m' ’ v

in 9 log A
24 “3co -

Rozwinięcia funkcyj o na szeregi.

Kładąc:

a(u) = 2- ó2«+i = ^C‘2w (2n)! '*

otrzymujemy następujące wzory zwrotne:

7 _ n7 (2n—l)(n—1) ,
— Db-^n—i - 0 y2 ^2»—3»

/C 2’ =
(n-l)(2n—3) (0

g .^2c2m-4 *

1
2

9-i Ą

e c(i}L1 ' 2»- 2

— 3&^

Sy __ 1
^3~

92 ;
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Stąd wynikają następujące rozwinięcia:

. , 1 u1 9 2 w' 1Q u*1
o(u) Ä w — — ^a—----- 6,r/3 ----- T'72 9!------- 18^3~iir

Z i 1 , / 1 o •> \u* 1 f8 3 \ ?<fi
a< (u) = 1 — — + f— 02 — 3 + (y //3 -- y 02 e/j-y-

■u821 .39 1 9
y 02 ~ 4 !h^— ~^ 022

135 ~ 9 ,. • 99 \u10
4 03e< iß 02'e2 ~F iß 02 03) ig|

Następne wyrazy znaleźć można w tablicy, znajdującej się na 
str. 7 dzieła: „Formeln und Lehrsätze etc.“ Schwarza, Ge­
tynga 1885.

Przypadki zniekształcenia. Jeżeli wyróżnik A staje się 
zerem, a zatem dwie ilości e równemi sobie, np. <?,=e3= 0, wtedy 
będzie :

o 71 1 Tl2 . T)
e, — — Za, co = -< --------- , h co = ) — = — a ,2 j/—3a 1 12 7 co

a funkcye o przybierają postać:

1 —^a,il ' i/—v
o(u) == —----- e - sin (ul — 3o)

k—3zi
i i i------au- , —— ----- nu- ------ au2

Oi (u) = e 2 cos (oj/ - o2^u) == e 2 ; 0.^)=e 2 .
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§ 4.

Funkcya p Weierstrassa.

Funkcya p(u) określa się za pomocą jednego z następują­
cych wzorów:

d2P(U) — — -^7 log O(H),

p(u) —-----
(D

Ti2 d-' , 
w 10g

p(u) = e3 4- —1'2 

sn^J/fj—e2.«■)'

Nadto można p (u) określić jako całkę równania różniczko­
wego

= 4 a3 — g2 s — g.A

z warunkiem 2>(0)=oo. Definicya ta jest równoważna z nastę 
pu j ącą : funkcyapjestfunkcyaodwrotną całki

H«)
ds----  ---- — = u.

2 ) (ó— e2) (s—e3)

Funkcya^ jest podwójnie p e r y o d y c z n ą ope­
ry o d a c li 2m i 2co'.

Mamy wzory :

p((o) = ex, p(m') = e2, p(co") = e3,
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en v = 1
I p(u)—e9 dni?

[/p(u)—e2 
p{u—e:i

p'2(u) = 4p3(u) ~ g^pfu) — g...

p"(u) — 6p2(?<) — |^2; p"'(u) == p'(u);

piv(u) = 120p3(w)p'(u) — 18#2p(M) — >

pv(u) — 360p2(w) — 18y2p'(«0, 

pv'(u) — 36^140p4(u)—28c/2p2(w)-20//3?4u) 4" ■^~.9r32

Różne postaci twierdzenia o dodawaniu dla funkcyi p(u).

^,+h2)+pw+P(^=4- -| 4«;)4((<i7r r

, , , , , 1 d p'(ux)—p'(i'2)
P(U1 U2) — XW1 =----- ~T~ ------- --------- 7~\ ~ *2 dux —’^(^2'

Jeżeli ?q+?(ł4"?/3=±=0, będzie:

1, 1. 1

X«i), pM 0.

Pi1'!}, p\u.>), p'^^

Jeżeli • • ■ 4"«» = 0, będzie:

1, i, • • • , 1
pW, p^, . .
p'(wi) P'(u2), . . . , pr(lh,)

p(n p(«-2>(w2)5 . . , 7*’*-2)(hw)

Dodając do argumentu póJperyody co, co', znajdziemy 
wzory:
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2>(«+<-» = e,'+ 2,(«+<«')=e3+ ;

P ("■) — e2

Punkty postaci 2ma>4~2na/, gdzie m i n są liczby 
całkowite, są wszystkie punktami nieskończoności 
funkcyj p. Są to punkty nieskończoności rzędu 
2-go; poza temi, innych nieskończoności funkeya 
n i e m a.

Wartości funkcyj p i p' dla wartości argumentów równych 
ćwiartkom peryodów są:

P (yj = 4- ^1—e2 l/el —e3; 4 — -j- «/j = &14~ Vel —e2. Fe{— e3;

= I/e2—e3 • «3; pHj- 4~ = e34- ^2—e3 • —e3 .

V H e2 4- « Ve2—e3 Vet—e2 ,

7>'(yl = — 2(01 — 2 (?! - e2)k/e1— e3 ,

P'^^~ + ~ 2/(<?i ——'2 — 2 (^ — e2) I e\—e2 ,

= — 2; 41—<'3) I ^—e3 - 2< (c2—<:.')l/4—e.. ,

4" w) = 41 -ej Ve2—e3 — 2i (e^—ejVei -e2,

± = 2 (e, —e.jYe^—e2 -4- 2i (e2—ejVex—e2

W otoczeniu punktu ?t=0 funkeya p rozwija się na szereg

p 40 = —2 4- «2 ^-a 4- ft4«4 4-............. 
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którego spółczynniki są funkcyami wymierne,mi ilości <j2, //,, 
a mianowicie:

1 1 722 .72 7:i
«2 — 20 .72, «4 —28^3, ró(i — 24.3.5 ’ "8 ~ 2*.5. 7. U ’

1 / ^32 I 723 \ 7s27:ia,° ~ 2M3 (7 + 2.3.53) , «12 — 2S. 3.5’777TT ’

a -Ll !h' V _ _ 1/ 29.72:i</3 ■ .7.7__ 1
14 17I24.7 Ml. 13 “r2«3.53.13/’ 1S“’19\28.5’.7.11.13 ‘2®.78.13/ ’

Można nadto fnnkcyę p rozwinąć na szereg podwójny za pomocą 
wzoru:

p(u) = -- + 3m2 A- -p- 5?t* 4-.....................

gdzie w — 2mco-j-2;zft)', sumowanie zaś rozciąga się na wszystkie 
kombinacye wartości całkowitych, dodatnich i ujemnych liczb 
m i n, wyjąwszy kombinacyę 0, 0.

Przypadki szczególne; zniekształcenie funkcyi p. Jeżeli 
y3=0, mamy przypadek zwany harmonicznym; całka elip­
tyczna daje się przekształcić na 

y 
u — — 1 i' dq

i będzie p—exq~2 .
W tym p r z y p a d k u p ma własność, którą 

przedstawia wzór:

p {iu) = — p (?<).

Jeżeli 2cu j e s t p e r y o d e m, to i 2 i co będzie pe- 
r y o d e m.

Jeżeli _72=0, mamy przypadek zwany r ó w n o a 11 har- 
rn o n i c z n y m. F u n k c y a p ma w t y m p r z y p a d k u 
własność, wyrażoną wzorem:

p (a u) — ap (u) , 
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gdzie a jest pierwiastkiem sześciennym z jed­
ności. Jeżeli 2 co j e s t peryodem, to i 2aco będzie 
peryodem.

Jeżeli wyróżnik A staje się zerem, wtedy funkcya p 
zniekształca się i staje się funkcyą pojedyńczo-peryodyczną, 
a mianowicie: albo funkcyą trygonometryczną, albo funkcyą 
złożoną z wykładniczych.

Jeżeli e2=e3= a, wtedy:

. . 3a n 1 ,p(U) — a-------;------- —........... ł CD = -5---- -=- 5 CO — OO ,
sin2 (uV—3«) V—3a

a jeżeli a = 0, będzie wprost p(u) — .

.Jeżeli et — e2 — a, wtedy :

((jU 13« I u V 3« \ 2 . „ 1
-■ w •—t? I ’ M v -r==.

— e-“K3« / ż p3a

§ 5.

Funkeye wymierne ilości p i p'.

Każda funkcya wymierna ilości;? i;/ daje 
się wyrazić jako kombin acy a liniowa typu:

c + £ cv£(u—uv\ 4- ^^Uptu— u'ft) + pf(u—u"e) + . . . , 
v fl Q

t. j. liniowa względem ^(u) = -^-logo(w),względemp(u)
Cvt>v

oraz względem pochodnych kolejnych funkcyi 
p, Nadto suma wszystkich spółczynników cr, 
t. j. £cr — 0.

Punkty uv są punktami nieskończoności rzędu pierw­
szego funkcyi danej; punkty v'u punktami nieskończoności 
rzędu drugiego; punkty u"s —rzędu trzeciego it. d,
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Każda funkcya wymierna ilości p i p' daje się 
przedstawić zawsze w postaci:

o(u— u\) o(u—u'2).............(j(ll—u'v)
o(u—u"x) a(n—u"9) ..... a(?/—u"v)

gdzie X jest stała, u'—punkty zerowe funkcyi, ?•"— 
punkty nieskończoności i gdzin suma wszystkich 
wartości u1 równa się sumie wszystkich warto­
ści u''.

Te dwa przedstawienia funkcyj wymiernych 
ilości p i p' odpowiadają dwom przedstawieniom 
funkcyj wymiernych jednej zmiennej: jednemu za 
pomocą ułamków elementarnych, drugiemu za 
pomocą rozkładu licznika i mianownika na 
czynniki.

§ 6.

Teorya przekształcenia funkćyj eliptycznych.

Niechaj będą dwie f u n k c y e eliptyczne:

P\ = P (an > co', b P — V 0), <*>') ■

Warunek konieczny i dostateczny na to 
aby p i e r w s z a z nich dała wyrazić się wymier­
nie przez drugą, stanowi to. by pomiędzy mo­
duł a m i coj, co/, co, co' i 1 i c z b a m i u, b zachodziły 
związki:

c/co — «co, -/ /co', ; oco' = yco, óco', ;

') = — a —■ y) co, - / (n — fi — c5i <o\ , 
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gdzie a, 6, y, <5, m, n są jakiekolwiek liczby całko­
wite. Szukanie takiego wyrażenia wymiernego funkcyi pt przez 
funkcyę p stanowi zagadnienie o przekształceniu wy­
mierne m f u n k c y i p. Liczba u. nazywa się m nożni- 
kiem; lecz łatwo okazać, że w przekształceniu wymiernem 
funkcyi p można mnożnik aprzyjąć zawsze równymi, liczbę zaś 
równą zeru, gdyż wzory, odpowiadające różnym od jedności war­
tościom a i różnym od zera wartościom b, otrzymują się łatwo 
z wzorów, odnoszących się do przypadku a—1, ó=0.

Wyznacznik

a, /5

7, b
= 0

jest zawsze liczbą całkowitą dodatnią i nazywa 
się rzędem przekształcenia. Własność zasadnicza 
liczby n jest następująca. Dajmy, ż e p{ w y r aza się wy- 

99(2') •miernie przez p za pomocą wzoruj, =— , gdzie 

<p i tp są dwa wielomiany bez czynnika wspól­
nego; wtedy 1 i c z b a n jest równa stopniowi 
równania

— ppp(p) = 0

względem p, t. j. jest większemu ze stopni wie­
lomianów cp i tp- innemi słowy: liczba ta wskazuje, 
i J e w a r t o ś c i f u n k c y i p o d p o w i a d a j e d n e j i t e j 
samej wartości funkcyi/^.

Jeżeli za punkt wyjścia obrać nic funkcyę eliptyczną p, 
lecz funkcyę sn, to zagadnienie o przekształceniu wymiernem 
dla funkcyi sn można wypowiedzieć w sposób podobny do po­
wyższego; zwracamy przytem uwagę na to, że jedno zagadnie­
nie odpowiada drugiemu tylko w pewnych przypadkach.

Warunek k o n i e c z n y i dostateczny n a t o. 
aby f u n k c y a

siij = sn c f b', Jij, A’\)
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wyrażała się wymiernie przez funkcyę

sn = sn (?;, A', K'),

stanowią związki:

a'. 2K = a’2Kx + 0'iK\ ; a'. iK' = y'2Kx + ViK\ ;

b = (2/n' -{- 1 - a') Kx + | (2nr - 0') iK't, 

gdzie a', 0'f yf ó' są liczbami cal ko w i te mi.
W tym przypadku nie można już, jak poprzednio, przyjąć, 

że mnożnik równa się 1, albowiem mnożnik a' ma wartość zależ­
ną od samego przekształcenia; i liczba b' nie może być zerem 
w każdym przypadku.

Zagadnienie o przekształceniu można przedstawić jeszcze 
w następującej postaci:

Banem jest równanie różniczkowe:

dy , d.x—---- :----- ---- — a . - - - - -— - ;
F(1 — y2) (?/— l2y2) b(l—x2) (1— k2x2)

znaleść związki, jakie powinny zachodzić po­
między stałe mi Z, a', k, aby całką tego równania 
było y=(p(x), gdzie tp jest symbolem funkcyi wy­
miernej stopnia określonego względem x.

Albo też tak:
Mając daną całkę eliptyczną

dx
F\l — x2) (1 —k2X2) 

przekształcić ją na inną całkę tejże postaci, 
t. j. na całkę

1 ________ dy_________
V(1—y2) (k—l2y2) ’ 
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za pomocą przekształcenia y=(p(x) danego stop­
nia i znale ść związki pomiędzy ilościami 
Z, a', k .

Widzimy stąd, że w tej postaci zagadnienie o przekształ­
ceniu funkcyj eliptycznych schodzi się z zagadnieniem o prze­
kształceniu całki eliptycznej na inną, które to przekształcenie, 
odpowiednio zastosowane, służy do obliczania przybliżonej war­
tości samych całek.

Przekształcenie jest określone przez liczby całkowite a, fi, 
y, <5 i dlatego oznacza się za pomocą symbolu

a, /5 \
7, ó I

który jest zwykłym symbolem podstawienia liniowego dwóch 
zmiennych jednorodnych (w naszym przypadku a> i a>r). Dowo­
dzi się, że składanie dwu przekształceń uskutecznia się za po­
mocą zwykłego prawidła o iloczynie dwóch podstawień liniowych.

Każde podstawienie

a,
ö I

rzędu ii = aó — fiy można za pomocą mnożenia 
przez odpowiednie podstawienie rzędu 1-go 
sprowadzić do podstawienia typu

gdzie rfjest dzielnikiem liczby n, v zaś przed­
stawia liczbę całkowitą dodatnią, mniejszą 

. n ' . .
o a ~ . Podstawienie takie nazywa się elementar nem;

liczba takich podstawień wynosi , gdzie suma rozciąga tu 



384 Rozdział XVI.

się na wszystkie dzielniki cl liczby n. Jeżeli n j e s t liczbą 
pierwszą, to podstawień elementarnych jest 
n -j- 1 .

11 o c z v n dwu podstawień elementarnych 
jest także podstawieniem elementarne m

Każde podstawienie rzędu niepierwszego 
można złoży ć—p omijającpodstawienia rzędu 
1 — z innych podstawień rzęd ów, będących licz­
bami pierwsze mi.

Wszystkie podstawienia rzędu 1-go można 
złożyć z dwu tylko podstawień, tworzących

Przekształcenie liniowe, wykonane na półpe- 
ryodach co i co', daje wyniki następujące: 1) Funkcyap pozo- 
staje bez zmiany, t. j. wzór na przekształcenie jest wprost px=i>- 
2) Niezmienniki y2, g.A pozostają bez zmiany. 3) Funkcya o nie­
parzysta pozostaje niezmienną. 4) Funkcye o parzyste oraz 
niezmienniki niewymierne c przemieniają się według wzorów:

o j — Oj, o'2 = o3, o3 = o3;

6'j = , 6', = e3 , e'3 = e2 ,

odnoszących się do podstawienia tworzącego A, oraz według 
wzorów:

°\ - — °3 > 

6'i = 63,

O 2 ---  Oj ,

'' 2 — 63 ,

odnoszących się do podstawienia tworzącego B. 5) Półmoduły 
przestępne drugiego gatunku z/ przekształcają się dla podsta­
wienia liniowego przy pomocy tych samych wzorów, które służą 
dla co, co'. 6) Dla podstawienia A, wykonanego na peryodach 
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ilości x i t = — staja się odpowiednio a,1=x', Tą—t+1, a funk- 
co

cye 9 przekształcają się za pomocą wzorów :

0- (a?, r-j-l) = e4 #2 (as, t); (x, t-J-1) = e 4 Ą (a?, t) ;

(x, t-f-l) = *9-3 (#, r); (x, T-j-1) == 9 (x, t).

7) Dla podstawienia B, wykonanego na peryodach co, ilości x 

i r stają się odpowiednio xx — — , rt =------- , a funkcye #

przekształcają się za pomocą wzorów:

[ x 1 \ — — i x 1 \ __ I£2
91—,-------= iV izeJZT^-2 (V 9-J—,---- —I = VizenT &t(x,z);\ z z / \ t z /

i x 11 , a " i x 11 , a?2
9J—,------- j = tliz ent O (x, z); 9J —,— — j = iVizem 93 (a?, z).

8) Funkcya p, jak wiadomo, nie zmienia się przy podstawieniu 
liniowem, funkcya sn me zachowuje się tak prosto.

ni a liniowe

Podstawie- 

odnoszą się w tym. przypadku nie do co, co’, 

lecz do 2j6T, iKr. Wszystkie rozwiązania związku

^4-Bsn(v,/c1)

zawierają się w następujących 24 wzorach :

sn (±V, 7?) = ± sn (p, 7г2); sn (± v -j- «W/, K2) =:± 7, SI1

/.,11 . , . , . , . IV.. .. 1
sn r~ sn (v, k2)

/ ± H14-Wr)2 . .!</ . /1-П\41 1+^ l~w^sn(r,7r2)sn -H 1‘ ■ v-h/ (-----—• I =₽ 4-—L—= .. - —  I 2r:. 2 ’’ Vl-j-|//c7 7 “1-П- lH-|/fcsn(v,/r2)

sn( iK^ K\ l-^sn(P,F)
1“ ’ 2i 2 / 4 1—l-H/£sn(e,7c2) ’

Pascal. Rep. I. 25
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sn i(l—We)1 2 . A,' | zl-4-F/c\4\ , 1 — 14-Vksn(v,k2)

1. Dla tych podstawień odpowiednie przekształcenia funk­
cyi p (p po drugiej stronie rozumie się przy wartościach półmo-
dułowych co, co') są następujące:

’ 2z 2 l 4—1'ic J I 1-j-^k 1 — 17śsd. (v, k2)

l-|-FZc.sn(n.Zc2)
1—l k sn (v, k2)

1—il'k sn (y k2)
1H-Ż| ^sn (r,7c2) ’

-zł/c)2 .Kxr „ 1 /1 — iVk\4\ _ l-\-iVk l — :Vkan(v.k2)
2 ’’44-747?/ l-iVk l-j-ż^sn.y/c2)

sm

sm

sn|

snl

sni

( |(l-zW ,A7 I /14-zf/M\ 1-«VA- 14-ż|//7sn(r,/c3)
Fi 2z ’ + /f-i_.z|/;sllo../,2)’

/ jd—żW’ _ .74'_ 1 /14-ż|//7x4\___ 1—M i4-zj//7.sn(^ 
l~l 27 ’ ?2 J’4_?y^7 / 1—zl77sn(?-7r2) ’

Wzory pary pierwszej, drugiej oraz każde dwa połączone 
klamrą odpowiadają tej samej wartości modułu przekształconego 
Z2, który może mieć tylko sześć wartości różnych. Ilości 2Aj, 
i h\' są półperyodami funkcyi sn przekształconej.

Przekształcenie rzędu 2-go. Trzy przekształcenia elemen­
tarne rzędu 2-go, zastosowane do co, co', są:

(^) = ^0’ 2) ’ J- (O = ft)‘ ’ o/ =

1,
1,(C) = t. j. CO = COj, co'— COj4“2cOj
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_ V X. _ X0 - e'P^ + <*1—e2) (^—63)a) ----------- - — _ - ,

M X. „ “>'\ _ P2(u) — X>0 +(e3-^i)(^“«s)b) P[W, co, %-) - —p(u)_g9 ,

ot „/„■ - P2(U^+ e.)V1 p <1, UJ, 7» ---- : -.-----;—:-----------------------------------------\ 2 / />(10 — e2

2. Przekształcenia funkcyi o parzystej są :

(U) ,\ —- etn2
u; ~ , co I — e2 a (n) at (u) ,

k \ / ft>' \ V *’** Z \ /1

b) o lu, co, I = e- o (u) o3 (w), \ Zi I
i ! \ *. / co —co\ -7 *.»- , . , .C) O U, CO,  5— = O2 o (u) o2 (h) ,\ Zi /

3. Odpowiednie 
2-go gatunku t], rf są:

a) /?1 = I gjco 4~ V;

b) — e2a) 2r);

e) 7]i — r2co 4- ;

przekształcenia modułów przestępnych

rjx' — exa)‘ 4- 2t/,

>71' = 2 4- ri',

>7i' = ł p2 (a)f—co) 4- (j;'—j;).

4. Odpowiednie przekształcenia funkcyj o parzystych są:

coj — O2(u) |/?G0 — p/ a>o,a)

to' = (?0

- j O) \ . . ■

°4«; 9 » tó' — °3 («) • o2(>0 c2
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b) lu, (o. -g-l = (u) a2 (t<) e2

o2 »; a>< -s- = °i’ W •-------- 777-7— e' >' 2'

0.3 u; w, Y~) = <h’OO • (w)-2^-^-j | e2 ‘.

c) a t i u; co; o -) = 04 (u) o3 (u) c2

5. Niezmienniki niewymierne et, e2, e.. przekształcają się 
za pomocą wzorów:

a) e\ — e( 4- 21/^ — e2 lej — e;,; e2 — el—2]//e1—e2 . I^ej—e^;

b) e\ = — 2e3; e'2 = e3 -|- 2^— e;! . l e3— e3;

e>3 ~ 'e3 — 2Vej—e3 . I e2—e3,

c) e\ = — 2c?2 ; e'2 = e2 — 2iVe2— e3 . e2 ,

ez3 = e2 -j- 2iVe2—e3 . lej — e3 .<

6. Znalazłszy wartości ilości e', można znaleść wartość mo­
dułu przekształconego Z2 w każdym z trzech przypadków. Mamy:

a\ /2 (1 U\ 72 /2. •
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7. Funkcye przekształcają się za pomocą wzorów:

a) = q2, xt = 2 x,

d (2x, <?2) = 1/— ”--=7 91 q) (x' q^ 
f 2 A F l£

^(2^ q2) ■-= I ~-^=- (*, q) a-2 (#, q),
r 2KVk

»№>, <?) = 92 <x’ «> - ri+^ »>’ te, ?){,

».(Sr, 9«) = ~j/{ n+F ♦»(«, 9) - VI=k' te, ?)},

b) 9, = 92 , X, = «,

» te ►'«I = p/7 —(®.?) + *12 1)}.

(®, ) = I ^—7 (^, <2) q) ,
/ A V lc

Ą l/g) = // (X, q) &3 (X. q),
I k 1 k

(®, ^)=4f I’’2 «>} ’

c) </j = e 2 q2, .«! — X ,

irt 1 ; 'l/~
(o?, e' 2 q2 ) = // &3 9) <ł)’

f K r kk

_‘2f 1 7/
(^1 2 q2) = r 7^7777 q^ <x’q^ ’

r K. r fC K
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(*. - <1 ‘) - I ■ 2K[^ik) i {X'’> + ‘ 2 {X' S)| ’

& . (*, e * ę2 ) = I 2K(k'-ik) | 9) “ 7)| ’

8. Podamy jeszcze wzory na przekształcenie funkcyi sn. 
Gdy w i oj' są poddane wszystkim trzem wskazanym wyżej pod­
stawieniom, funkcya p przekształca się wymiernie, lecz 
funkcya sn przekształca się wymiernie tylko przy dwóch 
pierwszych z pomiędzy tych podstawień, przy trzeciem prze­
kształca się niewymiernie. Przekształcenia funkcyi sn, odpo­
wiadające wszystkim trzem przekształceniom wymiernym funk­
cyi p, są następujące :

Zn i 7^ . 1—(1-HO sn2 (w, k)

(Przekształcenie L a n d e n a);

/ 4k \ (1 -|- k) sn (?;, k)b) sn ((1 + fc) V, = 1+<! ro, {vje— ,

(Przekształcenie Gaussa);

. //7, ... 4ikk' \ (7d—ik) sn(v, Zclkl—ka sn3 (v, k)c) sn \(k'— ik) t, — --——d ~ ------T—. \ , ....—------\ (7?—'ikpl 1—k (k + t/^) sn2 (v, k)
(Przekształcenie niewymierne).

§ 7.

0 mnożeniu argumentu w funkcyach eliptycznych. 
Mnożenie zespolone.

Zagadnienie o mnożeniu argumentu w funkcyach eliptycz­
nych jest następujące:
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Znaleśćwzór, przy pomocy którego funk- 
cy a eliptyczna (n. p. sn lub p) o argumencie, po­
mnożonym przez n (gdzie n jest liczbą całko­
witą), wyraża się za pomocą tejże funkcyi elip­
tycznej o argumencie pojedynczym.

Zagadnienie o mnożeniu przez n jest spe- 
cyalnem zagadnieniem o przekształceniu rzę- 
d u n1 2 *; w t a k i e m przekształceniu modułpozosta- 
je niezmienionym.

1— 6Zc2 sn4 v ^k2 ‘(l-j-/?) sn6 * v—3/c4 sn8 v

Wzory na mnożenie przez 4, 5 są bardziej skomplikowane.
Można je znaleść w dziele Cayley’a o „funkeyaeh eliptycz­
nych“ (tłom, włoskie B r i o s c h i ego, Medyolan, 1880, Cap. IV,
str. 73 i nast.)

Godnym uwagi jest następujący wzór ogólny (patrzE n n e-
p e r Ellipt. Funct. Halle 1890, str. 374), w którym wszakże

Rozpatrzmy mnożenie argumentu dla funkcyi sn. Je żeli 
n jest nieparzyste, to funkcya sn(nv) wyraża 
się zawsze wymiernie przez snu; jeżeli zaś n 
jest parzyste, to sn (nv-\-K) (gdzie 2 K jest pierw­
szym półperyodem funkcyi sn) wyraża się w y- 
miernie przez sn«;, funkcya zaś sn(nr) da je się 
wyrazić przez f un k c y ę w y mi e r n ą i 1 o ś c i sn t. po­
mnożoną przez J/l—sn2v . J/l-&2sn2v.

Co się tyczy funkcyi p(u), to dla niej p(nu) zawsze d a- 
je się wyrazić wymiernie przez p(u).

Rozłożywszy liczbę n na czynniki pierw­
sze, możemy zawsze mnożenie przez n sprowa­
dzić do kolejnych mnożeń przez 2 i przez czyn­
niki pierwsze nieparzyste.

Wzory na mnożenie przez 2, 3 dla funkcyi 
sn s ą :

n 2 sn v F I—sn2 v . 11—k2 sn2 v

sn v { 3—4 (1-J-Zc2 sn2 v) 6/r2 sn4 * v—sn8 v} 
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spółczynniki nie są przedstawione wyraźnie jako funkcye ilości
* k; liczba n jest w nim nieparzystą: 4

1 sn2 V
1 „ 

sn------------
sn (nv) = n sn , H | 2„,^_"n,i7r —- ■

1—«- sn--------- !----------- sn- V
n

gdzie iloczyn rozciąga się na wszystkie kombinacye

m = 1, 2. . . . , —x; m' = 0. 4- 1, 4- 2, . . . x—

oraz na kombinacye :

m = 0, m' — -f-1, 4- 2, + 3,.............----------— .

Wzór na mnożenie dla funkcyi p jest:

/ \ / \ ^»+1 Y*»-!p (nu) — p (u) — —' —---—----
ip2»

gdzie

y>\ =1: — — P'(u);
3 1

% = &P4(u)-----2 ~~ 39*P(U) — 16 022,

/ 5 o o 1 i
= p\u) — 2pt’-j-’2' !hV4-\~^!hP' g fhP2^ ^2 ,

Wzór zwrotny dla funkcyi yj jest w ogólności:

^Z«+1 == y^2H+2 y^n3 — ,

y>№ / .» .)
^2« ~------- y- (V’/H2 “* y’-»+'

Patrz H a 1 p h e nf Fonctions elliptiąues 1. str. 102.
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Zagadnienie o mnożeniu zespolonem argumentu 
funkcyj eliptycznych można przedstawić pod następującemi po­
staciami :

Dany jest wielomian /(rr) stopnia 4-go lub 3-go; 
jakim warunkom winny zadość czynić te wie­
lomiany oraz liczba zespolona m, aby równa­
nie różniczkowe

dx __ 1 dy
~ *l\y}

miało całkę wymierną postaci y = H(x) ?
W przypadku, gdy m jest liczbą rzeczywistą całkowitą, 

równanie to ma zawsze całkę tej postaci i wtedy mamy zagadnie­
nie o mnożeniu zwykłem. Jeżeli wielomian f(a) weźmiemy 
w postaci specyalnej J a c o b i o’go albo Weierstrassa, 
to zagadnienie będzie można wysłowić w ten sposób: Jakim 
warunkom powinny czynić zadość moduły f u n- 
kcyi eliptycznej Jacobi’ego albo funkcyi Weier­
strassa i jakim warunkom liczba zespolona m. 
aby sn(m?;) dało się wyrazić wymiernie przez 
sn c, albo p(mu) wymiernie przez p (u).

Moduły, które w ten sposób znajdziemy, nazywają się mo­
dułami o s o b 1 i w e m i. Liczba m powinna być po­
staci u-j-żł b, g d z i e a i 6 są dwie 1 i c z b y w y m i e r- 
n e. S t o s u n e k i — -W— modułów funkcyj e 1 i p t y- 

c z n y c h powinien być pierwiastkiem równania 
stopnia 2-go o spółczy unik ach całkowitych.

Pierwsze własności funkcyj eliptycznych, obdarzonych mnoże­
niem zespolonem, w części intuicyjnie, przeczuł Abel. Najważniejsze 
prace o tym przedmiocie zawdzięczamy Kroneckerowi (Ber. 
Monatsber. 1857—1862 — 1863—1870—1875—1877—1880—1882) 
i Hermite owi (Comptes rendus 1859). Potem zajmowali się tą 
rzeczą Greenhill (Proc, of Gamb etc., 1884), Weber (Acta math. 
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VI), Pick (Math. Ann. XXV, XXVI), Sy low (Lionville, III, 1887), 
Kiepert (Math. Ann. XXXIX) it. d.

O zastosowaniach tej teoryi do podziału Inku lemniskaty pisali; 
Abel (Dzieła), Hoffmann (Grelle XLVIII), Kiepert (tamże 
LXXV), Schwering (tamże CVII).

Teorya funkcyj eliptycznych powstaR^vraz z zagadnieniem o wy­
prostowaniu elipsy, hyperboli, lemniskaty i t. d. Zajmowali się nią 
pierwsi: Fagnano, Landen, d’Alembert, Maclaurin. Euler 
(Novi Comm. Petrop. X, 1764) zebrał rozproszone rezultaty i ustano­
wił zasady ogólne teoryi. Po Eulerze przedmiotem tym zajmował 
się Legendre w licznych rozprawach (Acad, de Paris, 1786, 1793
1 t. d.), poczem w r. 1825 ogłosił sławne dzieło p. t. „Traité des fonc­
tions elliptiques et des intégrales eulériennes“ (Paryż 1825 — 1828,
2 tomy z trzema suplementami).

Okres 1815 do 1829 nazwać można najważniejszym dla teoryi 
funkcyj eliptycznych, albowiem w nim, prócz klasycznego dzieła L e- 
gendre’a, ogłoszone były w krótkich odstępach czasu jedna po 
drugiej genialne prace Abela i Jacob iego. Dzieło Jaco- 
b i’ego p. t. „Fundamenta nova Theoriae iunctionnm ellipticarum“ wy­
dane zostało właśnie w r. 1829. W klasycznej tej pracy rozpoczął 
Jacobi badanie funkcyj J, których teoryę rozwinął następnie w pó­
źniejszych rozprawach. 0 historyi rozwoju teoryi funkcyj eliptycznych 
wiatach 1826—1829 można czytać z korzyścią dziełko Königs­
berg e r a (Zur Geschichte der ellipt. Funct. Lipsk 1879). Wska­
zówki historyczne zawiera też dzieło C a s o r a t i’ego „Teorica delle 
funz. etc.“ Po Jacobim najważniejszy krok w teoryi funkcyj elip­
tycznych uczynił W e i e r s t r a s s przez wprowadzenie funkcyi o.

Teorya funkcyj eliptycznych zajmowali się prawie wszyscy ana- 
liści tego wieku, jedni mniej, drudzy więcej: Cayley, Hermite, 
Weierstrass, Brioschi, Klein i wielu innych.

Wskazówki historyczne szczegółowe, odnoszące się do tej teoryi, 
zawiera cenne dzieło En neper a (Elliptische Funct. Halle, 1890). 
Najważniejszemi traktatami, prócz Ennepera, są: B r i o t a i Boik 
quêta (Paryż 1875), C a y 1 e y’a przekład B r i o s c h i’ego, Medyo- 
lan 1880), Königsbergera (Lipsk 1874), G r e e n h i 1 1 a (Lon­
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dyn 1892, przekład fr. 1897), Halphena (Paryż 1886). Ostatni 
autor stara się w dziele swem wprowadzić funkcyę eliptyczne metodą 
elementarną, podobną do tej, jaką wprowadzają się tunkcye trygonome­
tryczne. Nie sądzę wszakże, aby metoda ta była najodpowiedniejszą do 
wytworzenia ogólnego i rozległego poglądu, i mniemam, że autor nie 
ma słuszności, gdy mówi w pewnem miejscu swej książki, że odtąd 
pewne inne metody i pewne inne rozważania należą już do historyi.

Zbiór wzorów, odnoszących się do teoryi Weierstrassa, za­
wiera dzieło wydane przez Schwarza: „Formeln und Lehrsätze 
etc.“ (Getynga 1889). Najnowszemi traktatami są dzieła: T an ne­
ry ego i Molka (Paryż 1893), Appela-Lacoura (Paryż 
1877), Krausego („Theorie der doppellperiodischen Funct.“, 
Lipsk 1890), Pascala (Medyolan 1896), Burkhardta „Ellip­
tische Functionen, Lipsk 1899, E i e m a n n a Elliptische Functionen 
wyd. H. Stahl, Lipsk 1899.

Teoryę funkcyj eliptycznych przedstawić można za pomocą róż­
nych metod: albo wychodzi się z odwrócenia- całek eliptycznych, albo 
z teoryi ogólnej funkcyj, którą stosuje się do funkcyj podwójnie perio­
dycznych, albo wreszcie bierze się za punkt wyjścia funkcyę & J a c o- 
b i ego i liczne pomiędzy niemi zachodzące związki. W dziele, przeże­
ranie ogłoszonem,obrałem właśnie ten ostatni kierunek, wychodząc z roz­
prawy Jacob i ego, w którym on założył sobie ten sam cel, o ile to 
było możliwem w jego czasach. Nie ulega wszakże wątpliwości, że 
i przy pomocy innych metod można w sposób zupełny i ogólny wyłożyć 
podstawy zasadnicze teoryi funkcyj eliptycznych, która jest jedną z naj­
ważniejszych w matematyce.

Teoryą funkcyj podwójnie peryodycznych, które są ogólnemi fun- 
kcyami eliptycznemi, zajmuje się rozdział XIV.



ROZDZIAŁ XVII.

FUNKCYE HYPERELIPTYCZNE I ABELOWE.

§ I-

Twiardzenie J a c o b i e go o odwróceniu.

Rozpatrzmy całkę abelową rodzaju p (patrz Rozdz, XV).
(w. -')

v — I F(w, z) dz,
a

Ma ona 2p modułów peryodyczności (jeżeli jest 1-go lub2-go ga­
tunku); stąd punkt (w, 2), uważany jako funkcya ilości v, jest 
funkcyą 2;?-krotnie peryodyczną. Na mocy sławnego twierdze­
nia J a c o b i ego (patrz Rozdział XIV) wiemy, że taka funkcya 
nie może być jednowartościową dla p^>l; stąd z, jako funkcya 
ilości v, będzie właściwie funkcyą nie o jednej 
wartości, lecz o nieskończonej liczbie warto­
ści. Odwrócenie całki abelowej nie daje się tym sposobem 
uskutecznić, gdyż nie doszlibyśmy na tej drodze do funkcyj jedno- 
wartościowycli. J a c o b i pokonał tę trudność sposobem nastę­
pującym (Crelle, IX).
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Połóżmy :

+ | + •
aa a

Chip ,

gdzie dla prostoty oznaczamy przez z, punkt powierzchni R i e- 
manna, zależny od dwu ilości w i z, a nietylko od samych 
wartości z\ gdzie dux, du2, . . . , du,p są różniczkami p całek 1-go 
gatunku lińiowo-niezależnych; gdzie wreszcie n2, . . . , cip są 
punktami z góry oznaczonemu Całki vx,..., up. jako sumy p całek 
podobnych, mają te same moduły peryodyczności co i te całki. 
Jeżeli te ostatnie stają się normalnemi (patrz Rozd. XV) 
o modułach r na cięciach 13, wtedy i pierwsze strony mają też 
same moduły; nazwijmy wtedy strony pierwsze vx, t2, . . . , vv.

Ustaliwszy granice górne zx, z2, . , . , zp, należy wyznaczyć 
wartości ilości u (pomijając moduły peryodyczności). Rozłóżmy 
każde u na część rzeczywistą i urojoną i rozpatrzmy przestrzeń 
o 2p wymiarach, w której spółrzędnemi punktu niechaj będą 2p 
wartości części rzeczywistych i urojonych ilości u2, . . . , u?>.

Oznaczmy ogólnie przez coy.(7 = 1,2,.. . ,p', 7=1. 2,. .. , 2p) 
modliły peryodyczności ilości u, i położywszy

co.y — atj -|- /?,y . 1 — 1,

rozpatrzmy w powyżej określonej przestrzeni wszystkie punkty 
(ló) = (co/), które wraz z punktem (u) = (0) tworzą wierzchołki 
równoległościanu w tej przestrzeni. Za pomocą takich równo - 
ległościanów podzielimy całą przestrzeń 2/>—wymiarową w ten 
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sposób; że każdemu punktowi przestrzeni odpowiadać będzie 
punkt równoległościanu początkowego o spółrzędnych, różnią­
cych się o całkowite wielokrotności modułów peryodyczności od 
spółrzędnych punktu rozważanego.

Każdemu układowi punktów Z}, z2, ... , zp odpowiada 
punkt równoległościanu początkowego przestrzeni ilości u. Układ 
p punktów nie może w ogóle zmieniać się. pozostając r ó w n o- 
resztowym z samym sobą o ile jest układem ogólnym, nie 
specyal nym (patrz twierdzenie R i e m a n n a - R o c h a). 
Jeżeli zas rozważamy układ specyal n y p punktów, wtedy 
wszystkim innym punktom równoresztowym z uważanym od­
powiada ten sam punkt przestrzeni (u).

Każdy punkt równoległościanu począt­
kowego w przestrzeni (u)' (pomijając pewne 
miejsce punktów osobliwych) odpowiada je­
dnemu i tylko jednemu z układów p pun­
któw i każdy układ p punktów odpowiada je­
dnemu i tylko jednemu - punktowi równole­
gło ś c i a n u początkowego, Punkty u, odpowia­
dające wszystkim możliwym układom p punk­
tów. wypełniają cały równoległościan po­
czątkowy.

Można te;d y układy punkt ów uważać w ogó­
le za funkcyęp argumentów u; mianowicie fun- 
k c y a wymierna symetryczna p punktów, jakkolwiek 
na powierzchni R i e m a n n a wybranych, może 
być uważana za funkcyę jedno wartościową 
ilości u. Funkcya taka nazywa się abelową i jest 
f u n k c y ą 2p-k r o t n i e peryodyczną p argumen­
tów. Na tern właśnie polega Jaco biego twierdzenie 
o odwróceniu, udowodnione przez niego najprzód dla przy­
padku hypereliptycznego, a następnie przez W eierstrassa 
dla przypadku abelowego (Crelle, LII).

Można jeszcze określić funkcyę abelową w ten spo­

sób. Wyobraźmy sobie funkcyę wymierną ilości W i z i roz­

patrzmy p wartości tej funkcyi w p jakichkolwiek punktach.
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Wartości te będą pierwiastkami równania, którego spólczynniki 
są funkcyami jednowartościowemi argumentów u i funkcyami 
wymiernemi symetrycznemi spółrzędnych p punktów. Funkcya 
symetryczna p pierwiastków takiego równania będzie fu n kcyą 
a b e 1 o w ą (Glebach - Gord an. AbeFsche Functionen, str. 
138—139).

Funkcya abelowa. według powyższego, będzie określona 
jako jedno wartości owa dla wszystkich punktów przestrzeni 2p— 
wymiarowej ilości u, prócz pewnego miejsca (p—2) 
wymiarowego punktów osobliwych, w których 
może mieć nieskończenie wiele wartości. Dla p=2 miejsce to 
sprowadza się do punktu równoleglościanu początkowego (np. 
do punktu (0) i wszystkich mu odpowiadających). Dla p—3 
miejsce to tworzy w równoległościanie początkowym rozmaitość 
jednowymiarową. W miejscach tych funkcya abelowa przyj­

muje postać nieoznaczoną . (Patrz Clebsch-Gordan.

1. c. str. 184—187)
Szukanie wyrażeń funkcyj abelowych przez całki u stanowi 

tak zwane zagadnienie o odwróceniu. Rozwiązujemy 
to zagadnienie przy pomocy funkeyi podobnie jak w przy­
padku eliptycznym

Jeżeli zasadnicza powierzchnia R i e m a n n a jest hyper- 
eliptyczną, wtedy odpowiadające jej funkeye nazywają się h y- 
pere liptycznemi lub u 11 r a e 1 i p t y c z nemi (Prym)-

W rozprawach W eierstrassa funkeye abelowe ozna­
czone są symbolami Al (u3, u2, . . . , up).

Własności zasadnicze funkcyj abelowych.

Pochodnafunkeyiabelowej jest f u n k c y ą 
abelowa.
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zachodzi z w i ą -

ni o ż na wyrazić 
funkcyj a b e 1 o-

Pomiędzy p 1 funkcyami a bel o wem i, a 
w szczególności pomiędzy funkcyąabelową 
i j ej p pochodnemi rzędu 1-go, 
z e k algebraiczny.

Każdą funkcyę abelową 
wymiernie przez p-j-1 danych
wych, w szczególności zaś przez daną funkcyę 
abelową i j e j p pochodnych pierwszego rzędu.

Każda funkcya abelowa posiada twierdzenie 
o dodawaniu algebraicznem, t. j. wartość jej dla argu­
mentów Uj-Ą-Ui wyraża się wymiernie przez war­
tości p+1 funkcyj abelowych dla argumentów 
u < i .

Istnieje, jak widzimy, analogia tych twierdzeń z twierdze­
niami, odnoszącemi się do funkcyj podwójnie peryodycznych.

Co do innych szczegółów patrz np. Stahl, Abel’sche Functio­
nen, Lipsk 1896, str. 305 i następ.

ś 3.

Szeregi h i ich własności.

Uogólnij my szeregi #, znane z teoryi funkcyj eliptycznych.
Napiszmy: 4 c

# »2.............Vp> = — oo 
gdzie

+ • • • H-TpPn%)4-2(w1Vj-]-7i/V2-j- . . . + npvp),

suma zaś £ rozciąga się na wszystkie możliwe kombinaeye war­
tości całkowitych, dodatnich i ujemnych liczb nv ... , n„
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Ilości ?<j, , vp nazywamy argumentami funkcyi i),
ilości Tj, t2, . . . , tpp — modułami. Moduły czynią zadość 
związkom — tij .

Aby szereg powyższy był zbieżny, jest ko­
ni e c z n e m i dostateczne m, by wyznacznik

T u >......................................... T i y

jpi,................ ? pp

gdzie r' oznacza część rzeczywistą modułu r, 
był różny od zera i by forma kwadratowa 
t-,p
JS1 z',;. Hi była określoną i ujemnego znaku. 
/, k *

Gdy te warunki spełniają się, wtedy J przed­
stawia funkcyę zawsze skończoną i ciągłą dla 
wszystkie li skończonych wartości argumen­
tów; nadto czyni zadość następującym związ­
kom zasadniczym. 1. Jeżeli powiększymy 
o ni, funkeya nie ulegnie zmianie. 2. Jeżeli ar­
gumenty r,, v2,..., vp powiększymy odpowiednio 
o Tfci, T/,-2, . . . , Tkp , nowa wartość funkcyi będzie 
równa pierwotnej, pomnożonej przez e~ (2rt + 
Kombinując te dwie własności, otrzymujemy następującą ogól­
niejszą. 3. Jeżeli gx, y2, . . . , gp\ 7/n ń2, . . . , hp są liczby 
całkowite, a Gk i G o z n a c 'Z a j ą odpowiednio wy­
rażenia

2^y (jjVj 4- JLjk Tj'. ^ktjk^k ,

będzie:
, Gv) = , vp) eG.& (vx + Gx,

4. Funkeya # j e s t f u n k c y ą parzystą. 5. Fu n k- 
c y a # i w s z y s t k i e j e j pochodne czynią zadość 
r ó w n a n i o m różniczkowy m:

la scal Rep. 1. 26
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3# S2# dii 32i?
3t/j 3c,-2 ’ diij du, c!i)j

Powyższe własności są charakterystycznemi dla funkcyi •&; 
funkcya, która je posiada, może różnić się od funkcyi tylko 
czynnikiem.

Oznaczmy, teraz przez gx, , gp; hv /<2,. . hp szereg 
liczb niecałkowitych, mianowicie ułamków o mianowni­
ku 2; wystarczy rozważyć dwa przypadki, w którym licznik jest 
zerem lub jednością.

Utwórzmy przy pomocy liczb g i li wskazane wyżej wyra­
żenia G,, . ., Gp i rozpatrzmy fnnkcyę # -j- 6^, . .. , vp -|- Gp\
którą oznaczać będziemy

.7«przez O- .71, .• • ('i, ., vv) lub przez & ( j (v).

Nowa ta funkcya różni się od poprzedniej funkcyi Ą któ­
ra obejmuje i tenże symbol ogólny, mianowicie gdy wszyst­
kie liczby g i h są zerami. Symbol

.71, 
/<1, hP )lub ('/)/ \ hl

nazywa się charakterystyką funkcyi $ Każdej charakterystyce 
odpowiada pewna funkcya dwie zaś charakterystyki, których 
odpowiednie liczby różnią się od siebie o liczby całkowite, dają 
tę samą funkcyę & (pomijając czynnik). Stąd wynika, że będzie 
można mieć tyle funkcyj ile można utworzyć charakterystyk 
w ten sposób, aby liczby odpowiednie w dwóch takich charakte­
rystykach różniły się zawsze o liczby całkowite. Dość będzie, 
jak już powiedziano, ograniczyć się do takich charakterystyk, 
w których liczniki ułamków g, li mają wartości 0, 1. Istnieje 
22ł’ charakterystyk, które można uważać za 
różne, a więc i t y 1 e ż funkcyj fr. Funkcya # po­

czątkowa ma charakterystykę /0,. .
\0, . . ,0 r
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Te funkcye h- są parzyste lub nieparzyste 
stosownie do tego, czy suma 4) 
j e s t p a r z y s t a 1 u b n i e p a r z y s t a (g i li są ułamkami 
o mianowniku 2).

Jeżeli przez y/i, rozumiemy nie same
ułamki o mianowniku 2, lecz liczniki tych ułamków, wtedy 
liczby, składające charakterystykę, nie są 
już u ł a m k o w e m i, lecz są całko witemi i otrzy­
mujemy tym sposobem symbole uproszczone.

L i c z b a f u n k c y j & p a r z y s t y c h j e s t 2p~\2p-}-l). 
nieparzystych jest 2i’“1(2*'—1) Dla p—2 m a m y 10 
parzystych, 6 nieparzystych; d 1 a p=3 mamy 36 
parzystych, 28 nieparzystych.

Tak utworzone f u n k q y e J czynią zadość 
wyżej napisanym równaniom różniczkowym. 
Nadto czynią zadość związkom:

, vp) = (—1> qh j (vt, .... rp),

‘ ’ vP~iT^p) = (—l)A*e-{2₽*+Tw^yj (r,, ... , 

związki te można uważać za uogólnienie związ­
ków, którymczyni zadość funkcya z asadnicza.

Jeżeli do składu charakterystyki, zamiast liczb o miano­
wniku 2, bierzemy liczby o mianownikach 3, 4 ... , otrzymu­
jemy funkcye, bardziej złożone od poprzednich.

Funkcye i) dla jakiejkolwiek wartości liczby p badał pierwszy 
Biemann w sławnej rozprawie o funkcyach abelowych oraz w innych 
rozprawach (Crelle, LXV). Bozliczne związki w przypadku p=2 ba­
dali: Gopel (Crelle XXXV), Rosenhain (Mem. des Sav. etrang., 
XI, 1851) i Hermite (Comptes rendus XL, 1850). Ważne prace 
o teoryi funkcyj fi, o ich związkach i o teoryi charakterystyk ogłosili: 
Prym (Riemann’s Charakteristikentheorie etc, Lipsk, 1822), Krazer 
|Theorie der zweifachen unendlichen Thetareihen, Lipsk 1882), W e- 
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ber (Math. Ann. XIV, Crelle LXXXIV), Prym i Krazer (Acta 
math.III), Stahl (CrelleLXXXVIII), Frobenius (Crelle LXXXIX)r 
Kause (Hyperell. Functionen, Lipsk 1886), Schottky (Abel’sche 
Functionen. Lipsk 1880) i inni.

O charakterystykach wyższych, t. j. gdy mianownik jest większy 
od 2, pisali: Krazer (Math. Ann. XXII), von B r an n m ii h 1 (Math, 
Ann. XXXII). Co do rodzaju />—1 patrz: T h o m a e (Math. Ann. VI), 
Klein (tamże XVII, str. 132, 565), Bianchi tamże, XVII. str. 
234). Badania t. z. kontiguracyi charakterystyk dla p — 3 i p=4 oraz 
różnych zastosowań tej teoryi prowadził E. Pascal (Ann. di mat. XX, 
XXI i rozmaite noty w Rend. Lincei 1892—93),

§ 4.

Funkcye fi, mające za argumenty całki abetowe gatunku 1-go.

Można przyjąć, że moduły r f u n k c y j fi sa­
rn od u łam i peryodyczności układu całek nor­
malnych gatunku 1-go, gdyż warunki, jakim te ostatnie 
czynią zadość, są takie same jak warunki, które muszą spełniać ilo­
ści t, aby odpowiedni szereg, wyrażający funkcyę fi, był zbieżny.

Weżmy następnie zamiast argumentów układ p całek nor­
malnych I go gatunku o większej liczbie wyrazów niż w § 1, 
wtedy funkcye fi . staną się funkcyami punktów 
powierzchni Riemanna.

Weżmy argumenty pod postacią r(— e,, gdzieś są ilo­

ści stałe, Vi zaś są równe do,. Tak utworzona f u n k- 

cya fi j es t zawsze skończona i ciągła dla każ­
dego punktu powierzchni Riemanna; zachowuje 
ona tęż samą wartość przy przejściu przez cięcia 
A i p r z y p r z ej ś c i u przez cięcia C, a pozyskuj e czyn­
ni k e ’ '{Vt n/, gdy przekraczamy cięcia B, na 
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powierzchni R i e m a n n a. F u nkcy a ta posiada p 
punktów zerowych, czyniących zadość związ- 
k o m:

.■’* :.p

I + • • • + I — lc‘ ~

a a

e, (mod t i ni).

t. j. s u m y, jakie przedstawiają strony pierw- 
s ze, są równe kt—(k są stale, niezależne od punktów z 
i od stałych e,- a zależne od cięć na powierzchni Ri eman na), 
jeżeli pominiemy kombinacyę liniową o spól- 
czynnikach całkowitych modułów t i ni (które 
są modułami peryodyczności całek gatunku 1-go). (Twierdzenie 
Rieman na.)

Jeżeli # j e s t tożsamościowe zerem, to pun­
kty z19 z2,... ,zp są punktami z e r o w e m i krzywej 
dołączonej rzędun—3; jeżeli zaś punkty z nie są 
takiemi punktami, to nie może być tożsamo- 
ściowo zerem.

Można wyznaczyć punkty a15 a2,..., ap w t e n 
sposób, aby f u n k c y a:

Z \/ /• p r \
H dv — JLj d v |

znikała w p punktach z—zp, punkty et; są o k r e- 
ślone algebraicznie jako punkty styczności 
krzywej oznaczonej, stycznej do krzywej za­
sadniczej /’(w,z)=0, or.az określone przestę- 
pniejakopunkty zerowe (w liczbie) p f u n k- 

U'* z \
dv . Takież twierdzenie stosuje się do funkcyi z cha- 

w a /
rakterystyką jakąkolwiek; zmienia się tylko krzywa styczności.

Biorąc pod uwagę funkeye k z charakterystyką jakąkol- 

w lek , możemy powiedzieć ogólnie :
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P u n k t a mi z e r o w e m i f n n k c y i d J dv j s ą 

punkty styczności krzywej dołączonej rzędu 
n —2, gdy charakterystyka f u n k c y i jest pa­
rzysta; punkt a i zbiór p —1 punktów styczności 
krzywej dołączonej rzędu n—3, gdy charakte­
rystyka funkcyi jest nieparzysta. Każdej cha­
rakterystyce odpowiada specyalny układ krzy­
wych styczności.

Logarytm ilorazu dwu funkcyj h, których 
argumenty są całkami gatunku 1-go, wyraża 
się za pomocą całki gatunku 3-go.

Pierwsze pochodne logarytmo we funkcyi 
& wyrażają się za pomocą całek gatunku 2 -go 
oraz funkcyj algebraicznych..

Drugie pochodne log a rytm o we funkcyi łt 
wyrażają się z a p omo c ą 1’ u n k c yj algebraicznych; 
pochodne te są właściwie funkcyami abelowe- 
m i wtem znaczeniu, w jakiem je określono 
w § 1.

Ilorazy funkcyj są funkcyami abelo- 
w e m i.

Na podstawie tych i innych twierdzeń podobnych funkcye 
& służą do rozwiązania zagadnienia o o d w r ó c e n i u.

Więcej szczegółów znajdzie czytelnik w cytowanych już dziełach 
Clebsclia-Gordaua, N e u m a n n a, S t a h 1 a; w pracach: 
Pryma (Akad, wied, 1864, Schweiz. Gesell. 1868), Webera 
(Berlin 1876), T h o m a e’go (Halla, 1877—1879).

Ze stanowiska teoretycznego uczyniono w ostatnich cza­
sach znaczny postęp, wprowadzając zamiast funkcyj i) funkcye 
o, podobnie jak to uczynił Weierstrass dla przypadku elip­
tycznego. Funkcye o, wprowadzone przez Kleina różnią się 
od funkcyj & czynnikiem, a przedstawiają tę dogodność że wza­
jemnie przemieniają się wprost przy przekształceniu liniowem 
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peryodów, gdy tymczasem funkcye I) przy przemianie tej pozy­
skują jeszcze czynnik wykładniczy.

Odsyłając czytelnika do dzieł Kleina i innych, poniżej 
cytowanych, ograniczamy się tu jedynie na podaniu głównych 
wzorów nowej teoryi i to tylko dla przypadku hypereliptycznego.

§ &•

Funkcye o Kleina w przypadku hypereliptycznym.

Po wprowadzeniu spółrzędnych jednorodnych, t. j. przy zało­

żeniu z = , forma zasadnicza hypereliptyczna rodzaju p

niechaj będzie typu:

w2 z2^ = /22+i>Ui,^2) = 'Vp+2 — —.............,

gdzie strona druga jest formą dwójkową stopnia 2p-j-2 w postaci 
symbolicznej (patrz Rozdział XII).

Niechaj całkami normalnemi gatunku 1-go będą:
X

= i z^-' (z1 dz2 — z2 d?y)
^7^, z,) 

wp — i z./-1 (z1dz2 — z2dzt)
t/ Vf(z},z2)

Całką zasadniczą gatunku 1-go z punktem pojedyńczo-nieskoń- 
czonym niechaj będzie:

7(t)= | -j- a?4-1 A/+1
J ^7(7) 2(^)3
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Różniczkując to wyrażenie p—1 razy względem tx i t2 dzieląc 
przez (n— I)!, otrzymujemy p całek normalnych Zx, Z^, ... Zp • 
Całka normalna gatunku 3-go niechaj będzie całką, którą Klein 
oznacza literą Cp, ma ona własność, że jej funkcya podcałkowa 
jest spółzmieunikiem formy dwójkowej zasadniczej: jest 
tedy:

‘ (zdz} d z'dz' + cd'4 1. a?+1
"W)’

y y

~ Wy' =

Punktami nieskończoności logarytmowej tej 
całki trzeciego gatunku są punkty: x', y'.

Przy pomocy całki Q utwórzmy wyrażenie:

\ (#2/)Q (x, y) ■= -4 22— e 2 ,
f/H A?/)

gdzie przey rozumiemy wartość Q wtedy, gdy punkty nie­
skończoności x', y' stają się punktami odpowiednio sprzężo- 
nemi na powierzchni hypereliptycznej dwupowłokowej (pun­
ktami sprzęźonemi na powierzchni dwupowłokowej nazy­
wamy dwa punkty, z których jeden leży na jednej, drugi na 
drugiej połowie). Wyrażenie to ma ważne znaczenie w rozwa­
żaniach Kleina; nazywa się ono formą pierwotną lub 
główną (Primform) i ma tę własność, że nie posiada wcale 
rozgałęzienia na powierzchni Riemanna; że ma 
jeden tylko punkt zerowy x—y inie stajesię wcale 
ni es koń ozonem

Funkcyę o argumentów

(2=1,2,.. ,p)

można określić niezależnie od funkcyj Utwórzmy wyrażenie

ylk\
M 11^ (x&y^ y№ ’
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w którem symbol 77/, k oznacza iloczyn,rozciągnięty na wszystkie 
kombinacye i, /c = 1,2,.. ., v, symbol zaś TL'/jk takiż iloczyn 
z wyłączeniem kombinacyi i = k. W s z y s t k i e f n k c y e o 
posiadać będą czynnik drugi czynnik zmie­
niać się będzie w raz z o; budowa jego zależy 
od rozkładu formy dwójkowej / ma dwa c z y n- 
niki takie, że różnica ich stopni jest wielo­
krotnością liczby 4. Połóżmy tedy:

f-ipĄ-z — 1-2/.« i 1- • • ., 2

i napiszmy wyznacznik D,pll, rzędu 2v, którego wiersze tworzą 
się przez podstawienie zamiast z odpowiednio

x', x", .... x^v!, y', y", . . . , y(v)

w elementach :

2^-l+p. ]/<p(z), z2v~'l+'1 ]/(? (z), . . . , zxv—x~^]/ip(z),................

Wtedy każda funkcya o będzie miała wyraże­
nie takie:

Ocpi/' ----- Drpi]> .

Ponieważ można uskutecznić 22p rozkładów foimy f na 
iloczyn (p istnieje przeto 22'' zasadniczych funkcyj o, z któ­
rych każda jednemu z tych rozkładów odpowiada.

Funkeye o dają się wyrazić jako iloczyny 
funkcyj fi przez czynnik wykładniczy stopnia 
2-go względem argumentów« oraz przez czyn­
nik, zależny tylko od modułów ispółczynni- 
k ó w .

8_____
Gdy pomnożymy funkeye o przez s— l/^(pXp , gdzie A^,, Av. 

są wyróżnikami form (p i tp (jeżeli stopień jednej z funkcyj (p, ip 
staje się 0 lub 1, zamiast odpowiedniego wyróżnika należy pod­
stawić 1), otrzymamy funkcyę, którą niektórzy autorowie ozna­
czają symbolem Th (np. Wiltheiss, Math. Ann. XXXIII).
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T a k u t w o r z o n e f u n k c y e o n i e s t a j ą się ni­
gdzie n i e s k o ń c z o n e m i na powierzchni Rie- 
manna. Stosownie do tego, czy liczba /z jest 
parzystą lub.nieparzystąifunkcyaajest pa­
rzystą lub nieparzystą. Funk cy a o, od po wła­
dająca s p e cy a 1 n ej wartości /z, staje się 0“ w p unk- 
c i e =... =0.

Dla p—2 istnieje 10 funkcyj o parzystych i 10 nie­
parzystych. Dla/>=3 mamy: 28 funkcyj o nieparzy­
stych. odpowiadających rozkładom formy rzędu 8go na formę 
kwadratową i formę rzędu 6-go; 35 funkcyj o parzystych 
nie znikających dla argumentu zero i odpowiadających rozkładom 
formy f na dwie formy rzędu 4-go; ostatnia funkcya parzysta, 
która znika dla argumentu zero, odpowiada rozkładowi formy 
danej na funkcyę rzędu 8-go oraz formę rzędu zerowego.

Funkcye o czynią zadość pewnym równaniom różniczko­
wym cząstkowym rzędu drugiego, dającym się przy pomocy pe­
wnych modyfikacyj wyprowadzić z równań prostszych, którym 
czynią zadość funkcye

Dla funkcyj TA równanie takie otrzymał Wiltheiss.
Funkcye o dają się rozwinąć na szeregi, 

których wyrazy postępują według potęg ar­
gumentów, s ą f u n k c y a m i w y m i e r n e m i całko- 
witemi spół czynnik ów formę? i i posiadają 
własność niezmienniczą. Jeżeli położymy:

= u1 2./-1 — (p—1) w2 zi............. ’

to każdy wyraz będzie niezmiennikiem jedno­
czesnym trzech form dwójkowych ę?, każ­
dy z nich m i a n o w i c i e j e s t typu:

/ p. -j- 2q , fi 4- o , O

\ Z T V
gdzie s k a ż n i k i, postawione nad literami 
ę?, ę?, oznaczają stopnie wyrazu względem społ­
oży n n i k ó w tych trzech form dwójkowych.
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Klein rozciągnął konstrukcyę funkcyj a i na przypadek 
funkcyj abelowych dla p jakiegokolwiek. Przypadek p=3 zbadał 
on potem szczegółowiej; lecz nie możemy wchodzić w szczegóły 
tego badania.

Głównemi pracami, traktującemi o funkcyach o hypereliptycz- 
nych, o ich rozwinięciu na szeregi, o równaniach różniczkowych, któ­
rym zadość czynią, są prace: Kleina (Math. Ann. XXVII, XXXII), 
Burkhardta (Math. Ann. XXXII, XXXY), Brioschfego (Acc. 
dei Lincei 1888), Wiltheissa (Crelle IG, Math. Ann. XXIX, 
XXXI, XXXIII), E. Pascala (Ann. di mat. XVII, XVIII, XIX). 
Z prac, odnoszących się do wspomnianej wyżej konstrukcyi ogólniej­
szych funkcyj o, wymienimy badania: Kleina (Math. Ann. XXXVI), 
W i 11 h e i s s a (Gótting. Nachr. 1889), E. Pascala (tamże 1889, 
Annali di Mat, XVII, XVIII), Wirtingera (Math- Ann. XL, 
Monatshefte, II). Wykłady Kleina, które dały początek tym bada­
niom nad funkcyami o hypereliptycznenii i abelowemi, miały miejsce 
w Getyndze w latach 1887—1889.
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FUNKCYĘ 8PECYALNE.

Funkcya wykładnicza i funkcya logarytmowa. Liczba e.

Funkcyę wyki a d n i c z ą przedstawia szereg

z2
2f +

zbieżny dla wszelkiej wartości zespolonej zmiennej z; oznaczamy 
tę funkcyę symbolem e:. Wartość tej funkcyi dla z~l, t. j e 
nazywa się podstawą loga rytmów naturalnych; 
wartość funkcyi wykładniczej dla jakiejkolwiek wartości z jest 
potęgą z- tą liczby e.

Liczba e jest nietylko liczbą niewymier­
ną, ale jest nadto liczbą przestępną (patrz 
Rozdz. XXI). Wartość liczby e wynosi:

e = 2, 71828 18284 59045 23536 02874 71353 . . . , .

log vulg. e=0, 434 294 481 903 251 827 651 128 919 .............

fe — 1,444667 .............
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Funkcya wykładnicza posiada własność zasadni­
czą, wyrażającą się związkiem:

/'(2) . /■(/) = f

t. j. tak zw. twierdzeniem o dodawaniu.
Funkcy a kz j est peryodyczna; peryodem jej jest 

2tzz. Równanie tz= 0 nie ma żadnego pierwiastku 
skończonego.

Każdy pierwiastek równania e:= w nazywa się logaryt­
mem naturalnym liczby iv. Logarytmów liczby iv 
jest nieskończenie wiele; każde dwa różnią się o 
wielokrotność liczby 2m. Ilość z, uważana jako funk­
cya ilości w, jest funkcyą wielo wartościową o nieskończenie wielu 
wartościach: pomiędzy temi wartościami obieramy jednę, w któ­
rej spółczynnik części urojonej zawiera się pomiędzy — n a -j-^, 
(włączając -Hi). Tym sposobem określamy funkcyęjedno- 
wartościową ilości w, która nazywa się funkcyą 1 o ga­
ry tm ową naturalną i oznacza się przez logtf w.

Dla każdej wartości ztą której moduł jest 1 
(z wyłączenia wartości w — — 1) szereg 

jest zbieżny, a wartością jego jest logarytm (w zna­
czeniu ściślejszem, o którem dopiero co była mowa) ilości 1-f-w 
t. j. logd(l-|-w); część urojona tej funkcyi zawiera się

• -i | JTl/pomiędzy------— a .

Można, według Riemanna, określić funkcyę logarytmo- 
wą ogólną jako funkcyę, czyniącą zadość związkowi funkcyj­
nemu :

. u\) = f(w) 4- />0;
wtedy funkcya jest oznaczoną, gdy się pominie stałą mno­
żącą. Z tego związku mamy f'(l) = 0, /’(0) = oo. Różniczku­
jąc , względem i kładąc następnie wt=l, otrzymujemy 
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&••/'(40) = /■'(!), a stąd, gdy oznaczymy /*'(1) przez JM (moduł), 
będzie:

... . <tw- Mj — , 
1

Funkcya tak określona jest funkcyą odwrotną względem funkcyi 
typu n;=Ax\ liczba A. nazywa się podstawą.

Jeżeli moduł M—l, wtedy funkcya logarytmowa staje się 
n a t u raln ą; jej podstawą jest liczba e.

Funkcya logarytmowa nienaturalna równa 
się funkcyi n a t u r a 1 n e j, p o m n o ż o n e j przez s t a- 
ł ą fmoduł).

Gdy zmienna w okrąży punkt zero i powróci do punktu 
wyjścia, znajdziemy wtedy na funkcyę logarytmową wartość 
różną od pierwotnej, a więc będziemy mieli nieskończenie wiele 
wartości. Uczynimy jednowartościo w ą tę funk­
cyę, jeżeli na płaszczyźnie w przeprowadzimy 
cięcie od punktu zero do nieskończoności (patrz 
Rozdz. XIII, § 4).

Dla argumentu rzeczywistego otrzymujemy zawsze wartość 
rzeczywistą funkcyi logarytmowej naturalnej. Taką wartość 
będzie można wtedy wprost określić jako liczbę rzeczywi­
stą z, czyniącą zadość równaniu (-z— w dla danej jakiejkolwiek 
wartości rzeczywistej na w. Tę liczbę nazywamy zwykle loga- 
rytmem naturalnym lub hyperbolicznym (ponieważ 
może służyć do kwadratury hyperboli równobocznej). Dzieląc 
liczbę z przez

log e = 2, 3025851 .....................

lub mnożąc przez

=0,43429 . .logj.0

otrzymujemy ] o g a r y t m zwyczajny lub dziesiętny 
B r i g g s a, (od nazwiska autora, który pierwszy sporządził ich 
tablice w r. 1617). Liczba M nazywa się zwykle m o d u ł e m 
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układu logarytmów B r iggs a. Adams obliczył tę liczbę 
(Proceed. of the Koyal Society 1878, str 73) z ‘282 cyframi dzie­
siętnemu Logarytmy zwyczajne określa się zwykle jako roz­
wiązania rzeczywiste równania wykładniczego 10* = w dla 
wszystkich wartości w. Dla logarytmów naturalnych podstawą 
jest e, a modułem 1; dla logarytmów zwyczajnych podstawą jest

10, modułem ,—A = 0, 43429 .............log, 10
Logarytmy, utworzone pierwotnie przez Neper a 1614), 

nie były właściwie 1 ogarytmami naturalnemi. Te ostatnie 
zbudowano po raz pierwszy w r. 1619 (New logarithmes, Lon­
don, 1619). Logarytmy N e p e r a, znajdujące się w dzie­
łach „Canonis description (Edynburg 1614) i „Canonis con- 
structio“ (tamże 1619) mają podstawę zmienną. Jeżeli przez 
La oznaczymy logarytmy N e p e r a, przez log, a logarytmy na­
turalne będzie: 

La
10; + log,

a
lœ o,

a więc podstawa logarytmów Nepera zmienia się wraz za. 
I dla tego to pierwotne logarytmy Neper a zarzucono i za­
stąpiono je logarytmami naturalnemi (które nazywano też nepe- 
rowemi).

Należy się tu wzmianka logarytmom dodawania 
i odejmowania, zbudowanym po raz pierwszy przez Leo- 
n e 11 i’e g o, a następnie . przez Gaussa (Werke II, III) przy 
pomocy których, mając logarytmy dwu liczb a, b, można znaleść 
logarytm ich sumy i różnicy. Tablice te składają się z trzech 
kolumn: w pierwszej umieszczono log ni, w drugiej log (1-|-— 

w trzeciej log (1-j-m). W kolumnie pierwszej szukamy:

log a — log b = log (w założeniu log a log b} 

w drugiej:
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log = log
d—I-1) - /17 1--- !--- = log (ćJ—1-6>) — lOg (l.

i stąd już znajdujemy log(c-j-ć). Podobnie możnaby posługiwać 
się kolumną trzecią. Tablice takie znajdują się w wielu podręcz­
nikach logarytmowych, np. w podręczniku Kohlera.

§ 2.

Funkcye kołowe i hyperboliczne.

Funkcye kołowe „wstawa“ i „dostawa“ określają się ana­
litycznie dla jakiegokolwiek argumentu rzeczywistego lub zespo­
lonego przez wzory:

. Z2 Z* •COSJ=1_ — 4- — _.............. ;

szeregi po stronach drugich są zbieżne dla wszelkich wartości z. 
Przy pomocy tych funkcyj określamy następujące :

sin z , cos z 1 1tg z = ------, cotg z — —— , ses z —------- , cosec z — ——■ .COS z sin z cos z sin z

Dla dwóch funkcyj sin z, cos z ma miejsce 
związek zasadniczy sinL>z-|- cos23 = 1. Dla argu­
mentu rzeczywistego funkcye kołowe są rze- 
czywistemi.

Nie będziemy się tu zatrzymywali nad dobrze znanem 
przedstawieniem geometrycznem tych funkcyj w przypadku, 
gdy z jest rzeczywiste.

Funkcye kołowe są peryodyczne; modułem 
ich peryodyczności jest
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Wzorcami g 1 ó w n e m i są następujące: 

sin (z Hz zx) — sin z cos zx + cos z sin , 

cos (z zt ^i) = °os z cos zx + sin z sin zx, 

sin (z -h z i -j- z2) — sin z cos zx cos z2 -j- sin zx cos zx cos z2 

4~ sin z2 cos z cos zx — sin z sin zx sin z2, 

cos (z zl -j- z9) = cos z cos zx cos za — cos z sin zx sin z2 

— cos zx sin z sin z2 — cos z2 sin z sin zx,

/ , \ tg z H- tg z. 2 / , . , x —6LH- & — . ..

gdzie przez Ą rozumiemy sumę stycznych argumentów pojedyn­
czych, przez S2 sumę iloczynów stycznych argumentów, branych 
po dwa, przez ó’3 sumę iloczynów argumentów,branych po trzy i t.d.; 

sin z + sin zx — 2 sin £ (z + zx) cos | (z + z), 

cos z Hz cos zx = 2gi°u 4 (z ZOsta 4 (z — zx),

cos z zt sin zx = 2 sin •T
T

tg Z ± tg zx sin (z z!z ZX) 
cos z cos zx

sin 2 z = 2 sin z cos z, cos 2 z cos2 z — sin2 z, tg 2z . JJgf 
1—tg2 z ’

sin 3 z = 3 sin z — 4 sin3 z; cos 3 z — 4 cos3 z — 3 cos z,

nz = ___ ntgz -(n)3tg3z-H.............
l—(n)2tg2z4-(n)4tg4z4- . . .

cos z
5---- , COS i Z ~ złz

/ł±l^, tg 1—COS z

14- COS z *

Ea#cal, Rep. i 27
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Funkcye kołowe są związane z futlkcyami 
wykladniczemi za pomocą godnych uwagi 
związków Eulera:

ei2~e-iz ez-\-e~iz ...sin z =----- , cos z —----------------—------ , c,z — cos z sin z.

Funkcya „wstawa“ dla argumentu czysto urojone­
go i z, gdzie z jest rzeczywiste, jest ilością urojoną czystą, stąd 
funkcya -Sm (,z rzeczywiste) jest funkcyą rzeczywistą. Dla 

tegoż argumentu czysto urojonego funkcya „dostawa“ jest funk­
cyą rzeczywistą, funkcya zaś „styczna“ jest funkcyą rzeczywistą 
po podzieleniu przez i. Te funkcye rzeczywiste

sin (iz) . tg (iz)---- 4—— , cos « z, .——% i

nazywają się funkcjami hyperbolicznemi i ozna­
czają się odpowiednio za pomocą symboli:

sinh z, cosh z, tgh z.

Z tych określeń widać odrazu, że funkcye hyperboliczne po­
siadają własności, podobne do własności funkcyj kołowych; wzo­
ry dla pierwszych wyprowadzają się z wzorów dla drugich przez 
podstawienie i sinh zamiast sin, cosh zamiast cos, i tgh zamiast 
tg. Wzorami wykładniczemi dla funkcyj hy- 
perbolicznych są:

. . er — e~z , ez 4- er~zsinh Z — ------5-----  , cosh Z =-----~.~ &

Związek zasadniczy pomiędzy wstawą 
i dostawą zamienia się na następujący:

cosh2 z — sinh2 z = 1.

Funkcye hyperboliczne otrzymały swoją nazwę z powodu 
własności następującej:
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Jeżeli nakreślimy byperbolę równoboczną, której równa­
niem (w odniesieniu do osi hyperboli) jest x2—?/2=l i jeżeli przez 
z pole podwójne wycinka hyperbolicznego, ograni­
czonego osią if, promieniem wodzącym O A (idącym ze środka O 
hyperboli do punktu A na niej) oraz gałęzią samej krzywej, wte­
dy spółrzędne x, y punktu A będą równe odpowiednio dostawie 
i wstawię hyperbolicznej ilości z.

Jeżeli poprowadzimy styczną w wierzchołku M hyperboli 
aż do przecięcia się w punkcie T z promieniem wodzącym O A 
i przez punkt T poprowadzimy równoległą do osi x aż do 
punktu przecięcia się L z okręgiem, opisanym z punktu O pro­
mieniem OM— 1, wtedy kąt r=LOM nazywa się kątem 
przestępnym Lamberta; funkcye hyperboliczne wy­
rażają się przez funkcye kołowe kąta Lamberta w ten sposób:

sinh z — tg r, cosh z —------ .
cos T

Funkcye hyperboliczne badali w wieku zeszłym Riccati i Lam­
bert; znakowania pierwszego z nich zostały powszechnie przyjęte. 
Następnie zajmowali się niemi: G ud ermann, który zbudował obszerne 
tablice (Crelle VI, VII, VIII) i Mossotti. Z nowszych autorów pisali 
o nich: Hoüel. Laisant (Mém. de Bordeaux), Günther (Die Lehre 
von den Hyperbelfunctionen, Halla, 1881), Forti, który ogłosił nowe 
tablice tych funkcyj, (Rzym, 1892). Szczegóły bibliograficzne i do­
kładną historyę tego przedmiotu znajdzie czytelnik w dziełach ostatnich 
dwu autorów.
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§ 3.

Funkcya Bernoulli ego. Liczby Bernoulli'ego i Eulera.

Funkcya lub wielomianem B e r n o u 11 i’e g o 
nazywamy wyrażenie:

=z x"‘ — x’"~1 + (;n)2 B.,xln-2 — (w)4 Bi xm~4 + . . : ,

w którem B>, , . . . . są t. z. liczbami B e r n o u 11 i’ego 
(Raabe, Crelle XLII).

Istnieje wzór:

(#) — (m-ł-1) ®"‘;

Dla X'=n całkowitego dodatniego jest:

<pwł0i) = m 11'"“1 + 2"’-1 -p . . . . , -j- (n—l)«"1 |.

Wielomiany Bernoull i’ego dla® całkowitego dają tedy wyra­
żenie sumy jednakowych potęg pierwszych x— 1 liczb całkowi­
tych (przy pominięciu czynnika liczbowego).

Liczby Berno u łł i’ego są spółczynnikami rozwinię- 

cia na szereg funkcyi ——j ; jeżeli mianowicie rozwinięcie na- 

piszemy w postaci:

1 + i
B<x*_ 

4!

to liczby B będą liczbami B e r n o u 11 i’ego. Liczby te mają 
związek ze spółczynnikami rozwinięcia stycznej. Jeżeli na­
pis z e m y :

oo j. 2».-l
tg® = jy, ,

będzie:
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Liczby Bernoull i'ego wyrażają się przy 
pomocy różni c wyrażenia O"1 (patrz Rozdz. X) w ten 
sposób:

I 0*“ - 4- A O2" + i A W" - ... + g----, A™ O2“ I .

I Ł c.T)ł -f- J.

Przez wyznaczniki liczby Bernoulli’ego 
wyrażająsiętak:

-

1, 0, . . . . . , o, 1

(3)t, 1, . . . . . , o, 1

2w (5X, (5)3, . . • , o, 1
22w(22ot—1)

(2w—3)j, (2m—3);!, . . - , 1- 1

(H a u s s n e r),

B2m — (2w)! (G1 ais h er),

4- t 0, • . . . • , o
1 1 1, . . .3 ’ 2! ’ • 1 u

1 1 1 1
'2?n+l)! ’ (2m)! ’ (2m—1)!’ ' • ■ ’ 2!

Godnym uwagi jest wzór:

lim Bi„,(— j + 2 = 4jrFe .
Ill-=OO \ I

Istnieje bardzo wiele wzorów zwrotnych dla liczb Ber­
no ulli’ego. Najdawniejszym jest wzór Moivre'a (Miscell 
anal. Londyn 1730):

!mH-l)l Z?,Wł — (2///+l)3(-1)”—'(2^+1 )2w_1 Ii., + (-1)’« (Wi -1 ) = 0.
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Następnie idzie wzór Jacob i ego (Grelle XII, str. 263): 

(2m+2|;{ B-im—(2//h-2)4Z?2W_2~i-...-]-(-’l)/'i~1(2w4-i-2)2M1 )z" wt=O.

Wzór Sterna (Grelle, LXXXIV):

(2m+1)2jB2^—2 4“ •••-}“(— 1)OT—1 (21/4+1)2/«B-]-(—1)"' ó =0. 

Inne wzory zwrotne znaleźć można w cytowanej poniżej książce 
S a a 1 s c li ü t z a.

Do liczb B e r n o u 11 i’ego stosuje się następujące ważne 
twierdzenie v. 81 and t a i C1 a u s e n a (Grelle XXI, Astr. 
Nachr. XVII, 1840):

Jeżeli a, ß, 7, . . . są liczby pierwsze niepa­
rzyste. które, zmniejszone o jedność, dają 
dzielniki liczby 2m, to wtedy:

— liczbie calk. -j- (— 1)'" J -j—— -]—-—I— —|- . . ! .
I 2 a ß y I

Można otrzymać wzory zwrotne tylko pomiędzy częściami 
całkowitemi liczb B e r n o u 11 i’ego; wzory takie podali po raz 
pierwszy Hermite (Grelle, LXXXI) i Stern t Grelle, LXXXVI), 
a następnie ogólnie Lipschitz (Grelle, XCVI).

Spółczynniki ß rozwinięcia stycznej (patrz 
wyżej) są liczbami całko witemi, które kończą 
się naprzemian na cyfry 2 i 6, poczynając od 
A = 2-

Liczby Bernoul 1 i’ego otrzymały swą nazwę od J a k ó b a 
Bernoull i ego, który wprowadził je po raz pierwszy do analizy 
(„Ars conjectandi“, Bazylea, 1713); tę nazwę nadali im Moivre 
i Euler. Bernoulli obliczył 5 pierwszych z tych liczb, Euler 
obliczył ich 15, O h m 31 (Grelle XX), Adams 62 (Grelle, LXXXV). 
Bliższe szczegóły o liczbach Berno uli i’ego znaleść można w dziele 
Saalschütza „Vorlesungen über die Berno ulli’schen Zahlen“ 
(Berlin 1893).

Prace dalsze o tym przedmiocie ogłosili: G1 ais her (Mess. of. Math. 
1876), Seidel (Münch. Akad. 1877), Radicke (Die Recursionsfor- 
meln für die Bernoulli’schen und Euler’schen Zahlen, Halla 1880), 
Hanssner (Göttinger Nachr. 1892, Zeitschrift für Math. 1894) i t. d
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Oto tablica pierwszych 18 liczb Bernoullfego.

^2= •• 5 = 30 ’ = 42 ’ " 3Ó ’ B]C = 66 ’

_ 69i _ 7 _ 3617 _ 43867
1712 “ 2730’ 7714 “ 6 ’ 718 “ 5lÓ ’ 7718 798 ’

174611 854513 236364091
~1' ~ 330 ’ ^22 “ 138 ’ “4 “ 2730

n 8553103 D 23749461029
- o ’ ^28 - - 870

_ 8615841276005 _ 7709321041217
•,0 ~ 14322 ’ •32 “ 510 ’

_ 2577687858367 _ 26315271553053477373
34 “ 6 ’ -!6 “ 1919190

Pokrewnemi z liczbami Bernoulli’ego są liczby Eulera, 
odpowiadające spółczynnikom rozwinięcia siecznej. Jeżeli po­
łożymy :

sec x =
CO

2? Eim o
■ X2,n

(2nijl1

to liczby Ei)n będą liczbami Eulera. Wyrażają się one
przy pomocy wyznaczników w ten sposób:

1.1, 0,................................0

1. (4)„ 1,................................ 0

1, (6)2, («),, ..... 0
Ezm -— ' (Haussner)

1, (2₽n—2)2, (2m—2)4, . . . , 1

1. (2m)2, . . . . , (2«0-’m-2 1
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Ezm ----

1
2! 1 1, 0, . . . • , o
1 ± 1 .

2! ’ •4! ’ • i

1 1 1 1
(2w?)! ’ (2m—2)! ’ (2wi—4)! ’ ' ' ’ 2!

(Gr 1 a i s h e r)

Liczby Eulera dają się wyrazić przez licz­
by Bernoulli’ego przy pomocy wzoru:

(2m-|-l) Eim = 22w,+1 (22w+1—1) (2m4-l)i B.im

— 22w-1 (22’»-8—1) (2m4-l)3

+ 2» (2—1) (2m4-l)2w-i ą +

Jeżeli wprowadzimy współczynniki fi rozwinięcia stycznej, 
otrzymamy wzór Sterna:

Efyn = fi-łm -J- (2lH l)s fam—2 4“ • • • 4" -- 1 hm—2 ^2m—2^2 •

Wzór zwrotny dla liczb Eulera jest nastjpuiący:

E-im — (2w)a Etm—2 4" (2»i)4 Ezm-4 ... ..........................

4-(-i'r-1 (2m)2,„_2 a:2 4- ( —l)w = 0.

Podajemy jeszcze dwa wzory :

7? 2w r F 2m(2m—1)P2m 5 -“2«

Liczby Eulera są wszystkie liczbami cat- 
kowitemi, dodatniemi,nieparzystemi. Suma 
dwu liczb kolejnych jest podzielna przez'3. 
Liczba Eim-\-l dla m parzystego, liczbazaś E-2m—1
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dla m nieparzystego jest podzielna przez 3. 
Liczby Eim dla m parzystego kończą się na cy­
frę 1, dla m nieparzystego na cyfrę 5.

Pierwsze dziewięć liczb obliczył sam Euler (dziewiątą błędnie)* ' 
Liczby te badał (i nadałimnazwę) Scherk (Math.Abh., Berlin 1825); 
później zajmowało sie niemi wielu autorów, zwłaszcza ci, którzy badali 
liczby B e r n o u 11 i ’ ego. Stern (Crelle, LXXIX) znalazł wiele 
ich własności.

Podaj emy tri tablice pierwszych czternastu liczb Eulera 
E2, Ei, E-3, . . . , E.2i według S c li e r k a:

1, 5, 61, 1385. 50521, 2702765, 199360981, 19391512145,

2404879675441, 370371188237525, 69348874393137901,

155145344163557086905, 4087072509293123892361,

1252259641403629865468285.

Stała Eulera. Stała harmoniczna.

Znany jest wzór Eulera, służący do wyrażenia całki róż­
nicowej określonej (sumy) przez całkę zwykłą tej samej funkcyi 
(patrz Rozdz X). Wzór ten jest:

b

źtw = (fi*) 1 [/-«ii
a

tu B2, . są liczbami B e r n o u 11 i’ego.
Połóżmy «—0, b—x, wtedy wzór przybiera postać:

-f /(*) = I fi*) dx — /(x) f(x) — f"\x) -j-... stała 
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gdzie wyraz ostatni (stała) nie zależy oczywiście od x, a przez 
symbol p(x) dx rozumiemy całkę nieokreśloną funkcyi 

f (&}>■ Połóżmy:

’ Jf(x) = 108 ;

stała w tym przypadku nazywa się stałą harmoniczną, 
ponieważ suma po stronie pierwszej jest wtedy sumą pierwszych 
wyrazów szeregu harmonicznego pierwszego rzędu (rozbieżnego)« 
Stała harmoniczna zależeć będzie od warto­
ści a i &; oznaczamy ją przez 2t(a,ó). Dla a=0, 6=1 będzie 
ona stałą Eulera, którą oznaczamy przez A.

Stałe A(a,b) i A określają się tedy za pomocą wzorów :

A, 1 , a . 1 . BA'J(a,A) = -ylogT+ -g-r 4«4 '

A — lim
r/ — O

I , 1 , 13, B, , t
{ — log a 4- ---- H — A + - • . . },I 1 2a 1 2 a2 4 a* 1 l ’

Mamy związki:

A (a, 6) — 4 (b—a, 6) = -y cotg ,

Wartość stałej A z 26 cyframi dziesiętnemi jest:

A = o, 57721 56649 01532 86106 06512 4 . . . .

Przez całki określone stała A wyraża się w ten sposób : 
i

I log log x dx = — 4 , (M a sc h er o u i)
‘o
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CO

I e-^logxdx — — 4.
o

Przez szereg oraz przez iloczyn nieskończony stała Eulera 
wyraża się w ten sposób:

i

°O / 1 , 1 v\ oo a»
Z - - log (1 4- —) = A; log II—-----  = 4 .

1 \ n \ ni] 1 1 I 11 -j 
n

Stałą 4 napotykamy w teoryi tnnkcyj Eulerowych.

Euler obliczył tę stałą najprzód z 6, potem z 16 cyframi dzie- 
siętnemi („De numero memorabili etc“, Acta Petrop. V, 1781) i ozna­
czał ją literą 7. Następnie zajmowali się tym przedmiotem: Mä­
scher on i (Adnotationes ad Euleri Cale, etc), który obliczył stałą do 
20-ej cyfry, Legendre do 19-ej, Soldner do 25-ej, Lindemann 
(Grunert, Archiv XXIX) do 35-ej, Oettinger (Grelle LX) do 40-ej, 
Nicolai do tyluż (patrz Gauss, Werke III, str, 154), Shanks 
(Proc. Boy. Soc. 1866—1867) do 59 cyfry (50-ta cyfra jest błędna); 
Glaisher (tamże, 1871) do 100 i wreszcie Adams (tamże 1878 oraz 
„Papers“ I, str. 459) do 263 cyfr dziesiętnych. O stałej Eulera 
ogłosił pracę Knar (Grunert’s Archiv XLI, XLIII). Funkcyę A (a, 1) 
badał Gauss w rozprawie o szeregu hypergeometrycznym (Werke III). 
Tablicę wartości tych funkcyj podał Nicolai; znajduje się ona na końcu 
wspomnianej rozprawy Gaussa.
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§ 5-

Funkcje Eulera.

Legendre (Fonctions elliptiques, vol. II, str. 365, Paryż 
1826) nazwał po raz pierwszy funkcyami Eulera gatunku 
pierwszego i drugiego funkcye, badane przez Eulera 
(Cale, integr.), a o których obecnie mówić będziemy.

Całką Eulera gatunku 1-go, jak była pierwotnie 
określona przez L eg e n dr e:a, jest :

i

B (p, q\ ri) — I a;( 1 — ^*) * dx ;
’o

tu n jest liczbą stałą; p, q liczbami zmiennemi, tak że B jest fun- 
kcyą ilości p, q. Legendre, idąc za E u 1 e r e m, oznaczał

tę funkcyę symbolem • Następnie Binet (Journ del Ecol. 

polytech. zesz. XXVII) zaczął oznaczać tę funkcyę literą grecką 
B i dla tego nazywają ją f u n k c y ą beta. Przypadek n — 1 
rozważany bywa w podręcznikach; symbol uproszczony B(p,q) 
pisze się zamiast B(p,q, 1).

Funkcya beta dla n—1 jest symetryczna względem p, q, t j.

B(p,q) = B(q,p) .

Wartości funkcyi B (p, 7; ri), gdy p, q są większe od n, wyra­
żają się przez te funkcye dla wartościp, q, zawarte pomiędzy 1 i u 
(L e g e 11 d r e). Mamy :

71

B (p, n; n) = — ; B (p, n—p; ri) =-----
p . TTsin—n
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w H-1; 1) = y O>+1. V, 1'.

74-1: 1) = B(p,q- 1) — 1).

Funkcya B czyni zadość związkowi (E u 1 er a) :

B (b, q-,n) B (p-]-q, r; n) = B (p, r; h) B (p~\-r, q; n).

W przypadku ?ł=3, 4, 6, 8, 12 funkcya B daje się wyrazić 
za pomocą całek eliptycznych (patrz Legendre, 1. c. Rozdz. 
III) Logarytm funkcyi B daje się wyrazić za pomocą całki 
określonej. Zakładając n—1, mamy:

00
/• r 1 --- e~P% 1----e—P%log B (p, <?) = / | e'”. - 44^ + 1 +

0

Nazywamy całką Eulera gatunku 2-go i ozna­
czamy literą 1' funkcyę :

1

(2) -- I (log -i- 

0

Bez zmniejszenia ogólności rachunku, możemy przyjąć »1 = 1, 
i kładąc xm=t, napisać:

c. W = 4 <3> •

x ■

Pisze się wprost (Legendre):

Euler i Gauss używają symbolu 11 (z - 1). 
Jeżeli z jest liczbą całkowitą, mamy:

F(^) = (z-1)!
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F u n k c y a /"jest skończona dla każdej war­
tości rzeczywistej z, większej od 0.

Inne wyrażenia funkcyi P są :

oo

P (z) — i e~x x'’-1 dx,

0

r{z) = lim (jd —. I. —-rr (E u 1 e r, Gr‘a u s s),
/4=00 ć(z-i-l) ••• (3+^—1)

(i 4- —y-1
P(z) = lZ —--------- , (Euler, 1729).

/4 = CO -£ j 3 1

Funkcya/1 ma własności, wyrażające się 
za pomocą związków następujących:

F($4-1) = 3F(3); F(z-H) = (zd-Zc-l) (z-f-A:—2) . . . z7’(z),

= F^\oSs-, r(z)r(l-z) = 
dz sin zn

r(|-3)FG4-z) n
COS Zn ’

.. P(nz) 1hm - . - • = — ,
2=0 F(z n

V/ I 1\ 1.3... (2z—1) n .+ I) =-----------q~,-------------.In , (z całkowite)Z *

r(ł) = ł|/"............

Vn r(2z) 
~~ 22z-’ F(z) (dla z jakiegokolwiek)

m—1

(271)^ ~ i (»w całko­
witej ul er)
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F(z)F Z — Wz + —) 
' mf \ 'm]

„ / . m—1\. . F Iz H----------\ m]
m—1 1

= F(mz)(2?r) 2 m2 , (m całkowite, z jakiekolwiek 
Gauss, Werke III str. 150),

oo 
log /7(z) = j | (z—1) e- a — e~ta!l dx

1—ex I x

OO I / J \ / £ \ I
log F (z) — JL' z log 1 -]------— logi 1 4---------1 I , (Gauss)

r = l L \ T I \ r /J

dlogF x .. 1 1 li—— — Z(z) = hm log /z----------------- 7—- — . ..---------------- -— J
dz (1=00 l Z Z~\~l Z I-fil

Z (1) = A jest stałą E u 1 e r a.
.-*+1

I log F (rr) dx — z log z — z -f- log 2tk. (B a a b e).

Wartość funkcyj F (z), gdy z przyjmuje wartości od O 
do izmienia się od oo do 1^= 1, 77245, a dla wartości z, 
od | do 1 zmienia się od Vn do 1. Funkcya F(z) ma 
wartość najmniejszą dla z— 1, 46163 21451105 ,
a wartość log F (z) w tym punkcie wynosi 9, 94723 91743 9340, 
co odpowiada przybliżenie wartości F(z) — O, 885 ....

Droga od z—O do z=l zwykle nazywa się peryodem 
pierwszym funkcyi F, droga od z=l do z—2 peryo­
dem drugim it. d. Z równań poprzedzających widać, że 
znając funkcyę F dla peryodu pierwszego, mo­
żemy wyznaczyćją łatwo dla każdej innej 
wartości zmiennej.

Można udowodnić ogólnie, że znając funkcyę F(z) dla dowol­
nie małej części peryodu pierwszego, możemy wyznaczyć ją dla 
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każdej wartości argumentu, t. j. możemy za pomocą środków 
elementarnych wyznaczyć jej wartość dla każdej'wartości z 
(L e gen d r e, 1. c. str. 446, Rozdz. XI).

Funkcye F są ważniejsze od funkcyj B; rachunek tych 
ostatnich sprowadza się do rachunku funkcyj F przy pomo­
cy wzoru zasadniczego

B(p, n) =

Dla ?<=1 mamy:

B(p, q) =

\ n I \ n I

r(p) r<'/)

Tym sposobem rachunek funkcyi B o dwu argumentach 
sprowadza się do rachunku funkcyi F o jednym tylko argumen­
cie. Do rachunku liczbowego funkcyi logFp) Legendre sto­
sował szeregi rozbieżne, które wszakże obliczone w pewien spo­
sób prowadziły do dostatecznie wielkiego przybliżenia. Wzór, 
stosowany przez Legendrea, mało różni się od następującego:

log l\z) — (z — F) log z — z f- f log f- J(z),

gdzie

7(Z. - A _ . Ą .
' / — 2z 3 42» T 5.6.2» T • • • •

_1_ (___1\r___________ Q B2/-+2__________

........................... • ' ' (2r-pl)(2r-f2)22'+1 ’

gdzie B są liczby B e r n o u 11 i’e g o, 0 liczba zawarta pomiędzy 
0 a 1. Jeżeli przedłużymy szereg po stronie drugiej poprze­
dniego wzoru, otrzymamy szereg rozbieżny.

Wyrazy tego szeregu najprzód zmniejszają się, a następnie 
rosną bez granic; można przeto znaleść taką wartość r. aby 
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reszta była możliwie najmniejszą, a obliczywszy następnie wy­
razy aż do tej wartości r, otrzymujemy przybliżenie, wystarcza­
jące w praktyce. Nadto wzór staje się bardziej przybliżonym, 
gdy z jest większe, gdyż można wykazać, iż wyraz najmniejszy 
maleje bystro wraz z wrostem ilości z. Na tej podstawie Lę- 
gendre zbudował tablicę wartości logl’(z) z 12 cyframi dzie- 
siętnemi dla wszystkich wartości z, stanowiących postęp aryt­
metyczny od 1 do 2 z różnicą równą jednej tysiącznej. Wyzna­
czenie skażnika r wyrazu o wartości najmniejszej było przed­
miotem badań Genocchiego (Mem. Soc. It. VI) i Li mb on r- 
ga (Acad. de Belg XXX). Patrz także „Cours d analyse“ 
Hermitea. Dla funkcyi Z1 istnieją też tablice Gaussa, 
z 20 cyframi dziesiętnemu

Rozciągnięcie funkcyi I'(z) (określonej dla wartości rze­
czywistych dodatnich argumentu) na wartości rzeczywiste uje­
mne zmiennej z uskutecznił już Legendre przy pomocy wzoru 
Z'(l-J-z) = z/’(z), w założeniu, że w tym wzorze wartość z ujem­
ne zawiera się pomiędzy —1 aO. Ten wzór określa wtedy funk- 
cyę r dla wszystkich wartości ujemnych pomiędzy —1 a 0 
(pierwszy p e r y o d ujemny, według L e g e n d r e'a); 
w tenże sposób idąc dalej, można określić funkcyę F dla wszyst­
kich wartości ujemnych zmiennej z. Znajdujemy wtedy, że dla 
z = — 1, — 2,—3, . . . funkeya Z'jest nieskończoną. oraz że po­
między 0 a —1 jest ujemną, pomiędzy —1 a —2 dodatnią i t. d.

Rozciągnięcie funkcyi I’na całe pole zespolone zapocząt­
kował W e i e r s t r a s s (Crelle, LI), rozważając zbieżność ilo­
czynu (badanego już dawniej przez Eulera i Gaussa, 
Werke II ł, str. 145):

________ — 1)! fF__________
// (/z —|— 1) . . . (fz-\-z — 1)!

gdzie z jest liczbą zespoloną. Otrzymujemy tym sposobem funk­
cyę F (z) ogólną, mającą dwie własności charakterystyczne:

lim m+'> =zr^■
fl = o (fl 1) • Z

Pascal. Rep. I 28
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Funkcya F(z) dla wartości z zespolonych jest funkcyą 
jednopostaciową w całej płaszczyźnie, mającą nieskończoności 
rzędu pierwszego w punktach z —O, —1, — 2,. . . i osobliwość 
istotną w punkcie nieskończoności na płaszczyźnie; odwrot­
ność tej f u n k c y i j e s t f u n k c y ą holomorficzną 
w całej płaszczyźnie i wyraża się ważnym 
w z. o r e m Weierstrassa:

_1
F(i+d

— e i:n I ( 1 4- —) a » 
I \ nl

Funkcya I’(z) daje się rozłożyć na sumę 
dwu f u u k c y j: F(z) = Q(z)-\-P (z). obu jedno wartości owych; 
pierwsza z nich jest holomorficzną, druga meromorficzną w całej 
płaszczyźnie. Pierwsza wyraża się w ten sposób:

Q(z) — e0-\-r}z + c3z* *.............

gdzie

druga zaś

l ('Z} z~ ll^ + l) 2!(s4-2)

uwidocznia nieskończoności rzędu pierwszego funkcyi F (z). 
(Twierdzenie Pryma, Crelle LXXXIJ). Dowód tego twierdze 
nia znajdujemy w cyt. pracy Pryma oraz u Pincherlego 
(Rend. Palermo 1880) i w „Cours d’analyse“ He r m i te’a.

Funkcya J’(z) nie może być całką równania 
różniczkowego algebraicznego (Hôlder, Math. 
Ann. XXVIII, 1886).

Podajemy tu szereg wzorów, odnoszących się do funkcyi F 
oraz jej pochodnej logarytmowej Z:
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(’ x« — x* dxI ---- - /,v)-
GO

I x?-'1 sin q x dx =
0

r(p) sin p?t
“2“

, j 1' (o) pn xv~x cos qx dx — —~±— cos —

Z (Z_)
/ Xp~] co« (qrx)dx =—-£=- 
’ r V qf
A L

(R a a b e).

Pierwszy ważny, cytowany już wyżej, traktat o funkcyach F ogłosi! 
Legendre. Gauss położył podwaliny teoryi tej funkcyi przy pomocy 
wzoru podanego na str. 430. Poisson (Ec. Pol. Cahl. XIX). Jacobi 
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(Grelle XI), Dirichlet (Grelle XV, Werke I str. 271) prowadzili 
dalsze badania w tym kierunku. Inne prace, prócz cytowanych już 
Pryma, W eierst rass a i innych są: Ca uchy (Exerc.), Grelle 
(Grelle, VII), Plana (Grelle XVII), Piola (Opusc. mat. e fis, Me- 
dyolan 1832), Schlömilch (Analyt. Studien VI), Brunel (Mo­
nographie, Bordeaux 1885 oraz Encykl. der Math. Wiss. II, 1, Lipsk 
1899). W nowszej pracy bada B 1 a s e r n a (Acc. Lin. 1895) funk-

d[zZ(z-4-lX] . ,.. „ . ~ ,,cyę — --—y------- - i podaję tablice jej wartości,którą obliczył A. Sell a.
dz

Patrz art. Lercha (Prace mat. fiz., X, 1899—1900).

§ 6.

Funkcya hypergeometryczna.

Nazywamy f u n k c y ą hyper geometryczną funk- 
cyę, którą przedstawia szereg

7. _ 1 I a-b ~ | a f) (H-l) ,2 I
F(a, ó, M) _ 1 + — 24- ----- 2 4-..............

gdzie a,b, c, z są liczby zespolone jakiekolwiek. Jeżeli jedna z dwu 
liczb a, b jest liczbą całkowitą ujemną — n. szereg urywa się 
i staje się wielomianem całkowitym stopnia n tego; jedynie tylko 
w tym przypadku mamy wielomian.

Jest widocznem, że funkcya F jest symetryczna wzglę­
dem a i b.

Prostemi przypadkami szczególnemi szeregu hypergeome- 
trycznego są:

szereg dwumianowy F (—m, b, b, z) — (l-J-^)"’,

szereg logarytmowy P(1 1, 2, —z) — zlog(14-2);
oraz

k, i 1 3 „ 1 . l-^~z
^( ’ 2 ’ 2 ' Z' ~~^2z °gT^7 ’

lim F
b — oo

i

(i, b, i, 4-)=^;
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/ Z \ z z*lim F ó, 6, c -yyj ~ 1 -j- —j-j----- 1- Q. —------ r- -f-
ó^oo \ Z»2/ lic 2! c (c • 1)

lim F^/i, b, — , = cos (2 i Iz),

lim F (ó, b, 
b — co \ ••

z \_  sin 2iVz
6*1 2>V~z

Ty, . .. I (c) 1 (c—a—b) ~F (a, b, c, 1) — —-------- =-----—- (Gauss).v ’ ’ ’ 1'(c-a) F(c—b) v

Szereg hypergeometryczny jest zbieżny 
d ] a |.2'|<^1, rozbieżny dla |z1>1; j ego kotem z bież- 
n ości jest tedy kolo o p t omieniul ze środkiem 
w początku s p ó 1 r z ę d n y c h (Gauss, Werke III).

Jeżeli przez R (a + ó—c) oznaczymy część rzeczywistą wy­
rażenia a-f-6—c, będziemy mieli następujące twierdzenie) W eier- 
s t r a s s, Crelle; LI):

Jeżeli |£j = 1, wtedy
gdy R (a -f- b — c) > 1, granica wyrazu ogólnego jest co;

„ R(a + b — tj = 1, „ „ . „ skończona
„ 0 <ZR(a-}-b—c) <T 1» r « r. r zerem i sze­

reg jest zbieżny dla wszystkich pun­
któw okręgu |z|=l, prócz punktu2'==l;

„ R (a -f- b — c) <f 0, szereg jest zbieżny dla wszystkich pun­
któw okręgu |^|=1.

Jeżeli uważać będziemy szereg typu hypergeometrycznego, 
jako element funkcyi analitycznej w pojmowaniu teoryi funk- 
cyj analitycznych W eierstrassa, wtedy mamy funkcyę 
holomorficzną w c a 1 e j płaszczyźnie z wyłą­
czeniem punktów r = co i 3 = 1.

Funkcya hypergeometryezna j es t całką szcze­
gólną równania różniczkowego liniowego rzę- 
d u d r u g i e g o (E ule r):

//2 7? (7 Tp4. [C _ i)C|__—af)F=s(jt
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Jeżeli położymy ogólniej

y = C xa (1 — F (a, b, c, z),

to y będzie całką szczególną równania :

+ I ki“-“' + 1 V 11 ■<'/ + [.Z.™' 4. n' | «■ ! V =0 
eto8 M z z-L \dx I z z— Jz(^—1) ’

gdzie dla symetryi przyjęto:

a — 1— c—a, fi' — b — a—y, y — c—a—& + fi—a—a—y;

a-f-a' + ^ + ^ + 7-p/ == 1.

Jeżeli położymy:

x—a c—bz =------ ,x—b c,—a

to powyższe równanie różniczkowe przyjmie postać syme­
tryczną :

&y + ) !-«—<*' i l--fi-fi' ■ 1—x—/ |____
d;r3 ) x — a ' x — b * x—c [ dx ’

aa' (a — b) (a —
x — a

c) fi fi' (b — a) (b — r) 
x — b

i 77^ ~ (« ~ ^) I _________y________ = 0
x — c | (x—a) (x- b) (x—c)

(P a p p e r i t z, Math. Ann. XXV).

Funkcyę hypergeometryczną można uważać za całkę 
określoną. Mamy (według Eulera):

1
F(z\ — ------r- / ~1 (1 — u\c (1 — zu)~ • du.

x r(a)F(c — a) ,1
' o
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Uważana za funkcyę ilości a ]nb b funkcya hypergeome­
tryczna jest funkcya holomorficzną w całej płaszczyźnie /prócz 
w punkcie oo); uważana za funkcyę ilości c, jest funkcya mero- 
morficzną w całej płaszczyźnie i staje się nieskończoną rzędu 
pierwszego w punktach c = 0, - 1,—2. .. . W obu przypad­
kach mamy punkt istotnie osobliwy w nieskończoności.

Jeżeli uważamy funkcyę hypergeometryczną jako funkcyę 
argumentu u i oznaczymy przez A F, A2#, . . . jej kolejne róż­
nice dla wartości a, a-j-1, n 4-2. . . . tegoż argumentu, wtedy 
funkcya hypergeometryczna czynić będzie 
zadość równaniu r ó ż n i c o w e m u rzędu 2-go :

(a f 1) (2—1) A- F -+ [(a |- ó-j-l> (<₽—c) I t bz F — 0.

.Dwie funkcyę, F. których parametry a, ó, c różnią się o ilo­
ści stałe nazywają się sąsiedniemi (contiguae, Gauss).

Pomiędzy trzema funkcyami sąsiedniemi 
zachodzi zawsze związek liniowy j e d n o rod­
ny o spółczy unikach, które są funkcyami wy­
mię r n e m i zmiennej z. Równanie różniczko­
we 1 i n i o w e j e s t przypadkiem s z c z e g ó 1 n y m ta­
kich związków pomiędzy funkcyami sąsied­
niemi. Pochodne f u n k c y i F w z g 1 ę d e m z są też 
funkcyami h y p e r g e o m e t r y c z n e m i sąsiednie­
mi z F. Pochodną pierwszą jest

F' = ~ + c + 1,2).

Iloraz dwu f u n k c y i sąsiednich d a j e się rozwi­
nąć na ułamek ciągły.

Funkcyę hypergeometryczną badano z trzech odmiennych pun­
któw widzenia, jako całkę określoną, jako szereg, wreszcie jako całkę 
szczególną równania różniczkowego liniowego rzędu 2-go.

Pierwszy badał funkcyę tę Euler (Nova Acta Petrop. 1778, 
Cale, integ. 1769), następnie zajmowali się nią Pfaff, nauczyciel 
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Gaussa (Disąuisitiones anal. I). Gauss Werkelll) w sławnej 
rozprawie, oraz K u m m e r (Crełle XV) wzięli za punkt wyjścia rów­
nanie różniczkowe. Praca Riemanna z r. 1857 stanowi wielce 
ważny krok w tej teoryi; można powiedzieć, że od niej to datu je nowo­
czesna teorya równań różniczkowych liniowych, ugruntowana przez 
F u c h s a.

Badanie ilorazu dwu rozwiązań szczególnych równania różnicz­
kowego rzędu 2 - go zapoczątkował. rzec można, B i e m a n n 
w. dwóch rozprawach o powierzchniach najmniejszych (Werke, Nr. 17 
i 26); następnie badanie to dla przypadku hypergeometrycznego rozwi­
nął Schwarz w doniosłej rozprawie (Crelle, LXXV, 1872), która 
stała się punktem wyjścia ważnych poszukiwań, między innemi nad nie­
zmiennikami różniczkowemi rzutówemi.

Niedawno Klein (Math. Ann. XXXVII) znalazł nowe ważne 
rezultaty o punktach zerowych funkcyi hypergeometrycznej (por. też 
Math. Ann, XL i pracę S c h i 1 1 i n g a (Math. Ann. XLIV).

Uogólnienia funkcyj hypergeometrycznych są różnego rodzaju. 
Pomiędzy innemi zasługują na uwagę uogólnienie Heinego (Crelle, 
XXXII, XXXIV) i Thomaeg«» (Math Ann. II), którzy uogólnili 
szereg Gaussa, wprowadzając większą liczbę parametrów. Inne 
uogólnienie podał Heun (Math. Ann. XXXIII) wziąwszy za punkt 
wyjścia równania różniczkowe. Wreszcie P o c h h a m m e r (Crelle 
LXXI, 1870), Appel (Comptes rendus 1880 i Journal de Liouv. 
VIII), Picard (Ann de 1’Ecol. Norm. XII, 1881), Goursat 
(tamże 1883) i Horn (Acta math. XV) rozpatrywali funkcye hyper- 
geometryczne nie jednej, lecz dwu i więcej zmiennych; pierwszy z tych 
autorów postawił to zagadnienie mniej wyraźnie od pozostałych. Co do 
innych szczegółów tej teoryi patrz kurs litografowany Kleina z r. 
1894 „Ueber die hypergeometrischen Functionen“ oraz wyciąg z kursu 
lekcyj Pincherlego (Giorn. di Batt. XXXII).
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§ 7.

Funkeye ku/iste (Legendre a) jednej zmiennej.

Rozwińmy wyrażenie
_ i

T = (1 — 2aZ + a2) \

gdzie a i są liczby rzeczywiste mniejsze od 1 na szereg według 
potęg dodatnich rosnących ilości a; spółczynnikami rozwinięcia 
będą ilości:

' n\ 1
«(»—!) 

2(2«—1)

n (n — 1) (n — 2) (« — 3) (
2.4.(2«  —l)(2n —2) r

Wielomian P<n> dla z rzeczywistego lub zespolonego na­
zywa się f u n k c y ą kulistą pierwszego gatunku 
Legendr e’a; oznaczamy ją zwykle przez W"-1 lub X„. Nazwę 
„f u n k c y a k u 1 i s t a“ (sferyczna) wprowadził Gauss.

Funkeye te są przypadkiem szczególnym funkcyi hyper- 
geometrycznej; dla n całkowitego dodatniego przed­
stawiają one mianowicie szeregi hypergeo- 
metryczneskończone:

x 1.3... (2«—1) _ I n 1—11 1 1 \

*•* <*>=<■■■1 >” • F •-n-n+-4 4 ■

Pe"+U(z} = (-1)" 3 2' ■ 4 ■ 2 F ” + 4’ 2 ’ Z j

gdzie F jest symbolem funkcyi hypergeometrycznej Gaussa.
Zasadniczemi wzorami dla fnnkcyj są następujące :
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/ - 4), p2"(- 2)=
" \ o /

(—2) — — p(2«+l) ? |0) = ( —1)" 1 —Ł\

2.4. b.,. 2 /it

iim
i— 0

p(2»+i)(^) 3.5 . (2//—1)
z ~ ( 11 • 2.4...2»i

i _
Kładąc y — cos6, otrzymujemy:

2 4 2 7? 1 ii
i.3...(2n-l) = <••»”»« + 17(2»—lj cos (»-2> »

. 1.3 n . 174 — 1) , .O .
+ 1.2 . (2?i—1) (2n --“37 C0S (n~4> ° +

Jeżeli 6 jest rzeczywiste to największa wartość P<’')(cos 0) 
przypada na 6=0; wartość ta równa się jedności.

F u n kcyę kulistę można wyrazić też za p o- 
m o c ą w z o r u :

1
2". n\

d" (z2 — 1)"

Wzór ten nazywa się wzorem Ivory’ego i J a c o b i’e g o, 
lecz należy przypisać go Rodrigue sowi (patrz Heine 
„Kugelfunctionen“, wyd. 2-gie, str. 20); można go uważać za 
ciekawy wzór rachunku różniczkowego, wyrażający pochodnę 
rzędu n-tego funkcyi (z2— 1)” (Jacobi, Crelle, XV).

Wszystkie pierwiastki równania P("} (z)=0 
są rzeczywiste, mniejsze od 1 i różne od siebie; 
nad to jeżeli //jest pierwiastkiem, to i —jest 
nim także. Wartości liczbowe tych pierwiastków dla war­
tości n od 1 do 7 obliczył Gauss, który używał ich do swego 
wzoru na kwadraturę. Podaliśmy część tablicy Gaussa 
w Rodziale X, str. 229. Co do pierwiastków funkcyj kulistych 
patrz także ważną rozprawę Markowa (Matli. Ann. XXVII).
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Funkcyę kulistą wyrazić można za pomo­
cą ważnego wzoru L a p 1 a c e'a (Mec. celeste, t. V, Pa­
ryż 1825j księga XI, rozdz. II):

X.pW(Z) — I (Z 4- COS <p 1 £2— \)* d<p.

o

Na podstawie tego wzoru można uogólnić funkcye Pu dla przy­
padku, gdy )i jest dodatnie lecz niecałkowite.

Jeżeli weźmiemy argument w postaci dostawy i przyjmie- 
my, że 0 jest rzeczywiste i O<0 <7r, będziemy mieli dwa 
wzory Dirichlet a:

fi ii
n /'cós4(pcosn<pd<p sin | (p cosn<pd<p

(COS J) I --------------- — I* I c ■ --- ---r ’
& f2(cos<7’ — cos0) J V 2 ( cos 6—cos cp)

n ₽(«)/ _ /’sin ^9? sin »9’^9’ . / “ cos | (p sin n<p d<p
2 * Jk2(cos9?—cos6) Jj//2(cos0— cos <p)

Te wzory nie stosują się do przypadku ?/,= 0.
F u n k c y a kulista F(w) czyni zadość równa­

niu różniczkowemu:

(1—- 22= 0.
(bZ u Z

Funkcye kuliste gatunku drugiego określa 
wzór:

_ ________ ? •_______I- m -1 i < 1) 4- 2)
3.5.7...f2nd-l) 2(2«4-3) -z

(HHD (nH“2) (^4-3) (n-H~)
2.4. (2n4-3 (2n4~5)

Funkcye te analogiczne do funkcyj kulistych gatunku 1-go badał 
Heine (Crelle XVII, Kugelfunctionen, etc ).
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Pomiędzy funkcyamiP i Q istnieje zwią­
zek prosty:

— -Ł’ (2n 1) Pin} (#) Qw(y) (Heine l.c.)y— x M—o

dla każdej pary wartości x, y, dla których:

|rr — l'äÄ=l| > |y—

Co do tego twierdzenia patrz C. Neumann (lieber die Ent­
wickel. e. Function nach den Kugelfunctionen, Halle 1862; Theorie der 
Bessel’sehen Functionen, Lipsk 1867), Thomae (Crelle, LXVI).

F u n k c y e QH wyrażają się przez szereg hy- 
per geometryczny za pomocą wzoru:

Dla z=l funkeya jest nieskończona, przyczem:

lim (i — z) Q{n)(z) — 1. 
j = i

Dla każdej wartością, której moduł jest 
mniejszy od 1, funkeya Q j e s t skończona. Funk- 
cyę Q(«) można wyrazić za pomocą całki wielokrotnej:

oo oo

V”)(Z, = 2»„! /'.............
I / (z2— 1)"+1

gdzie po stronie drugiej całkowanie wykonywa się n-j-1 razy.
Funkeya Q("> jest inną całką szczególną tego samego rów­

nania różniczkowego, któremu czyni zadość funkeya / (u).
F u n k c y ę można też określić za pomocą 

w z o r u :
,+1

(z) = i I P(”\y) — (Neuman n, Crelle XXXVII). 
“ J z—y

-i
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Nadto f u n k c y ę Q(w), podobnie jak i można 
wyrazić jako pochodną ?z-tą, t. j.

Q{u) =
(- 2)" n ! d"

dz"
dz 

(z*— 1)m+1

Funkcye kuliste gatunku 1-go i 2-go czynią 
zadość związkom:

jP^Cz) P^(z)dz = 0;

I P^(z) Q™(z) dz

I Q(m)W Q(w) (*) dz — 0,

I 2 Ti i ,
= ----rr, gdy m — n.|2n4-1 ’ 6 J

( 0, gdym^n,

w których całkowania uskuteczniają się w zwrocie dodatnim 
po elipsie, mającej ogniska w punktach -|~1> —1, lub po innej 
krzywej zamkniętej, dającej się przez przekształcenie ciągłe i bez 
przekroczenia drogi (—1, zamienić na rzeczoną elipsę.

Z pierwszym z powyższych wzorów pokrewny jest wzór 
L e g e n d r e’a dla przypadku zmiennej z rzeczywistej :

+ i
p(»> (.j = (J. }/i < n .

Funkcye kuliste czynią zadość następu­
jącym wzorom zwrotnym:

(n-j-l)P"-H- (2n-pi)2/J(’')-J-nP(w-Hi) — 0; = o,
(Gr a u ss; patrz Heine, Kugelf. I str. 91—92) 

dP"^ dP<*~V /ei t1 m ,
dz dz

(n-f-l) (/"+'> — (2/i-j-l) — 0; Q(,) + z ^<»4-1 = 0 ,

dQ("+^ 
d z

= (2/1-41) .
dz
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F u n k c y a Q(w) czyni jeszcze zadość nastę­
pującemu ważnemu związkowi (Gauss, Nova integr. 
val. per approxim. inv.) :

= ł p<«)(2)log -|±|- — z<”l,

gdzie Zw jest funkcyą całkowitą stopnia (n-l)-go względem z. 
Wielomian Z(w) można wyrazić w ten sposób :

Z'->=?^=1 pw(i) + |!L-± rl.-3>(z)+
l.n o(n—1) 5(n-2)

wyraz ostatni zawiera 1 lub P(1), stosownie do tego, czy n jest 
nieparzyste lub parzyste.

Wskazówki historyczne i bibliograficzne o funkcyacb kulistych 
w ogólności podajemy w paragrafie następnym.

§ 8

Funkcye kuliste dwu zmiennych (Lagrangea),

W funkcyi kulistej gatunku pierwszego (2) zamiast z 
połóżmy cos y, gdzie

cos y = cos 6 cos 0' -j- sin 6 sin 6' 008(99 — 99').

Temu kątowi y można dać interpretacyę geometryczną, uważając 
go za kąt pomiędzy dwoma promieniami wodzącemi, wy- 
chodzącemi z początku spólrzędnych i idącemi do dwu punktów 
danych. W rzeczy samej, jeżeli (q, 0, 99). (p', 0', 99') są spół- 
rzędne biegunowe dwu punktów danych,-to kąt pomiędzy dwoma 
promieniami wodzącemi jest właśnie y, a odległość punktów
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1

wynosi r= (p8 — 2pp'cosy Q>2)2 ■ Jeżeli przez x, y,y; x\y',z 
oznaczymy spółrzędne kartezyańskie obu punktów, będzie:

x = p cos 6,

y — p sin 6 cos </',

y — p sin 0 sin (p , 

xx‘ 4- yy' 4- zz' cos y =------ ,..........4-------
PP

x' — Q COS 6' ,

y> — p' sin 6' cos yf,

z' — p' sin 6' sin <p',

r = rr')2 + (y—y')2 + (z—z')2.

Funkcya P"’ staje się wtedy fnnkcyą zmiennych 6, 0', (p, <p', a po 
wprowadzeniu tych zmiennych przyjmuje postać:

Pw) cosy) —
2.T

1 | cos 6' -j- i sin 6' cos (<p‘— co)]
2zcJ | cos 6 i sin 6 cos (99—co ']"+1 

o
dco-

Przyjmijmy drugi z dwu uważanych punktów za stały, pierw­
szy za zmienny, wtedy staje się fnnkcyą dwu zmiennych

6, (p lub też trzech zmiennych —, , z wiązanych równaniem

Najważniejszą własnością funkcyj P<w\ uważanych za 
funkcye zmiennych x, y, z, jest następująca: funkcye te, po­
rn n o ż o n e p r z e z pewien czynnik, czynią zadość 
równaniu r ó ż n i c z k o w e m u o p o c h o d 11 y c h cząst­
kowych rzędu 2-go;

A2 U = a2 U 32 U
Iz-2 3y‘̂ + a.^2' ~ ’

Mamy mi ano wi cie :

/ P<M) \y.' (e. /><»>) = o, ) = ().
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Jeżeli przekształcimy wyrażenie A217 przez wprowadzenie 
zmiennych 6,99, funkcya czynić będzie zadość 
równaniu o pochodnych cząstkowych:

a2/->(«) 1 ó2pw 3p*«)
" Aaj ■ ~i~ ~--- X—2--------F co^ ------ TZ— “F n P^ — 0,

c> O2 sin2 u vcp2 ' 3 6

Funkcya P(H) jest więc funkcyą wymierną całko­
witą ilości cos 6, sin 0 cos99, sin 6 sin 99, czyniącą zadość po­
wyższemu równaniu.

Przechodząc do definicyi funkcyi kulistej dwu zmiennych? 
powiemy:

Najogólniejsza funkcya wymierna całko­
wita stopnia n-tego tych trzech ilości (a więc 
funkcya dwu zmiennych niezależnym h), czy­
niąca zadość poprzedniemu równaniu różnicz­
kowemu, nazywa się funkcyą kulistą L a p 1 a c e’a 
i oznacza się przez y(’ł); przypadkiem szczególnym funkcyi F'w> 
jest P<H}, t. j. funkcya kulista Legendrea, gdy w niej za 
argument przyjmiemy cos 6 cos 6' -j- sin 6 sin6' sin (99—99').

Funkcya L a p 1 a c e’a wyraża się przez funkcyę Leg en- 
d r e’a za pomocą wzoru :

" d* P(wUo(Y9.tt\
K(") = J? [Zz, cos (z99) 4- Zr, sin (z99) J sin'0 —>/—o u* ( COS U f

gdzie hi i ki są stałemi dowolnemi.
Innem wyrażeniem funkcyi L a p 1 a c e'a przez funkcye 

L e g e n d r e’a jest:
2» + l

}'(«) == V Wk p ») (cos yh. ) 
A-l

gdzie 7H|, w2, . . . , są stałe dowolne w liczbie 2n-|-l, zaś

cos/* = cos0cos6A -j- sin 6 sin 6* cos (99 — 99^);

0A., lPk są spółrzędne 2?z-f-l punktów, znajdujących się na kuli 
o promieniu 1.
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Każda funkcya wymierna jednorodna całkowita stopnia 
n-tego U (x,y, z), czyniąca zadość równaniu A2 U = 0, podzielona 
przez qw, jest funkcyą L aplacea. Funkcya najogólniejsza 
L a p 1 a c e’a zawiera 2n-1-1 stałych dowolnych.

Funkcya kulista E(M), uważana za funkcy. ę 
spółrzędnych x, y, z punktów na kuli o promie­
niu, 1 ma własność:

II y(") Y^Ulo = 0, m^n, 

gdzie całkowanie rozciąga się na całą po­
wierzchnię kuli. Mamy także:

I I YM PW da = ,, ,
JJ 2« + l

gdzie oznacza wartość funkcyi F(’ó dla 6=6', cp—cp'. 
<p=<p'

Wzory te można tak nąpisać : 

n

j sin 6 d 6 I F(M) (6, <p) . y(WI) (6, (p) d<p = 0, m ?/ , 

o 0

n 2?t

I sin 6 d 6 I Y(,,) (6,93) P(M) (cos y) d<p — fJ-
0 o ‘ V ~ <P'

gdzie cos y wyraża się wiadomym sposobem przez 6, 6', <p, (pf.

Funkcye kuliste badali równocześnie Legendre (Sur l’at- 
traction des sphéroïdes, Mém. de Paris 1785, 1787, Exerc. Fonct. 
ellipt.) i Laplace (Mèm. de Paris 1785, Mécan. céleste). Później 
zajmowali się niemi głównie: Gauss (Werke V), Dirichlet (Grelle 
XVII), Jacobi (Grelle, XV) ; w nowszych czasach: Dini (Annali 
di mat. VI), F. Neumann (Lipsk 1878), a zwłaszcza Heine, 
którego praca dwutomowa „Theorie der Kugelfunctionen“ (2 tomy, 
wydanie 2-gie, Lipsk 1878) zawiera najwięcej szczegółów i wskazówek

Pascal Rep. T. «9 
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o tym przedmiocie. Badano także funkcye stożkowe, mające 
wiele związku z funkcyami kulistemi i walcowemi. Patrz 
Hehler (Grelle LXVIII) „lieber eine mit den Kugel- und Cylinder- 
functionen verwandte Function“ i t d. (Progr. Elbląg 1870), a także 
cytowany traktat Heinego, (t. I str. 300, II str. 218). Najważniej­
szy rezultat dla funkcyj stożkowych jest ten: są to funkcye kuliste 
w przypadku, gdy skażnik n jest zespolony.

Zarys teoryi funkcyj kulistych zawiera się w najnowszej książce 
Frischaufa (Lipsk 1897).

§ 9.

Funkcye walcowe Besse/a

Funkcyą walcową (cylindryczną) lub f u n k c y ą 
Bessela gatunku pierwszego nazywamy funkcyę, 
określoną za pomocą wzoru: w

= r 2 (2« + 2) 2. 47(2^4-2) (2n+4j "

1 / z V' 1 Iz \"+2 1 1 z \"+4
= ÖÜT127 “ l!(n+l)!\2j + 2Hn + 2)!W

Szereg ten jest zbieżny dla każdej wartości z. 
B e s s e 1 dal (Akad. Beri. 1824) definicyę następującą :

JW (z) — — / cos (z sin co — nco) dcc.
TT./

o
Jest nadto:

TT

1 /•'W(O = j-3 <5 ; „ — I COS «cos^sm-a, d«,
o

(__1)" /
jt«) (z) = - --------- I e11 cos ,u cos ii co d co .

o
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Fiui kcy a Jw (£■) j e s t całką szczególną rów­
nania różniczkowego:

1 2F 
d z2 ' z dz '

1 —

Dla v~O funkcya staje się:

2'- z*= 1 _ — +

i jest granicą funkcji kulistej ZJ<») ^cos j dla n — co .

Wraz z funkcyą JNeumann rozważał inną funkcyę, 
która oznacza przez 0^ i nazywa f u n k c y ą Bessel a g a- 
t u n k u 2-go. Określa się ta funkcya przy pomocy wzoru:

----- O _j------------- i_____ 1_________ z_______ .
2»'+i 2 (2n—2) ' 2,4.(2n—2) (2m-4) '

gdzie £«=1 dla u=0, e„ = 2 dla w>0 i gdzie liczba wyrazów 
w nawiasie jest skończona; ostatnim wyrazem jest:

2.4.. .W.(2n-2)(2n-4)...n ’ gdy ” parZy8te’

2.4.. . (n-1)^2772^4)... (W+1)~ • gdy nnieparzySte'

Poprzednie wyrażenie można i tak napisać:

n/(n-l)!/2\* (n—2)!/2\«+2 (n-3)!/2 \
£’c’l,u,=4-orO)+-f!-(T/ + —2—0) +•■•);
ostatnim wyrazem jest:

(n-2)!
2 / 2 \° /-2 V----  — ----- 1 n , gdy n parzyste, albo I — I , gdy n nieparzyste.

V2 ‘
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Funkcyę 0" (Z) można wyrazić za porno Cą 
całki określonej

oo_____________ ____________

0(..)(^) _ |’ (■" + e-.» da,.
J 2 z11^
o 1

F u n k c y a On (z) j e s t f u n k c y ą wymierną c a ł- 
. 1 c i —ko witą iloś

£ = co; czyni 
w e m u :

ona

stopnia (w-j—l)-go, znikającą dla 

zadość równaniu różniczko-

a2F 3F
Zz

n- —3 
z

gdzie gn = -i- dla n parzystego, dla n nieparzystego.

Przez wprowadzenie funkcyi gatunku 2-go Neumann 
pokazał, że można utworzyć teoryę funkcyj walcowych analo­
giczną do teoryi funkcyj kulistych; wiele własności pozostaje 
bez zmiany, różnicę jedyną stanowi to, że funkcye kuliste gaturr 
ku 1-go i 2-go są rozwiązaniami szczególnemi jednego i tego sa­
mego równania różniczkowego, gdy funkcye walcowe Z1'”), 0(" 
są rozwiązaniami dwu różnych równań różniczkowych.

Funkcya JW(z) znika dla nieskończenie 
wielu wartości rzeczywistych i tylko rzecz 
wistych zmiennej z (twierdzenie Fouriera).

Funkcye i (№ mają trzy własności an 
logiczne do własności funkcyj kulisty ch, m i 
n o w i c i e :

y-

a-
a-

\z = 0; I 0<m\z) 0<’l>(z) dz=0; ' 0<n\z) dz =. k,

gdzie całkowanie odbywa się w zwrocie dodatnim wzdłuż krzy­
wej zamkniętej. Gdy krzywa ta nie zawiera w swem wnętrzu 
punktu zerowego, jest zawsze k— 0; gdy go zawiera, wtedy /ć=0,

jeżeli Zc = jeżeli m—n. Gdy krzywa przechodzi przez
Zn 
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punkt zero, wtedy wzory, w których zachodzi 0^ nie mają 
miejsca.

Dla każdej wartości n (wyjąwszy n = 0) za­
chodzą związki zwrotne:

2 J(’'+n(2); 2 =

Dla n = 0 mamy:

= _

Funkcya czyni zadość związkowi
zwrotnemu (Bessela) dla n^>0:

. = j(*-i)(z) _ J(n+\)(zy

Nadto jest:

/<*)(#) = 2L ----- .
z dz

Wzór:

—= J £„ /(")(«) O^(y)
U n=O

ma miejsce dla wszelkich par wartości x, y, 
czyniących zadość warunkowi mod x <? mod y.

Ciekawą, zwłaszcza ze względu na zastosowania, własnością 
fnnkcyj Bessela jest następująca:

Niechaj n będzie odległością dwu punktów o spółrzędnych 
x, y; xt, yx] funkcya J(0)(r) czyni zadość równaniu o pochodnych 
cząstkowych:

W , T1 _ n + v - °’ 
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i tęż własność posiada inna funkcya F’"^ (r), która wraz z funk- 
cyą «7°(r) jest inną całką szczególną równania różniczkowego li­
niowego rzędu 2-go, któremu czyni zadość funkcya Z°(r .

O rozwinięciu na szeregi według funkcyj B e s s e 1 a patrz 
Rozdział XIX.

Najważniejsze prace o funkcyach. Bess ela ogłosili: Bessel 
(Abh. der Beri. Akad. 1824), Jacobi (Crelle XV), Schlómilch 
(Zeit. f. Math. u. Phys. 1857), Lipschitz (Crelle LVI), C. Neumana 
(Besselsche Fcmctionen, Lipsk 1867), Heine (Kugelfunctionen) etc

§ 10.

F u n k c y e L a m e g o.

Wprowadzimy funkcyę Lam eg o pod postacią najogól­
niejszą, nadaną im przez Heinego. Niechaj ip{z) będzie wie- 

(,1/Z lomianem stopnia (p-j-1) względem z; połóżmy du = 1 —-== 
ł {z) 

i niechaj będzie równanie różniczkowe:

—4“ 93 C8”) ~ O idu2 1 r '

w którem y>(>) jest znowu wielomianem tak wybranym, aby to 
równanie miało rozwiązanie P, równe funkcyi całkowitej 
stopnia n-tego względem z. W takim razie funkcyę V nazywamy 
funkcyą La mego rzędu p-tego i stopnia n-tego.

Funkcyę Lam ego można takż e określić 
jako funkcyę całkowitą stopnia ?ł-tego, czynią­
cą zadość równaniu:

d-V d V 4" 7=0,tb & (k>£

gdzie ip jest wielomianem danym stopnia <p wielomianem 
tak dobrać się mającym, aby to równanie różniczkowe miało 
właśnie takie rozwiązanie, o jakiem mowa.



§ 10. — Funkcye La nié go. 455

t , • . • • • (?24~ł?~l--4 /o i i \ +■ iIstnieje -—! y-j—— (2n-{-p— 1) lunkcyj <p, 

dających początek tyluż funkcyom Lamégo, pomiędzy któ- 
rem nie zachodzi żaden związek liniowy jednorodny o spółczyn- 
nikach stałych. Wielomian (p jest stopnia p — 1. Funkcye, 
wprowadzone przez Lamégo, są właśnie przypadkiem szcze­
gólnym tu uważanych; są one rozwiązaniami równania

(z2 — Z>2) (z2 — e2) 4“ z — c2) ~~ ~
LvZ " tC ?

4~ |(ó2 4* *■')— n (n 4 1) z2 | E -=r. 0.

Jeżeli wprowadzimy całkę eliptyczną u, określoną za po­
mocą związku

F(z2 ó») (c2—z2)

wtedy powyższemu równaniu nadać można postać typu: 

d2 E{ z} , , , ., 7 „ „ . , i
—= I ’*(n + 1)^ sn2 u-j- //] Ł(z\.

Funkcye tu uważane badali: Lamé (Leçons sur les fonctions 
inverses,etc., Parjż 1857; „Chaleur“, tamże 1861; Joun LiouviUe’a IV, 
V, VIII; w przypadku ogólnym Heine (Crelle, LX. LXI, LXIT, Berl% 
Monatsb, 1864, patrz także „Kugeltunctionen“, 1 str. 445).
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PRZEDSTAWIENIE ANALITYCZNE FUNKCYJ.

§ i-

Rozważania ogólne, szereg Wrońskiego. Szereg Lag ran ge'a.

Zagadnienie zasadnicze o przedstawieniu analitycznem funk- 
cyj jest bardzo dawne. Rozważania, odnoszące się do tego 
przedmiotu, podzielić można na dwie kategorye: albo idzie o wy­
rażenie funkcyi przez inne funkcye, z góry dane; albo, też o wy­
rażenie funkcyi danej przez wartości, jakie ona i jej pochodne 
posiadają w pewnych punktach i t. p.

Każde wyrażenie analityczne o skończonej lub nieskończo­
nej liczbie działań można rozważać z dwojakiego punktu widze­
nia, stosownie do tego, czy dajemy z góry ilości stałe, jakie mają 
zachodzić w rozwinięciu, czy też dajemy formę ilości zmiennych.

Najprostszem rozwinięciem, należącem do tego porządku 
rzeczy, jest sławne rozwinięcie, znane pod nazwą wzoru T a y- 
lora-Maclaurina. Można je uważać za wzór pierwszej 
kategoryi, jeżeli żądamy rozwinięcia, którego wyrazy postępują 
według potęg całkowitych dodatnich różnicy z—z0 ; za wzór zaś 
kategoryi drugiej, jeżeli widzimy w nim rozwinięcie, za pomocą
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którego można obliczać wartości funkcyi przy pomocy danych 
wartości funkcyi i jej kolejnych pochodnych w punkcie x0 .

Do tego samego rzędu rozważań należą wzory Cauchy’e- 
go i Laurenta (patrz Rozdz. XIII), różne wzory interpolacyj­
ne (patrz Rozdz, X), wzory Weierstrassa i Mittag- 
Lefflera (patrz Rozdz. XIII). Wreszcie innemi wzorami, 
należącemi do pierwszej kategoryi, są wzory Wrońskiego 
i Lagrange’a.

Pierwszy z tych autorów stawia sobie zadanie, dotyczące 
wyrażenia funkcyi za pomocą szeregów, których wyrazy zależą 
od innych funkcyj, dowolnie danych. Wzór, który otrzymuje, 
nazywa prawem najwyższem. Jest to wzór bardzo ogólny, 
lecz daleki od tego, aby można było uważać go za ścisły z pun­
ktu widzenia analizy dzisiejszej; D u B ois-Reym o nd nadaje 
mu znaczenie jedynie formalne. Praca Wrońskiego, do­
tycząca tego przedmiotu, była przedstawiona Instytutowi fran­
cuskiemu w r. 1810, lecz pomysły jego pozostały nieznanemi pra­
wie przez lat 60, póki nie ukazała się praca Cayley’a (Quart- 
Journ. 1873), po której nastąpiły dopiero prace Transona 
(Nouv. Ann. de Math. 1875, Ch. L a gran ge’a (Comptes Rendus 
1884, Acad, de Belgique 1884) i innych.

Większe szczegóły o szeregach Wrońskiego znaleść można w pra­
cach Dicksteina (Prace matemat. -fiz., Warszawa t* HI890 i t. V, 
1893; Bibliotheca mathematica, Stockholm 1894; „Zycie i dzieła Wroń­
skiego“, Kraków 1896). Porówn. Laurent, Cours d’analyse, t. III.

Jest rzeczą naturalną, że z szeregu Wrońskiego wyni­
kają jako przypadki szczególne—wzór Taylora, wzory B ü r- 
mann.a (rozwinięcie funkcyi, według potęg innych funkcyj) 
oraz tak zwany szereg L a g r a n g e'a. Ten ostatni ma postać 
następującą :

ÔO
— I V 1  [g—ay+J (dn f'(rf <p (zY'+l ( 

f z> / a H Xu(nJ-l)! l<p(£)J | dzn l:=a’
n ~0

gdzie ą>(z) jest funkcyą dowolną z tern zastrzeżeniem, aby była 
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holomorficzną w części płaszczyzny otaczającej punkt a. Dla 
(p(z) — 1 otrzymujemy rozwinięcie Taylora.

Szereg ten stosujemy przy szukaniu pierwiastków równa­
nia postaci (z—a) — a<p(z) — O, którego rozwiązanie dla przy­
padku szczególnego (p |z) — sin z stanowi ważne zagadnienie 
mechaniki niebieskiej.

Wymieniamy następujące prace o szeregu Lagr an g e’a: G h i o 
(Savantsétrang. XII, Acc.diTorino 1872), Genocchi (Comptes rend. 
1873), R o u c h é.f (Ecole polytech. cah. XXXIX), Żorawski (Prace 
mat.-fiz. V, 1894; Rozpr. Akad. krak. XXXVII, 1899).

Należy zwrócić uwagę na to, że do wzorów drugiej kate- 
goryi należą wzory, których wyrazami są funkcye kołowe (sze­
regi Fouriera), kuliste, funkcye Besselait. p. 0 tych 
rozwinięciach jest mowa w paragrafach następnych.

§ 2.

Rozwinięcie na szeregi Fouriera.

Szereg typu
CO
s [a* sin \kz) -f- bk cos (Jcz) |
*=0

nazywa się szeregiem trygonometryczn y m. Jeżeli w szcze­
gólności spółczynniki tego szeregu wyznaczają się za pomocą 
wzorów:

n
&o = — f(a)da; bh =— I f(a) cos (/ca) da: aj n j

— 71 — 7t
1ak •= — | f(a) sin (Ic a) cl 7., 
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gdzie f{z) jest funkcyą, którą szereg przedstawia, mamy wtedy 
szereg Fouriera. Sądzono dawniej, że wszystkie szeregi 
trygonometryczne są szeregami Fouriera; później pokazało 
się, że tak nie jest (Heine, Crelle LXXI).

Mówi się, że funkcya czyni zadość warunkowi D i r i c li­
ii e t a, jeżeli w pewnym przedziale jest zawsze skończona, nie 
ma nieskończenie wielu nieciągłości zwykłych i nie ma nieskoń­
czenie wielu maximów i minimów; wtedy zachodzi twierdzenie 
(Dirichleta):

Funkcya /’(z), czyniąca zadość wszystkim 
warunkom Dirichleta, d a j e się rozwinąć na 
szereg Fouriera, którego wartość w każdym 
punkcie z w y c z a j n y m j e s t w a r t o ś c i ą f u n k c y i; 
w każdym zaś punkcie przerwy zwykłej jest 
średnią dwu granic prawej i lewej, do któ­
rych dąży funkcya, zbliżając się do punktu 
przerwy. Rozwinięcie takie jest możliwe 
tylko jednym sposobem (Heine, Crelle LXXI).

Jeżeli funkcya staje się nieskończoną 
w punkcie c, wtedy warunkiem dostatecznym 
na to, aby szereg w dalszym ciągu przedsta­
wiał f u n k c y ę, j e s t, by całka

C 4“ (O

I f(a)da
C — co

była zbieżną (Dirichlet, Du Bois Reymond, Crelle 
ŁXXXIX).

Jeżeli funkcya posiada skończoną liczbę 
punktów osobliwych, w których otoczeniu ist­
nie je nieskończenie wiele punktów przerwy 
zwyczajnej, wtedy twierdzenie powyższe 
utrzymuje się, lecz szereg nie daje wartości 
funkcyi w punkcie osobliwym (Dirichlet, Lip- 
s c h i t z, Crelle LXIH).

Jeżeli funkcya ma nieskończenie wiele 
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maximów i minimów i j e ż e 1 i dla każdego ta­
kiego punktu /> czyni zadość warunkowi:

lim | f(fi ó) — f(0) | log Ó = 0,

to i wtedy daje się rozwinąć na szereg Fou­
riera Jest to twierdzenie Lipschitz a, a warunek poprze­
dzający, który jest warunkiem bardziej ścieśniającym niż wa­
runek ciągłości funkcyi, nazywa się warunkiem L.i p s c li i t z a.

Istnieją napewno funkcye, nie czyniące 
zadość warunkowi Lipschitza, dla których sze­
reg Fouriera jest rozbieżny (Du Bois Reymond, 
Abh. der Bayr. Akad. XII, 1876).

Zbieżność szeregu Fouriera w punkcie 
określonym zależy jedynie od sposobu, w jaki 
zachowuje się funkcya w sąsiedztwie tego 
punktu |Riemann).

Istnieją funkcye całkowalne z nieskoń­
czenie wielu maxi mami i minimami, nie dają­
ce się przedstawić za pomocą szeregu Fou­
riera (Riemann).

Są funkcye n i e c a ł k o w a 1 n e. ze skończoną 
liczbą maxi mów i minimów, nie dające się 
przedstawić za pomocą szeregu Fouriera (Rie- 
m a n n).

S z e r e g F o u r i e r a j e s t j e d n o s t a j n i e z bież­
ny, gdy przedstawia funkcyę ciągłą albo też 
nieciągłą tylko w skończonej liczbie punktów 
i nie mającą nieskończenie wielu maximow 
i m i n i m ó w (Heine, Crelle LXXI).

Funkcya skończona, posiadająca n i e s k o ń-
czenie wiele osobliwości takich, że jedna 
z grup pochodnych tej grupy nieskończenie 
wielu punktów i e s t skończona,, jeżeli daje się 
rozwinąć na szereg F o u r i e r a, t o j e d n y in tylko 
sposobem (twierdzenie C a n t o r a, Math. Ann. V).
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Bez względu na sposób, w jaki funkcya 
d aj e się rozwinąć na szereg trygonometrycz­
ny, którego spółczy uniki ak, bk stają się nie­
skończenie małe mi gdy rośnie, liczba Zr.spół- 
czynniki te mają zawsze postać wyżej wska­
zaną przez szereg Fouriera, o ile tylko całki 
zachodzące w ich wyrażeniu nie są pozbawio­
ne znaczenia (Twierdzenie Du Bois-Reymond a Abh. 
der Ęayr. Akad. 1875).

Badaniu przedstawienia funkcyj za pomocą szeregów trygonome­
trycznych dało początek całkowanie równania t. zw. struny drgają- 

cej, t. i. równania o pochodnych cząstkowych - s ■; = a2 , które- 

mu czyni zadość szereg trygonometryczny. E u 1 e r postawił zagadnie­
nie, czy każda funkcya daje się zawsze przedstawić za pomocą szeregu 
trygonometrycznego; Fourier zaś (Acad, de Paris 1807) mniemał, 
że można na nie odpowiedzieć twierdząco. Rozważania Fouriera 
były bardzo dalekiemi od ścisłości; po nich nastąpiły prace Pois son a 
i C a u c h y’ego; lecz pierwszą pracą istotnie ważną o tym przedmio­
cie była praca Dirichleta (Crélle, IV, 1829). Z późniejszych 
ważną jest rozprawa R i e m a n n a (Diss. inaug. 1854), który rozważa 
ten przedmiot z nowych punktów widzenia, a w pierwszej części roz­
prawy daje wyborny rys historyczny i krytyczny wszystkich poprze­
dnich badań, odnoszących się do szeregów trygonometrycznych. Z prac 
nowszych wymieniamy prace już cytowane: Heinego, Du Bois 
R e y m o n d a, L i p s c h i t z a,, dalej D i n i'ego (Ann. di mat. VI). 
A.s c o 1 i’ego (Lincei 1878), książkę Din i’ego: „Sulla serie di Fou­
rier“ (Piza 1880), studyum krytyczne i historyczne Sachs eg o 
(Inaug. Diss., Getynga 1879), podane w przekładzie w Bull. Darboux 
z r. 1880. Dirichlet i Riemann mniemali, że każda funkcya 
ciągła może być w każdym punkcie bez wyjątku przedstawiona przez 
szereg Fouriera; Du Bois Reymond dowiódł pierwszy, iż to 
mniemanie jest błędne. Schwarz podał na to przykład dostatecznie 
prosty.
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Badano też szeregi trygonometryczne o dwu zmiennych i przed- 
stawialność funkcyj przez takie szeregi; patrz co do tego pracę Asco- 
1 i’ego (Lincei 1879 —1880).

§ 3.

Rozwinięcie na szereg według funkcyj kulistych Legendrea.

Każda funkcya jednowartościowa f(z), któ- 
ra jest skończona i ciągła wewnątrz elipsy 
z ogniskami w punktach 1, — 1> daje się roz­
winąć na szereg typu:

/•(2) = a°P^(v) + aiP0)(z) _f_

gdzie spółczynniki a określają się za pomocą 
wzoru:

c i
= /(^)P^(.r)<Z.r.

— 1

Rozwinięcie takie jest możliwe tylko je­
dnym sposobem.

Każda funkcya jednowartościowa f(z), skoń­
czona i ciągła wewnątrz pierścienia eliptycz­
nego, ograniczonego dwiema elipsami spól- 
ogniskowemi o ogniskach w punktach —|— 1, — 1, 
daje się rozwinąć na szereg typu:

P®(z) + a, PC>0) +...................

+ A «'“'(«) + A <?”(*) +.............. ,
który zachowuje swe znaczenie dla wszystkich punktów pier- 
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ścienią. Spólczynnikia, fi, określają się za po­
mocą wzorów:

+1
/ f(x) Q<-> (x) dx,

= -=^±Ł I f(x)P>">(x)<ix.

*— 1

Potęgą z" w rozwinięciu według funkcyj kulistych przed­
stawia się tak :

"'--STStŁ+itI(8“+1)
4- (2 n-Y 7) P(4-^(2) 4-...|(Legendre 1784)

Wzór analogiczny stanowi:

_ 1.3.5 (2>>-l)| (2n+1)ę<.)U)_(2H.5)2^y(?..+2> (#)

- (2»+9) (2ra+19) (2g±g>- e<»+<^) +
& • TC '

Grodnemi uwagi są rozwinięcia następujące (Bauer, 
Crelle LVI):

2 / 1 \2 /1 3\2-F== = P<o> + 5(4^, + 9(^i)pH>+..............

— arc sin z — 3 4- 7 + 11 +.............n 1 \ 4 / 1 \2.4/
O _____ 1 1 / 1 \ / 1 \2— -2_p0B — 5,_±_ _±_ p(2) _9 pro
Ti. 2 4 \ 2 / 6(2.4/
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Rozwinięcia funkcyj sin746 i coswO według funkcyj kuli­
stych (Heine, Kugelf. I, str. 86 i dalsze; Most, .Crelle LXX) są:

4 2.4... (211 — 2) .
— • T~u 7o smn 6 = (2n — 1) (cos 6)n 1.3 . .. (2n — 3) v ’

+ (2» + 3) 4—- * /-<”+'> (cos 0)
1 1 (n-ł-2)2 — nl v ’

-f- (2n -j-7) [(n— l)2—n2 ] | (n-pi)2—M2J 
| {n-\-2)2—n2 J I (n-H4)2- n2 J 

p(n-\-Z> (C0g .

2  .5.. (2n-4~l) cognQ _ ^271-4-1) /4")(cos6)

+ (2W_3)-^4!!±|E. p(»-!>(COS0) 
n2 — (n—2)- v '

4- (2/4-7) [n2—(n + 1)2] [n2—(n—l)2j- 
[n2-(n—2)2] [n2—(n-4)2]

p(«-4) cog _j_....................

§ 5

Rozwinięcie funkcyi punktów na kuli na szereg według funkcyj 
kulistych Laplace'a.

Niechaj będzie kula o promieniu 1 i punkt na niej, określony 
przez dwie spółrzędne biegunowe: jednę 6 (zmieniającą się 
od 0 do ?t) i drugą cp (zmieniającą się od 0 do 2tt). Funkcya 
zmiennych 0, cp nazywa się zwykle funkcyą punktów 
kuli lub także funkcyą dwóch kątów.

Funkcya /(0,9?), skończona i ciągła dla wszy­
stkich punktów kuli, mająca przerwy w skończo­
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nej liczbie punktów lub linij, daje się rozwinąć na 
szereg funkcyj kulistych Laplace’a w postaci:

/(6,</>) = Z«»-]- ............. ,

gdzie

y(») — .. I sin I P<w>(cosy) d(?i ,
4zr / /

b o*

cosy = cos 6 cos O, sin6 sinOt 003(99—(pt).

Rozwinięcie to ma miejsce dla każdego punktu kuli, o ile 
w punkcie średnicowo-przeciwległym funkcya jest także ciągłą, 
a na kołach wielkich, przez punkt dany przechodzących, ma skoń­
czoną liczbę maximow i minimów. Rozwinięcie to daje się też 
rozciągnąć na przypadek, w którym ta liczba maximow i mini­
mów nie jest skończona; lecz wtedy zachodzą warunki, w których 
szczegóły wchodzić nie będziemy.

Rozważania nad przedmiotem, o którym mowa, rozpoczął Poisson 
(Ecole polyt. cab. XIX, „Chaleur“ str. 212); później zajmowali się nim: 
Dirichlet (Crelle XVII), który sprostował błąd w dowodzeniu Pois- 
sona; Bonnet (Lionville, 1852); Kr on e cker (patrz H ein e, Ku- 
gelf. I śtr. 434) i Di ni (Annali di mat VI, 1874) stwierdzili, że do­
wodzenia Dirichleta wymagają jeszcze pewnych uzupełnień.

§ 5.

Rozwinięcie funkeyi na szereg funkćyj Besse/a.

Każda funkcya /*(>), j edno w a r t o ś c i o w a, skoń­
czona i ciągła wewnątrz koła o promieniu 1, 
daje się rozwinąć na szereg:

/(*) == 4-.........
Pascal. Rep j 30 
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stosuje się do wszystkich punktów tego koła. 
Spółczynniki wyrażają się w ten sposób:

a„ — I f(z) 0^{z)dz,
z. 711 J

gdzie całkowanie uskutecznia się w zwrocie dodatnim wzdłuż 
okręgu; wzór powyższy na rozwinięcie daje się obustronnie róż­
niczkować.

Każda funkcya, jednowartościowa skoń­
czona i ciągła w pierścieniu pomiędzy dwoma 
kołami spółśrodkowemi, których środki są 
w punkcie zero, daje się rozwinąć na szereg 
postaci:

/'(*) = + +.............

4- p, +............... ,

który stosuje się do wszystkich p u n k t ó w pierś- 
cienia: spółczynniki mają wartości:

a„ = —- I ((z) (z)dz. f (z)d(n)(z) dz,
i j j

gdzie oba całkowania wykonywają się^wzwrocie dodatnim wzdłuż 
krzywej zamkniętej, zawartej w pierścieniu i otaczającej punkt . 
zero.

Przypadkami szczególnemi tych rozwinięć są następujące:

cos# = J^(z) - 4- 2J^(z) —............

sin z = 2J^z) — 2 J&(z) 4- —.............

1 = 4- 2 J™(z) 4- 2JW(z) 4-.............

p = J^(z) 4- 34-5 J*>(z) 4-............

J (0) (c+z) = (c) J (z) — 2J (’) (c) J M (z) 4- 2 J (2' (c) (z) — ...
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Jeżeli rozwiniemy na szeregi Fouriera funkcye 
cos sin co), sin (.? sin ca), to spółczynniki wstaw i dostaw będą 
funkcyami B es s e 1 a.

Jeżeli funkcya f(z) jest skończona i ciągła 
dla wartości rzeczywistych z, zawartych mię­
dzy 0 i 7i i ma pochodną zawsze skończoną, wte­
dy m o ż n a j ą rozwinąć według wzoru:

f(z) = /(0) + ł + A, .7»(s) + A,.7») + A, ■>»(3?) +..., 

gdzie

u cos (nu) du i - dt.
/ II —/2

Doprać, odnoszących się do tego przedmiotu, prócz wymienionych 
już poprzednio, należy dodać pracę C. Neu man na „Ueber dienach 
Kreis-Kugel- and Cyliuderfunctionen fbrtschr. Entwich.“ Lipsk 1881

biblioteka
ma.-.ematycznJ-flzyozna

^ANTONIEGO

Liczba:



ROZDZIAŁ XX.

TEORYA LICZB CAŁKOWITYCH: WYMIERNYCH 1 ZESPOLONYCH.

§ I-

Podzielność liczb wymiernych całkowitych. Liczby pierwsze.

Liczba całkowita jest p o d z i e 1 n a przez drugą, jeżeli 
reszta po podzieleniu pierwszej przez drugą jest zerem.

Liczba całkowita pierwsza jest liczbą podzielną 
tylko przez siebie samą i przez jedność.

Każda liczba całkowita rozkłada się jed­
nym tylko sposobem na iloczyn skończonej 
liczby czynników pierwszych.

Jeżeli liczba 2V, rozłożona na czynniki pierwsze, jest 
am .......... , to suma jej wszystkich dzielników
pierwszych i niepierwszych wynosi:

a"‘+1 - 1 0'*+' — 1
a— 1 ' .............

a liczba tych dzielników:

(ni —j- 1) (w -f- 1)
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Liczba N daje się: £ (m-j-l)(n-j-l)... albo |(m-j-l)(n-|-l) • • --j-| 
róźnemi sposobami rozłożyć na dwa czynniki, stosownie do tego, 
czy przynajmniej jeden z wykładników w, n . . . jest nieparzy­
sty lub żaden.

Dwie liczby nazywają się względnie pierwsze mi, 
jeżeli nie mają innego wspólnego dzielnika prócz jedności.

Oznaczamy symbolem 99 (2V) liczbę liczb pierwszych wzglę­
dem liczby N i mniejszych od niej.

Istnieje związek (Eulera):

ł-ffl = n(i _ -Ł) (1 -- ±)................
\ n / \ fi I

gdzie a, fi .. . są czynniki pierwsze różne licz­
by N.

Jeżeli N, N' są liczby względnie pierwsze, 
to:

(p (NN') — 99 (A) 99 (N‘).

Jeżeli z przyjmuje kolejno wszystkie wartości dzielników 
liczby A, to:

S <p (z) = N.

Jeżeli A= N^N,, gdzie A, Nt,N3 ... są liczby cał­
kowite, to wyrażenie

NI
Nfi. NJ . . .

jest liczbą całkowitą.
Jeżeli p jest liczbą pierwszą, to najwyższa jej potęga, za 

warta w A! jest A'-|-A"-|-A"'-f- . . . , gdzie Nf jest częścią cał-
N . . N' .ko wita ułamka —, N" częścią całkowita ułamka -— i t. d. 
p . “ p

Dirichłet dowiódł następującego twierdzenia (Akad. Beri. 
1837).

Każdy nieograniczony postęp arytmetycz­
ny, którego wyraz pierwszy i różnica są licz­
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bami względnie pierwszemi, zawiera nie­
skończenie wiele liczb pierwszych.

Wymieniamy jeszcze następujące twierdzenia o liczbach 
pierwszych i złożonych.

Aby 2" +■ l b y ł o 1 i c z b ą p i e r w s z ą, jest konieczne, 
by m było potęgą liczby 2.

Nie można wszakże twierdzić, by wszystkie liczby postaci 
22" |- 1 (jak mniemał był Ferm at) były liczbami pierwszemi; 
istotnie dla n = 0,1,2,3,4 otrzymujemy liczby pierwsze 3, 5, 17, 
257, 65537, lecz już dla n—A liczba

22"-|- 1 = 4294967297

jest podzielna przez 641.
Aby liczba 22"-j-1 była pierwszą, jest ko­

ni ecz nem i d o s t a’t e c z n e m, by dzieliła liczbę 
322 1 (Lucas).

Aby 2^—1 było liczbą pierwszą, koniecznem 
jest, by^> było liczbą pierwszą. Warunek ten 
nie jest wszakże dostateczny, gdyż np. 211—1=23.89.

Dzielniki nieparzyste liczby 22"-f-1 mają postać 2*+’ 7-f- 1. 
Dzielniki pierwsze nieparzyste liczby postaci fl2"+' — 1 lub 
a2*+1 gdzie 2/i-j-l jest liczbą pierwszą, albo mają postać 
2(2n-|-l)-j-*?4~l, albo są odpowiednio dzielnikami liczb a— 1, a-J-1.

Jeżeli p jest dzielnikiem nieparzystym liczby a”’-|-l, to 
można p przedstawić w postaci 2coę-f-J, gdzie co jest jednym 

z dzielników liczby m (włączając liczbę 1). Nadto liczba 

będzie nieparzysta i pierwsza względem 7, p zaś będzie dzielni­
kiem liczby a"* -f- 1.

Dowody niektórych tych twierdzeń oparte są na teoryi kon- 
gruencyi, którą niżej podajemy.

Aby liczba nieparzysta była liczbą pierwszą, jest koniecz- 
nem i dostatecznem, by jednym tylko sposobem była równa róż­
nicy kwadratów dwu liczb całkowitych.

Żadna liczba postaci u4-|-4 z wyjątkiem 5, nie jest liczba 
pierwszą (Zofia Germain).
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Jeżeli 2u 7, to istnieje p r z y n a j m n i e j j e d- 
na liczba pierwsza, zawarta pomiędzy a i 2a— 2 
(Twierdzenie Czebyszewa, Journ. de Lonville, XVII, Akad. 
Petersb. 1850).

Iloczyn n pierwszych liczb całkowitych nie może być po­
tęgą liczby całkowitej ani iloczynem potęg liczb całkowitych, 
(Lionville, (2), II).

Liczba nazywa się doskonałą wtedy, gdy równa się 
sumie wszystkich swoich dzielników.

Liczby doskonale,dbtąd znane,otrzymują się za pomocą wzoru 
(odpowiadającego metodzie, znalezionej już przez Euklidesa) 
Ep = 2?-1 (2'' — 1) w przypadku, gdy czynnik drugi jest liczbą 
pierwszą.

Niema innych liczb doskonałych parzy­
stych, prócz tych, które są zawarte we wzorze 
Euklidesa.

Nie znamy dotąd liczb doskonałych nieparzystych.
Dotychczas znane liczby doskonałe odpowiadają następu­

jącym wartościom liczby p: 2, 3, 5, 7, 13, 17, 19, 31, 61; oto ośm 
z nich :

6; 28; 496: 8128; 33550336: 8589869056; 137438691328:

2305843008139982128.

Lucas zapewnia, iż dowiódł, że dla p = 67 i p=89 nie 
otrzymujemy liczb doskonałych (Theorie des nombres,!, str. 376).

Zagadnienie o znalezieniu liczby liczb pierwszych, mniejszych 
od liczby danej lub zawartych pomiędzy danemi granicami, dało 
pobudkę do licznych badań.

Euler (Pam. Akad berlińskiej 1772, str. 36) znalazł wzór
ar-J-41, z którego kładąc, x = 0, 1, 2 ..., otrzymał, 40 liczb 

pierwszych; analogicznemi wzorami są a;2-j- x-\-17, dający dla 
(#=0, 1. 2 . . .) 17 oraz wzór 2rr2-j-29, dający 29 liczb pierwszych,

Legendre (Theorie des nombres) znalazł wzór przy­
bliżony, wyrażający liczbę liczb pierwszych, mniejszych 
od liczby danej x. Jeżeli tę liczbę oznaczymy przez będzie 
z dostatecznem przybliżeniem dla x bardzo wielkiego:



472 Rozdział XX.

) log a; — 1,08366 ‘

Riemann (Werke, str. 136) zajmuje się w pracy spe- 
cyalnej zagadnieniem o znalezieniu dokładnej wartości 
funkcyi ęp(sr;>; lecz wzór jego jest bardzo skomplikowany.

Temźe zagadnieniem zajmowali się: Gauss (Werke II, str. 
435—447), Dirichlet (Beri. Akad. 1838), Czébyszew (Lion­
ville XVII, a także w „Teoryi kongruencyi“ Dodatek III). Inne prace 
o tym przedmiocie są: Curtzego (Annah di mat. I), Meissel a 
(Math. Ann. II, III, XXI, XXIII, XXV), który obliczył liczbę liczb 
pierwszych dla pierwszego miliarda liczb naturalnych, Mertens a 
(Grelle, LXXVIII), de Jonquières’a (C. R. XCV), Lipschitza 
(tamże XCV, XCV1), Piltza (Jena .1884) Poincarégo (C. R. 
CXIII), v. Mangoldta (Akad. Beri. 1897, Ann. de 1’Ecole Polyt. 
1896), Cahena (C. R. 1893, Annales de l’Ecole Normale 1894), 
Levi-Ci vit a (Lincei, 1895). Wykład tego przedmiotu znajduje się 
w rozdziale 12-ym dzieła Bachmanna „Zahlen th eorie“ t II, 1894.

Niektóre prostsze twierdzenia, odnoszące się do tego przed­
miotu, są następujące:

Granica wyrażenia —log a? dla x ==oo jest—1 

(Czeby sze wi.

Wartość całki

/’ dx
J logic
*2

wyraża wartość funkcyi <p(x) z przybliżeniem tern 
większem, im większe jest x. Ten wzór na wartość funk­
cyi <p(x) jest daleko bardziej przybliżony, niż powyżej podany 
wzór Legen dr e’a; znajdujemy go u Gaus a (1. c. str. 444).

Następująca tablica daje liczbę liczb pierwszych, zawar­
tych w granicach między 1 a 100, między 101 a 300 i t. d. :
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pomieszczono liczby liczb pierwszych w różnych chiliadach aż do chi-

Pomiędzy 1 a 100 zawiera się 25 liczb pierwszych
„ 101 200 77 77 21 •„
„ 201 n 300 77 r 16 „

301 . 7* 400 » 77 16 „ „
„ 401 я 500 7? 17 „
„ 501 >> 600 75 >7 14

601 r 700 77 77 16 „
„ 701. я 800 77 77 14 „
„ 801 я 900 ?? 77 15 „ „
„ 901 я 1000 77 7’ 14 „
„ 1 7? 1000 7? 7? 168 „

1001 2000 77 7’ 135 ,, „
„ 2001 я 3000 V 7» 127 ..
„ 3001 V 4000 ,4 75 120 „
„ 4001 7? 5000 f •< 119 „
„ 5001 я 6000 7? >7 114 „
„ 6001 я 7000 »7 77 117 „ „
„ 7001 я 8000 »♦ 77 107 „ „

8001 Я 9000 , ł ii 110 „
,. 9001 77 10000 57 7? 112 „

1 я 1000000 37 77 78498 „ ,
„ 1 я lOOOOOOOO 77 77 5761455 „

Podobna tablica częstości liczi.) pierwszych, dość
daleko posunięta, znajduje się w tomie II „Dzieł“ Gaussa; w niej

liady 1000-ej, t. j. do 1000000. Tablicę tę należy w kilku miejscach 
sprostować według wskazówek Meissela w Math. Ann. II.

Tablice dzielników liczb pierwszych dla 1-go i 2-go miliona wraz 
z liczbami pierwszemi w nich zawartemi ułożyli: pierwszą O hernac 
(1811), drugą B u r k h a r d t (Paryż 1814); patrz Gauss, (Werke II, 
str. 181—183;. W tablicach B u r k h a r d t a należy uskutecznić 
poprawki (patrz np. Meissel 1. c.). Wspomnimy wreszcie o tabli­
cach Vegi (Sammlung math. Tafeln, r. 1796, wydanie, opracowane 
przez H ü 1 s s e g o, Lipsk, 1840).

Pytanie, pokrewne z zagadnieniem poprzedzającem odnosi, 
się do funkcyi /z Mertensa (Crelle, LXXVII). Rozumiemy 
przez /z(n) jedność dodatnią lub ujemną, stosownie do tego, czy 
n jest iloczynem parzystej lub nieparzystej liczby czynników 
pierwszych różnych, przy tern /z(l) = -|-l, ^(n)—0 jeżeli n 
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ma czynniki kwadratowe (wyjąwszy jedność). Pierwszem pros- 
tem twierdzeniem o funkcyi /z. jest następujące:

Suma r o z c i ą g n i ę t a na wszy st ki e dziel­
niki liczby jakiejkolwiek N (włączając w nie 
samą liczbę N i jedność) jest zere m.

O tej funkcyi patrz notę Lipschitza (C. R. 1879) i wykład 
u B a eh ni an na, 1. c.

0 funkcyi liczbowej E(x).

Za pomocą symbolu A’(j) (Legendre) oznaczamy naj­
większą liczbę całkowitą wymierną, zawartą w liczbie dodatniej 
rzeczywistej x

Za pomocą symbolu 77,(;r> (Herm i te) oznaczamy wyra­
żenie

Z1 z A(iz-‘) 77(a*-J-l),... E (3?-j-</1)

Funkcya E jest oczywiście funkcyą nieciągłą. Godnem 
jest uwagi, że funkcya

<p (x) = E(x) 4~ ]/x — E(x)

jest funkcyą ciągłą zmiennej x dla rzeczywistych dodatnich war­
tości x. Funkcyę tę zastosował Schwarz do zbadania funkcyi, 
nie mającej pochodnej w nieskończenie wielu punktach.

Dla funkcyi E mamy wzory następujące:

£ e[x — E(nix)— E(x), (Hermite)

— E, (nix') — ni E% lx). (Hermite)
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rn\ 71/ Sm\ a .X E nx - ----  — 2, E \mx---------= m — n, Ster n)r=i \ m / g=i \ n I •
wj — 1 I / 1* \ Z U \ 1 1 / V \f, ! A’« (+ ,d - ”* (» “ m) l “ f 4: + >»/ (SteTO)

O funkcyi E(x) ogłosili prace: Hermite (Acta math. V, str. 
315, VIII, Correction), Stern (Acta math. VIII, X, Crelle CII), 
Pringsheim (Math. Ann. XXVI), który szukał rozwinięcia na 
szereg trygonometryczny funkcyi E[x), wreszcie B e r t o 1 a n i (Giorn. 
di Matem. XXXIV, 1895).

§ 3.

Wiadomości ogólne o kongruencyaeh.

Dwie liczby a, fi nazywają się kongruentnemi 
lub przystającemu według modułu??, jeżeli ich 
różnica jest podzielna przez n. Oznaczamy to za pomocą sym­
bolu

a = fi (modz?)

i nazywamy k o n g r u e n c y ą.
Wszystkie liczby, w odniesieniu do modułu n, dzielą się na 

n kl as (Graus s); w każdej klasie znajdują się liczby, przystające 
według tego modułu. Liczby 0, 1, 2 . . . n— 1 można uważać za 
przedstawicielki tych n klas.

Liczba danej klasy jest niekongruentna (nie­
przystająca) do liczby innej klasy.

Układ ?? liczb, wybranych dowolnie po jednej z każdej klasy 
np układ 0, 1, 2 . . . n — 1, tworzy układ zupełny liczb 
nieprzystających lub układ zupełny reszt wzglę­
dem modułu n.
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Dwie liczby, przystające do trzeciej we­
dług tego samego modułu, są przystającemi 
do siebie według tego modułu.

Dwie lub więcej kongruencyj o tym samym 
module można dodawać, odejmować, mnożyć 
stronami; wyrazy kongruencyi można wszyst­
kie mnożyć przez jednę i tę samą liczbę.

Wyrazy kongruencyi można dzielić przez 
ich czynnik wspólny k, jeżeli czynnik ten jest 
względnie pierwszy do modułu«; jeżeli’ zaś 
ten przypadek nie zachodzi, to można dzielić 
moduł przez największy wspólny dzielnik po­
między nim a liczbą k.

Jeżeli a jest liczbą pierwszą względem n, 
(p(n) zaś oznacza liczbę liczb pierwszych mniej­
szych od h i względnie pierwszych z tą liczbą, 
t o :

a aa 1 (mod n). (Euler.)

Dla n = ph, gdzie p jest liczbą pierwszą, zachodzi twier­
dzenie:

Jeżeli a jest niepodzielne przez liczbę 
pierwszą p, to:

a(p—1 = 1 (mod. p*).

Dla /v=l otrzymujemy twierdzenie Fermata:
Jeżeli a nie jest podzielne przez liczbę 

pierwszą p, to:
a^“1 s 1 (mod p).

Jeżeli p jest liczbą pierwszą, to:

(p—1)! 1 0 (modp). (Twierdz. Wilsona.)

Niechaj f będzie symbolem funkcyi wymiernej całkowitej; 
jeżeli (modn), to będzie także (modn).
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Niechaj /’(a?), F(x) będą wielomiany. Dawszy sobie moduł 
u, możemy postawić następujące zagadnienie:

Jakie są wartości wymierne całkowite 
liczby x, które, podstawione zamiast x, czynią 
zadość kongruencyi:

f(x) a F(x) (mod ri) ?

Przeniósłszy na stronę pierwszą wszystkie wyrazy ze stro­
ny drugiej i wyrażając tymże znakiem f nową funkcyę, jaką 
otrzymamy na stronie pierwszej, możemy poprzednią kongruen- 
cyę napisać w postaci:

f(&)= 0 (mod ri).

Powstaje wtedy pytanie o rozwiązaniu kongruen­
cyi, analogiczne do pytania o rozwiązywaniu równań. Stosownie 
do stopniafunkcyi /’, mamy kongruencye stopnia 1-go, 2-go it. d.

Jeżeli x — a czyni zadość kongruencyi 
f(x)ssO (modn), to każda liczba, przystająca do 
liczby a według mod n, również czyni zadość 
kongruencyi.

Z tego twierdzenia wynika, że kongruencya, jeżeli ma je­
dno rozwiązanie, to ma ich nieskończenie wiele; wszakże rozwią­
zań przystających do siebie nie będziemy uważali za różne i dla 
tego możemy powiedzieć, że kongruencya może mieć naj­
wyżej tyle różnych rozwiązań, ide jest klas 
liczb według w.

Jeżeli n jest liczbą pierwszą, to liczbę roz­
wiązań różnych kongruencyi f(x) == 0 (mod n) okre­
śla stopień wielomianu jeżeli jest niższy 
o d 71.

Jeżeli moduł n jest liczbą pierwszą p, to rozwiązanie kon­
gruencyi f(x) =0 (mod p) można sprowadzić do rozwiązania 
kongruencyi ==0 (mod p), gdzie R(.r) jest wielomianem 
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stopnia p — 1, a mianowicie resztą, z podzielenia funkcyi /(a;) 
przez — x.

§ 4.

Kongruencya stopnia 1-go.

Kongruencya ax— ftsO(modn| ma zawsze roz­
wiązanie, jeżeli a i n są liczby względnie pier- 
w s z e.

Jeżeli n jest liczbą pierwszą p, to rozwiązaniem kon­
gruencyi ax—/>==0(modp) jest a=== W~2 (modp).

Jeżeli n jest liczbą złożoną, to rozwiązaniem kongruencyi
— b^-0 (mod n) jest x = ba'Pi,,)~‘l (mod n), gdzie q>(n) ma zna­

czenie wyżej podane (str. 469).
Kongruencya ax— ós=0(modn) nie ma rozwią­

zania, jeżeli którykolwiek czynnik wspólny 
liczb a i n nie jest dzielnikiem liczby b. Jeżeli 
największym wspólnym dzielnikiem liczb ain 
jest d, i liczba rfjest zarazem dzielnikiem licz­
by b, to kongruencya będzie miała d rozwiązań:

X = d, x = a -j y-, x ~ a H—. X ssa -j---- — (mod w),
ćv CL CL

gdzie a jest pierwiastkiem kongruencyi
JL _ JL o (mod r>. 

d d \ d
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§5.

Kongruencye stopnia 2 - go. Reszty kwadratowe.

Jeżeli w kongruencyi stopnia 2-go :

ax* -J- bx 4- c sa 0 (mod n),

a jest podzielne przez n, to kongruencya sprowadza się do kon­
gruencyi stopnia 1-go, którą otrzymujemy, odejmując od strony 
pierwszej wyraz ax2.

W przypadku v— 2. kongruencya daje się również sprowa­
dzić do kongruencyi stopnia 1-go, której strona pierwsza jest 
resztą z podzielenia ax2 4~ bx 4“ c Prkez &2—x (patrz § 3).

Rozwiązanie kongruencyi:

ax2 -j- bx 4- c = 0 (mod p), 

gdzie p jest liczbą pierwszą, nie dzielącą 
liczby a i różną od 2, sprowadza się do rozwią­
zania kongruencyi

22 ~ (6* — 4«c) (modp), 

gdzie pomiędzy z '\ x zachodzi związek 2ax-\-h=z. 
Kładąc b2—^.ac — ą, mamy:

Jeżeli <7 0 (mod ;?), to powyższa kongruencya ma jedyne 
rozwiązanie z~0 (mod p); jeżeli q =|= O(mod;;) (znak =|= ozna­
cza: „jest nieprzystające“), to kongruencya z2=q (modp), albo 
wcale nie ma nierozwiązania, albo ma ich dwa, stosownie do tego,

Łzl
czy q 2 przystaje do —1 lub db 4~1, według modułu p. W przy­
padku, gdy s-~q (mod;;), kongruencya ma dwa rozwiązania, t. j.

y—i

gdy q 2 — 4-l(ńiodp), liczba q nazywa się resztą kwadra­
tową liczby p.
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Jeżeli//jest liczbą pierwszą nieparzystą, to liczba reszt 

oraz liczba niereszt wynosi ~ (p—1).

Iloczyn dwu reszt 
szty przez resztę jest 
jest resztą.

jest resztą, iloczyn r e-
nieresztą; dwu niereszt

Liczba 1 jest z 
ba zaś —1 jest resz

awsze resztą liczby//, 1 i c z- 
tą lub nie resztą, stosownie

do tego, czy liczba P-1
2 jest parzysta lub n i e-

parzysta.
Liczba 2 jest resztą kwadratową wszyst­

kich liczb pierwszych postaci 8n-|-l, 8rc-f-7; jest 
nieresztą wszystkich liczb pierwszych po­
staci 8n-j-3, 8n-j-5 (Lagrange).

Dwie liczby, przystające do siebie według modułu//, są rów­
nocześnie obie resztami lub obie nieresztami.

Wszystkie twierdzenia o resztach względem modułu pier­
wszego można wyrazić sposobem łatwym za pomocą tak zwa­
nego symbolu L e g e n d r e’a.

Niechaj oznacza -|-1 lub ■—1, stosownie do tego, czy 

q jest lub nie jest resztą kwadratową liczby//. Poprzednie 
twierdzenia dają się wtedy wyrazić sposobem następującym:

J e że 1 i :

?2-i
( -1)~.

Jeżeli (jak w § 1) E oznacza największą liczbę całkowitą 
nie większą od a?, to:

—1P I



§5. — Kongruencye stopnia 2-go i t. d. 481

Jeżeli r/jest nieparzyste i mniejsze odp, to:

y 
(-1) « ■

Najważniejsze twierdzenie z teoryi reszt kwadratowych 
znane jest pod nazwą prawa wzajemności d w n liczb 
pierwszych.

Jeżeli p i (/ są dwie liczby pierwsze, to:

Twierdzenie to znal już Euler (Opuscula anat I, 1772, patrz 
Ku mm er, Ber). Akad. 1859, Kronecker, (Beri. Monatsber. 
1875); dowiódł go po raz pierwszy Legendre (Acad. des Sciences 
1785); potem Gauss (Disąuis. arithm) dal wiele dowodów, z któ­
rych niektóre opierają się na równaniu podziału koła. Inne dowodze­
nia podali: Eisenstein (Crelle, XXVII), Lebesgue (Liou- 
ville XII), Kummer (Abh. der Beri Ak. 1861), Zeller (Beri. 
Monatsber. 1872) i t. d.

W poprzednich twierdzeniach była mowa o resztach kwa­
dratowych względem modułu pierwszego nieparzystego. 
Dla modułu niepierwszego określenie reszty kwadratowej 
pozostaje bez zmiany. Nadto:

Liczba (/jest resztą lub nie resztą kwadra­
tową potęgi pm liczby pierwszej nieparzystej 
/>, stosownie do tego, czy jest resztą lub nie- 
resztątej ostatniej.

Liczba (/ jestresztą kwadratową potęgi 
2®, gdy co —1, albo gdy co=2, c/—l(mod4), albo wresz­
cie gdy co3, c/s== 1 (mod8). Aby liczba c/ była resz­
tą kwadratową liczby złożonej P = p1jo2..., gdzie 

... są liczbami pierwszemi, jest koniecz- 
nemidostatecznem, aby była resztą wzglę­
dem każdego z czynników pierwszych ...

Pascal. Rep. I. 31
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Twierdzenia te można też wypowiedzieć w ten sposób:
Kongruencya x2 q (mod 7/0) ma rozwiązanie 

wtedy, jeżeli ma je kongruencya sr2 q (mod p) 
i w takim razie ma dwa rozwiązania.

K o n g r u e n c y a X1 = q (mod 2'") jest zawsze mo­
żliwa, gdy co—-1 i wtedy ma jeden pierwiastek: 
g dy co = 2, j e s t tylko możliwa, jeżeli q 1 (mod 4) 
i wtedy ma dwa pierwiastki; gdy wreszcie 
co^>3, jest tylko możliwa, jeżeli 7 1 (mod 8)
i wtedy ma cztery p i e r w i a s t k i

Kongruencya x- == q (modpxpa...) jest możliwa 
wtedy tylko, gdy są możliwe mi kongruencye 
r»2= q (modpj, a2— 7 (mod p2). . . J e ż e l i liczby Pi,p.2, • • • s 
wszyst kie nieparzyste lub jedna tylko równa 2, 
a liczba wszystkich wynosi //, to kongruencya 
ma 2 a* rozwiązań. Jeżeli dwa z pomiędzy czyn­
ni k ó w pr, p2, ... są r ó w n e 2, w t e d y b y ć p o w i n n o 
ę = 1 (mod 4) i w t y m p r z y p a d k u m a m y 2 ^+1 roz­
wiązań. Wreszcie, jeżeli trzy lub więcej z po­
między ’czynników p2, ... równają się 2, wtedy 
być musi q — 1 (mod 8) i r o z w ią z,a ń będzie 2 iJ+2.

Symbol L e g e n d r e'a rozciągnął J a c o b i na przypa­
dek modułu złożonego. Kładziemy jako określenie:

m = m m . .
\ P ] \ Pl I \P-2' ’

wtedy ma wartość -f-1 lub —1. Lecz nie można już mó­

wić. że 1 Jest warunkiem koniecznym i dostatecz­

nym na to, by q było resztą kwadratową liczby P, albo­
wiem według wyżej wskazanego twierdzenia trzeba, aby każ 
dy z symbolów I——I, |-^-l , . . . był -j-1, a nie wystarcza, aby

\ Pi I \ P2 '
iloczyn ich był -]-l.
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Symbol J a c o b i e’g o ma wszystkie własności sym­

bolu L e g e n d r e’a w przypadku modułu pierwszego nieparzy­
stego. Posługując się wzorem wzajemności, któremu ten symbol 
także czyni zadość, możemy upraszczać rachunek z symbolem 
Legendre’a w przypadku modułu pierwszego.

Dla znalezienia pierwiastków kongruencyi kwadratowej 
u;2 _ q (modp) trzeba uciec się do teoryi skaźników, którą wy­
łożymy w § 7.

W jednym tylko przypadku łatwo znaleść rozwiązanie kon­
gruencyi, mianowicie, kiedy p jest liczbą pierwszą postaci 4r-{-3. 
W tym przypadku (jeżeli kongruencya jest rozwiązalna) jedno 
jej rozwiązanie jest resztą a z podzielenia c/r+l przez p, drugiem 
rozwiązaniem jest p—a.

§ 6

Kongruencya dwumienne Reszty sześcienne i rzędów wyższych.

Kongruencya postaci:

j;»’ = A (modp),

w której p jest 1 iczbą pierwszą nieparzys 
jest możliwa tylko wtedy, gdy:

p—i
A "* = 1 (mod p),

gdzie co jest największym wspólnym dzielni­
kiem liczb m i p—1.

W tym przypadku kongruencya ma co rozwiązań, które są 
zarazem rozwiązaniami kongruencyi

a* — zł* (mod p), 
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gdzie s jest liczbą, czyniącą zadość warunkowi:

/ , p-l\= 1 mod ---  .\ co /
Liczba A w tym przypadku nazywa się resztą rzędu 

m-tego liczby p.
Liczba -{-I jest zawsze resztą rzędu m każdej liczby p. 

Liczba —1 jest resztą, gdy dzieląc p—1 przez co (największy 
wspólny dzielnik liczb m i p—1), otrzymujemy liczbę parzystą.

Co do rozwiązania kongruencyj dwumiennych patrz § 7.

Analogicznie do symbolu L egen d r e'a j dla reszt 

kwadratowych, wprowadza się symbol |dla reszt sześcien-

nych oraz symbol dla reszt dwukwadratowych.

Dla utworzenia teoryi zupełnej tych reszt i ustanowienia 
twierdzenia analogicznego z twierdzeniem o wzajemności, należy 
rozszerzyć dziedzinę liczb wymiernych i objąć w niej liczby po­
staci a-j-ók—1, gdzie a, b są liczbami całkowitemi, oraz liczby 
a + be, gdzie e jest pierwiastkiem sześciennym z jedności. Patrz 
niżej §§ 9 i 10.

§ 6-

Kongruencye wykładnicze. Pierwiastki pierwotne i skażniki.

Jeżeli kongruencyi

Ax = q (mod p), 

gdziep jest liczbą pierwszą, nie dzielącą ani 
A ani ę, czyni zadość x—a, to czynić będzie jej' 
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zadość i każda liczba, przystająca do a według 
modułu p—1.

Liczba rozwiązań (nieprzystających według modułu p—1) 
kongruencyi A** = ą (modpi jest ta sama, jak kongruencyi 
A\ s 1 (mod p).

Najmniejsza a z liczb (prócz zera), czyniących zadość kon­
gruencyi ze 1 mod. p (która ma zawsze puzynajmniej jedno 
rozwiązanie), jest dzielnikiem liczby p—1 (włączając i p—1); 
inne rozwiązania są wielokrotnościami liczby a.

Na podstawie twierdzenia Fermata wiadomo, że p— 1 
czyni zawsze zadość kongruencyi Ax = 1 (modp); otóż, jeżeli 
p—1 jest najmniejszą z pomiędzy liczb, czyniących zadość tej 
kongruencyi, A nazywa się wtedy pierwiastkiem pier­
wotnym liczby p.

xm = q (mod p),

Istnieje tp (p—1) pierwiastków pierwotnych 
liczby p, zawartych pomiędzy 0 i p— 1.

Jeżeli 4 jest pierwiastkiem pierwotnym liczby p, kongru- 
encya Ar = q (mod p) ma jedno rozwiązanie. To rozwiązanie 
jedyne, zawarte pomiędzy 0 i p — 1, nazywa się s k a ż n i k i e m 
(indeksem) liczby q i oznacza się w ten sposób: x = ind</.

Teorya skaźników ma analogię z teoryą logarytmów; liczba 
A nazywa się podstawą układu skaźników; twierdzenia 
o skażnikach są podobne do twierdzeń o logarytmach.

Dwie liczby przystające mają skażniki 
równe.

Skaźnikiem j edności jest zero.
Skaźnik iloczynu przystaje (mod. p—1) do 

s u m y s k a ż n i k ó w.
Skaźnik potęgi przystaje (mod. p — 1) do ilo­

czynu wykładnika przez skaźnik podstawy 
potęgi.

Za pomocą tych twierdzeń można rozwiązywać kongruen- 
sye dwumienne (patrz § 4 i 5):
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albowiem z kongruencyi takiej wypływa następująca: 

ni. ind. x — ind . q (mod p—1).

W tablicach skaźników szukamy ind . 9, a dla możliwości 
tej kongruencyi potrzeba, by największy wspólny dzielnik w 
liczb w» i p—1 był dzielnikiem skaźnika liczby 9. W tym przy­
padku kongruencya ma co rozwiązań, które znajdujemy przy po­
mocy metody, podanej w § 3.

Twierdzenia, odnoszące się do pierwiastków pierwotnych, 
są następujące:

Pierwiastkiem pierwotnym liczby pierw­
szej postaci 22” 1 jest 3.

Jeżeli 4n4-l jest liczbą pierwszą, to 2 jest 
pierwiastkiem pierwotnym liczby 2(4n-j-1) -|- 1, 
gdy ta jest pierwszą, a jeżeli 4n-j-3 jest liczbą 
pierwszą, to 2(4»4-3)— 1 jest pierwiastkiem 
pierwotnym liczby 2(4n-j-3)1.

Liczba pierwsza postaci 4n-1 ma pierwia- 
stek pierwotny 2, jeżeli n jest liczbą pierw­
szą >2.

Liczba pierwsza postaci 4.2”'. n 1 ma za 
pierwiastek pierwotny liczbę 3, jeżeli n jest 

liczbą pierwszą większą od i g d y m^>0.

Pierwiastki pierwotne i skaźniki obliczył J a c o b i w pracy „Ca­
non arithmeticus“ (Berlin 1839), której nie włączono do wydania dziel 
zupełnych. Tablice tych pierwiastków obliczyli również: C r e 11 e (Crelle 
IX), Kulik (Crelle XLV), a tablice obszerne aż do modułu 353 znaj­
dują się we włoskim przekładzie „Teoryi liczb“. Czebyszewa 
Hoüel obliczył tablice (aż do mod 199) według wskazówek L e- 
b e s g u e’a (Tables arithmétiques, Paryż 1866; patrz także Journ. de 
Liouv. XIX, 1854). W tablicach tych za podstawę bierze się 
najmniejszy co do wartości bezwzględnej z pierwiastków pierwotnych 
względem danego modułu.
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/ a,
\ y, b I

§ 8.

Formy kwadratowe. Przedstawialność liczb przez formy.

Formą kwadratową liczbową nazywa się wy­
rażenie typu

na:2 -j- 2bxy -j- l'y2,

gdzie 6, b, c są liczbami danemi wymiernemi calkowitemi; a;, y 
liczbami calkowitemi nieoznaczonemi lub niewiadomemi. Formę 
taką oznaczamy za pomocą symbolu (a, b, c). Wyłączamy przy­
padek, w którym wyróżnik lub wyznacznik formy, t. j. 
D — b- — ac, jest kwadratem zupełnym, albowiem wtedy forma 
rozpada się na dwa czynniki liniowe o spółczynnikach wy- , 
miernych.

Jeżeli położymy:

x = ax' 4" (iy'i % = y x' 4" óy',

to forma dana przekształci się na inną, której spółczynnikami 
będą :

cd — aa2 -\-2bay + cy2,

b' dap b (ab 4- fiy) —j- c y <5,

c' = ap2 4- Zbfib 4- c<52.

Podstawienie powyższe oznaczamy, jak zwykle, symbolem

Jeżeli D jest wyznacznikiem formy przekształconej, 

będzie :
D' — (ab — fry)2 D.

Stosownie do tego, czy wyznacznik ab — fiy (wyznacznik 
podstawienia liniowego) jest dodatni lub ujemny, podstawienie 
nazywa się właściwem lub n i e w ł a ś c i w e m. Dwa pod­
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stawienia są podobne, gdy oba są albo właściwe, albo oba 
niewłaściwe

Mówimy, że forma (&', b', c') jest zawarta w formie 
(«, b, c), gdyż każda liczba przedstawialna przez drugą formę 
może być przedstawiona i przez pierwszą.

Mówimy, że forma (a', b', c’) jest zawarta w formie (a, />, c) 
właściwie lub. niewłaściwie, stosownie do tego, czy 
podstawienie ( a' j jest właściwe lub niewłaściwe.

Dwie formy, zawarte wzajemnie jedna w drugiej, nazywają 
się równoważnem i.

Dwie formy są r ó w n o.w a ż n e m i, jeżeli mają 
wyznaczniki równe i gdy. jedna z nich jest za* 
warta w drugiej.

Dwie formy nazywają się r ó w n o w a ż n e m i w ł a ś c i- 
« w i e lub niewłaściwie, stosownie do tego, czy wyznacz­

nik przekształcenia, przy pomocy którego przechodzimy od je­
dnej do drugiej, jest 4-1 lub —1. Dwie formy mogą być równo- 
ważnemi jednocześnie jednym i drugim sposobem.

W zagadnieniu o przedstawianiu liczby m za pomocą formy 
kwadratowej (a, b, c) możemy ograniczyć się na przedstawie­
niach tak zwanych właściwych, t. j. takich, w których x i y są 
liczbami względnie pierwszemi, albowiem z tych przedstawień 
właściwych łatwo otrzymać można niewłaściwe.

Aby liczba m dała się przedstawić właści­
wie przez formę (a, b, c) jest k o n i e c z n e m, by 
D = b2- — ac było reśztą kwadratową liczby m.

Teorya przedstawialności liczb za pomocą form kwadra­
towych (odpowiadająca znowu teoryi równań nieoznaczonych 
stopnia 2-go o dwu niewiadomych) daje się sprowadzić do teoryi 
równoważności samych form (Porówn. Dirichlet — D e de 
k i n d § 60).

Dwa zagadnienia zasadnicze teoryi równoważności są na­
stępujące :

I. Znaleść kryteryum, przy pomocy które­
go można rozstrzygnąć, czy dane dwie formy 
są równoważne lub hi e. ........ - ' .• •'
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II. Znaleść wszystkie podstawienia, za po­
mocą których dana forma przekształca się na 
inną jej równoważną.

To drugie zagadnienie, gdy znanem już jest jedno z tych 
podstawień, sprowadza się do następującego:

II bis. Znaleść wszystkie podstawienia, za 
pomocą których dana forma pr zekształca się 
na samą siebie.

To znów zagadnienie przekształca się na inne (patrz niżej 
II-ter), za pomocą twierdzeń następujących:

a, /5 \
7, <5 ’Jeżeli jest podstawieniem, za pomocą którego for-

ma (a, b, c) o wyznaczniku D, w której niechaj o będzie najwięk-
szym wspólnym dzielnikiem spółczynników a, 26, c, przekształca
się na siebie samą, to będzie zawsze:

t—bu o CU '
a = --------- ,a

au
^ = — ’

t -j- bu
S = a ;

t, u są liczby całkowite, czyniące zadość równaniu nieoznaczone­
mu, zwanemu równaniem P e 11 a:

/2 _ Dh2

gdzie
D = O(modo2) lub 40 — o2(mod4o2).

Odwrotnie, jeżeli u są dwie liczby całkowite, sprawdzające 
poprzednie równanie, to liczby a, /3, y, ó, wyrażone podanemi 
wyżej wzorami, są spółczynnikami podstawienia, które prze­
kształca formę (a, b, c) na siebie samą.

Stąd wypływa zagadnienie:
II-ter. Znaleść wszystkie rozwiązania cał­

kowite równania nieoznaczonego:

/2 _ Du2 =
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gdzie
1) == 0 (modo2) lub 4Z) = o2 (mod 4o2).

Dla rozwiązania zagadnienia I wprowadzamy pojęcie for­
my zredukowanej. Określenie tej formy jest inne w przy­
padku D ujemnego, niż w przypadku D dodatniego.

Jeżeli //jest ujemne, to formą zredukowaną nazy­
wamy formę o spółczynnikach skrajnych a, c dodatnich i spraw­
dzających nierówności:

c a 2 \ b \,

gdzie \b\ oznacza wartość bezwzględną ilości b. Mamy wtedy:
Każda forma o wyznaczniku ujemnym jest 

równoważna formie zredukowanej.
Jedyne mi typami dwu form zredukowa­

nych równoważnych o w y z n a c z n i k u ujemnym 
i nie tożsamościowych są:

(a, I a, c) i (a, — ł a, c),

(a, ć, a) i (a, —b, a).

Podstawienia, za pomocą których przecho­
dzimy o d j e d n e j do drugiej, są odpowiednio:

/ °, “ 1 \ l °, > 1 \
\ 0, 1 / ’ l 1, 0 /'

Dane formy o wyznacznikach ujemnych przekształcają się 
najprzód na odpowiednie formy zredukowane (patrz co do te­
go w § 64 dzieła Dirichleta-Dedekinda), a następ­
nie bada się. czy formy zredukowane podchodzą pod jeden 
z tych przypadków.

Jeżeli D j e s t dodatnie, to formę nazywamy zreduko­
waną, jeżeli pierwiastki jej są znaku przeciwnego i takie, że co 
do wartości bezwzględnej jest:
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— ó - VD
C

> i;
— b + Vd

< i,

gdzie przez Vl) rozumie się zawsze wartość dodatnią pierwiast- 
nika. Mamy wtedy:

Dla każdego wyznacznika dodatniego ist­
nieje zawsze skończona liczba form zreduko­
wanych.

Każda forma o wyznaczniku dodatnim jest 
zawsze równoważna formie zredukowanej,

Forma (a, />, c) nazywa się sąsiednią po stronie 
prawej względem formy jeżeli obie formy mają
ten sam wyznacznik, jeżeli nadto c'=a, suma zaś b-\-b' jest przez 
a podzielna. Forma druga nazywa się wtedy sąsiednią 
po lewej względem formy pierwszej.

Każda forma zredukowana o wyznaczniku 
dodatnim ma jednę tylko sąsiednią po pra­
wej, która jest zredukowana, i podobnie jednę 
tylko sąsiednią zredukowaną po lewej.

Mając formę zredukowaną o danym wyznaczniku budujemy 
jej zredukowane sąsiednie po prawej i po lewej; następnie z każ­
dą z form zredukowanych postępujemy tak samo. Otrzymujemy 
tym sposobem szereg nieograniczony form zredukowanych; po­
nieważ wszakże liczba ich jest skończona, więc po pewnej liczbie 
działań musimy powrócić do zredukowanej pierwotnej.

Ogól wszystkich form zredukowanych w ten sposób otrzy­
manych tworzy to, co Gauss nazywa peryodem.

Jeżeli istnieją inne formy zredukowane o tym samym wy­
znaczniku i nie zawarte w tym peryodzie, to można wyjść jednej 
z nich i utworzyć peryod drugi i tak dalej.

Po takiem ustaleniu pojęć, można dowieść następującego 
twierdzenia zasadniczego Gaussa.

Warunkiem koniecznym i dostatecznym 
na to, aby dwie formy zredukowane o tym sa­
mym wyznaczniku dodatnim były równoważ­
ne, jest, by należały do jednego i tego samego 
p e r y o d u.
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Twierdzenie to daje rozwiązanie zagadnienia I dla wyzna­
cznika dodatniego.

Waż nem jest następujące rozważanie związku pomiędzy 
peryodami form zredukowanych a ułamkami ciągłemi.

Jeżeli daną jest forma zredukowana o wy­
znaczniku dodatnim D, której pierwszy spół- 
czynnik jest dodatni, to jej pierwszy pierwiastek 
(t. j. pierwiastek, w którym pierwiastnikowi ]/D dajemy znak 
ujemny,) będzie dodatni. Jeżeli więc rozwiniemy na uła­
mek ciągły pierwszy pierwiastek co, otrzymamy ułamek ciągły 
peryodyczny, którego peryod ma tyle wyrazów, ile ma wyrazów 
szereg form zredukowanych sąsiednich.

Za pomocą wyrazów tego ułamka ciągłego możemy utwo 
rzyć cztery liczby a, /?, y, ó podstawienia, które formę o wyzna­
czniku dodatnim D przekształca na samą siebie. Odbywa się to 
w sposób następujący: Niechaj będzie

co = 7c0 ---- 7—1 1/£| + T+............. ,

co napiszemy w skróceniu tak :

co — (ka, kx, k.>, .

Ilorazy niezupełne k powtarzają się w peryodzie, złożonym 
z parzystej liczby 2i elementów, tak że:

kr = ks, jeżeli r = s(mod2«).

Wprowadźmy parametr li = 1, 2, ..., i połóżmy:

Z ó
~ —— | 7łq , , . . . , k-^hi— 2 | , | 7Cq . /1 i , . . . , —2, —11.

a następnie weżmy za a, fi, y, <5 odpowiednio liczniki i miano­
wniki tych ułamków ciągłych s kończonych.

L i c z b y a, fi, y, <5, w ten sposób obliczone, są 
wszystkie dodatnie i stanowią spółczynniki 
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podstawienia, które przekształca formę o pier­
wiastku co na samą siebie. Wszystkie takie 
podstawienia otrzymujemy, kładąc za h kolej­
no 1, 2, 3 ... .

Mając cztery spółczynniki a, /3, y, <5, znajdujemy przy po­
mocy wzorów:

t— bu n cu au .a — --------- , fi —---------- , y •-= ------ , o —---------
o a a o

wartości dodatnie ilości t, u, czyniących zadość równaniu P e 11 a. 
Nieskończenie wiele rozwiązań tego równania (gdy D z> 1) 
otrzymujemy, nadając liczbie h wszystkie możliwe wartości cał­
kowite dodatnie. Nadawszy liczbie h wartości, 
otrzymujemy rozwiązanie najmniejsze, t. j. to, dla 
którego t i u mają wartości najmniejsze.

Oto, w jaki sposób należy postępować celem znalezienia 
rozwiązań równania P e 11 a

t2 — Du2 == o2, gdy D > 0.

Wyznaczamy formę zredukowaną o wyznaczniku D i o dziel­
niku o, której pierwszy spółczynnik jest dodatni, rozwijamy 
pierwiastek dodatni tego równania na ułamek ciągły, znajdu­
jemy ilorazy niezupełne 7r0, Aj, . . ., następnie stosujemy wzory 
powyższe.

Zwracamy uwagę na to, że w powyższych rozwiązaniach 
zakładamy, iż D nie jest kwadratem zupełnym.

Za pomocą metody powyższej można znaleść wszystkie 
rozwiązania równania Pella; lecz istnieją też wzory, za 
pomocą których można rozwiązania te wyra­
zić przez rozwiązanie najmniejsze. Wzorytesą:

tn = ~ |rw_|-(w)2 V2D + T,.-4 UW2 ........................| .

u)t= ~ { (n)t T"-' Tn~3 U2D-\-..............| , 
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gdzie 7’, U należą do rozwiązania najmniej­
szego, zaś n przyjmuje wartości 1, 2, 3, . . .

Dla uzupełnienia teoryi równania Pella rozpatrzmy jesz­
cze przypadek, w którym D jest ujemne.

W tym przypadku równanie Pella ma skoń­
czoną liczbę rozwiązań.

Jeżeli I)=0 (mod) o2, mamy dwa rozwiązania, gdy wartość 
bezwzględna wyznacznika Z) jest większa od a2; cztery rozwią­
zania, gdy —D=o2; są niemi:

t =■ + a , u= 0
i odpowiednio:

t = ~ł~ o, u = 0 ; t = 0, u — ~ł~ 1 .

Jeżeli 4J9 == o2 (mod 4o2), mamy dwa rozwiązania:

t = + o, u = 0, gdy —4D>3o2;

sześć rozwiązań :

t = ~t~ o, u = 0; t = -f- 4 o, u = ~+~ 1; t = ~t~ 4 o, u = 1,

gdy —4 D — 3 o2.

Równanie, zwane równaniem Pella, było zaproponowane przez 
Fermata i rozwiązane przez Pella. Petem zajmowali się niem: 
Euler, Lagrange ( Oeuvres I, II) i D i r i c h 1 e t (Beri. Monats- 
ber. 1841, 42, 46; Comp. Rend. 1840).

Powyższy zarys teoryi form kwadratowych ułożony został według 
dzieła Dirichleta-Dedekinda, w którem przedstawiono teo- 
ryę, po raz pierwszy podaną przez Gaussa w „Disquis. arithm.“

Dodamy jeszcze niektóre twierdzenia, odnoszące się do 
teoryi form kwadratowych.

Każda liczba pierwsza dodatnia postaci 
4n-|-l może być zawsze i jednym tylko sposo­
bem rozłożona na sumę kwadratów (Twierdzenie
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Fermat a, dowiedzione po raz pierwszy przez Eulera, Novi 
Comm. Petrop. V, patrz też Smith, Crelle L). Wyznaczenie 
podstaw tych kwadratów zawdzięczamy Gaussowi (Theoria 
resid. biquadr. Werke II). Jeżeli wyznaczymy liczby a i b naj­
mniejsze pod względem wartości liczebnej i czyniące zadość kon-
gruencyom :

Ł±_3
« = ( - 1) * 1 (^-)\ ,,

-9- ———r—5 (mod ?),
2 Gf1)’

±2/'|.(JLr1)! 1 = (-1’^ (mod p),

to będzie: p = a- -4- ó2.
Każda liczba p i e r w s z a p postaci 1 m o że 

być zawsze i to jednym tylko sposobem rozło­
żona na kwadrat i kwadrat potrójny.

Każda liczba pierwsza jednej z dwu po­
staci 20??-f1, 20n-1-9 daj e się zawsze i to jednym
tylko sposobem rozłożyć nasumę kwadratu 
i pięciokrotnego kwadratu; każda zaś liczba 
pierwsza jednej z d w u postaci 20n -}- 3, 20n -{- 7 
daje się zawsze czterema sposobami przed­
staw i ć j a k o form a (2,1,3).

Każda liczba pierwsza postaci 6n +1 daje 
się zawsze przedstawić jako forma a?2 — xy-\-y*.

Poczwórność liczby pierwszej postaci 
(m-f-1 daje się przedstawić w postaci sumy kwa­
dratu i potrójnego k w a d r a t u t y p u t. j. 4p=±=A2-[-3 B2,
liczba A jest resztą sześcienną liczbyp Liczby 
A i B określają jako najmniejsze co do wartości bezwzględ­
nej z pomiędzy czyniących zadość kongruencyom:

I/77 — 1 \ 18 / ŁzJ y—ĄA J (—q--) ! I 1 ’ A-\-B I (7 3 —yr 3 | s 0 (modp), 

gdzie y jest pierwiastkiem pierwotnym liczby p.
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Twierdzenie to znajdujemy najprzód u Jacob i’ego (Grelle II, 
De residuis cubicis etc), następnie u C a u c h y’ego (Mem. sur la theo- 
rie des nombres), Lebesgue’a (Liouville II), Sterna (Crelle 
VII; IX), Clausena (tamże V111).

Każda liczba pierwsza jednej z dwu p o- 
staciSn-j-l) 8n4~3daje się zawsze i to jednym 
tylko sposobem rozłożyć na. kwadrat i po dwój - 
ny kwadrat (Jacobi, Crelle XXX; Stern, tamże 
XXXII).

§ 9.

Liczby zespolone całkowite Gaussa. Reszty dwukwddratowe.

_ Liczba postaci a — a-\-bi, gdzie i — V—1, a, b zaś są licz­
bami wymiernemi całkowitemi nazywa się liczbą całko­
witą zespoloną Gaussa (porówn. Rozdział I, § 2), licz­
ba zaś 4-J/a2-|-ó2 — jej m o d u ł e m lub normą.

Jeżeli liczby a i b są obie parzyste, liczba zespolona nazywa 
się zespoloną parzystą; jeżeli jedna z nich jest parzy­
stą, mamy liczbę zespoloną nieparzystą; jeżeli obie 
nieparzystei—liczbą zespoloną półparzystą.

Mówimy, że liczba całkowita a jest podzielna przez 
liczbę całkowitą fi, jeżeli a=fi. y, gdzie y jest liczbą zespoloną 
całkowitą.

Jednością nazywa się każda liczba zespolona, której 
moduł jest jednością. Mamy cztery jedności: 4-1,—1, 
Cztery liczby, które otrzymujemy, mnożąc jakąkolwiek liczbę ze­
spoloną przez każdą z tych jedności, nazywają się s t o w a rzy- 
s z o n e m i.

Liczba a-\-bi nazywa się pierwotną, jeżeli a — 1 
i b, podzielone przez 4, dają równocześnie resztę 0 lub resztę 2. 
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W każdej grupie czterech liczb stowarzyszonych istnieje zawsze 
liczba pierwotna.

Liczba a-j-ćz nazywa się pierwszą, jeżeli nie można jej 
rozłożyć na iloczyn dwu liczb zespolonych całkowitych, obu róż­
nych od jedności.

Prawa zasadnicze (tak zwane euklideso­
wo) podzielności liczb całkowitych wymier­
nych utrzymują się bez zmiany i dla liczb ze­
spolonych, pod warunkiem, że liczb stowarzy­
szonych nie będziemy uważali za zasadniczo 
różne.

Każda liczba zespolona całkowita daje 
się z a w s z e—i to jednym tylko sposobe m—w y r a- 
zić jako iloczyn skończonej liczby liczb pier­
wszych.

Jeżeli liczba a jest podzielna przez liczbę fi. to norma liczby 
a jest podzielna przez normę liczby

Norma liczby jest podzielna przez samą liczbę.
Najmniejsza ze wszystkich liczb wymiernych, podzielnych 

przez liczbę pierwszą zespoloną, jest liczbą wymierną pierwszą; 
każda 1 iczba pierwsz a zespolona jest przeto 
dzielnikiem liczby pierwszej wymiernej i-to 
jednej tylko.

Norma liczby pierwszej zespolonej jest 
równa albo liczbie pierwszej albo kwadrato­
wi liczby pierwszej. W pierwszym przypadku 
mamy liczbę zespoloną pierwszą stopnia 1-go, 
w drugim takąż liczbę stopnia 2-go. W obu przy­
padkach norma jest zawsze postaci 4u-|-l.

Liczba 2 jest stowarzyszona z kwadratem liczby pierwszej 
stopnia 1-go 1—i.

Każda liczba pierwsza wymierna postaci 4n-J-3 jest liczbą 
pierwszą zespoloną stopnia 2-go.

Każda liczba pierwsza dodatnia wymierna postaci 4n-J-l 
jest iloczynem dwu liczb pierwszych zespolonych stopnia 1-go, 
niesto warzys zony ch.

Pascal. Rep. I.
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Powiadamy, że dwie liczby całkowite zespolone a, (i są 
przystaj ącemi według pewnego modułu zespolonego co, jeżeli 
a - (i jest podzielne przez co.

Łatwo rozciągnąć na liczby tu badane wszystkie twierdze­
nia (V, § 3 i 4) o kongruencyach z liczbami wymiernemi. Tak 
np. k o n g r u e n c y a:

x,n -j- «i a;n+1 +..........................= 0 (mod. m),

której spółczy uniki są liczbami zespolonemi 
całko witem i, oz — również liczbą zespoloną cał­
kowitą, nie może mieć więcej niż n pierwiast­
ków nieprzystających.

Każda liczba a-j-ZJ jest przystająca według mod »t do jed­
nej tylko liczby .r-j-yZ, gdzie x, y wybrano z dwóch szeregów:

0, 1, 2 . . . (-W- - 1); 0, 1, 2, . . . (d-1);
\ (v /

tu |m| oznacza normę liczby m, d zaś największy wspólny 
dzielnik dwu spółrzędnych liczby nz

Kombinując wszystkie wartości x z wartościami y, otrzy­
mamy razem | m | liczb zespolonych, z których każde dwie są 
nieprzystającemi; tworzą one układ zupełny reszt we­
dług modułu m.

Jeżeli m je st liczbą zespoloną pierw’szą nieparzy­
stą, /li — j ej normą, n—liczbą przez nią niepodzielną,to

3= i (mod oz).

Jest to uogólnione twierdzenie Fermata.
p---1

Jest też u 4 = mod m), gdzie q = 0, 1, 2. 3.
Reszty dwukwadratowe. Liczba n nazywa się resztą 

d w u k w a d r a t o w ą liczby zespolonej m, jeżeli jest możliwa 
kongruencya:

x* == n (mod. ni).
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Liczba zespolona n jest resztą d w u kwa­
dr a t o w ą liczby m (pierwszej zespolonej nie­
parzystej), jeżeli:

p-—1 
n 4 = 1 (mod hi),

gdzie fi jest normą liczby m.
Dla przedstawienia charakteru dwukwadratowego liczby n 

I z 77 \\ 
względem liczby m stosujemy symbol Jacobiego L---- jl ,

który oznacza liczbę jeżeli to wyrażenie jest równe -f-1, 
n jest resztą kwadratową liczby m.

Dwie liczby, przystające według mod. m, m a- 
j ą ten sam charakter dwukwadratowy.

Charakter dwukwadratowy iloczynu dwóch liczb równa się 
iloczynowi charakterów dwukwadratowych ich czynników.

Jest:

Jeżeli m = a -j- bi j e s t liczbą zespoloną pier­
wotną i pierwszą, to:

.— (a—b—bs—1) 
l4

Jeżeli m, n są dwie liczby zespolone pierwsze (bez dzielni- 
ników wspólnych prócz jedności', m zaś nieparzyste, to jest zaw- 

// n i 1sze (— ) = -k 1.\\ m //
Twierdzenie o wzajemności dla reszt dwukwadratowych 

jest następujące.
Charaktery dwu kwadratowe dwu liczb ze­

spolonych pierwotnych i pierwszych są rów­
ne, jeżeli przynajmniej jedna z liczb ==l(mod. 4); 
są równe i znaku przeciwnego, jeżeli obie licz­
by s ą =3-j-2i (mod. 4).
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Teoryę reszt dwukwadratowych utworzył Gauss (Werke II, 
Theoria residuorum biquadraticorum); potem zajmowali się nią; Ei­
senstein (Crelle XXVIII), Lebesgue (Lionville IV) i t. d. Wy­
kład jej prosty znajduje się w dziele Bach mann a („Kreistheilungs 
lelire“).

§ 6.

Liczby zespolone sześcienne całkowite. Reszty sześcienne.

Nazywamy zespoloną sześcienną liczbę posta­
ci a-\-be, gdzie £ jest pierwiastkiem sześciennym z jedności, t. j.

£=------ -------  , ai b są liczbami całkowitemi wynnernemi. Licz­

ba rt-j-ta2 nazywa się liczbą sprzężoną z poprzednią, a ilo­
czyn obu jest n o r m ą.

Nie powtarzamy tu określeń podstawowych, które są podo­
bne do określeń w paragrafach poprzedzających.

Liczba, której norma jest -j-1, jest jednością zespoloną. Jest 
tu sześć jedności zespolonych:

-j-1, “1, -j-£, — £, l-j-fc' =-- £2, —1 —£ = -j~£2.

Liczba 3 w tej teoryi nie jest liczbą pierwszą lecz iloczynem 
liczby 1—£ przez 1—£2.

Stosownie do tego, czy aĄ-le jest lub nie jest podzielne 
przez 3, liczba a-^bs ma czynnik 1—£ lub go niema.

Mnożąc liczbę daną przez sześć jedności, otrzymujemy 
liczby stowarzyszone.

Liczba nazywa się pierwotną, jeżeli spółczynnik przy 
£ jest =0 (mod. 3), a część pozostała jest = — 1 (mod. 3).

W każdej grupie sześciu liczb stowarzy­
szonych istnieje zawsze liczba pierwotna.

W obszarze liczb całkowitych sześciennych istnie j ą 
trzy gatunki liczb pierwszych:
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1. liczba 1—e, która jest dzielnikiem liczby 3.
2. liczby rzeczywiste pierwsze postaci 6w-j-5; te liczby są 

też pierwotnemi.
3. liczby zespolone pierwsze, których norma jest postaci 

6n + l.
Jeżeli m jest liczbą zespoloną pierwszą (różną od 1—e)inie 

podzielną przez m, wtedy otrzymujemy uogólnione twierdzenie 
Fermata:

i = i (mod. m),

gdzie /n jest normą liczby w, lub

n 3 — eQ (mod. m),

gdzie q = 0, 1, 2.
i»—1

Reszty sześcienne. Jeżeli n 3 = 1 (mod. m), to n jest 
resztą sześcienną liczby m (jeżeli n nie jest podzielne 
przez m). Charakter sześcienny liczby n względem m wyrażamy 
symbolem Eisensteina £~~ J •

Charakter sześcienny liczby 1 — e określa 
wzór:

L Cl-j-UE I

Twierdzenie o wzajemności dla reszt sześciennych jest na­
stępuj ące:

Jeżeli n, w» są dwie liczby sześcienne pier­
wsze pierwotne, to charakter sześcienny licz­
by n względem m równa się charakterowi licz- 
by »« względem w.

Resztami sześciennemi zajmowali się: Jacobi (Crelle, II), 
Eisenstein (tamże XXVII, XXVIII>,), Lebesgue (Liouville, 
IV) i t. d. Porów, lekcye 14 i 15 w cytowTanem dziele Bachmanna.
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Fe r m a t o w i zawdzięczamy zwrócenie uwagi analistów ua ten 
gatunek problematów liczbowych, które, złączone później w jedno 
ciało doktryny, utworzyły to, co dziś nazywamy teoryą liczb 
lub arytmetyką wyższą Pierwsze wielce ważne odkrycia 
w tej teoryi zawdzięczamy Eulerowi, który utworzył też pierw - 
szy teoryę tak zwanych skaźników (Comm. Petr. 1773) i reszt 
kwadratowych. Po Eulerze, Lagrange zajmował się wiele 
teoryą liczb i pierwszy położył podstawy teoryi ogólnej form kwadra­
towych. Później ukazały się dwa wielce ważne dzieła: „Theorie des 
nombres* L e g e n d r e’a (kol. VI), które doczekało się za życia au­
tora trzech wydań, ostatnie było w r. 1830—tu znajdujemy pierwszy 
dowód twierdzenia o wzajemności reszt kwadratowych—oraz „Disqui- 
sitiones arithmeticae“ Gaussa (Lipsk 1801), któremu zawdzięczamy, 
między innemi, teoryę zupełną form kwadratowych, jak ją wyżej 
podaliśmy.

Dzieło L e g e n d r e’a, jest rzec można, repertoryum wszyst­
kich badań, znanych, wówczas o tym przedmiocie. Gaussowi za­
wdzięczamy pierwsze studyum systematyczne o liczbach zespolonych 
i myśl pięknego wyzyskania jej celem uogólnienia, uzupełnienia i udo­
wodnienia różnych twierdzeń z teoryi liczb wymiernych.

Pomijając dla krótkości tytuły prac innych autorów: Cauchy e- 
go, Di rich let a, Kummer a, Jacob i’ego, Eisensteina, 
Kroneckera, L i o u v i 11 e’a i t. d., którzy zajmowali się teoryą 
liczb, powiemy tylko, że do najważniejszych traktatów nowoczesnych 
należą: ,,Vorlesungen über Zahlentheorie von Lejeune-Dirichlet‘‘, wy­
dane przez Dedekind a (wydanie czwarte. Brunświk 1894», gdzie 
zebrano i specyalne badania innych autorów; traktat Czebyszewa 
(przekład niemiecki Schapiry, Lipsk 1889, włoski Masseri- 
n i e’go, Rzym 1895); Theorie des nombres, Lucasa (Paryż 1891); 
wyborne dzieło „Zahlöntheorie“ Bach manna (Lipsk 1894). Kurs 
litografowany Kleina: ,,Ausgewählte Kapitel aus der Zahlentheorie“ 
1896) ma głównie na celu badanie teoryi form kwadratowych ze stano­
wiska geometrycznego.

Historyę teoryi liczb zawiera znana praca Smitha: „Report on 
the theory of numbers“ (Dzieła, Oxford, 1894).



ROZDZIAŁ XXI.

TKORYA LICZB ALGEBRAICZNYCH I LICZB PRZESTĘPNYCH

Wiadomości ogólne

Każdy pierwiastek równania algebraicznego o spółczynni- 
kach wymiernych, nazywa się liczbą algebraiczną; 
liozba ta może być rzeczywistą lub zespoloną.

Jeżeli pierwszy spółczynnik równania jest jednością, a po­
zostałe liczbami całkowitemi, mamy liczbę algebraiczną 
całko witą; w innych przypadkach mamy liczbę algebraiczną 
niecałkowitą lub ułamkową.

Liczba zespolona a-]-/?«, gdzie a i fi są liczby wymierne, jest 
przypadkiem szczególnym liczby algebraicznej, obejmującym 
znów w sobie, jako przypadek szczególny, liczby wymierne.

Mówimy, że ogół liczb tworzy ciało, jeżeli odtwarza się 
przez cztery działania zasadnicze, które możemy nazwać dzia­
łaniami w y m i e r n e m i.

Ogół wszystkich liczb wymiernych sta­
nowi ciało liczbowe.

Ogól wszystkich liczb algebraicznych 
stanowi ciało.
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Liczby wymierne całkowite odtwarzaj ą się już 
przy pomocy trzech pierwszych działań wymiernych.

Każdy pierwiastek równania, mającego pierw­
szy spółczynnik równy jednościizainnespółczyn- 
niki liczby całkowite algebraiczne, jest też licz­
bą całkowitą algebraiczną.

Pomiędzy nieskończenie wielu równaniami 
o społczynnikach wymiernych, których pierwiast­
kiem może być liczba algebraiczna, ró wnanie stop­
nia najniższego jest nieprzy wiedlnem, t. j. pierw­
sza strona jego niemadzielnikówospółczynnikach 
wymiernych.

Niechaj liczba algebraiczna 6 będzie pierwiastkiem równa­
nia nieprzy wiedlnego rzędu n-tego; utwórzmy ogół liczb typu

<p (6 ) = “h ® d* -j-  .......................-|- ^‘n—i 6’*~1 ,

gdzie x0, xlf ..., są jakiemikolwiek liczbami wymiernemi. 
Liczby ta k utworzone stanowią ciało które nie 
daje się wytworzyć w ten sam sposób z innego 
pierwiastka 6' innego równania ni eprzy wiedlnego 
stopnia różnego od n.

Takie ciało liczb nazywa się ciałem skończo- 
nem stopnia n-tego.

Można wybrać n liczb ciała Q w ten sposób, 
by każda inna liczba tegoż ciała dałasięprzez nie 
wyrazić liniowo przy pomocy spółczynników wy­
miernych. Mówimy, że te n liczb tworzy podstawę ciała/?.

Ciała /2, /2', /2", . . . , utworzone ze wszystkich pierwiast­
ków 0, 0', 6", . . . , równania nieprzywiedlnego stopnia M-tego, 
nazywają się ciałami sprzężonemi.

Jeżeli 0=99(6) jest liczbą ciała /2, to o'=9?(6') należeć 
będzie do ciała/2', i liczby co i co'będą sprzężonemi. Jeżeli 
wszystkie ciała sprzężone z ciałem /2 są identyczne z tern ciałem 
(jak to np. ma miejsce, gdy 6 jest pierwiastkiem równania dwu- 
miennego), wtedy Q nazywa się ciałem normalne m lub ciałem 
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Gralois’a. Nazwa ta, wprowadzona przez Dedekinda, 
przypomina teoryę G a 1 o i s’a rozwiązalności równań algebra­
icznych przez pierwiastniki(t.j. za pomocą równań dwumiennych).

Jeżeli €0 = 99(6^ Jest liczbą ciała 22, to iloczyn:

coco'...............99(6)99(6') . . . . 99(61““1),

gdzie 6, 6', ... , 6<w—0 są wszystkiemi pierwiastkami danego 
równania nieprzywiedlnego, nazywa się normą liczby co i ozna­
cza się przez N(co).

Norma liczby a> jest zawsze liczbą wy­
mierną.

Jeżeli co jest liczbą wymierną ciała 22, to 
i jej sprzężone są równe co i będzie 2V(co) = co”.

Jeżeli co1? co2 są dwie liczby ciała £2, to

^(cOiCOa) = 2V(coi) W(œ3).

Wyróżnikiem n liczb ciała £2 nazywa się wyznacz­
nik, utworzony z tych liczb i ze wszystkich jej sprzężonych 
w każdem z ciał £2', £2", . . . , 22("-1).

Wyróżnik jest liczbą wymierną. Jeżeli 
mamy n liczb ciała /2, to one tworzą podstawę 
tego ciała lub jej nie tworzą, stosownie do 
tego, czy ich wyróżnik nie jest lub jest zerem.

Każda liczba algebraiczna za pomocą mno­
żenia przez liczbę wymierną całkowitą, róż­
ną od zera, może być zamieniona na liczbę 
całkowitą algebraiczną.

Można znaleść nieskończenie wielu sposobami podstawę 
ciała 22, złożoną z samych liczb całkowitych i można jeszcze 
wybrać rzeczoną podstawę tak, aby wyróżnik liczb w niej za­
warty był minimum. Taki wyróżnik minimum nazywa się 
liczbą zasadniczą ciała £2 lub wprost wyróżnikiem 
ciała 22.

Jeżeli n—2, t. j. gdy równanie zasadnicze jest stopnia 2-go, 
mamy ciało kwadratowe. Liczby zespolone gdzie



506 Rozdział XX.

i = V— 1, a i b są liczbami wymiernemi, stanowią przypadek 
szczególny tego ciała. Norma liczby a-\-bi odpowiada ilo­
czynowi —bi), t. j. zwykłej normie lub modułowi liczby
zespolonej.

Liczbą zasadniczą ciała kwadratowego, utworzonego z liczb 
zespolonych wymiernych, jest — 4.

§ 2-

Podzielność liczb całkowitych algebraicznych Liczby idealne 
K u m m e r a.

Liczba całkowita a nazywa się podzielną przez liczbę 
całkowitą /3, gdy a=(iy, gdzie y jest liczbą całkowitą.

J e ż e 1 i a, fi są liczby całkowite algebra­
iczne podzielne przez /z, to a-)-//, a — fi będą rów­
nież podzielne przez tu.

Jeżeli a jest podzielne przez ż, ż podziel­
ne przez /z, to a będzie także podzielne przez p.

Jednością nazywa się każda liczba całko­
wita algebraiczna, będąca dzielnikiem licz by 
1, a więc każdej liczby całkowitej algebraicz­
nej. Każdy pierwiastek równania algebra­
icznego, którego spółczynniki skrajne są rów­
ne 1, a pozostałe spółczynniki są liczbami 
całkowite mi, jest jednością. Jedności jest 
nieskończenie wiele.

Jedności odtwarzają się za pomocą mno­
żenia, dzielenia i pierwiastkowania.

Jeżeli dwie liczby są podzielne wzajemnie 
jedna przez drugą, ich ilorazy są jedn ościa­
mi; dwie liczby nazywają się wtedy stowarzy­
sz o n e m i.
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Dwie liczby, stowarzyszone z trzecią, są stowarzyszonemi 
względem siebie.

Jeżeli a jest podzielne przez fi, każda stowarzyszona z licz­
bą a jest podzielna przez każdą stowarzyszoną z liczbą

Dwie liczby całkowite algebraiczne a, fi 
nazywają się względnie pierwszemi, jeżeli 
istnieją dwie inne liczby całkowite algebra­
iczne £, takie, że:

a £ -f- fi rj — 1 .

Jeżeli a jest pierwsze względem /?, fi pierwsze wzglę­
dem 7, to fi jest pierwsze względem fiy.

Jeżeli każda z liczb oą, ct2, • • • jes^ pierwsza względem każ­
dej z liczb /3l9 fi2, . . , to dwa iloczyny «ia2 . . . , fitfi2 ... są 
względnie pierwsze.

Każdy wspólny dzielnik dwóch liczb względnie pierwszych 
jest jednością.

Dwieliczby całkowite a, fi mają zawsze 
wspólny dzielnik, który da je się przedstawić 
w postaci:

<5 = a $ -j- fi Tj ,

gdzie £, ł] są dwie liczby całkowite; nadto <5 jest 
podzielne przez każdy wspólny dzielnik liczb a i fi.

Jeżeli dwie liczby nie mają żadnego wspólnego dzielnika, 
prócz jedności, to będą względnie pierwszemi w znaczeniu powy­
żej wskazanem.

Norma liczby a, należącej do ciała !? (patrz § po­
przedzający), jest podzielna przez a, a il oraz j est licz­
bą całkowitą, należącą do ciała!?.

Jeżeli a i// należą do ciała zaś a jest podziel­
ne przez (i, to A(a) jest podzielne przez N(fi).

Dwie liczby a, fi nazywają się przyst aj ącemi (kon- 
gruentnemi) według modułu jeżeli ich różnica jest 
podzielna przez /z; są n ie przy staj ącemi (niekongruentnemi) 
w przypadku przeciwnym.
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Liczba liczb ciała £}, nieprzystających do sie­
bie (po dwie biorąc) według modułu /z, równa się 
wartości bezwzględnej modułu /z, t. j. xV(/z). Jeżeli /z 
jest jednością, wtedy wszystkie liczby ciała 12 
przystają do zera według mod fi i jest N(fi)= -+-1.

Liczba algebraiczna /z nazywa się rozkładalną, jeżeli 
ma dzielniki różne od jedności i od liczb z sobą stowarzyszo­
nych; w przeciwnym razie nazywa się nierozkładalną. Tych 
dwu definicyj nie należy mieszać z następującemi:

Liczba całkowita fi, różna od zera, nazywa się pierwszą, 
jeżeli dwie jakiekolwiek liczby ciała Q niepodzielne przez /1, 
dają iloczyn również przez /z niepodzielny; gdy ten przypadek 
nie zachodzi, liczba fi nazywa się złożoną.

Tylko dla specyalnych ciał Q obie definicye są równoważ­
ne, t. j. że każda liczba p i er ws z a jest także nierozkładal­
ną. i odwrotnie. Tak np. ma to miejsce dla ciała liczb wymier­
nych i dla ciała kwadratowego liczb zespolonych wymiernych.

W ogólności każda liczba r oz kła dalna jest zło­
żona, lecz nie każda liczba złożona jest koniecznie 
r o z k ł a d a 1 n a.

Jeżeli dla ciała 12 oba pojęcia powyższe zle­
wają się, wtedy każda liczba rozkładalna może 
byćprzedstawiona i to jednym tylko sposobem 
jako iloczyn skończonej liczby czynników nieroz- 
kładalnych (w założeniu, że dwie liczby stowarzy­
szone nie są uważane za różne); w innych przypad­
kach rozkład liczby rozkładalnej na czynniki moż­
na uskutecznić wielu sposobami.

Dla usunięcia tej osobliwości, skutkiem której prawa eukli­
desowo podzielności mogłyby stracić wszelkie znaczenie dla liczb 
ciała £2, K u m m e r wprowadził pojęcie liczb idealnych, 
dzięki którym dawne prawa podzielności zostają przywrócone. 
Wyjaśnimy to nowe pojęcie na przykładzie szczególnym.

Niechaj będzie ciało kwadratowe £2, któremu daje początek 
pierwiastek równania 62-|-5 = O (Dedekind w dziele cyto- 
wanem). Cztery liczby całkowite
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a = 2, = 3, /z = 1 — 6, -p = 1 —6

są nierozkładalne, lecz zachodzi pomiędzy niemi związek a^=p,r\ 
stąd wynika, że a nie jest liczbą pierwszą, ponieważ iloczyn 
dwu liczb /z, v jest podzielny przez a.

Gdyby a, fi, /j, v były wszystkie liczbami wymiernemi, wte­
dy z poprzedzającego związku wynikałoby:

a = a1Ct2, /? —/?j/52, v = a20l,

gdzie są względnie pierwsze, a2 i /?2 również względnie 
pierwsze; każda zaś liczba co podzielna przez a, czyniłaby zadość 
kongruencyi :

aa) = 0(mod/z); rco = O(moda).

W przypadku, gdy powyższego rozkładu nie można istot­
nie wykonać, przypuśćmy, że został on wykonany idealnie 
i wprowadźmy liczby idealne a15 a2, /?2, określone w ten
sposób, że każda liczba, podzielna przez alf czyni 
z ad o ś ć j e d ne j z d w u poprzedzających kongruen- 
cyj. W naszym przypadku liczby idealne a15 oa, /Ą, /?2, 
których nie można faktycznie utworzyć, będą określone wpowyż- 
szem znaczeniu przez kongruencye:

(1 + 6) co === 0 (mod 2), . . . . (otj),

(1 — 0) co = 0(mod3), .... (a2),

(1 — 0) co O (mod 2), . . . . (^),

(1 — 6) co = 0 (mod 3), . . . . (/?2),

Wprowadziwszy liczby podobne, znajdziemy, że liczby po­
przedzające a, fi, fi, v, występujące jako nierozkładalne, rozkła­
dają się obecnie w ten sposób:

«=2 = «,2; /1 = 3 = /),/},,

/< = i —®= «ift; r = 1 -f- o = a,/),,
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można następnie okazać, że liczby a,, Ą,’ nie są ideal- 
nemi pier wszem i.

Wprowadzenie liczb idealnych przywraca zupełnie, jak 
powiedziano, ciału wszystkie zwykle prawa podzielności; wpro­
wadzenie to jest przeto dogodnem do utworzenia teoryi podziel­
ności, służącej we wszystkich przypadkach.

Powiemy jeszcze, w jaki sposób rozumiał K. u m m e r 
wprowadzenie tych nowych liczb.

Niechaj będą dwa przecinające się koła na płaszczyźnie; 
prosta, przechodząca przez ich punkty wspólne, nazywa się 
osią pierwiastną; jest ona miejscem punktów takich, że 
styczne do dwóch kół przez taki punkt przechodzące (aż do pun­
któw styczności) są równe. Jeżeli koła nie przecinają się, wtedy 
nie stosuje się pierwsze określenie osi pierwiastnej, lecz można tę 
oś określić jako miejsce geometryczne punktów, dla których zacho­
dzi własność druga.

Podobnie rzecz się ma z pojęciem liczb idealnych ; wycho­
dzimy z przypadku, w którym liczby cą, /?j. a2, /?2 istnieją, znaj­
dujemy własność tych liczb, wyrażoną za pomocą wyżej poda­
nych kongruencyj i rozciągamy tę własność i na ten przypadek, 
w którym liczby nie istnieją. W ten sposób indywidualizujemy 
utwory, które można uważać za uogólnienie liczb, istniejących 
faktycznie w przypadku pierwszym.

Pojęcie liczb idealnych zostało wprowadzone przez K u m- 
m e r a w przypadku specyalnym równania podziału koła (Crelle 
XXXV, XL, LIII, Akad. Beri. 1856).

Liczbami algebraicznemi i ideałami zajmowali się: Dirichlet 
(Akad Berlin. 1840, 1841, 1846), Dedekind (Ueber die Anzahl der 
Ideal-Classen“, Brunświk 1877, „Ueber der Zusammenhang der Théo­
rie der Ideale“ etc. Rozprawy getyngskie, XXIII, „Sur la théorie des 
nombres algébriques*l, Bull. Darboux (I).XI,(2) 1,1877; Fuchs (Crelle 
LXV), Selling (Zeitschr. fur Math. 1865); Zołotarew (Lionville, 
1880); Sochocki (Prace mat fiz. V, Warszawa, 1895). Wykład zu­
pełny całej teoryi w cytowanem dziele Dirichleta-Dedekinda 
i w rozdz. XVII dzieła ,. Kreis theilung“ Bach manna. Ważny refe­
rat o teoryi liczb algebraicznych, zawierający nadto wskazówki histo­
ryczne i bibliograficzne ogłosił Hilbert w tomie V Rocznika stówa- 
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rzyszenia niemieckiego matematyków. Wykład teoryi liczb algebra­
icznych. funkcyonalów i ideałów znajdujemy w Algebrze H. Webera 
t. II, Brunświk 1899.

§ 3.

Liczby przestępne

Jeżeli pomiędzy liczbami algebraicznemu rozważamy tylko 
rzeczywiste, to można zapytać, czy każda liczba rzeczy­
wista, w ogóle niewymierna, jest liczbą algebraiczną, t. j. czy 
może być pierwiastkiem równania algebraicznego o spółczynni- 
kacli wymiernych. Odpowiedź na to pytanie jest przecząca: 
istnieją liczby n i e a 1 g e b r a i c z n e czyli przestępne. 
Pierwszy Lionville dowiódł istnienia liczb takich (Comptes 
Rendus 1844, Journ. de Lionville XVI, 1851); potem pytaniem 
tern zajmował się ponownie O. Cantor (Grelle LXXVII, 
1873). Wykład dowodzenia C a n t o r a znaleść można w świe- 
żem dziełku Kleina „Vorträge über ausgewählte Fragen der 
Elementargeometrie“, Lipsk, 1895.

W związku z teoryą liczb przestępnych jest pytanie, czy 
liczba n (stosunek okręgu koła do średnicy) i liczba e (podstawa 
logarytmów naturalnych) dają się wykreślić za pomocą kon- 
strukcyi geometrycznej elementarnej, t. j. za pomocą linijki 
i cyrkla. Z pi er wszem z tych pytań wiąże się sławne zagadnie­
nie o kwadraturze koła

Dowiedziono, że liczby ji i e są nietylko niewymiernemi, 
lecz są i przestępnemi. t. j. nie mogą być pierwiastkami równań 
algebraicznych o spółczynnikach wymiernych, stąd już wypływa 
niemożliwość powyższej konstrukcyi geometrycznej.

Niewymiernośó liczby n udowodnił Lambert (Vorläufige 
Kenntnisse für die so die Quadratur des Cirkels suchen, 1770). Legen­
dre wykazał, że liczba n1 jest niewymierna. Hermite w sławnej 
rozprawie „Sur la fonction exponentielle“ (Comptes rendus 1873) do- 
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wiódł, że liczba e jest przestępną Pod wpływem rozważań Hermi- 
te’a Lindemann w 1882 (Math. Ann. XX) udowodnił, że liczbą 71 

jest przestępna. Uproszczenie dowodów tych autorów zawdzięczamy 
Weierstrassowi (Beri. Berichte 1881), Bachmannowi (Vorle­
sungen über die Natur der Irrationalzahlen, Lipsk 1892), Hilberto- 
wi, Hurwitzowi i Gordanowi (Gött. Nachr. 1893, Comptes 
rendus 1893, Math. Ann. XLIII, Prace mat.-fiz V), Mertensowi 
(Prace mat -fiz. IX).

§ 4.

Liczba Ti.

Liczba ta jest, jak wiemy, jest nietylko niewymierna, lecz 
i przestępna. Nazywamy ją niekiedy Indolfiną (liczbą Lud o 1- 
plia) od imienia matematyka (XVII wieku), który ją obli­
czy! z 35 cyframi dziesiętnemu Euler podał 100 cyfr (In- 
troductio etc. 1748). De Lagny — 112, Richter — 330, 
S h a n k s kolejno: 440, 530, 707 (Proceed. Royal Society, XXI), 
Wartość liczby ti z 40 cytrami dziesiętnemi jest:

Ti14 159 26535 89793 23846 26433 83279 50288 41971 . . .

W papyrusie R h i n d a (2000 lat przed Chr.) wartość tc

(16
-q-1 = 3, 16 . . . Wartościami przybliżonemi <7 /

liczby ti są ułamki:

22 333 355 103993 104348 208341 312689
7 1 105 ’ 113"’ 33102 ’ 33215 ’ 66317 ’ 99632

Najważniejszemi wzorami do obliczania wartości liczby ti 
są następujące:
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T ~ 1 “ T + “5"~ T +

n _ 1 1 1 1.3
6 ~ 2 ' 2 ' 3.2*~' 2.4

■y = .......... (Wzór Wallisa),

^-~1----- ------------------ ---------------- (Wzór Leibniza)

1 
9 .............

1 ! 1.3.5 1
5.2s + 2.4.6 7.2’ ..........

21/2 3 5 7 9 11 .............

Ł-=1 + l+ X_X_X_£ + 
12 r3 7 9 11 .............

tz _ _ 1 £ _ 1 1
21/3 5 + 7 11-13 .............

Jl — i _l_ /_LV_|_ |—1—r_i_ (—LdL_V_i_ 
n ^\2/^\2.4/^(2.4.6/ .̂...........

Co do innych szeregów, utworzonych z kwadratów, sześ­
cianów lub potęg wyższych odwrotności liczb naturalnych, a któ­
re wyrażają się przy pomocy liczby patrz Roz;dz. IV, § 2.

O liczbie e, o liczbie Eulera, i t. d. patrz Rozdz. XVIII.

Pascal. Кер. I. 33



ROZDZIAŁ XXII.

RACHUNEK PRAWDOPODOBIEŃSTWA.

§ 1.

Wiadomości ogólne. Prawdopodobieństwo skutków i prawdopodobień­
stwo przyczyn.

Jeżeli nie są dane wszystkie przyczyny zachodzenia zja­
wiska, lecz niektóre z tych przyczyn są nieznane lub niemożliwe 
do wykrycia, wtedy oczekiwać można zajścia zjawiska raczej je­
dnym niż innym sposobem. Każdy ze sposobów, w jaki zjawisko 
zachodzić może, nazywa się jednym z przypadków możli- 
w y c h, a liczba wszystkich tych przypadków może być skoń­
czona i mała, skończona i bardzo wielka, wreszcie nieskończona.

Wszystkie te przypadki możliwe można łączyć w grupy, 
zbierając w każdej grupie wszystkie te, które dla pewnego po­
wodu chcemy lub możemy uważać za równoważne. Ogół 
wszystkich przypadków, objętych w grupie, uważamy za jed no 
zjawisko. A więc każda grupa charakteryzuje zjawisko. 
Jeżeli np. z urny, zawierającej gałki białe i gałki czarne, wycią­
gamy jednę gałkę, to jest rzeczą naturalną uważać za równo­
ważne dwa zdarzenia wyciągnięcia po gałce białej, chociażby 
za każdym razem innej. Mówimy wtedy, że w obu przypadkach 
zachodzi to samo zjawisko.
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Liczba wszystkich przypadków, zawartych w grupie, sta­
nowi liczbę przypadków sprzyjających zdarzeniu 
zjawiska, scharakteryzowanego przez tę grupę. Jeżeli w urnie 
poprzedzającej są 4 gałki białe i jest 10 czarnych, to liczba przy­
padków sprzyjających wyciągnięciu gałki białej jest 4.

Nazywamy prawdopodobieństwem matema- 
ty cznem zdarzenia zjawiska stosunek liczby przy­
padków sprzyjających do liczby wszystkich 
przypadków możliwych, w założeniu, że wszystkie 
przypadki możliwe uważamy za równomożliwe.

Przez to ostatnie zastrzeżenie rozumiemy, że w zdarzeniu 
zjawiska nie uczestniczą przyczyny zakłócające, albo—inaczej 
mówiąc—że przyczyny działające są takie, iż nie możemy zna- 
leść żadnego powodu, dla którego zjawisko miałoby zachodzić 
raczej według jednego przypadku możliwego niż według dru­
giego. Tak np. jeżeli w poprzedzającym przykładzie jedna 
z gałek ma rozmiary inne niż pozostałe, to rzecz jasna, iż sta­
nowi to nie małą przyczynę zakłócającą, z powodu której nie 
możemy już stosować wzorów prawdopodobieństwa matema­
tycznego.

Z powyższego określenia wynika, że prawdopodo­
bieństwo przedstawia się zawsze jako ułamek, 
zawarty między 0 a 1 (włączaj ąc granice). Je­
żeli prawdopodobieństwo jest zerem, mamy 
wtedy niemożliwość zjawiska; jeżeli jest równem 
1, mamy pewność zachodzenia zjawiska,

Jeżeli podzielimy grupę wszystkich przypadków sprzyja­
jących na pewną liczbę podgrup A, B, . . . , to jest oczywistem, 
że toż zjawisko zdarzy się bez względu na to, czy zachodzi który 
z przypadków sprzyjających grupy A, czy który z przypadków 
grupy B i t. d. Prawdopodobieństwa zachodzenia zjawisk w pod­
grupie A lub B i t. p., nazywają się prawdopodobień­
stwami cząstkowem i, a prawdopodobieństwo samego 
zjawiska nazywa się wtedy prawdopodobieństwem 
całkowite m.

Prawdopodobieństwo całkowite jest sumą 
prawdopodobieństw cząstkowych.
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Niechaj będzie dwa lub więcej zjawisk (niezależnych) za­
chodzących równocześnie. Np. niechaj będą dwie urny: jedna 
z gałkami białemi i czarnemi,' druga z gałkami czerwonemi i zie­
lonymi; mamy wyciągnąć jednę gałkę z urny pierwszej i jednę 
z urny drugiej. Zjawisko, wynikające z kombinacyi pierwszego 
i drugiego zjawiska, nazywa się zjawiskiem złożone m.

Prawdopodobieństwo złożone równa się 
iloczynowi prawdopodobieństw pojedyńczych 
zjawisk składowych.

Zagadnienia o prawdopodobieństwach dzielą się na dwie 
kategorye: zagadnienia o prawdopodobieństwie skut­
ków i zagadnienia o prawdopodobieństwie przy­
czyn; albo inaczej, zagadnienia o prawdopodobień­
stwie a posteriori i zagadnienia o prawdopodo­
bieństwie a priori. W zagadnieniach pierwszej kategoryi 
rozważamy tylko prawdopodobieństwa tego, czy zachodzą lub nie 
skutki przyczyn ustalonych. W zagadnieniach drugiej katego­
ryi wiemy, że zaszło w pewien sposób jedno zjawisko lub więcej 
zjawisk, które można uważać jako zależne od tej samej przy­
czyny, i pytamy, w jaki sposób wyznacza się prawdopodobień­
stwo, że przyczyna tego zjawiska jest raczej ta niż inna pomię­
dzy przyczynami, określonemi jako możliwie, oraz jaka pomiędzy 
temi przyczynami jest najprawdopodobniejsza.

Najprostszy tego przykład jest następujący: Niechaj bę­
dzie n urn, zawierających gałki białe i gałki czarne; pierwsza 
niechaj zawiera gałek białych i czarnych, druga u3 białych 
i b2 czarnych i t. d. Wyciągnięto gałkę białą i niewiadomo 
z jakiej urny. Jakie jest prawdopodobieństwo, że wyciągnięto 
ją z urny pierwszej; jakie, że wyciągnięto ją z drugiej?

Do zagadnień o prawdopodobieństwie przyczyn należy tak 
nazwana teorya błędów. Pewną wielkość wymierzono 
pewną liczbę razy i otrzymano tyleż różnych rezultatów: jaka 
jest najprawdopodobniejsza, t. j. mająca największe 
prawdopodobieństwo miara tej wielkości?

Objaśnimy jeszcze pojęcie nadziei matematycz­
nej i wartości prawdopodobnej.
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Jeżeli gracz wygrywając, może pozyskać sumę A i jeżeli 
prawdopodobieństwo jego wygranej wynosi p, wtedy mówimy, że 
iloczynpA jest jego nadzieją m a t e m a t y c z n ą. Jeżeli może 
wygrać sumę A' i jeżeli prawdopodobieństwo tegozdarzeniajestp’, 
sumę A" z prawdopodobieństwem wygranej p" i t. d., wtedy jego 
nadzieją matematyczną będzi« j/A-ł- p"A"-j-... Aby gra była 
sprawiedliwą, jest koni.ęęznem, by nadzieje 
matematyczne wszystkich graczy były rów­
ne. Nadzieja matematyczna gracza równa się 
jego stawce, t. j. sumie, którą on do gry wkłada

Wartością prawdopodobną wielkości A jest na­
dzieja matematyczną gracza, który mając prawdopodobieństwo 
p wygranej, ma pozyskać sumę równą A; jeżeli wielkość-A może 
przyjmować wartości A', A”, . . . , wtedy wartością prawdopodo­
bną ilości A jest p'A'-\-p"A"-\-........

W przedmiocie nadziei matematycznej sławnem jest zagad­
nienie, zwane paradoksem petersburskim, podane 
przez Daniela B e r n o u 11 i’egn. Dwaj gracze A i B grają na 
następujących warunkach: A wyrzuca w powietrze monetę: jeśli 
ta padnie na ziemię stroną z góry umówioną, to B płaci mu 
sumę 1 fr. i gra jest skończona; jeżeli przeciwnie moneta padnie 
stroną przeciwległą, wtedy gra trwa dalej. Jeżeli po powtórnem 
rzuceniu moneta padnie na ziemię stroną umówioną, B płaci 2 fr. 
a jeżeli padnie stroną przeciwległą, gra trwa dalej. Za trze­
cim razem osoba B zapłaci 4 fr. jeżeli moneta padnie na ziemię 
stroną umówioną i t. d. W dalszym przebiegu gry pod temi wa­
runkami B płacić będzie odpowiednio 8, 16, . . . fr. Zacho­
dzi pytanie, jaką stawkę powinna osoba A postawić, aby gra 
była sprawiedliwą, albo inaczej, jaka jest nadzieja matematyczna 
gracza J. Rachunek, według powyższej zasady wykonany, pro­
wadzi do wyniku, że n a d z i e j a matematyczna oso­
by A jest nieskończona.
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§ 2-

Prawdopodobieństwo skutków. Twierdzenie Jakóba B er nou //i'ego. 
Prawo wielkich liczb.

Jeżeli prawdopodobieństwem pewnego 
zdarzenia jest p, a prawdopodobieństwem zda- 
r z eni a przeciwnego jest q i jeżeli robimy p prób 
w tych samych warunkach, to prawdopodo­
bieństwo, aby zdarzenie pierwsze powtórzyło 
się n razy (niezależnie od porządku) wynosi:

------------------- nP—”n ! (/z—n)l 1 '

Jeżeli wyznaczymy n tak, aby to prawdopodobieństwo było 
maximum, znajdziemy:

Wartością najprawdopodobniejszą liczby n 
jest liczba całkowita, zawarta pomiędzy pp—q 
i pp-\-p; wartością najprawdopodobniejszą licz­
by p—n liczbą całkowitą, zawartą pomiędzy 
pq~q i To prowadzi do wniosku: Kombinacyą,
mającą największe prawdopodobieństwo, jest 
ta, w której zdarzenia ukazują się w liczbie 
proporeyonalnej do ich prawdopodobieństw.

Otóż twierdzenie B e r n o u 11 i'ego orzeka, że powiększa­
jąc liczbę prób, dojdziemy do tego, iż zachodząca kombinacya 
zbliża się do tej właśnie, która ma największe prawdopodobień­
stwo. Jeżeli zastosujemy wzór Stir linga:

. r !lim ---------- ------ <= 1 ,
I— cc c rrrV2rtT 
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znajdziemy, że prawdopodobieństwo, aby zdarze­
nie o prawdopodobieństwie p powtórzyło się 
pp razy w p próbach (prawdopodobieństwo maximum) 
wynosi:

__ £
1 2nppq

To prawdopodobieństwo maximum dąży 
zatem do zera, gdy liczba p prób rośnie n i e - 
ograniczenie. Tem bardziej zatem dążyć bę­
dzie do zera dla rosnącego p prawdopodobień­
stwa, aby liczba n (t. j. liczba razy powtórzenia się zda­
rzenia) była pewną liczbą oznaczoną, różną od pp.

Nazywamy odchyleniem bezwzględnem różnicę 
pomiędzy wartością liczby n a wartością najprawdopodobniej­
szą tej liczby, t. j. pp, i kładziemy h—pp—n; odchyleniem 

w z g 1 ę d n e m nazywamy stosunek .
/z

Prawdopodobieństwo, aby zdarzenie sprzyjające zachodzi­
ło n razy, t.j., aby odchylenie równało się li, wynosi przybliżenie:

1 --7——...........  ifiPQ
f2nppq

jeżeli założymy, że są jest dostatecznie małe. Liczba

h z natury swej jest liczbą całkowitą, dodatnią lub ujemną; 
w rachunkach wszakże bywa dogodnem zastępować ją przez 
zmienną ciągłą, mogącą przyjmować wszelkie wartości możliwe. 
Mamy wtedy: prawdo podobieństwo odchylenia, zawartego po­
między —a i 4 a daje wzór:

1 ht
- e dh,

b2n ppq J

które—mu kładac—-—-....... = t — można nadać postać :
V 2 ppq
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2 V2p.7J<?
e-ltdt.

Jeżeli powiększamy liczbę /z prób i pozostawiamy stalą 
liczbę a (granicę wyższą odchylenia), wtedy prawdopodobień­
stwo, aby odchylenie było mniejsze od a, dąży do zera; jest to 
więc dążenie do pewności, że odchylenie powinno przewyższać 
jakąkolwiek liczbę a; innemi słowy, przy powiększaniu liczby p, 
zwiększa się bez granic odchylenie bezwzględne. Powiększając 

. się, powiększa się wszakże tak, że jego stosunek do /z, t. j. , 
/z 

czyli odchylenie względne dąży do zera. Twierdzenie to w poniż­
szej łatwiejszej postaci nazywa się twierdzeniem Ber­
no u 11 rego.

Gdy p rośnie nieograniczenie, t. j. gdy powiększamy nie- 

ograniczenie liczbę prób, stosunek ---- , gdzie n jest liczbą przy­
zb

padków, w których zachodzi zdarzenie o prawdopodobieństwie p,
Tl dąży do zlania się z samem prawdopodobieństwem p, t.j. lim— =p.
/z

Tak np. gdy wyciągamy gałkę z urny, zawierającej gałkę 
czarną i dwie białe, kładziemy do urny gałkę wyciągniętą i zno­
wu powtarzamy toż samo wielką liczbę razy, to liczba razy, 
w których wyciągnięto gałkę białą, jest przybliżenie rów­
na podwójnej liczbie razy, w których wyciągnięto gałkę białą.

Twierdzeniem, które można uważać za ogólniejsze od 
twierdzenia Bernoulli’ego i z którego to ostatnie wypływa 
jako wniosek, jest t. zw. twierdzenie o średniej arytme­
tycznej. Niechaj pewna wielkość może mieć wartości 2,, ż2,...,żr 
i niechaj prawdopodobieństwami tych wartości możliwych będą 
Pi, Pi, ■ • ■, Pr- Według definicyi (§ 1), wartością prawdopodobną 
tej wielkości ] est Z]-f-p2ż2-h ...+ż/-= F. Czynimy /z prób 
i otrzymujemy raz wartość zx (która jest jedną z wartości Z) 
potem wartość z* (która jest znowu jedną z wartości 2) i t. d. 
Średnia arytmetyczna tych wartości, t. j.:
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■ /z . , ..

gdy (u rośnie, dąży do wartości prawdopodobnej V, t. j. 
lim (Jf—7)2= 0. ....... :
7—00

Załóżmy w szczególności, że r — 2; dla ustalenia myśli 
przyjmijmy nadto, że stajemy w warunkach twierdzenia B e r- 
n o u 1 li’ego, t. j. wyobrażamy sobie zdarzenie o prawdopodo­
bieństwie p i zdarzenie przeciwne o prawdopodobieństwie q, tak 
źe p-j~</ = 1 (biorąc przykład zwykły, wyobrażamy sobie, że 
w urnie jest a kul białych i b kul czarnych, tak że a:b—p:q). 
Tu wartości możliwych jest dwie: zdarzenie zachodzi lub nieza- 
chodzi, t. j. zachodzi zdarzenie przeciwne. Aby wyrazić zada­
nie w liczbach, musimy mieć wartości na i ż2, t. j. ustalić, 
która liczba odnosi się do zdarzenia o prawdopodobieństwie p, 
która do zdarzenia przeciwnego. Gdyby szło np. o gracza, to 
liczba 2, odpowiadałaby stawce gracza, który wygrywa, gdy za­
chodzi zjawisko o prawdopodobieństwie q, i odwrotnie. Warto­
ścią tedy prawdopodobną jest 4* </22 Dla prostoty przyjmij- 
my ją za zero, t. j. weźmy 2] —q, 22 = —p. Wtedy wzór twier­
dzenia poprzedzającego staje się wprost: lim J/2=0i należy tylko

|X=OO 
wyznaczyć J/. Niechaj w p próbach powtarza się n razy zdarzenie 
o prawdopodobieństwie p, a więc p—n razy zdarzenie przeci­
wne. Ponieważ nadajemy wartość liczebną q każdemu zda­
rzeniu pierwszej kategoryi. wartość liczebną — p każdemu zda­
rzeniu drugiej, to średnia arytmetyczna otrzymanych wartości 
będzie:

M = n'1 ~ = n—pp _ h _
p p ~ p '

a więc średnia staje się tem, co nazywamy odchyleniem 
względnem i na tem właśnie polega twierdzenie Ber­
no u 1 1 i’ego t

To rozważanie ustanawia związek pomiędzy teoryą twier­
dzenia B e r n o u 11 i’ego a teoryą błędów, którą poda- 
jemy w paragrafie następnym.
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Nazywamy wartością prawdopodobną odchylenia 
lub kwadratu odchylenia sumę iloczynów wartości bezwzględnej 
każdego odchylenia lub jego kwadratu przez prawdopodo­
bieństwo samego odchylenia. Te wartości prawdopodobne przed­
stawiają od powiednie całki:

2 __ <
r 2 nppq J

Ał 

he - dli
1

V2nppq
A2 e .

Wartość prowdopodobna kwadratu odchylenia po p próbach 
wynosi ppq-, wartość prawdopodobna samego odchylenia wynosi:

V%ppq
l n

= 0,79789 V ppq,

wielkość tę nazywamy odchyleniem średniem, Wynika 
stąd :

Stosunek wartości prawdopodobnej kwadratu zboczenia do 
kwadratu wartości prawdopodobnej samego zboczenia bezwzględ­
nego równa się tt:2.

Jeżeli wartość powyższej całki uczynimy równą 4, znaj- 
dziemy wartość odchylenia 0, 4760363F2/zpę, o prawdopodo­
bieństwie nazywamy je odchyleniem prawdopodo- 
bnem. Stosunek odchylenia prawdopodobnego do średniego 

jest stały i równy 0,8463. Odchylenia tak prawdopodobne jak 
i średnie, są proporcyonalne do pierwiastku kwadratowego z licz­
by prób. Prawdopodobieństwo, aby w p próbach odchylenie było 
mniejsze od a, wyraża się całką określoną, której granicą niższą jest 

zero,wyższa zaś zależy od; jeżeli granicę wyższą oznaczymy

przez t, otrzymamy całkę, którą Gauss oznacza symbolem6(ż). 
Jest przeto niezbędnem utworzenie tablicy wartości tej całki 
określonej, tak, aby można było dla danych wartości a i p obli­
czać prawdopodobieństwo. Dajemy tę tablicę na końcu roz­
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działu. Jeżeli powiększamy —— , to wartość całki szybko dąży 
} (JL

do jedności.
Prawo wielkich liczb Poissona (Comptes ren- 

dus 1835) jest próbą uogólnienia prawa Bernou lli’ego wprzy- 
padku, gdy prawdopodobieństwo p w ciągu prób jest zmiennem.

§ 3.

Prawdopodobieństwo przyczyn. Teorya błędów.

Najważniejszem zagadnieniem w teoryi prawdopodobieństwa 
jest zagadnienie teoryi błędów lub metody naj­
mniejszych kwadratów, utworzone przez Gaussa 
(Theoria motus 1809), jakkolwiek ślady tegoż znaj dujemy już uL e- 
g e n d r e'a (Nouv. meth. pour la determ. des orbites des cometes 
Paryż 1806)

Jeżeli uskuteczniamy pomiary jednej i tej samej wielkości 
w tych samych warunkach, to można przyjąć zasadę, że najod­
powiedniejszą wartością jest wartość t. z. średnia, która jest 
funkcyą symetryczną wartości i ma tę własność, iż staje się 
równą /r, gdy wszystkie wartości uczynimy równemi Ic. Średnich 
jest nieskończenie wiele; najprostszą z nich jest średnia 
arytmetyczna, t. j. stosunek sumy wielkości do ich liczby. 
Gauss przyjął postulat następujący:

Jeżeli uskuteczniamy pomiary jednej i tej samej wielkości 
w tych samych warunkach, to wartością naprawdopodobniejszą 
mierzonej wielkości jest średnia arytmetyczna wartości, otrzy­
manych z pomiarów.

Niektórzy matematycy starali się udowodnić postulat 
Gaussa, przyjmując inne postulaty bardziej bezpośrednie, lecz 
nie zdajesię, by te różne dowody (En cke, Schiaparelli it.d.) 
były wolne od zarzutów; zresztą nie twierdzimy bynajmniej, że 
postulat powyższy należy przyjąć za matematycznie pewny. Patrz
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np. dyskusye o tym przedmiocie w najnowszych traktatach Ber­
trand a i P oin carego oraz uwagi, zawarte w cytowanych 
niżej rozprawach Wł. Gosiewskiegoiw pracy C z u b e r a. 
Niektórzy (jak Bessel i inni) usiłowali uzasadnić doświad­
czalnie zasadę Gaussa., , ., i .-

, Godnem jest uwagi, że jeżeli założymy, iż błędy pbserwa- 
cyi są dostatecznie małe, to wszelka średnia da zawsze wartość, 
zawartą pomiędzy granicami obserwacyi, a wartości wszystkich 
średnich nie wiele wzajemnie się różnią.

. Średnia arytmetyczna ma własność osobliwą: Jeżeli 
xx, x2,...,xfl są wartości,otrzymane z // pomiarów i jeżeli e2,... £|X 
oznaczają błędy, t. j. różnice pomiędzy temi wartościami a śred­
nią x — -i- 4 x2 + . . . x/l}, to suma kwadratów b ł ę-

d ó w jest minimum. Jeżeli zamiast x weżmiemy inną ja­
kąkolwiek liczbę, to suma będzie miała zawsze wartość większą. 
Ta własność charakteryzuje średnią arytmetyczną.

Jeżeli przyjmiemy zasadę średniej arytmetycznej, t. j. że 
ona przedstawia wartość najprawdopodobniejszą 
wartości prawdziwej wielkości mierzonej, to znajdziemy, iż 
prawdopodobieństwo, aby różnica pomiędzy 
tą wartością a wartością prawdziwą w i e 1 k o- 
ś c i zawierała się pomiędzy /«0 i h{, wyraża się 
przez całkę:

a,

gdzie k jest pewną stałą. Podobnież wartość całki

a kaO (' 2 ('
- e dh = e~'dt 0 (k, «) 

lór J
o o

wyraża prawdopodobieństwo, że ta sama różnica 
(t. j. błąd, który popełni a my, przyj mując wartość śre­
dnią arytmetyczną), jest co do wartości bezwzględ­
nej mniejsza od a.
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Prawo, przedstawione przez ten wzór, nazywa się pra ­
wem błędów.. Gdybyśmy za wartość najprawdopodobniej­
szą przyjęli wartość różną od średniej arytmetycznej, mielibyśmy 
inne prawo błędów.

W teoryi błędów znajduje tedy, jak widzimy, zastosowa­
nie funkcya 0, o której była mowa w § poprzedzającym.

Błędem prawdopodobnym jest ten, którego pra­
wdopodobieństwo jest 1 .

Stała k jest odwrotnie proporcyonalna do błędu prawdopo- 
dobpego 2, jest mianowicie /d — O, 476936 .... Stała k nazywa 
się zwykłe miarą dokładności o'bserwacy i. Dokła­
dność jest wprost proporcyonalna do pierwiastku kwadrato­
wego z liczby obserwacyj.

Po ustanowieniu prawa błędów, określamy, podobnie jak 
w §§ 1 i 2. w a r t o ś ć prawdopodobną b ł ę d u jako sumę 
iloczynu wszystkich możliwych wartości błędów przez odpo­
wiednie prawdopodobieństwo; wartość tę prawdopodobną 
błędu (której nie należy mieszać z błędem prawdopodobnym 2) 
przedstawia całka:

oo
2 k f 1-^=~\ he-'-'1'2 dh = —,

1 71 ./ k IG
O

a wartości prawdopodobne kwadratu, sześcianu it.p. 
błędu przedstawiają odpowiednio całki:

91- r 1

]/ttJ
U

oo

/Pe-W dh —
3 

4/r*

Wzory te są bardzo ważne, albowiem przy ich pomocy oraz 
przy pomocy twierdzenia o średniej,podanego w § poprzedzającym, 
możemy obliczać wartość k i równocześnie sprawdzać dokład-
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ność obserwacyj. W samej rzeczy, jeżeli przypomnimy sobie, 
że przy wielkiej liczbie /z. prób średnia otrzymanych wartości 
dąży do wartości prawdopodobnej i jeżeli przez s2, £3, ozna­
czymy odpowiednio sumę wartości bezwzględnych błędów 
£j, e2, ■ • • ■> kwadratów, sześcianów i potęg czwartych,
otrzymamy wzory przybliżone:

1 «2 1 S‘3 _  1 s4 3
k]f'n ’ 2/£2 ’ fi ~k*Vn ' P ~~ W ’

które mogą służyć do wyznaczenia liczby k i do wzajemnej kon­
troli. Z wzorów tych otrzymują się następujące:

S2 6’3 «4
n 31 n

= 31,
n 3ti2

*1 \2 “ 2 ’ / sl\3 / 51 \4 4
, n 1 \ fi ! \ n /

które doświadczalnie winny sprawdzać się dokładnie. Jeżeli 
tedy przy danych obserwacyach nie spełniają się, to pozostawiają 
słuszną wątpliwość co do czynionych obserwacyj i ich wyni­
ków. Pierwszy z tych wzorów wyraża twierdzenie następu­
jące: Stosunek średniej kwadratów błędów do kwadratu ich 
średniej dąży przy wzrastaniu liczby obserwacyi do połowy 
liczby jt.

Osobliwym jest fakt, że podobne prawo zdaje się rządzić 
zachodzeniem zdarzeń, których nie można uważać za przypad­
kowe. Tak np. pomiędzy 10000 logarytmami tablic o 10 cyfrach 
dziesiętnych, znaleziono, że siódma cyfra dziesiętna jest zerem 
990 razy, jednostka 997 razy, dwójka 993, czwórka 1012 i t. p. 
Jeżeli do tych liczb zastosujemy w pewien sposób pierwszy 
z powyższych wzorów znajdziemy 1, 561 . . . , t. j. liczbę bardzo 

bliską liczby -g- — 1, 570 .... Przykład ten podaje Bertrand 

(Probab. Paryż 189).
Podamy jeszcze jedno ważne twierdzenie:

Uskuteczniamy pewien pomiar, dzielimy go na r części i zmierz­
my każdą z nich, uwzględniając odpowiednie poprawki, następ­
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nie dodajemy do siebie wyniki. Jest oczywistein, że im większe 
będzier, tern mniej sza będzie dokładność miary całkowitej; zacho­
dzi tu twierdzenie, przewidziane przez Fouriera.

Dokładność pomiaru całkowitego, złożo­
nego z r pomiarów cząstkowych, jest odwrot­
nie proporcyo na Ina do pierwiastka kwadra­
towego liczby r.

Tablica wartości całki 6($) Gaussa.

t 6(0 t 6(0

0,o 0,0000000 2, 0 0,9953223

0,1 0,1124630 2,1 0,9970205
0,2 0.2227025 2,2 0,9981372

0, 3 0,3286267 2,3 0,9988568
0,4 0,4283922 2,4 0, 9993115
0,5 0,5204999 2,1 0,9995930
0, 6 0,6038561 2,6 0,9997640

0,7 0,6778010 1 2,7 0,9999657

0,8 0,7421010 2,8 0,9999250

0,9 0,7969082 2,9 0,9999589

1,1 0,8427' 08 3,0 0, 9999779

1,1 6,8802050 3,1 0, 9999884

1,2 0,9103140 3,2 0,9999940

1,3 0, 9340080 3,3 0,9999969

1,4 0,9522851 3,4’ 0,9999985

1,5 2, 9661052 3,5 0. 99999925691

1,6 0,9763484 3,6 0,99999964414

1,7 0, 9837904 3,7 0,99999983285

1,8 9,9890905 3,8 0,99999992200

1,9 0. 9927904 3,9 0, 99999996522

4,0 0,99999998459



•528 Rozdział XXII.
• ■ < •____________\ !.. . - . ■ ■■ ■ •'

Kämpfe (Phil. Stud. IX, 1893) ułożył tablicę czterocy.- 
frową, postępującą od tysiącznej do tysiącznej części ilości ą 
w przedziale od 0.000 do 1.509.

Zagadnieniami, należącemi do rachunku prawdopodobieństwa, 
zajmowali się pierwsi: B. P a s c a 1, Fermat, Huÿgens, Moivre, 
Daniel, Jan, Mikołaj i Jakób Bernoull i’öwie, Euler, 
Lagrange. Najważniejszym traktatem systematycznym 0 teoryi anali­
tycznej prawdopodobieństwa jest dzieło L a p 1 a c e’a: Traité analy­
tique du calcul des probabilités (Paryż 1812, 1814, 1820, 1847); wnim 
zebrał autor wsżystkie badania dawniejsze-własne i ihnych matematy­
ków. Prawie równocześnie rachunek prawdopodobieństwa uczynił po­
stęp w innym kierunku, dzięki Gaussowi (Theoria motus 1809, The- 
oria combinationis observationum i t. d., Tow. Getyngskie 1821 —1826 
i t. d.), który utworzył teoryę najmniejszych kwadratów; 
teorya ta szybko przeniosła się na pole praktyczne i uczyniła tam znacz­
ne postępy. Istnieje bardzo wiele rozpraw Laplace’a, Cauchy’e- 
go, Fouriera, Enckego, Bessela, Bienayme’go, P o i s- 
sona, Puissant a, Czebyszewa i innych z teoryi prawdopo­
dobieństwa i najmniejszych kwadratów. Po wskazówki o tych pracach 
odsyłamy czytelnika do książki Todhuntera „A history of the ma- 
thematical theory oftheprobability“ (Londjn 1865), albo do listy, załą­
czonej na końcu traktatu L a u r e n t a, Paryż 1873, wreszcie do naj­
nowszej pracy E. Czub er a: „Die Entwickelung der Wahrschein­
lichkeitstheorie und ihrer Anwendungen“, ogłoszonej w VII tomie 
Sprawozdań niemieckiego Stowarzyszenia matematyków (Berlin 1899). 
Z traktatów systematycznych . o . rachunku prawdopodobieństwa i naj­
mniejszych. kwadratów, prócz klasycznego traktatu L a p 1 a c e'a, wy­
mienić należy dzieła L a c r o i x’a ( 1806), Poissona (1837 ), G a 1- 
lowaya (Edynburg,1832), Jahna (Lipsk 1839), Queteleta 
(Bruksela 1815, 1853), Laur enta (Paryż 1873), Ferrero 
(O najmniejszych kwadratach, Florencya 1876), Bertranda (Paryż 
1889), Poincarego (Paryż 1896). Z rozpraw o teoryi błędów 
i metodzie najmniejszych kwadratów wymieniamy nadto artykuły orygi­
nalne Wł. Gosiewskiego w tomach II, III, V, IX „Prac matem.- 
fizycz.“ O metodzie najnowszych kwadratów patrz pracę Br. Gust a- 
wieża „Rachunek wyrównania błędów etc.“ (Kraków 1896).



ROZDZIAŁ XXIII.

NARZĘDZIA. 1 PRZYRZĄDY ANALITYCZNE .

W rozdziale tym pragniemy podać niektóre wiadomości 
o różnych narzędziach, wymyślonych do wykonywania działań 
analitycznych sposobem mechanicznym. Nie możemy opisywać 
ich tu szczegółowo i dla tego ograniczamy się na krótkim opisie 
niektórych tylko; o integrafie powiemy nieco szczegółowiej.

Podzielimy ten rozdział na trzy części: w pierwszej poda- 
jemy zarys wiadomości o narzędziach, służących do rachun­
ków elementarnych, i dlatego nazwanych narzędziami 
ary tmetycznemi; w drugiej mówimy o narzędziach, słu­
żących do rachunków, które nazwać możemy przeważnie alge- 
braicznemi, np. szukanie pierwiastków rzeczywistych równania 
i układu równań; wreszcie w części trzeciej pomówimy o narzę­
dziach rachunku całkowego, t. j. o narzędziach, służących do 
obliczania całek określonych lub do kreślenia krzywej całko­
wej (całki nieokreślonej).

§ 1-

Narzędzia arytmetyczna. Działania elementarne. Abaki

Dwie są kategorye narzędzi arytmetycznych. Do jednej 
zaliczamy narzędzia, dające rezultaty ściśłe działań arytme-

Pascal. Rep. I. 34
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tycznych zasadniczych; clo drugiej narzędzia—zwane narzędzia 
mi o skali logarytmowej — dające rezultaty z przybliżeniem 
w praktyce wystarczaj ącem.

Narzędzia kategoryi pierwszej bywają dwóch rodzajów. 
W jednych otrzymujemy wyniki, kombinując ze sobą rozma- 
itemi sposobami opatrzone podziałami liniały, których ruchy są 
wzajem niezależne. W innych narzędziach części składowe są 
takzesobą połączone, iż tworząjnachinę we właściwem znaczeniu 
tego wyrazu, tak że ruch jednych części określa już w sposób 
jedyny ruch pozostałych.

Neper w r. 1617 zbudował po raz pierwszy przybór 
pierwszego rodzaju i opisał go w swoim dziele: „Rhabdologia 
sive numerationis per yirgulas libri duo“. Jest to w zasadzie tablica 
pytagorasowa, na dziesięć podzielona kolumn, złożona mianowicie 
z dziesięciu ruchomych liniałów (listewek), zwypisanemi na nich 
liczbami tablicy pytagorasowej i przysuwanych do siebie po odpo- 
wiedniem przestawieniu. Forma narzędzia usprawiedliwia nazwę 
laseczek Neper a. Zadanie ich polega na otrzymywaniu ilo­
czynów i ilorazów liczb wielocyfrowych przy pomocy samych 
dodawań i odejmowań.

Pierwszą modyfikacyę tego narzędzia wykonał Ga spar 
S c h o 11, umieściwszy listewki z liczbami na walcach ruchomych 
około ich osi. Inne zmiany i ulepszenia zawdzięczamy: Peti­
towi (1678), Poetiusowi (1728), Me a nowi (1731), 
Roussainowi (1738, Hist. de l’Acad J, P r a h 1 o w i (1789/ 
i R o t h o w i (1841). Najnowszego i najważniejszego udosko­
nalenia w najnowszych czasach dokonali Genaille i Lucas 
(1885).

Pierwsze narzędzie, należące do kategoryi arytmetycz­
nych właściwych, w których za pomocą ruchów mechanicznych 
odpowiednio skombinowanych wykonywać można cztery dzia­
łania arytmetyczne, zbudował po wielu żmudnych usiłowaniach 
Błażej Pascal wr. 1642; następnie Leibniz w r. 1673 
przedstawi! inne podobne narzędzie Towarzystwu królewskiemu 
w Londynie i wkrótce potem Akademii paryskiej. Wspominamy 
dalej o machinie Rotha i o arytmometrze Thom a­
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s a (1820), praktycznym i doskonałym. Pomiędzy narzędziami 
rachunkowemi bardziej złożonemi i pomysłowemi wymienić na­
leży narzędzie Scheutza, urzeczywistniające pomysł Bab- 
b a g e’a; było ono wystaw ione w Paryżu w r. 1855. C z e b y- 
s z e w zbudował inną machinę taką o ruchu ciągłym.

Opis szczegółowy wszystkich tych narzędzi znaleść można w dzie­
le d’Ocagne’a: „Le calcul simpliiie etc.“ (Paryż 1894). Opis in­
nych narzędzi rachunkowych, przedstawionych na zjeździe Stowa­
rzyszenia niemieckiego matematyków w r. 1893 w Monachium, znaleść 
można w dziele W. Dy cka ,.Katalog mathematischer Modelle, Ap­
parate und Instrumente“ (Monachium 1892, *1893). Porówn. art. 
M e h m k e g o: „Przyczynek do historyi machin rachunkowych“ (Pra­
ce mat.-fiz. t. VI, 1895).

Przechodząc do narzędzi kategoryi drugiej powiemy prze- 
dewszystkiem, że typem ich jest t. zw. linijka rachunko­
wa o p o d z i a ł c e logarytmowej, pomyślana po raz 
pierwszy przez Edmunda Giin th er a w r 1624, wkrótce po 
wynalezieniu logarytmów. Narzędzie to ulegało kolejno znacz­
nym modyfikacyom: przez umieszczenie skali, która w narzędziu 
pierwotnem była prosto-liniową, na kole (B o u c her. W r o ń- 
s k i), na elipsie (Fülle r) i t. d., lub przez zagięcie samej skali 
i zmniejszenie tym sposobem rozmiarów narzędzia (Mann hei m). 
Stopień dokładności rachunków przy pomocy tych linijek zależy 
głównie od dokładności ich konstrukcyi, gdyż zasadą w nich 
jest, że linijka ruchoma przesuwa się po linijce stałej, na której 
wypisane są tak zwane skale 1 o g a r y t m o w e, t. j. podzia­
ły odpowiadające logu r y t m o m liczb. Wprowadzenie loga­
rytmów na linijce daje te same uproszczenia, co w rachunku 
zwykłym; mamy tu więc niejako narzędzie, które należy postawić 
obok poprzednio wspomnianego narzędzia N e p e r a, tylko że 
zamiast liczb mamy tu ich logarytmy. Prócz rachunków zwyk­
łych możemy za pomocą linijki rozwiązywać też równania 
stopnia 2-go i 3-go.

Opis szczegółowy linijki rachunkowej znajdzie czytelnik w dzie­
łach: L a 1 a n n e’a (Paryż 1851), Benoita (Paryż 1851) Elliota 
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(A treatise on the slide rule, London), G uy'a (Paryż 1855), V o g- 
1 e ra (Anleitung zum Entwerfen graphischer Tateln etc., Berlin 1877), 
Selli (Regola calcolatore, 1886, przekład francuski Montefiorego- 
Leviego). Historyę i klasyfikacyę różnych rodzajów linijek o podzial- 
ce logarytmowej podał A. Favaro (1st. Veneto (5) V, 1879).

A b a k i e m lub tablicą graficzną nazywamy 
w ogóle narzędzie, służące już to do wykonywania rozmaitych 
rachunków elementarnych, już to do rozwiązywania równań, 
do rachunków trygonometrycznych i t. p. Abak jest w istocie 
rzeczy tablicą, na której oznaczone są punkty proste i krzywe, 
z odpowiedniemi liczbami; jeżeli mamy dane wielkości pew­
nych zmiennych i połączymy na tablicy prostemi punkty, tym 
wartościom odpowiadające lub punkty spotkania prostych z na- 
kreślonemi krzy wemi, otrzymamy wartość szukanej niewiado­
mej. Już zwyczajna tablica mnożenia jest jednym z najprost­
szych abaków. Teorya konstrukcyi takich abaków stanowi 
naukę, zwaną n o m o g r a f i ą.

Pierwsze prace, odnoszące się do tego przedmiotu, zawdzięczamy 
Lalanneowi (1843), M a s s a u’owi (1884), Lallemandowi 
(1886), a rozwinięcie i udoskonalenie d’Ocagne’owi, którego naj­
nowszy traktat o tym przedmiocie wyszedł świeżo p. t.: „Traite de 
nomographie (Paryż 1899). Tamże podana jest dawniejsza i najnow­
sza literatura tego przedmiotu.

Za pomocą metody nomograticznęj rozwiązywać można 
równania stopnia 3-go i 4-go, zagadnienia trygonometryczne 
i t. p., nie mówiąc już o ważnych zastosowaniach tej metody do 
zagadnień technicznych.
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§ 2.

Przyrządy algebraiczne. Rozwiązywanie równań.

Do rozwiązywania równań, oprócz wspomnianych już aba- 
ków, istnieje bardzo wiele przyrządów d'O c a g n e’a, M e h m- 
kego i innych, których opis znajduje się we wspomnianym 
wyżej „Katalogu“ D y c k a. Możemy też rozwiązywać równa­
nie stopnia 2-go i 3-go, a nawet równania trójmienne stopnia 
5-go za pomocą linijki rachunkowej. I integral7, o którym mó­
wimy w § następnym, daje metodę graficznego rozwiązywania 
równań przy pomocy całek.

Prócz tego zbudowano narzędzia mechaniczne do rozwią­
zywania układu równań liniowych. Opis jednego z nich, pomy- 
ślonego przez Veit mann a, znajduje się w „Katalogu“ Dy c ka; 
inne zbudował W. Thomson (lord Kelvin: por. Proc, of 
Roy. Soc. XXVIII, 1878; Natural. Philosophy, 188G, I, str. 482). 
Narzędzie Veit man na zbudowane jest na zasadach hydro- 
statyki, a mianowicie na zasadzie naczyń połączonych; skła­
da się z drążków, stykających się z naczyniami napełnio- 
nemi cieczą; wszystko zaś mieści się w naczyniu napełnionem 
wodą. Każdy drążek odpowiada równaniu liniowemu, a walec 
na każdym drążku odpowiada jednej niewiadomej. Z wartości 
slupów cieczy otrzymujemy wartości przybliżone niewiadomych, 
a powtarzając działania, możemy także obliczać poprawki. Przy­
rząd Thomsona nie zawiera cieczy i składa się z drążków 
kółek i nici nawiniętych na kółka.

§ 3.

Narzędzia całkowe. Integraly. Analizatory.

Do narzędzi całkowych należą następujące: ’
1. Narzędzia do mierzenia pól krzywych płaskich, a więc 

dające wartość określonej całki funkcyi, graficznie wykreślonej 



534 Rozdział XXIII.

Narzędzia takie nazywają się w ogóle planimetrami Jest 
ich wiele rodzajów; najlepiej znanym jest planimetr A m- 
s 1 e r a (pierwsza konstrukcya w 1854).

2. Narzędzia, służące do kreślenia krzywej całkowej, 
a które dają to, co daje rachunek całki nieokreślonej funkcyi, gra­
ficznie nakreślonej. Są to i n t e g r a f y lub integratory; 
mogą one służyć do tego samego celu co i planimetry,‘i do 
wielu innych celów.

3. Narzędzia, służące do całkowania pewnych typów rów­
nań różniczkowych.

4. Narzędzia, służące do wyznaczenia długości łuku linii 
krzywej (krzywomierze). Takie narzędzia buduje Córa di 
w Zurychu.

5. Analizatory harmoniczne, które są w istocie 
rzeczy integratorami do obliczania całek określonych, występu­
jących jako spółczynniki szeregu Fouriera, a mianowicie 
całek:

I cos ntf(t)dt, sin n t. f(t~) dt. 

b *o

Do narzędzi tego rodzaju należą narzędzia Thomsona, 
H e n r i c i'ego, S h a r p a; wiadomość o nich podaje artykuł 
H e n r i c i e’go w cytowanej książce D y c k a.

Zajmiemy się tu tylko opisem integrafów. Pierwsze na­
rzędzia tego rodzaju zawdzięczamy Zmurce (1861), Thom­
sonowi (1876), Cayley’owi (1877); najbardziej wszakże 
godnym uwagi jest integraf Abdank a-Abakanowi­
cza (1882, pierwszy model wykonano w 1878; patrz Sprawozda­
nia Akademii krakowskiej, marzec 1880, Comptes rend.21 lutego 
i 7 marca 1881), którego wykonanie do znacznej doskonałości pod­
niósł G. Cor ad i w Zurychu. O wynalazku swoim napisał 
A b a k a n o.w i c-z dzieło p. t. „Les integraphes et la courbe 
integrale“, Paryż 1886 (przekład niemiecki Bitterli’ego, Lipsk 
1889).

Zasada, na której opiera się to narzędzie, jest najprostsza. 
Wyobraźmy sobie nakreśloną krzywą, której równaniem jest 



— Narzędzia całkowe i t. d.

x=f(x) i weźmy punkt Z3tej krzywej o spólrzędnych prostokąt­
nych xi, yx. Na osi odciętych odetnijmy długość 1, począwszy 
od spodka rzędnej yx i rozważajmy trójkąt prostokątny, którego 
wierzchołkami są: punkt P, spodek rzędnej tego punktu i koniec 
odcinka o długości 1. Przeciw prostokątna tego 
trójkąta jest sta 1e rów n o 1 e g ł a do stycznej

1 i n i krzywej, której r ó w n a n i e m j e s t y = I f(x) dr.

C o r a d i zbudował dwa modele integrafów, opartych na 
tej zasadzie: model mniejszy i model większy. Opiszemy tylko 
mniejszy.

Ramę prostokątną metalową rozmiarów 30 cm. na 14 cm. 
podtrzymują trzy kółka r i ?służące do nadawania jej ruchu 
prostoliniowego na arkuszu rysunkowym. Na nim kreślą 
się dwie osie, wzajemnie prostopadłe, z których jedna (y) jest 
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równoległa do boku NN, druga przechodzi przez punkt, w któ­
rym znajduje się ostrze F wtedy, gdy wózek ruchomy GG znaj­
duje się w swem położeniu początkowem (położenie to otrzymu­
jemy łatwo, przez przytwierdzenie śrubki w otworze oznaczonym 
na boku A). Wózek GG może przesuwać się wzdłuż boku NN. 
a ruch ten, skombinowany z ruchem całego narzędzia w kie­
runku prostopadłym, sprawia, że ostrze /' może opisywać 
ślad krzywej dowolnej (różniczkowej); stąd nazwa ostrza 
i wózka różniczkowego. Przy pomocy pewnego sy­
stemu połączeń stawowych sprawiamy, że sztabka F jest 
w każdem położeniu równoległa do płaszczyzny krążka li 
i z drugiej strony równoległa do przeciwprośtokątnej trójką­
ta prostokątnego, o którym wyżej była mowa. Stąd wynika, 
że w każdem położeniu płaszczyzna pionowa krążka Li jest 
zawsze równoległa do tej przeciwprostokątnej; z drugiej strony 
krążek li ściśle przywiera do papieru rysunkowego pod naciskiem 
ciężaru wózka W (wózka c a ł k o w e g o). Ten krążek tedy 
poruszać się będzie we własnej płaszczyźnie i przenosić będzie 
wraz z sobą wzdłuż boku NN' wózek całkowy, a z nim ołówek 
Z i nie będzie zmieniał kierunku swego ruchu, o ile nie zmienia 
go sztabka F; ta zaś nie może go zmieniać, jeżeli wózek różnicz­
kowy nie schodzi z boku NN. Z wózkiem całkowym połączony 
jest noniusz, przesuwający się po skali N' N', podzielonej na 
centymetry i milimetry, tak że - w położeniu początkowem zero 
noniusza schodzi się z zerem podziałki, a po przebieżeniu łuku 
krzywej przez ostrze F, możemy odczytać liczbę, wyrażającą 
wielkość pola pomiędzy tym lukiem osią x i dwiema skrajnemi 
rzędnemi. W ten sposób ołówek Z opisuje krzywą całkową krzy­
wej danej. Tu własność pozwala nam na wielokrotne zasto- 
wania narzędzia.

Ze sztabą L jest złączony czop stały, około którego obraca 
się sztabka ruchoma F, odległość pomiędzy tym czopem a środ­
kiem boku A przedstawia jednostkę miary narzę­
dzia, a prosta, łącząca dwa takie punkty stałe, jest w każdem 
położeniu podstawą trójkąta prostokątnego, o którym mówi­
liśmy. Narzędzie jest zbudowane w ten sposób, że ten czop stały 
można umieszczać w różnych miejscach, jeżeli chcemy zrnie- 
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niać jednostkę miary narzędzia od minimum 7 cm. do maximum 
121 cm.

Liczby, które otrzymujemy na skali A', należy mnożyć przez- 
jednostkę miary narzędzia. Na skali mamy centymetry, mili­
metry i dziesiąte część milimetra; jeżeli więc miara narzędzia 
jest 10 cm., to otrzymamy wyniki w centymetrach kwadrato­
wych i milimetrach kwadratowych Jeżeli na skali A' czytamy 
np. 7,26 cm., to mnożąc przez 10, mamy 72,6 i otrzymujemy 72 
cm. kw. i 60 mm. kw.

Różnica modelu większego od mniejszego jest między inne- 
mi ta, że ostrze różniczkowe i ostrze całkowe znajdują się na 
jednym boku, a nie na bokach przeciwległych.

Związki wzajemne osobliwości krzywej całkowej i krzywej 
różniczkowej są następujące: jeżeli krzywa różniczkowa ma 
maximum lub minimum, to krzywa całkowa ma punkt 
przegięcia; jeżeli krzywa różniczkowa spotyka oś x, 
to krzywa całkowa ma maximum lub minimum: jeżeli 
krzywa różniczkowa zmienia nagle kierunek, to krzywa całkowa 
ma ostrze. Aby otrzymać styczną do krzywej całkowej w pun­
kcie danym, dość nadać ostrzu różniczkowemu ruch po prostej 
równoległej do osi x, t. j. puścić ręką wózek i pozwolić narzę­
dziu przesuwać się na jego kółkach. Jeżeli wózek różniczkowy 
przebiega prostą prostopadłą do osi x, t. j. przesuwa się po na­
rzędziu, które samo pozostaje nieruchomem, wtedy ostrze całko­
we pozostaje stałe.

Pożytki narzędzia tego są następujące: 1° Służy ono do 
mierzenia pól, t. j. spełnia usługi planimetru; ślad krzy­
wej należy wtedy opisywać w zwrocie ruchu skazówek ze­
gara . 2" Może służyć do opisywania ruchem ciąg­
łym paraboli; dość bowiem, by ostrze różniczkowe prze­
biegało jakąkolwiek prostą. Stosownie do nachylenia prostej, 
otrzymujemy parabole o różnych parametrach. 3° Można 
dzielić dane pole zamknięte na części propor- 
cyonalnedo wielkości danych przy pomocy 
prostej danego kierunku; dość w tym celu obrać ten 
kierunek za oś y, zbudować krzywą całkową, odpowiadającą 
całkowitemu obwodowi krzywej, podzielić na części proporcyo- 
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cyonalne odległość pomiędzy punktem początkowym i pun­
ktem końcowym krzywej (te punkty będą na jednej i tej sa­
mej rzędnej) i powtórzyć działanie tak, aby punkt począt­
kowy krzywej całkowej był jednym z punktów podziału. 
Nowa krzywa całkowa przetnie poprzednią w punkcie, którego 
odcięta będzie odciętą prostej równoległej do osi x i przecinają­
cej pole w sposób żądany. 4" Można obliczać momenty 
statyczne pola względem prostej danej. Dość w tym celu wy­
brać oś y równolegle do tej prostej, jednemu z punktów przecię­
cia prostej i obwodu krzywej pozwolić opisać krzywą całą i wrócić 
do tego punktu; otrzymamy krzywą całkową, poczerń ostrzem róż- 
mczkowem opisać tę ostatnią krzywą i otrzymać nową krzy­
wą całkową. Odległość pomiędzy punktem początkowym i pun­
ktem końcowym tej ostatniej, dająca się odczytać na skali, sta­
nowi moment szukany. Liczbę milimetrów i dziesiętnych czę 
ści milimetra, odczytywanych na skali, należy oczywiście po­
mnożyć przez jednostkę miary narzędzia. Gdyby prosta nie 
przecinała pola, to dość byłoby połączyć jakąkolwiek linią jeden 
z jej punktów z punktem obwodu krzywej, przesunąć ostrze 
różniczkowe najprzód wzdłuż tej linii, następnie wzdłuż obwodu 
pola (w zwrocie ruchu skazówek zegara) i wreszcie znów po 
linii w zwrocie przeciwnym. 5° Powtarzając wskazane dzia­
łania na ostatniej krzywej, otrzymujemy wartość momentu 
drugiego rzędu pola względem prostej: w tenże spo­
sób możemy otrzymywać momenty róż n y c h rzędów. 
6° Przyjmijmy, że krzywa całkowa obwodu pola danego została 
opisana przez punkt, położony najbardziej na lewo na ob­
wodzie, i że punkt początkowy krzywej całkowej leży na osi 
:r; całkujemy tę krzywą całkową w przypuszczeniu, że punkt 
początkowy nowej krzywej jest na osi x. Skończywszy to 
całkowanie, puśćmy ręką wózek różniczkowy i pozwólmy na­
rzędziu przesuwać się na kółkach; wtedy krzywa całkowa opi­
sze styczną do krzywej wr punkcie końcowym. Styczna ta 
przetnie oś x w punkcie, którego odcięta równa się odciętej 
prostej równoległej osi ?/ i przechodzi przez środek ciężkości 
pola danego; mamy tym sposobem, powtarzając działania przv 
innym kierunku osi, sposób znajdowania środka 



§ 3. — Narządzia całkowe i t. d. 539

ciężkości pola. 7° Możemy wykreślać graficz­
nie pierwiastki równania algebraicznego /’(<r)=0. 
Połóżmy w tym celu y=f(x) i utwórzmy pochodne kolejne 
y'=f'(x), y" t=f” (x) . . .. , póki nie dojdziemy do ilości sta­
łej. Nakreślmy następnie prostą równoległą do osi i mającą 
rzędną równą tej stałej i całkujmy; otrzymamy prostą, któ­
ra, przy odpowiednim doborze osi, może przedstawiać przed­
ostatnią pochodną. Całkujmy powtórnie, znajdziemy pocho­
dną poprzedzającą i tak dalej postępując, wykreślimy gra­
ficznie krzywą y—f(x). Pierwiastki równania f(x) =0 odpo­
wiadać będą punktom spotkania tej krzywej z osią x’, będą 
niemi mianowicie odległości tych punktów od początku, po­
dzielone przez jednostkę miary narzędzia. Jednostki, które 
obrać należy do kreślenia prostej równoległej do osi x i inne 
kolejne stałe całkowania są niezależne od jednostki miary na­
rzędzia i mogą być obrane dowolnie. Uwaga ta jest ważna, 
gdyż mogłoby się zdarzyć, że chcąc utrzymać jednę i tęż 
same jednostkę miary, moglibyśmy nie znaleść miejsca w ob­
szarze działań narzędzia. 8° Możemy rozwiązać gra­
ficznie sławne zagadnienia o kwadra, turze 
koła i o podwojeniu sześcianu. Dla rozwiązania 
pierwszego zadania dość wykreślić graficznie długość t. j. 
krzywą całkową koła o promieniu 1 (jedność miary narzędzia); 
otrzymamy wtedy krzywą zygzatowatą, a odległość pomiędzy 
dwoma kolejnemi ostrzami krzywej daje nam ti. Dla rozwią­
zania drugiego zadania dość zcałkować dwa razy równanie 
?/=6.r; otrzymamy w ten sposób krzywą y = x*; odcięta tej 
krzywej, odpowiadająca rzędnej równej 2 (t. j. dwom jednost­
kom miary niezależnej od jednostki miary narzędzia), przed- 

3_
stawia V2 (w jednostkach miary narzędzia). Można też roz­
wiązać graficznie zagadnienie o podziale kąta na trzy równe 
części; szczegóły pomijamy. 9° Prócz tego integraf znajduje 
liczne zastosowania w mechanice, w teoryi krzywej sprężystej, 
w nauce o elektryczności i t. d. Szczegóły znaleść można 
w cytowanem dziele Abakanowicza.
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Pamiętników Akademii nauk w Amsterdamie. W r. 1862 tenże 
autor wydał dzieło; „Exposé de la théorie des transformations 
et des méthodes d’évaluation des intégrales définies. Do litera­
tury dołączamy nadto: M e y e r, Vorlesungen über die Theorie 
bestiminiter Integrale (Lipsk 1871), K r o n e c k e r, Vorlesun­
gen I, B r u n e 1, art. w „Encyclopädie der math. Wissenschaf­
ten“ (Lipsk 1899).

ÿ 4, str. 166. Redukcyą całki eliptycznej do kombinacyi trzech całek 
zasadniczych zajmowali się: Lege n d r e (Fonct. ellip. I, rozd, 
4 i 5) R i c h e 1 o t (Grelle XXXIV), P I a n a (tamże XXXIV).

§ 4, str. 106. Funkcye p (wiersz 3) są funkcyami W e i e r s t r a s a.
Gałki eliptyczne są szczególnym przypadkiem całek abelo- 

wycłi (p. Rozdz. XV). Charakterystyczne ich własności są na­
stępujące: .Jeżeli zmienną niezależną przyjmiemy jako zespo­
loną, to całka gatunku 1-go nigdzie nie staje się nieskończoną; 
całka gatunku 2-go staje się nieskończoną algebraicznie; to jest 
granica stosunku jej do pewnej funkcyi algebraicznej nieskoń­
czonej w punkcie jest skończona; całka gatunku 3-go ma nie­
skończoność logarytmową, t. j. granica stosunku jej do logaryt- 
mu funkcyi algebraicznej nieskończonej w punkcie jest skoń­
czona.

Ważną własność całek eliptycznych wyraża twierdze­
nie o d ó d a w a n i u, stanowią» e przypadek szczególny takie­
goż twierdzenia dla całek abelowych.

Twierdzenie o dodawaniu dla. całek gatunku 1-go brzmi;

X z t

C dx i /' i
J V(l—æ2) (l-Z^z2) + ./1/( 1— ^2)( l-Vr2?) Iz(l — t2) (1 —Z/-72)’

gdy pomiędzy ,r, //, i zachodzi związek algebraiczny:

:r|/( I —^2)( 1—lć2z2) + z|/(l—ir?)(l—Zś2a;8)
1 — l£2x*z‘2

Twierdzenie o dodawaniu dla całek eliptycznych gatunku 2-go 
ustanowi! Lego n d r e (Fonct. ellipt. I); ma ono postać :

E(k,(p) E(Jctip) — E(k.,x) = A;2sin99sinsin/, 
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gdzie pomiędzy y, ip, % zachodzi związek, który otrzymujemy 
z wyżej podanego, kładąc X— siny, 2’= siny, Zasili/.

I dla całek gatunku 3-go L e g e n d r e podał twierdzenie 
następujące ;

II (n, k, y) 4“ II (w, k, y) — II (n, k, %)

// n .t
I (14-n) (/t24-ni aic siny siny sin ^r/n(14-w)(/r34-w) \

1—n sin2/—n siny siny cos/ A/ /’

gdzie A/ = I/1—Zc2sin2/. Jeżeli pozostajemy w dziedzinie zmiennej 
rzeczywistej, to wzór ten musi być zmieniony, gdy n jest ujemne 
i mniejsze od jedności. Można wtedy otrzymać wzór, w którym po 
stronie prawej występuje wprost logarytm. Jeżeli zaś wprowadzamy 
liczby urojone, to wyrażamy arctg przez logarytm za pomocą wzoru 

1 , i— coo, = - log —.
Li l l “i" CO

Twierdzenie to jest właściwie tylko inną postacią twierdzenia 
o dodawaniu funkcyj eliptycznych sina»/, cos am, Aam (patrz Rozdz. 
XVI) oraz twierdzenia o całkowaniu równania Eu loro w ego 
(patrz Rozdz. VIII, § 2).

Dla całek gatunku 1-go w postaci W e i e r s t r a s s o w e j 
twierdzenie o dodawaniu ma postać;

i> <? >■
I dp /’ dq _  r dr

—g*p -gA .'Yły*—g2q—g3 JVłr3—ar—g3'
00 * ’ 00 00

gdy pomiędzy p, q, r zachodzi związek;

1,

J4p3—<72p—c;3, №q3-g2q—g3, Vir3—g2r-q3

Pierwsze badania nad tym przedmiotem zawdzięczamy E u 1 e- 
r ow i (Novi. Comm. Petr. 1761, VI, VII); później ukazała się praca 
Lagrange’a (Misc. Taur. IV. 1766, 1769) i druga Eulera 
(Acad. Imp. 1778). Wymieniamy nadto: R i c h e 1 o t (Crelle XXIII,
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XLIV), L i o u v i 11 e (Comptes rend. 1856), gdzie podana jest wy­
tworna metoda całkowania równania różniczkowego eliptycznego; 
Schellbach (Crelle, LIV). Wiadomości historyczne podaje G e- 
n o c c hi (Bull. Boncompagni, III, 1870).

, gdzie k'= Fi—k2, gdy dro­

ga całkowania jest prostoliniowa, nazywają się całkami zupę ł- 
n e m i; Lege n d r e oznaczał całki zupełne gatunku 1-go przez Kt 
K1. Podobnież E \lc, -^-j, E^k', ■—-) nazywają się całkami zu­

pełne m i g a t u n k u 2-go i oznaczają się przez E i Er. Jest:

Wyrażenia F

к2

/’ log sin <p
J Fi—k2sin2 cp 
o

sin am. vdv = -i-TTlog-?-------Kf
2 k 4

I log cos am v dv 
0

-- ттК',
4

log lam v dv — — log k'.

Przedmiotem tym zajmowali się: Roberts (Lionville (1), XIX, 
1854, Seldom. Ztsćhrif. II, 1857), G eno cc hi i Sylvester 
(Phil. Mag. 1860), Br i os chi (Annali di mat. (1), III, 1860), Wan- 
g e r i n (Seldom. Ztsćhrif. XXXIV).

Na rozwinięcie K i E podajęmy wzory:

1.3.5 V 
2,4.6

„ tt i , / 1 \2 k2 I 1 .3 \2 /с4 / 1.3.5\2 /г6k = V 1 1 - ( 2 ) — ~ Ьл-) T - (т^Гб ) ~5-

Inne rozwinięcia, gdy K bliskie jedności, znajdujemy u L e - 
g e n d r e’a (Mćm. de Paris 1780, Fouet, ellipt. I) i S c h 1 ö m i 1 c h a 
(Zeitschrif. f. Math, und Phys. Il, s. 49).

Pascal. Rep I. 35
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Pomiędzy Kj E, E' zachodzą związki

ÖK K E
die ~ k + lek'2 '

3Kf _ kK' E'
3k ~ ~k'2 lek'2 •'

3E _ K E_
dk ~ k k' ’

3E' _ kK'2 _ kE' 
d k k'2 k'2

KEr + K'E - KE.''— — (związek Legendre a).

Teoryę zupełną ilości K, K', E, E' znajdujemy u Glai- 
s h e r a (Quarterly Journ. 1885); porówn. Rozdz. XVI,

Całki gatunku 2-go i 3-go dają się wyrazić przez funkcye fi lub 
o, jeżeli całkę gatunku 1-go przyjiniemy za argument. Jeżeli poło­
żymy :

p

u = ,
oo

będzie (patrz Rozdz. XVII, § 5)

o'(u) g(u). o'(?q)Z =------- - , Er. = log ——--------------- —— u,o(u) a(u—u2) o(uj

Q — log o (u—itl 1 
o (u—u2) gdzie 7 — p(u}), (h=p(u3).

§ 4, str. 168. O przekształceniu Gaussa pisał Borchardt 
(Grelle LVIII, Berliner Ber. 1876).

§ 5, str. 179. O całkach wielokrotnych patrz pracę Jacobie’go 
(De determ. funct., Crelle XII, Werke 3). Przypadek n=2 roz­
ważał Euler, n = 3 Lagrange. Porówn. Kr on ec ker 
(Crelle LXXII, „Vorlesungen etc.“, Lipsk 1894, s. 225).

Twierdzenie Sto kęsa o przekształceniu całki potrójnej 
rozciągniętej na objętość na całkę podwójną, rozciągniętą na 
powierzchnię, ogłoszone zostało w Cambr. Univ. Cal. 1854 r. 
O całkach podwójnych patrz najnowsze dzieło S t o 1 z a: 
„Vorlesungen über Doppelintegrale“, (Lipsk 1899).
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§ 6. str. 172. Całkowaniem różniczek zupełnych zajmował się pierw­
szy Euler: po nim: Morgan (Quest. J. 1858), Natan i 
(Grelle LXI1I), 1) u Bois-Reymond (Grelle LXX, Math. 
Ann. XII), C o 1 I e t (Annales de l’Ecole norm. (1), VII, 1875), 
B e r t r a n d (Comptes rend. LXXXIII, 1876). Porówn. F o r- 
syth Theorie on diff. equ. (Przekład niemiecki, Lipsk 1893).

ROZDZIAŁ VIII.

§ 6, str. 195. Jeżeli równaniu różniczkowemu nadamy postać 
di/i—fiifojc—0(i=l,2,... ,n), to będziemy mieli układ równań 
zupełnych lub Pfaffa, całkowalny nieogranic ze ni e, t. j- 
za pomocą n równań, eo znaczy, że daje się wyznaczyć n 
układów mnożników /zZ), . . . , jU/m(«==1, 2. . . . , 7?), przy pomocy 
którego dochodzimy do różniczek zupełnych, Mnożnik u czyni 
zadość równania:

§ 7, str. 201, wiersz 8 od góry, powinno być d r g aj ą e y c h za­
miast <1 ź w i ę c z ą c y c h.

§ 7, str. 202, wiersz 12 od góry, do literatury dodać. S e r r e t, 
Compt. rend. LXXIV.

§ 7, ćtr. 204. Do literatury nauki o równaniach różniczkowych do- 
dajemy: L. Heft'ter „Einleitung in die Theorie der linearen 
Differentialgleichungen“ Lipsk 1894, L. K o e n i g s b e e g e r 
„Lehrbuch der Theorie der Differentialgleichungen“ Lipsk 1889, 
C. Jordan Cours d’analyse, t. III; Picard Traite d’ana- 
lyse; llelgev. Koch w nowej pracy (Akad. Sztokholmska 
1899) rozważa układy nieskończenie wielkiego rzędu równań 
różniczkowych zwyczajnych.

Do literatury teoryi równań różniczkowych zupełnych i rów­
nania Pfaffa dodajemy; 1) Dla równań całkowalnych nieogra- 
niczenie: D e a h n a (Grelle XX), Natan i (Grelle LXHI. 
s. 314), Meyer (Math. Ann. V), Frobenius (Grelle LXXXII); 
2) Dla układów niecałkowalnych nieograniczenie : Pfaff 
(Beri. Ak. 1814, 1715), (1 a u s s (1815), .1 a c o b i (Grelle II, 
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XVII), N a t a n i (Cre.le LVIII), C 1 e b s c h (Crelle ŁX, LXI), 
Grassmann (Ausdehnungslehre 1862), Lie (Archiv tur 
Math. Il, 1887), F r o b e n i u s (Crelle LXXXII), 1) a r b o u x 
(Bull. Darboux (2), VI), Forsyth (Theorie ôn diff. equ.), 
Vivanti (Rend. Palermo Xll), Engel (Leipz. Berichte), 
R u s j a n (Prace mat.-fiz. VIII, IX) i t. d. G u I d b e r g (Akad, 
w Chrystianii 1898, 1899, Comptes rendus 1899).

ROZDZIAŁ IX.

§ 1, str. 209. Można wykazać, że istnieją grupy, nie zawierające 
przekształcenia tożsamościowego; przykład podał Engel 
w r. 1894 (patrz str. 163 i 165 t. I dzieła L i e g o - E n g e 1 a, 
Theorie der Transformationsgruppen).

§ 3, str. 213. Pojęcie przekształcenia s t y c z n o ś c i o w e- 
g o daje się rozciągnąć na przypadek wielu zmiennych.

§ 4. str. 217. N i e z m i e n n i k i e m c a ł k o w y m nazywamy 
wyrażenie postaci :

1 — li.. . (1> dxx dx2 . . . dxH,

gdzie jest taką funkeyą zmiennych xx, x2,..., xH, Zt, Z2,..., z„, 
i pochodnych ilości z względem ilości a?, że wartość całki 
nie ulega zmianie przy przekształceniach grupy. Niezmiennikami 
całkowemi zajmowali się: Li e (Leipz. Ber. 1886), Poincare 
(Acta mat. XII, str. 52, 1890, Żurawski (Rozp. Ak. kra­
kowskiej 1895), Koenigs (Compt. remi 1895), Car tan 
(Buli. Soc. Math. 1896), II u r w i t z (Gbtt. Nac.hr. 1897), L i e 
(Leipz. Ber. 1897).

ROZDZIAŁ X.

5 4, str. 231. Do literatury teoryi interpolacyi dodajemy jeszcze: 
Gauss (Werke III), Lagrange (Oeuvres VII), C z e b y- 
szew (Akad. Peters. 1859), II ermite (Crelle LXXXIV), 
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F r o b e n i u s (tamże LXXIII), M e r a y (Ann. de l’Ec. norm. 
1884), Teixeira (Crelle CX), Bendixso n (tamże CI, 
Acta IX), Pinch er le (Akad, bolońska 1893), Netto (Math. 
Ann. XLII).

Z literatury o kwadraturach przytaczamy: Jacobi (Crelle 
I), C h r i s t o f f e 1 (tamże LV), Czebyszew (Lionville (2) 
XIX), Marko i f (Math. Ann. XXI), Stieltjes (Ec. norm 
(3) 1, Compt. rend. XCIX).

Do literatury rachunku odwrotnego różnic: T h o m a e 
Zeitschr. f. M. XVI), Le Paige (Nouv. Corr. II, III), Syl­
vester (Phil. Mag. 1879, Am. J. IV, Messenger (2) XVIII), 
C e s a r o (Nouv. Ann. (3) V), P i n c h e r 1 e (1st. Lomb. 1886, 
1894, Acc. Bol. 1895, 1896).

ROZDZIAŁ XII.

§ 1, str. 249. Ostatnie dwa wzory w tym paragrafie brzmieć pow nuy

Aa2 — A22a\ — A2la'2 ; = — AV2a\ -j- Ana'2 .

§ 4, str. 257. Po wzorach na końcu Nr. 5 należy dodać: spółczyu- 
niki tego przekształcenia otrzymujemy, podstawiając, zamiast 
spółczynników podstawienia danego, ich dopełnienia algebraicz­
ne w wyznaczniku A,

§ 4, str. 259, wiersz 1 u góry: zamiast k a t a 1 e k t y k a n t y, po­
winno być k a n o n i z a n t y. Dla form rzędu parzystego 2m 
istnieje związek pomiędzy spółczynnikami postaci:

I ................... ,

y.......................................... , ^Gn-|-2

,.........................   ^2»i

który nazywa się k a ta 1 e k t y k a n t e m wyznacznika.
§ 4, str. 259, wiersz 13 od góry, zamiast p ó 1 z m i e u n i k powinno 

być p ółniezm ienn i k,



550 Dopełnienia i sprostowania.

§ 4, str. 259, w wierszu ostatnim, zamiast a,n—2 napisać am. zamiast 
«2», napisać a2m—i i wyrazy w wierszu tuż pod wyznacznikiem 
należy przekreślić.

ROZDZIAŁ XIV

góry: zamiast “wy m4, str. 321, wiersĄ 4 od 
n i e w y m i e r

r n y powinno być
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„ zespolone. 4.
,, ,, sprzężone. 5.
„ „ całkowite Gaussa, 496.
„ złożone, 469.

Linia łańcuchowa, 243.
Linie poziome, 284.

„ przepływu, 11.
„ spójności (na powierzchni Rie- 

manna), 335.
Linijka rachunkowa, 531.

Macierz wyznacznika, 48.
Maxima i minima całek, 236.

,. funkcyj, 140.
Metoda najmniejszych kwadratów.

patrz Teorya błędów.
Minor, patrz Wyznacznik.

Mnożenie zespolone (w teoryi funkcyj 
eliptycznych). 390.

Moduł kongruencyi, 475.
„ kwaternionu, 8.
„ liczby zespolonej, 4. 

peryodyczności całek, 344.

Nadwyznaczniki, 258. 
Nadzieja matematyczna. 519. 
Nasunięcie (formy), 254. 
Narzędzia arytmetyczne, 530. 

„ całkowe, 533.
Niepierwotnosć grupy, 39. 
Nieskończoności, 120. 
Nieskończonostki, 120.
Niezmiennik bezwzględny funkcyj elip 

tycznych, 325.
Niezmienniki algebraiczne, 249. 
Niezmienniki różniczkowe, 209. 

„ całkowe, 568 
Nomografia, 5.32. 
Norma liczby algebraicznej, 505.

Odchylenie (teorya błędów), 519. 
Odtworzenie, patrz Odwzorowanie. 
Odwzorowanie funkcyi, 283. 

„ „ podobne, 283,341.
Oscylacya funkcyi, 21.

Parametry różniczkowe, 214. 
P ery ody całek, 342, 343, 348. 

„ form zredukowanych, 491.
„ funkcyj, 320.
,. funkcyi gamma, 433.

Pfaiiany, 52.
Pierwiastki pierwotne (teorya liczb),484 

„ „ równania, 15.
„ ., rzeczywiste, 111.
„ „ pojedyncze,
„ „ wielokrotne, 110.
„ ,. wymierne, 114.
,, „ zespolone, 111.

Pierwiastkowanie, 3.
Pierwotność grupy, 39. 
Planimetry, 534. 
Pochodne funkcyi, 123. 

„ „ cząstkowe, 126.
„ „ złożonej, 124.
„ uwikłanej, 128.

Podstawa ciała liczbowego, 505. 
r układu skaźników, 485.

Podstawienia, 32.
„ abelowe, 45.
„ eliptyczne, 308.
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Podstawienia hyperboliczne, 308.
„ kołowe, 32.

liniowe. 308.
„ loksodromiczne. 308.
„ paraboliczne, 32.
,, przemienne, 32.
„ prgez odbicie, 310.
„ odwrotne 32.
„ tożsamościowe, 32

Podwyznacznik, patrz wyznacznik 
Podzielność liczb, 497, 506. 
Półniezinienniki, 259.
Postępy, 73.
Potęgowanie, 3.
Powierzchnie Riemanna. 334.
Pozostałość funkcyi, 296.
Prawdopodobieństwo błędów. 423,

, matematyczne, 514.
„ przyczyn lub a priori.,423
,, skutków lub a poste­

riori, 518.
Prawidło Bineta, 50.
Prawo wielkich liczb, 423.
Prawo wzajemności liczb pierwszych, 

481.499, 501.
Proces Aronholda, 252.

„ biegunowy, 253.
Przechódniosć grupy, 38.
Przeciwpodstawieniowość. 258. 
Przeciwzmiennik, 257.
Przedstawialność liczb przez formy 

kwadratowe, 487.
Przedstawienie analityczne podsta­

wień. 43.
„ typowe form, 25.
„ kanoniczne, 277.
„ analityczne funkcyj, 456
„ geometryczne funkcyi,

12,123.
Przekształcenie całki, 149.

„ funkcyj eliptycznych, 380.
„ Gaussa (całki eliptycz­

ne), 168.
„ punktowe, 206.
„ równania, 99.
„ stycznościowe, 206.

Przemiany, 25
Przestawienia, 33.
Przyrządy algebraiczne, 533.
Punkty graniczne. 10.

„ osobliwe funkcyj,300.
„ „ istotne funkcyj, 301
„ .. nieistotne funkcyj, 301.

Rachunek całkowy, 143—172.

Rachunekekwipolencyi, 4.
„ prawdopodobieństwa, 514-528 
,, różnicowy, 218—231.
„ różniczkowy. 120—142.
„ waryaeyjny, 232 — 246.

Reszta Cauchyego, 132.
„ Lagrange'a. 132.

Reszty dwukwadratowe, 479
„ kwadratowe, 479.
„ potęgowe, 484.
„ sześcienne, 484, 501.

Rezyduum funkcyi, patrz Pozostałość. 
Rodzaj funkcyi analitycznej, 303. 
Rozkład funkcyj wymiernych, 15. 
Równania abelowe, 119.

„ algebraiczne, 91.
„ ., dwumienne, 108.

Równanie Pelia (teoryaliczb) 489, 493. 
Równania algebraiczne odwrotne,96.541

„ „ stopnia 3-go, 104.
„ „ „ 4-go, 106.

„ 5-goi6-go 
107.

„ różniczkowe Bessela, 193.
„ „ <. lairauta. 182.
„ „ Eulera. 180
,, ,, Jacobfego, 179.
,. „ Laplace’a, 201.
„ „ Riecatfego, 178.
,, . „ cząstkowe, 197.
,, „ liniowe, 183.
„ „ zwyczajne, 173.

Równoważność torin kwadratowych, 
488.

Rozmieszczenia, 26.
Rozwiązanie równania różniczkowego, 

patrz Całka.
Rozwijalność funkcyj na szeregi,

,. nieskończone, 132 
Rowinięeia"na szeregi: Fouriera, 458.

„ funkcyj kulistych
462. 464.

„ „ walcowych,
Rozwiązująca równania, 118. 
Różnice skończone, 218. 
Różniczki, 129.
Różniczkowanie i całkowanie w obszarze 

zespolonym, 295.
Rząd podstawienia, 33 
Rngowniki, patrz Wypadkowe.

Skalar kwaternionu, 8. 
Skaźniki (teorya liczb), 484. 
Spółczynniki dwumianowe. 27. 
Spółpodstawieniowośe, 258.
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Spółzmienniki, 249.
Średnia arytmetyczno-geometryezna, 21 
Stała Eulera. 426.

„ harmoniczna, 426.
Symbol Eisensteina, 501.

„ Jaeobi’ego, 482, 400.
„ Legendre’a, 480. 

Szeregi: Bilrmanna, 457.
„ eyklometryczne, 136.
„ Fouriera, 458.
„ funkcyj Bessela,
„ funkcyj kulistych.
„ harmoniczne, 74.
„ Lagrange’a, 457.
„ Lamberta, 77.
„ logarytmowe, 136.
„ nieoznaczone, 166.
„ potęgowe. 285.
„ rozbieżne,66.
„ Sturma, 113.
„ Taylora-Maclaurina, 457.
„ Wrońskiego, 457.
„ zbieżne bezwzględnie, 67. 
„ ,, zwyczajnie, 67.

Teorya Galois'a (równania algebraicz­
ne), 114.

Teorya błędów, 523.
Trójkąt arytmetyczny Pasę i la, 29. 
Twierdzenie Abela, 353 

„ Ampóre’a, 222.
„ Bernoullfego, 518.
„ Budana, 113.
„ Cauchy’ego (grupy), 35.
,, Cauchy’ego, 297.
„ Czebyśzewa, 472.
„ Descartes’a, 112.
„ Diriehleta, 459.
„ Fermata, 476, 498 501.
„ Gaussa (o średniej arytrn.

geom.), 21.
Gaussa lub d’Alemberta, 
91.

„ Jaeobi’ego o odwróceniu
całek, 396.

„ Mittag-Leffiera, 304i
„ o całkowaniu i różniczko­

waniu pod znakiem, 150.
,. o dodawaniu funkcyj abe-

lowych, 400.
„ o dodawaniu funkcyj elip-
„ tycznych, 376
„ Piearda, 301.

Riemanna (całkowalność), 
145.

Riemanna-Rocha, 339.
Rollego, 130.
v. Staudta i Clausena, 422, 
Stieltjesa, 59, 
Stokesa, 546.
Sturma, 113.
Weierstrassa o lunkcyach 
302.
Wilsona, 476.

Układy równań liniowych, 101, 
„ „ różniczkowych jedno­

czesnych, 194.
„ „ zupełne form niezmien­

niczych, 259.
„ „ układu form liniowych,

261.
„ „ jednej lub więcej form

układu form rzędu 3-go 
203,

„ układu formy kwadrato­
wej i sześciennej, 264.

„ „ nkładuformy dwójkowe'
i dwnkwadratowej, 267

„ „ układu formy kwadrato­
wej i dwnkwadratowej, 
269.

Ułamki ciągłe, 13.

Wartość prawdopodobna, 517.
Warunki całkowalności, 172.
Waryacya całki pierwsza, 232.

„ „ druga, 234.
Wektor kwaternionu, 8.
Wrońskiany, 60.
Wypadkowe, 98.
Wyróżniki równania, 1.

„ formy kwadratowej, 487.
„ ciała liczbowego, 505.

Wyznaczniki, 47.
„ Cauchy’ego, 55.
„ cząstkowe (minory, pod-

wyznaczniki), 49.
„ dołączone, 51.
„ formy kwadratowej, 487.
„ funkcyjne, 62.
„ kołujące, 55.
„ ortogonalne, 58.
„ perysymetryczne, 54.
„ półsymetryezne, 52
„ skośne, 52.
„ Smitha, 58.
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Wyznacznik Sterna, 57.
„ symetryczne, 52.
„ układu dołączonego, 51.

Wzór Catalana,
„ Olebseha-Gordana, 255.
„ Leibniza, 513
„ Newtona-Gerarda, 92.
„ Simpsona, 225.
„ Taylora-Maclaurina, 132, 456.
„ Wallisa, 81
„ Waringa, 93

Wzory nieoznaczone, 134.

Zagadnienie o brachystoclironie, 247.
„ interpolacyjne, 225.

„ izoperymetryczne. 236.
,, o kwadraturze koła, 549.
„ o podwojeniu sześcianu, 549

Zagadnienia rachunku waryaeyjnego, 
241—246,

Zera i bieguny funkeyj analitycznych,283 
Zbieżność szeregów, 23.
Związki dwuliniowe pomiędzy modu­

łami peryodyczności, 344.
Związek Legendre’a (funkcye eliptycz­

ne), 546.














