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0D TLOMACZA.

Profesor E. Pascal jest autorem cennych, wydanych nakla-
dem zastuzonej firmy medyolanskiej Ulrico Hoepli podreczni-
kow matematyki wyzszej, ktore szybko pozyskaly sobie uznanie
w literaturze matematycznej. Jego lekcye Rachunkdw: rozniczko-
wego, calkowego, waryacyjnego i roznicowego wydane zosta-
przed kilkoma laty w przekladzie polskim; ,Rachunek warya-
cyjny“ wydano Switezo w przekladzie niemieckim, a ,Reperto-
ryum* niniejsze, ktorego tom [ oddajemy do uzytku czytelmkou
polskich, ma wyjs¢ niezadlugo i po niemiecku.

W przedmowie, ktérg ponizej dajemy, autor wyjasnia cel
i zadanie swej pracy. W uznaniu jej zalet i w przekonaniu, ze
przynieS¢ ona moze pozytek naszej mlodziezy, podjeliSmy ten
przeklad, kierowani nadto przeswiadczeniem, zZe w nasze]j lite-
raturze, tak niezasobnej dotad w dziela, poéwiecone WyZsSzym Cze-
$ciom matematyki, ksiazka podobna do niniejszej moze byé poza-
danym nabytkiem.

Stan obecny literatury matematycznej polskiej, zwlaszcza
w dziedzinie wykladowej — mimo pewnego ozywienia w ostat-
niej dobie —, daleki bardzo od stanu tejze literatury w innych
krajach, potrzebom naglacym mlodziezy naszej bynajmniej nie
czyni zado$¢. W wielu dziedzinach matematyki wyzszej nie posia-
damy dotad wcale podrecznikow, a brak ten odbija sie niekorzyst-
nie i na.rozwoju jezyka naukowego polskiego; rozwaj ten bowiem
—nawet obok zywego slowa wykladowego—trudnym sie staje bez
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utrwalenia my$li naukowej w postaci wykladu ksiazkowego we
wszystkich przedmiotach, nad ktoremi pracuje matematyka nowo-
czesna. Otéz w Kksiazce tej, obejmujacej w tresciwym zarysie
najwazniejsze dobytki nauki, czytelnik znajdzie wyrazone w mo-
wie ojczystej niejedno w tych jej dzialach, o ktorych w ksigz-
kach matematycznych polskich dotad wcale nie pisano. -

W porozumieniu z autorem uzupeiniliémy przektad licznemi
dopelnieniami oraz wskazéwkami bibliograficznemi, odnoszacemi
sie do literatury matematycznej polskiej.

Pragniemy, aby ta.ksiazka mogla stac sie pozytecznym prze-
wodnikiem dla mtodziezy naszej w studyach nad nauka. ,z ktorej
poczatkowa tylko znajomoscia, jak stusznie méwi Jan Snia-
d'ecki, zaden kraj ani do jej pozytkéw nie trafi, ani do rzedu
narodéw gruntownie uczonvch nigdy naleze¢ nie bedzie.*

S. D.

PRZEDMOWA AUTORA.

Celem tej ksiazki jest podanie na mozliwie niewielkiej prze-
strzeni zarysu prawie wszystkich glownych teoryj matematyki no-
woczesnej, a mianowicie z kazdej teoryi tyle tylko, aby czytelnik
mogt sie w niej zoryentowad i znales¢ zarazem wskazowki, do
jakich dziel ma sie zwrdcié, jezeli pragnie szczegolowiej ja poznac.

Dla studenta ksigzka niniejsza ma by¢ rodzajem v.ade me-
cum, w ktérem znajdzie on tre$ciwie zestawione wszystkie po-
jecia i rezultaty, ktore w czasie swych studyéw przyswoil sobie
lub zamierzal przyswoi¢. W bledzie bylby ten, ktoby mniemal
ze zadaniem naszem bylo ulozenie encyklopedyi matematycz-
nej; praca podobna przekraczalaby sily nasze i nie godzitaby si¢
Z rozmiarami tej ksiazki. Dajemy w niejtylko skromne repertoryum,
ktore, jak $miemy mniemac, przynies¢ moze skromny pozytek stu-
dyujacym matematyke.
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Porzadek, jakiego trzymalismy sie w ukladzie roéznych czeéci
kazdej teoryi jest wszedzie mniej wiecej taki: najprzod podajemy
definicye i pojecia zasadnicze; potem przytaczamy (bez dowodow)
twierdzenia i wzory oraz zwiazki, zachodzace pomiedzy utwo-
rami i wielkosciami, wprowadzonemi przez definicye zasadnicze;
wreszcie podajemy krotka bibliografie prac, odnoszacych sie do
danej teoryi.

Nie mogac da¢ wszystkiego, ograniczamy sie wielockrotnie na
rzeczach najwazniejszych. Trudno$ci wyboru byly tu liczne i nie-
male i nie zawsze udalo si¢ nam pokonac je szczesliwie: dla tego
tez o$mielamy si¢ prosi¢ o pobtazliwosc w sadzeniu szczegolow tej
pracy.

Z dziel pokrewnych tego rodzaju istnieja nastepujace:
Laska ,Sammlung von Formeln der reinen und angewandten
Mathematik® (trzy czesci, Brun$wik, 1888, 1889, 18U4), Hagen
»Synopsis der hoheren Mathematik“ (2 czesci, Berlin 1693, 1694),
wreszcie wychodzgce obecnie pod redakcya H. Burkhardta
i W.Fr. Meyera dzielo zbiorowe p. t. ,,Encyclopaedie der ma-
thematischen Wissenschaften“ (Lipsk od r. 1898). lecz pierwsza
z tych ksiazek jest wlasciwie tvlko niezbyt obszernym zbiorem
wzorow; druga, jakkolwiek obszerna i pelna cennych wiadomosei,
nie wydaje si¢ nam ulozona w ten sposob, aby mogta by¢ przy-
datna dla tych czytelnikow, jakichjmamy na mysli; trzecia wreszcie
majaca bycérozlegla encyklopedya matematyczna, podajaca wyczer-
pujace wiadomosci o wszystkich teoryach specyalnych, bedzie
cenng bezwatpienia dla badaczy, ale ze wzgledu na rozmiary nie-
dostepng dla poczatkujacych zwiaszcza matematykow.,

Ernesto Pascal.






ROZDZIAL 1.

TEORYE WSTEPNE.

¥

Liczby niewymierne.

Dajmy, ze mamy dwie klasy liczb wymiernych: kla-
se A 1 klase B, takie: 1° ze kazda liczba klasy 4 jest mniej-
sza od kazdej z liezb klasy B; 2° ze dawszy sobie liczbe ¢ do-
wolnie mala, mozZemy zawsize znales¢ dwie liczby: jedne a
w klasie A, drugs b w klasie B, aby ich réznica b— a byla mniej-
sza od o, ale nierdwna zeru.

Takie dwie klasy 41 B okreslaja liczbe, ktéra moze albo
naleze¢ do jednej tylko z tych klas, albo nie naleze¢ do Zadnej
i by¢ wy miern g;jezeli zas nie zachodzi zaden ztych dwu przy-
padkéw, mowimy, ze d wie klasy A i B okreslaja liczbe
niewymierns.

Liczba niewymierna przedstawia si¢ tym sposobem jako
liczba, oddzielajaca klase A od klasy B, co oznacza¢ bedziemy
w ten sposob: a = (d, B)."

Liczbg wymierng # nazywamy mniejszg od liczby «,
jezeli w klasie 4 istnieja liczby wigksze od n; wigeksza od a,
jezeli w klasie B istniejg liczby mniejsze od n.

Pascal. Rep. 1.



2 Rozdziat I. — § 1.

Dwie liczby niewymierne a, o' nazywajs sie réwnemi,
jezeli kazda liczba wymierna mniejsza od a jest takze mniejsza od
a',1 kazda liczba wymierna wieksza od a jest takze wieksza od o'.

Aby dwieliczby niewymierne a = (4, B),
o = (4, B), byly ré6wnemi, jest koniecznem i do-
statecznem, by kazda liczba klasy 4 byla mniej-
sza od jakiejkolwiek liczby klasy B'1 aby kaz-
da liczba klasy A" byla mniejsza od jakiejkol-
wiek liczby klasy B.

Abyliczba a byla wieksza odliczby o, jest
koniecznem i dostatecznem, by istniala liczba
klasy A, przewyzszajgca wszystkie liczby
klasy 4’

Liczba g nazywa sie¢ suma dwu liczb a=(4, B), a'=(4', B'),
jezeli jest okreslong przez dwie klasy liczb, ktdre otrzymaé mo-
zna, dodajac wszelkiemi mozliwemi sposobami wszystkie liczby
klasy 4 i wszystkie liczby klasy A, a nastepnie wszystkie liczby
klasy B i wszystkie liczby klasy B’. Piszemy to symbolicznie;

B=a+td=(4+4,B+ D)

Jezeliliczby aia sgrowne toia-+ty a-+y
bedg réwne; tu y jestliczba, okreslong prazy
pomocy klas, a4y i o’y zas sgokreslone jak
wyzej.

Réznica iiloczyn dwu liczb, okreslonych za pomocs
Kklas, okreslamy w sposéb podobny do powyzszego, wykonywajac
te dzialania wszelkiemi mozliwemi sposobami na liczbach, two-
rzgcych klasy. W symbolach bedzie:

a—a = (4— A4, B—B)
ad’ = (4.4, B.B).

W dzieleniu dwu liczb niewymiernych a= (4, B),
o' = (4’, B') mozemy przyjac, ze obie liczby sg dodatnie, bo
gdy jedna lub obie sg ujemne, to dos¢ zmieni¢ znaki, ilorazowi
za$ nadaé znak wedlug znanego prawidla dla liczb wymiernych.
Mozemy tedy przyjaé, ze wszystkie liczby klas 4, 5, 4', B’ sg
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dodatnie 1 rdzne od zera: Dazielenie okreslamy za pomocs

}i)
b A:‘ ki

Podnoszenie do potegiiwycigganie pier-
wiastku mozna okresli¢ sposobem analogicznym, po okaza-
niu, ze nowe okreslenia nie sg w niezgodzie z danem juz okre-
sleniem iloczynu. W symbolach bedzie:

symbolu:

(5 A
.;f __\, P

o ERHAREB") 5 Vea w2 (V A, V B).

Przejdzmy do wykladnika niew ymiernego. Niechsj
n bedzie liczbg jakakolwiek, a zas liczba niewymiernsg:
a= (4, B). Liczbe, okreslong za pomocg dwu klas, ktdre two-
rzymy, podnoszac n do poteg, wskazanych przez wszystkie liczby
dwu klas 41 B, nazywa¢ bedziemy potega a— ta liczby u
w symbolach bedzie:

n® = (n', n¥), jezeh n > 1.,

ne = (n8 nt), jezelin < 1.

Wilasnosci zasadnicze liczb wymiernyeh 1 dzialan na nich
wykonywanych pozostaja, na podstawie nowych okreslen, nie-
zmiennemi.

Og6l wszystkich Liczb wymiernych 1 niewymiernych two-
rzy obszar liczb rzeczywistyech.

Sy trzy gléwne teorye liczb niewymiernych: Dedekinda
(Stetigkeit und irrationale Zahlen, Brunswik 1872, 1892), W e i e r-
strassa (patrz Kossak, Die Elemente der Arithmetik, Berlin
1872, i nizej cytowang prace Pincherlego)iG. Cantora
(wylozona np, w dziele Stolza, Vorlesungen iiber allge-
meine Arithmetik I, § VII).

Rozprawy o teoryi liczb niewymiernych wymieniamy nastgpujgce:
G. Cantor (Mathem, Annalen, V; Acta mathem, IT), Hein e (Journ.
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Crelle LXXIV), Pincherle (Giornale di matem. XVIII) Dini,
Fondamenti par la teorica delle funzioni di variabili reali, Piza, 1878,
przeklad niemiecki Liir6tha i Schepsa (Lipsk 1892); Pasch
Differentialrechnung, 1882, Ricci (Istituto Veneto, 1893, Giorn. di
mat, 1897); Betazzi (Periodico di matem. 1888, Teoria delle gran-
dezze, Piza 1890); Dubois-Reymond Functionentheorie, Ty-
binga 1882, przeklad francuski Milhauda, Paryz 1887; Tan-
nery, Introduction a la théorie des fonctions, Paryz 1886; Ba ch-
m ann, Irrationalzahlen, 1892, Bierm ann, Elemente der htheren
Mathematik 1895). Jasny wyklad teoryi mozZna tez znalezé w dziele:
Capelli-Garbieri, Analysis algebr.,, Padwa 1886,

Liczby niewymierne dzielg sie na dwie kategorye: do pier-
wsze] nalezg liczby, zwane algebraicznemi, ktére sg
pierwiastkami rzeczywistemi réwnan o spélczynnikach calko
w it yech; do drugiej liczby niealgebraiczne lub prze-
st ¢ pne. Liczbami drugiej kategoryi sg np. liczba = i liczba e.
Istnienie liczb przestepnych wykazal po raz pierwszy Liiou-
ville, nastepnie G. Cantor. Patrz nizej rozdzial XXT.

§ 2.

Liezby zaspolone.

Jezeli wprowadzimy jednostke urojong ¢, okreslo-
ng za pomoca wzoru 4?=—1, to liczbg zespolong be-
dzie liczba postaci a - ¢h, gdzie a i b sg liczbami rzeczywistemi;
@ nazywa si¢ czescig rzeczywista tej liczby, b—spd1-
czynnikiem czesciurojonej.

Dla zachowania prawidel zasadniczych rachunku nalezy
przyjac, ze:

Dwie liczby zespolone sg rowne wtedy
i tylko wtedy, gdy oddzielnie sg rownemiich
czgscl rzeczywiste i czesciunrojone, Liczba
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zespolona jest zerem wtedy tylko, gdy od-
dzielnie jest zerem jej cze$é rzeczywista
iczesé urojona.

Liczby zespolone dodajemyiodejmujemy,
dodajgciodejmujgc oddzielnie icheczgsci rze-
czywisteiurojone.

Liczba a—db nazywa si¢ sprzezong wzgledem liczby
a -+ ib.

Suma dwu liczb zespolonych sprzezonych
jest liczbag rzeczywista. Iloczyn dwu liezb
zespolonych sprzezouych jest liczba rzeczywi-
s t 8, ktdrg nazywamy kwadratem modulu lub nor ms licz-
by zespolonej.

Liczbe zespolong mozna przedstawi¢ w postaci try go -
metrycznej o (cosa- ¢sina), gdzie g jest modulem,
ktéry mozna uwazaé zawsze za liczbe rzeczywistg dodatnig,
a zas nazywa sie argumen tem.

Liczby zespolone mozna przedstawi¢ geometrycznie za po-
mocg punktéw plaszczyzny w ten sposéb, ze liczbie zespolonej
@ -+ @b odpowiada punkt P o odcietej a i rzednej b w prostokat-
nym ukladzie spolrzednych (G auss, Werke II, str. 171, TIIT,
str. 6). Wtedy modul ¢ wyraza odleglos¢ punktu / od poczatku
O spolrzednych, argument zas a jest katem, ktory prosta O/
tworzy z osig odcietych.

Modu! sumy dwu liczb zespolonych jest
mniejszy od sumy a wiekszy od réznicy ich
moduldw.

Modutiloeczynu lub ilorazujest ré6wny ilo-
czynowilubilorazowimoduldw.

Argumentiloczynulubilorazu réwna sie
sumie lub odpowiedniordéznicy argumentow.

Potege n-tg (n—liczba calkowita)liczby zespolo
nej, wyrazonej w postaci trygometrycznej,
otrzymujemy, podnoszgc do potegi ntej modut
imnozac argument przez liczbe n (wzér Moi-
vre'a),
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Dla liczby n wymiernej utamkowej, po-
staci —%, potega m-ta licbzy zespolonej
o (cosa-}¢sina) jest ré6wna:

»

Q‘T' cos —-“f;f (a -+ 2kn) - 2 sin % (a + 2kn)

gdzie k jest jakgkolwiek liczbg calkowitsa do-
datnia. Wyrazenietomatylkoskonczona licz
be réznych wartosci, a mianowicic ¢ wartosci, kto-
re otrzymujemy, ktadac za &k liczby O, 1,2, .. 9—1.
Jezeli m jest liczbg niewymierng, okreslong
przez dwie klasy 4, B, t.j. gdy n=(4, B), wtedy modu-
lem n-tej potegi liczby zespolonej bedzie o"=(4". B*)
(patrz § 1), jej argumentem zas bedzie liczba okre-
slona przez dwie klasy (liczb w ogéle niewymiernych).

A(@+2kan), Bla+2kan) |,

gdzie jak zwykle k jest liczba calkowita dowolna,.
W tym przypadku rozwiazan jest nieskonczenie wiele.
Rozwiazanie, odpowiadajace takiej wartosci liczby k, ze a--2kn
zawiera sig pomiedzy —zm 1 -z, nazywa sie rozwigzaniem
gtéwnem.

Co do okreslenia wykladnika 1logarytméw zespolonych
patrz Rozdzial XTIL

Przy pomocy przedstawienia geometrycznego liczb zespo-
lonych mozna na liczbach tych wykonywaé geometrycznie dzia-
lania zasadnicze. Jezeli A1 4’ sa punkty plaszczyzny,
przedstawiajace dwieliczby zespolone, todlaotrzy-
maniaich sumy kreslimy réwnoleglobok o bokach
04 i 04" (O jest poczatkiem spdélrzednych), wierz-
cholek tego rownolegloboku, przeciwlegly wierz-
cholkowi O, przedstawia sume liczb zespolonych.

Réznice wykreslamy za pomocsg podobnej kon-
strukeyl, zastosowanejniedo punktéw Ai 4',leczdo
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punktu 4 i do punktu symetrycznego wzgledem
punktu 4" w odniesieniu do punktu O.

" Dla utworzenia iloczynudwuliczb zespolonych
przedstawionych przez punkty 4 1 A4’ bierzemy
na o0si rzeczywistej, t. j. na osiodecietych, punkt 1
1 kreslimy tréjkat OAl, potem tréjkat do niego podo-
bny OA'P taki, ze gdy obrdécimy go okolopunktu O
az do zlania sig boku 04’ zbokiem 01, tobok PA’ sta-
niesie réwnoleglym do boku Al. Wtedy punkt P
przedstawiac bedzieiloczynliczb zespolonych.

Nakoniec iloraz dwuliczb zespolonychy przed-
stawionych przez punkty 41 4’, tworzymy za pomo-
cg nastepujgcej konstrukeyi: Kreslimy troéjkat
0OAl i na 04 bierzemy odcinekréwny 04; z punktu
koncowego K tego odcinka prowadzimy prosta ré-
wnolegla do 41, ktéra spotyka prosta Ol w punkcie
@, obracamy tréjkat OKQ okolo punktu 0, péki OK
nie zejdzie sig z OA’; polozenie, ktére zajmie wtedy
punkt @ bedzie punktem zadanym, przedstawiaja-
cym iloraz liczby A’ przez liczbe 4.

Z przedstawicniem geometrycznem liczb zespolonych wig-
ze sig rachunek, zwany rachunkiem ekwipolencyj.

Najwazniejszemi pracami o tej teoryi (précz cytowanych juz prac
Gaussa) sa: Wessel C., Essai sur la théorie analytique de la.
direction (1799, przedruk w 1897)., Argand, Essai sur la maniére :
de représenter les quantités imaginaires 1806, (przedruk w Paryzu
1874). Mourey, Vraie théorie des quantités imaginaires, 1828,
przedruk w 1861. Cauchy, Mémoires sur les quantités géomé-
triques, Exercices d'Analyse, IV. Bellavitis, Sul calcolo delle
equipollenze 1833—1834 (lista tych prac znajduje sie w cytowanej
nizej ksiazce Laisanta). Hankel, Theorie der complexen Zahlen-
systeme, Lipsk 1867 (pordw. Hertz i Dickstein, Teorya liczb
ogdlnych, w Pamigtniku Towarzystwa Nauk $cistych w Paryzu, t. VII,
1875). Hoiiel, Théorié des quantités complexes, Paryz 1874, Lai-
sant, Théorie et applications des equipollences, Paryz 1887. Ta n-
nery,Introduction etc. (patrz§1). Stolz, Vorl.iib, Arithm, t. II(patrz §1).
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§ 3.

Kwaterniony.

Jedno z uogoélnien teoryi liczb zespolonych stanowi rachu-
nek tak zwanych kwaterniondéw, w ktérym, précz jednostki
zwyczajnej liczb rzeczywistych, wprowadzamy jeszcze trzy jed-
nostki 4, i, ¢, 1 tworzymy wyrazenie:

Go + & @y 75 Uy + i O

Pragnac zachowaé wlasnos¢ ogdlng, ze iloczyn dwu kwa-

terniondw jest kwaternionem, musimy przyjac, ze iloczyn dwu

jednostek daje sig wyrazi¢ liniowo przez same jednostki. Przyj-
mujemy tedy, ze
B2 =—1,4""=—1 i?=—1,
Uiy = — gl = by, Gyly = — iy == &y, iy = — il = ly.
Stad widaéjuz, ze wlasnosé przemiennosei iloczynu nie utrzy-
muje sig w ogdlnosci dla tych nowych liczb. Gdy a,—a,—a,,

kwaternion nazywa si¢ skalarem, gdy a, =0 nazywa sig
wektorem. Modulem kwaternionu jest liczba doda-

tnia rzeczywista Va,*+a,>f-a,’4a,% Liczba

o 2 a a
Lt e T

G e ey ;
Va, . +-a,? e R Va,*+a,*+ag?

nazywa si¢ osig kwaternionu

Kazdy kwaternion mozna przedstawi¢ w posta-
ci g (cosa+1lsina) gdzie g jest modulem, a—argumen-
tem, A—osig.

Kwaternion g (cos a--4 sin a) nazywa sie sprzezonym
wzgledem kwaternionu g (cos a4 sin a).

Kwadrat osi ré6wna si¢ jednostce ujemnej.

Tloczyn dwu kwaternionéw sprzezonych roéw-
na sig kwadratowi modulu.
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Iloczyndwu kwaterniondw, majgcych o
wspélng, otrzymujemy, mnozae moduly i do-
dajgcargumenty. W tym przypadku iloczyn
nie zalezy od porzgdku czynnikdw.

Jezeli kwaterniony dane do mnozenia sa
réwne otrzymujemy wzoér podobny do wzoru
Moivrea.

Kwaternion z=a,+4a,-Fia,+%a; czyni zadoseé
réwnaniu

28— (Bag*—a,2—ay?—az®) 2 + 2a, (1,24 a,*+ a,*+a,?) = 0.

Mozna pomysle¢ ogélniej liczby zespolone o n jednostkach,
t. j. liczby postaci

@ = 1,0, + iy + . oo F Guoayq 2,0y,

gdzie 4, % . . . %,_1, %, 3 jednostkami.

Z literatury o liczbach zespolonych ogdlniejszych i o kwaternionach
wymieniamy dziela; Grassmann, Ausdehnungslehre (Szczecin 1862),
oraz Gesammelte Werke, Lipsk 1894, 1896; Hamilton, Lectures on
quaternions Dublin 1853, Elements of quaternions, Londyn 1866, prze-
klad niemiecki Glana, Lipsk 1882; Hankel, Theorie der complexen

cuskie 1884; Weierstrass (Gotting. Nachr. 1884), Schwarg, De-
dekind, Holder (tamze 1884, 1885, 1886); Berloty, Théorie des
quantités ccmplexes a n unités principales, 1886; Houél, Théorie des
quatern, 1874; Laisant, Introduction & la méthode des quatern., Pa-
ryz 1881; Stolz, Vorl iiber Arith. II, Lipsk 1886; Her t z, Pierwsze za-
sady kwaternionéw Hamiltona, Warszawa 1887; Dickstein, Pojecia
i metody matematyki, Warszawa 1891, str. 171 i nast.

.

/)

Fofoot . !

Zahlensysteme, Lipsk 1867, Tait, Quaternions 1882, wydanie fran- <'/
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4,

/g

Teorya grup punktowych (agregatow, zbioraw).

Ustaliwszy jednostke miary 1 oznaczywszy na prostej
(w ogdlnosei w jakiejkolwiek rozmaitosci jednowymiarowej)
punkt poczatkowy (zerowy), mozemy do kazdej rzeczywistej
wartosel pewnej ilosci zmiennej dobra¢ punkt prostej, 1 odwrot-
nie. Nieskonczonej lub skonczonej liczbie punktéw prostej od-
powiada¢ bedzie nieskonczona lub skonczona liczba wartosci
zmieunej, i odwrotnie. Ogodl ten nieskonczonej 1 skonczonej
liczby punktéw tworzy tak nazwang grupe nieskonczong
lub skonczong punktéow,jednowymiarowsg lub
liniowasa. Jezeli zamiast jednej zmiennej rozwazamy dwie
zmienne 1 obrawszy uklad spélrzednych Descarte s’a, jak to
sig czyni w geometryi analitycznej, do kazdej pary wartosci obu
zmiennych dobierzemy odpowiadajacy jej punkt plaszczyzny, to
nieskonczonej lub skonezonej liczbie par wartosci zmiennych od-
powiada¢ bedzie grupa dwuwymiarowa nieskon-
czonalub skonczona. W tenze sposéb mozemy okresli¢
grupy o dowolnej liczbie n wymiaréw.

Punktem granicznym takiej grupy nazywa sie
punkt, w ktérego Lazdem dowolnie malem otoczeniu istniejg
zawsze punkty nalezace do grupy.

Kazda grupanieskonczona punktéw ma
zawsze przynajmniej jeden punkt graniczny.
Grupa skonczona nie ma wcale punktéw gra-
nicznych.

Jezeli grupa punktéw ma wiecej niz jeden punkt granicz-
ny,to ogél tych punktow tworzy grupe pocho-
dna. Podobnym sposobem otrzymacby mozna z niej 1 inne
grupy pochodne, jezeli pierwsza grupa pochodna jest
nieskonczons.

Przyklady: Grupa i, }, 1,1, ...ma jako punkt gra-

niczny punkt zero. Grupa, ktdrej punkty sa tvpu - —}— ;l—
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(n,m=1,2 3...), ma za punkty graniczne punkty typu

1 Sk
ol tworzace znowu grupe nieskonczona,.

Grupa punktéw wymiernych ma za pierw-
szg grupe pochodng ogdél wszystkich punktéow.

Kazda grupa pochodna zawiera w sobise
wszystkienastepne grupy pochodne.

Jezeli jedna z grup pochodnych jest skonczong, wtedy
przerywa sig szereg grup pochodnych i grupa pierwotna nazywa
sie grupa pierwszego gatunku. W przeciwnym ra-
zie nazywa sig grupa drugiego gatunku.

Grupa nazywa sie zgeszczona lub wszedzie—ge-
sta w pewnym przedziale, jezeli w kazdym dowolnie malym
przedziale, zawartym w poprzednim, znajduje sie nieskonczenie
wiele jej punktow.

Dwie grupy nazywaja sie grupami ré6wnej mocy, je-
zell pomiedzy ich elementami mozna ustanowi¢ odpowiedniosé
wzajemna i zupelng. Jezeli punkty grupy odpowiadajs w spo-
s6b jedyny 1 zupeiny punktom grupy, utworzonej z szeregu liczb
calkowitych 1, 2,3 . . ., grupa nazywa sie odliczalna.

Jezeli pierwsza grupa pochodna grupy
liniowej punktéw jest odliczalna, to wszyst-
kie punkty grupy dajasie zawrzeé¢ w odciu-
kach, ktorych sume mozna uczyni¢ dowolnie
malas.

Grupa nazywa sie¢ doskonata, jezeli zlewa sie ze swojg
plerwsza grupa pochodna, a wiec i ze wszystkiemi nastepnemi
grupami pochodnemi

Powyisze pojecia naleza do pierwszych w teoryi grup. Teoryg
te utworzy! G. Cantor (Math. Ann. V, str. 123, 1872, Crelle,
LXXVII, str. 2568, LXXXIV, str. 242, Acta math, II, TV, V). W przed-
miocie tym ogloszono liczne prace. jak to mozna widzie¢ z artykulow
Vivanti’ego: ,Notice historique sur la théorie des ensembles*
(Biblioth. math. VI, 1892, str. 9) i  Teoria degli agregati“ (Rivista di
matematica, ITI, 1893, str. 189). Borel. Théorie des fonctions, 1898,
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§ b.
Pojecie ogdlne funkcyi.

Jezeli pomyslimy zmienna y, zwigzana z inna zmien-
ng x w ten sposob, iz nadawszy na x pewna wartosé, zawarta
w ustalonym przedziale lub, ogdlniej, zawarta w oznaczonej gru-
pie nieskonczenie wielu wartosci, otrzymujemy jedne okreslong
wartos¢é na y, méwimy, ze y jest funkeysa zmiennej x
w przedziale lub grupie okreslonej. Zmienna x
nazywa sie zmienng niezalezng. Podobng definicye
utworzy¢ mozna dla funkeyi y, zaleznej od wigkszej -liczby
zmiennych z,, z,, . ..

Funkcya y zmiennej * nadaje sig do przedst a-
wienia analitycznego, wtedy, jezeli mozna ustanowié
uklad dziatan analitycznych, ktore nalezy wykona¢ juz to na
samej zmiennej x, juz to rownoczescie na zmiennych z iy, aby
wybrawszy pewny wartosé na x i wykonawszy wskazane dziala-
nia, médz dojs¢ do wartosel y.

Funkcya y zmiennej  nadaje sie do przedstawie-
nia geometrycznego wtedy, gdy po przyjeciu x i y za
spolrzedne Descartes’a punktu na plaszezyznie, miejscem
geometrycznem punktu o spolrzednych x i y bedzie krzywa
w zwyklem znaczeniu tego wyrazu.

Przedstawienia analityczne moga by¢ dwojakie: wyrazne
i niewyrazne lub uwiklane. Przedstawienie analityczne
nazywa sie wyraznem wtedy, gdy, wskazane dzialania anality-
czne majg by¢ wykonane wprost na zmiennej x, a wykonawszy
je, otrzymujemy odrazu warto$¢ zmiennej y. Jezeli zas przyj-
miemy, ze mamy dang analitycznie funkcye dwu zmiennych
iy, t. j. pewien uklad dzialan analitycznych, ktére nalezy wy-
konaé réwnoczesnie na obu zmiennych x 1y, 1 ze szukamy tym
sposobem wszystkich par wartosci, dla ktérych ta funkeya obu
zmiennych jest zerem, wtedy y mozna bedzie uwazaé w ogdle za
funkeyeg zmiennej x, lecz dang za pomoca réwnania, t. j.
niewyraznie.
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Jezeli funkeya nadaje sie do przedstawienia analitycznego
wyraznego, a symbole dzialan analitycznych, do tego przedsta-
wienia wchodzacych, nalezae tylko do pierwszych czterech dzia-
fan rachunku, oraz do potegowania z wykladnikiem catkowitym,
sg w liczbie skonczonej, wtedy funkeya nazywa sig wy-
miernas.

Najogélniejsza postaciag funkcyl wymiernej
jednej zmiennej jest:

a, + ax + wge® + ayx® + ... @pz”
by + 0yx + box* - b + .. ..+ b, 2"

gdzig tyttiy.. . by by . .. 58 staleni,

Jezeli w przedstawieniu analitycznem funkeyi znajduje sig
symbol pierwiastkowania, zastosowany do zmiennej z lub do
funkeyi wymiernej tej zmiennej, wtedy funkecya nazywa sie
niewymierna.

Funkcya nazywa si¢ przestepna, jezeli do jej przed-
stawienia analitycznego wchodza symbole i innych dzialan,
procz wyzej wymienionych np. dzialanie lagarytmowe, dzia-
lanie wskazane przez funkcye zwane trygonometrycznemi i t. d.;
te dzialania wykonywaja sie albo na samej zmiennej z, albo
na jej funkeyi.

Jezeli y jest funkcysq zmiennej z, ta zas zmienna 2z jest znowu
funkeys zmiennej #, wtedy 7 nazywa sie¢ funkeyg zlozong
zmiennej 2z za posrednictwem funkeyi 2. Podobng definicye
tworzymy dla przypadku, w ktérym y jest funkcys wiekszej
liczby zmiennych z;, 25, 2,, . . . , kazda zas z nich jest znowu
funkeyg innych zmiennych.

Jezeli y jest funkcyg zmiennej «, to zmienng & mozna uwa-
za¢ za funkeye ilosci y; funkcya taka nazywa sie odwrotna.

Funkcya zmiennych a, x,, . . . nazywa si¢ jednorodna,
jezeli po pomnozeniu kazdej ze zmiennych przez ilosé nieokre-
slong ¢, t. j. po podstawieniu tx,, ey, . .. zamiast z,, %y, ...,
wartosé funkeyl przy nowych argumentach bedzie réwna war-
tosci funkcyi przy argumentach pierwotnych, pomnozonej
przez pewng potege ilosci ¢ ... Wyraza te wlasnosé wzor:
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f(t‘xll [(E?, N [’f{l‘“ Loy o v e )y

zachodzacy dla jakiegokolwiek ¢ i dla kazdego ukladu wartosci
@y, Ty, . . . Liczba r nazywa sig stopniem jednorodnosci.

Wyrazu funkecya uzywali pierwsi: Leibniz (Acta Erudito-
rum, 1692). Bernoulli (Mémoires de Paris, 1718), Euler (Introduc-
tio in analysin intinitorum, 1748),

Pomysl oddzielenia pojecia funkeyi od pojecia jej przed-
stawienia analitycznego zawdzieczamy Lejeune-Dirichle-
towl

§ 6.
Funkeye catkowite i wymierne jednef zmiennej.

Niechaj beda dane dwie funkcye catkowite (wielomiany)
jednej zmiennej x, mianowicie F(x)1 f(x), plerwsza stopnia i,
druga stopnia n (m > n); mozna wyznaczy¢ jednoznacznie dwa
inne wielomiany, mianowicie Q(x) stopnia m—mn 1 f(x) stopnia
mniejszego niz n, aby bylo toz tozsamosciowo:

F (o) =f(2) ¢ @) + K (@).

Q(x) nazywa sig ilorazem, R(z) zas reszta. Jezell H=0,
méwimy, ze funkcya F jest podzielna przez f.
Utworzywszy kolejne réwnosei:

fx)= L (x) @ () + R, (z)
B(z) = R, (x) Qy (x) + Ky (2)

dojdziemy napewno do takiej réwnosci, w ktorej reszta, dajmy
na to, Ky, jest rowna stalej. Jezeli ta stala jest zerem,
to reszta H; jest najwiekszym spélnym dzielnikiem
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funkecyj Fif. Jezeli R;y, nie rowna sig zeru, wtedy
‘funkcye Fif sa wzglednie pierwszeml.

Jezeli wielomiany F, 1 f, sg wzglednie pierw-
szemi, to mozna zawsze wyznaczy¢ jedyne dwie ta-
kie funkcye calkowite G,.;, ¢.. aby bylo:

E}: !/,,«I + Gm-—-) fu ‘T 1-

Moznosé wyznaczenia dwu funkecyj catkowi-
tych H,_;, ha_ytakich, aby bylo:

Fm hn—k _i’_ fn Hm—k = 0

stanowil warunek konieczny i dostateczny na to, by
dwie funkcye F, f mialy dzielnik wspdlny stopnia co
najmniej k.

Reszta z podzielenia funkcyi f(x) przez z—a jest
fla). Jezeli fix) znika dla x=a, to jest przez z—a po-
dzielne.

Jezeli (z—a)* jest czynnikiem funkeyi f(x), (x—a)*+! zas nie,
to méwimy, ze ¢ jest pilerwiastkiem wielokrotnym
o wielokrotnosci a funkeyi fiz) lub ré6 wnania f(x)=0.

Ogélna funkcya wymierna zmiennej x ma postac

----- 9 gdzie Fif sg symbolami dwu wielomiandw ze zmienna x.
Jezeli a jest pierwiastkiem wielokrotnosei a réwnania

It 3 ; i

e gdzie B jest stopnia nizszego

niz f, mozna rozlozyé w ten sposéb:

f(®)=0, wtedy funkcya

AT s By (x)”
flz) — ix=ap T gl ()

tu 4 jest stala, R (x) jest wielomianem calkowitym stopnia o je-
dnos¢ nizszego od stopnia wielomianu R(x), flo) zas jest ilora-
zem z podzielenia funkeyi f(x) przez (x— a)2.

Niechaj x, @, . . ., x, bedg pierwiastkami réwnania f(2)=0
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wielokrotnosci odpowiednio ¢, ¢, . . . ¢,; funkcye wymierna ¥

gdzie ff jest stopnia nizszego niz f, mozna rozlo-
Zy¢ w ten sposodb:

b L S Ay | gt ok
f@ = @—a) T w—mpyi T ey
B, B B,
i 2 ARG 8
Vo(—oy) T =y A T—,
_+_
gdzie 4, B, . . . sa stalemi.

Spélezynniki 4,. 4, . .. wyznaczaja sie zapomoca nastepu-
jacych wzoréw zwrotnych (gdzie znaczki przy £if stuza do
oznaczenia pochodnych, patrz Rozdziat VII):

7. WeTER
R (z,) — T‘T (<) tpry. == 10

14

H,(w‘) ( +l) /("+) () — :ﬂ' i(l" (:I'|) —(0)
K" (x)) — —f]l—f("”LE)(w) 10 +11:)——f(->(¢)
Y2l AT 7 +1)' ,
Analogicznie napisaé mozna wzory na By, By, .. ...

Jezeli ¢, =14, =.....=1, bedzie wprost:

4,= H”—(ﬂ)— g Ay £ ()

f(xl) W’ .......

W przypadku, gdy f(@) ma wszystkie pierwiastki rézne,
(t. j. gdy zaden z nich nie jest wielokrotny), otrzymujemy na-
stepujacy wzér godny uwagi:
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R(a’l) | R(x‘z) : M:O
f (xy) ¥ f () Lo I (@)

Jezeli tréjmian 23-}pzr-}q jest czynnikiem mia-
nownika f(z), t. j. gdy

f(x) = («* + px + ¢ f (@),
wtedy bedzie tozsamosciowo:

R _ Pzt R, (%)
f () (@ +px—+q) (@4 pz+ ) fi(x)’

gdzie /t,(x) jest nows funkeysg calkowits stopnia nizszego od sto-
pnia funkeyl R, zas P;, @, sa ilosciami stalemi.
W temze zalozeniu bedzie:

M:.‘.P_li_*—Ql ; P-_,"Z"J‘_Qg _}_ + Frx+Qr_5_Hr(x)
fl@) @+patqr T prto T @idpatq S (%)

gdzie K, jest stopnia nizszego niz f.
Jezeli réwnanie f(x)=(0 ma pierwiastki urojone, to wzdr

poprzedni sluzy do przeksztalcenia funkecyi —[;— na sume ulam-

kow elementarnych rzeczywistych.

Rozklad funkcyi ulamkowej wymiernej na ulamki proste znajdu-
jemy juz u Jana Bernoulli’ego (Dziela t. I); potem przedmiotem tym
zajmowali si¢ Euler, Cauchy i inni.

34 F

§
Teorya granic.

Méwimy, ze funkeya y zmiennej x ma dla « réwnego a
granice 4, jezeli dawszy sobie ¢ dowolnie male, mozZemy

Pascal. Rep. L 92
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zawsze znale$é otoczenie punktu « takie, ze dla kazdej wartosci x
w niem zawartej, wartos¢ bezwzgledna funkeyli y rézni sie od 4
o ilos¢ mniejsza od .

Rozrézniaé bedziemy granice z prawej stronyigra-
nice, lewej strony stosownie do tego, czy wlasnosé powyzsza.
spelnia sig po stronie prawej, czy tez po stronie lewej od a; to
rozréznienie jest zbytecznem, jezeli spelnia sig ona po obu stro-
nach.

Warunkiem koniecznymidostatecznym istnie-
nia granicy jest, by, dawszy sobie ¢ dowolnie male,
mozna bylo znalesé¢ otoczenie punktu a takie, zZe
réznica bezwzgledna dwu wartosci, ktdre przyjmu-
je funkceya y w dwu jakichkolwiek punktach tego
otoczenia, jest mniejsza od o.

W przypadkach, gdy A lub a sg nieskonczonosciami, na-
lezy da¢ definicye nastepujace :

Méwimy, ze granica funkeyi y.jest + oo dla x dazacego do
a, gdy, dawszy sobie w dowolnie wielkie, mozna znales¢ takie
otoczenie punktu 4, ze dla kazdej wartosci  w niem zawartej
wartosé funkeyl y jest zawsze stalego znaku, a co do swej war-
tosci bezwzglednej wieksza od w.

Méwimy, ze funkecya y ma granice 4 dla x dazacego do
-+ oo, gdy, dawszy sobie ¢ dowolne male, mozna znales¢ liczbe
x' taka, ze dla kazdej wartosci 2>’ (lub mniejszej od 2') réz-
nica 4 —y jest co do wartosci bezwzglednej mniejsza od o.

Méwimy, ze funkcya y ma granicg + oo dla x dazacego do
-+ oo, gdy, dawszy sobie w dowolnie wielkie, mozemy znalesé
takie «', ze dla kazdej wartosci x >>2' (lub ~Z#’) funkeya y jest
znaku statego 1 co do wartoscl bezwzglednej wigksza od w.

Jezeli trzy funkeye y,, ¥, ¥; zmiennej z sg ta-
kie, ze, dawszy sobie 6 dowolnie male, mozna zna-
lesé otoczenie punktu a takie, iz dla punktéw tego
otoczenia wartosé funkeyi y, jest zawsze zawarta
pomiedzy wartosciami funkeyj y, 1 y; 1 jezeli te
dwie ostatnie funkcye daza do jednej i te] samej
granicy 4 dla x=a, toi y, dazyé¢ bedzie do granicy
dla x=a i tg granicag bedzie 4.
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Jezeli funkcya y, gdy « zbliza sig¢ do a, rosnie
bez przerwy, a przynajmniej nie maleje, pozostajagc
wecigz mniejszg od liczby 4, to wtedy funkecya ta
ma granice dla x—=a 1 granicg ta jest albo ilose¢ 4,
albo liczba mniejsza od A.

Granica sumy algebraicznej, iloczynu, ilorazu
funkeyj, majacych granice dla x=q, jest ré6wna su-
mie, iloczynowi, ilorazowi granic.

« }Tﬁ” - 2\
iy lim (14 2 = e
limi?cizl-, iim n(l”/a__l)zlog'a‘,
z=0 n=oco
gl
. 1—cosz iy \ 7
e = 1 1 ==
x11=n](-) z 01 ml{nok + T’n) 8,
lim_t'.(ia;.zl., llm —log(l +———-m) :1_,
z=0 T m=0 m
lim «sin i == 0, Iim Bg_(l_"'_’"ﬂ "
=) x m=0 m
. oav—1 .
lim =log a, Iim ylogy=0;
=0 J—=0
T L,
e o N
ST o |
lim i n (" — l)i = log a,
n!

im —— e = 1.
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T (1 4 f(x) ) elim /@) . li_m x{ ljfo) ol }:log,lim f(x),

ﬂ—-.OO

ﬂ

i= —11;— n+1)(n—{—-2)..2n—_-—‘:—,

” oo

1m1%ﬂfﬂﬁl=o;1mnrwv=q
B L o R ot ( LA | R ' :
"hzrr; ik e il jezelir +1 jest dodatnie
S=007 7 ARSI A 4
1
lim Ligh a5 n+ s =0

Jezeli f(x+41)—f(») dagzy do granicy ozna-
czonej A, gdy x dazy do nieskonczonosci, i je-
zeli funkecya [f(x) jest skonczong dla kazdej
skonczonej wartosci #, stajgc sieg nieskon-
czong tylko dla x=o0, wtedy:

lim L)

r=o0c0 x

= 4.

Jezeli mamy funkcye f(z) rozna od zera
iod nieskonczonosci dla kazdej skonczonej
wartoscl na x, wigkszej od pewnejliczby ozna-
czonej, istawajagcg sig zerem lJub nieskonczo-
noscig jedynie dla z=0co0,1 jezeli nadto:

flx+1

Lo Fd) % At
to bedzie takze:
lim V7 (@) = 4.

Z = 00
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Twierdzenie Gaussa, Niechaj beds dwie ilosci a
ig, p<<a. Utwoérzmy wyrazenia kolejne:
=%3(@+p), pp=Vap
= 3 (a, +ﬂl),ﬁ2sl/alﬂ1
ag = § (a + B, ﬂa—]azﬂz

RS

to bedzie:

lim a,=lim §, (Srednia arytmetyczno-geometryczna.)
NT=O0 n=0co

§ 8.

Granica wyzsza i nizsza wartosei funkcyi.

Jezeli f (x) jest funkeysg stale skonczong w calym prze-
dziale od a do b, to: albo istnieje jeden lub wiecej punktéw prze-
dzialu, wktorych funkeya ma wartosé najwieksza, albo ist-
nieje wartos¢ A4 taka, ze lubo przy zmienianiu ilosci z w prze-
dziale, f(x) nie moze ani doj$¢ do tej wartosci, ani jej prze-
kroczyé¢, to jednak dawszy sobie ¢ dowolnie male, mozna zaw-
sze znales¢ taks wartosé x w przedziale, ze réznica pomiedzy A
a wartosciag funkcyl w tym punkcie bedzie co do wartosci bez-
wzglednej mniejsza odo. W tym drugim przypadku
méwimy, ze 4 jest granicg wyzszg wartosci f
w punkcie . Analogiczna definicya okresla granice nizszs.

Jezeli istnieje maximum wartosci funkeyi, to funkeya
moze albo czynié¢ zadosé warunkowi cechujacemn granice wyz-
szg, albo tez moze warunku tego nie spelniac.

W tym ostatnim przypadku nie istnieje
granica wyzsza w Scislem znaczeniu tego wy-
razu; w przypadku pierwszym bedziemy mieli
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granice wyzszg, ktéra jestzarazem maximum
funkecyi.

Jezeli funkecya ma w przedziale granice
wyzsza A, to istnie¢ be¢dzie napewno przy-
najmniej jeden punkt w przedziale taki, ze
w dowolnie malym odcinku punkt ten ota-
czajgcym granica wyzsza warvosci funkeyi
jest takze 4 (Twierdzenie Weierstrassa).

Nazywamy oscylacya (wahaniem sie) funkeyi w prze-
dziale réznice pomiedzy najwiekszemi i najmniejszemi warto-
Sciami, jakie przyjmuje ta funkcya w przedziale, lub jezeli te
maxima i minima nie istnieja—rdéznice pomiedzy granica wyzsza
1 granicg Nizsza.

Bolzano pierwszy mial my$l uwaZania granicy wyzszej i niz-
szej (patrz Stolz, Math. Annalen, XVIII), lecz dopiero poézniej
Weierstrass rozwinal szeroko te pojecia analizy.

§ 9.
Teorya funkeyj ciaglych i nieciggtych.

Funkeya f (z,, ,, ... ) nazywa si¢ ciaggla w punkcie
Zy=a,, Ty=d,, . . . , gdyjej granica dla x;=a,, L;=as, : -+ . TOWNa
sig wartosci f (a;, @y . . . ). Inaczej: jezeli damy sobie ¢ dowol-
nie male, to mozna zawsze znalesé¢ uklad wartosei Iy, Ly, . . . taki,
ze dla kazdego ukladu z,,x, . * . , czynigcego zados¢ warunkom:

o —h=x, <o, +h; a—ly<x,<ay+hy;......

réznica pomiedzy wartoscia, jaks przyjmuje f, a wartoscig
[ (a, a,....a,) jest bezwzglednie mniejsza od o.

Funkcyacigglaiskonczona jednej zmien-
nej, czynigca zadosé¢ warunkowi

@y =Ff@)+fQy)
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ma postaé najogdlniejsza:
e =0k

Funkcya ciggla jednej zmiennej spelnia-
jaca zwigzek

f@e+yn=rF@T71©
ma postaé¢ najogoélniejsza:
f(l‘) = Aax’

gdzie A 1 @ sg ilosciami stalemi.
Najogélniejsza postaciag funkecyiciaglej
jednej zmiennej, gdy ma spelniac¢ zwigzek:

fley =Ff@+ /@
Jjest fix) = 4 log, .

Twierdzenia powyzsze podal Cauchy.

Jezeli szereg nieskonczony funkeyj cig-
glych jest szeregiem jednostajnie zbieznym
(patrz Rozdzial IV), to przedstawia on funkecye cig-
gla tych zmiennych.

Szereg potegowy wewngatrz obszaru swej
zbieznosci przedstawia funkcye ciggla zmiennej.

Jezeli szereg potegowy jest zbiezny ina
kresach obszaru zbieznosci, to i na tych kre-
sach przedstawia on funkcye ciagla (Twierdzenie
Abela).

Funkcye zmiennej ciagle] w calym przedziale nazywamy
jednostajnie cigglalubréwnociagta, jezeli dawszy
sobie ¢ dowolnie mate, mozemy znales¢ taka liczbe 6, by dla
kazdej wartosci x w przedzialeidla kazdego 4, <~ ¢ bylo
stale:

fl@x6)—f(2) o
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Definicya dla funkcyj wielu zmiennych jest analogiczna.

Funkcya wprost ciggla jest zarazem i roé-
wnociggta (Twierdzenie Cantora).

Jezeli funkecya jest ciagla w przedziale,
to mozna podzieli¢ ten przedzialna skonczong
liczbe takich przedzialéw czastkowych,aby w kaz-
dym z nich oscylacya funkcyi byla mniejsza
od jakiejkolwiek ilosci 6, dowolnie danej.

Dla funkeyi cigglej granica wyzsza sta-
nowil jejmaximum, granica nizsza jej minimum.

Jezeli funkcya ciggla jest oznaczona
wnieskonczonej liczbie punktédw, to jest tez
oznaczong i wich punktach granicznych.

Jezeli funkcya cigglta jest oznaczona we
wszystkich punktach wymiernych pewnego
odcinka, to jest tez oznaczona i w jego pun-
ktach niewymiernych.

Jezeli funkcya ciaggla w przedziale ma
w dwu jege punktach wartosci przeciwne-
go znaku, to w punkcie posrednim ma war-
tosce zero.

Jezeli funkeya ciggla przyjmuje dwie
wartosci #1 Bwdwu punktach aib przedzia-
Iu, to w punktach posrednich przyjmuje wszel-
ka wartosé, zawarta pomiedzy 41B. (Wiadomo
ze ta wlasnos¢ nie charakteryzuje funkcyj cigglych; patrz Dar-
boujx, Mémoire sur les fonctions discontinues, Annales de I’ Ecol,
normale, TV).

Funkeya jest nieciggla lub przerywang w puu-
kecie a, jezeli granice wyrazen f(a—9) i f(a—4) dla 6=0 sa:
1) albo nieoznaczone, 2) albo nieréwne, 3) albo bedac réwnemi,
nie sa réwne wartosei funkeyi f w punkcie a. W ostatnim
przypadku mozna zniesé¢ nieciaglosé, zmieniajac war-
tosé funkeyl w punkecie «. "W pierwszym przypadku niecigglosé
nazywa si¢ nieciagloscig gatunku drugiego, a
w pozostalych przypadkach—nieciggloscig zwyklalub
gatunku pierwszego.
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Jezeli funkcya fjest nieciagla w punkcie
a, to istnieje zawsze liczba dodatnia o,rézna
od zeraitaka, ze dla kazdego 6 >0 mozna zaw-
sze znalesé¢ przedzial w otoczeniu punktu a,
tak, ze f(x)—f(a)<o,lecz nie moze to by¢ dla kai-
dego 6<<o¢. Liczba ¢ nazywasie skokiem fun-
kcyi. Jezeli niecigglosé jest gatunku pierw-
szego, to skok jest ré6znicg pomigdzy f(a) ilim
fla+ 6.

Jezeli funkeya ma nieskonczenie wiele punktéw przerwy
to punkty te mogg albo tworzy¢ grupe taka, ze daja sig zaw-
rze¢ w przedzialach, ktorych sume mozna uczyni¢ tak mala, jak
si¢ podoba, albo tego uczyni¢ nie mozna. W pierwszym razie
nazywamy funkcye punktowo nieciggla (lub pun-
ktowo-przerywanas); wdrugimzas liniowo-niecig-
glag (lub liniowo-przerywanasg). Przykladem drugiego
gatunku funkeyi jest funkcya, bedsca nieciagla we wszystkich
nieskoneczenie wielu punktach odcinka skonczonego.

Czytelnika, pragnacego bardziej szczegélowo poznaé ten przed-
miot, odsylamy do cytowanych w § 1 dziel Dini’ego i Tannery’ego.
Poréw. tez Pascal ,Note critiche et esercizi i t. d.“ Medyolan 1895,
gdzie podano wiele przykladéw i odnosne wskazowki bibliograficzne.

§ 10.

Teorya kombinacyj. Spotczynniki dwumianowe.

Liczba réznych sposobéw, jakiemi mozna rozmiesci¢ n
przedmiotéw na 7 miejscach ustalonych, nazywa sig liczbg
przemian n przedmiotdéw. Wyrazamy jg tak:

w=nl=1.2.3....n—1).n.
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Ustalmy dla = przedmiotéw pewna kolej nastepstwa
1 uskutecznijmy po tem przemiane; powiemy, ze w otrzymanej
przemianie dwa przedmioty tworza odwrdcenie (inwer-
sye), jezeli nastepujs po sobie w porzadku odwrotnym, niz
W przemianie pierwotnej. Przemiana nazywa si¢ parzysta
lub nieparzysta, stosownie do tego, czy zawiera parzy-
stg lub nieparzysta liczbe odwrdcen.

Istnieje—g!— przemian parzystych i tylez
nieparzystych,

Liczba sposobéw, jakiemi % przedmiotéw, wybranych z po-
miedzy # danych (k<Cn), mozna rozmiesci¢ na & miejscach sta-
Iych, nazywa sie liczbg rozmieszczen n przed-
miotéw po Lk Liczba ta wyraza sie tak:

Dpk=nun—1)...n - k+1) = (7-12_'—/'),
Jezeli k=m,rozmieszczenia stajasie przemianami.

Liczba sposobéw, jakiemi pomiedzy n przedmiotami dane-
mi mozna wybra¢ % przedmiotéw, nie uwzgledniajac porzadku,
w jakim je wybrano, nazywa sig liczbg prostych kombi-
nacyj zn przedmiotow po k. Jest ona:

i nwn—1)...n—k—+1) =/n\

g T g s k|
Dn,k foc? Pu
i Pk g Pk . Pu—k
Odrazu wida¢ wlasnoscé:
Cn, s T Cn, n—k

Jezeli w rozmieszezeniach element mozZe powtarzac sie
pewnas liczbg razy, mamy wtedy rozmieszeczenia z pow-
térzeniem. Liczba ich wynosi:
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Jezeli w kombinacyach kazdy element moze powtarzaé sig
pewng liczbe razy, mamy kombinacye z powtdrze-
niem. Ich liczba wynosi:

m+rk—1n+k—2)...(n+1).n
TER BT

E—1
) C,n+k--].k — (n + ]z ) .

v
(/h,k=

Liczby O, x nazywajg si¢ takze spélczynikami dwu-
mianowemi (lub binomialnemi), poniewaz sg spol-
Czynnikami réznych wyrazéw rozwiniecia potegi dwumianu.

Pomiedzy niemi istnieje bardzo wiele zwiazkéw; wymie-
niamy nastepujace:

( ;: ) g (n i k) ; (-—kn) i . ("‘f‘/if—l)
-G D

i it s 08 BN
lk}—O,Jezel1n<h e (n)—_l,

(Z)*L (k—1+—1)= (Zli)

ny [ n\(k+1 n |\ tk-+2\ 3N n\
el (% Gl (57) o e G ) = 0
n\f—-}- (2) ot (—1)"(::\,2: (—1) T (I% ,jezeli n parzyste ,

+ ==(0) ,jezclin nieparzyste;
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n

e

L+ )+ G (T =C0)

Spolezynniki dwumianowe liczby — —-i— majg ciekawe
wyrazenia :
S e ! =y o NS —‘/._,)___ 1.3.5
( 1 /_‘"2_’( 2 |- 2.4’( : do P s I B
— 1, L SEE Rl
()= ores v

Inne zwiazki bardziej zlozone pomiedzy spdlczynnikami
dwumianowemi wyrazajg wyznaczniki Zeipela (Patrz E.
Pascal, Determinanti, Medyolan, 1897),

Liczbe calkowita N mozZna zawsze 1 jednym
tylko sposobem wyrazié jako sume n spélczyn-
nikéw dwumianowych, w ktérych skazniki sg
ustalonemiisgliczbami naturalnemi od1do
domn, przyczem podstawa mniejsza odpowiada
skaznikowi mniejszemu. (W spélezynniku dwumia-

nowym (7 )nazywamy n— podstawa, k— skaznikiem).

Tym sposobem wzdér

Iy

.V=(‘lll)—{—(a;)+ ..... {n>,($k<wk+1)

ma zawsze jedno jedyne rozwigzanie w licaz-
bach calkowitych dodatnich z, =, ....2,
Jezeli przez‘[ZJ oznaczymy liczbe (n+/]: s ), be-

dziemy mieli twierdzenie:
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Jezeli N jest liczbag calkowitsg dodatnig, to

el L e Y

SN Lq Zx,

gdzie ;< @441, ma zawsze jedno jedyne rozwia-
zanie w liczbach calkowitych z,, @,,....%, (Patrz
E. Pascal, Giorn. di mat. XXV.)

Spolezynniki dwumianowe mozna otrzymaé za pomocs tak
zwanego trojkata arytmetycznego Pascala

w ktérym liczby kazdego wiersza tworzymy, dodajac dwie bezpo-
srednio nad nia stojace liczby wiersza poprzedzajacego. Liczby
kazdego wiersza poziomego sg spotczynnikami dwumianowemi,
odpowiadajacemi liczborn calkowitym dodatnim, liczby znajdu-
jace sie na przekatnych odpowiadajg (bez uwzglednienia znaku)
liczbom catkowitym ujemnym.

Co do innych wzoréw, odnoszacych sie do spélezynnikéw dwu-
mianowych, patrz Hagen, Synopsis der hoheren Mathematik, Berlin
t. I, 1891, str, 64 i nast.

Liczby figuryczne. Liczby figuryczne sa przypadkiem
ogdlniejszym spétezynnikéw dwumianowych. Aby je otrzymaé,
uogdlniamy konstrukcye tréjkata arytmetycznego Pascala
w spos6b nastepujacy: Tworzymy figure:

d, 1
6, 144, 1
é, 1426, 2494, 1
d, “1+38, 33484, 3+, 1
6, 14+ 46, 4464, 6449, 4494, 1

i
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w ktorej kazdy element danego wiersza jest suma dwéch bezpo-
srednio znajdujgcych sie nad nim elementéw wiersza poprzedza-
jacego. Dla =1 otrzymujemy tréjkat arytmetyczny Pascala

Elementy, znajdujace si¢ na trzeciej przekatnej (pierwszg
jest przekatna, zlozona z elementéw d) s liczbami wielo-
katowemi (poligonalnemi) rzedu 1-go, 2-go, 3-go, stosownie
do wartosci §); elementy, polozone w czwartej przekatnej, sg
liczbami wieloscianowemi (poliedralnemi) rzedu
1-go, 2-go. 8-go ... dla =1, 2, 3.1t. d. Te wszystkie liczby
nazywaja sie liczbami figurycznemi,

Liczby wielokgtowe rzedu 2-go sa kwadra-
tami,

Liczby wielokgtowe wyraza wzdr:

-.1)— 1+ n) 24+nd

liczby wieloscianowe zas wzor:

Lt me+rnctno.

(oF}

Suma n pierwszych liczb wielokatowych wynosi:

1

2=—6—nln+1)[(n—1)d—{—3],

sama zas$ n pierwszych liczb wielodcianowych :

S — 214 n» (n+1) (n-+2) ir(n+1)6—{-4:]
Kazda liczba calkowita dodatnia jest su-

ma trzech (albo muniej) liczb wielokgtowych

rzedu l1-go,czterech(albo mniej) liczb wielokg-

towychrzedudrugiegoit. d, wogdle jest su-
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mag 7 (albomniej)liczb wielokatowychrzedu
n—2)-go. (Twierdzenie Fermata).

Rozwazania nad liczbami figuryeznemi zawdzigczamy przewaznie
Eulerowi. Powyzsze twierdzenie podal by! Fermat bez do-
wodu; dowdd ten dla pierwszych przypadkéw znajduje sieu Eulera
(Acta Petrop., II, str. 48, 1777), Lagran ge’a (Mem. Berl. 1770),
Gaussa (Disqu, arithm, art. 293) i u innych.




ROZDZIAL II

TEORYA GRUP PODSTAWIEN,

SINIE
Wiadomoséi ogdlne.

Mamy danych 7 elementow i tworzymy dwie ich przemia-
ny; dzialanie, stanowigce przejscie od pierwszej przemiany do
drugiej, nazywa si¢ podstawieniem pomiedzy n ele-
mentami. ;

Istnieje n! podstawien pomiedzy n elemen-
tami.

Jezeli do n elementow zastosujemy najprzdd jedno podsta-
wienie, nastepnie drugie i t. d., to ostatecznym wynikiem bedzie
nowe podstawienie elementéw. To ostatnie nazywa sig ilo -
czynem podstawiendanych. Jezeli dane podstawie-
nia sa wszystkie rowne, iloczyn ich nazywamy potega pod-
stawienia.

Podstawieniem tozsamos$ciowem (iden-
tycznem) nazywamy takie, ktére pozostawia bez zmiany
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wszystkie elementy. Podstawienie takie oznaczamy symbo-
lem 1.

Jezeli iloczyn dwu podstawien jest niezalezny od porzadku
czynnikow. podstawienia nazywamy wzajemnie przemien -
nemi.

Jezeli iloczyn dwu podstawien jest jednoscig, podstawienia
nazywamy wzajemnie o d wrotnemi: jezeli jeano z nich jest
s, to drugie oznaczamy przez s—'.

Istnieje zawsze potega podstawienia réwna jednosci; wy-
kladnik tej potegi, gdy wszystkie poprzedzajace jg potegi nie
daja wyniku réwnego jednosci, nazywamy rzedem podsta-
wienia.

Podstawieniem kolowem lub cyklem nazy-
wamy podstawienie, ktérego elementy wszystkie lub niektdére
przemieniaja sie w porzadku kotowym.

Kazde podstawienie daje sig zawsze roz-
lozyé¢nailoczyn podstawien kolowych.

Podstawienie, ktére za elementy «, 6, ¢ . .. podstawia ele-

menty a', I/, ¢’ ... wyraza sig symbolem
ja, b, ¢ \l
s A 7~
0 ol stanowig, przemiane elemeutéw a, b, ¢.. ..
Jezeli podstawienie jest kolowem, wtedy za elementy «, &,
R podstawiajg sie odpowiednio elementy b, ¢, d .....

takie podstawienie oznacza sie¢ wprost za pomocs symbolu
(N0 Yo e et i),

gdzie w nawiasie stojg jeden za drugim elementy w porzadku ta-
kim, ze za kazdy poprzedzajacy podstawia sie nastepny, za osta-
tni z elementéw— pierwszy.

Rzgd podstawienia kolowego réwna sig
liczbie jego elementdw.

Podstawienie kolowe rzedu drugiego nazywa sig prze-
stawieniem.

Pascal, Rep. I. 3
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Kazde podstawienie mozna wyrazi¢ jako
iloczynsamych przestawien.

Podstawienie nazywa sie parzystem lub nieparzy-
st em, stosownie do tego, czy liczba przedstawien, na ktore sig
rozklada, jest parzysta lub nieparzysta.

Jezeli podstawienies jestrzedu m, to je-

dna z jego poteg s bedzie rzqdu%, gdzied jest

najwiekszym wspélnym dzielnikiem liczb
m i 0.

Méwimy, ze ogdl podstawien t worzy grupe, gdy ilo-
czyn dwu jakichkolwiek podstawien tworzy jedno z pomiedzy
podstawien danych.

Liczba podstawien grupy stanowi rzagd grupy

Rzgd grupy jest zawsze dzielnikiem li-
czby nl

Jezeli wszystkie podstawienia grupy H zawierajg sie po-
miedzy podstawieniami innej grupy ¢, wtedy H nazywa sig
podgrupsg grupy G. Rzad podgrupy H jest dziel-
nikiem rzedu grupy G.

Rzad grupy jest wielokrotnoscig rzedu
kazdego z jej podstawien,

Grupa wszystkich n! podstawien nazywa sig grups syme-
tryczna.

Wszystkie podstawienia parzyste tworzg
grupeg, ktdéra nazywa sie naprzemienna; jej

i

rzgdem jest % n!

Jezelix,x,,...%, 53 nelementami grupy,
to kazda grupa, zawierajgca n—1 przestawien

(et i 0 20y R | 5 ey (A ) - . (s Za),

jestidentyczna z grupg symetryczna,.

Te podstawienia jakiejkolwiek grupy, kto-
renalezg do grupy naprzemiennej, tworzg pod-
grupe, ktéra albo zlewa si¢ z grupg dana, albo
jestrzeduréwnego poltowie rzedu grupy danej.
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Jezeli grupa zawiera n—2 podstawien ko-
lowych

() Ty T3), () &y 2y) . o o, (Ty T L),

tojest albonaprzemienng albo symetryczn a.

Potegipodstawienia tworzag grupe, ktérej
rzad jest réwnyrzedowi podstawienia.

Podstawienia wspélnedwém grupom two-
rza nowsg grupe.

Jezelip jest liczbg pierwsza, p*@ zas naj-
wyzszg potegsg liczby p, zawartg wanl, toist-
nieje grupa rzedu pt. Jezelirzagd grupy jest
podzielny przez liczbe pierwsza p, to grupa
zawiera podstawieniarzedup (Cauchy)

Dwa podstawienia nazywaja sie podobnemi, jezeli réz-
nig si¢ jedynie nazwa elementow, ktore zawieraja.

Dwie grupy nazywajg sie podobnemi, jezeli skladajg
sie z jednakowej liczby podstawien podobnych i jezeli do kaz-
dego z podstawien grupy pierwszej mozna dobraé jednoznacznie
podstawienie z drugiej grupy w ten sposéb, Ze zmieniajac jedna-
kowo dla wszystkich nazwy elementéw, od podstawien jednej
grupy dochodzimy do podstawien drugiej.

Jezeli dwa podstawienia lub dwie grupy
sg podobne, to istnieje zawsze podstawienie
s takie, ze iloczyns'.4.5(w ktérym 4 jest je-
dnem z podstawien danych lub podstawieniem
jednej z grup danych) bedzierdwny drugiemu
zdanych podstawien lub odpowiedniemu pod-
stawieniu drugiejgrupy danej.

Iloczyn s'4s nazywa sieg podstawieniem
przeksztalconem z podstawienia 4 (lub prze-
ksztalceniem podstawienia 4) przy pomocy
podstawienia s.

Kazde podstawienie jest podobne do jedne-
gozeswych przeksztalcen. '

Jezelis s sgdwa podstawienia, toiloczy-
ny ss’is’ssa dwoma podstawieniamipodobnemi.
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Jezelisis sa podstawieniami przemien-
nemi, to podstawienem przeksztalconem z s
przy pomocy s jest samo podstawienie s.

Przeksztalcenie iloczynu jest r6wneiloczy-
nowiprzeksztalcen czynnikow.

Jezeli dwa podstawienia sa przemienne-
mi, toich przeksztalcenia przy pomocy tego
samego podstawienia begdg tez przemiennemi.

Wszystkie podstawienia, przy pomocy kto-
rych grupa dana przeksztalca sig na siebie
sama, tworza grupe.

Jezeli przeksztalcamy grupe przy pomocy
jednego podstawienia, to podstawienia prze-
ksztalcone tworzg grupeg podobng do danej.

Jezeli podstawienie jest takiem, ze ogdl iloczynow s A4,
gdzie A jest jakiemkolwiek podstawieniem grupy 6, nie rézni sie
od ogdlu iloczynéw B.s, gdzie B jest takze podstawieniem gru-
py G, wtedy podstawienie s nazywa si¢ przemiennem
z grupsg G. '

Jezeli wszystkie podstawienia grupy H maja dopiero wla-
snos¢ co okreslong wzgledem grupy €&, wtedy cala grupa H na-
zywa sig przemienng z grupa G. W tymprzypadku, jezeli
H jest podgrupg grupy G, to nosi nazwe grupy charakte-
rystycznejlub wyrdznionej.

Wszystkie podstawienia n elementdw. prze-
mienne z danem podstawieniem tychze ele-
mentéw lub z grupsg dana, tworza grupe, do
ktérej grupa dananalezy jako podgrupa cha-
rakterystyczna.

Jezeliliczba elementdw jest wieksza od 4,
to grupa przemienna zjakiemkolwiek podsta-
wieniem zawiera wszystkie podstawienia pa-
rzyste, a wiec jest grupg naprzemienna.

Dla n=4 grupa czterech podstawien

L1, (@ z3) (% &), (21 25) (203 @), (2, 2) (25 23) ]

posiada tez samg wlasnosé.
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Grupa G nazywa sig¢ zYozona, jezeli zawiera w sobie
podgrupe charakterystyczng H.; ta ostatnia nazywa sie na j-
wieksza, jezeli nie jest zawarta w innych charakterystycz-
nych podgrupach grupy G.

Utwoérzmy szereg grup

(e P L S Rk F I e i I
~w ten sposéb, aby kazda z nich byla grupa charakterystyczng

najwieksza prprzedzajacej, to bedziemy mieli to, co si¢ nazywa
szeregiem skladu (kompozycyi) grupy &

Jezeli
r,ry =,y =
FSIE ke A P
sg rzedy grup szeregu, to liczby e, , e, . . . nazywaja sie cz yn-

nikamiliczbowemiskladu grupy G.

Jezeli mamy dwa szeregi sktadu jednej
grupy zlozonej, wtedy liczba wyrazéow obu
szeregéw musi byé¢ jednakowa, a czynniki
liczbowe skladu, jezeli nieuwzgledniamy po-
rzgdku, sgjedneite same.

Szereg skladu grupy symetryczne_] skla-
da sie¢ z grupy naprzemiennejizl gdy n > 4
czynnikami liczbowemi skladu sg przeto 2

1 5 n!. Grupanaprzemienna wigcejniz 4 ele-

mentow, nie jest zlozona.

Kazda grupa, niczawarta wgrupie naprze-
miennej, jest zlozona; jednym z czynnikdw
skladu jest 2.

Dla n =4 szereg skiadu grupy symetry-
cznej jest mnastepujacy: 1) grupa symetryczna;
2) grupa naprzemienna; 3) G, =1, (z,x,) (xy2,), (2,%3) (X4%,),
() (X73)]; 4 Gy =[1. (7y2) (132)], B) G=1.
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§ 2.

Przechodnioésé.

Jezeli podstawienia grupy sa takie, ze za ich pomocs k
elementéw dowolnie wybranych moze przejs¢ na £ innych ele-
mentow, réwniez dowolnie wybranych, grupa nazywa sig k& -
krotnie przechodnia. Jezeli k=1, grupa nazywa sig
pojedynczo-przechodnia. W przeciwnym razie na-
zywa sig nieprzechodnia.

Rzagd grupy przechodniej jest wielokrot-
noscigrzedutejjej podgrupy, ktorej podsta-
wienia nie zmieniajag miejsca jednego jakie-
gokolwiek elementu np. z,.

Grupy przechodnie, ktédrych rzagd jest réw-
ny ich stopn10w1,ma_]q tylko takie podstawie-
nia, ktérezmieniaja miejsca wszystkich ele-
mentow.

Kazda grupa przechodnia ma przynajmniej
n—1 takich podstawien, ktére zmieniajg miej-
sca wszystkich elementdw.

Grupa naprzemienna jest (n —2)-krotnie
przechodnia,

Rzgd grupy k-krotnie przechodniej jest
réwny n(n—1)(n—2) .. (n—k4+1)m, gdzie m jest
rzgdem podgrupy, pozostawiajgcej bez zmiany
lk.elementow.

-Podgrupa charakterystyczna grupy prze-
chodniej nie zawiera wszystkich elementdw.

Jezeli grupa dwulub wigcejkrotnie prze-
chodnia zawiera podstawienie kolowe 3-go
rzedu, to zawiera wszystkie takie podstawie-
niaizawiera zarazem grupe naprzemienn a.

Jezeli grupa k-krotna przechodnia nie za-
wiera w sobie grupy naprzemiennej, to kazde
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podstawienie porusza z miejsca wiecej nizk
elementéw i zawiera wiegcej niz 2k—4elementdw.

Rzad grupy k-krotnie przechodniej i nie
zawierajgcej wsobie grupy naprzemiennej, jest

!
dzielnikiem liczby %, gdzie m jest wieksza

zdwuliczb I, 2ik—4.

Grupa, niezawierajgca wsobie grupy na-
przemiennej niemoze byé¢ wiecej niz ¢-krotnie
przechodnig, gdzie q jest mniejsza zdwuliczb
n+4 n
s

Grupa przemienna z podstawieniami gru-
py k-krotnie przechodniej jest co najmniej
(k—1)-krotnie przechodnig.

§ 3.

Niepierwotnosé.

Niechaj G bedzie grups pojedynczo - przechodnig o n
elementach. Jezeli elementy te mozemy podzielic na =

ukladéw po —’—::— elementow, ze gdy podstawienie grupy prze-

ksztalca element ukladu A na inny tegoz ukladu, to prze-
ksztalca tez i wszystkie elementy w 4 na inne elementy w 4
podstawienie za$ przeksztalcajace element w ukladzie A na
elementt w ukladzie B, przeksztalca wszystkie inne elemen-
ty w 4 na wszystkie inne elementy w B, wtedy grupa na-
zywa sig niepierwotna, a powyzsze uklady nazywaja 51q
ukladami nleplerwotnos ci. W przeciwnym razie
grupa nazywa si¢ pier wotna,

Jezeli w grupie podzial elementéw na ukla-
dy jest mozliwy dwoma réznemi sposobami,to
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bedzie mozliwyitrzecim sposobem przez ze-
branie w jeden ukltad wszystkichelementow
wspolnychukladowi z pierwszegoidrugiego
podziatu

Jezeli grupa niepierwotna posiada m ukla-
déw niepierwotnosci, torzagd jej bedzie dziel-

nikiem liczby m! (lz—'\’ A
m

§ 4.
lzomorfizm.

Jezeli podstawienia dwu grup moga odpowiadac sobie
w ten sposéb, ze iloczynowi dwu podstawien jednej odpowiada
iloczyn odpowiednich podstawien drugiej, wtedy obie grupy na-
zywaja sie izomorficznemi (ré6wnopostaciowemi).
Jezeli jednemu podstawieniu jednej odpowiada tylko jedno
podstawienie drugiej, izomorfizm jest jednostopniowy; jezeli
jednemu podstawieniu pierwszej odpowiada wiecej podsta-
wien drugiej, izomorfizm jest wielostopniowy. Te izo-
morfizmy mozna nazwaé jeszcze holoedrycznym i me-
riedrycznym (Jordan).

Jezeli grupy GilI sg izomorficzne w sto-
pniu pierwszym, toichrzegdy saréwne.

Jezeliizomorfizm grupy GilI jest wielo-
stopniowy, a podstawieniu 1 grupy G odpo-
wiadajg podstawienia o,,0,,...0s grupy I, to
tworza one podgrupe grupy I.

W przypadku izomorfizmu wielostopnio-
wego grup G il kazdemu podstawieniu gru-
py Godpowiada jednakowa liczba m podsta-
wien grupy I'; rzad grupy I'jest rOwny m razy
wzigtemu rzgdowi grupy @; m nazywa sig sto-
pniem izomorfizmu.
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Jezeli L jest podgrupg charakterystycz-
ng grupy G, to grupa odpowiednia 4 grupy I’
izomorficznej z G begdzie takze grupg cha-
rakterystycznag w I. Jezeli L jest grupa naj-
wiekszg, to i1 4 bedzie najwieksuza.

§ b.
Funkeye, nalezqce do grup podstawien.

Wyobrazmy sobie funkcye wymierng ¢, elementéw &z,
g, - . . x,. Jezeli do tej funkeyi zestosujemy wszystkie moz-
liwe podstawienia pomiedzy elementami, to wartos¢ funkeyi ¢,
moze sie zmienié¢ lub nie. Ogdl wszystkich podstawien,
dla ktérych wartos¢ ¢, pozostaje bez zmiany, sta-
nowi grupe, ktérg nazywamy grupg funkeyi

Do kazdej funkcyinalezy grupa, a do kaz-
dej grupy nalezy nieskonczenie wiele funkeyj.

Funkcye nie zmieniajgce sig przy wszyst-
kich podstawieniach, s funkcyamisymetry-
cznemi.

Kazda funkcya,nalezaca do grupy naprze-
miennej, funkcya naprzemienna), ma postac

CP = Sl + SZ’ V—Aa
gdzie A jest wyréznikiem n elementéw, t. j.

15 i
A = II (i — x)?,
4
8 1 8 zas sg funkcyami symetrycznemi ele-
mentow.
Zastosowawszy do funkeyi ¢, wszystkie mozliwe podsta-
wienia, otrzymujemy m réznych jej wartosci @, 93, . . « @m.
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Liczba m jest dzielnikiem liczby n!; jezeli
rjestrzedem grupy funkcyi ¢, toiloczyn rm
rowna sie nl

Grupy, nalezgce do @, ¢ . .. Qn S8 WSzZySt-
kie do siebie podobne.

Jezeli n>>4, m>2, to grupy te majgjedno
tylko podstawienie wspoélne, ktére jest je-
dnoscia,

Jezeli n=4, tomogag one mie¢ cztery pod-
stawienia wspodlne

(1, (%12) (@3%y), (2:1T3) ‘@Ty,), (X,%,) (292,) ]

Wartosci funkcyi m-wartosciowej sg pier-
wiastkami ré6wnania stopnia m-go, ktérego
spotczynnikisg funkeyami symetrycznemi ele-
VSN OSWAT I, = L ooi.l. Lo

Wyréznik m wartosci ¢ ma jako czyn-
nik wyréznik elementdw # Stad 1 wszystkie
funkcye, majgce wigcej nizjedng wartose,
przyjmuja wartosci rowne, gdy dwie ilosci @
stajag sierownemi.

Przy n elementach niezaleznych od siebie
funkcyenaprzemiennesgjedynemifunkecyami,
ktérych potegimogag byé symetrycznemi, jak-
kolwiek same one symetryczneminie sg.

Jezeli n>4, wtedy nie istnieje funkcya
o wiekszejliczbie wartosci, ktérejby potega
miata tylko dwie wartosci w zalozeniu, ze po-
miedzy elementami nie zachodzg zwigzki spe-
cyalne.

Jezeli n=4, to funkecya

@y + x3%,) + & (X205 + Zyxy) & (% + Xoy),
gdzie =1, jest funkcysa, ktérej szescian ma
dwie wartosci,

Jezeli n=38, to

x,” + ey + s‘2x3’
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jest funkcya, ktérej szescian ma dwie war-
tosci.

Dwie funkcye, nalezgce do tej samej gru-
Py, daja sie wyrazi¢ wymiernie jedna przez
drugs,iodwrotnie. (Twierdzenie Lagrange’a).

Jezeli jedna funkecya pozostaje niezmie-
nionsg przez podstawienie grupy innej fun-
kecyi, a nie zachodzi wlasnos¢ odwrotna, to
pierwsza funkcya daje sig wyrazié wymiernie
przez drugg; druga zas jest plerwiastkiem rd-
wnania stopnia m (jezeli m jestliczbg jej wartosci), k t 6-
rego sp6lczynnikisg funkecyami wymiernemi
pierwszej. Kazda funkcye wymiernag =n iloseci
X, % ... moznawyrazi¢cwymiernieprzezkaz-
dyg funkecye n ilosci, posiadajgcag ! wartoseci;
wszczegdlnosci zas za pomocy funkecyj linio-
wych typu ao,Fogzyt ... + ans, gdzie o, a;... ay Sg
stalemi dowolnemi.

§ 6.

Przedstawienie analityczne podstawieri.

Podstawienia n elementéw mozna przedstawi¢ jeszcze ana-
litycznie nastepujacym sposobem:
Niechaj bedzie podstawienie

~

/

(\.’El, Xy, Ty . . . . Xy )
Xty Ligy Xgg .« . . Ly

Utwérzmy funkeye ¢ zmiennej 2 taka, ze kiedy 2 staje sig
kolejno 1, 2. . . m, to ¢(z) staje sie kongruentnem z ¢, 4y, . . . %,
wedlug modulu n. Wtedy symbol |z, (2)| moze wyobrazaé
podstawienie dane; rozumiemy przezen to, ze skutkiem danego
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podstawienia kazdy skaznik z ilosci x przechodzi na skaz-
nik ¢(2).

Niechaj n=m*, wtedy kazdy element moze byé przedsta-
wiony z k skaznikami, z ktorych kazdy przybiera wszystkie
wartosei od 1 do n:

z-’., 22y 4 0. &k )

Podstawienie pomiedzy temi elementami mozemy wyobra-
zi¢ symbolem :

| 20y 29 o oo 22} @y (825 8y sie o Ze) PaBE )

rozumiemy przezen to, ze zamiast istotnej wartosci funkeyi nalezy
bra¢ wartosci kongruentne z niemi wedlug modulu m i mniej-
sze od .

Wszystkie podstawienia postaci

{eml oL Zx; 27Fag, o o+ .y 2k + ax | (mod. m)

tworzg grupe, ktéranazywa sig arytmetyczng.
Warunkiem koniecznym i1 dostatecznym,
na toby, symbol

2y ... 2k 2+ ... czk. @2y + ..+ G2k, . . . | (mod m)
wyobrazal grupe, jest to aby wyznacznik

s b1y T e s i

Wie', . Daiy: o i S i SONMRCE

|
;a;‘, b/,—, iy o et e SO

byl wzglednie pierwszy z modulem m. W tym
przypadku podstawienia postaci poprzedza-
jacej nazywaja sig prdstawieniami liniowe-
mi lub takzZe podstawieniami geometryczne-
mi. Tworzgonegrupeg ktéra nazywasiggrups
liniowa.



o § 6. — Przedstawienie analityczne podstawien. 45

Po&'stavmenla. grupy liniowej sa przemien-
nemi % grupg arytmetyczna.
Rzagd grupy liniowej o m*elementach jest:

r = [m, k] m*=1 [m,k—1] m*=2 . .. . [m, 2] m [m.1]

gdzie symbol [m 9] oznacza wogdle liczbe roz
wigzan zagadnienia o wyznaczeniu p liczb
mniejszych od m i wzglednie pierwszych z m.

Jezeli w szczegélnosci spdlezynniki a, b, . . . . ¢ czynig za-
dos¢ warunkom :

Fo24 ... Foi=
+a% +. .. tai=l l
bt bl |

a0y +00,+ . . . +(71("EO’|

y

by +aby + . .. Faby=0

(mod m) (mod m),

wtedy podstawienia liniowe nazywaja sie¢ ortogonalnemi
(prostokatnemi.

Jezeli k=2h, skazniki zas, ktérych jest 2/, sg rozmieszczo-
ne parami

21 Y15 %9 Y2 - - - - - ZnYn,

to podstawienia liniowe tych skaznikéw, majace wlasnose taka,
ze zastosowane do funkcyi

h
= (zemi—y L)
(gdzie £, n sa symbolami skaznikéw, podleglych tym samym wa-
runkom co ¢, z) mnoza je tylko przez czynniki stale, nazywaja
sie podstawieniami abelowemi Tworza one
grupe, ktora nazywa si¢ abelowa (Hermite).

Teorye grup podstawien utworzyli Abel (Crelle, VI) iCauchy
(Exercices, 1844). Temu ostatniemu zawdzigezamy wiekszosé twier-
dzen podstawowych tej teoryi, ktdérej pézniejsze badania Galois’a
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(Journ, de Liouville, XI, 1846) nadaly wielks wainost, zwlaszcza
w zastosowaniu do réwnan algebraicznych.

Do nowszych i; zgpelp;){ch dziel o tym przedmiocie naleza: Jor-
dana, Traité des Substitutions ete., Paryz, 1870; Netto, Substitu-
tionentheoyie,. Lipsk, 1882 (przekiad wloski Battaglini'ego, Turyn,
1885); Petersena, Algebraische Gleichungen“, Kopenhaga, 1878,
(przeklad francuski, Paryz, 1897). W ,Algébre supérieure Serreta
(przeklad niemiecki W ertheima, Lipsk, 1868), teorya ta jest dosta-
tecznie rozwinieta, W rozdziale V-ym przedstawimy teoryg Galois’a,
t. j. zastosowanie teoryi podstawien do réwnan algebraicznych, w roz-
dziale za$ IX podamy teorye grup przeksztalcen, ktéra ma
wiele wezléw, wspdlnych z teorya podstawien.,
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Liczba:

ROZDZIAL III.

TEORYA WYZNACZNIKOW.

§ 1.

Wiadomosci ogdlne.

Niechaj bedzie n? ilosci ufozonych w kwadrat:

a” ) a12 ] . . . . aln
a21 Py a/22 3 . . . . agn
By 5 T e e ox ‘& 0hsp;

Utworzmy wszystkie iloczyny typu

Qyryy Qgry o« o . anrn 9
gdzie 7y, 7, . ... 7, stanowig jakgkolwiek przemianeg liczb
1,2 .... n; kazdemu z iloczynéw nadajmy znak - lub — ,

stosownie do tego, czy przemiana skaznikéw r jest przemiang,
parzysta, czy tez nieparzysta; wezmy wreszcie sume algebraicz-
ng n! w ten sposéb utworzonych iloczynéw. Suma ta nazywa
sig wyznacznikiem n? ilosei i przedstawia sig¢ za pomocs
symbolu:
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Qyyy g - - - Oqn
a’21 s (ag ey Qo
Apyy Anz Sl Rt At

Zbiér wszystkich n® elementéw, ulozonych w kwadrat, sta-
nowi macierz (matryce) k wadratowas; przekatna, zlozona
z elementéw a,,, @g5, . . . , Gu, Nazywa sie przekatna glé-
wng, same zas elementy a,,, @Gy ... @, — elementami
gtéwnemi.

Jezeli w wyznaczniku wszystkie elementy je-
dnego wiersza (lub kolumany) sg zerami, wyznacznik
jest zerem.

Jezeli w wyznaczniku przemienimy wiersze na
kolumny, wyznacznik nie zmieni sie.

Jezeli w wyznaczniku przestawimy dwa wier
sze (lub kolumny) ré6wnolegle, otrzymamy nowy wy-
znacznik ré6wny pierwotnemu ze znakiem przeci-
wnym.

Jezelidwawiersze(lubdwiekolumny)réwnolegle
w wyznaczniku sa jednakowe, wyznacznik jest
zerem.

Jezeli elementy jednego wiersza lub kolumny
pomnozymy przez k, to 1 sam wyznacznik zostanie
pomnozony przez k.

Wyznacznik nie zmienia sieg jezelli zmie-
nimy znak wszystkich elementdédw, stojgcych
na miejscach nieparzystych, rozumiejac przez
miejsca nieparzyste te, dla ktérych suma ska-
znikowjest nieparzysta.

Wyznacznik nie zmienia sig, jezeli kazdy
element ay pomnozymy przez p'~* gdzie p jest
liczbg dowolna.

Wyznacznik jest zerem, jezeli elementy
jednegowiersza(lubkolumny)sajednakowemi wie-
lokrotnosciami elementdw wiersza réownole-
gltego (lub kolumny réwnoleglej).
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Wyznacznik, w ktéorymelementy jednego
wiersza (lub kolumny) sa wyrazeniami wielo-
mianowemi, réwna sie sumie wyznacznikow,
ktérych elementy sa wyrazeniami jednomia-
nowemi.

Wyznacznik nie zmieniu sie, jezeli do ele-
menidw jednego wiersza (lub kolumny) dodamy
elementy wiersza rownolegltego (lub kolumny),
pomnozone przez jakakolwiek liczbe.

Wyznacznik jest zerem, jezeli elementy
jednego wiersza (lub kolumny) sa kombinacyami
liniowemi podobnemi elementédw wierszy (lub
kolumn) ro wnoleglych, 1 odwrotnie.

Z macierzy kwadratowej rzedu n-tego, po usunieciu m
wierszy 1 kolumn, pozostaje macierz kwadratowa rzedu n—m.
Wyznacznik, ktéra taka macierz przedstawia, nazywa sie
minorem, podwyznacznikiem, wyznacznikiem
czgstkowym Iub wyznacznikiem pochodnym
wyznacznika danego. Jezeli jego elementy gléwne ss elemen-
tami giéwnemi danego, nazywamy go minorem gléwnym.

g 2
Istniejel( n)l minorow rzedu m-tego.

m
Istnieje (1:) minoréw gléwnych rzedu

m-tego.

Minor jest klasy parzystej lub nieparzystej,
tosownie do tego, czy suma liczb porzadkowych, odpowiadajg-
cych wierszom i kolumnom go skladajacym, jest parzysta lub
nieparzysta.

Kazdemu minorowi rzedu m odpowiada jeden minor rzedu
n—m, utworzony przez usuniecie kolumn i wierszy, skladajacych
minor dany. Te dwa minory nazywaja sie wzajemnie dopel-
niajacemi. Dopelnieniem algebraicznem (ilo-
cig dolaczona) minorn jest jego minor dopelniajacy, wziety
ze znakiem - lub —, stosownie do tego, czy jest klasy parzystej
czy nieparzystej.

Wyznacznik r6wna sig sumie iloczynodw
minoréw, zawartych wm wierszach lub kolu-

Pascal, Rep. L 4
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mnach przez odpowiednie dopelnienia alge-
braiczne.

Wyznacznik réwna sie summie algebra-
icznej iloczyndéw elementéw wiersza lub ko-
lumny przez odpowiednie dopelnienia alge-
braiczne.

Suma 1loczyndédw minordw, zawartych w m
wierszach, przez dopelnienia algebraiczne od-
powiednich minoréw, zawartych w innych m
wierszach réwnoleglych, jest zerem. Godnem
uwagi jest to twierdzenie w przypadku m=l.

Jezeli wyznacznik jest zerem, dopelnienia
algebraiczne elementow jakiegokolwiek wier-
sza sa proporcyonalne do elementéw jakie-
gokolwiek innego wiersza réwnoleglego.

Po wprowadzeniu minoréw rzedu 2-go, kazdy wyzna-
czunik rzedu n-tego mozna przedstawic¢ w po-
staci wyznacznika rzegdu (n—1)-go.

Jezeli wszystkie elementy wyznacznika
sg podzielne przez p, tosam wyznacznik jest
podzielny przez p*

Jezeli wszystkie minory rzedu 2-go wy-
znacznika sa podzielne przez p, to sam wy-
zngaznik: jest podzielny prze? piss

Iloczyn dwu wyznacznikdw tego samego
rzeduoelementach odpowiednio a,, bu:otrzy-
mujemy, tworzagc wyznaczuik o elementach
¢jy gdzie ¢ moze mie¢ jedno z czterech wy-
razen:

¢ = byt @by + . . . anb

o = @by + by + . . .+ 4wl ' (prawidlo
>

bf == al‘b" + aq b:’f + 82 T A= —}" Min bnj “ SEDte)

Cis == Il“bb' + [ 2Y] by + 1% A + Qi [)'U'
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Jezeli wyznaczniki nie sg tego samego rzedu, to wyznacz-
nik rzedu nizszego mozna zamieni¢ na wyznacznik rzedu wyz-
szego, dolgczajac wiersze lub kolumny, ktérych elementy, znaj-
dujace sie namiejscach niegléwnych, sa zerami, elemen-
ty zas$, znajdujace sie na przekatnej gtownej, sa réow-
ne jednosci.

Nazywamy macierza prostokatng—tablice, w ktérej
nm elementow ukladasie w prostokat. Jezeli mamy dwie macierze
prostokatne o m wierszach i % kolumnach, to utworzywszy sume
iloczyndéw elementéw wierszy macierzy pierwszej przez odpowie-
dnie elementy w wierszach drugiej, otrzymamy m? elementéw
wlozonych w kwadrat 1 mogacych ntworzy¢ wyznacznik rzedu
m-tego. Ten wyznacznik nazywasig iloczynem wedlug li-
nij macierzy prostokatnych.

Kazdy minor wyznacznika, bedgcego iloczynem dwu danych
wyznacznikow, jest iloczynem dwu macierzy prostokgtnych,

Tloczyn wedlug linij dwu macierzy prostokatnych o n ko-
lomnach 1 m wierszach réwna sig zeru, jezeli m >>n; jezeli m<Tnm,
réwna sig sumie iloczynéw minoréw rzedu m, zawartych w pierw-
szej macierzy, przez odpowiednie minory zawarte w drugiej.

Wyznacznik #, ktérego elementy A4, sa dopelnieniami ele-
mentow a,, wyznacznika I, nazywa sie wyznacznikiem ukltadu
dolaczonego lub wzajemnym wzgledem danego.

Jezeli wyznacznik jest zerem, to jego wyznacznik wza-
jemny wraz ze wszystkiemi minorami (az do minoréw rzedu
2-g0), jest zerem.

Wyznacznik uktadu dolaczonego ma wartosé
ré6wng potedze (n—1)-e] wyznacznika danego.

Jezeli nazwiemy homologicznemi dwa minory wyznacznika
I’ i R, zamkniete wierszami 1 kolumnami tych wyznacznikéw
o odpowiednio réwnych liczbach porzadkowych, to:

Jakikolwiek minor M rzedu m-tego, zawarty
w wyznaczniku R, r6wna sie minorowi wyznaczni-
ka /), homologicznemu z dopelnieniem algebraicz-
nem minoru M w [, pomnozonemu przez potege
(m—1)-a wyznacznika danego.
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Dopelnienie elementu 4, wyznacznika X réow-
na sie elementowi a,,, pomnozZonemu przez potege
(n—2)-a wyznacznika D.

Jezeli pomnozymy przez siebie dwa wyznacz-
niki D, D', a nastepnie w spos6b analogiczny po-
mnozymy ich wyznaczniki wzajemne Rifi', to dru-
giiloczyn bedzie wzajemnym wzgledem pierwszego.

§ 2.

Wyznaczniki symetryczne i skosne. Pfafiany.

Jezeli a,; =a,, , wyznacznik nazywa sle symetryczny m;

jezeli a, = — a, ,nazywa sig skosnym; jezeli wreszcie
@5 = — @y, przyczem a,, =0, nazywa sie poélsymetrycz-
nym.

Kwadrat wyznacznika jest wyznacznikiem sy-
metrycznym.

W wyznaczniku symetrycznym minory dopel-
niajgce dwéch elementdw sprzezonych sg rowne.

Wyznacznik ukiadu dolgczonego wyznacznika
symetrycznego jest symetryczny.

Wyznacznik pélsymetryczny rzedu nieparzy-
stego jest zerem. '

Wyznacznik polsymetryczny rzedu parzyste-
go jest kwadratem zupelnym wyrazenia wymier-
nego calkowitego swych elementdw.

Wyrazenie takie nazywa sie pfafianem n? elementow,
lub takze pélwyznacznikiem (Scheibner).

Pfafian rzedu n (parzystego) elementéw ay,, a,, - ¢, 0Ozna-
cza sig symbolem (123 . »). Symbolem (12....%) oznacza sie
wlasciwie tenz dwu pierwiastkéw wyznacznika pélsymetrycznego,
ktoéry zawiera ze znakiem -} wyraz @505, - . . 1, u.
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Liczba wycazéw pfafianu rzedu n-tego jest.
(n—-1)(n—3)...3. 1

Pfafian zmienia znak skutkiem przestawienia
dwu elementéw. Piragen o

Pfafian rzedumn-tego rozwijasie wedlug wzoru:

12...m) = (12)(34...n—1,n)
+ (183) 45 . . . n2)
+ : \
+ An) @3, .. n—1).

Kazdy minor rzedu (n—1)-go wyznacznika rze-
duparzystego réwnasigiloczynowipfafianu (12..n)
przez pfafian rzedu (@—2)-go, otrzymany z pierw-
szego przez zniesienie dwu skaznikéw.

Rdéwnanie
Oy — X5 (Wans S = G |
oy, Qyg — X, .« o ., 2w § Jio
2 = 0 'y
Bpy gy bnyg o o o Guu—2

ma same pierwiastki rzeczywiste, jezeli wyznacz-
nik ilosci @ jest symetryczny. (Twierdzenie Sylve-
stera).

Kazdy wyznacznik skosny, ktérego elementy
gléwne sg réwne 1, jest sumg kwadratéw.
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§ 3.

Wyznaczniki specyalne.

Wyznacznik Hankela utworzony jest sposobem naste-
pujacym:

Wi, )| L] Sen ol TSR Sy ’
a a. Lo RS a
4 19 2 . N n |
P =
Au—1y Gy s 22

Nazywa on sig¢ takze wyznacznikiem ortosymetrycz-
nym (Hankel) lub persymetrycznym (Sylvester).

Wyznacznik ten ma te wlasnosé, ze moze byé
wyrazony przez rdéznice kolejne ilosci a. Polo-
ZYWSZY :

4,0 =a; — ay,
A = a, — ay, A,® = A — A M

A =ap—ap_y, AP =4,V — 4, @, A® =A,0 — A% O, |,

znajdujemy:
botoa sl @4 AR5 o T 00 g m B
£ A®, AD, A L AM
’ A=), Ay™A, 48 | Agy_ 2

Jezcli w szczegélnosci elementy tworza po-
step arytmetyczny rzedu (n—1)-go, bedzie:

n (n—1)

P=(—1)"T [A#0];
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&

jezeli ten postep jest rzedu nizszego niz n—1,
wtedy P =0.

Jezeli elementy tworzg postep geometrycz-
ny, to F=20.

Wyznacznik kolujacy (cyrkulant) jest postaci:

B el A e i R e (Lt
R S 8 L S R T
- QAP AR RS o 0
\ Wit (] 5% o i i frie Wk | W 8

Wyznacznik kolujacy rzedu n-tego rozpada
sie na n czynnikéw wymiernych wzgledem swych
elementéw wedlug wzoru nastepujacego:

(n--1) (n—2)

P=(—=1) 7 g(@)9(@ . . . 9(a)

gdzie
0@ =a + ez +a 224+ . . . 4 a4,

a;, @ - .. a, sg n pierwiastkami réwnania x" — 1=0.
Wyznacznik kolujacy

1, 2, ) |
2, 3, 1

L |
n, 1, ,n—l‘

réwna sie :

n(uo—-l) n (n 1
(=12 _(_21'__

f =t
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- Wyznacznik Vandermonde’a lub Cauchy’ego jest
postaci: i

L, AR R AR
Mai o’ oy o g RS
D= o, 2ty A R e T
PR G A MR Sl
1 rowna sie:
n(n—1) 1,
(ot N II(a. — @) (i <))

Kwadrat wyznacznika Cauchy’ego jest wyzna-
cznikiem Hankela.

Wyznacznik

g B . 1,

Ilm) '/m—}—l\l (m+n

\1 ey

(m-l—l\ [ m—42 \ (m+'n+1)

B Lt \

( m-fn—1)\ (m—}—n)) {m+2n—1)\ |
S )’\ w- e L

rowna sig jednosci

Wyznacznik Zeipela

e S Pery B

m—1)  (m+-1) /1n+1)'
( . I \p+1)’ s

(3 e
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réowna sie:

-~

‘O

m—r m—r--1 m—r—p-1
( r—+1 /"’ ( r+1 ) ( r—41 )
p+r\ (p+r—1 r—+1
r+l) ( r—+1 ) 3 ('r—{-l )

Wyznacznik Sterna

T ik g
i (%)
(1 » 1 b
@ Ty
(3): ()
iy
n—1)" \n--1
ré6wna sie:
Qn—2 gn—3 4n—4

: i (=1

gdzie D jest wyznacznikiem Cauchy’ego, utworzonym z ilo-

sel .
Wyznacznik

1 .

——i'!"-, 1, 0

1 1

i . L

e Rl

n! > (n—1)!" (n—2)1”’
rowna sig ——

n!
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Wyznacznik Smitha

s AT S O TR RS T ehet 10 St 7))

(8 B ¢ AP MR Ry o o (7))

gdzie (4, j) oznacza najwigkszy wspdlny dzielnik
liczb calkowityeh ¢, j, rowna sig¢ 9(1)¢(2) . .. ¢(n),
gdzie (k) jest liczbg liczb mniejszych od ki pier-
wszych wzgledem k.

Kontynuanty
1 et | BRNONRR e 61/
= A P b R L U
Cu b e O, _'1, gy "$1°° o f o 0 ool
(LOMER (O RO ipadt Kb Sha SR

czynig zadosé wzorowi zwrotnemu:
G s @ P S

Kontynuant ma wyrazow

e e

gdzie k= 4, gdy nparz ste,k:ﬁt—l~, dy 2 nie-
- N, AL y 5 gay

S

parzyste.
Jezeli pomiedzy elementami wyznacznika zachodzs

zwigzki
a]i’ + a‘)i"' el T SRt o 5 i ani2 = 1,
i Gy -+ agi ag; + . . . . . -+ agay; =0,

wyznacznik nazywa sie ortogonalnym.
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Kwadrat wyznacznika ortogonalnego jest je-
dnoscig dodatniag. Dopelnienie algebraiczne ele-
mentu w wyznaczniku ortogonalnym réwna sie
samemu elementowl, pomnozonemu przez wyzha-
cznik. Kazdy minor wyznacznika ortogonalnego
rowna sie swemu dopelnieniu algebraicznemu, po-
mnozonemu przez wyznacznik dany.

Iloczyn dwu wyznacznikéw ortogonalnych
jest ortogonalny.

Jezeli a sg elementy wyznacznika ortogonal-
nego I, to ré6wnanie

I ay + @, a4, SRR =il
(B () 1 e S RSy
=0
o | ofn -3 Bl e RN
a,,, 5 au-_} By e e e, g oen L e + X

Jjest rownaniem odwrotem takiem, iz dla » nieparzystego ma ono
pierwiastek £ = — D 1 nie ma zadnego innego pierwiastka rze-
czywistego; dla n parzystego i /) = — 1 ma pierwiastek xz— -+ 1
1 nie ma zadnego innego pierwiastka rzeczywistego. (T wierdze-
nie Brioschi’ego.)

Jezeli a;, b; sg elementy dwu wyznaczuikow
ortogonalnnych o wartosci e=-+4+1 1 tego same-
gorzedu, i jezeli wyznacznik o wyrazie ogélnym
a;+ bij jest zavazem zerem, to i wszystkie minory
rzedu (n—1)-go beds zerami. (Twierdzenie Stieltjesa.)

Co do wskazowck bibliograficznych patrz rozmaite rozdziaty
E, Pascala, Determinanti (Medyolan, 1896.)
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§ 4.

Wyznaczniki Wrorskiego.

Wyznaczniki Wronskiego albo wronskiany two-
rzg si¢ w sposob nastepujacy:

‘W pierwszym wierszu mamy % funkcyj zmiennej z, w wier-
szach nastepnych ich pochodne pierwsze, drugie i t. d.

‘ w, (&), uy (x) ol ()
WA wy () R (0]

W = ’
|, 0D (), u (), . . ., u0D(x)

Pochodna wronskianu tworzymy, zastgpujac
‘elementy ostatniego wiersza pochodnemi n-temi
funkeyj.

Jezeli funkcye w pomnozymy przez jakako l-
wiek ilosé¢ wv(x), to wyznacznik zestanie pomno-
zony przez o

Znikanie wronskianu W jest warunkiem ko-
niecznym i dostatecznym na to, by pomigdzy n

funkecyami wu,(x), uy(®) . .. w,(x) zachodzil zwiagzek
liniowy jednorodny o spélczynnikach stalych.
Wyznacznik
“1 ('0) ] ) '“n(x)
u, (e+1), ,  Un (241)
Wy, =|w%@+2), . . . ., w(&}2) .

« . . . .

w (x+n—1) . . ., Us (®x+ n—1)
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rowny
’ u, (X) , SR U i S TR() }
| A OG5 et 3 Lot NS S AT () i
4 AE= g NSRSl W U e &)

gdzie A jest symbolem rdézmicy w (x4 1) — w (x), A? w (&)

= Aw(z+1) — Au(x), . .. .. , nazywa sig¢ wyznacznikiem
réznicowym Wronskiego (wronskianem réznico-
Wy m).

Znikanie wyznacznika W, jest warunkiem ko-
niecznym 1 dostatecznym na to, aby pomiedzy »
funkeyami « istnial zwiazek liniowy jednorodny
o spélczynnikach, ktére sg funkecyami peryodycz-
neml zmiennej #, t. j. takiemi funkecyami i Flx), dla
ktérych F(z+1)= F(x) przy wszelkich wartosciach
na 2. (Twierdzenie Casorati’ego).

Co do literatury o wronskianach patrz: Dickstein, Wlasnosci
i niektore zastosowania wronskianéw (Prace matem.-fizyczne t. I, 1888);
Peano, (Mathesis, IX, str. 75 i str. 110, 1889); Peano, Sul deter-
minante wronskiano (Ace. Lincei, 1897); Vivanti, Sul determinantc
wronskiano (Ace. Lincei, 1898).

§ 5.
Jakobiany czyli wyznaczniki funkeyjne .

Niechaj bedzie n funkeyj ¥, ¢, . . . . . ¥, zaleznych od
zmiennych @, &y, . . .. . a8
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Wyznacznik
Y Oy %
CHRE el e - e T e
e I Yy
PN R R e i e T
O W Y
A R AR e

ktory zwykle wyobrazamy za pomoca symbolu

3 (y|7 :’/2» S ke ) yu)
CRY F A A R )

il

nazywa si¢ wyznacznikiem funkcyjnym lub jakobia-
nem funkcyj .

Jezell y;, 3, ..., ¥ s funkcyami zmienunych
%y, Zy, ..., Zy, te zas ostatnie—funkcyami zmien-
nych z,, z,, ..., x,, wtedy mamy wzdr

O (Y1, Ya - o Yn) AW Y- Yn) @ (21 20 - - 1 Zn)

@y, @gy e v oy ®n) O (2y,23y0 00y 2n) 0 ( @y, g, - ooy @)
Jezeli ¥, ¥4, . .., ¥Yn 8§ funkecyami zmiennych
%y, %y, ..., ZT,, to odwrotnie te ostatnie sg funk-

cyami pierwszych, i bedzie:

A D o5 w5 ) 1

8@ Ly, .~y Tx) O (Fyy Ly ) 3
(Y1 Yz « -+ 5 Yn)

Warunkiem koniecznym i dostatecznym na to,
by pomigdzy » funkcyami » zmiennych zachodzil
zwigzek, jest, aby jakobian ich byl tozsamoscio-
wWo zerem.
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Jezeli
Dt o Bt
Yilz, 2y, . .., Ty) = el 2
QG i e o o
((=1,9...,%)
to:
< du, U,
LA™ Y
du, u,
QU Yyl - . Y 1 Wy =y e Ty
Ry - v Vs oz, o,
R .y ) Ty
% Uy by
28 20T A RO

Twierdzenia powyzsze zawdzigezamy Jacobi’emu. o

Nazwawszy K wyznacznik po stronie drugiej poprzedniego
wzoru, mamy nastgpujace twierdzenie (Casorati’ego):

Jezeli K jest toZsamosciowo zerem, to zwig-
zek pomiedzy n+41 funkeyami u,, %, ..., w, jest
zwigzkiem jednorodnym, i odwrotnie.

Jezeli mamy n 41 funkeyj jednorodnych o n
zmiennych i kombinujac je ze soba po n, utwo-
rzymy n + 1 jakobiandw, z tych znowu utworzymy
n+1 nowych jakobianéw, kombinujac je po n; wte-
dy te ostatnie, poza czynnikiem wpdélnym, przed-
stawia¢ beda funkcye, z ktérych wyszlidmy.
(Twierdzenie Clebscha.)

Niechaj bedzie n funkcyj v, ¥,, ..., ¥» 0 n1
zmiennych &, x,, ..., Zup1u. Utwérzmy n 41 jako-
bianéw funkecyj, uwazanych za funkcye n zmien-
nych; nazwijmytejakobiany: v, v, ...y, Wtedy
zachodzi¢ bedzie zwiazek:

2

° 3
«Ew' & 3;1»12 VJ2+ Lk A +(_ ]) a‘:c"—_H Yotr == 0.
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§ 6.
Hesyany.

Jakobian n pierwszych pochodnych funkeyj n zmiennych
nazywasieg hesyanem funkecyi danej.

Jezeli funkcya dana F (x,,%,,...,a,) jest fun-
kcya jednorodna stopnia m-tego n zmiennych i je-
zell przyjmiemy, ze jedna ze zmiennych z, jest
réwna jednosci, tak ze F stanie sie [f(@, @y, ..., Za'),
wtedy oznaczajac przez f; pochodng druga funk-
cyi f wzgledem x; i x;, olrzymamy hesyan (bez
uwzglednienia czynnika liczbowego) w postact :

FTTIRE TNy A
H W /'n-A] ) . . . - /n—], n—1 fn—l ?
‘ m
fl7.. (o o g 1/"—17 m—1 f

Jezeli funkecya jednorodna » zmiennych moze
za pomocyg przeksztalcenia liniowego zmiennych
przejs¢ na inng funkcye z mniejsza o 1 liczbg
zmiennych, wtedy hesyan jest tozsamosciowo ze-
rem. (Twierdzenie Hessego.)

Twierdzenie odwrotne jest prawdziwem tyl-
ko dla przypadkéow n < 4 (patrz Gordan-Noether,
Math. Ann. X, str. 547, a co do innych szczegdlow: Pasca.
Determinanti, str. 327 1 nast.

Zastosowania jakobianéw i hesyanéw do geometryi krzy-
wych j powierzchni podamy w drugim tomie niniejszego dziela.

Teorya wyznacznikow wyplynela z zagadnienia o rozwiazywaniu
réwnan liniowych. Za pierwszych jej tworcéw nalezy uwaza¢ Leib-
niza, Cramera, Laplace’a, Cauchy'ego, Jacobiego, a pierw-
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szy traktat zupelny systematyczny teoryi napisal Brioschi. Szcze-
goly bibliograticzne u E. Pascala, Determinanti,

Opréez dwu monografij Cayleya (Trans. Cambridge, VIII)
iSpottiswoode'a Crelle, t. LI) do wazniejszych dziel o teoryi wy-
znacznikéw naleza: Brioschi (Pawia, 1854), Baltzer (Lipsk. 1857 —
1882), Trudi (Neapol, 1862), Trzaska (W, Kretkowski, 1870
(w dodatku do , Rachunku rozniczkowego“ WV, Folkierskiego!); Stu-
dniCka (Praga, 1871), Hoiiel (Paryz, 1871), Hesse (Lipsk. 1872),

Dolp(Darmstadt 1874), Mansion(Gandawa,1876), Ginther (Erlan- v,

gen, 1877), M. A. Baraniecki ,Teorya wyznacznikow, kurs uniwersy-
tecki“ (Paryz, 1879, jedno znajobszerniejszych w tym przedmiocie;
Gordan (Lipsk,1886), Pordow, S. Dickstein ,Pojecia i metody ma-
tematyki“ (Warszawa, 1891, str. 159, 192),

Rozwazano takze i wyznaczniki rze¢du nieskonczonego.
Co do tych patrz E. Pasca L c., oraz najSwiezszg monografie Cazza -
niga: ,Sui determinanti d’ordine intinito“ (Annal. di mat. 1897. E, T
no ad uno tipo di determ. nulli d’ordine infinit, tamze 1898.)

Pascal. Rep. I. b



ROZDZIAL V.

TEORYA SZEREGCW, ILOCZYNOW NIESKONCZONYCH
1 UBAMKOW, CIAGEYCH.

g

Wiadomosci ogaine o szeregach.

Niechaj bedzie szereg nieskonczenie wielu liezb
Uy, Uy, . . .. Utworzmy sume S, pierwszych n z tych liczb, t. j.

Ss=u +u,+4+ . . . 4+ U,

Granica ilosci S, dla n=-co nazywa sie suma szeregu,
utworzonego z nieskonczonej liczby wyrazéw u w porzadku ozna-
czonym. MOwimy, zZe szereg jest zbiezny,rozbiezny lub
nieoznaczony, stosownie do tego, czy ta granica istnieje
1 jest skonczona, czy istnieje 1 jest nieskonczona, albo wecale nie
istnieje.

Suma i1lukolwiek wyrazéw, poczawszy od nm-tego, na-
zZywa sie reszta szeregu; jest ona:

H,; = Ut + Un4-2 + = WUnt-» -
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Mozna wyobrazi¢ sobie, ze ilosei w zaleza od dwu lub wie-
cej skaznikéw, zamiast od jednego; wtedy przy pomocy podo-
bnej definicyi otrzymujemy szeregi podwojne, potréjne
it. d., w odréznieniu od ktérych poprzednie nazywaja sie po-
jedynczemi. "

Jezeli wyrazy szeregu sa ilosciami zespolonemi, otrzy-
mujemy szereg zespolony; oddzieliwszy w nim czesé rzeczy-
wista od czysto-urojonej, powiemy, ze szereg zespolony jest zbiez-
ny, jezeli kazdy z tych dwn szeregéw jest zbiezny.

Szereg moze by¢ zbieiny tylko wtedy, gdy uwazamy kazdy
jego wyraz z jego wlasnym znakiem*i moze przestac¢ byc¢ zbiez-
nym, gdy bierzemy wartosci bezwzgledne wyrazow. W takim razie
szereg nazywa sie wprost lub zwyczajnie zbieznym.

~ Szereg moze pozosta¢ zbieznym i wtedy, gdy zmieniamy
znaki wszystkich jego wyrazéw ujemnych; w tym przypadku
szereg jest bezwzglednie zbieznym.

Jezell szereg jest bezwzglednie zbiezny, to
jest takze 1 zwyczajnie zbiezny.

Szereg o wyrazach zespolonych nazywa sie bezwzgle-
dnie zbieznym, jezeli jest zbieznym szereg moduléow, t. j.
bezwzglednych wartosci jego wyrazow. '

Jezell wszystkie wyrazy szeregu sa funkcyami jednej lub
wiecej zmiennych, otrzymujemy wtedy szereg funkeyj.

Jezeli dawszy sobie ¢ dowolnie male, mozna znalesé skaznik
n taki, aby, przy kazdej wartosci (zawartej] w pewnym ob-
szarze) ilosci zmiennej Iub zmiennych, reszta R, dla kazdego
m>mn byla zawsze co do wartosci bezwzglednej mniejsza od q,
wtedy mowimy, ze szereg jest jednostajnie zbiezny lub
réwnozbiezny.

7 dwu szeregéw jeden nazywa sie szybcej zbieznym
niz drugi, jezeli stosunek ich reszt T’,‘ dazy do zera dla n ros-

n
nacego nieograniczenie.
Dla zbieznosci szeregu jest koniecznem ido-
statecznem, by dawszy sobie ¢ dowolne, mozna
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bylo znales¢ taki skaznik #», aby dla kazdego
m>mn bylo B,<<o6 co do wartosci bezwzglednei.

By szereg byl zbiezny, jest koniecznem, aby
granica wyrazu ogodlnego u, byla zerem.

Jezeli szereg jest bezwzglednie zbiezny, to
" pozostaje takim, gdy wszystkie wyrazy jego po-
mnozymy przez ilosci mniejsze od liczby danej.

Szereg jest zbiezny, jezeli wyrazy jego sa co
do wartosci bezwzglednej odpowiednio mniejsze
od wyrazow szeregu zbieznego.

Szereg o wyrazach dodatnich jest rozbiezny,
jezeli wyrazy jego sg co do wartosci bezwzgled-
nej odpowiednio wieksze od wyrazéw szeregu
rozbieznego.

Jezeli wyrazy szeregu naprzemian dodatnie
i ujemne maleja co do wartosci bezwzgledne]
i daza do zera, szereg jest zbiezny.

Jezell szereg

Wy — Uy —+ Uy +
jest zbiezny, szereg zas

"y W 1

s TG
o wyrazach dodatnich—rozbiezny, to granica ilo-
czynu a, U, jezeli istnieje dla n=oco, musi bye¢ ze-
rem.

W szeregu zbieznym o wyrazach dodatnich
iloczyn nu, jezeli ma granice,to dazy do zera dla
n=o00. Olivier (Crelle, II) uwazal to kryteryum za
konieczne 1 dostateczne, Abel (Crelle, III) wykazal,
ze jest tylko koniecznem.

W szeregu zbieznym o wyrazach dodatnich
wcigz malejacych, iloczyn nwu, dazy do zera. Ca-
talan, Comptes rendus 1886; patrz co do tego Giudice
(Riv di mat, IV, str. 165).
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Jezeli dla n rosnacego nieograniczenie
wyrazenie

Un

a — Gtol
n s I S )

(gdzie Xu, jest szeregiem danym o wyrazach

dodatnich, 2. ----- szeregiem rozbieznym o wyra-

zach dodatnlch) poczywszy od pewnej war-
toseci n, pozostaje wecigz wigksze od pewnej
liczby dodatniej, szereg Ju, jest zbiezny;
jezeli przeciwnie, poczawszy od pilerwszej
wartosci, m pozostaje wciagz ujemne, to szereg
jest rozbiezny. (Twierdzenie Kummera, Crelle, 1835.)

Szereg jest bezwzglednie zbiezny, jezeli
granica stosunku wyrazu do poprzedzajgce-
go(oileistnieje) jest co do wartosci bezwzgle-
dnejiloscia mniejsza od jednosci(Cauchy).

Szereg owyrazach dodatnich jestrozbie-
zny, jezelli granica stosunku wyrazu do po-
przedzajacego (oileistnieje) jestilosciag wie-
ksza od jednosci (Cauchy).

Szereg o wyrazach dodatnich jest zbiez-
ny lub rozbiezny, stosownie do tego, czy wyra-

zZenie n( ——.1)dlan=oo dazy do granicy wyz

Up+1

szej lub nizszej od 1. (Twierdzenie Raabego, Crelle, X1).

Nzereg o wyrazach dodatnich jest zbiez-
ny lub zbiezny, stosownie do tego, czy wyra-

Zenie
i W,
[n( '———l)—-l]logn
([P

dazy do granicy wiekszej lub mniejszej od
jednosci.
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W szeregu zbieznym o wyrazach dodat-
nich liczba

[n ( b —])—-l In
_ Up—1 4

rosnie nieograniczenie wraz z mn.

Jezeli wszeregu o wyrazach dodatnich ilosé

LI
Vu,, poczawszy od pewnej wartosci m, pozo-
staje wciaz mniejsza od liczby danej. mniej-
szej od 1, szereg jest zbiezny; gdy pozostaje
wecigz wieksza od 1, — jest rozbiezny.
i L 47 7 ; u,
Jezeli istnieje granica stosunku —Ff' |

n n
to istnieje tez granica wyrazenia Vi, i v6w-
na sieg poprzednie].

Szereg o wyrazach dodatnich moze byé¢
zbiezny, chociaz mnie istnieje granica sto-
sunkugﬁl—. W tym przypadku stosunek ten

W
waha sie pomiegdzy granicami,zktédrych jedna
jest najwieksza.

Szereg jest zbiezny lub rozbiezny sto-
sownie do tego, czy granica wyrazenia

log —
2.

log n

jest wieksza lub mniejsza odl (kryteryum lo-
garytmowe Cauchyego).
Szereg

i) e @) S Al oile O wile) el
\
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jest zbiezny wtedy i tylko wtedy, jezeli
_u+m
nli_x_nm ,‘ u (@) de = 0
(kryteryum calkowe Cauch y'ego).
Szereg Ju, jest zbiezny, jezeli mozZna zna-
lesé liczby dodatnie a;, a,..... takie, ze

1 o 1
lim |1 ) !
ulzmoo? o8  Ungp &l ', I>O

0
(kryteryum Pringsheima).
Szereg Xu, jest zbiezny, jezeli mozna

znales¢ liczby dodatnie a;, a,, ... takie, ze
: W Wt
lim { @ni1 log eRNEE } >0
N = co an-H “’n+ p+1

(kryterynm Pringsheima).
Szereg o wyrazach dodatnich jest zbiez-
ny, jezeli wyrazenie

i r—\ 0
| R T <
I\ Ju | o

poczagwszy od dostatecznie wielkie]j warto-
§cim, pozostaje wecigz wiekszem od 1; jest roz-
biezny, jezeli poczawszy od pewnej wartosci
m, nie przewyzsza jednoseci (kryteryum Jameta,
Mathesis, 1892, str. 80. Poréw. Cesaro,(Analisi Algebrica,str. 489).

Inne kryterya podali: Gaus s (Werke, IIL str, 139; kryteryum
Gaussa wyplywa z kryteryum Raabego), De Morgan, (Dif-
fer. Caleulus, Londyn 1836), Bertrand (Journ. de Liouville, TI,
str. 37), Bonnet (tamze, VIII, str. 19—99), Pauker (Crelle,
XL, str. 138), Dini (Annal. delle Univ, Toscane, Piza 1867), Du
Bois—Reymond (Crelle, LXXVI), Pringsheim (Math. Ann,
XXXYV), Giudice (Rend, Palermo, 1890) i t. d.
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Aby szereg pozostal zbieznym przy Ja-
kiejkolwiek zmianie porzadku jego wyrazédw,
jest koniecznem 1 dostatecznem, by byl bez-
wzglednie zbieznym (twierdzenie Dirichleta,
Crelle, IV); w tym przypadku suma szeregu pozo-
staje tez niezmieniong dla kazdego odwrd-
cenia (inwersyl) wyrazow.

Jezeli szereg o wyrazach dodatnich i ujem-
nych jest bezwzglednie zbiezny, to beda tez
oddzielnie bezwzglednie zbieznemi: szereg
utworzony zsamych wyrazéow ujemnych i ntwo-
rzony z samych wyrazow dodatnich.

Niechaj bedzie szereg, dla ktdrego lim ., = 0; niechaj

@ + a5 +a +. . . . . . (@)
ot g, D o et o

beda sumy wyrazow dodatnich oraz bezwzglednych wartosci
wyrazéw ujemnych, wzietych w tym porzadku, w jakim istotnie
zachodza.

Jezeli dwa szeregi (1), (2) sa zbiezne, to
szereg dany bedzie bezwzglednie zbiezny;
jezeli oba szeregi sa roablenne, to, mozna zaw-
sze tak rozmiesci¢ ich wyrazy, aby szereg
calkowity byt zbiezny, rozbiezny lub nieo-
znaczony., 1 w przypadku gdy jest zbiezny.
mégl mieé wartosc zupelnie dowolna. (Twier-
dzenie Riemanna, Werke, str. 221).

Jezeli Xw,, Xu, sa dwa szeregl dane, to szeregi

(e o),
.l‘ (unvl + Up—1Vg + W, —20, + i e b iserent AG + ulv,.)

nazywamy odpowiednio: suma albo iloczynem dwu sze-
regéw danych.

Suma i iloczyn dwu lub wigcej szeregdw
bezwzgledniezbieznych jest szeregiem bez-
wzglednie zbieznym (Cauchy).



§ 2. — Szeregi specyalne.

Aby iloczyn dwuszeregéw zbieznych byl
zbieznym, wystarcza, by jeden z nich przy-
najmniej byl bezwzglednie zbieznym (patrz
Mertens, Crelle, LXXIX).

Jezeli iloczyn dwu szeregdéw zbieznych
jest zbiezny, to wartosciag jego jest iloczyn
wartosci szeregdéw danych.

)
.

§ ‘

Szeragi specyaine. Postgpy.

1‘*‘%‘7"’%*’ <o B =%}!‘n‘3’Bzr,
1+ g};“ -+ 5%" EERI s Sk ) 2%71)!7!”32“
1_%-;-%-— 2 SN =2—j;’—__’!3n2f32,,
e ‘3%1 T 5% g e Ll ot i 723";“ 9,

gdzie Bi K sa tak zwanemi licgbami Bernoulliego 1 Eu-
lera (patrz Rozdz. XVIII).
Jezeli s, oznacza szereg odwrotnosct p-tych poteg liczb na-
turalnych, to:
i nt 78 >

8y = — =

§ %0 S e SR

— i — = 1, 202 006 90: 2
8, 35 7946 .. 1, 202 066 903 159 594 285 40 . . . ,

6

’

7T
S

5= 995, 1215... °
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n'.'

5.5 5096,986 1 . -

e - A
1—T+5~- R i
1 1 e
1 — =+ 5 — ... =0, 91596569417721905460357 . ..,
1 1 5
1 e T + 757 oy . . 5 . = g‘z_. :
1 1 "
et R

Co do tych szeregow diczbowych patrz: Stieltjes (Acta math.
1887), Brisse (Compt. rend., LXIV, str, 1339), Novi, Algebra etc,
str, 118),

2, 1 S iyl
1"108T+—2‘—10g72—+?_ o

Il

Jest to t. zw. stala Eulera = v, h77215664 . . .

1§ ] ) 1 1 ) s v
fs S 50,01 T T A

1 1 1 i
8 L A S . Rl %1 o L g
93t sastEsy T = ls2—5,

1 1 1

=3 - 20 ol SRR 5

T3 3457 567 5 —log2

1 1l il 3 ;
2.3.4+4_5~G+ h_7_8+' e log 2,
{7 R e - IR e A |
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o 2‘71.;’
S rr - rrest = VR
e CREE Y AR
R

1 1 1 e
1 +—1—!+ 21 + 3T--{—...=e=2,718281828409040...,

1 1 1 il 1 : T

1 1 1 n
arctg. a5 -+ arctg - 5 97 —+} arctg. 9 3 e — T
1 2 3 4 a’
sl e, ~ L AT Y — &t oD = 29319
5 33 + Ve, = N 5 log 0,129319. ..
k- 1 1 : s
bzeregl-—ﬁj——}-—,;—— 4+ - Jjestzwyczajnie

zbiezny, ma on sume zalezng od porzadku wy-
razow. Jezeli po m wyrazach doodatnich na-
stepuje m ujemnych. wtedy suma szeregu wynosi:

log 2] _'::_ (Dirichlet, Berl. Abh. 1837),

Szereg

ll\/;s

(a—{—rb)"
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nazywa sie harmonicznym (Euler) rzedu m-tego; dla
n=1 szereg ten jest rozbiezny, dla n dodatniego 1 wiekszego od
1 jest on w ogdle zbieznym.

Kolej wyrazow, w ktorej réznica kazdych dwu sasiednich
jest stala, nazywa sie postepem arytmetycznym;
jezeli r-ta roznica wyrazow jest stala, otrzymujemy postep
arytmetyczny rzedu 7.

Suma n pierwszych wyrazow postepu aryt-
metycznego l-go rzedu rowna sie polowie ilo-
czynu liczby wyrazdédw przez sume wyrazoéow
pierwszego i ostatniego.

Jezeli A, oznacza roznice m-ta, odnoszaca sie do wyrazu
pierwszego (patrz rozdz. X), to suma n pierwszych wy-
razow postepu arytmetycznego r-tego rzedu
wynosi:

n—1

g A
i 2 (m-}—l) 2y

m=0

gdzie A, jest zerem dla m > 7.
Suma postepu arytmetycznego

P20+ 1)+ 8@+ +4 @0+ +

W ynosi:
¥ 1 5 ¢ 1
bn == ’6' n ("—I—l) (5})—*—2”——2)

Suma postepu arytmetycznego

e+ @—10@—D4+@P—2)@—D+ . ..

Wynosi:

S, = %— nl6pg — (n—1) Bp+3¢g—2n-+1)
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Postepem geometrycznym rzedu r-tego nazy-
wamy kolej wyrazéw, ktore s potegami jednej zmiennej o wy-
kladnikach, stanowigcych postep arytmetyczny rzedu »-tego.

Suma n pierwszych wyrazéw postepu geo-
metrycznego 1l-go rzedu wynosi:

: P—1
o e

O sumach postepéw geometrycznych rzedow wyzszych patrz:
Cauchy, Exercices, 1827, Jacobi, Fundamenta nova, Kummer
(Crelle, XVII), Glaisher (Quart. Journ. of Math. 1871, XT) etc.

Szereg

2 4
i R R ML
11—l —a2 "1 —x* !

nazywa sie szeregiem L am berta. Suma tego szeregu wynosi:
20 () + 226 @) F2*038)+ ... ...

gdzie 6 (p) oznacza w ogodlnosci liczbe dzielnikdw liczby p, wla-
czajgc w nie 11 sama liczbe p (patrz Scherk, Crelle, IX, X|
Curtze, Annal. di Mat. Iit. d.).

izt B0 v .
Jezell stosunek — nie jesi{ rzeczywisty,
®

to szereg podwéjny

1 v
Z (277&((} + 2"&)’)21‘ = bg,-

gdzie suma rozciaga si¢ na wszystkie warto-
$ci calkowite, dodatnie i njemne liczb m i n
(précz kombinacyi m=0,n=0) jest bezwzgle-
dnie zbiezny przy r_-1.

Szereg S mozna wyrazié za pomoca fun-
kcyj przestepnych eliptycznych. Jezeli g,, g,
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sg niezmiennikami funkcyj eliptycznej p, ktérej polperyodami sa
o 1 o' (nezmienniki te mozna wyrazi¢ za pomocs funkcyj &
o argumencie zero, patrz Rozdzial XVI), otrzymamy wzory:

1
S“::'BO 92,
; 1
Ng = 2 98] s »
S o #gzz
3 DTSRy ST
i S - o1
19 Ol i ) gL A%
; 1 (& s
- e R T (G S e T, B U

‘W nastepnych paragrafach podamy wiadomosci, odnoszace
sie doszeregéw funkeyj, szeregéw potegowych, rézniczkowalnosci
i calkowalnosci szeregéw, rozwijalnosci funkeyj na szeregi, do
szeregéw funkeyj zmiennej urojonej i t. d.

Podreczniki algebry i rachunku rézniczkowego obejmuja najeze-
Sciej i wyklad o szeregach; istnieja nadto traktaty specyalne: Lacroix
(Paryz, 1800), Catalan (Paryz 1860), Lsurent (Paryz, 1862),
Novi (Algebra, Florencya 1863). Historyi szeregéw nieskonczonych
poswiecone jest dzielo Reiffa (Geschichte der unendlichen Reihen,
Tybinga 1889). Por. tez odpowiednie rozdzialy w dziele M. Cantora:
» Vorlesungen iiber Geschichte der Mathematik,“
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lloczyny nieskoriczone.

Niechaj bedzie ciagg nieskonczony ilosci u,, u, . . . ; utworz-
my iloczyn II, pierwszych n z pomiedzy nich.

Jezeli dla n rosnacego nieograniczenie IT, dazy do granicy
skonczonej, powiadamy, ze iloczyn niesko hezon y ilosel
danych jest iloczynem nieskonczonym zbieznym.

Wiloczynie zbieznym jest lim wu,=1, stad
wynika, Ze poczawszy od pewnej wartosci n,
wszystkie u, sa dodatnie.

Aby iloczyn nieskonczony II, byt zbiezny
i nieréwny zeru, jest koniecznem i dostatecz-
nem, by szereg logu, +logu, ... byl zbiezny.

Jezeli ten szereg dazy do — oo, iloczyn IF
dazy do zera,

Aby iloczyn nieskonczony, ktérego czyn-
nikisag wszystkie dodatniei wszystkie mniej-
sze lub wieksze od 1, byl zbiezny i nieréwny
zern, jest koniecznem 1 dostatecznem, by szereg

(th —1 4 (1) 4

byl zbiezny.

Iloczyn nieskonczony u, %, ..., ktédrego
czynniki sg jakiekolwiek, jest zbiezny inie-
rowny zeru, jezeli zbleznemi sg dwa szeregt:

(== 1); = (i =~ E
(g — 1)2 + (wy — 1) +
Gdyby tylko pierwszy szereg byl zbiez-

ny, drugi zas byl rozbiezny, szereg bylby
zbiezny lecz mialby wartosé¢ zero. Gdyby oba
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szeregil byly rozbiezne, nie mozZnabynic wogo-
le powiedzie¢ o zbieznosci iloczynu nieskon-
czonego, oileilosci u, uy ...niebylyby wszy-
stkie wieksze od 1; w tym bowiem przypad-
kumozna twierdzi¢, ze szereg jest rozbiezny.

Jezell u, uy .. .sai1losciami zespolonemi,
iloczyn nieskoficzony jest zbiezny, jezell
tylko zbieznos¢ szeregu

(tty = 1) + (1, — 1)

jest zbieznoscia bezwzglednyg (Welerstrass).

Jezeli iloczyn nieskonczony zachowuje tez sama wartosé
przy zmianie porzadku czynnikéw,nazywamy go iloczynem nie-
skonczonym bezwzglednie zbieinym.

Iloczyn bedzie bezwzglednie zbiezny, je-
zeli 1 szereg logu, +logu,—}.,. jest bezwzgle-
dnie zbiezny.

Jezeli czynniki w,. u, . . . sa wszystkie
mniejsze od 1, zas w,, v, ... wszystkie wiek-
szeod 1 (przyjmujemy wszystkie za dodatnie,
co zawsze zalozyé wolno), to iloczyn bedzie
bezwzglednie zbieznym, jezeli takiemi sg od-
dzielnie iloczyny nieskonczone %, 1, .....
bt e

W tym przedmiocie patrz prace: Kummer (Crelle, XIII),
Arndt (Archiv Grunerta, XXT), Weierstrass {Crelle, XI, Functio-
nenlehre, str. 206), Dirichlet (Berliner Abhand, 1837), Novl
Algebra).

Podajemy nizej najwazniejsze wzory teoryi iloczynow nie-

skonczonych.

. o I x? : = x?
sme=xll }1 — —F—|;sinhr=az I}l 4 ;
4 rem 1 L

r=1 7kl

) 2 a2 3 ool x2
con v = i1 — (‘*1—)%] cosh = = £1] 1 + (—1—“)‘]
£ Sk [ rm— - x

2 2
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n ‘)H, —m 2n + dn —
I e - TP T Ry

-

n

ot

']
o 9

~

7 ) 1 2u—m 3 29-4m
BRI W D D e

Wzory te podat E uler (Introductio ete.); zachodzgce w nich
iloczyny nieskonczone nie sa bezwzglednie zbiezne, wartosé ich
przeto zmienia sie przy zmianie porzgdku czynnikéw. Dla innego
rozmieszezenia czynnikow wartosé iloczynu obliczyt Cayley.
Tak np. we wzorze na wstawe mamy czynniki

e - -]
ra ; ;2NN

uporzadkowane w ten sposob, ze sasiadujg ze soba czynniki od-
powiadajace tej same]j bezwzglednej wartosci skaznika r; jezeli
zas uporzadkujemy je w ten sposdb, aby po ue czynnikach, od-
powiadajacych wartosciom dodatnim 7, nastepowalo » czynni-
kéw, odpowiadajacych skaznikom r wjemnym, to wartoscia iloczy-
nu bedzie:

7T D VR B TR0 SR ; 5 2
B 33 55T (wzor Wallisa),
2 (4\} (6.8)} [10.12.14.16 \ 2y
hnlth & f S . (Wzér Ca-
3] 5T ( “1.3.18 ) - e

talana, Jowrn. de Liouv. 1875.)

Oznaczywszy przez C stala Eulera (patrz wyzej § 2,
oraz nizej Rozdzial XVIIT) mamy:

1

¢ = log I1 2",
g P

Pascal, Rep. L. [}
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17 M w: z 12 : C(r'2
I11 2n—1)*—ua* =1+ ey eml (I'—’—'_.):")@T?lalz)
3.! &
+ 4 —-'L‘) (51 J,”) (»)3 'L.g) S
Ve V& (el
it e V— K 2 ¥ £
1[(1-*‘1 Z) 0-( —x, (]'-CL ) . (1—-.‘1'") 2", (E un ] e ]")_
II 1 I So: N i =
(1——'.("2) Y e —L) (1> _m'.') o (1_"’:") . n er)'
0
'IT (1 -— gu+2) (1 — 2¢2r+1 cos 2 - g12)
et .S.S(— N gt scos™ 2, [fgs b 10 (Jacobi).

Wzory na rozwiniecie funkeyj eliptycznych na iloczyny
nieskonczone podamy w rozdziale XVI.

§ 4

Fakultety analityczne; czynnikowe (faktoryalne).

Nazywamy zwykle fakultetami (rézZnoczynni-
kowemi) analitycznemi iloczyny ktérych, czynniki
kolejne tworza sie¢ wedlug pewnych praw okreslonych.

Réznoczynnikowe Heinego (Handbuch der Kugelf., I,
str. 109) sa iloczynami postact :

(==t (== eI o (L=

Fakultety Kram pa (Ann. de Gergonne, ITI, 1812) sg ilo_
czynami typu

x(x—+d)y (x4 2d) . . . (x+ (m—1)d)
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W przypadku d =1, lub d= — 1 otrzymujemy tak zwa-
ne czynnikowe (faktoryalne). Jezeli jeden z czyn-
nmkéw skrajnyeh jest jednoscia, otrzymujemy czynnikowa
liczby catkowitej; oznaczamy ja przez n!.

Czynnllxowa n! zawiera sig pomiedzy dwiema
granicami

(VT)”< nl < {—2-—, :

(Cauchy, Exerc. IV, str. 207).

Uogolnienie czynnikowych dla liczb niecalkowitych pro-
wadzl do funkeyli ,gamma‘ Eulera; uogdlnienie dla liczb
zespolonych rozwazal Cayley.

Fakultetami analitycznemi Weierstrassa sa ilo-
czyny nieskonczone typu (Functionenlehre, str. 200):

" o—— gm z r + 14~ Z_{'7d
i v z 4 m d,g( 9 ) g-H(m+r)d

dla jakichkolwiek wartosci rzeczywistych lub zespolonych ilo-
scl z, d, m.

Dla 2, m rzeczywistych i d dodatniego otrzymujemy fakul-
tet Bessela.

Czynnikows Welerstrassa jest (tamze str. 1931 98

Taczynnikowa jest funkcys analitycznailosci z,
skonczong i ciggla.

Fakultetami i czynnikowemi zajmowali sie: Wronski (Réfut, de
la Théorie des fonct. anal. de ILagrange, Paryz; 1812); Clausen
iCrelle (Crelle, VII), Bessel, (Abhand. IT); Ohm (Crelle, XXXIX);
Oettinger (tamze XXXIII, XXXV, XXXVIII, X[1V); Schaefli
(tamze XLIIT, LXVII), Weierstrass (tamze LI). Dawniejsze prace
sa: Vandermonde’a (Mém. de Paris, 1772) i Kr amlpa, juz wy-
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zej cytowane. Vandermonde nazywal fakultety iloSciami nie-
wymiernemi réZnych rzedéw. Najnowsze badanie o tym
przedmiocie oglosit Capelli (Giorn. di Baltt, XXXT, XXXIII).

.

/s

Utamki ciggte.

Wyrazenie postaci

ay
b, + oay
by + a,
=

nazywa si¢ ulamkiem cigglym zstepujacym: wy-
razenie zas

ulamkiem cigglym wstepujagcym.

Ponizej, o ile nie bedzie wyraznego zastrzezenia, mowic be-
dziemy tylko o pierwszym.

Liczba wyrazéw moze byé¢ skonczona lub nieskonczona.

Tlosei @ 1 & nazywajg sie licznikami i miano-
wnikami czgstkowemi, Jezeli zatrzymamy sie na wy-
razie n-tym, to ulamek czastkowy, ktory w ten sposéb otrzymu-
jemy, nazywa sie n-tym ntamkiem przyblizony m lub
nu-tem przyblizeniem (reduktem);oznaczamy go przez —B—' ,

Mozemy przyjac, ze wszystkie liczniki sa rdwne 1.
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Przyblizenia czyniag zadosé nastepuja-
cemu zwigzkowl zwrotnemu:

."1" //;, ;l..f] =1 Uy f{u» 2

Bn bu B,, I + Uy ~Bn-‘£

Lieznik 4, i mianownik B, przyblizenia
mozna wyrazic¢ za po mocg wyznacznikdw for-
my specyalnej, t. j. tak zwanych kontynuantéow
(patrz wyzej str. 58). Jest mianowicie :

TR D0 LS 2 00 O 0% iy 205 0= SE0 %0

{t —1, by, a,,0...0, 0 s a0 2 5 2 O
. |
A ==lan08e—1. “bon tesran (0 045 H,,=! Oz wlyo g L1k Oy O

, |
e gy, 4 0 O i w2 <1 D

. . . . . . . . .

Réznica dwu przyblizen kolejnych wy-
raza sie wzorem:

slleing i foads o g gy 1o Bl i G
If,‘,}.l ,Bu Bn B'!+1
Réznica dwu przyblizen rzedu m-tego
1 n-tego (m>mn) jest:
A TR L b S
lgm 13" ) Bm -Bn

gdzie ¢ jest mianownikiem ulamka

"Z)‘ — “u#l —i— “u+2 b

¢ bote + Muts

[)”+3 + St + ai
bm
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Przyblizenie mozna zawsze wyrazi¢ wzorem:

el WRE e Lo SR e o S L ) Sy o il
B. B, B, B, B;B, B.1B,

Jezeli wszystkie ilosci w10 sg dodatnie,
toréznice pomiedzy kolejnemi przyblizenia-
mi tworza szereg o wyrazach malejacychi sa
naprzemian dodatnie i njemne.

Jezeli ilosci »1b sa dodatnie, to przybli-
Zzenia o skaznikach parzystych tworza sze-
reg rosnacy, przyblizenia o skaznikach nie-
parzystych tworzg szereg malejgcy.

Jezeli ilosci a i b sa dodatnie, to kazde
przyblizenie zawiera sie pomiedzy dwoma
nastepujgcemipo sobie przyblizeniamio ska-
znikach mniejszych.

Przyblizenia ulamkow ciaglych maja-
cych wszystkie liczniki czastkowe réwne 1,
a za mianowuniki czgstkowe liczby calko-
wite dodatnie, sa ulamkami nieprzywiedl-
nemi.

Przyblizenia ulamkacigglego

a,
by — a,
by — a
by ey,

gdzie ilosci aibsa wszystkie dodatniei czy-
nig zados¢ zwigzkowi a,>0,+ 1, sg wszyst-
kie dodatnie, mniejsze od 1 irosnace.

Jezeli b,=a,-}1, to

Ay o tema 4l e EGRER a,
B, 140, 4aas 4+ . . . . . + Gly...a,°
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Jakiekolwiek przyblizenie utamka cia-
gtego, ktorego wyrazy sa liczbami ealkowi-
temi, zbliza sie do wartosci ntlamka ciggle-
go wiecej niz jakikolwiek inny utamek o wy-
razach prostszych (Euler, Introductio § 382).

Jezeli dla n =00 istnieje granica utamka
‘:ﬁ-, tomowimy, ze ulamek ciggly jest zbieiny.
Jezeli liczniki czasthkowe a sa wszystkie
dodatnie, mianowniki zas8 0 sg jednego zna-
ku, to niamek ciagly jest zbiezny wtedy,
1 tylko wtedy, gdy przynajmniej jeden z dwu
szeregow

aa, by @y
+ b, TR s L
s, NUN
g Ayt gty ¥/
b, 2 by —=L 6 L .
(g it a,;a STy Myl iz

jest10zbie7’ny (Lryteryum eidela, Habilitationschrift,
Monachium. 1846 i Sterna, Crelle, XXXVII); tenze ula-
mek jest nieoznaczony, jezeli obateszeregi
sa zbiezne.

Ulamek ciagly o elementach dodatnich
jest zbiezny. jezeli

b,,+1 /I,,.

lim — =0,
n=o0 a’n-{l
lub—gdy ktadac
Uiy O
(11141:_—“:’:—;—

—otrzymujemy szereg

Opt1 Ay42 0
-1 -+ ana 1 4 ani2
rozbiezny (Novi, Algebra, ).
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Ulamek ciggly nieograniczony, ktdorego

elementy sa liczbami calkowitemi 1 dodat-

niemi, czynigcemi zadosé¢ warunkowi 0, > a,,

ma wartos¢ niewymierna mniejsza od 1.
Ulamek ciagly

t

b, — a,

A

gdzie ilosci a i) sa dodatnie, jest zbiezny,
jezeli b, > a,+ 1.
Ulamek ciagly

l —
“h =

N A R e

gdzie iloseci &k s'a dodatnie, jest zbiezny, je-
zell, poczagwszy od pewnej wartosci skaznika

.

n, jest zawsze h, > 2.
Ulamek ciagly nazywa sie peryodycznym, jezeli
ulamki czastkowe powtarzaja sie wnim wtym samym porzadku.
Kazdy nutamek ciggly peryodyczny, ma-
jacy lieczniki czastkowe rdwnel, za miano-
wnikizasczastkowe,liczbycalkowite,jest pier-
wiastkiem rownania stopnia 2-go, ktérego dru-
g1 pierwiastek jest ulamkiem cigglym peryo-
dycznym otym samym peryodzie napisanym
w porzadku odwrotnym (Kuler, Lagrange).
Dla prostoty oznacza¢ bedziemy ulamek ciagly, ktorego
ty

] . 10
nlamkami czastkowemi sa ~7'~ s "+ -+ Z& pOmoOCa sym-
) ),
1 2

N
bolu.( e R oD R )
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Mamy wtedy WZOr'y:

—_ I b b
V“"+[)=:(7-+(—5"‘2',TM ...... ).

1| iy il 2.2 HE
—_ 1 /j S ==
) 2.3 SEd AR \_,r,l 4
LR T e e e SR e
e 22 pd
BT 5T ) =g
L el vci w'ﬂ
(F 305 7 )=tens
7 \? |t 7
6 o o
Y g s
Pierwiastkami réownania 2* F-ax=10 sg
b 1/ b b
"”l =( ;’ 3 5 ), Ly = — U ‘—+— (? _;l- ......

Za twérce teoryi ulamkéw ciaglych mozna uwazaé Eulera
(Comnm. Petrop. IX, XI, Novi Comm, Petr. IX, XI, Introductio etc.).
Potem zajmowali si¢ niemi: Lagrange (Mém. de Berl, 1769 —1770);
Legendre, Théorie des nombres; Moebius (Crelle VI), Gauss
(Werke, III); Wronski (Introd. a la phil. des math. 1811), Stern
(Crelle X, XI, XXXVII), Heine (Kugelfunctionen). Wieksze szcze-
goly i wiadomosei historyczne zoaleS¢ mozna u Giinthera (Grunert's
Archiv. LIV, Math. Ann. VII; Beitrige zur Geschichte der Xetten-
briiche, Weissenburg 1872); Darstellung der Niherangswerthe von Ket-
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tenbr., KErlangen 1873). Przedstawienie geometryczne ulamkow
ciaglych podal Sylvester (p. Novi, Algebra, gdzie teorya ta trak-
towana jest szczegdélowo i jasno). Uogodlnienie ulamkdéw ciaglyeh po-
dali: Jacobi (Crelle LXIX), Fiirstenau (Progr. Wiesbaden 1872),
Ginther (Grunerts Archiv, LVII), Pincherle (Acc. Bolog).

O ulamkach wstepnych patrz prace Giinthera w ,Zeitschrift”
Schlémileha, XXT.




ROZDZIAL V.

TEORYA ROWNAN ALGEBRAICZNYCH.

Wiadomosci ogdine.

Jezeli przyrownamy do zera wielomian ze zmienna x, t. j.
funkcye wymierna calkowita zmiennej 2, bedziemy mieli rowna-
nie algebraiczne f(#)=—0. Stopien wielomianu nazywa sie
stopniem réwnania.

Nazywamy pierwiastkiem réwnania liczbe, ktéra
podstawiona zamiast &, zamienia réwnanie na tozsamosc.

Kazde ré6wnanie o spéleczynnikach rzeczywi-
stych lub zespolonych ma zawsze pierwiastek (twier-
dzenie d’Alemberta) 1 ma tyle pierwiastkéw rzeczy-
wistych lub zespolonych, ile wynosi jego stopien.

Wskazowki historvezne co do tego twierdzenia znalezé mozna
w studyum G, Loria, Il teorema fundamentale della teoria delle equ.
alg. (Rivista di matem. I).

Jezeli réownanie ma spolezynniki rzeczywiste 1 jezeli
a-1if jest jego pierwiastkiem, to bedzie nim takze a — ¢ 4.

Jezeli rownanie ma r pierwiastkéw réwnych sobie 1 réw-

nych a, liczba a nazywa sie pierwiastkiem wielokrotnym

N\
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rownania o wielokrotnosci ». W tym przypadku
strona pierwsza rownania jest podzielna przez (x — a)".
Stosunki spolczynnikéw réwnania do spolezynnika przy
najwyzszej potedze zmiennej «, sa funkcyami symetrycznemi
elementarnemi pierwiastkéw rownania, t. j. jezeli mamy réwnanie

”,0.'1'“ + a.l.’L'"_l + o . " . . + y = O
ijezeli a;, ay, . . = u, sa jego pierwiastkami, bedzie:

o

——=a o+ ...

L)
(ly
+ T My 4+ ooy + .o 4 Faey, + .00+ i,
0
W
(— 1) e N
(l'“
Jezell przez s, s, .. ... oznaczymy sumy pierwszych,

drugich i t. d. poteg pierwiastkéw, to funkcye symetryczne s
mozna wyrazi¢ przez spolezynniki réwnania (wzory Newtona
lub Girarda), a mianowicie:

ay 8y + @y == 0,
ty & —+ @ 8, + 24, = 0,

ty 8y W8y —F ups; + Bay = 0,

Uy -Sue =~ Bg8n— =it -, =1 0,
WSk 8ugn=1+ o o wusp =0; (=172 . .:

Funkeye symetryczne zupelne lub funkeye alef W ron-
skiego sa to funkcye, ktére otrzymaé mozna, podnoszac do
poregi 1-ej, 2-giej, 3-ej .. ... 1 t. d. sume pierwiastkéw
W9+ . . ... as, (wedlug wzorn na potege wielomianu)
1 zastepujac w rozwinieciu wszystkie spélezynniki jednosciami-
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Jezeli funkeye alef, odpowiadajace kolejnym wartosciom

n=1,n=2 ... oznaczymy przez 4,, 4,, . . . , to pomiedzy

temi ilosciami 4 a spolezynuikami zachodzi¢ beda zwiazki
nastepujace, analogiczne do wzoréw Newtona:

ad; + Ay + i+ . 0 0 . .+ aidy = 0.
(=2t adainsn s Ay =l

Kazda funkcya symetryczna calkowita pier-
wiastkéw ré wnania jest funkeya wymierna catko-
witg stosunkéw pomiedzy spéleczynnikami a a spol-
czynnikiem ¢, pierwszego wyrazu. To twierdzenie od-
powiada nastepujacemu: .

Kazda funkcya symetryczna catkowitan ilosci
jest funkeya wymierna calkowita funkecyj] syme-
trycznych elementarnych tych n iloscl

Co do sposobow przedstawienia tunkeyj symetrycznych przez fun-
keye elementarne, patrz Salmon, Algébre superiéure, wyd. francuskie,
str. 50), por. Dickstein. Pojecia1metody matematyki, str. 210i dalsze.

Rozwigzawszy powyzsze wzory wzgledem ilosci a Ilub
wzgledem ilosci s otrzymujemy wzér Waringa:

= ( bl E L e ! W \ %2 A
S ) Lt 4, (4 +A3’—{ ...7.4,, - D) ay) (% ) e ( a) "
P i Asleey i il \ uy a; |’

gdzie X' rozciaga sie na wszystkie wartosci calkowite dodatnie
wyktadnikéw 4, czyniace zados¢ warunkowi:

W CEn o AT e, Kt

Nadto :
l.b ~ (,,__1)/'..#—... +4 ; 1 b L
Y e T s LROTE S 8%
A LR T T W B S B

gdzie 4, 421, 4 ... + il = 1.
Analogicznie otrzymaé mozna wzér Wronskiego na wy-
razenie funkcyi alef, a mianowicie:

e (—1 yirtiat ...4;“(11 44,4 . .+ }.,,)_!(__%4\.1.{&);.2 { G '\i.-
A LI . e ol B GTTIE SRR N T

p ! SO0 R A %
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Jesli we wzorach Newtona zamiast «,, ¢y . . . 4, Wez-
miemy odpowiednio @,, ds—y, . . . @,, a skazniki przy ilosciach
s zamienimny na ujemne. otrzymamy sumy jednakowych poteg
odwrotnosei pierwiastkow.

§ 2.
Przeksztatcanie rownar.

Polozywszy w rownaniu f(x) =V, y + ¢ zamiast x, otrzy-
mamy réwnanie F(y)=1), ktérego pierwiastki sg o ¢ mniejsze
od odpowiednich pierwiastkéw réwnania f=0.

Spolezynniki funkeyi F sa postaci:

e
e g f(e).

Jezell polozymy nwe -+ a, = 0, to ¢ wyznaczymy w ten
spos6b, aby réwnanie ze zmienna y nie mialo wyrazu drugiego
(t. j. z potegi y*=7).

Aby otrzyma¢ réwnanie, ktérego pierwiastki sa odwrotno-
$ciami plerwiastkow rownania danego, trzeba aya, . . ., a, za-
stapi¢ odpowiednio przez ., d.—y . . . (.

Przeksztalcenie Tschirnhausena. Niechaj
bedzie réwnanie

T S T SRS S S TR L (T (U]
polézmy:

Yy =po+me—+ . . . . . pux (m<n),
nastepnie rozwinmy kolejne potegi ilosci y, a w rozwinieciu ich
obnizmy ich stopien wzgledem x ponizej n przy pomocy réwna-
nia danego. Otrzymamy tym sposobem :

?/.2='!/’0+P’1"’+- B O
yd —_— p”o + p"l tLl + . . . . .
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Mamy w ten sposéb » réwnan liniowych wzgledem
z, 2% . . . 2”1 Rugujac te ilosci, otrzymamy réwnanie:

y" + R '.’/"_-i e I b b b o I = 0,

ktérego spotezynniki ¢ beda fuukeyami wymiernemi ilosci p 1 «.
Za pomocy tegoz procesu elimnacyl mozna wyrazi¢ & wymiernie
przy pomocy y, mamy zatem rezultat nastepujacy: Pierwiastki
réwnania ze zmienng x 1 pierwiastki réwnania (tego samego
stopnia) ze zmienny y, wyrazajg sie wymilernie pierwsze przez
drugie, i odwrotnie. Przeksztalcenie to nazywa sie przeksztal-
ceniem Tschirnhausena.

Mozna, korzystajac z dowolnosci spélczynnikéw p, spra-
wi¢, by znikaly mniektére ze spélezynnikéw ¢. Gdybysmy
wszakze chcieli, aby rownanie ze zmienna y bylo dwumien-
nem, to rownania. jakie nalezaloby rozwiazaé¢ celem wyzna-
czenia spoleczynnikow p, nie dalyby sie w ogdle rozwiazac alge-
braicznie. Na tem przeksztalceniu oparte se rozwazania J e r-
rarda i Bringa (patrz Klein, Tkosaeder, str. 143).

Rownanie, ktorego pierwiastkami sg kwadraty réznic pierwia-
stkow rownania danego, t. j. (a; — ;)% nazywasie ro wnaniem
kwadratow réznic pierwiastkd w; jest ono stopnia
n (n— 1) A - \ . Y
——5 - Spolezynniki jego sy funkcyami symetrycznemi
pierwiastkow rownania danego, a wigc dajg sie wyrazié wymier-
nie przez spolezynniki tegoz. Przy pomocy metody Lagran-
ge’a znajdujemy te spolezynniki sposobem nastepujacym: Nie-
chaj s; oznacza sume i-tych poteg pierwiasthow réownania dane-
go, §';— sure takichze poteg pierwiastkéw réwnania przeksztal-
conego; hedzie wtedy :

; ~ 2
._)b’:Z(_l)r( ,)S/'S'h—rn
.

(1520, 1 2 oo BB

Znalazlszy §';, wyznaczymy przy pomocy wzorow Ne w-
tona spélezynniki szukane.
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SR
Obnizenie stopnia rownania. Rownanie odwrotne,

Zia pomoca podstawienia, wykonanego na zmiennej #, mo-
Zna rozwiazanie réwnania danego sprowadzi¢ niekiedy do roz-
wigzania rownania stopnia nizszego; nazywa sie¢ to obnize-
niem stopniaréwnania.

Réwnanie nazywa sie odwrotnem, jezeli jego pier-

wiastkl daja sie uporzadkowac¢ w pary typu a, N :
a

Spétczynniki réwnania odwrotnego, rdw-
nooddalone od wyrazéow skrajnych, sardowne
(1jednego znaku). '

Jezeli réwnanie odwrotne jest stopnia
nieparzystego,to jednym z jego pierwiastkow
jestx = — 1.

Podzieliwszy pierwszg strone takiego rownania przez x-1,
sprowadzamy je do réwnania odwrotnego stopnia parzystego.

W réwnaniu odwrotnem stopnia 2n dzielimy strone pierw-

. 1 1 :
szg przez x", potem kladziemy 2 4 — =, dochodzimy tym
sposobem do réwnania stopnia n-tego ze zmienng y. W tem

przeksztalcenin wyrazamy przez y ilosci

@x’ + x" = -Y/g

obliczamy je za pomocsg wzoréw zwrotnych

X =miX, — X, 4.

Historya teoryi rOwnan jest w swych poczatkach historya samej
algebry. Pierwsze proby rozwiazania rownan stopnia 3-go znajdujemy
u Fibonacciego (Leonardo Pisano, Liber Abaci, 1202,
1227); po tem rozwiazanie ich istotne znalazl Scipione del Fer-
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row r. 1545 (jak o tem méwi Cardano, De arte magna, 1545,
Rozdz. I), Réwnaniem stopnia 3-go zajmowali sie nastepnie ('a -
dano (l.c.) i Tartaglia (Wenecya 1546). Ludwik Fer-
rari znalazl rozwiazanie algebraiczne rownan stopnia 4-go (wspomina
otem Cardano (1. c. Rozdz, XXXIX).

Liste zupelna wszystkich dziel dawniejszych i nowszych o teoryi
réwnai znajdujemy na koncu cennej ksiazki Matthiessena (Grund-

ziige-der-Algebra-derlitt. Gleichungen, Lipsk, 1896); tu wymienimy
tylko najwainiejsze w porzadku “chronologicznym: Vieta (Lugd.
Batav, 1646), Cartesius (Leyden, 1637, Lugd. Bat. z komentarzem
Schootena), Delahire (Paryz 1679), Tschirnhausen (Acta
Erud. Lipsk II, 1683), Halley (Phil. Trans. 1687). Roberval
(Mém. de Paris VI, 1693), Rolle (Algebra, Paryz 1690), Mém. de
Paris 1708, 1709, 1711), Nicole {tamze, 1738, 1741, 1743), Euler
(Comm, Petr 1739, Novi Comm. Petr. IX, XIV, Mém, de Berl. 1764
etc), Bezout (Mém. de Paris 1762, 1764, 1765, 1768, Théorie des
équat. Paryz 1779), Waring (Miscell, analyt. Meditat. alg.. Cantabri-
giae 1762—1770), Lagrange ('I'raité de la résolut. des équ., Paryz
1798, Mém. de Berlin od 1768--1773), Vandermonde (Mém. de Pa-
ris, 1773—1774), Ruffini (Teoria generale delle equaz, Bologna 1798,
Mem Soe. Ital 1803— 1805, Mem.Ist. Nazionale 1806 it d.), Budan
(Paryz 1807), Wronski (1827,1847), Fourier(Paryz 1831),Gauss,
(Auflosung der binom. Gleichung. Gott. Abh, 1849); Ahel (Oeuvres,IT),
G alois (Journ. de Liouville, XTI, 1846), Cauchy (Sur la résol deséqu.
numeériques etc., Paryz 1829. Comptes rendus 1836 —1840 i t. d.),
Sturm (Sur la résolution des équ. numer, Paryz 1835). Do tego trze-
ba dolaczyé wszystkie prace z teoryi niezmienuikow, o ktérej mdwimy
w rozdziale NII.

Specyalne dziela, odnoszace sie do teoryi rownan, sa: cytowane
wyzé] dzielo Matthiesena, dalej: Petersena (Kopenhaga,
1878, przeklady wloski i francuski), Todhundtera; zaliczyé tu
nalezy ogélne dziela, obejmmujace algebre wyzsza, a mianowicie: $ e r-
ret, Bertrand, Cesaro, Capelli, Weber. Netto,
W jezyku polskim mamy Algebre wyzsza WI. Zajaczkowskie-
go (Liwéw 1884), oraz ,Rozwiazywanie rownan liczebnyeh¢ J. So-
chockiego (Warszawa, 1884).

Pascal. Rep. L 7
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Wypadkowe [ub rugowniki; wyroZniki.

Niechaj beds dwa réwnania:

('P ==y 2 + o, gom—1 _*_ y g ) + Gy = 07
L AN Y, - R S S IR S

Warunkiem koniecznym i dostatecznymn nato, aby one mia-
Iy przynajmniej jeden pierwiastek wspolny, jest znikanie funk-
cyl wymiernej catkowitej spolczynnikow, ktora nazywamy wy-
padkowa lub rugownikiem dwu réwnan danych.

Wypadkowa jest stopnia n-tego wzgledem
spéleczynnikéw funkcyi ¢, stopnia zas m-tego wzgle-
dem spélczynnikéw funkeyi y.

Wypadkowej mozna daé¢ postaé wyznacznika
rzedu n—m:

atn a‘l: “2

07 (l“ 0] [LI
At % . 5 4
by, by, by
05508 =0

) 0 1

Do takiej postaci dochodzimy metoda Eulera lub metods
dialityczng Sylvestera.

Za pomocy metody Bezouta dochodz1 sie do wypadko-
wej w postaci wyznacznika rzedu n-tego, gdzie n jest wyzszy ze
stopni dwu réwnan danych.

Jezeli polozymy dla krdtkosci

(Zﬁ = (t,'bj — U b.‘,
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tow przypadku m=mn, otrzymujemy:

| (10), (20), (30), v Sy R
| (200801 (3L, (20) -1 BK), . e il
B = (30). (40 + 31), (0)+ (41) 4 (32),. . . ., (1 2)
B . !
|
IR(12.0); s mlvals)an 1 (102) 5 At iaat e i, o i (0t =N

Jezeli m< n, to plerwsze m Wierszy pozo-
staja bezzmiany, pozostale zas n-m tworzymy
przy pomocy spétczynnikéw réwnania stopnia
nizszego sposobem nastepujacym:

o,y Uy Ay,
(DR (e s

Qi) a0

Gdy ,charakterystyka“ wyznacznika &
jestm—+n—=5k t. j.gdy wszystkie minory rzedu
wyzszegonizi m+n—£Kk sa zerami, minory zas
rzgdum+n—4kniesg wszystkie zerami, wtedy
ré6wnania maja k plerwiastkéw wspolnych.

Jezeli B=0, to dopelnienia algebraiczne
elementow ktéregokolwiek wiersza, o ile nie
sa zerami, sa proporcyonalnedo potegkolej-
nych tej samej zmiennej.

Warunki konieczne i dostateczne na to,
by réwnania mialy p pierwiastkéow wspélnych
wyrazamy w tensposob: macierz wyznacznika
B ma charakterystyke n—p. (Twierdzenie Dar-
boux’a).

Nazywamy wyroznikiem réownania danego funkeye
wymierng 1 catkowits jego spélezynnikéw, ktéra przyréwnana



100 Rozdzial V.

do zera, wyraza waruuek konieczny 1 dostateczny na to, aby
réwnanie mialo przynajmniej dwa pierwiastki réwne.
Kladac
8p=—"-0,F == o, P e

gdzie a sa plerwiastki réwnania, otrzymuje-
my wyraznik w postaci

l Sy, S1, 8oy o e A I B
S1, Sgy Sy, 1} n
15 Sy Sudly oL o G URORIEES)

gdzie ilosci s jak wiadomo, wyrazié mozina
zapomocg spéleczynrnikéwréownania. W funk-
¢yl pierwiastkdow wyrdznik przedstawia sie
tak:

il I il |

%, ay S

e Mgt ReL Bl okt o
al”—l’ (12“_] d g s v b au"_l ‘

Wyroznik jest funkeya wymierna calkowita
stopnia2n—2spoéteczynnikéwréwnania stopnia n-tego.
W funkecyi spélczynnikéw wyréznik wyraza
sig tak:
Ly Lo dey

£ 05 il R i e 36 Ll ]
i 200 il a5 S|
V55— RN A Spy S SR EE |

l n, (n—ya,, (1n—2)u,
0, no,, (n—1lya, . .
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llovzyn wszystkich sum a; -} a; zwykle nazywa sie gemi-
nantem réwnania. Geminant wyraza sie wymier-
nie przez spélczynniki réwnania. Przyréwnany
do zera wyraza on warunek na to, aby réwnanie mialo dwa pier-
wiastki rowne 1 znaku przeciwnego.

Inne wlasnosci wypadkowych lub rugownikéw i wyrézni-
kéw podajemy w rozdziale XII-ym o niezmiennikach.

Wypadkowa otrzymali po raz pierwszy Euler, Bezout
i Lagrange. Jacobi zastosowal w tym celu wyznaczniki. Liste
prac, odnoszacych si¢ do tego przedmiotu. podaje E. Pascal , De-
terminanti. Pracg klasyczna o rugownikach jest rozprawa G ord a-
na (Math. Ann IIT).

Rugowniki i wyrézniki po za réwnaniami, ktdére spelniajg
na zasadzie wlasnosci niezmienniczej, czynia zados¢ pewnym
rownaniom roézniczkowym. Roéwnania te znalazl Brioschi
(Crelle, LIIT). Patrz Faa di Bruno, Crelle XIV i Bindre For-
men, Lipsk 1881).

§ +
Uktady rownar liniowych.

Niechaj bedzie uklad m réwnan pomiedzy n niewiadomemi:

Uy &+ G T+ o o A Ty =Yy,
(v Bl R S e TR i TR PREE /A

Macierz wszystkich spolezynnikow ¢ nazywa sie macie-
rza ukladu Zaléimy, ze wszystkie wyznaczniki rze-
du p + 1, zawarte w tej macierzy sa zeraml (sa zerami tedy
1 wszystkie wyznaczniki rzedu wyzszego), nie sg za$ zerami
wszystkie wyznaczniki rzedu p. Liczba p nazywa sie cha-
rakterystyka macierzy.

Aby macierz miata charakterystyke p, jest
koniecznem i dostatecznem, by miala przy-
najmniej jedennierowny zeru wyznacznik 4
rzedup-tegoiaby bylty zerami wszystkie wy-
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znacznikirzedu p+l, ktére tworza sie z 4 przez
dopisanienowego wierszainowej kolumny.
Niechaj charakterystyka macierzy ukladu danego bedzie p,
1 niechaj nieréwny zeru wyznacznik A4 rzedu p-tego, w niej za-
warty, bedzie:
PRI e 2 S SR
A

|a1'n - o & 5 J 3 “’1’:7’

Abyrédwnaniadane nie byly ze soba sprze-
cznemi, jest koniecznem i dostatecznem, by by-
Iy zerami wszystkie wyznaczniki AL

l a,l, . . 5 Y . . a],)n :’/1

|

A,. — .
Oty o " tigivimine 2.0l 63 o SRR
[, s i R R e

Wtymprzypadkuuklad m ré6wnan danych
sprowadza sieg do nkladup pierwszych z po-
miedzy tych réwnan.

W innej postaci mozna to twierdzenie wypowiedziec¢ tak:

Abyréwnania dane byly zgodnemi ze soba,
t. . aby mialy jedno lub wiecej rozwiagzan
wspoélnych, jest koniecznem i dostatecznem,
by macierz spélczynnikéwimaciers

[y o T e s el

i ) - > . . . ’ u‘m, s !/m 1
mialy jedneitgsamgcharakterystyke (Capelli).
Dla spdélistnienia n4l réwnan pomiedzy
n niewiadomemi potrzeba, by wyznacznik
spélczynnikdéwiwyrazdw znanych byl zerem.
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Wartos’ci:c,,w,,.....,x,,,CAynla ce zadose
réwnaniom danym, wyrazaja sie za pomocy
wzor6w (Cramera)

NS

Ly =

gdzie 4, jest wyznacznikiem, kt(')ry otrzymu-
‘]emy z wyznacznlka 4, Z2n08740 jego kolumne
¢-tg 1 piszgc zamiast jej elementéw wyra-
zenia:

4 .
Yi=UY1 — hppa Lp-2 — . . . — Qu &y

Fromt g 3
Yp=1p — Appg1Lppl — . o = by &, .

Jezeli p=mn, wtedy ilosci 7 sa samemiilo-
$ciamiy, a strona druga bedzieniezalezna od
ilosciz. Wtym przypadku na Lyy Fyy oo T otrzy-
mujemy jedyny ukliad wartosci, czyniacyech
zados¢ réwnaniom,

Jezeli p<Zn, wtedy ukltad réwnan p—n roz-
wiagzan.

Jezeli strony drugie réwnan ;. ¥y, . , . Y. S8 wszyst-
kie zerami, otrzymujemy rownanie jednorodne.

Abyuklad ré6wnan jednorodnych mial roz-
wiagzanie rézne od rozwigzania oczywistego
4 =x,=_...=u,=0, jest koniecznem, by cha-
rakterystyka macierzy spolczynnikow, t j. p
byla mniejsza od n.

Aby uklad wréownan jednorodnych o n nie-
wiadomych mialrozwigzania wszystkie row-
ne zeru, powinien wyznacznik ukladu byé¢
Zerem.
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Jezelimamyn—lréwnan liniowych pomie-
dzy n niewiadomemi o macierzy, ktorej cha-
rakterystyka jest n—1, to wartosci niewiado-
mych sa proporcyonalne do minoréw rzedu
n—1, wtej macierzy zawartych.

Niemoze by¢ wiecejnad # roéwnan linio-
wych jednorodnychiniezaleznych pomieduzy
nmniewiadomemi.

§ 6.
Rozwigzywanie rownad.
Réwnaniestopnia trzeciego. Rdwnanie
ad 4y 2 - agx + 7y = O,
po podstawieniu

0 s g S

zamienia sie na réwnanie:

it MG S8 T
Jezeli:
2k LA, : ;
% -+ —,—I‘:— >0, to dwa pierwiastki beda urojone sprze-
zone, jeden zas rzeczywisty:

i —+= 97 < 0, wszystkie pierwiastkl sa rzeczywiste;

9* - ALK ] :
fl =1 21)” = 0, dwa pierwiastki sa rowne.
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‘Pierwiastki wyrazaja sie za pomoca wzoru (ktéry podal
Tartaglia):

3
3

8l 23 i,

Y PR N R R N ’ / IR S 1
Sonva Ol G e . FU S
”“y S e S l4T«>7'

Nalezy tu zauwazyé¢, ze kazdy z plerwiastkow szesciennych ma
trzy wartosci i ze nalezy tak kombinowaé¢ wartosci jednego pier-
wiastka z wartosciami drugiego, aby ich iloczyn byl rzeczywisty
b
3

Wzér powyzszy jest niedogodny z tego wzgledu, ze daje
pierwiastki rzeczywiste réwnania (w przypadku, gdy wszystkie
sg rzeczywiste) pod postacig uroj ong (t.zw. przypa dek nie-
przywiedlny). Jeston ]eszwe medooodny 1 dla tego. ze
daJe czesto pod postacia niewymierna p1e1 wiastki w y-
mierne, ktore zreszta, jak to zobaczymy nizej, mozemy otrzy-
maé i na innej drodze.

1réwny —

Pol6zmy :
(1 /
— === 4 ¢0s' 0, Priiin fade 4y s
4Ha 4 ]’ 27
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wtedy plerwiastki rownania wyraza sie sposobem nastepujacym:

Ui 205 008 .,
5 e 7 2
T L

Yy == 2 93’ Cos (%'—{'—3—

Inne metody rozwiazania réwnania stopnia trzeciego podali: L a-
grange (Oeuvres, VIII), Eisenstein (Crelle, XXVII), Ei-



106 Rozdzial V.

senlohr (tamze XL1I), Clauscen (Astron. Nachrichten N, 446),
Grunert (Archiv, ITstr. 446), Reidt (Zeitschrift Schlomilcha.
XVII), Cayley (patrz prace Gordana i Clebseha o nie-
zmiennikach), Weichold (Americ, Journal, I) it,d.

Réwnaniestopnia 4-go. Jezeli w réwnaniu
x4 4+ a3 | ax? + agx 4 ay = O.

polozymy x =y - a;, otrzymamy:

1
4
yt+py' + gy +r =0.

Rozwiazmy za pomoca wzoréw poprzedzajacych réwnanie
stopnia 3-gno (rozwiazujgce)

g pr—4r ¢*

23 | ob 2k BRes Al LT
or i SR B 7 64

1 niechaj z;, z,, 2z, beda trzy pierwiastki tego rownania. Roz-

patrzmy wartosei —+ Vz;, & Vz,, + Ve, i nadajmy kazdemu

z tych pierwiastnikéw znak 4 lub —, tak,aby iloczyn wszystkich
q

trzech pierwiastnikow byl réwny — ] Mozna uskutecznié to

czterema réznemi sposobami: jezeli mianowicie 7, 7,, Z, sa war-
tosciami pierwiastnikéw. to warunkowi

724,24, = — L,

mozemy oczywiscie zadosé uczynié, dobierajae, procz powyzszej.
kombinacye:

yy — 2y — Zyy — Ly, Ly — Ziy; — Ly, — Zigy Ziy.
Crzterema pierwiastkani réwnania danego beda :

ey =2y + Zy, Ly; a, = Jy — Ziy — Zy:
Zyy g =— 2y — 7y + 4y,

ag = — 4, + Z,
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Inne metody podali Lagrange (Oeuvres, VIII). Euler (Comm.
Petrop. VI), Ampére (Archiv Grunerta, II), Aronhold (Crelle,
LlI), Eisenstein (tamze XXVII[), Hermite (Equabions modulaires,
Paryz 1859), Matthiessen (Zeitschrift Schlomileha, VIII), Faadi
Bruno (Amer. Journ, II[). Rozwiazanie, oparte na teoryi niezmien-
nikow, znales¢ mo7na w pracach Clebscha i Gordana o niezmien-
nikach,

Rownania stopnia 5-go 1 6-go. Réwnanie stopnia
b-go (ogdlne) nie daje sie rozwiazac¢ algebraicznie; rozwiazujemy
je przy pomocy funkeyj eliptycznych. Rozwigzanie to po raz
pierwszy podal Hermite.

Rownaniem stopnia 5-go zajmowali sie: Wroniski (Canon de lo-
garithmes 1827. Wydanie polskie, Warszawa 1890); Jacobi (Crelle,
I, XIIL); Cayley (Phil, Trans. CLI), Galois (Journ. de Liouv, XI,
str. 412), Betti (Ann. di Tortolini 1853), Hermite {Compt.. rend.
1858, t. XI.VI), Brioschi (Annali di Tortolini 1858), Kronecker
(Compt. rendus 1858, t. XLVI, Berlin. Monatsh. 1861, Crelle LIX),
Joubert (Compt. rend. 1859, t. XLVIII), Hermite (tamze, 1866),
Roberts (Annali di mat, (2), [), Brioschi (Comp. rend 1866,
Ann, di mat. (2), I, 1867, w dodatku do przekladun dziela Cayleya
o tunkeyach eliptycznych, Medyolan 1880, Comptes rendus LXIII,
LXXTII, LXXX, Acc. Napol. 1866), Klein (Ikosaeder, Lipsk 1884),
W ostatniem dziele znajduje si¢ rys historyczny zagadnienia o rozwia-
zaniu réwnania stopnia H-go.

Réwnanie stopnia 6-go nie daje sie rozwiaza¢ i za pomoca
funkeyj eliptycznych. Potrzebne sg tu fuukeye hypereliytyezne.

Do tego przedmiotu odnosza sie prace: Maschke-Brioschi
{Acc. Lincei, 1888), Brioschi (Acta math. XI1I, 1888). Dawniejsze
rozwozania sa: Brilla (Math, Ann, XX), Cole'go (Amer. Journ.
VIII, 1866).

O réwnaniach stopnia 7-go 1 8-go istnieja badania Kleina, No-
thera i Gordana (Math, Ann, XV, XX),

¥
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§ 3.
Rownania dwumienne.

Kazde rownanie typu
F r— A —

t. j. réwnanie dwumienne mozna za pomoca latwego przeksztal-
cenia sprowadzic do postaci

yli=r =l

Jezelia jest pierwiastkiem rownania dwu-
miennego tego typu, toia® (gduziem jest licaz-
bg catkowita jakukolwiek), bedzie pierwiast-
kiem tegoréwnania.

Jezelli n jest liczb@ pierwsza, « zas§ roz-
nym od jednosSci pierwiastkiem rdéwnania
y'—1=0, to a,a®a’ ..a" sa n pierwiastkami tego
réwnania; jezelli # nie jestliczbg pierwsza. to
pierwiastek o, majgcy te wlasnos$eé, nazywa sie
plerwiastkiem pierwotnym. Istnieje ¢(n) pier-
wiastkow pier wotnych: @(n) jest liczbg liczb pierw-
szych mniejszych od #n 1 \V?glqdem n pierwszych.

Rozwigzanie réwnania 2*--1=0, gdzie n
jestiloczynem réznych liczb pierwszych za-
lezy od rozwiazania tejze postaci réownan,
w ktorych wykladnikiilosel x sg wlasnie temi
liczbami pierwszemi.

Jezelinm jest liczba pierwsza, to pierwiast-
kiréwnania daja sie przedstawi¢ za pomoca
wzorutrygonometrycznego:

2ka 2L

X == CcOoSs “+ 1 8in —
i e %2

gdizie t przyjmuje wart o ciOIBEe. Sas— 1.
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Pierwiastki réwnania dwumniennego, przedstawione geome-
tryeznie, odpowiadaja punktom podzialu podzialu 6kregu na
czescl rownych 1 dlatego to rownanie dwumienne z"— 1 == 0 na-
zywamy tez rownaniem podzialu kota. Wykresliw-
szy geometrycznie pierwiastki, uskuteczniamy podzial okregu
kota.

Rownanie

x*— 1

Sy ____.xu—l+ x‘:—2+ s —l—m+l;0,

gdziemn jest liczba plerwszag, jest rownaniem
nieprzywiedlnem, t. j. nie posiada czynnikow
wymiernyech.

Jezelin jestliczbg plerwsza, to dla roaz-
wigzania réownania 2" '+ ... +2+4+1=0
rozkladamyliczbe n—1 naczynniki plerwsze
PPy -+ .1l TOZWIigzZUujemy rownania

P ~1=0, 22— 1=0,..

Réwnanie dwumienne daje sierozwigzacd
algebraicznie.

Jezelin—1jest potega liczby 2, tor6wnanie dwu-
mienne daje sie rozwigzac¢za pomocag samych row-
nan stopnia drugiego. W tym przypadku podzial
okregumozna uskutecznié¢ za pomocalinijkiicyrkla.

Réwnanie z*—1 =0 ma pierwiastki:

LS elgs 1 i V3

Mo TR A T g N TRy

Réwnanie w4 — 1 ==0 ma pierwiastki:

Rownanie 2°— 1 = 0 ma pierwiastki:
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b %(--1—13-4#21'_10': )
%(_1,+|7—¢V1(>+ )Lo)
i(-—1+Vo+z] 1<)+TLF)
2 o %
;.{_1_1/5—@;’ 10-—:V5)

Wartosei pierwiastkéow w przypadku n=17 i n=19 podal
Gauss (Werke I), Wiegcej szczegéléw o tym przedmiocie znalesé
mozna W dziele Bachmanna  Die Lehre von der Kreistheilumrg*
Lipsk 1872; w tym dziele znajdujemy tez konstrukeye geometryczne,
Konstrukeye dla n=17 podali: v.Staudt(Crelte XXIV i Schroter
(tamze LXXYV). Dla n==257 czes¢ analityczna rozwinal Richelot
(Crelle IX), geometryczna E. Pascal (Acc. Napol. 1887). Inne
przypadki patrz; E. Pascal (Giorn. di Batt. XXV), Amaldi
(tamze XXX).

§ 3.
Piarwiastki wielokrotne rownania.

Aby liczba a byla pielxviabtkie1117 —kro-
tnym rownania flu)=0, jest koniecznem 1 do-
stateczem, by ¢ bylo pilerwiastkiem same-
go réwnania oraz r—1 pierwszych jego réw-
nafnh pochodnych (patrz Rozdz. VI).

Warunkiem koniecznym i dostatecznym
na to, aby ré6wnanie nie mialo pierwiastkow
wielokrotnych, jest, abynajwiekszy wspdlny
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dzielnik funkoyi flz) 1 jej pierwszej pochod-
nej byl iloscig stala.

Jezeli podzielimy funkcye fle) przez naj-
wiekszy wspoélny dzielnik funkecyi danej f
ijej pochodnej f, otrzymamy funkcye, kto-
rej pierwiastki sag réwne co do wartosci pier-
wiastkom funkecyi f, lecz sa wszystkie poje-
“dyhczemi.

Oznaczmy przez ), najwiekszy wspdlny dzielnik funkeyi
f1ijej pochodnej s, przez D, -- najwigkszy wspdlny dzielnik
funkcyi D, 1 jej pochodnej 1) ; bedzie:

D, = stalej jest warunkiem koniecznym
i, dostatecznym na to, aby funkeya [ nie
miala pierwiastkdéw tréjkrotnych, it. d.

Jezeli utworzymy ilorazy

jf)—l'='?lv '%:':‘Pa« %2?37'
to rownania

il =0, AP 0,
P2 3

beda mialy odpowiednio jako pierwiastki po-
jedyncze: wszystkie pierwiastki pojedyn-
cze danego, wszystkie pierwiastki podwdj-
ne, wszystkie pierwiastki potrdéjne it.d.

§ 9.
Plerwiastki rzeczywiste / zespolone réwnania.

Pomiegdzy kolejnemi pierwiastkami rze-
czywistemi réwnania f=0 zawiera sie nie-
parzysta liczba pierwiastkéw rédwnania po-
chodnego /= 0. (Twierdzenie Rollego.)
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Pomigdzy dwoma kolejnem:i pierwiast-
kami réwnania f/=0 nie moze sig¢ zawierac
wiecejnadjeden pierwiastek réwnania f=0.

Jezeli wszystkie pierwiastki réwnania
f=0 sy rzeeczywiste, to toz samo zachodzi
1 di e ==,

Jezeli wyrazy rownania sa uporzadkowane wedlug ich sto-
pnia, to méwimy, ze dwa wyrazy nastepujace po sobie dajg
zmianeg lub nastepstwo znakéw, stosownie]do tego,
czy sa znaku tego samego czy przeciwnego.

W kazdem réownaniu flz}=0 liczba pierwia-
stkéwrzeczywistych dodatnich nie przewyz-
sza liczby zmian znakdw funkeyiflz),liczba zas
pierwiastkow ujemnych nie przewyzsza licz-
by zmian znaku funkecyi fl—z). (Twierdzenie D es-
cartes’a.)

Nadmiar liezby zmian znakdéw po mnad
liczbe pierwiastkdw dedatnich réwnania f(z)=0
jest zawsze parzysty.

Jezeli flx)y ma tylko jedne zmiane, to f(x)=0
ma tylko jedenpierwiastek dodatni.

Réwnanie, majgce wszystkie pierwiastkil
rzeczywilste ma tyle pierwiastkéw dodatnich,
ile ma zmian znakow.

Réwnanie posiada przynajmniej 24 pier-
wiastkow zespolonych, jezeli brak w nim 2k
wyrazow kolejnych, lub jezeli brak ich 2k—1
pomigdzy wyrazami jednego znaku.

ILiczba pierwiastkdow rzeczywistych row-
nania f(z)=0, wiekszychod liczby dodatniej a
nie przewyzsza liczby zmian, jaki daje dla
r—a szeregu wielkosci

fi= e a2 . .0 L SR
[ =t =3 A TR f i o e TR o b

o1 = oz + u,
fi==lay



§ 9. — Pierwiastki rzeezywiste i t. d. 113

i wkazdym przypadku rédznica pomiegdzy te-
mi dwiema liczbami jest parzysta. (Twierdzenie
Laguerrsa.)

Liczba pierwiastkow rzeczywistych réw-
nania f(x)=0 pomiedzy, z=ai1x=0 (a<0l) nie
przewyzsza liczby zmian, straconych w sze-
regua f, ', ", f", . . . . (kolejnych pochodnych) w przej-
scinuod x=a dox=10; w kazdym przypadku réz-
nica pomiegdzy temidwiema liczbami jest pa-
rzysta. (Twierdzenie Budana.)

Jezeli podzielimy funkcye / przez jej pierwsza pochodng f’
1 reszte otrzymang, po zmienieniu jej znaku, oznaczymy przez f,;
nastepnie podzielimy f’ przez f; i reszte, po zmienieniu jej znaku,
oznaczymy przez f, it. d.; wtedy szereg

fq fa /'2a ,'&7

nazywa si¢ krotko szeregiem Sturm a.

Liczba pierwiastkow rzeczywistych roéw-
nania f(r)=0 pomiedzy x=aix=0 jest dokla-
dnie rowna liczbie zmian znaku, straconyech
w szeregu Sturma w przejsciu od x=a do x=0.
(Twierdzenie Sturm a).

Jezeli polozymy a=—o0, b=+ oo, bedziemy mieli licz-
be wszystkich pierwiastkéw rzeczywistych.

Jezeli s,, s;, 85, . . . oznaczaja sumy jednakowych poteg
pierwiastkow i potozymy:

to bedziemy mieli twierdzenie:
Liczba par pierwiastkéw urojonych réwe-
nania f(x) =0, pozbawionego pierwiastkéw wie-

Pascal. Rep L 8
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lokrotnyeh, ré6wna sie liczbie zmianznaku
W SZOregl 6, Gy, Gp . « o e

Warunki konieczne i dostateczne rze-
czywistosel wszystkich pierwiastkow row-
nania algebraicznego o spélczynnikach rze-
czywistyeh sa:

obt == Onc gt ot R o e (1)

§ 10.
Pierwiastki wymierne rdéwnania.

Aby liczba calkowita « mogta byé pier-
wiastkiem ré6wnania o spélczynnikach cal-
kowitych, jest koniecznem 1 dostatecznem,
by taliczba byla dzielnikiem ostatniego spo6l-
czynnika a,; dalej aby, jezeli p, jest ilorazem
tego dzielenia, liczba a dzielita spélczynnik
ithns powiekszony o p,, gdzie p, jest ilorazem
poprzedniego dzielenia i t. p.

Kazde réwnanie, w ktérem spélczynnik
przy najwyzszej potedze z nie jest jednosecig,
nie ma pierwiastkéw ulamkowych wymier-
nych.

Jezelirdwnanie ospéltczynnikach wymier-
nych ma tylko jeden pierwiastek k-krotny,
to pierwiastek/'ten nie moze by¢ wymierny.
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§ 11.
Przyblizone wyznaczanie pierwiastkow rzeczywistyah rownania.

Granica wyzsza pierwiastkéw rzeczywistych réw-
nania nazywamy liczbe wiekszg od kazdego z pierwiastkéw.
Analogicznie okreslamy granice nizszas.

Jezeli przy x=a wszystkie funkeye £, /,f". . .
sg dodatniemi, to liczba ta jest granicag wyzsza
pierwiastkéw ré6wnania f=0 (Newton).

Celem wyznaczenia granicy wyzsze] wyznaczamy liczbe
catlkowity, bezposrednio wyzsza ® od pierwilastka réwnania
=1 =0; te wartos¢ podstawiamy w funkcyi f—2 i, jezeli re-
zultat jest ujemny, dodajemy do niego tyle jednosci, aby otrzy-
ma¢ liczbe dodatnia. Dalej tak postepujac, dochodzimy do liczby
calkowite], przy ktdrej wszystkie pochodne sg dodatnie,

Inne granice wyzsze otrzymujemy za pomoca twierdzeh na-
stepujacych:

Jezeli a jest wartosé bezwzgledna spédl-
czynnika njemnego, majgcegonajwieksza war-
tos¢ liczebna, wtedy granica wyzsza wyraza
sie tak:

w,
: Uy

L=1 - (Maclaurin).

Jezeli a, jest pierwszy spdélczynik unjem-
ny, to granica wyzsza jest:

L=14 l iyt ik (l.agrange)

Jezeli a, jest najwiekszy z pomiedzy spé6l-
czynnikéw, poprzedzajacych pierwszy spél-
czynnik ujemny, to granica wyzsza jest:

“y

L=1—{—I/—|~n (Tillot).
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\
Przy pomocy twierdzenia Sturma mozna rozdzielié

pierwiastki, t.j. znales¢ przedzialy, wewnatrz ktérych za-

wiera sie jeden tylko pierwiastek rzeczywmty‘rownanla
Niechaj a 1 b beds dwa krance, pomiedzy ktdremi zawiera

si¢ jeden pierwiastek rzeczywisty rownania; niechaj a

bedzie wartoscia, przy ktorej f(a) i f"(«) sa jeduego znaku.
Jezeli utworzymy kolejno ilosci:

R
T Y
RO 1.

f(@s)

Ao % (o e
n

‘to liczby @nys beda szybko, dgzyly do warto-
$ei pierwiastka funkeyi /, zawartego pomie-
dzy a i b (Twierdzenie Newtona).

Jezeli utworzymy kolejuno ilosci

In 11) T e ]n)
by = = ;:Z,)—?uﬁ‘ (=10, by =1),

to liczby by beda rédwniez dazyly do war-
tosci pierwiastka, zawartego pomiedzy aib.
Jezeli sig¢ zatrzymamy na danym skazniku »,
to blad popelniony bgdzie mniejszy od a,—b..

Co do metod przyblizonego obliczania, opartych na rozwaZaniach
geometrycznych, patrz Catalan, Mélanges math. [, str. 79. Metoda
Lagrange’a (Mem. Berl. 1769, Oeuvres, II. III) daje rozwinigcie
pierwiastka na ulamek ciggly, Istnieja metody Eulera (Calcul. diff. II,
1755.§234) Wronskiego 1827, 1847 (patrz S. Dickstein, ,Ome-
todzie teleologicznej rozwiazywania rownan“, Rozprawy Akad. Krak.
XVIII, X1X), W. Krauze, (Prace mat-fiz. III). Cauchy'ego
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(Oeuvres, IV, p. 41—99), Jacobi’ego (Crelle VI, str, 257), Heisa
(Sammlung v. Beisp. und Aufgaben aus. der allgem, Arithmetik und
Algebra, Kolonia 1882, § 102),

§ 12,
Teorya Galoisa

Zalézmy, ze istnieje zwiazek pomiedzy pierwiastkami row-
nania &, &y, . . . &s, lub inaczej, ze mozna utworzy¢ funkcye
wymierng calkowita pierwiastkow, ktérej wartosé jest zerem lub
iloscig znana. W takim przypadku réwnanie nazywa sie sp e--
cyalnem; grupa zas, nalezaca do funkeyi pierwiastkéw, na-
zywa sie grupg réwnania (patrz wyzej Rozdzial I).

Grupa réwnania ogélnego jest grupag symetryczn q.

Roéwnanie nazywa sie nieprzywiedlnem, jezeli nie
posiada czynnikdw, ktorych spdlezynniki wyrazajs si¢ wymier-
nie przez spélezynniki samego réwnania.

Grupa ré6wnania nieprzywiedlnego jest
przechodnia, i odwrotnie.

Rzad grupyréwnanianieprzywisdlnego
stopnia n, ktérego pierwiastki sg funkcyami
wymiernemi jednego znich, réwna sie n, i od-
wrotnie.

Utworzmy funkeye

C=ap oy Fa Xy L L

o n spolezynnikach nieoznaczonych a,, ag, . . . a,, W ktorej
Zyy Ty. . . . Xy Sg plerwiastkami rownania. Jezeli zastosujemy
do tej funkcyi wszystkie # podstawien grupy, otrzymamy 7
wartosci

Gy B e S

réwnanie F(O) = (¢ —&) ¢ —2&) . . . €—¢)=0
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nazywa sie rownaniem rozwigzujacem Galois’a
dla réwnania danego.

Wszelkie pierwiastki réwnania F=0 sy
funkcyami wymiernemi jednego z nich; zg
ich pomocag mozna wyrazié wszystkie pier-
wiastki réwnania danego f(z)=0.

W ogélnoscirozwigzujgcem nazywamy kazde réwna-
nia, za pomocs pierwiastkow ktérego wy1az1c mozna pierwiastki
danego.

Réwnanie ogélne stopnia n (n_>>4) mozna
rozwigzaé¢ przez rozwigzanie rownania roz-
w1a4zu.]agcego stopnla wyzszego niz 2 lecz nie
istniejerdwnanie rozwigzujace stopnia niz-
szegood ni1iwiekszego od 2.Jeze11n;|est r 6 z-
neod6, to nie ma réwnanla rozwiagzujacego
stopnia n,ré6znegood réwnania danego f(a)=0.
Jezell =06 istnieje r6wnanie rozwigzujace
stopnia 6.go. Réwnanie stopnia 5-go posiada
rozwigzujgce stopnia 6-go; réwnamnia stopnia

dz,\<1 1-na1j@ I.'OZWiale.l_]'%CB stopni niilszych.

Niechaj G bedzie gruparéwnania; utworz-
my szeregi sktadajgce G, t. j. zbudujmy szereg pod-
EAVE T R A zktéryohkazdanastqpujayca]'estpod-
grupa charaktery%tyczn@ najwiekszg poprze-
dzajacej; jezeli rzedami tych podgrup sa r,
” r 3 . . . .
—_, yo - u % to rozwiazahie T o wnrainaeasas=—(
ot T 75
zaleze¢ bedzie od réownan, ktérych grupy sa

ojedynczemiiodpowiedniorzedow 2y, %, ...

Réwnanie ogdélne stopnia n>>4 nie daje
sig rozwigzac¢ algebraicznie. (Twierdzenie Ruf-
finiego i Abela).

Historye tego twierdzenia czytamy wpracy Burkhard ta (Zeitsch.
f. Math. und Physik XXXVII, 1892 lub Annali di matem. 1894, prze-
klad Pascala).
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Warunkiem koniecznym 1 dostatecznym
na to, aby réwnanie stopnia n >4 dalo sig
rozwigzac¢ za pomocsg pierwiastnikéw (algebra-
icznie) jest, by czynniki skladu grupy byly
wszystkie liczbami pierwszemi.

Réwnaniami abelowemi nazywamy takie réwnania
nieprzywiedlne, ktérych kazdy pierwiastek daje sie wyrazi¢ wy-
miernie za pomocs innego, a symbole tych funkcyj wy-
miernych sg przemiennemi, t. j. jezeli

;= R(x;) , z,= BE;(x),
B: (l(x)) = By (Li(x)).

Réwnania takie dajg sie
braicznie.

to bedzie:

rozwiazaé¢ alge-

‘l’"

Réwnania typu ;;r

=0, (t. j. réwnania po-

1
S
dzialu kola) sa ré6wnaniami abelowemi

Podstawienia grupy réwnania abelowe-
£0 sg Wzajem przemiennemi

Rozwigzanierdwnania abelowego nieprzy-
wiedlnego stopnia n=p? ..., gdzie p, 9 ... sa
liczby pierwsze, sprowadza si¢ dorozwiaza-
nia rownan abelowych stopni p2,¢% ... ..

Rozwigzanie rédwnania abelowego mnie-
przywiedlnego stopnia p*, gdzie p jest licz-
ba pierwszg, sprowadza sie do rozwigzania
rownan abelowych, ktédrych grupy zawieraja
tylko podstawienia rzedu p (nie liczac pod-
stawienia 1).

Rozwigzanie ré6wnania abelowego nieprzy-
wiedlnego stopnia p* ktérego grupa zawiera
tylko podstawienia rzedup, sprowadza sie do
rozwigzania a réwnan abelowych nieprzy-
wiedlnych rzedu p.

Wieksze szczegoly o niniejszej teoryi znalesé mozna w Roz-
dziale II i w traktatach Jordana i Netto.
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B F

Nieskoriczonostki i nieskoriczonosci.

Zmienna, ktorej granica jest zero, nazywa sie nieskon -
czonostka lub iloscignieskonczeniemals;zmien-
na, ktérej granics — nieskonczonosé— nazywa sie nieskon-
czonoscig lub iloscig nieskonczenie wielka.

Niechaj a i 8 beda dwiema nieskonczonostkami;

R a pard i ) 3 o

jezeli lim S 0, méwimy, ze a jest rzedu wyzszego niz p;

g a e ; : o X!

ezell lim — - — oo, mowimy, ze a jest rzedu nizszego niz f3;

J ) Y, " )

fou el Sy . a X ARES o o

ezell lim — =— A (skonhczone), méwimy, ze a 1 sa tego
ﬁ bl b

samego rzedu.

Dla nieskonczonosci utrzymuje sig przypadek trzeci, a dwa
plerwsze przypadki zmieniaja sig jeden na drugi.
% jest iloscia
skoniczong, wtedy méwimy, ze a jest rzedu n-tego wzgledem g;
n moze by¢ liczbg dodatnig jakakolwiek, catkowita lub niecal-
kowita.

Jezeli a jest rzedu wyzszego niz §, zas lim
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Jezeli a jest nieskonczonostka lub nie-
skonczonoscia, to pozostanie nig, nie zmienia-
jaec swego rzedu 1 po pomnozeniu lub po-
dzieleniu przez jakakolwiek iloséskonczona
rézng od zera.

Suma algebraiczna skonczonej liczby nie-
skonczonostek jest nieskonczonostka, ktorej
rzad jest rowny rzedowil nieskonczonostki
rzedu najnizszego,

Jezeli nieskonczonostka ajest sumyg alge-
braiczng skonczonej liczby nieskonczono-
nostek, t. j. jezeli

a=a +a + « . . . . -+ au,

gdzie @y niechaj bedzierzedunajnizszego, to
mozna zawsze znalesc takie otoczenie warto-
$ci granicznych tych zmiennych, od ktérych
zalezg te nieskofnczonostki, ze dla kazdego pun-
ktutegootoczenia znak iloscia bedzie taki
sam, jak znak ilosci a,.

Granica stosunku dwéech nieskonczono-
stek nie zmienia sie, jezeli dodamy do nich
nieskonczonostki rzedéw odpowiednio wy z-
siznyichy.

Analogiczne twierdzenia istnieja dla nieskonczonosci, po-
trzeba tylko wyraz: nizszy =zastapic wyrazem wyzszy.
Wyraz najwyzZszy — wyrazem najnizszy.

Jezelirdznica dwdch nieskonczonosci da-
zy do granicy skonczonej, to obiesa tego sa-
megorzeduigranica ich stosunku jest jednosé.

Moéwimy, ze szereg unieskonczony nieskonczonostek
Qy, Og, a:i ) o . . A 3 . . .

dazg jednostajnie do zera, jezeli dawszy sobie ¢ dowol-
nie male, mozemy znales¢ takie otoczenie wartoscl zmiennych,
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od ktérych te nieskonczonostki zalezy, ze dla wszystkich pun-
ktéw otoczenia wszystkie ilosci a sa mniejsze od a.
Jezeli mamy dwa nieskonczone szeregi nieskonczonostek:

(PTT C0 SG ores THHE o e (01705 o B¢ AN

gdzie kazde §; jest rzedu wyzszego niz a;, méwimy, ze ilosci f8
sg jednostajnie rzedu wyzszego niz ilosci aq
jezeli stosunki '

<D byy B

) Tkl N ol
a, a, An

zdagzajg jednostajnie do zera.
Jezeli suma nieskonczonostek

0 Fl=a@hgr e e A i o e

dazy do granicy skonczonej 1 jezeli nieskon-
czonostki .

B3 Pl L £ e 3

sg jednostajnie rzedu wyzszego niz ilosci a,
wtedy suma ilosci fdazy do zera i beduzie:

lim S‘ = lim Z (a; + ﬁ‘-),
1 1

t. j.suma ilosei-a nie zumienia ste, jezeli do kaz-
dej nieskonczonostki a; dodamy nieskonczo-
czonostkirzeduwyzszego f.
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§ 2.

Teorya pochodnych funkcyj rzeczywistych jednej lub wielu
zmiennych rzeczywistych.

Jezeli y jest funkcya zmiennej z 1 jezell tej zmiennej
nadamy przyrost dowolny Az, wtedy y dozna w ogole

przyrostu, ktéry oznaczmy przez Ay. Granica stosunkn
e zalozeniu Ze istnleje, ze jest skonczona i niezalezna od
T

znaku przyrostu Ax, nazywa sie¢ pochodng funkecyi w pun-
kcie . Jezeli ta granica istnieje tylko dla Ax dodatniego,
nie istnieje zas dla Ax ujemnego lub odwrotnie, albo tez istnie-
jac w obu przypadkach, nie ma w nich tej samej wartosci. wtedy
mamy odpowiednio pochodna po prawej stronie
i pochodna polewejstronie punlktu ».

Warunki konieczne istnienia pochodnej
sa: 1) funkecya powinna byé ciggla wpunkcie;
2) funkecya powinna by¢ skonczona wotocze-
niu punktuiwsamym punkcie.

Jezeli przyrost Ay zmienia nieskonczenie
wielerazy znak w jakiemkolwiek otoczeniu
punktu, wtedy pochodna wtym punkciealbo
nie istnieje albo jest zerem.

Przykladem jest funkeya f(x) = « sin —)l 1f(0) = 0; fun-

keya ta w punkcie x =0 nie ma pochodnej; funkcya zas
e , . :

Piiltp) == 221510 2 f(0) =0, w punkcie =0 ma pochodna réw-
ng zeru.

Co do funkeyj o nic majacych pochodnej patrz dzielo E. Pas-
cala  Note critiche di calcolo etc.“ Medyolan 1895, od str. 85 —128,

Dla funkcyi nadajgcejsig do przedsta-

wienia geometrycznego, pochodna wpunkcie
przedstawia styczng trygometryczna kata,
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jaki styczna geometrycznado krzywej two-
IR 7 57 A @ DLy L
Jezelidla x=oc0 istnieje granica stosunku

YN, el :
AZ: 1jest stalg dla wszelkiej wartosci Az, to

wtedy rownasig ona wartosci

lim [®)

&Z= 00 Zz

(Twierdzenie Cauchy’ego).

Co do tego przedmiotu patrz;: Dubois-Reymond, Ann. di
mat. [V, Math. An. XVI; Stolz Math, Ann. XV; Rouquet, Nouv,
Ann. XVI, str. 67; E. Pascal, Notr. critiche, etec.

Jezeli pochodna funkcyi ma granice dla
r=a, to funkcya jest ciggta dla x=a.

Pochodna iloscistalej jest zerem,

Pochodna sumy algebraicznej tunkeyj ré-
wna sig sumie algebraicznej pochodnych fun-
keyj.

Pochodna iloczynu pewnej liczby czyn-
nikéw jest rowna sumieiloczynéow pochodnej
kazdego czynnika przez wszystkie czynniki
pozostale.

Pochodnailorazudwu funkcyj réwna sie
utamkowi, majacemu za licznik réZnice pomig-
dzy iloczynem pochodnejlicznika przez mia-
nownik a iloczynem pochodnej mianownika
przez licznik, a za mianownik kwadrat mia-
nownika danego utamka.

Jezeli y jest funkcya zmiennej 2z, ta zas
jest funkcys zmiennej z, to pochodna funkeyi
ywzgledem 2 réwna sig iloczynowi pochodnej
funkcyi y wzgledem 2z, pomnozonej przez po-
chodng funkecyiz wzgledem «.

Pochodna funkecyi odwrotnej réwna sie
odwrotnej arytmetycznej pochodnej funkeyi
prostej.
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Jezeli szereg' pochodnych wyrazdéw sze-
regu funkcyi jest szeregiem ré6wnozbieznym,.
wtedy wartos¢ jego jest pochodng szeregn
danego.

Pochodng szeregu potegowego otrzy-
mujemy tworzgc szereg pochodnych wyrazodw
szeregu danego.

Pochodna funkeyi y wzgledem x oznaczamy symbolen

—*—. Zasadniczemi wWzorami rézniczkowemi sa nastepujace:

Y
Y =
- SIREy, 1
-l e N
B T, ok i Ml e
y=sing, —p-=cosz y=0cosx,— - =—sngz,
i IR | dy
y=tge s g Y == sec x, W_tga sec x,
LH v et ¥ty dy b
y—cotguc,—(l?}———m,y__ cosec .T,-Jw—._cotg.z_uosecx,
L
y A e
= —(l—‘—l/-—rt”log,a
' ode :
dy 1
N o
1
a=llop ..z, dz =—x—1ogue,
R 1 : .
e T T ’ y zawarte pomie-
: . T
il dzy 0 1 —.
y=arccosa',iz!/_—=-—l/1?:2 % e
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% 2 dy 1
Ve anchg a o y zawarte pomie-
' T
18 . 4l.¢/ - Rt dZy 01 Ty
Y == arct cotg x, 7 iRt s
y = arc sec & gl ! i
Yy = arc sec x, dr = JVpr —1 17 zawarte pomje-
. T
/ =arc. cosec x, dy =— i—— S 2
dic xVa?—1
‘ dy .
=T (log z + 1).

Pochodna wyznacznika, ktérego elementy
sg funkcyamizmiennej z, réwna sig sumie wy-
znacznikoéw tegoz samego rzedu, ktére two-
rzymy, podstawiajac, zamiast elementéw da-
negoszeregu pochodnetychelementow.

Niechaj bedzie funkeya f(xy, x, . . . . . ) pewnej liczby
zmiennych; zamiast x,, x,, . . . podstawmy pewien uklad war-
tosel uy, @, . .. ; pochodna funkeyi f wzgledem x, nazywa sie
pochodna czgstkowa pierwszego rzedu lub
pochodna czgstkowa pierwszg. Analogicznie okre-
slamy pochodne czgstkowe wzgledem innych zmiennych. Po-
chodne czastkowe oznaczamy za pomocg notacyi (Jacobi’ego):

DS
SR g din, b

Funkcya n zmiennych ma » pochodnych
czagstkowych l-gorzedu.

Powtarzajac na pochodnych rzedu 1-go dzialanie tworze-
nia pochodnych, otrzymujemy pochodne rzedu 2 go, 3-go i t. d.,
lub pochodne drugie, trzecie i t. d. Te pochodne wyrazaja sie
symbolami:
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2 3
% . —?Eya— ..... , gdy y jest funkcya samego x,
%y 0%y 23y ! .
S5 o outon A gd‘y- y jest funkcysa wielu
zmiennych.
. ! ' 2
Jezeli dwie pochodne rzedu 1-go aaL N ! fun-
g it 9

keyi dwu zmiennych sa skonczone w calem
otoczeniu punktuospélrzednych a, a, 1 gdy
el 3y
jedna zdwu pochodnych drugich -lea,rg e P
jest ciggla wtym punkcie i istnieje wecalem
otoczeniu punktu, wtedy te dwie drugie po-
chodne sgré6wne; porzgdek tworzenia pocho-
drnychlubrézniczkowania jest, jak sige mowi,
dowolny. (Twierdzenie o zmianie porzgdku brania pocho-
dnych.)

Podajemy kilka najwazniejszych wzoréw, odnoszacych sie
do pochodnych rzedu wyzszego.

dn

oy cr=ap(n—1) . . . . . (m—n-}1)zn*,
" sin 2z = sin (—"—ﬂ w),
dam 2
d» [ na \
_&:Z— COS 7 =—— COo8 \'——2*- —r— x} o
n—1 1
,fi,. : {(1—12) } S ledit 1.3 5. .-, joamei S a:zcc"s %,

(Jacobi, Crelle, XV, str. 3, Hermite, Math. Ann. X).

tu @,
Tt(_ (€% sin &) = ks ( r -+ lz—ﬂ—)
3 sin"—
(ex cos ) = L cos (-Z —+ il :
da 4]
sin"—— 1

W tym przedmiocie patrz E. Pascal,Note critiche di caleolo® (str. 148),
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Jezeli y jest funkcya zlozona. t.j. gdy y jest funkeys
zmiennych «,, x,, . . ., ktore sa funkcyami zmiennej &, wtedy
pochodna funkcyi y wzgledem a wyraza sieg
wzorem: '

e dy Oy doy =¥ day

Ty Az T Ow, A T

Jezeliy jest funkcyg uwiklang zmiennej
"x,dang przezréwnanie f(z,y) = 0; wtedy po-
chodna funkeyi y wzgledem x wyraza sig
wzorem: :

df
dy vl A
de Tf &

oy

Jezeliy jest funkcyguwiklang dwu zmien-
nych @ ,x,, dang przez réownanie f[fly, x,x,)=0,
wtedy pochodne czastkowe funkcyl y wyra-
Zajg sie wzorami:

of o
iy OEh. -3 Yo ox,
PRGN T B Ry e

3__1/- oy

Pochodne czgstkowe funkeyi jednorod-
nejsg funkcyamijednorodnemi, ktdrych sto-
pieft jednorodnosci jest ol zmniejszony.

Suma iloczynéw pochodnychczastkowych
funkeyijednorodnej przez same zmienne réw-
na sie funkcyl, pomnozonej przez stopien je-
dnorodnosci (Twierdzenie Eulera).

%wl'i";?’:‘-"z o
gdzier jest stopniem jednorodnosci. Ta wla-
sno§é¢ przedstawia warunek konieczny i do-
stateczny, aby funkcya byla jednorodna
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Teerya rozniczek funkcyi jednej i wielu zmiennych.

Nazywamy rézniczka zmiennej niezaleznej z przyrost
jakikolwiek nadany tej zmiennej; oznaczamy te rézniczke przezdz.

Nazywamy rézniczksg funkcyiy zmiennej x
iloczyn pochodnej funkeyi y przez rézniczke zmiennej niezalez-
nej. Oznaczamy jg przez dy; jest tedy :

ep=— " () sd 2%

Rézniczka funkcyi rédzni sie o nieskon-
czonostki rzedu wyzszego od przyrostu, ja-
kiego doznaje funkecya, jeseli zmiennej nie-
zaleznejnadajemy przyrost dx.

Jezeli przyjmiemy, ze rézniczka pierw-
sza zmiennej niezaleznej jest stala dla kaz-
dej wartoscia, torozniczka nta funkcyi réwna
sigiloczynowi pochodej n-tej przez m-ta pote-
gerdzniczki zmiennejniezaleznej.

Nazywamy roézniczka zupelna funkeyi wielu zmien-
nych sume iloczyndéw jej pochodnych czastkowych przez roz-
niczki zmiennych niezaleznych:

. a/ 2
df == # dx, :;% dxy -

Jezeli pochodne czagstkowe rzedu 1-go fun-
keyisg ciggle tordzniczka zupelnardznisie
od przyrostu funkcyi onieskonczonostki rze-
déw wyzszych, (Twierdzenie o rézniczce zupelnej).

Mozna uwaza¢ za stale rézniczki zmiennych, od ktérych
zalezy wprost funkcya f (ma to miejsce, gdy zmienne te sg nie-
zalezne, lub tez gdy sg funkecyami liniowemi jednej lub wielu
zmiennych niezaleznych); wtedy rézniczka n-ta funk-
cylwyraza sig wzorem:

Pagcal. Rep. 1. 9
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dof = ((BT/ dar; L j} Rl )(

1 2

gdzie symbol postroniedrugiej wyobraza po-
tege symboliczna, coznaczy, Zze po rozwinie-
cinzwyklym sposobem tej poteginalezy wy-
kladniki poteguwazaé¢ za skazniki rzegdu po-
hodnych L 2
chodnyech S A

W innych przypadkach rézniczka rzedu wyzszego funkeyi
[ tworzy sie wedlug tego samego prawa, wedlug ktérego two-
rzymy rozniczke pierwsza, t. j. uwazajac dx,, dx,, . . . . za
funkeye okreslone wszystkich zmiennych.

§ 4

Teorya funkcyj roZniczkowalnych w cafym obszarze. Twierdzenia
Rollego o wartosci srednief i wnioski z niego.

Jezeli funkecya zmiennej « jest skonczonag
irézniczkowalnyg wealkowitym obszarze od
adodimatesama wartos¢ wpunktach kran-
cowych, wtedy w przedziale istnieje przynaj-
mniej jeden punkt, w ktérym pochodna funk-
cyl jest zerem (Twierdzenie Rollego).

Jezeli funkecya fjest stale skonczona 1 réz-
niczkowalna we wszystkich punktach prze-
dzialu od ¢« do /, a na krancach jego ma war-
tos¢ zero, to dawszy sobie jakakolwiek war-
tose¢ k, znajdziemy zawsze punkt wewnatrz
przedzialu, w ktérym

———~fl () = [
() A

(Twierdzenie Waringa.)
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Przy tychsamych zalozeniach o funkecyi
f(x) w célym przedziale od @, do o, + % zacho-
dzi wzor:

firy 4 h) == flae) = hf'(x, + Oh)
0=6< 1. (Twierdz. o wartosci sredniej).

Jezeli funkeya w calym przedziale ma
wartosé zero, to jest iloscig stala.

Jezeli funkcya w calym przedziale ma
pochodna stala, to jéest funkcyg liniowa zmien-
e Jx 7

Jezeli funkcye ¢(x), w(x), y(x) sa skonhczone
1 maja pochodne w calym przedziale (a, 0),
wtedy istnieje przynajmniej jeden punkt o«
w ktorym

?I(xl)’ 1/’/(1./' x,(w,) )
¢ (a), y(a), z(a) | =0,
@ (). y(h). 7 (D) '
Jezelil f(ay, 25. %, ... ) jest funkecya skon-

czonag 1 majgca pochodna w calym przedzia-
lei jezeli

(ay, ay -. . . ), (a1+]‘x’”z‘+7"2’ REE TN

sg spOlrzednemi dwu punktéw, zawartych w ob-
szarze i takich, ze prosta jg laczaca znaj-
duje sie cala w obszarze (w ogdle 1 analitycznie),
tak, ze polozywszy

=zl cv,=a, +xh, v3=0,+xh, ...

otrzymamy punkty, odpowiadajace wartosciom
O<w<4 wszystkie zawarte w obszarze, to
bedzie:
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fla, + Ry ag5+ng, .. .)— flag, a5, ...)
i 3/ af
A hl az-+ h’ 3.752 + 3 2 )x.:a,-{-eh,
Za=a,+ Bl
PO e TR R SO
Jezeli funkeya f(x,, % ...), czyniaca za-

dos¢ warunkom twierdzenia poprzedzajacego,
ma w' calym obszarze pochodng rdwna zeru,
to funkcya ta jest w calym obszarze iloscia
stala.

§ b.
Teorya wzoru Taylora-Maclaurina. Rozwijalnosé funkcy) na szeregi.
Jezeli funkecya f(x) jest skonczong i roz-
niczkowalna wraz ze swemi n—1 pierwszemi

pochodnemi w przedziale od z, do x4+ &, wte-
dy ma miejsce wzor:

(@ -+ 1) = [(x) + ], f'@) + = " (@)

hir=3 I (1—0)—»
(n—1) (p = 2 S R TR
(n—1)! f () + P (n—1)!

fo (z,4010),

S

|
gdzie p jest dowolng liczbag calkowityg doda-
tnig, 06 1.

Jeseli p=mn lub p =1, to ostatni wyraz przyjmuje po-
staci specyalne:

Ry = - (00 (z, + 04, (Lagrange),

G (R ORI LS
T =1yt b e R o b
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Wzor powyzszy nazywa sie wzorem Taylora, a ostatni
wyraz jego nazywa sie reszta lub wyrazem dopelnia-
jacym. Kladac x, =0, h =, otrzymamy wzér Maclaurina.

Jezelif(z)i Fix) sg dwie funkcye skonczo-
ne 1 rézniczkowalne w catym przedziale (z,,
Z,+ M 1 jezeli pochodna funkcyi # nie staje
sie nigdy zerem w tym przedziale, wtedy:

(@40 — f@) _ f'x,-+6h
F(zy+h)y — Fag)  F'(x,+6h) °

Jezelli funkecya f(a‘,,;r,,,z,,....) wielu zmien-
nych jest skonczona 1 rézniczkowalna wraz
ze wszystkiemi swemi pochodnemi az do po-
chodnej rzedu n—1 wlacznie w calym uwaza-
nym obszarze, 1 jezoli (ap, (ty...), (@l ,a5+h,,...)
sa takie dwa punkty obszaru, Ze punkty po-
$rednie prostej/je taczacej (t. j. wszystkie punkty
o spolrzednych a; +0hy, a,4+6M0,, . . ., chle 0<6L1) nale-

za do obszaru, wtedy ma miejsce wzor:

fla, +h, a,+hy, ... )) T T e
d
+( S gt ),
f Sf E
- 2' ((a“ hy + hy 4 .« )
1 af af (n—1)
+(7—j-)—! ( Ttl 1 + ]l.. —‘l"‘ o) )) + 1{,4 ’
. of 8[ : ;
gdzie symole—aTl e o oznacza]g, ze pochodne sa
obliczone dla punktu (a,, @y, . . . ), a nawiasy symboliczne

(-

(2)
e, -hy + Wf Iy + . )\ wyrazaja, Ze po rozwinieciu po-
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tegl n-tej wielomianu nalezy zamlast poteg i-tych lub iloczynow

of &f

pochodnych Fur "a2

rzedu i-tego funkeyi f, gdzie wreszeie R, ma jedne z dwu naste-
pujacych postaci:

Zy = ny - Ohy

: podstaww odpowiednie pochodne

(n)

A= (o ).,)
R" i (n_l)! ((W.]- h‘ : a-'l:z h‘-) A .> z, = a,+ Oh,

Zy = wy+ Oh,

Wzér powyzszy nazywa si¢ wzorem Taylora dla
funkecyi wielu zmiennych.

Jezeli wskazane wyzej warunki dla wzoru Taylora za-
chodzg dla kazdej wartosci n i jezeli granica reszty f7, jest ze-
rem dla n=oc0, wtedy f(x, + ") 1 f(a, I, a,+hy...) roz-
wina¢ mozna na szereg weddug rosnacych poteg ilosci i w przy-
padku pierwszym, ilosci A, &, ... w przypadku drugim,
1 otrzymujemy wtedy tak nazwany szereg Taylora.

Aby funkcya dalta sie rozwinaé¢ na sze-
reg Taylora, jest koniecznem, by ona sama
1 jej pochodne jakiegokolwiek rzedu skon-
czonego byly zawsze skonczone w kazdym
punkcie przedzialu, t. . we wszystkich pun-
ktach =, +60h lub (a,+4 0/, a,+46h,, ...) gdzie,
jak zwykle, 0<6< 1.

Jezeli f®(xy 4 th) lub ]‘(")(a,, G0l ag+-00,, . . ») dla
jakiegokolwiek 6, czynigcego zadosé¢ warun-
kowi 0LO L1 i jakiegokolwiek n, pozostaje
co do wartosci mniejsze od liczby skonczo-
nej, 't J, jezeli f™ ‘mie .dgzy do co Wraz 2z i
wtedy funkcya daje sie rozwina¢ na szereg
Taylora.
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Warunkiem koniecznym i dostatecznym
1oawijalnoéci na szereg Taylora funkcyl]e—
dnej zmiennej jest, by reszta

= i"(_l_i_?;';] ™ (xy 4 0h) ~ - =

K. (n

dagzyla rownomiernie do zera, gdy = rosnie
do nieskonczonosci (Prlnoshelm)

Patrz co do tego Pringsheim (Math. Ann. XILIV), oraz E.
Pascal, Note critiche, str. 176—214.

Jezeli funkcya jednej zmienne]j daJe sig
rozwingé na szereg wedlug poteg rosnacych
calkowitych zmiennej, to szereg ten moze
bye¢ tylko szeregiem Taylora.

Szereg dwumianowy (binomialny)

Q42 = y+ (), x + (m)yz, + .

ma znaczenie dla w  dowolnego 1 (x) <1,
A . ., m dodatniego 1 z = — 1,

< o . m1 - 10—l

Szereg geometryczny

-

T 14+x+422+ ... .. , ma znaczenie dla o <7 |.
Jest to przypadek szczegdlny poprzedniego.

Szeregi wykladnicze:

xz s o
et Ty

xz log a z? (loga)? , z*(loga)?
5 : R Tl 3! o Sk

at = 1 +

majg znaczenie dla kazdego x i kazdego a.
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0

Szeregi goniometryczne!

: 2 xs
SIIEE =10 =" e = —— —e L L : £
3! 5! I maja znaczenie dla
a? A wszystkich wartosci .
cosx —=1— ‘2—! + —4—!- T N goh PR

2 o 24
log (L +0) = & — 2+ o — F 4.
(dla — 1 <z < + 1)
ogz = (x—1) — i‘ (r—1)2 + —& (x—1)*
(UR i )

Szereg cyklometryczny:

76

€ a3 g :
arctgw-_—__l-._?_*_,{;_,_
(—1=x 41

Inne szeregi Taylora:

1 9 7 62 1382
= oSl L sy g ey TR T
R e M T i e

00
a2m—1

o N e T
d " (2m—1)!
(— < x < + a),
22m (22’» [ 1)
2m
Bernoulli’ego (patrz Rozdzial X VIII),

gdzie By, = B ; tu liczby B, sa liczbami
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cot, .E____l___.___'_l__x____l_ $3 _2u pd _71_4 rf— _2_ T J—
Bt Y B T G A UB5Eb.
Sdiatl = & 22”‘ 2t 4 2m -1

= (2m)! L

1

(—a< o<+ a)

J.’L" 6126 a;2m

Bt o T L o O & v B (2m)!

gdzie E,, sg liczbami Eulera (patri Rozdziat XVIII).

1 ok e (76q 2923
et i o'+ Eaal -

92 (22m+‘l AR 2
e x o xim+1
2m + 2)! Bonyoa g

(0.0 < ;.

arc sin =z _,1 z* 4 _45;)_ x5 +

(2”,_ 1) m?m-{»l
—Z 2 4 6 .20 2m41 '

(&<L)

. & 92m— i Bgm :
log sin @ = log o — Z % * @m)! aip

1

(~an<a<az)

3xt 8xb 36
e w‘ 4l BT
xer By B, «t
77T—1+_’+ O R T

(Szereg tworzacy liczb Bernoulli'ego B,, B,)

S

¥ &
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xZ 1 Bla? PN
o= et B AR 3 ’
{ P B - v 63 bsgzg:?
log\w -|—Vl+x =X 7—';—'4— 9 I 3 = e ol O
(tzl <<
: 2?2 234 289
cos?r = 1 — 51 0 ol
. (dla kazdego z).
2 Sl 9
cos (m arc sin ) = 1 — g‘!— x? -+ %——) o
w? (=22 (A =4 s
61 o
([z]| <)
e* cos bz =1 + rcos ¢, © 7—?7? R N IRty o

gdzie @ =7 cos @, b =1 sin @.

g 6.
Teorya wzorow nieoznaczonych.

Jezeli stosujac zwykle twierdzenia o granicach 1 szukajac
granicy funkcyi, znajdziemy, ze ona przedstawia sie pod
postaciami:

0 o0

2 Pl g Q-:-0a% ., 00 Ykl o LA oo teo
wtedy mamy zagadnienie o wzorach nieoznaczonych; rozwiazac
tu zagadnienie jest to znales¢ w jakikolwiek sposéb, czy za po-
mocg odpowiedniego sztucznego srodka granice funkcyi danej
(o ile istnieje).
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Rozwigzanie wszystkich powyzszych nieoznaczonosei spro-
wadza sie do wyznaczania pierwszej z nich.

i " ke 0 :
0 rozwigzaniu wzoru nieoznaczonego -—O— mozemy Wwypo-

wiedzie¢ twierdzenia nastgpujace:

Jezeli funkcye ¢(x), py(x) okreslone w pun-
kcieaiwjegootoczenin, sg zerami walw tym
punkcie maja pochodne, i jezeli nadto po-
chodne 9'(#) 1 '(«) nie s3 obie zerami lub obie
nieskonczonosciami, a gdy y’(u)==0, stosunek

-/ . : : .
_’P(’hﬁ nie zmienia znaku wraz ze zmianag
ilosci Iy, wtedy:

@ _ e
z=a P(X) y'(a)

R 1
(plz)-I przyjeciua, ZbAiO._ioo’j?o_ ).

Jezell granice funkcyip 1 ¢ s3 przy z=a
zerami, jezeli istnieje w tym punkcie grani-
ca stosunkn ich pochodnych 1 jezeli w calk-
kowitem otoczeniu punktu a pochodna fun-
keyi v jest r6Zna od zera, wtedy istnieje gra-

; o N : :

nica stosunku ia‘)vl rowna sle granlicy sto-
LA 3

sunku pochodnych.

0 nieoznaczonosci —— mozemy wypowiedzie¢ twierdzenie:

co

Jezeli granice funkcyj o1y dla z=a sg
rowne oo, jezeli istnieje granica stosunku
pochodnych i jezeli wreszcie o'(x) nie tylko
nie jest zerem, lecz ma nadto znak staly w cal-
kowitem otoczeniu punktu a, wtedy istnieje
granica stosunku funkeyj i rowna sig sto-
sunkowi pochodnych.

Oto jest rozwigzanie niektorych nieoznaczonosei :

x —sinx 1

lim ————— - lim ze? = oo
Z=co m—+—cos:1: 2 = o0
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oy . tear —ax a’
by Im —2———— = — |
: x " e A GO Ok ——2 (T 0?
him ——— =)
s=o log (1+4x) A
lim =log a — logh
Tz =
lim 7 ety — ol lim 2 lo —1——0' (p>1)
=0 x—sinzx Bt 4 z=0 g & S
lim 27 = 1 : L LN
o0 =0 =) "

Poréwn, E, Pascal ,Rachunek rozniezkowy“ przeklad polski
str, 163 176, Note critiehe cte. str. 288, Stolz, Grundziige etc. I,
str. 72—88.

S

Funkeye rosngce f malejace. Maxima i minimo funkeyi jednej
lub wielu zmienpych

Funkeya f(x) jednej zmiennej nazywa sie w punkeie
rosnagca, jezeli istnieje zawsze wartosc k taka, ze dla kaz-
dej wartosci /1 << I istniejg réwnoczesnis dwie nieréwrosci:

f@—h) = fx)<0, f@ +h) — fz,>0.

Funkcya nazywa si¢ malejaca, jezeli zachodza réwno-
czesnie dwie nieréwnosci przeciwne :

f(xo—1l) — [(x) >0, f(m+h) — [(2)<<O.

Jezeli w punkcie x pochodne pierwsza,
druga, . . . .,{(n—1)—a sa zerami, pochodna
za$ n-ta zerem nie jest, wtakim razie, jezeli
n jest liczbyg parzysta. funkeya nie jest ani
rosnaca, ani malejgca w tym punkecie; jezeli
za$ n jest liczba nieparzysts, wtedy funkcya
jest rosnacs, gdy pochodna n-ta jest dodatnia
w punkcie x;, malejagca, gdy ta pochodna jest
ujemn a.
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Funkeya jednej zmiennej (lub wielu zmiennyeh o, x, . . .)
ma maximum w punkcie x, (lub w punkcie o spélrzednych
Gy, @y, . . . ), jezeli mozna znalesc takie £ (lub uklad wartosci
ki kg, . . .), zc dla kazdego i <<k (lub dla kazdego ukiadu
Rl <ty .. . ), jest zawsze :

f(a’o_—th) e f (xn) < O
e SRR R A% S A (T IR e

Przeciwnie funkcya ma w tym punkcie minimum, jezeli
spelniaja sie powyzsze nieréwnosci ze znakiem —> zamiast < )

Aby funkecya miala maximum lub mini-
mum w punkecie, trzeba, aby pochodna rzedn
l-go lub wszystkie pochodne czastkowe rze-
du l-go byly w tym punkcie réwne zeru.

Aby funkcyabyla maximum lub minimun
w punkecie, jest koniecznem, by rzad » pierw-
szej zpochodnych, ktérej wartos¢ w tym pun-
kcie jest ré6zna od zera (lubrzad pierwszyel
z pomigdzy pochodnych czastkowych, ktére
nie znikajsy wszystkie w tym punkcie), byl
liczba parzysta.

W przypadkun funkcyi jednej zmiennej,
jezeli n jest rzedem pierwszej z nieznika-
Jacych w tym punkcie pochodnych, otrzymu
jemy maximum, gdy /(x) jest njemne, mi-
nimum zas, gdy f"(x) jest dodatnie.

W przypadku funkeyi wielu zmiennyeh,
jezeli liczba (parzysta) » jost rzedem pochod
nych czastkowych, ktéorenie znikajg wszyst-
kie w uwazanym punkcie, nalezy rozwazac¢
wyrazenie:

((3_/ hy - 8L Il et K il .))W. (patrz § 4)

da,
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Rozwingwszy to wyrazenie, ptrzymamy
forme stopnia n-tego ilosci hy, hy,...; jezeli
forma ta jest znakustalego dla kazdego ukla-
du wartosei/y, hy...1staje sie zerem jedynie
dla h =l = .=0 (forma okreslona) 'wtedy
w tym punkcie mamy istotniemaximum, gdy
forma ta jest staleunjemna, minimum zas, gdy
jest stale dodatnis.

Jezeli forma powyzsza moze sig stawac zerern 1 dla innych
wartosci procz liy == Iy = . == 0 (forma pélokreslona), wtedy po-
trzebnem jest specyalne badanie w celu rozstrzygniecia pytania
o maximum 1 minimum. Jezeli ta forma nie jest stalego znaku
(forma nieokreslona), wtedy w tym punkcie nie istnieje ani maxi-
mnm, ani minimum,

W przypadku specyalnym, w ktérym n=2
i liczba zmiennych jest takze 2, otrzymujemy:

"l 1Y *f 2

L AL 1L
da,2 "1 T 7 QJu,a e Yy}
v 9

9p
f» 7[‘22;
oa,*

aby ta forma byla okresslona, potrzeba, aby
wyrazenie

SiRLiy

2a,? day? da,da,

bylo dodatnie i rézne od zera; bedziemy
mieli wtedy maximum lub.minimum, stoso-

9P

wnic do tego, czy 8/" jest ujemne lub do-
Y Ga?

datnie.

Teorya maxlmoéw 1 minimow tunkeyj wielu zmiennyeh pobudzila

.do wielu waznych badai. Porownaj: Scheeffer, Math. Ann,

XXXV; Dantscher, tamze, XLII, LI; Stolz, Wiener Berichte 1868—
18901891 —1893. Wskazowki co do tego w ksiazce Pascala,
,Note critiche di calcolo* str, 226.




ROZDZIAL VII.

RACHUNEK CALKOWY.

Sl :

Catkowalnosé.

Niechaj frx) bedzie funkcya skoniczong od w=a do x=>0.
Podzielmy przedzial («, b)) na n przedzialéw é,, d;, . . . . . O
1 niechaj f, bedzie wartoscig, ktéra przybiera funkcya f w pew-
nym punkeie przedzialu 6, lub granicg wyzsza albo nizsza war-
tosei funkeyi f w tym przedziale. Utwoérzmy sume

"
< /-8,
r=1
1 zmniejszajmy nieograniczenie wielkos¢ przedzialéw czastko-
wych, zwiekszajac nieograniczenie ich liczbe.

Jezeli dla n = co powyzsza suma ma granice 1 zawsze te
samg, niezaleznie od prawa, wediug ktérego przedzialy daza do
zera,orazniezaleznie od prawa,wediug ktérego wybieramy wartosé
fr w przedziale ¢,, méwimy wtedy, ze funkcya f jest calko -
wialna w przedziale a, ), i ze wartoscig tej granicy jest
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calka okreslona funkcyi od a do b. Taka calke
wyrazamy symbolem
{)
I [y el

Wartosciaibnazywaja sie granicami wyzsza inizszg calki.

Okreslenie to wymaga zmiany w dwu przypadkach:

-0, kiedy funkcya staje si¢ nieskonczons w jednym Ilub

wielu punktach przedzialu;

2-0, kiedy jedna z granic calkowania jest nieskonczons.

Jezeli tunkcya f(x) staje sig nieskonczong dla z —e¢,
(6 < ¢ < b); wtedy calks okreslong funkcyi f(2) od @ do b na-
Zywamy wyrazenie

c—& b
I ,' f(x) dr 4 lim i TR
C o =0,
a c+ &

w zalozeniu oczywiscie, ze granice tu zachodzace istnieja 1 sa
zawsze te same,bez wzgledu na sposdéb, w jaki ilosa &, ¢” zdazaja
do zera, niezaleznie jedna od drugiej.

Taka calka okreslona nazywa sie niewltasciwa.

Jezeli zdarzy sie, ze granica sumy powyzszych dwdch
catek istnieje tylko wtedy, gdy ilosci &, ¢” sa zwiazane pewnem
prawem, wtedy otrzymujemy calki niewlasciwe oso-
bliwe (Cauchy).

Jezeli jedna lub obie granice sg nieskonczone, wtedy calks
okreslong niewlasciwa funkcyi f(2) bedzie:

gt —f—
z'— + oo "z’

Wi !'f(x) dr lub lim { I fiz) de + , f(x) das}
o/ oo 1./ .

w zalozeniu oczywiscie, ze te granice istnieja, niezaleznie od
sposobu, w jaki ', 2" daza do oo.

Jezeli w tym drugim przypadku granica .stnieje tylko wte-
dy, jezeli &' 1 z” sa zwigzane pewnym warunkiem, otrzymujemy
calke niewlasciws, .osobliwa.
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Catka niewlasciwa nazywa si¢ bezwzglednie zbie-
zZna, gdy granica, o ktdérej mowa w okresleniu, istnieje 1 wte-
dy, jezeli funkeye f(x) zastapimy wszedzie jej wartoscig bez-
wzgledna; nazywa si¢ zwyczajnie zbiezna, jezeli ta
wlasnos¢ miejsca nie ma.

Warunkiem koniecznym i dostatecznym
na to, aby funkcya skonczona bylta catkowal-
na w calym przedziale jest, by granica

lim V 7
n—oor:ﬂ
gdzie D, przedstawia oscylacye funkecyi w prze-
dziale é,, byla zerem.
Warunkiem koniecznym i1 dostatecznym na to,
aby funkecya skonczona bylacalkowalna, jest
by Jim 1=0, gdzie 7 oznacza sume przedzia-

1o6w 6,, wktérych oscylacya funkcyi jest wie-
ksza od jakiejkolwiek liczby ustalonej.

Kazda funkcya ciggla jest calkowalna,

Kazda funkcya punktowo-nieciggla (patrz
wyzej str. 24) jest calkowalna. (Twierdzenie Rie-
manna).

Wartosé calki okreslonej funkeyicatko-
walnej nie zmienia sig, jezeli zmienimy war-
tos¢ funkcyi w jednym lub wigcej punktach
a nawet w nieskonczenie wielupunktach, by-
leby one tylko byly tak rozmieszczone, ze
w kazdym dowolnie malym przedziale znaj-
duje sig zawsze punkt, w ktérym wartose¢ fun-
keyinieulegla zmianie.

Jezeli funkcya skonczona jest stale ros-
naca lub stale malejaca w calym przedziale
calkowania, wtedy jest funkcya calkowalna,.

Funkcya ciggla innych funkcy_] calko-
walnych (wszczegélnosci sumaiiloczyn) jest

Pascal, Rep. 1. 10
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sama funkcya calkowalna. (Twierdzenie Du Bois
Reymonda)
Calka okreslona posiada nastepujace wlasnosei:

f'f(-r) dz = — ff(w) da
Va .b
.h c _0
‘ f@) de = //‘(:r) dx 4 /f(w) da |
' | .: i
lf () dr = (b — a) hm

ﬂ

Calka okreslona iloczynu dwu funkecyj daje
sig przedstawié w postaciachnastepujacych:

b

,.b .
1. jf(;r) file) de = f (a4 (b—a)) ’ fi{x) dc.

gdzie ¥ zawiera si¢ pomiedzy 0 a 1, fif, sg
funkeyami cigglemi, f; zas nie zmienia znaku
pomiedzy granicami catkowania:

b ‘u’rﬂ(b-—-a)

2. ’./'(x) fi() de = fl@ [ fia) de,

przy tych samych warunkach;
b
[ 1@ ) ar

AP0 —a

(@}ﬂmhh+ﬂ®/hmwm

a+§(b a)
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w zalozeniu, ze funkecye [, /; sa ciaglemi i ze
druga nie zmienia znaku w granicach calko-
wania.

Zauwwazy¢ nalezy, ze wartosé¢ & jest wo-
géle odmienna w kazdym z trzech powyzszych
WZOrow.

Twierdzenia, odnoszace sie¢ do przypadkéw zbieznosei ca-
lek niewlasciwych, sa nastepujace:

Niechaj funkecya f(x) staje sie nieskon-
czona wpunkcie 0 i bedziecalkowalng w ca-
Iym przedziale od ¢ do b—¢ jezeli mozna zna-
les¢ liczbe dodatnia »<Z1, taka, ze (x—20) f(x)
dazy do granicy skonczonej dla 2z =10 lub
waha sie pomiedzy granicami skonczenemi,
to wtedy wnies¢ mozna, ze calka okreslona
od @« do & jest bezwzglednie zbiezna.

Jezeli funkecya f(x) twierdzenia poprze-
dzajacego jest funkcyastalego zuaku, to wa-
runkiem koniecznym zbieznosci calki od a
do b jest, by:

lim (x — ) f(x)
e=b

bylo zerem lub wahalo sig pomigdzy dwiema
granicami, z ktérych jedna jest zerem (gra-
nice te, na zasadzie zalozen, nie mogsa byé
przeciwnego znaku).

Jezeli danafunkcya jest calkowalua w pe-
wnym przedziale (azdoco), i jezeli mozna zna-
lesé takie »>1, aby

¥ (@)
bylo skoniczone (lub zerem), lub, w razie nie-
istnienia granicy,byiloczynten wahal sig po-
miedzy granicami skonczonemi, wtedy calka
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funkeyi f(x) od a do oo jest bezwzglednie
zbiezmna.

Przy zalozeniach poprzednich i przy do-
lgczeniu zalozenia, ze funkeya f(x) nie zmie-
nia znaku od pewnego punktu az do co, wa-
runkiem koniecznym, aby granica calkibyla
skonczona, jest, byiloczyn zfix) dla =00 wial
granice skonczong lub ‘'wahal sie¢ pomiedzy
dwiema granicami, z ktérych jedna jest zerem.
: O calkach niewlasciwych patrz; Riemann, Werke str. 229; Du
Bois-Reymond, Crelle LXXVI, Math. Ann, XIII; Pringsheim,
Math, Ann. XXXVIIit. d., por. Pascal, Note critiche etec.

Jezeli w calce okreslonej granics wyzszg jest 2, to calka
przedstawia funkcye zmiennej x, zwang funkcya calkowa.
; Jezeli do funkecyi catlkowej dodamy ja-
kgkolwiek stalag dostaniemy funkecye ktory
mozemy tez przedstawiéprzez calke okreslo-
na o granicy wyzszej rownej x 1 o granicy
nizszej, roznej od poprzedniej.

Niechaj ¢ (x) oznacza funkecye calkowsa; funkcya nieokre-
slona, objeta wzorem

Fx)=¢() + ¢,

(gdzie ¢ jest stala nieoznaczona), nazywa si¢ calkg nieo-
kreslong funkecyi ioznacza si¢ symbolem

F@) = [ f) .

Jezeli znamy calke nieokreslona, to cal-
ke okreslong obliczymy za pomoca wzoru
b
f f(x) der = F(b) — F(a)

]

Funkeya calkowa jest zawsze funkcys ciggla
Jezeli funkcya fir) pod znakiem calko-
wym jest funkcya ciagla, wtedy funkecya cal-
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kowa jest funkcya réozniczkowalng a jej po-
chodna jest ré6wna funkcyi danej f(x).
Jezeli funkeya f(x) jest ciggla, to

> b
. l
g | f@ e =rw; - [fe)de—— fa.

a

Przeksztatcenia catki pojedyrczej. Jezeli
.b
= ’ f(x) dx

1 polozymy z=vw (), gdzie p jest takze funk-
cyardozniczkowalnag zmiennej y, ijezeli w prze-
dziale od ¢« do b mozna uwazac¢ y za funkcyg
samej zmiennej  wtedy

be

{ dax
o5 — ,l £ (w(?/))]? dy ,

gdzie a' 1 ) sg wartosciami zmiennej y, otrzy-
manemi z rownan a=uy(y), b=y
Niechaj bedzie
LW

P (Y) = ‘ f(z ) dx,

‘a(y)

gdzie a(y), b(y) oznaczajag dane funkcye zmien-
nej y. Jezelizalozymy, ze f(x,y) jest funkcya
ciagla dwu zmiennyech, ze f(x, y), a(y), b(y) maja
pochodne wzgledem y, i Ze pochodna [/, jest
ciggla wzgledem obu zmiennych, wtedy:

Jbw

dy da (l/) dbiy)
o] ol ) de = f@y) e S M &

“u(9)
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Jezeliai b sg ilosciamistalemi, to zuak
rozniczkowania wzgledem y jest przemienny
ze znakiem calkowania, t. . pochodna calki
rowna sie calce pochodnej. (Twierdzenie o réz-
niczkowaniu pod znakiem.)

Twierdzenie to zachodzi zawsze, gdy

F@,y) = | fy) de,

jest takg funkcysg zmiennych # gl ze dla niej
utzymuje sie twierdzenie o przemianie po-
rzgdku dwu rézniczkowan wzgledem x i y.

Jezeli granice a i b sa stalemi, jezeli sta-
femi sg ilosci ¢id, funkecya zas f(xz,y) jest cia-
gla, wtedy:

b

a b a
jtlz/] f(ey)dr = ‘ dx ] flx,y)dy

¢

(Twierdzenie o caikowaniun pod znakiem.)

-~

§ 2
Catki nieokres/onae.

Catki nieokreslone podstawowe.

. R pmt1 e 1
j.’l? 'Z—m'l—(’ns— ),

I—L dE—NRlog rr''; ' CEivl =tz

=2

fsinwdx:—cosw; /cosxda;:sinm,
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{1, ==t ) ¢ /.12 dr = — cotg x ,
2 c Jsin? x =

Jeos®x

X :

’ ———— do = arc sin £ = — arc cos £ + const ,
JV 1 —ua?

,——1——- dx = arc tg x = — arc cotg x -} const

1+ a2 :

*dr : x " dx : V1 a2
Jammte =lte 51 | de = log T —
‘ log x dr = » log & — o7 / tg x dv = — log cos

; ST 1 4 sinz
‘ sec u - log W S

’ arc sin « de = » arcsinz + V1 —a?
[ 1 "
arc tg x dz = arctg 2 — —- log (1+a%),

/ arc sec » dr = x arc sec x — log (x + Vat—+1 e

Catki nieokreslone funkcyj wymiernych.

=)

Vo
arc tg [— 2z} ,
@ @ 0 @

jezeli @ 1 b sg jednego znaku,

E Nracs zV—b+Va
) =T e

=

jezeli a i b sa znakow przeciwnych.
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,;i_:éz AR S
9(41,—1—//.7;‘ 2a, °© @ + bx? °
. dx 1 [/ ’w_.'/bl 4ac A
, atbx+cx® Vi — dac log b+2- T jezeli b3
[ T2 V0 —dne 460,
= A PR jezeli b —4ac = 0,
b+-2cx
- are " dezeli 02 —4ac < 0.
Vdac — b2 gV4u¢,—b >
o, Al 1 a® +
‘ e — .5 =5 60,3 log a® — 8

Dla obliczenia catki funkcyi wymiernej
rozkladamy te funkcye na funkcye elemen-

tarne (patrz Rozdzial I, § 6), a potem wykonywamy
catkowanie.

Catki funkcyj niewymiernych

7 / b

}_‘ZJ__ = + 2_ arc tg l/ ] . jezeli @ 1 b sg jednego
J (a4-bx)V x Vab e znaku,

= 1_ log a—-bm—{—?l/fzf.. s , Jezeli @i sa zna-

V—ab S8 el kéw przeciwnych,

Welde - 2Va o ids
Ja G+ bx T b b ’ Vz (at-bz)’
’ et — ]__ log Ko o g , jezell @ >0,
JxVa &b Va ~ Vatbr + Va

Va—+-ba
= —— arctg -

V== V—a

, Jezeli a < Q.
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,‘ de V1—a? = i, V1i—a? 4 % arc sin x.

.

Jll.(lw Vita® = 5 Vit + Eolog (o e Vil

J—-‘i{ V1+ta? = Vit — log e 2 V;}+z2 ;

}—di Vat—1 = Va?—1 — arc cos i
Wl @

—_— 2
f B e RS et
J oz x
LTINS 5% S0, L v LR B
} Va+bx? Vb ' : ] ’

b .o
= ——— arc sin il i
V=1 (V 3 .m),_]ezeh h<<0

—

1 ——s 7 :
- = — log (a 2bx 2 Vb Vaw bx? N ezeli b 0
’ Var+bz? Vb @ + A =
== l_ arc sin — % 2bi, jezeli 6 < 0.
V—b —a

Calki funkcyj trygonometrycznych

" dx s At O

| R T B

§ dx i s [x A
= —— tg |5 — .

‘si.nac-i—cosw V2 10gg|\2 9 8/

"z + sin x Yo X

’l—f—cosw dx_a:tgg,
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o 1k st 1
) o Saniloy pr D uds
’ SINRSEE (LS — 1 sin 2 + 3
I. in a2 cos bx dw = . b sin birsin ax —+ a cos bz cos axy
sin az: cos bu dw = o0y { b sinbising ;
1 43 2 are tg —'/j———btg——? jezelia > b
aFbeoss ~ Val—b - CVags ST
1 @
= — L) =)
5 tg 5 4 )
1 Vb—atg +VbFa
log : o ==,

Vi*—a® Vo--u fg P Vh+a

i . g . 5
’ -tz Vi o° tg (V1I—k? . tg =) .

Calki funkcyj zawierajacych logarytmy.

i ; log = 1
" — ap {108 5’ - s
’ z" log x dx 7 % s R O n=1,
f‘lo_gzc_dx_ e log
J (@ -bx) T (m—1) b (@ day»—
1 1 1 R |

* (m — 1) ab { (m—2) (af-ba)—2 <y (m - 3) a (a+bay"—3 3

1 : 2
= -+ . —= log Sk
1. w3 (a4 bx) (m—1)a"—1h a + bx

<

{sin (log z) dx = % { sin (log «) — cos (log ) }
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/ cos (log ) dx = —;— { sin (log ) + cos (log .z')} :

f_lﬂl:&r)_ dx = log = log (log ) — log =,

14-acosx

‘ log (@ + cos x) dx = e

Catki funkcyj, zawierajacych funkcye wyktadnicze.

:Z'"axd:l,' AR a*x" — na< wn—l . n (7"‘—1) - :D"—2
’ ==l log? a o logd SRR &1
o M 1
—— log N—=1 o
I. i lo e
1 <+ é* - g 1‘%—3‘1 )

T da e 1 aro ke (e"‘“ a_
’ ae™® 4 be="* mV ab o I/T) :

2 Sdx 1
‘ a-tbe"” = am {me —~ log (a - be™) },

’ Vafbers  mlVa - Va-Fbens+Va

/3 dx .4 lo Va+obems —Va

oz~ 13z

/' xe? du er

‘xez der = e* (& —1),

e (q sin £ — cos X)

‘e“ sin £ dx =

1 4-a? ;
e o T Ve 1
.{Vl—i—e" et AR log Vifees—1"
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Catki funkcyj, zawierajacych funkcye kotowe odwrotne.

":L' arc sin

. de = x — VY1 -2? arcsin x,
0 V1i—22 -

"arcsin z x arc sin x 1
——— = = — log (1—2?),
/ (ri==?)* V1—x3 i B o35 )
"« arc sin x e arc sin x +1_10g_1—x
(Vi=a)’ 7R N A o T,
2 4
’ 2 la:(_: i;g’_.c_ dx=uxarctgx — }2— log (1-4x?) ——% (arc tg @)%,
EeEetg s | - xV 2
j T dr = — V1—x?arctg x4V 2 arctg e
— arc sin & .
v oo S 2 . l’.‘ -
arc tg_acadu.= warctgr 1 ; Sl ]/a_—i_—b_x jezeli
(Va+tba?) aVa+bx® alVb—a e
. bt - Va—m
_ warctgwr 1 i VaFtix? - Va—b et o

aVatbx? aVa g V(T-:(l.lr“"-:{~ Va—b’

Catkowanie przez szeregi. Szereg, ktdrego wy-
razy sg funkcyami zmiennej » rownozbiez-
ny wecalym przedziale, przedstawia funkcye
catkowalng zmiennej z; catke zas tego szere-
gu przedstawia szereg calek pojedynczych je-
go wyrazow.

W szczegdlnosei :

Szereg potegowy jest catkowalny wyraz
po wyrazie w przedziale, zawartym wobsza-
rze calkowania calego szeregu
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Funkcya zmiennej x, okreslona za pomoca poprzedniego
szeregu, jest nowa funkcya przestepna, ktére nazywajs ,wsta-
wa calkowa* (Integralsinus).

(7 22 28
gt —be oot gt gTg +

Ten szereg przedstawia réwniez nowsg funkcye prze-
stepna, ktora nazywamy ,logarytmem calkowym, (Inte-
grallogarithmus).

(e<<l)

jr log (1-—2 g cos z + %) dw = — 2 Z f;;

"log (a + bx) b 1 {IL2L
./“"’1’ \a)

(lm_logalogx+—x

1 a1 b 1 addl
Bty g cstfelb Lol 28 [t VN Gl L2 T
ey o b ) (b)x+2'-’(b)'x2 32(b)w3+"'
109::1: IS8 opeta 1 log'z
log.z:_log 10g T) + +—2— —2-!———}——3-—3!&—"‘ .....

I ten ostatni szereg jest, jak latwo widzie¢, logarytmem cal-
kowym o argumencie log = zamiast x.

§ 3.
Catki okres/one i niewtasciwe.
Catki okreslone pomigdzy granicami O1i1.

1
) dx 2n

) 4 {
‘ 1+a+a? 3y3° ! T—ate? = 3780
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1 i g S
: dx / ke Va
-,{log(log.’c) iy {I log x “”—T’
0 0
5 = d Ol il
&z — (e % dx 2-t-eln
'/W:ﬁzh’ V4 e Vi
Sk e ;

'1] 2 11 2
og x 7 og & 0 i
1 o 0 oA /IT— == &’
lxl ‘
e T
|12 e :

' arc six x 7
1 = d, _7log2,
0

1 [} 1

" arc tg « i Wi
‘l——;—dx_Z( .1 (2n + 1) 7
0 0

3
[m‘—’ (log x)* dx = (—1) a:lTll )
0

14

T pomiedzy O 1 -%t- , pomie-

Catkl okreslone pomiedzy O 1
dzy 01 m.

bl

j. tgmdx—_—.-%- log 2,

0
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"f n ,-_éo‘ ) 1
i tgw(h’_&( l}m—}—Qn—i—l'
0 0

m|u

dx

} l—sinzcos 4 (m — 1) cosec 4.
.U

e L S Y]l % q - ozeli
J(; p—{-qcosx._y'zﬂ—__?ar cos?, jezeli ¢ < p.

| V=P
- ———logﬁ%——p—, w 9> D

e
A B
p L} ” (I
I z tg o dx == oo,
0
T A 7
I log sin © dz = — —- log 2,
.6 e

3
/ log tg « dx = 0.
0

3 : Cofitn o :
/ sin® o dx = (?zn %")1’-(?2 ¥ e 5 : 4 , Jjezeli n parzyste.
0
n—1) (n—3 10 :
- ?i(n-(-‘T-)ﬂ & » 1 nieparzyste.

TSP, B (5) 7+ (523 ™+ o) - ]

V1—Ik?sin?z
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{sinaxsinbxdx:Icosaxcosb:l:dw=0, (a=10)
.0 .6

o _o

J cos x

0

{"__ﬂ___- 7‘ A

pHqeosz JpE g’ ) Gl B

=0 ) ” 7)2<"2'

l'ﬂ dx __ —am A :
' —p+qecosx Vpr—g' Jezeil pf s
0

=0 \ i pheEt

n.
{ dx 7

,’1——2gcosx+g2 S B
0

jezeli g2 <1,

=g ’ » Q“>1

‘log(1—2gcosw—|—gg)dw=0, jezeli p L 1,
8

= 2 x log o, »y o o>1.

Catki niewtasciwe o granicach nieskoriczonych.

1'°°daf: By <7t
d-pFox?, . 2Vab

(@>0, b>0).
0

{OZ“Q"”’ de = 12% :

0



161

§ 3. — Catki okreélone i niewlasciwe

=
2

( e=*cos (2px) de =
%
’ (AR, W, == (n calkowite).
o
funkc}.ra, Eulera 2-go gatunku

{e-‘ =1 dr = I (n);
(7 jakiekolwiek).

":—;; de = Va.

"2
‘ sin% z dr — ’ cos®e x dx = oo,
2 ‘o
'O:in bx
[ = b .
J sinax G 5 Pl
3
T @ ' R
/e’+1dm= 12 ° /ew—1‘l““‘ St
(1}
e r26—1 22(1__ g A
I“Eg:—e""’ dx = 5 T Bsu_1, (Bssliczby Bernoulli’ego)
0
’smgzdz=_n_’ jezeli o > 0,
T 2
0
— UM ==
o !;— ] i 0 < 0
'cosgac . ‘_t;g_ew W T
f—r‘df""‘”’ ) Tz g
¥ 11

("]
Pascal. Rep. I.
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Teosgw Lo Cm
[ F2Ls s =5 sing,
(]
o0 S iy 1
fe—g O PE) iy e log (1 4 p?),
x 2
0
Z sin ax da i i . e :
J 1+ 2 cosax-— o x 2 1_‘;3,Jezelg< 3
1
1 n
_ —, l.
201 F¢’ [
| de = — 1 2gm
xVaz
?ae'”‘— 1 da
.’( 4”*+1+x)T_A"1
[}
I'Te" 1\)“" g A jest stal
ittt a0 | S5 - NGE Rt T jest stalg
“ -+
) /
: 1) Eulera.
R e x (ly =— A
‘ (1_}_3_@ a;/' e dx
(g
‘e-’logwdx=_‘4
‘o
’ e—P-f"b.t' d;r pl ez{,]/‘/ i 2
.—-oo p

+ o Py .-4 00
‘ sin (p x3) da.=l -_;"; — ’l cos (px?) dx,

.
- 00 ATy se
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+ co,
s ax
fromet ey o
‘__oo %
£ oo L+ oo
sm pax sin p dx { € cos pu
’ g W= ’ = U i — el SV
J F«a Pt @ ¢+
o —_ 0 — o0
-_* oo
’ Ccos pua T
‘ 1 (l.I,‘ — e 1

o Fa? Y

S o ST 1)
’ dr=me 1,

) e
~ o
oo
‘ g pl R =%
Lpiiw e
-+ ¥
‘ e=" xe* dx — — A (stala Eulera).
—oo

Najbogatszy zbiér calek okreslonych znajduje sie w dziele Bie-
rens de Haana ,Tables d'intégrales définies* Leiden 1867,

Catki eliptyczne. )

Niechaj bedzie zwiazek algebraiczuny f(2,y) = 0 pomiedzy
dwiema zmiennemi 1 niechaj krzywa, ktéra to rownanie wyobra-
7a, bedzie rodzaju p =1. Calka

1 Dla lepszego zrozumienix tego paragrafu oraz znaczenia uzytych tu

symbolow, patrz rozdziat XVI.
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’.ﬁ' («, y) de,

w ktérej F' jest symbolem jakiejkolwiek funkcyi wymiernej
zmiennych z, y, zwigzanych powyzszem réwnaniem, jest calka
eliptyczna ogdlng.

Jezeli funkcya f ma posta¢ specyalng y?= X, gdzie X jest
wielomianem ogdlnym stopnia 1-go wzgledem x, wtedy calke
eliptyczng mozna przedstawi¢ w postaci

("R dx
' VX

gdzie /t jest jakakolwiek funkcya wymierng zmiennej z.

Calka ta, jezeli zalozymy, ze funkcya R nie
ma pierwiastkow wielokrotnych, daje sie zawsze
przedstawi¢ jakokombinacyaliniowa calek trzech
typow réznych, majacych odpowiednie charak-
tecrystyczne wlasnosci. Te trzy typy mozna przedstawié
w postaci,nadanej im Legendre'a, lub przez Weier-
strassa.

Forma Legendre’a trzech typéw jest nastepujaca:

’/ V—(_i— ;ﬂ%—m . calka 1-go gatunku.
]2 n2
2, ‘11/11—__—_]{_;2{6— dacias s  2-go -
o ) 29 3'g0 ”»

(1fna?) V(I—a?) (I—k2z?)

Mozemy przyjaé, ze we wzorach tych 4 jest liczbg, ktdrej
wartosé bezwzgledna jest mniejsza od 1.

Kladgc 2=sin ¢, otrzymujemy powyzsze calki w postaci na-
stepujace] :
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P

/
1. =7 = F
- } Vl—irsin® it

0

_p
S ‘Vl—/c’ sin? ¢ . dy = K (k, o),
‘0
vq’ l
3. f——— ol ol =—— = Il (1, &, ®).

(14n* sin?g) ¥ 1 — & sin? 9

Liczby k i p nazywajg si¢ odpowiednio: modulem i am.
plitudg.

W formie Weierstrassa typy poprzednie przed-
stawiajg sie¢ tak:

.P
1 o R
. , ; !
L Vap'—g,p—y,
.P l
ap
2. , ; {arm = ; "l O
v Vépi—gip—y,
R e — e
s Vip*—gs p—9s + V40*~9, ¢—ys ___ dp
o 3] iy Vdp3—g, p—qs

W trzeciej calce ¢ jest staly dowolns. Zamiast tej catki roz-
wazaé mozna tak zwang calke normalng 3-go gatunku (calke
Kleina):

e e ! FRE e A ke
fVdpr—gp—9t — VigP—g 9 - gy

O = 1 |
IR0 A Py
= V47’3;‘T‘/:75—9:1 — VA% ’IIT;.;/:; Lelo s dp

P— V Vapi—g,p—9s°
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Mozna te calke przedstawicé pod postacia calki podwojnej:

Q= ‘ d’ ’ du piu' —u),

gdzie g =p(u'), 9 =p(u,’).

Przeksztalcenie Landena stuzy¢ moze (patrz Rozdzial
XVI) do przyblizonego obliczania calek eliptycznych 1-go ga-
tunku.. Mamy:

P P

o D W de 3
., V1—l?sin®o I 0’ iy ( k)asmj
=
gdzie
e (L+I') sin (f} (i(f @
V1 — k? sin? ¢ A
(¢ @ .
1____ (1‘:‘ ]CI)S]‘HQ(p ? pl/l
coslqpy = e e
: V1 — k% sin? @
! . e i 1=k
Jezeli k<1, to modul calki drugiej, t. j. k; Gk | g Jjest

mniejszy od k. a kolejne stosowanie tego wzoru doprowadza do
calki o bardzo malym module i o bardzo wielkiej amplitudzie.
Stosujac wzor odwrotny, doszlibysmy do catki eliptycznej o mo-
dule tak blizkim 1, jak chcemy, i o bardzo malej amplitudzie,

Jezeli k,, %y, ky. ... sa kolejne moduly, ¢y, @, @5, ... —
kolejne amphitudy, A zas jest callka zupelna Legendre’a, t.j-.
wartoscig calki pray ¢ = g— 1 przy prostoliniowej drodze callko-
wania, bedzie:

K=,::)’_(1+kl)(1+/;2/(1+k3) .....
RS r
F(p, k) = = —;97*7

Jest to wzor przyblizony dla wartosci r, dostatecznie wielkich.
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Do obliczania ilosel g, sluzy¢ moga wzory zwrotne:
tg (p; — @) = cos 9 tg ¢; sin & =4k,
tg (s — @) = cos P tg @,; sind, = ki,

tg (ps — 92) =cos By tg g5 sindy =k,

Stosujac odwrotne przeksztalcenie L.anden a, dochodzimy
do wzoru :

,, F T B g
i '\(Pl’/c) = l’l = *2‘,:.——~—> 10g tg (1—- —+— ‘_)T ) ’
gdzie
ll_l—{-k’ A = f_;r_;]'r 4:|-1_!_12, .....

sin (2y, — @)= ksin ¢, sin (2y, — y,) = iy sin y,,
sin (Zy,—y,) == A, sin g, . .. ..

Stosowanie przeksztalcenia Gaussa do obliczania calek
eliptycznych 1-go gatunku prowadzi do nastepujgcego wzoru
Jacobi’ego. Nadawszy calce eliptycznej postac

;8

d :
5 4 — = (V)
g Vm3 cos? o - n? cos? ¢
1 kladac:
2 m—+n . —
m = -—g— , w =Fmn,
’ Y
m n P
m' = ‘—'“jQ_—; — o W =Hm'n',

A= Vm?cos?yp + u? sy,
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o “grpdli v .0
A == V’n’l h —;;i —{_ A 3

s PR ’)l'—-!—_A_"
A -—l/mm T

otrzymujemy :

AI AII AH ¢

mm' w'’ ...

tgu®=tge.

gdzie u jest granica wspolna, do ktdrej dazg ilosci m) i n
(t. zw. $rdpnia arytmetyczno - geometryczna Gaussa, patrz

rozdz. I, § 7).

Przy pomocy przeksztalcenia Gaussa rachunek caly
prowadzi wprost do catki

y'

de =T dey ¢’

.! Vm? cos? g I m?cost .“’ Vudcos' g 4 u?sin g Iz

b
gdzie u jest srednig arytmetryczno-geometryczna, ¢’ zas jest
granicg ilosei ¢, ¢,, 9, . . . , okreslonych za pomoca wzoréw

m sin @,
m' cos? ¢; + m? sin? @, ’

sinq;:

m sin @,
m” cos? g, -+ m' sin? @,

sin @, =

Co do tego obliczenia patrz artykut J. Kowalezyka w ,,Wiado-
mosciach matematycznych* II, 1898, str. 21-—31,

Liczne sa dziela o calkach eliptycznych; dzielo , Elliptische Func-
tionen* Ennepera, zawierawiele szczegdléw oraz wskazéwek history-
cznych 1 bibliografieznych.
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§ 9
Catki wielokrotnoe.

Niechaj funkcya z dwu zmiennych « i y bedzie okreslona
w pewnem calkowitem polu plaskiem. Podzielmy to pole na pola
czastkowe, dowolnie obrane: g;, 0,, ... 6,. w kazdem z nich obierz-
my punkt dowolny i obliczmy w nim wartosé f, funkcyr z; na-
stepnie utworzmy sume X /; o, 1 wezmy granice tej sumy,
zmniejszajac nieograniczenie wszystkie pola czastkowe o, 6,,... On.
Jezeli ta granica istnieje 1 posiada wartosé, niezalezng od wyboru
wartosci /> od wyboru pdl o oraz od sposobu, w jaki one zdazaja
do zera, to nazywamy ja okreslong calka podwdjna
dla pola danego ioznaczamy symbolem

’.’.f(“} y) dx dy .

Podobniez okreslamy calki potréjne, poczwérnei t. p.

Calke podwdjng mozna zawsze przedsta-
wié za pomoca dwu kolejnych catek pojedyn-
czych: jednej, odniesionej do jednej zmiennej
i1 wzietoej w granicach, ktére sg funkcyami
drugiej zmiennej, oraz drugiej catki, odnie-
sionej do drugiej zmiennej i wzietej pomie-
dzy granicami stalemi.

Jezell calke wielokrotng

’ S i.f (s oy 7. e 1 1) At s d o sl

gdzie ilosci ruwazamy za funkcyenzmiennych
Yis Yss oo .- -Yny chcemy przeksztalcic na inng cal-
ke, zawierajacag zmienne y, to przeksztalcamy
najprzod funkeye f pod znakiem caltkowym
w ten sposdb, aby zawierala te nowe zmien-
ne, potem mnozymy ja przez wyznacznik fun-
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keyjny danych zmiennych y. (I'wierdzenie
o przeksztalcaniu calek wielokrotnyech).

Mozna zawsze znalesé funkcye ¥ zmien-
nych 1y taka, aby wartosé¢ calki podwidj-
nej okreslonej

! flr,y) drdy,
w polu danem zalezala tylko od wartoscei,
jakie funkeya Fprzybiera na obwodzie pola,

nie za$ od wartosci funkeyli w punktach we-
wnetrznych,

7S

Catkowanie rozniczek zupetnych.

Niechaj bedzie w yrazenie rézniczkowe
typu:

Andx gl Nyrday o 00 Lot Y ads X
gdzie X, X,, ... X, sg funkcyami zmiennych
Xy, @, . . .%,; warunki konieczne i dostateczne
na to, aby to wyrazenie bylo rézniczkg zu-
petng dokltadna pewnej funkcyi ¢ zmien -

! ¢ nin—1 : :
nyeh o, o . ..o, skladaja sie z 5 )zwxa‘zkowz
oX. 38X, '
e e o

W przypadku, gdy te warunki spelniajg sie, powyzsze wy-
razeunie nazywamy rozniczka zupelua dokladna
lub calkowalna.



§ 6. — Calkowanie rozniczek zupeinyel.

Aby zcalkowac to wyrazenie, t.j. aby znalesé funkeye ¢,
ktérej ono jest r6zniczka zupelng, postepujemy w ten sposéb.
Obliczamy najprzod calke

jxl de, .

w ktorej uwazamy tylko 2, za zmienna, pozostale zas zmienne
hny o r. za ilosdci stale. Znalazlszy po zcalkowaniu funkeye
Ly (). x,, .. . @), tworzymy rézniczke zupelna 1 odejmujemy
Ja od rozniczki danej; otrzymamy w ten sposob nowe wyrazenie
rozniczkowe, majyce o jeden mniej wyrazow 1 o jedne mniej
zmienny, t. j. zawierajace tylko zmienne a,, @y, ..., Z tem
nowem wyrazeniem postepujemy tak samo, jak poprzednio, i do-
chodzimy do funkeyl L, (xs, ®y, . . . &), Tak postepujac, otrzy-
mujemy n funkeyj L, L,, ... L, z ktérych pierwsza zawiera
wszystkie zmienne ... x,, . .. #,, draoga zmienne g, 7y, ... &y,
trzecia zmienne @y, 2., .. ., 1t d. Suma

Ll —+‘ [/3 'f 143 + a 8 . ) o -+~ [/;. -}— const

jest calka szukana.

Wyrazenie o dwu zmiennych X, dx, -+ X,dx;, po
pomnozeniu przez odpowiedni czynnik u, zalez-
ny od dwu zmiennych (czynnik calkujgcy), daje
slg zawsze zamieni¢ na rozniczke zupelnas.

Wyrazenie o trzech zmiennych
X{dxy + Xyde, 4+ X idx,

po pomnozenin przez pewien czynnik, daje sie za-
mienié na rézniczke dokladna, jezeli staje sig za-
dosé warunkowi:

a7 .
Oliy 0,

779X, O iy X o X, | X,
il R = e
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Dla >3 czynnik calkujacy istnieje przy
n(n—1)

spelnieniu sie 3

warunkow, podobnych do

poprzedniego, a dajgcych sie fatwo z niego otrzy-
mac¢ przez ustalenie jednego skaznika 1 przemie-
nianie dwu pozostalych wszelkiemi mozliwemi
sposobami.

R

Warunki catkowalnosei wyrazeri, zawierajgcych pochodne jednej
lub wielu funkcyj jednej zmiennej.

Niechaj bedzie funkeya
AL R ) ()T
w ktdrej zakladamy, ze y jest funkeya zmiennej x; chcemy zba-
da¢, kiedy, bez uprzedniej znajomosei tej funkeyi, mozna wyra-
zenie F zealkowac, t. j. kiedy I jest pochodna dokladna pewnej
funkeyi zmiennych x, y, ¢’ . . . y«—V.
Warunkiem koniecznym i dostatecznym na to
jest:
oF (TR d* OF
oy dx oy ek

on i Al

S P gl (—»1)’3—_“ EnG = 0,

Jezeli funkeya F zawiera jeszcze inna funk-
cye z 1 jej pochodne, to do tego waruunku przyby-
wa warunek analogiczny, w ktérym zamiast y pi-
szemy 2z 1t.d.

Zagadnienie to ma zwigzek z rachunkiem waryacyjnym.
Twierdzenie samo wypowiedzial Euler (1764). lecz pierwszy
jego dowdd podal Condourcet (Acad. de Paris, 1765).

Co do szezegdlow patrz E, Pascal, , Rachunek waryacyjny‘
przeklad polski, Warszawa, 1897, str. 150-—156.




ROZDZIAL VIIL

ROWNANIA ROZNICZKOWE.

el

Wiadomosci ogdlne.

Ziwigzek pomiedzy funkeya niewiadoms y, jej pochodnemi
az do pochodnej rzedu n-tego wzgledem zmiennej niezaleznej x,
oraz sams zmienngstanowi to, co nazywamy réwnaniem roz-
niczkowem zwyczajnem rzedu n-tego

Jezeli zakladamy m zwiazkow pomiedzy x, m funkcyami
Yis Yay + -+ Ym zmiennej x i ich pochodnemi, to mamy uklad m
rownan réozniczkowych zwyczajnych.

Zcalkowac¢ lub rozwigzaé réwnanie czy tez uklad
rownan jest to znales¢ te funkeye y albo funkeye y,, ¥, . . . Y.

Jezeli funkeya niewiadoma lub funkeye niewiadome zaleza
od wielu zmiennych i jezeli istnieje jeden lub wiecej zwigzkdéw
pomiedzy niewiadomsg lub niewiadomemi, zmiennemi oraz po-
chodnemi czgstkowemi funkeyi, wtedy mamy uktad réwnan
o pochodnych czgstkowych.

Kazde rownanie lub uklad réownan ma zawsze calke, je-
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zeli zalozymy ciaglo$é funkeyj. stanowiacych pierwsze strony
tych rownan.

Dowody tego twierdzenia podali: Cauchy (patrz Moigno,
Caleul diff. 1844, II; Briot et Bouquet, Journ. de ’Ecol. polyt.
cah, XXXVI); Lipschitz (Aun. di Mat, II, Balletin Darboux X);
Volterra (Giorn, di Matem. XIX); Peano (Ace. Torino, 1886,
Math, Ann. XXXVII), Arzeld (Ace. Bologna 1896) i t. d.

Calka y réwnania rézniczkowego zwyczajnego rzedu n-tego
nazywa sie o g6 1na, jezeli zawiera u stalych ¢, ¢,, . . ... ca, tak
ze jakobian funkeyj y, v, y” . . . y*—V wzgledem ilosci ¢, ¢,.... ¢y
jest rozny od zera.

Calka szczegdlna nazywa sie calka, ktéra otrzymujemy
z calki ogélnej, nadajac stalym wartosci szezegolne lub zakla-
dajuc pomiedzy niemi pewne zwiazki.

Calka osobl: wa nazywa sie calka, ktérej nie mozna otrzy-
maé z calki ogdlne] przy pomocy postepowamia, wskazanego
w poprzedzajacem okresleniu; mozna ja wszakze otrzymaé zaw-
sze z calki ogélnej, nadajac ilosciom stalym wartosci, ktore sa
funkcyami zmiennej x.

Jezeli, majac réwnanie réiniczkowe rzedu n-tego, znaj-
dziemy zwigzek pomiedzy stala dowolna, zmienna z, funkcys y
i pochodnemi tej funkeyi az do pochoduej rzedn (n—-1)-go wia-
cznie, to zwigzek taki nazywa sig calky pierwsza rownania
danego.

Réwnanie rézniczkowe zwyczajne rzedu n tego
manréznych calek pierwszych; jezeli jedne znich
rozwigzemy wzgledem stalej, a nastepnie wez-
miemy pochodna, znajdziemy dane rownanie roz-
niczkowe; jezeli zad pomigdzy temi calkami wy-
rugujemy g, v’ ... y" Y znajdziemy calke ogélna.

Obreslenia analogiczne, odnoszace sia do réwnan réznicz-
kowych czastkowych podajemy w § 7 niniejszego rozdzialu.
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$ 2

Rownania rozniczkowe zwyczajne rzgdu 1-go. Czynnik catkujqcy.
Rozwigzania osobliwe.

Niechaj bedzie réwnanie rz¢du 1-go, sprowadzone do postaci
M de + N dy = 0.
Niechaj u bedzie wyrazeniem takiem, ze
n M de 4+ u Ndy

jest rézniczka dokladna: wtedy u nazywa sie czynnikiem
calkujacym (Euler, patrz wyzej § 6 rozdzialu poprzedniego).
Rozwiazanie danego réwnania mozna uczyni¢ zaleznem od zna-
jomosei czynnika pu.

Istnieje nieskonczenieli wiele czynnikow cal-
kujacych.

Jezeli znamy jeden z nich u, to inne mozemy
wyrazi¢ przez u f(g), gdzie

dp = pu M de ++ u N dy.

Jezeli znamy dwa czynniki calkujgce rdzne
u, ¢, to stosunek ich,przyréwnany do stalej, daje
calke réwnania.

Czynnik calkujacy u czyni zadosé réwnaniu
e e oN
IR N-_ 2

et 3y Y T M T T3y

=0

Jezeli

oN oM\

J.(
SER Ve T _By/



176 Rozdzial VIIL

jest funkeya samej zmiennej x, np. rowna sig p(z),
wtedy istnieje czynnik calkujacy, bedacy funkecys
samej zmiennej #, a mianowicie:

w o= e/w@is

Jezell wyrazenie

jest funkcyva samej zmiennej y, np. réwna sig y(y),
wtedy istnieje czynnik calkujacy. bedacy funk-
cya samej zmilennej y, a mianowicie:

n= 6/.‘1’(.") dy
Jezell wyrazenie

oM = &N
oy dx

mozna przedstawié w postaci
Ne@ — My ®).

wtedy istnieje czynnik calkujacy, bedacy iloczy-
nem funkcyi samej zmiennej x przez funkcye sa-
mej zmiennej .

Jezeli funkcye M, N sg postaci

M=1 ()9, y), N=1y (z)y (¥),

wtedy czynnikiem calkujacym jest w-

—— aro
Pa(y) y1(2)
nanie nalezy do typu tych, w ktérych zmienne

mogg byé oddzielone.
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Jezeli M1 N sa funkeyami jednorodnemi tego
samego stopnia, wtedy

1
Mx 4 Ny

jest czynnikiem calkujacym.

y
x
nanie dane przeksztalci¢ na formeg bezposrednio

calkowalna:

=2, mozemy roOw-

W przypadku tym klada'e

da N,z

3 dz = 0.
4l e M,z) + 2N, 2) £

Réwnania liniowe postaci

(]
= k= &

gdzie PiQ sg funkcyami samej zmiennej x, calku-
jemy przy pomocy wzoru

y = e~ /B[ [ Qe/P*dxr 4 const |.

Rownanie postaci

4lryf L i ax -+ by + u)
e (a’x+b’y+c’ ?

gdzie abl— a'b=0,sprowadza sie do typu rownan je-
dnorodnych, jezeli polozymy:

ar + by 4+ ¢ =2/, de -+ Uy + ¢ = y¢.

Pascal. Rep. 1. 12
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Jezelizas al — a'b =0, wtedy
ax + by -+ ¢ = wm (ax + by + ¢) + n,

a wprowadziwszy zmiennag 2’ zamiast x, docho-
dzimy do typu réwnaf, w ktérych zmienne sg od-
dzielone,

Réwnanie Bernoulli'ego

by 5
TS = ) 4 Oy
o = v+ @y,

gdzie Pi () sg funkcyami samej zmiennej x, zamie-

niasigna rownanieliniowe, jezeli polozymy y' "=z.
Réwnanie

() i N e
= = P4 Qy -+ By
daje sie sprowadzi¢ do typu ré6wnania Bernoulli’e-
go. jezeli znamy jedne jego calke szczegdlna u
1 polozymy nastepnie y—u—v.

Réwnanie

Ndx -+ Ydy + Z (wdy — ydw) = O

gdzie X, Y, Z sa funkcyami jednorodnemi, przytem

dwie pilerwsze jednegostopnia, przez podstawienie
(=) b}

y=uzx przeksztalca sie na réwnanie Bernoulli’ego.

Réwnanie Riccati’ego jest postaci:

izi[/ + by? = cxm,
gdzie b, ¢ sa statemi. Polézmy najprzéd y = ; , & nastepnie:
1 xm m —|— 1 xm 2m+1 a

Z:*r*—*—' ) = +“_7 ZQ:’—IL —I—, Mo A

o Z s h &
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Jezeli _m%;_z_ jest liczba calkowita réwna %, to po k takich

pedstawieniach dojdziemy do réwuania, w ktérem po jednem
jeszeze podstawieniu

Zp == qhntly;

zmienne zostana oddzielone.
Jezeli zas nskutecznimy podstawienia

i _ m—1 ety 2m—1 - am

2=, = - o~ —

% <y '—r ......
2 ( 24 b 2y

m

49
to, gdy —”“—' jest liezba calkowita rowna k, po k podstawie-

niach i po podstawieniu

zp =gt -ly,

dojdziemy do réwnania, ktérego zmienne sa oddzielone.
Przypadki
m— 2 m |- 2

= calkowitej .
2m 5 WD

= catkowitej ,
s4 dwoma przypadkami, w ktérych réwnanie Riccati’ego da-
je sie calkowaé w postaci skonczonej. O catkowaniu go przez
szevegl patrz nizej.

Poisson dal rozwiazanie réwnania Riccatiego przy po-
moey calki okreslonej (Journ. de ¥ Eeole polyt. Cah. XVI). O réwna-
niu Riccati'ego pisali Cayley (Phil. Magaz. XIXVI, 1868), Schlafli
(Annali di mat. I), Catalan (Bull. de Belg. 1871. XXXT), Glaisher
(Quart. J, XI—XII), Bach (Amn. de U'Ecol. norm,, (2) i IIT),

Literaturgtego przedmiotu znalesé¢ moina w pracy M, Feldbluma
,Teorya rownania Riccati'ego“ i t, d. (po rosyjsku), Warszawa 1898,
(patrz , Wiadomosei matematyczne®, [I, 1898,

Réwnanie Jacobiego

(d 4 A'z 4+ A'y) (xdy —ydx) — (B + Bz 4 B"y) dy
+ (C+ Ca 4 C"y) dx = O,
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za pomocy podstawien

r=u-ta Yy=uv+p
gdzie a 1 B okreslajg sie ze zwigzkow

A Aoy argm CHCa O B+Bat B,

B a

k zas jest pierwiastkiem rownania

S T A"
B, B LB >
e C, =k

sprowadza sie do rownania, w ktorem spélezynniki rézniczek sa
funkcyami jednorodnemi. {Patrz Winkler, Wien. Ber., LXIV.)

Podobnego typu réwnanie, w ktérem spélezynniki réz-
niczek sa w ogdle funkcyami wymiernemi zmiennych z1 y,
nazywa si¢ ré6wnaniem Darboux’a (patrz Darboux, Bull.
des sciences math. (2), 1I).

Réwnanie Eulera

dx o dy
Vi) V)

gdzie f(x) = (1 -—x?) (1L —k%2?) ma calke

y Vi@ —alfly) = C—=kazyl).

Réwnania, nie zawierajace ani « ani y a za-
wierajace tylko g/, calkuja sig, jezeli w nich za-

miast y polozymy y — :r , gdzie ¢ jest stala.
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Rownanie typu

f YN C
¥ ‘_il;l-'_) s 2 )

calkuje sie przez wyrugowanie ilosci p pomigdzy
niem a réwnaniem

vy = J p¢'(y)dp + const.
Réwnanie typu

o
T ( Y

W) = ©(p)

calkuje sie przez wyrugowanie ilosci p pomiedzy
niem a réownaniem

. ’
x =‘L2;ﬂ- dp - const.
Réwnanie typu (réwn.Monge'a)

!/Z.l:f(d!/ )4 g (}IL)

o dx

=& f(p) + ¢ (p)

{

calkuje sig, jezeli wyrugujemy p pomiedzy réwna-
niem danem a nastepujacem:

S dp AR S dp
N — fj(p)—y ' —_— l—"-——(—&— ef."/i"—ﬂ (lp + const { 3
| I —rp *

Rownanie Clairauta

ol , o 'ly,)
y=ap + ¢ . (1) 0¥
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calkuje sie, jezeli polozymy w rédwnaniu danem
zamiast p stalyg dowolna.

Calke osobliwy réwnania Clairauta otrzymu-
jemy, rugujac p pomiedzy [réwnaniem danem
a zwigzkiem x—¢'(p) = 0.

W ogolnosci, aby otrzymaé¢ calke osobliwg réwnania roz-
niczkowego zwyczajnego rzedu 1l-go, trzeba wzia¢ pochodng
wzgledem statej dowolnej strony pierwszej zwiazku, przedsta-
wiajacego calke ogélna, przyréwnac te pochodny do zera, a na-
stepnie wyrugowac stala pomiedzy tak otrzymanem réwnaniem

" a calka ogdlna.

Otrzymane wten sposéb rozwiazanie osobliwe
przedstawia geometrycznie obwiednia krzywych,
ktore przedstawia calka ogdlna.

Roéownanie rézniczkowe rzedu l-go i stopnia
l-go wzgledem y' nie ma rozwiazania osobliwego.

Jezell strona pierwsza réwnania rézniczkowego jest alge-
braicznie wymierna i calkowita wzgledem o, , y' 1 jezeli A jest
wyroznikiem tego réwnania wzgledem zmiennej y', wtedy roz-
wigzanie osobliwe spelniaé musi warunek A=0.

Rozwigzania osobliwe byly przedmiotem licznych badan. Pray-
taczamy tu prace: Darboux’a (Comptes rendus 1.XX, 1870), Cay-
ley'a (Messenger 1882), Casorati‘ego (Ist. Lomb. 1874 — [875),
Lincei, 1876—1879 (Ann. di mat. XIX). Listg prac o tym przedmio-
cie i najwazniejsze rezultaty dotad otrzymane pomiescil L.ia Predella
w rozprawie, ogloszonej.w Giornale di Matem. XXXIII, 1895). Porow.
Zajgczkowski ,Teorya ogélna rozwiazan osobliwyeh rézniczkowych
zwyezajnych® (Pam. Akad. Um. w Krak. III, 1877), oraz ,Wyklad
nauki ordwnaniach rézniczkowych“, Paryz 1877, str. 171—206,
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Rownania rozniczkowe liniowe.

Réwnanie typu
XOZ/(HJ _+_ _Yly(n -1) _*_ : : 2 + 1\'"!/ = X,H -

gdzie tlosel X sy tfunkeyami tylko zmiennej . nazywa sie ré w-
naniem rézniczkowem liniowem; jezeli X,;; =0, na-
zywa sie jednorodnem, jezeli X,;1==0 — zupelnem.

Réwnanie liniowe jednorodne za pomoca pod-
stawlenia

y = el
przeksztalcié mozna nainnerdwnanierzedu (n—1)-
oo, ktore juz nie jest liniowem.

Jezeli ¥, 4,,.. .4, sanrozwigzaniami szczegdl-
nemiréwnanialiniowego jednorodnego, takiemi, ze
ich wronskian jest rézny od zera, wtedy rozwigza-
nie ogolne przedstawia wzér:

Y=ol + ¥+ . - -+ Caln.

Rozwigzaniu ogdélnemu zawsze tg posta¢ na-
daé mozna.

Jezeli znamy jedno rozwiazanie szczegdlne
4=y, réownania liniowego jednorodnego rzedu mn-
tego, wtedy za pomocy podstawienia y=y, calko-
wanie rownania zupelnego sprowadzi¢ mozna do
calkowaniainnegordownaniategoztypuirzedun—I1.

Dla rozwigzania rownania jednorodnego
o spéleczynnikach statych ay, a;, . . ., @, nalezy roz-
wigzaé rownanie algebraiczne, zwane charaktery.
stycznem:

a2 a4+ . . . 4 ay, = 0.
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Jezeli a jest pierwiastkiem pojedynhczym rze-
czywistym tego rownania, to y=e bedzie calka
gszczegolng réwnania rézniczkowego danego.

Jezelli a jest pierwiastkiem rrzeczywistym r-
krotnym rownania charakterystyczunego, to

y=1e%, y=xe* . . .,Yl=z"le¢*

sg calkami szczegdélnemi danego réwnania roz-
niczkowego. Wreszcie kazdej parze pierwiastkow
zespolonych sprzezonych a=m-+ni odpowiadaja
dwie calki szczegdlne

Yy = cos (nx) e”, y=sin(nx)e”.

W ten sposob, rozwigzawszy réwnanie charakterystyczne,
mozemy znales¢ n calek szczegdlnych niezaleznych; z nich zas
tworzymy calke ogdlng.

Dla zcalkowania réwnania liniowego zupelnego, calkujemy
odpowiadajace mu réwnanie jednorodne, t. j. rownanie, otrzy-
mane przez zastapienie funkeyi X, ;, zerem. Jezeli calka ogdlna
tego réwnania jest

y=6h -+ + - - - + Culhu.

A A R d ey : :
to rozwigzujemy wedlug ilosei Qo T Townamia:
= dua .

de, de, thin

Tyl+ dr S = A o Yn =20,

QT T GRS T Ny de,
- q - R Ly =0
dic Y da: Ya i el y .
dey de, de
Ay (n—%) L LA T 1 b A Ny (n=2) — ()
dx ¥ 1 da: Y i + dx In ’
de, % de de Xoia
1 {(n-1) 2 1y (=1 4 . . ’ u 1 '(u—i)__ 1l
de N + dz + i d " . P
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Calkujac otrzymane zwigzki

de, de, : e,
dx =Py (CC), z ;/,J o (‘l'r)' g {ll =7 (1),
znajdziemy n funkeyj ¢, ¢,,....., ¢, zmiennej x, ktore podsta-

wiwszy w wyrazeniu na y, otrzymamy calke ogdlna.

Jezeliznamy calke szczegdlna réwnania
zupelnegoicalke ogélna odpowiedniego réow-
nania jednorodnego, to bioracich sume, znaj-
dujemy calke ogdlna danego réwnania zu-
petnego.

Jezelirdwnanierdézniczkowe zupelne ma
spélczynnikistale, ajego strona druga jest
postaci Pe**, gdzie P jest wielomianem ze zmien-
nag r, wtedy calka szczegdlnardownania zupel-
nego jest

) v ere

gdzie pu jest liczbg pilerwiastkéow rédwnania
danego, ré6wnych A (lub zeru, jezeli i nie jest
pierwiastkiem réwnania charakterystyczne-
go0), & zas jest wielomianem tego samego sto-
pniaco P, ospélezynnikach, ktdre 0t1/V111uJe-
my. podstawilajac zayto wyrazeniel wyznacza-
jac warunki, przy ktérych réwnanie spraw-
dza sie tozsamosciowo (Patrz Jordan, Cours d’ana-
lyse, IIT str. 158).

Jezeli znamy caltke szeczegdlny rownania
zupelnego, wtedycalkowanie sprowadzi¢ mo-
zna docalkowania rédwnania liniowego tego
samegorzedu lecz jednorodnego

Jezeli znamy calke szczegélna réwnania
jednorodnego, wtedy calkowanie rownania
zupelnego sprowadzi¢ mozna do calkowania
réwuania zupelnegorzedunizszego.

Jezell y,, ¥y, . . . yu sacalkami szczegodlne-
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miliniowo-niezalezZznemirdwnania jednorod-
nego, wtedy ich wronskian wyraza sie naste-
pujacym wzorem Liouvillela:
» X,
- |— dw
1’V.: (e J)" :

Jezelimamy réwnanie zupelne rzedu 2-go:

A e+ il Rl

1jezeli y, jest calkg szczegdlngrownania
Yy o Py Sy 108

wtedy ktadac

ny — yy' = e,

znajdziemy:
— [ Pdx : " pir
i o= s

a catkag ogdlng rownania danego bedzie:
Y= |- do 1 CGuy.
_'!/11

BRERell ) sy, v s d wie ¢ b ol T stz in e 1] 1=
niowo-niezalezneréwnanialiniowego rzedu
2-go, to punkty zerowe funkcyi y, sa przedzie-
lone punktami funkcyi y: mianowicie pomie-
dzy dwoma punktami zerowemi funkeyi y, znaj-
duje sie zawsze punkt zerowy funkeyi y,, pomie-
dzy za$ dwoma punktamizerowemi funkeyi y,
znajduje sieg zawsze jeden punkt zerowy fun-
kcyi y, (Twierdzenie Sturma .

Ré6wnanialiniowe postaci

ay (ax + b)" y™ -F a, (ax 4 b)»—Lyt-D4 | | +a,y=0
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sprowadzaja sie do typu rownan o spélczyn-
nikach stalych za pomocg podstawienia axtb=—e'.
Rownania LLaplace’a sa postaci

(ESEb) 9 He () = by y N - L. + (tn + bux) y = 0.
Polozywszy
a2 +a2* L A =y(2); b2+ b2 + L b, =(2),

AU
7 ’_v;\)

¢/ v d, gdzie C jest stala, otrzymujemy calke

oraz I=—
@ (x)

ogélng w postaci:
B % fng1
{C,f+0._,}!'—|~ ..... + G f § e Ui,

gdzie ilosei Cy, C,, ... sa zwigzane jednym warunkiem, ilosci

zas B maja dajace sie wyznaczy¢ warvosci. (Patrz Jordan,

1 c. t. ITT, str, 253; d’Arcais, Calcolo infinit, t. II, str. 566). '
Réwnanin

g G0y o & (ky) 5
le(1—1K?) - (14 &%) i + y =0,

czynia zadosé peryody tak zwanej calki eliptycznej Legendre’a

({1

|
e
/

Vi —2?) (1—kPad)

uwazane za funkeye ilosci /. (Patrz rozdzial XVI)
Réwnanie

(*—1)y"— 3wy’ + Ba(a+Daey—aa+ 1) (a4+2)y=0
ma calke ogdlna

y=0C (x — 1) + C,(z — )"t 4 Oy ( — £2)*+2,

gdzie ¢ jest pierwiastkiem szesciennym z jednosei.
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Rdéwnanie y” = xz% ma calke ogdlng

i
. — A
+ 7 dl
V=0 e
AN s
(patrz Spitzer, Archiv Grunerta LII).
Réwnanie

y™m = Ax?y”" + Bzxy + Cy

badal Spitzer (Math. Ann. III, Archiv Grunerta LIII) i wyra-
zil rozwigzanie jego za pomoca calki okreslonej.
Réwnanie

Y + Py "+ Qu =0,

w ktéorem P, () sa funkcyami wymiernemi zmiennej , badal
Euler; calka tego réwnania wyraza sig za pomoca calki okre-
slonej. Przypadek, w ktéorym te funkcye sa liniowe, badal
Winkler (Wiener Berichte, LXVII).

§ 4
Rownania rzgdu wyzszego nad pierwszy.

Réwnanie typu

f (”(n—” ?/('l)) = 0' h]b y(u) = ¢ (!/(,,_],)
jezeli w niem polozymy y "~V =, daje
&= l—dp— —+ const .
J o)

Rugujac p z tego i poprzedzajacego réwnania, otrzymujemy
wyrazenie funkeyi y®—V przez z, a za pomoca kolejnych kwa-
dratéw mozemy znalesé y.
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Réwnanie typu
yodde=f ()5
jezeli potozymy:
YO T e
daje :

$ ¢* = [ f(p) dp + const,

WA

R — ’ - const.
q i i

Otrzymujemy tu p w funkcyi zmienne] «, stad zas znaj-
dziemy y®-") w funkcyi tejze zmiennej, a przez kolejne kwadra-
tury dojdziemy do funkeyi y.

Jezeli bedziemy uwazali x 1y za funkcye liniowe zmien-

dy d*y

nej t,— 78 funkeya stopnia zero, i funkcye stopnia

—1 1t. d., to wszystkie wyrazy réwnania beds tego samego sto-
pnia, a rzad réwnania obnizy sie, jezeli polozymy

Gl AT = 7 G

Rzgd réwnania jednorodnego wzgledem ilosci y i jej po-
chodnych obniza sie, jezeli polozymy :
dz

e, T lub y' = uy.

Rzyd réwnania, nie zawierajacego wyraznie zmiennej x, mo-
zna obnizye¢, kladac y' = —,—‘U— — p 1 uwazajgc Y za NOW§
WL
zmienng,

Jezell nadamy ilosci « wymiar 1, ilosei y wymiar =,
pochodnej ¥ wymiar n—1 it.d., wtedy y™ bedzie wymiaru zero;
réwnanie bedzie jednorodnem stopnia 7, a kladac z—=¢, y=¢". z,
obnizymy rzad o jednos¢.
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Rzgd réwnania
:,/H + 1)?/7 + Q."/I) —_ 0,

w ktérem P 1 @) zawieraja tylko # 1 «, mozna obnizy¢ o jednose
w nastepujacych przypadkach:

1) jezeli P i @ sa funkcyami tylko zmiennej x; kladac
dy

— = p, otrzymujemy réwnanie Bernoulli'ego;
o :

2) jezeli P 1 @ sa fankeyami tylko zmiennej y; kladac
m”

y = = Y= 7 przychodzimy do przypadku poprze-

dzajacego.
3) jezell P jest funkeya tylko zmiennej @, @ zas funkcya
tylko zmiennej y. Calka pierwsza jest wtedy:

log (_gg_) i ’l Pdx -+ /‘ Qdy = const,

a calka ogdlng:

i ifine
=6y ’ e dx + ¢,.

St fiody
' dy e

Jest to przypadek réownania, zwanego réwnaniem I.1io u-
‘ville’a.

§ 5.

Catkowanie rownaii rézniczkowych przez szeregi.

Najzwylklejszg metods calkowania rézniczkowego zwyczaj-
nego rzedu n-tego przez szeregi jest nastepujaca: Rozwiazujemy
réwnanie wzgledem y(™; biorac poehodne otrzymanego wyraze-
nia, otrzymujemy kolejno y™+¥ y®+2 = . wyrazone przez x, y,
¥ . .. y* 7 nadajemy wartosci dowolne ilosciom y, y'...y®=V
dla z =, i tworzymy szereg



§ 9. — Cadkowanic rownadi rézniczkowyel przez szeregi. 191

’ i)
Y=1Y + @—x)yy 1 ,L_’;'_U), /S SRR

Jezeli ten szereg jest zbiezny w pewnym
obszarzena okolopunktu z,, wtedy przedstawia on
calke rownania danego.

Jezeli nadawszy wartosci zupelnie dowolne nay. ¥y . . ¢, ",
nie otrzymamy niezgodnosci pomiedzy wartosciami pochodnych
Yo, YoV, .. .., szereg zas jest zawsze zbiezny, wtedy wyo-
braza on calke ogdlna: jezeli zas nie mozna nada¢ ilosciom
Yo, Yo - « . Yo"V wartosci zupelnie dowolnych, lecz tylko pe-
wne wartosci, wtedy szereg (o ile jest zbiezny) przedstawia
calke szczegdlna.

Rownanie Riccati’ego w przypadkach, w ktorych nie
daje sie calkowa¢ w postaci skonczonej, moze byé¢ calkowane
Przy pomocy szeregow.

Niechaj bedzie réwnanie Riccati’ego

dpdokss

y' + Yy = cam2,
pU )

Polézmy y = ; ; bedzie :

14 2

2" — ¢amt z = 0.

Jezeli z,, 2, sy dwiema calkami szczegdlnemi tego rowna-
nia, to calks ogdélng rownania danego bedzie:

Polézmy :

bedzie

1

w4 2%z

m .
-1 "m 5 =t
e ) 1ty ( = gE 1) ¢t w=0.
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Dwiema calkami szczegdlnemi tego rownania, uporzgdko-
wanemi wedlug poteg rosnacych zmiennej x (przy zalozeniu
m 3 :

-— — 1 =mn) sa:

Y (— 1y {- n(3n+42) dn+4) ... | 2r—1)n+42(r—1) N
S rl(n+l)y . n(2n+l).(2n+2). ... (rat+r-1)

5 (12)Butd) . . [(2r-1) ni2r]

x r(n+1) l A

Y l e Tt ()L (042)(2n4B).... (rrtr 1 1)
r==1
Te szeregi sg zbieznemi dla wszystkich wartosci 2.
Catky szczegdlng ré wnania
Py —la - g Ha 5T L ag s
o z (1 —7) i1 Ry

zwanegorownaniem Gaussa, jest tak nazwany szereg hyper-
geometryczny

£ ap a(a+ )B(+1
ol S R T 8
zbiezny dla wartosci z, dla ktérych x| <7 1. (Patrz Rozdz. XVIII).
Rownanie Legendre’a
l1—z)y"—2zy 4+ nn+1)y=0,

ma catki szczegdlne :

L4 wm—1) o a1y =2)n=8) o .
F1¥= 2(2n ~-T_)"J v 2.2.(9m 1) (Cu—ay AR
_r('n+1(n—1~2) me3 o (nt1) (i2) ( 14—{—&)(1;—}—2) i
AT S T T4 243 @n 1 o)

zbiezne dla |x|<C1. Jezeli 2n jest liczba nieparzysts dodatnia
lub ujemnsg, to te dwie calki nie sg niezaleznemi.
Réwnanie

WY Sy o Jies
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ma catke szczegdlng (przy kazdej wartoser x):

- Mz 23
o 1 — 12‘* —}— '12-22 = 12'22.32 -+— ......

Rownanie Bessela
Yy + vy + (@ —ndhy = 0
ma catke szczegilna

o x4
2 |1 — ' ATCPR WE i
i

241 " 2128 mFDn+ 2)

druga calke szczegolng otrzymujemy, zmieniajgc # na —n. Je-
zeli m jest liczbg caltkowita, to otrzymujemy w ten sposob jedne
tylko calke szezegdlna
Jezeli w rownaniu Bessela napiszemy:
Jle = (127 38 T == 0011
to réwnanie przeksztalci si¢ na nastepujace :

22" + (20 + 1)tz + (a® — f2n?F-p1y? %)z = 0.

Do tej postaci mozna sprowadzi¢, przy odpowiednim do-
borze ilosci a, g, 7, kazde réwnanie typu

22" + mte’ 4 (b+ct*) 2 = 0.
Tak np. jezeli

m—1 a 1
W= % ’ ﬁ:_:’.z" ﬁ?72=Q)

Z n

otrzymamy réwnanie:
22" + mtd + qttz = 0,

ktérego calka szczegdlng jest:
Pascal, Rep. L. 13
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A Lig . 1283 i
Vel = o T N m Dt s)

W przypadku szozegdlnym, gdy
2841 = 0, o*—Bfnd =0,

otrzymujemy réownanie Riccati’ego przeksztatcone.

§ 6.
Uktady rownaii rozniczkowych jednoczesnych.

Uklad m réwarn rézniczkowych, zawierajacych zmienng
z, m funkeyj 1 ich pochodne az do pewnego rzedu wzgledem w,
nazywa sie ukladem réwnan réozniczkowych je-
dnoczesnych. Jezeli w ulladzie tym zachodza pocho-
due rzedn wyzszego nad pierwszy, to kladae:

dy, dz _ d¥y,
dop1 de T da?

N

. TRDRE

i przylaczajgc te nowe réwnania do danych, sprowadzamy uklad
dany do ukladu n réwnan pomiedzy n funkeyamt y,, 4. . . . 9.,
zawierajacego pochodne stopnia nie wyzszego nad pierwszy.

Taki uklad daje sie zawsze calkowae za
pomoca n zwiazkdéw skonczonych pomiedzy
YysYos-yoYn 20 stalemi dowolnemi.

Jezeli z ukladu tego wyrugujemy =n-—1 funkeyj nie-
wiadomyeh wraz z ich pochodnemi, dojdziemy do réwnania réz-
niczlkowego zwyczajnego rzedu n-tego, ktorego catka zawiera n
stalych dowolnyrh.  Aby to uskuteczni¢, stosujemy metode
nastepujacas :
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Rozwiazujemyrdwnania wzgledem pochodnych

:(/’=f‘|('”’.l/1,ll/ﬂe SRR

. B . . . . . . . .

Yo =Tt - o o o L Yk

bierzemy pochodnyg pierwszego znich wzgle-
dem 7; podstawiamy po stromnie drugiej, za-
miast pochodnych funkcyjy,ich wartosci, wzie-
tezpowyzszychréwnan; bierzemy w taki spo-
86b pochodna n-—-1 razy i otrzymujemy u/, ," ... Y™,
wyrazone przex .7',;1/1,;:/2,.‘.;4/,..Rugnjquyg,y:{...yn,
znajdziemy réwnanierézniczkowe z funkcya
Y. Znajac nm pierwszych calek tegordéwnania
rézniczkowego, t. j.

, . g - Sh L 2N . . I ! 3 — —_—
RS it e WA Yy Y e S ==

i1podstawiajac w nich wartosci poprzednie,
otrzymamne na y, 4" ... 5"V znajdziemy n zwigz-
EeW pomicdzy ilosciami &, Yy, ¥s) » - - Uny CrsCoyn oo Cnit

Jezeliréwunan danych nie mozemy rozwia-
za¢ wzgledem pochodnych pierwszych, to kaz-
de znichrézniczkujemy n—1razy, i otrzymu-
jemy n?rownan pomiegdzy x ailosciami

n) . - 2 e T az. r y
B ™ Uy Ya'5 - W8S e ey Yy e e

Rugunjac pomigdzy temi rownaniami n(n—1)
BN 1, - . - Yo', s Yy Y o Y, otrzy A N
rownanie rézniczkowe rzedu n-tego wzgle-
dem ;. Rugujge pomiedzy calkamipierwsaze-
mitegoréwnaniain’réwnaniami poprzedza-
Lo R TR TAG) T AR T TR A
znajdziemy zwiazek pomiedzy x, ¥, ¥ ... Yn
astala.
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. dy ' :
g = AP P B s B -y
gdzie a, B, 7, B, B, ¥’ sa stale. ma calki nastepujace:

Yi kot = Cpoletoden
Pty + pe = Cyeltt <his

gdzie 4, , 4, sa pierwiastkami (réznemi) réwnaniami stopnia dru-
giego B+ B'A =1 (a-ta'l), zas u, i u, sa odpowiedniemi warto-

o a-t+a'l s
sciemintamka y = ————— . Jezel 1, = 1,, a'stad uy = u;,
e v+ 72 1 29 el B
wtedy jedna z calek jest postaci poprzedzajacej, druga zas jest:
! ’
' 77(1}’7;?*}’_ —eglt+ @)z ((" C.ax
T A SR e A

W przypadku, gdy po stronie drugiej roéwnan danych wy-
stepuje jeszcze wyraz, bedacy funkcya samej zmiennej z, wtedy
rozwigzujemy zadanie, zakladajac, ze w poprzedniem rozwiazaniu
C; 1 C, sg funkcyami tej zmiennej, i oznaczamy warunki, przy
ktérych czynia zados¢ danemu réwnaniu (metoda warya-
cyl stalych).

Niechaj bedzie uklad réwnan jednoczesnych

'lf,', P 7(,&:1!717 A _d!/?
X = Iyl o 1,2 ----- ,

gdzie

-

=g - by oy o 010 L g e sive,
Li=az+Uy +dpp o+ . 0 o o0+ e,
Xy = 0" 250"y A5 elige e 0 o E s T
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Niechaj kazdy z powyzszych stosunkéw rowna sie dt; otrzy-

mujemy przez to n — 1 wyrazen typu
1

t = Ce(Ad2 + pityy +vayi+ - . . .. hi)_'{'-,

gdzie k; sa m--1 pierwiastkami réwnania

| a—k, da, @ 1t | k|

| b, b,— bk, U, P A eV

! 0 o ' =0,
¢, (e G ralon e St

ilosel zas 4, w, », . . . I sg dane przez réwnania

A0 = U e e
At ul 42"+ . 0L = i,
Y T a = e PGSR NSRS T 7
A..,'B + ,u.-e' i )';(:" + o2 1o o210t —= ]l,‘ll',' ,

Rugujac ¢ pomiedzy n—1 w ten sposéb otrzymanem: wy-
razeniami, znajdziemy # calek mniejednorodnych z n stalemi

(n—+ 1 catek jednorodnych).

Ve
=1

Réwnania o pochodnych czgstkowych.

Jezell dany jest zwiazek pomiedzy funkeya y, zmiennemi
&y, 9, . . ., &w 1 pochodnemi czastkowemi pierwszego rzedu
Diy Doy - -« Pu funkeyl y wzgledem tych zmiennych, to zwiazek
F=0 pomiedzy y, x,, &y, . . . &, i » statemi dowolnemi, ta-
ki, ze obliczajac z niego n pochodnych funkeyi y 1 rugujac



198 Rozdzial VI,

state, dochodzimy do réwnania rézniczkowego danego, nazywa
sig calka zupelna.
Jezeli F jest calka zupelna ze stalemi ¢, ¢, . .., ¢, to
kladac:
oF or or
=)

S = = =0 .....,5—=10
3(5: : 3‘.’2 g / a”;l

rugujac z tych rownan i z réwnania F=( wszystkie stale do-
wolne, otrzymujemy calke osobliw a,

Jezeli zas jedne ze stalych np. ¢ uczynimy réwng funk-
¢yl dowolnej’ wszystkich pozostalych i wyrngujemy stale po-
miedzy calka zupelng F =0, funkcys @ i n—1 zwiazkami

oF eF 039 0 o ar 3{
e el NN R T 0
otrzymamy rozwigzanie, w ktore wchodzi funkcya dowolna.
Rozwiazanie to nazywa sie rozwliazaniem ogdlnem
lub catkag ogdlna.

Znajac calke zupelna, mozemy znaé¢ wszy-
stkieinne calki.

Kazde rozwigzanie jest zawsze zawarte
w jednej zpowyzszychtrzech kategoryj.

Roéwnanie o pochodnych czastkowych 1-go rzedu. liniowe
wzgledem pochodnych, jest postaci

Bt T iy L P D ==

gdzie Py, ... P,, P satunkeyami zaleznemi od y i od zmien-
nych x, &,, . . . &,: P, Py, . .. p zas sa pochodnemi czastkowemt
tfunkeyi y odpowiednio wzgledem oy, . . . ., &y,

Utworzmy uklad réwnan rézniczkowych liniowych zwy-
czajnych

da, Az dy

= Pl "[‘: T e o TR S5 P‘, - 1)
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Catkujyc ten uklad, otrzymamy = calek w; = const,
Uy == cOnst, . . . . . Wg = const,, gdzie u,, 4y, . . . ¥, sa fun-
keyami ilosei g, a4y, a5, . ., &,. Funkcya dowolna wszystkich
ilosci u, przyréwnana do zera, stanowi calke ogdélna réowna-
nia danego. (Rozwiazanie Lagrange’a).

W przypadku, gdy réwnanie nie jest liniowem wzgledem
D1y Pgs « « - «Duy calkowanie sprowadzi¢ mozna do calkowania
réwnan liniowych. Metody, do tego celn sluzace, znane sa pod
nazwg metod Pfaffa 1 Jacobi’ego.

Niechaj bedzie rownanie

F (2, @ o o o & Uy Py Pas - - 5 Pu) =0

postarajiny sie znales¢ m — 1 zwiazkéw podobuych z 2 — 1
stalemi:

Fy (e, @y o o o B 8y D1y Pas -+ - Pn) = Oy,
BFuy (£, Lo, - o o 8, Uy Pry Py - - - 5 P0) = tlay,
takich, aby p,, pa. . . ., pu, Otrzymane z powyzszych n réwnan,

zamieniaty druga strone rownania

dy = pdr, + pdx, + . . . Jipudx,

na rézniczke zupelna. Zcalkowawszy to ostatnie réwnanie, znaj-
dziemy funkeye y, wyrazonyg przez ilosci « i nowa stala.

Zmnalezienie funkcyj F, . .. F,_, zalezy od catkowania
réwnania rézniczkowego liniowego o pochodnych czastko-
wych. Jezeli polozymy

(ab’,,. )_ ok oF,,

du; 0

to P, zalezec bedzie od réwnania o pochodnych czastkowych
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|
l
0= |FF] = X ‘i o “gp,

F, od dwu réwnan analogicznych
[BFy] =0, [FpFy| = 0,
F, od trzech réwnan:
|FF] =0, [FF]|=0 |[FF]=0,

1t d.

Nie potrzeba wyznacza¢ calek ogdlnych tych réwnan, wy-
starczy wyznaczenie ich calek szczegdlnycl. Szezegdly musimy
tu poming¢.

Metoda Pfaffa sprowadza rozwiazanie danego roéwnania
do zagadnienia nastepujacego: ,Zcalkowac przy pomocy m ca-
lek wyrazenie postaci

X] dwl “+‘ Ag 'lJ.';, '—I— o B 5 S Xélll ‘l‘('zm 7 “y

gdzie iloscl X sg funkcyami zmiennych . Jacobi plerwszy
zajal sie metoda P faffa (Crelle, I), zmodyfikowal ja i wydo-
skonalil, wreszcie stworzv! metode nows (patrz nizej wskazowli
bibliograficzne).

W rozwiazaniu przy pomocy metody P fatta napotyka-
my wyrazenia zwane pfaffianami, ktoresa pierwiastkami
kwadratowemi wyznacznikéw polsymetryeznych rzedu parzy-
stego (patrz wyzej, Rozdzial 111, § 2).

Rownanie Eulera

%
 —= / =020
oy ®

ma catke ogdlng

Y = fx, + 4x,) + ¢ (2, + Ayx),
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gdzie f1 ¢ sa symbolami funkeyj dowolnych, 1, 4, zas sa pier-
wiastkami réwnania

@+ 204 4 ci* + 0.
Jezeli 1=14,, calka ogdlna ma postaé:
[@ )+ gy +Aa) Gy + Oay),

gdzie y 1 6 sa stale dowolne.

Jezeli b =0, otrzymujemy tak zwane réwnanie strun
dzwieczacych (réwnanie Bernoulliego, w ktérem %
jest wysunieciem miejsca punktu o odcietej z, ; 2, oznacza czas)

Rownanie Laplacea

3
< ! )
e = Py 4+ Q= 0,
B 2
w ktorem 3, N. I, @ sa funkeyami samej zmiennej #, calkuje
sie w ten sposob:
Syer i aM :
Jezell > — o — MN-—4 = 0, wtedy calkowanie spro-
wr
A
wadzi¢c mozna do calkowania réwnania

on,
37" + Nu + @ =0,

iy
ktore, nie zawierajac pochodnej wzgledem i, calkuje sie jak réw-
nanie rézniczkowe zwyczajne, pod warnnkiem, ze stala dowolng
uezynimy rowng funkeyl dowolnej zmiennej u,. Znalazlszy tym
sposobem 1w, podstawiamy te wartos¢ w réwnaniu

ay

o + My = u,

calkujemy je podobnie. jak poprzedrie, 1 znajdujemy v z dwiema
funkcyami dowolnemi, z ktérych jedna zalezy tylko od o, druga
tylko od x,.
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Jezeli A nie jest zerem, wtedy przy pomocy podstawienia

aal + My=u
otrzymujemy rownanie ze zmienna w tegoz typu, co dane. Do
tego nowego rownania stosujemy tozsamo postepowanie, t. j.
badamy, czy nowa ilos¢ 4 nie jest zerem 1 t. d.

Do réwnania typu powyisiego daje sie sprowadzié¢ 1 takie
réwnanie, w ktérem zachodzg liniowo 1 pozostale pochodne dru-
gie funkeyi y.

Patrz l.acroix (Caleul intégral), Imszenieckij (Archiv Gru-
nerta, LIV), oraz note Boussinesqa (Comptes Rendus LXXIV),
ktory sadzil, 7e pierwszy uskutecznil powyzsza redukeye (poréow. Ser-
ret, Comptes Rendus LXXIV) :

Réwnanie Liiouville'a

ik g
3, Oz, }
ma calke ogilna:
Yy = h low _]i_’(.l‘._,) ?,(f_l_) 4
V=91 B T lifm e @)l

gdzie f, ¢ sa dwiema funkcyami dowolnemi; pierwsza zmiennej
&, druga zmiennej x, .

Darboux (Comptes rendus 18%82) rozwazal rownanie na-
stepujace:
3y m (1 =)

o.L; O, (g - Ly)?

Jest to przypadek szezegdlny réwnania

o, u PO Ju
(.’IJ1 L xy) E’wl-&/:., _/5 oz, o ﬁ T :Or
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gdyz, kladac w plerwszem y = (r; — x,)"u, otrzymujemy przy-
padek szezegdlny drugiego (w ktérym g=pg"m).
Calka rownania ogdlniejszego jest;

el fg‘l’ (a) (@ —a) ¥ (a—x) ? da

&y

@ =) L @) @, — )t (@ —

gdzie @ 1y sy funkecyami dowolnemi.

Rezultat ten zawdzieczamy Appelowi (Bull. Darboux 1882,
str, 314), Roéwnaniem tem zajmowali sie juz Euler (Calculus integr.
IIT) i Poisson (Journ. de I'Ecol. polyt XII). Inne wskazowki zna-
le$é mozna u Darboux’a (Théorie des surtaces, II str. 54) i Jameta
(Bull. Darboux, 1895, str, 208,

Rownanie jeszeze ogdlniejsze

0%u (i ou m S P
i) L o ik

P G LI - )
o, oz, T —ua, oa, by =il O, (T —,)?

badal juz Lhaplace (Acad. des sciences 1773); sprowadzi¢ je
" mozna do poprzedzajacego.

Sposob catkowania rownania

3" " :n + n,/

B =

oz, Vi e L (YRS - + a1 F.(y)

znalesé mozna u Spitzera (Archiv Grunerta LI, 1870).

3

Calkowaniem rownania

oy %y
A& ARSI T w2
C.Il Ly,

zajmowali sie Schlifli (Crelle LXXII) 1 Le Roux (Bull
Darboux, 1895).
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Literatura o rownaniach rézniezkowych jest bardzo rozlegla.

Rys historyezny tej teoryi znales¢ mozna w dziele Schlesin-
gera: ,Theorie der lincaren Differentialgleichungen® (Lipsk 1895--97),
gdzie znajduje sie takze dos$é zupelna bibliogratia.

Pierwszy Euler (1769} zajmowal sie wyczerpujaco réwnaniami
rézniczkowemi; po nim D’Alembert, LLegendre, Cauchy i inni.

‘W ostatnich czasach zajmowano sie szczegolowo réwnaniami roéz-
niczkowemi liniowemi, badajac ich zwiazek z teorya funkcyj oraz teorys
grup przeksztalcen (patrz Rozdzial IX). W tym nowym kierunku ba-
dan nalezy wymieni¢ przedewszystkiem prace Fuchsa (Crelle, LXVI,
LXVIIIL, Berl. Akad. 1884 i t. d.). Inne cytaty podajemy w rozdziale
nastepnym. Celem prac doby najSwiezszej jest nietyle znajdowanie
calek, ile badanie zachowania sig tychze w sasiedztwie danego punktu,

Z ksiazek, traktujacych o rownaniach rézniczkowych, wymieniamy
dziela: Boole'a (Londyn 1865 —1872) WI. Zajaczkowskiego
(Wyklad nauki o réwnaniachrézniczkowych, Paryz 1877). Forsvtha
(Londyn 1885, Cambridge 1890, przeklad niemiecki Masera, 1889).
Schlesingera wyzejcytowane, Craiga (New-York, 1889)i t.d,

Roéwnaniami o pochodnych czastkowych zajmowali sie: d’Ale m-
bert, Euler, Lagrange (,Théorie des tonctions analytiques
i ,Calcul des tonetions“); Cauchy (Comptes rendus XIV, XV, XVI)
i inni.

Pierwsze prace o réwnaniach liniowych 1-go rvedu zawdzieczamy
Lagrangeowi, Canchy’emu. Jacobiemu (Crelle II, XXIII,
Werke IV); o réwnaniach nieliniowych-—L agran ge'owi, Charpi-
towi (wpracy przedstawionej Akad. paryskiej w 1784, lecz nieogloszo-
nej; metode jej wylozyl Lacroix w swoim ,Rachunku* t. II;
str. 548). Nastepuja potem metody Pfafta (Berl. Abh, 1814—1815),
metoda charakterystyk Cauch y’ego (Exerciees 11, 1811), Jacobi'e-
go (Crelle XVII, Liouville Il1), nowa metoda tegoz ( Crelle LX), prace
Mayera (Math, Ann. 11l V, VI, VIlI) i LLie g o (tamze V, IX, XI).
O rozwiazaniach osobliwych pisal Darboux (w Mém. des Sav.
étrang. XX VII, 1883), Inne wazne prace sy Ampére’a (Journ.
de I'Ecol. pol. cah. XVIT—XVII[), Clebscha (Crelle LXV), K o-
walewskiej (tamze LXXX).

Zbiér metod calkowania réwnan o pochodnych czastkowych po-
daja: Imschenetz ky (Sur l'intégration des équ. du 1 crdre, prze



$T7. Rownania o pochodnych ezgstkowyeh. 200

klad Hotiela, Paryz 1869; tegoz Sur l'intégr. des’equ. du 2 ordre,
Greifswald 1872 i Archiv Grunerta 1869, 1872), Graindorge (Mém.
delaSoc. scient. de Liége (2), V, 1872), Goursat (Paryz, 1891— 1896),
Mansion (po po francuku i w przekladzie niemieckim, Berlin 1892,
gdzie przedrukowano rozprawy Kowalewskiej, Imszenieckiego
i Darboux’a).

Badania, dotyczace istnienia calek réwnaii o pochodnych czastko-
wych, oglosili: Riquier (Ann. de U'Ecol. Norm. (3), X, 1893;, K b-
nigsberger (Math. Ann. XLII), Bendixon (Bull. de la So-
cieté math. de France, 1896) i inni.

Biblioteka
matematyczns-fizyezna
=ANTONIEGO WILKA.&

Liczba:




ROZDZIAL 1X.

FEORYA GRUDP PRZEKSZITALCEN.

/Al
—

Grupy przeksztatceri punktowych.

Niechaj bedzie n zmiennych », x, ... x,; przeksztalémy
Jje na zmienne x,/, x,’, . . . , 2, za pomoca Wzorow:

(1) AR 5 (g R R TR o b s L s
(P=7112."1"F n)

gdzie f; sa funkcyami analitycznemi w pewnym obszarze.
Kazdemunukladowiwartoset «,, aq, . . ., @, odpowiada prze -
ksztalcenie. Przekssztalcenie &', = x; nazywa. sie zwykle
przeksztalceniem toZsamosciowem.
Przyjmijmy: 1) ze te funkcye sa odwracalne, t.j. ze
z wzorow powyzszych mozemy wyrazié ilosci ay jako funkeye
iloscl &'y, 2) ze ilosci a jest istotnie 7, t. j. Ze zmieniajac
je wszystkiemi mozliwemi sposobami, otrzymujemy oco” prze-
ksztalcen: 3) ze przeksutalcajac za pomoca jednego z powyz-
szych wzoréw ilosci 2’ na «’, a nastepnie za pomoca innego lub
tegoz wzoru ilosci &' na x”, otrzymujemy zawsze przeksztalce-
nie, zawarte we wzorze (1). Mdowimy wtedy, 7%e przeksztalcenie
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powyzsze (1) w liczbie co’ tworzg grupe ciagla prze-
ksztalcen Grapa ta nazywa sie ciagla dla tego, ze
zimieniajac sposobem ciaglym parametry a, mozemy przejs¢ od
Jednego przeksztalcenia grupy do kazdego inmego. Przeciwnie,
grupy “podstawien pomledl.v n elementami mozna w temn zna-
czeniu uwazacé za nieciagle.

Jezeli » jest liczba sl\omznm&. grupa nazywa sie skon-
czona klasy r-tej lub r-parametrowa (r-gliederig).

Jezeli w szezegdlnosei funkeye f sa funkeyami wymiernemi
loscl # 1 @, sa, asatakze wyvmiernemiich odwrdcenia, mamy wtedy
przeksztalcenia, zwane przeksztalceniami Cremony.
Tworza one oczywiscie grupe. zwana grupa Cremony, do
ktdre] stosuje sie nastepujace twierdzenie:

Grupa Cremony zawilera przeksztalcenie
tozsamosciowe 1, a przeksztalcenia je] mo-
Zna uporzadkowad¢ parami wten sposob, ze kaz-
demu przeksztalceninodpowiada drugie takie,
ktéoregoiloczyn przez pierwsze daje 1, (todrugie
nazywa sie przeksztalceniem odwrotnem wzgledem pierwszego).

Nie wszysthie grupy posiadaja wlasnose pierwsza i druga.

Jezeli wszystkie przeksztalcenia f two-
rzy grupe, to ich odwrdcenia tworzag tez
grupe

Dwie grupy nazywaja sie podobnemi, jezeli od wzo-
réw jednej mozna przejsé do wzorow drugiej, zakladajac, ze pa-
rametry dawne sa funkcyami nowych, oraz ze dawne zmienne
sy funkeyami nowych zmiennych.

Jezeli przeksztal’cenia. f tworza grupe,
wtedy ilos’c' a/, uwazane za funkcye parame-
tréow a,czynia zadosé pewnym réwnaniom roz-
niczkowym.

Jezeli grupa jednoparametrowa zawiera
przeksztalcenxe tozsamosciowe, to jej prze-
ksztalcenia sg przemienne (t. j. iloczyn ich-
Jestniezalezny od porzgdku czynnikdéw)ida-

jasie podzieli¢ na pary przeksztalcen wza-
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jemnie odwrotnych; nadto kazda taka grupa
jest podobna do grupy przesunieé¢

4 g — —
Wyl =Ygy i lrabalar == iy, e == Y

Przeksztaicenia taklej grupy mozna wy-
razicé tak:

12 3 3
x! =, + Gy ym) + 5 X&) 1 g XXEDF-...

at

gdzie symbol X oznacza X &; -
it

Jezeli uczynimy ¢ nieskonczenie malem, bedziemy mieli
przeksztalcenie zwane nieskonczonostkowem Jest ono:

|
8|

A3
3!

: o - o
.l,‘,'=il’i+ T S 'Tz'!" X (E') +

X (X (&) A

Przeksztalcenie nieskonczonostkowe jest okreslone przez
funkeye &, a wiec 1 przez symbol X.

Mozemy powiedzied:

Kazda grupa jednoparametrowa, zawie-
rajaca przeksztalcenie toismmos’ciowe,okres’,la
przeksztalcenie nieskonczonostkowe 1 sama
jest przez takiez przeksztalcenie okreslona.

Przeksztalcenia nieskoneczonostkowe, wyrazone symbolami

3 PR LI DI S L S e
nazywaja sie niezaleznemi od siebie, jezeli zwiazek

Xl(f)—}—e?‘\’?(f) —*— 3 e -,+€,- Xr(fl-':o.

w ktorym ilosci e nie zaleza od zmiennych x, moze zachodzi tyl-
ko wtedy, gdy wszystkie te ilosci e sa zerami.

Kazdej grupie r-parametrowej odpowia-
da »r niezaleznych przeksztalcen nieskonczo-
nostkowych X;, X, ..... X,;jezeli posiada ona

nadto przeksztalcenie tozsamosciowe, to mo-
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zna przeksztalcenia jej wyrazié za pomocs
wzoru

4 IRy
xr= .‘I-'/+ }-k Ek.' -+— —Xé'L .X), (El,) RN s
kj

=l

gdzield, 4, ...1,sarparametrami dowolnemi.

Grupa r-parametrowa z podstawieniem
tozsamosciowem zawiera r przeksztalcen nie-
skonczonostkowyech niezaleznych,i nie wie-
cejniz n.

Wazng grupa przeksztalcen punktvwych jest t. z. grupa
przeksztalcen rzutowych (ezyli grupa rzuto-
w a); przeksztalca ona zawsze prosta na prosts, jezeliilosci
uwazamy za spolrzedne punktu w przestrzeni n—wymiarowej.
Jej wyrazenie jest nastepujace:

b @iy + o G B
P > % x -y - Wl T -
Wy Ty + s - + Ap,n+1 Xn + Apt1, nt3

Jej podgrupa, dla ktorej
Al w41 = . . . 4 4 =“~.n+1 :O5

nazywa sle grupg liniow a.

Niezmienniki skoriczone i réZniczkowe grupy jednoparametrowsj.

Nazywamy niezmiennikiem skonczonym wzgl
réozniczkowym grpy funkcye samych zmiennych, albo
tez 1 ich pochodnych, ktéra nie zmienia sie przez przeksztalcenia
grupy.

Pascal. Rep. I i4
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Aby funkeya £, 2,) nie zmieniala sie przy
wszystkich podstawieniach grupy jednopa-
rametrowej, jest koniecznem i dostatecznem,
by bylo X(2)=0, gdzie X jest symbolem prze-
ksztalcenia nieskonczonostkowego grupy. Nie-
zmiennik £ jest przeto rozwiazaniem réwna-
niavézniczkowego o pochodnych czastkowyeceh

Aby ogdél wszystkich co! krzywyeh, ktore
przedstawia rowmnanie m(r.x,)=const, pozostalnie-
zmienny przyv wszvstkich podstawieniach gru-
py jednoparametrowej, jest koniecznem i do-
statecznem. by X(w) bylo funkcya samego w.
Jezell wszczegodlnosci X(w)=0, to 1 kazda po-
jedyncza krzywa pozostajeniezmienionsg.

Rownanievdzniczkowe rzedu 1-go
M, dzy — M, da, = 0

pozostaje niezmiennem co do postaci (précz
ewentualnegoczynnika)dla wszystkich prze-
‘ksztaltcen grupy wtedy 1 tylko wtedy, jezeli
kladacsymbolicznie

2
V=M o+ M, —
i

mamy tozsamosciowo:
X(Y) — Y(X)=14.Y,

gdzie i jest funkcya tylkoiloseci # 1 a,.
Rownanie rézniczkowe M, de, — Mydr, = 0
nalezy do grupy jednoparametrowej, ijezeli
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znamy niezmiennik grupy (=, z,), to catko-
wanie ‘réwnania rézniczkowego sprowadza
siedo kwadratury.

Rownanierdzniczkowe l-gorzedu

dir,

== U SR W
dwl /'

v - .
F oy, 2y,

nalezy do grupy jednoparametrowej, ktérej
przeksztalceniem nieskonczonostkowem jest

2 et
e R e

dury Oilly

;\’:

Ire

1

wtedy itylko wtedy, gdy wyrazenie

.o e
e O
R A & R iy & [dx,\*}y OF
_IL_ : -f—l" —T— — _— g I__'_I S}
éx, . \ow; 2w, | dey, . 0wy \ daty |} J 3 I/_darg_)
\ d;

jest zerem przy F=0, w zalozeniu, ze réwnanie
dane jest takiem, iz trzy pochodne funkeyi F

(i75 . : : :
wzgledem .1:1,.1:._,.—&".;- nie znikaja wszystkie
wskutek rownania I7= 0,

Jezeli znamy niezmiennik skonczony Q(x ay)
grupy jednoparametrowej pomiedzy dwiema
zmiennemi, to za pomoca kwadratur otrzyma¢ mo-
zna wszystkie mozliwe niezmienniki rézniczkowe
rzedun 1-go (zawierajgce tylko pochodna pier w-
szgilosel o, wzgledem ay); a przyrownawszy
dozera te niezmienniki rézniczkowe, otrzy-
mamy wszystkie mozliwe réwnania réznicz-
kowerzedu l-go, nalezace do tej grupy.
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§ 3. g
Przeksztatcania stycznosciowe.

Przeksztalcenia, o ktérych mowa w dwu poprzednich para-
grafach, nazywaja sie przeksztalceniami punktowemi; réznia sie
one od tak zw. przeksztalcen sty cznosciowych, ktore sa
w pewnej mierze przeksztatceniami ogéluniejszemi. Dla prostoty
przyjmijmy, ze mamy dwie tylko zmienne; przeksztalcenie pun-
ktowe okresla sie za pomocs wzoréw

&y = [y, xy), @'y = fo(@,2,).
Na podstawie tych wzoréw pochodna zmiennej z', wzgle-

dem £, mozna wyrazi¢ przez pochodna zmiennej z, wzgledem x,,
a mianowicie :

E)io e e
=T =),
1 L Gl I 95 .
3.1;, ! axa (l‘l'l

Skutkiem tego forma

da, — —,hl"'— =0

dax,
zamienia sle /przy pominieciu czynnika) na

a’,

da'y —- d;l;,‘ i U
1
Polézmy :/;‘2 = p; wyobrazmy sobie poprzednie prze-
oz,

ksztalcenie, jako przypadek szczegdlny przeksztalcenia ogdlniej-
szego pomiedzy trzema zmiennemi, majacego postac
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(b"‘ =P (xh ‘,"'2’2)) :I"IQ - (mh Zys P)s ]” =@, ((1?1, ;1’2_‘ p)

1 zalézmy, ze te trzy zwigzki pozostawiaja bez zmiany forme
rézniczkowa

dx, — pdx; = 0,
t. J. przeksztalcaja ja (przy pominieciu czynnika) na
da!y — p'oda’, — 0. )

Mowimy wtedy, ze uskutecznione przeksztalcenie jest s t y-
cznosciowenm.

Jezeli pomigdzy trzema powyzZszeml zwigz-
kamimozna wyrugowac¢ p tak, aby otrzymaée
'y, &'y, wyrazone jedynie przez x, %, wtedy
przeksztalceniestycznosciowe staje sie pun-
ktowem.

Wykonywajac kolejno dwa przeksztalce-
nia stycznosciowe, otrzymujemy znowu prze-
ksztalcenie stycznosciowe.

Odwrotnos$eé przeksztalcenia stycznoscio-
wego jest przeksztalceniem stycznosciowem,

Funkeye ¢, @,, okreslajace przeksztalce-
nie stycznosciowe, czynia zadosce zwiazkowi:

op, [ @, gy g ( Qg g
[@y. @] = ! o 1) - S (e e d-p U] =0,
LP1> Pl dp |\ oz, P dix, ) dp |\ dx, ity

Ilodwrotnie, jezeli dwie funkcye ¢, ¢, spraw-
dzaja zwiazek |¢,9,]=20, to za pomocsg nich
mozna zawsze, 1 to sposobem jedynym, okre-
$li¢ przeksztalceniestycznosciowe,
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4. ‘.

/s

Niezmienniki i parametry rbZniczkowe.

Niechaj bedzie n—m zmiennych &, wy, . ., 24t 20, 29+« Zuy
z ktorych zmienne 2z sa funkeyami zmiennych @; niechaj be-
dzie nadto grupa przeksztalcen wszystkich zmiennych. Funk-
cya wszygstkich zmiennych 1 pochodnych ilosel z wzgledem .,
pozostajaca bez zmiany, gdv wykonywamy wszystkie prze-
ksztalcenia grupy, jest niezmiennikiem rdézniczko-
wym grupy. Jezeli grupa jest grupa calkowita, mamy nie-
zmiennik rozniczkowy bezwzgledny., Jozeli funk-
cya ta obejmuje nadto funkcye dowolne iich pochodune, mamy
to, co nazywamy zwykle parametrem rdzniczkowym;
jest to wyrazenie, przejete z teoryl powierzchni.

Niezmiennikiem rézniczkowym grupy rzutowej jest nie-
zmiennik Schwarza

’ "y

zHI 2z ij z

P

Z.i

Poniewaz niezmiennik ten ma wlasnosé, polegajacg na
tem, Ze pozostaje on niezmienionym (procz czynnika). gdy prze-
mieniamy z1ixz, Sylwester nazwal go recyprokan-
tem (wzajemnikiem) i rozciagnal pozniej te nazwe na wszyst-
kie niezmienniki rézniczkowe rzutowe,

Mozna pomysleé niezmiennik rézniczkowy w innem zunacze-
niu, odnoszac go mianowicie do formy rézniczkowej zasadniczej;
mamy wtedy pojecie niezmiennika rézniczkowego, ktore zbliza sie
bardzo do pojecia niezmiennika w teoryi form algebraicznych.
Niechaj bedzie dana forma rézuiczkowa

PR AR 1 SRt

(2
t. J. funkeya jednorodna calkowita okreslonego stopnia wzgle-
dem dx,, dr, . . . d, ze spélezynnikami, ktore sy funkeyami
wszystlkich zmiennych.
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Dla wszystkich przeksztalcen grupy, torma ta rézniczkowa
przeksztalea sie na inna tego samego stopnia; spélezynmiki 2
przechodza nainne, lecz w ten sposéb, ze w ogolnosci kazdy nowy
spolezynnik Z,;. jest w ogélenie wprost przeksztalceniem spélezyn-
nikéw dawnych, lecz pewna kombimacya przeksztalcen wszystkich
dawnych Z. Funkeya zmiennych 2, ilosel 7 1 funkeyj dowolnych,
ktora przy wszystkich podstawieniach grupy zachowuje te samg
postac co do iloscl 2 1 Z nowych, nazywa sie wogdle parame-
metrem rozniczkowym, nalezgcym do grupy.

Przypadek ten mozna uwazaé za za szezegolny wzgledem
poprzedzajacego, jezell przyjmiemy, ze przeksztalcenia, ktorym
poddajemy ilosel z (bedace funkeyami zmiennych x) sa wlasnie
takiemi, jakie wynikaja z przedstawienia nowych spolezynnikéw
Z formy rozniczkowej przez spolezynuiki dawne 1 przez zmienne.

Pod ta ostatnia postacia szezegdlng zadanie o wyznaczenin
parametrow lub niezmiennikéw rozniczkowych wiaze sie z ba-
daniami, rozpoczetemi przez Gaussa, lhamdégo, Jaco-
b1l’ego 1 rozwinietemi w najnowszych czasach przez Beltra -
ni’ego 1 innych, ktérzy za punkt wyjscia wzieli teorye powierz-
ni. Badania te nalezy uwazac¢ za przypadek szczegélny zaga-
dnienia wyzej wyslowionego 1 dla tego jeszcze, Ze w niem nie
rozpatrujemy grupy specyalnej przeksztalcen, lecz grupe calko-
witg wszystkich przeksztatcen. Nazwa ,parametr réznicz-
kowy* pochodzi od Iiamé go.

Wedlig wylozonych tu poje¢, niezmiennikiem rézniczko-
wym jest tak zw. krzywizna (Gaussa powierzchni (patrz
,Geometrya rozniczkowa).

Jezeli mamy forme rézniczkowa xwadratows

Ton

. ST b T 14

r.s
i przez a oznaczymy wyznacznik iloscl a,,, przez A—wyznacznik
ukladu dolgezonego, przez 4,, — jego elementy, wtedy wyrazenie

. oU U
A] (] = 7‘-‘ A],_, W a"—y‘ Py
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(gdzie U jest funkcya dowolna zmiennych)
jest parametrem rézniczkowym vzedu 1-go.
Wyrazenie

oU 2V
4 JV = s
Al SR % Ar,e o, O,

jest parametrem réozniczkowym rzedu l-go, za-
wierajgcecym dwie funkcye dowolne. .

Wyrazenie

jest parametrem rézniczkowym rzedu 2-go.

Glownem dzielem o grupach przeksztalcen iich zastosowaniach
do réwnan roézniczkowych jest dzielo Liego: 'Theorie der Trans-
formationsgruppen“ it. d., 3 tomy, Lipsk 1891 — 93; dalej tegoz:
,Vorlesungen iiber contuierliche Gruppen mit geometrischen und an-
deren Anwendungen“ Lipsk 1893, herausg. von G. Schefters; Vor-
lesungen iiber Ditfferentialgleichungen mit bekannten infinitesimalen
Transformationen, herausgegeben® von G. Schefters, Lipsk (891
(streszezone przez J. Paczowskiego w ,Pracach matematyczno-
fizycznych, t. VII, Warszawa 1896); Geometrie der Berithrangs-
transformationen®, Lipsk 1896 (streszezone przez Ii. Wierzhickiego
w ,Pracach matematyczno-fizycznych® t. IN, Warszawa 1898). Nie
cytujemy tu licznych rozpraw Liego wréznych tomach Rozpraw
Akademii w Chrystianii i w dzienniku ,Mathematische Annalan,
Z polskich autorow w przedmiocie tyin oglosil rozprawy K, Zoraw-
ski, (,Acta mathematica* t. 17, 1891 i w ,Rozprawach Akademii
krakowskiej* t. XXIIIL i nastepne).

O Dbibliografii tego przedmiotu, zwlaszeza hedacej w zwiazku
z teorya rownan rozniczkowych, mozna znales dane w nowem dziele
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Schlesingera ,Handbuch der Theorie der linearen Differential-
gleichungen,, Lipsk 1895—97).

W pracach o niezmiennikach i parametrach rézniczkowych win-
nismy odrozni¢ dwie kategorye: jedne z nich maja swéj punkt wyjscia
bezposrednio w teoryi grup, inne za$ wychodza z badania form réznicz-
kowych, specyalnie kwadratowych.

Do kategoryi pierwszej naleza rozwazania Schwarza uad nie-
zmiennikiem rézniczkowym grupy rzutowej (Bestimmung einer speciel-
len Minimalfliiche, Berl. Abh. 1871), Brioschi’ego (Annali di mat,
XIII, Acta math, XIVit, e), Svlvestera (Am, Journ. VIII, X),
Halphena nad niezmiennikami rézniczkowemi rzutowemi (Journ. de
de I'Ecole polyt. 1880, Comptes rendus LXXXVI, Journ, de Liouv.
1876, 1880, 1883, Acta math, TIT). Forsytha (Phil. Transact. 1888).
ogolune badania Liiego (Math. Anu. XXIV, (w zwiazka zniemi cytowa-
na wyzej rozprawa Zorvawskie go o przeksztalceniu powierzchni,
Acta math, XVII, 1891, Rozprawy Akad. krak, 1893).

Do kategoryi drugiej badan naleza rozwazania G aussa nad
krzywizna powierzchni, nastepnie badania Lamé go (Legozs sur les
coordonnées curvilignes), Jacobi'ego (Werke 1I), Casorati'ego
(Annali di mat. (1), III, 1V; (2). XII) i Beltrami'ego (Acc. Bologna
(2), VIIL, 1896), ktéry rozeiagnal na przypadek n zmiennych hadania
poprzednie. W dziele Brioschi'ego o wyznacznikach (1854) rozpa-
truje sie juz przypadek niezmiennika rozniczkowego rzedu 2-go dla n
zmiennych, lecz dla specyalnego przypadku do formy kwadratowej zasa-
diriczej. Wreszeie nalezy tu wspomnie¢ o nowszyeh badaniach: Ricei'ego
(Annali di mat. XII, XTIV, Lincei, 1888, 1889, Ist. Veneto 1893), Pa-
dovaly (Lincei 1887), I'robeniusa (Crelle (X), Knohlaucha

(tamze CXI) i innych.



ROZDZIAL X.

RACHUNEK ROZNIC SKONCZONYCH.

SL

Wiadomosei ogolne.

Wyobrazmy sobie kolej wartoscr &,, oy, x,, . .. zmiennej x
i niechaj f(x) bedzie tunkcya tej /nnennej, réznice f(a,, - f(To),
f(w‘,)—-f(w,) ...... ndzywam sie réznicami pilerwszemi
funkeyi f 1 oznaczaja sie za pomocy symbolow Af(a,), Af(x)), .
Wykonywajac podobne dziatania na réznicach pierwszych,
otrzymujemy réznice drugie: Af(x,). A¥ry) . . . it d.
Réznice »-—-ta funkecyi f(x) przedstawia
wzor: i

A flwg) = flwa) — (1) firncs) + (0)y f(Tu-2) . ... . . (1) fads)

Wartosé funkeyi w punkcie », przedstawia
wzor:

f(x.) = f(x,) -+ (n), Af(r,) + (n), A%(iry) + ceee "l’ A*f(a,).
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Mamy nadto nastepujace wzory (Studnicki):

Am f(-'lf/l—%") = 1%;) (n)‘ -\m“”f(xh)-

_\m-{»nfl’wh) — ‘i (_1)[(7”‘ A"‘f(xhﬁu--i)-,

1=0

l
\ A"‘f(d‘/+ } , |,n) i1 A"‘*{f((ﬂh

i=0

n-1 n-1
X () = 35 (1) ity AT F (2,),

=0

Przyjmijmy. ze
.l'l -— "“’0 — _7;2 - ,I'] = .l,':‘ -— .I'2 = — l[, -

wtedy réznice m-te wielomianu stopnia m-tego
sg stale, t.j. niezalezne od 2 i rédwne (nie uwzgle-

dniamy wyrazu h”e,, gdzie g, jest spdlcaynnl
kiem pierwszego wyrazu wielomianu) czynni-

kowejliczby m:

A,. er = ¥ (eh__ l)n 2
1 hu
et E R Rl et
A = (—y nl (@) @+2h) . . . &+ nh)

( 2 sin —%h—)nsin (ax +o+ H(Lhz_bz)—) :

)

A*sin (ax + b) =

, . ah (al
A" cos (az + b) = (2 sin _ag ) cos (ax+b+ i H_n) ) ]
Rozwazajac potegi n-te liczb naturalnych 1 ich réznice ko-
lejne odnosnie do pierwszego elementu 0%, otrzymujemy 167 -
nice wyrazu 0*. Mamy tu wzory :
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Am O+l —= (A Or ,__I_, Amt] ()n) :
A" O™ = m! = m™ — (m); (m — L) 4 (m)y (m — 2)" — . ..

+ (=1 (m)p_y,
Am (OR)* = hn Am O»

Am (On A"U"
& Ll ) = 1™ e o £ OO LR, S vl ot T ™ ()
AnQr+1
T of P < ‘n—H‘
S (n+1)! ),
gdzie 5 jest punktem i zawartym pomiedzy x,

1 Ty — nh.

3 Am (')u ¥ Z“ 1
n! 2 gl

gdzier, r,. .r,.sgliczbycalkowite dodatnie,
ktéorych sauma rowna siem, i gdzie suma roz-
ciggasie na wszystkie mozliwe kombinacye
tyech liczb.

Jezeli B, oznaczaliczbe Bernoulli'ego (patrz
Rozdziat XVIII), to

mn
S -11

1 1 i
Bm o (_1) _,’n' [07;:___ _2_ AOm + _3 A?()'"— el + (___l)m 1 Am ()m] )

m—1

Oto tablica réznic wyrazu 0™ az do A10010:

o
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S
Lo

Interpolacya. Funkeye interpolacyjne.

Wyrazenia

f(":t f'l'u)

fl (wt.l? xl)
&£y — ¥y

. f1 (g, 79) — f1 (7. ;)

f‘.’ ('rnt wl"fﬂ) L Xy — By Tl

.

sy funkcyamiinterpolacyjnemi l-go, 2-go i t. d.
rzedu. Zajmowal sie niemi pierwszy Ampére (Gergonne,
XVI). pézniej Cauchy, Bellavitis, Genocchiit. d.

Wskazéwki bibliograficzne co do tego znales¢ mozna w tomie TII
sRachunku nieskoniczonosciowego® Pascala, przeklad polski,
Warszawa 1897, str. 186).

Funkecyeinterpolacyjne sa symetryczne-
mi wzgledem wszystkich zmiennych, ktdére
zawieraja. (Twierdzenie Amp ére’a.)

Kazdg funkcye interpolacyjna mozna

przedstawié w ten sposéb:

% f () S o
'f” (xm NI | ‘/B") g (xn'—'a"l)(wn "’x2) i et (.:"Il_xil) ’
f(-"d'x)) 3
iz (T —) (2, — 1) .. . (2 — @)
Rt dbuly
filxy)

(Tn '—'7"0) (mn _—m]) LI (-_ﬂn_mn—l) !
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Pomiedzy trzema funkcyami interpola-
cyjnemitegosamegorzeduzachodzi zwiazek:

fu ('7"]> ww xﬂq OO ')(wl_"'ﬂ et ’” (a‘m Ly .'Z';;, L ') (""J > .7/'0)
+ fn (T, Xy, .. ) (g — 2y) — O.

Funkcyeinterpolacyjnag dla elementdw ro-
wnoodleglychmozna wyrazi¢ za pomocg wzorn

- ‘ A, (=)
Tol(hs &y TS S = i == Trals
lub tez za pomocyg wzoru
[o (Z0, 2, + B 0. 0 + ”h‘) oaE /:1('5)

gdzie
x, < & Ly + nh

Jezell elementy =, &, , .. &s zlewaja sie
wtedy funkecya interpolacyjna rzedu mntego
staje sie--jezeli pominiemy czynnik liczbo-
wy—pocbodna n-ta funkeyi.

Funkcyainterpolacyjna o jakichkolwiek
elementach wyrazasie za pomoca wzoru Ge-
nocchiego:

de 0k :
B Al R R N ) = ’ ) ‘ ..... ’ b Mt S e
R ) bt
X9 (4 (= Vb (e — ) b by + oo

A (=T =) By e ) il g . R

Wartos¢ funkeyi f w jakimkolwiek pun-
kcie adaje sie wyrazi¢ za pomoca wzoru, w kté-
rym spolezynniki rozmaityeh wyrazdw sa
funkcyamiinterpolacyjnemi, mianowicie:
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-, soof (@) = f(x) +(@ — x) i (%, )

- (=) (x—1) fo (o, %y, X,)
s e el SRR
A (;;fﬁ' S R
gdzie & jest zawarte pomiedzy najmniejsza
anajwiekszg z wartosel x,, %, ... %, x Wzor ten
moznanazwac unogoélnionym wzorem Newtona
lub Gaussa. .

Jezeli przedzialy pomigdzy kolejnemi
punktami« sg wszystkierowne h, wtedy otrzy-
mujemy wzor:

fla) =1 () + Tl“ Af@) + . ...
L —X e alis )i LW, . et '—1/
_1_ (£ ‘10) (x—ity ) 3 (]'Z_" o (n )L) An f{,l'”'
Bk (=) L (B nh) a1 (&),
! (n—-++1)! :

gdzie £ jest zawarte pomigdzy najmniejsza
najwieksza z trzech wartosci z,, z, -+ nh, x.

Jezeli wszystkie punkty x,, 2, ...z, schodza si¢ w pun-
keie x,, otrzymujemy wzoér Taylora.

Poprzedniemu wzorowi ogélnemu mozna
nadac¢ postad:

n

fly=

0

(mjaro)_ < (_EIL‘—QJ,'_1) (%.TJ.:‘_+]’ b (f:""l'n) LR
Ly =) i (=B ) (X—Fig1) o - (X—Tn) 4

gdzie Roznaczareszte t. j. wyraz ostatni

Wzér ten nazywa sie¢ wzorem interpolacyj-
nym Lagrange’ai dajesie napisa¢é w ten snposob:
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§ 3. — Wazory na kwadratury przyhlizone,

n

Sis i f@) o@@
fz)=3 e e

gdzie i
CUX) = (T —12) a0 o (BB

Zagadnienie interpolacyine polega na tem:
dajmy, ze sa dane wartosci funkcyi w nieokreslonej liczbie pun-
ktéw; jak wyrazi¢ wartos¢ funkeyi w jakimkolwiek punkcie
przy pomocy powyzszych wartosei?

Poprzednie dwa wzory moga oczywiscie sluzyé do rozwia-
zania zagadnienia, jezeli reszta R dlan=—oco dazy
do zera.

Jezeli zamiast wartosci funkeyi w nieskonczenie wielu
punktach mamy dane wartosci nieskonczenie wielu pochodnych
w jednym punkcie (ktéry to przypadek moze byé pod pewnym
wzgledem uwazany za praypadek szczegélny poprzedzajacego,
przy przyjeciu, ze punkty, w ktorych mamy dane wartosci fun-
keyl, s nieskonczenie blizkie), wtedy zagadnienie interpolacyjne
staje sie zagadnieniem, odnoszgcem si¢ do wzoru Taylora.
Wigksze szezeg6ly 1 wskazowki bibliograficzne znajduja sie we
wspomnianym juz traktacie ,Rachunku réznic* (§ 17).

Wzory na kwadratury przyblizone.

Wzér Sim psona jest nastegpujacy:

h—a Gb—u
2n )+ 2f(a = 2 )

b

“ f(x)de = _bg—na 3 fla) —|— 4f (a -+

v 47"(a—|—3 ”—2_,7“) o 2f(a+4b2;n“)

+ 4f(~+ 5 bi") 4 2f(u+6 ”T_n")
it ks
SR

raseal, Rep. T 15
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gdzie reszta B’ (gdy f1I" jest skonczone i ciagle) jest: '

; 1 b—a)
Sl G ()n«’ [m); (@<g<h).

Dla wartosci # dostatecznie wielkich R’ bedzie dostatecz-
nie made i czes¢ pierwsza poprzedniego wzoru (bez reszty) daje
warlosé dostatecznie przyblizona catki.

Wzor Cotesa jest:

[4 "
[ f@)de = (b—a) ¥ h,}"’f(u—}—i I’;“)+ R/,
Y -

gdzie &, sa spélezynniki liczbowe, niezalezne od @16, a mia-
nowicie:

1

Y G Ve e

/."Tdt,

0
Pt R e el (o 2ol s bt

Liczby & czynia zadose zwigzkowi

ha® — h,(e—9 ..

Tablica wartosci /i jest nastepujaca:
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81616 | SROIL | TLVGL. | 782661 _| BB9GFL | GOMSES |
20821 | @Sy aroc | cato1 | areoe | 29091 ol
008FF_ | 0099 0veE | 00968 | 00968 | . _,
6855 6081 15 THeT | 2988
Qgss _ | QIPl | QABT | QAIBL | OGEBE | o,
aF Stee | ¥9F 7963 686
08aL1 0%9 ORGLT | osell | , _,,
680G 6% e TCL
Q01 083 ag 08 R
¥e 6 6 ¥
51 96 888 Ry
s <G o6 - 6T
ar aF 08 ey
=% B4 9 )
| i
| - 2 8 RET
WA 8 T T F
* e 9
| = =~ =
| 2 T 8
3
- —u
| $
a=8% | 7=: | g=3 | g=sta=2] 02
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Wzér Gaussa na kwadrature jest:

o " [/
it
i g )] x—ux

= a

dats

gdzie @(x)= (& —ay) (B —ay) .. . (£ —8y); Xoy &y, ., .,%u 9§
pierwiastkami funkeyi kulistej Legendre’a:

drt1
A — ey [(J‘—-—a)n+l (x—b) n+1J

Wzor ten jest w ogdle wzorem przyblizonym; wszakze jezeli [
Jest funkeys calkowity stopnia nawet wyzszego od n, lecz
nizszego od 2n 1, wtedy wzoér jest dokladny, t.j. reszta
jegojest w tym przypadku zerem.

Aby mddz zastosowaé wzér Ganssa, trzeba znaé pier-
wiastki funkcyi kuliste] @(x). Dla wickszej dogodnosei cachun-
ku potézmy @¢=a+ (b—a)t, tak aby calkowanie rozciggalo sie
od £==0 do ¢t=1. Funkcya f(z) staje sieg I’(x), a calka przy-
biera postaé: '

1
o Sl B o y )
b a)J F(tdt = (b— \ W” g,
V]

gdzie 1losci #; sg pierwiastkami funkeyi

drtr ]
iy

Pierwiastki te Gauss obliczyl (Werke III, str. 193)
-z 16-ma znakami dziesietnemi; podajemy je w ponizszych ta.
blicach (z 10-ma cyframi dziesietnemi) :
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n=—0 90 =1 N o= 2 | Tl = 4]
| 0.5 | 0,2113248654 0, 1127016653 | 0, 0694318443 |
l, mm%%ﬁ%img* 1 0. 3300004752 |

__;;—"__ ) % 0, 8872983346 | 0, 6699905217
C A I B | 0,9303651557
| l n =4 = ! = _!

1, | 0, 0469100770 0,0337652428§ 0,0254460438—

—_;‘W 0,2307553445_ 0, 1693953067 | 0, 1292344072

ty |_8?5 0,3806904069 | 0, 2070774243

ty } 0, 7692346530 | 0, 6193095930 | 0.5

t, | 0,953089922) | 0, 8306046932

0, 7029225756

lg

|
|

0, 9662347571

0, 8707655927

0, 9745539561
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§ 4.
Rachunek odwrotny roZnic.

Funkeya ¥ (x), ktérej réznica (gdy kolejne wartosci zmien-
nej majg réznice stalg 1), jest funkcya danag f(x), nazywa sig
calkgrdznicowa nieokredlong funkeyi danej. Czyni
ona zadose zwigzkowi :

Fe41) — F@) = (@)

dla kazdej wartosci = 1 oznacza sig symbolem X f(z).
Réznica F(a +n) — F(a) réwna sig fla)+fla+1)4.....

at+n—1
~+ f(a-+n—1), oznacza sig symbolem X f(x) 1 nazywa sig

calkardznicowsg okreslonag.
Podajemy wzory nastepujace:

\ L — 1 _]_'_ pm _| i pm—1

i x )IL+1 DS T T o ey
AN n(-+1

TR CERIRE

z=1

\1' il n(n—+1)(2n—+1)

3! ’
go=—1
A A n? (n -4 1)?
y @t = e s
s 4 )
z=1

N nn 4+ 1) (6n3 4 9 + n—1)
d.l, 30 5

N o #(nd1P 2n +2n—1)
R =y ST 12 s
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Kladae s= E z, mamy (Seitz und Gander, The Analyst,
1
VI, 1879)

n

i o
Z‘ 0 = = (65° — 20s* | 125" — 37),

1

Suma szesciandw pierwszych n liczb na-
turalnych rowna si¢ kwadratowi sumy tych
1czb.

Calke réznicows okreslong mozna wyrazié za pomocs calki
rozniczkowej okreslonej tejze funkeyl; wzér na to nazywa sieg
wzorem Eulera i ma posta¢ nastepujaca:

b

? z f(z) — ,l £(z) d»

a

——Llafers Beirep. ...
4 17 B i
—Bowrar + Bowirmr.

gdzie B,, B,, Bg ..... sg liczbami Bernoulliego,
symbole [f(x)].®, [f'(®) ], . . . . . oznaczajsg riznice
f) — f@), 'O — '@ ..

Co do innych rozwazan, odnoszacych sig do rachunku odwrot-
nych réznic. odsylamy czytelnika do cytowanego juz ,Rachunku réz-
nic* Pascala (Warszawa, 1897).

Najwazniejszemi traktatami rachunku réznic sa nastepujace:
Lacroix, Traité des différences, Paryz 1800; Herschell, Collec-
tion of Examples etc., 1820; Schlémilih, Differenzeu und Summen,
1848; Boole, Finite diff., 1860, i najnowsze dzielo;: Markoff, Dif-
ferenzenrechnung, Lipsk 1896.
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RACHUNEK WARYACYJNY.

S
Wiadomosci ogdlne. Waryacya pierwsza catki.

Niechaj beds dwie krzywe, ktérych réwnaniami sa:
y=f(x), ¥y = [ (7). Jezeli pomiedzy punktami (x, y) pierwszej
1 punktami (o, 9,) drugiej mozna ustanowi¢ odpowiedniosé do-
wolna, lecz taks, ze odleglos¢ pomiedzy odpowiadajacemi sobie
punktami bedzie nieskonczonostkows, t. j. dazaca do zera, mo-
wimy wtedy, Zze przy przejsciu od pierwszej krzywej do drugiej.
spolrzedne x, y doznajs waryacyi. Rdznice pomiedzy odcie-
temi odpowiednich punktéw, t.j. x, —, oznaczainy za pomoca
symbolu Lagrange'a éxr1nazywamy warvacya zmien-
nej niezaleznej . Rodinica pomiedzy rzednemi odpo-
wiadajacych sobie punktéw bedzie w ogdle sumg nieskonczono-
stek réznego rzedu; czes¢ rzedu najnizszego nazywamy wa -
ryacysg ilosci y i oznaczamy przez dy.

Jezeli F jest funkeys ilosci @, y, ¥/, ¥, . . , to W przej-
sciu od pierwszej krzvwej do drugiej, funkeya # doznaje w ogole
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przyrostu nieskonczonostkowego, ktorego czesé rzedu najniz-
szego nazywa sie¢ waryacya funkecyi /7 1 oznacza sie
przez JF.

Waryacya funkcyi Frowna sie waryacyi,
wzietej w przypadku, gdy x pozostaje bez
zmiany (t. j. gdy odpowiadajace sobie punkty
majag tesamag odcigta)i powiekszonej o wyraz,
bedagcy iloczynem calkowitej pochodnej fun-
keyi Fwzgledem x przez dx.

Waryacya funkcyi F w przypadku, gdy
pozostaje bez zmiany, jest:

OF Ot 35 T

oy + 0y + = oy -+

F= —=
; oy " oy’ oy

gdzie dy, 0y, dy" ... sa wyryacyamiilosci gy ¢, y".
w przypadku niezmieniajgcegosiez. Gdyby fun-
keya Fzawierala inne jeszcze funkcye z, w...
zmiennej z, wtedy nalezaloby dodaé¢ i odno-
szgcesie do tych funkcyj wyrazy, podobnie
do powyzszychutworzone.

Waryacye calki okreslonej

AL

I=| F(x,y, ¥,y ...y") dx

5SS

’

przedstawia wzor

51 = ,l sFdx + [Foa]
gdzie pruzez Fnalezy rozumieé waryacye,obli-
czona dla przypadku, w ktérym x pozostaje
bez zmiany.
Jezeli funkcya F zawiera nadto granice

o, 2", wtedy do strony drugiej nalezy dodac¢
jeszcze:

2’ @'

a0

el 8 e T j ——OF dacs

f
ox’ |
e ox"
zll

z"
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Waryacya catki okreslonej poprzedniego
typu. w zalozeniu ogdlniejszem, iz Fzawiera
nadto funkeyez, v ...1iich pochodne, a miano-
wicie pochodne funkcyi y az do rzedu v wila-
cznie, pochodne funkcyiz azdorzedu » wila-
cznielt. d, wyraza sie¢ w ten sposéb:

ol = [Fém + Koy + K)oy + . . . + K =Dyr-b
S A ekl St T SV
+ | (Hoy + Hoz . . . ) da, ‘
oddizinte
M’ | @M o oo TN i
Hl—‘I—WTW— ..’112—‘\—_%Td_12_ 3
am” | d? M"' anN" . d*N"”
=y fely o iniHoey ot & i @faaim,
ghi=21 dz T dab s da T da? :
aM" &MV dN" 4N
o Nt SR ol .):=\7:/‘~ ] ok
s : ax HoPo bean By =l da: dax’ :
OF i, ;3 Lo ey vl
M Ty M = i M= PRI
ROl b oF b oF
W= e N '()—z, & == 02,7 e g SRS SN

Jezeli calka

"

j(HI(Sy—i-Hﬁz—}— AU I

jesttozsamosciowo zerem, bez wzgledu na war-
tosci,nadane funkeyom dowolnym dy, dz, 2y
Wtedy karZidia LizEi 1 0 S et A SETERNES 3 ks , musi byé
osobno zerem. (Twierdzenie pomocnicze gidéwne.)



§ 1. — Windomogei ogodlne. 235

Jezelichcemy wyznaczyé funkecye y,2...
zmiennej x, oraz granice a’, 2" tak, aby calka
Imiala wartosé maximum lub minimum, na-
lezy potozyé¢ 8I=0, co stanie sie, gdy '

oraz
r= [Fax+ Koy L K'8y + . . . - Kr—Dayir=n
Kbz K02 4+ . .. o K-V
g of v o Tasd aein o T B il o gl e

z

Réwnanie ['=0 nazywa sig rownaniem, odno-
szgcem sig do granic.

Réwnania Hy =0, H, =0, .« . .. , 33 rownaniami réz-
niczkowemi, ktére po zcatkowaniu daja nam funkeye y, 2. ..
z pewng, liczbg stalych dowolnych; stale te wyznaczamy przy
pomocy réwnania, odnoszacego sie do granic.

Jezeli dane sa wartosei funkeyi y i jej pierwszych r—1 po-
chodnychdla granica’, z", wartosci funkeyi z 1 s—1 jej pierwszych
pochodnychit.d.,jezeli nadto same granice sg zgdry dane, wtedy
'=0"=0, dy=d0y'=..... =0, dz=édz"= ..... ==(()!
réwnanie zas, odnoszgce sie do granic, sprawdza sie samo przez
sle tozsamosciowo.

Jezeli powyzsze wartosei nie sg z gory oznaczone, wtedy
rownanie I'==0 rozpada si¢ na réwnanie nastepujgce :

F”':O, F,zu:O,
K= 0, Bra =0, =Ry o 2107 o
B e O e+ 6 T i 0, s ks

Zagadnienie ogdlne rachunku waryacyjnego, gdy wartosci
granie, funkeyj 1 ich pochodiych na granicach nie sg z gory
oznaczone, mozna rozfozy¢ na dwa zagadnienia: jedno, nalezaco
wlasciwie do rachunku waryacyjnego i podobne do zagadnienia
danego,lecz w zalozeniu, Ze granice, wartosci funkeyach i ich po-
chodnych sg na granicach oznaczonemi; drugie zas nalezace dora-
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chunku rézniczkowego, jest zwyklem zagadnieniem na ma-
ximum i minimum funkeyj wielu zmiennych.

Jezeli miedzy funkeyami niewiadomemi y, z . .. zachodza
zwigzki rozniczkowe:

Gp="10, ¢, =0 ERE L0 (<)

wtedy zagadnienie na maximum i minimum calki okreslonej na-
zywa si¢ zagadnieniem na maximum 1 minimum
wzgledne; w przypadkach pozostalych mamy zaga=
dnienie na maximumiminimum bezwzgledne.

Zagadnienie najogélniejsze rachunku waryacyjnego mozna
zawsze sprowadzi¢ do nastepujacej postaci kanonicznej.
Sprawi¢, by calka
,'EH
’Fd.’l‘,
o
gdzie Fzawiera zmienna z, funkcye y,, ¥, ... ,¥n
tej zmienneji ich pierwsze pozhodne, zwia-
zanerownaniami rézniczkowemi rzedu 1-go
g0, =0, . C9y=0 bylo maximppn lub mi-
nimum.
Zagadnienie torozwigzujemy za pomocsy
wyzej wskazanej metody, szukajac maximum
lub minimum bezwzglednego calki

"

}".() 1A

x

gdzie
w

QL =F + 2y

ilosecil sgnowemi funkcyami niewiadomemi
zmiennej # (Metoda mnoznikéw Lagrange’a).

Zadanie izoperymetryczne, (ktéremozna
uwaza¢ za przypadek szczegdlny poprzedza-
jacego), jest nastepujace:
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Sprawi¢, by calka

o
1= ’F(ta:
o
byla maximum lub minimum 1 aby jednocze-
sniecatki:
T -
L= | Fiz Le|mas. ) = / Fodx
.I' ..5' .I'
przybraly warnosci z géry oznaczone l, ... L.
Zagadnienie to rozwigzujemy, szukajae
maximum lub minimum bezwzglednego calki:

z" z"

J = , (F + {é}l h I;) de = / D da |
z' '
gdzie ilosci A moznauwazaé za stale. (Metoda
Eulera).

Jezeliidzie o maximum i minimum bez-
wzgledne, funkcya zas podcalkowa Fzawiera
najwyzej pochodne pierwsze funkcyj niewia-
domych, to aby zagadnienie bylo w ogéle rozwia-
zalnem, jest koniecznem, by hesyan funkeyi F,
uwazanej za funkcye pochodnych pierwszyech,
bylrézny od zera.

W szezegdlnosei, gdy mamy jedng funk-
cyeniewiadoma, jest koniecznem, by pocho-
dna funkcyi F wzgledem 3y bylarézna od zera.

W warunkach twierdzenia poprzedzaja-
cego, jezeli zalozymy, ze funkeya F zawiera
pochodne funkcyj niewiadomych az dorzedn
r-tego, dla rozwigzalnosci zagadnienia jest
koniecznem, by hesyan funkeyi F, uwazanej za
tunkecye pochodnyech r-tych. byl rézny od zera.

W szczegdlnosci gdy n=1, jest koniecznem
by pochodna druga funkcyi F wzgledem y by-
Iardzna od zera.

/
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W zagadnieninogélnem nu maximum i mi-
nimum wzgledne, sprowadzonem do postaci
kanonicznej, t. . gdy w danych zagadnienia
wystepuja najwyzej pochodne rzedu pierw-
szego tunkcyj niewiadomych, dla rozwigzal-
noscizagadnienia jest koniecznem, by wy-
znacznik:

220 220 dp Bor i
R By 1O R L "oy f

220 220 0y, e,
e RC TR BT FEaP I o
0P, ks iy 0 0

0!/,1 ...... ; 0y ‘71 : : \

0P o(pm

..... —— , 0, 0
oy/‘ b ? ’).l/,n ?

byl rézny od zera (£ ma tu znaczenie wyzej wskazane)).

Wreszcie w zagadnieniu lzoperymetrycznem
(gdy funkcye F, F;,..., F, zawlerajg pocho-
dne najwyzej rzedu pierwszego funkecyi nie-
wiadomych) warunkiem koniecznymrozwia-
zalnosci jest, by hesyan funkcyi & (patrz wy-
ze]), uwazany za funkcye pochodnych pierw-
szych, byl rézny od zera.

§ 2.
Waryacya druga.

Warunki, poprzednio podane, sg konieczne; celem znalezie-
nia warunkéw dostatecznych istnienia maximum lub minimum
nalezy zwrdci¢ sig do rozwazania t. z. waryacyil drugiej.
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. Waryacya druga calki okreslonej jest wyrazeniem typu

r

[ Q (81, 0as - - - Oy Oy Oy . O my OY'y - . .) dem,
ggzie Qjest formg kwadratows loscl dyyy . . . .. oY,
Qs v

W przypadku jednej tylko funkecyi nie-
wiadomej y, waryacya druga daje sie spro-
wadzié¢ do postaci(Twierdzenie Jacobi'ego, Crelle XVII):

d(y 8¢)
; i dx

[ @ (d40y")
13 i + ''''

dr (A, éy“)) |
da” f

4+ (= 1) oy dz

gdzie ilosci 4 s3 funkcyami zmiennej .
Jezeli polozywszy:
oy =t 2,

, Y Yoy
¢=0,£-+ ..... +Cw&y,

—gdzie ilosci C sa nowemistalemi dowolne-
mi, ilosci zas ¢ stalemi, otrzymanemi z cal-
kowania réwnania rézniczkowego, wynika-
jacego ze znikania waryacyi pierwszej—zalo-
zymy, ze funkcya {, nie moze znikaé wraz ze
swemi pierwszemi »—1 pochodnemi w dwu
jakichkolwiek punktach drogi calkowania
(w szczegdlnosci na obu granicach) wtedy
waryacya druga przybiera postaé:

z"

&1=pﬂmq~ﬂWﬂ

dx

dr.—l(brz (,-))l .
Ak ST et gl R |
facane... (Y s da.

I

Przeksztalcenie to nazywasie przeksztalceniem Jacobi'ego.
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Stosujac kolejno to przeksztalcenie doj-
dziemy wreszcie do postaci

"

z

# 1= (=1y' [2.* B, du,
02F o | T SR
B, = s tlzlmfz_,}l
gdzie funkcya ¢ jest utworzona podobnie
jak #, lecz z innemi stalemi C. Jezeli mosze-
my wyznaczy¢ilosci ¢ wtensposob, aby ilosé
pod znakiem calkowym nie stawala sie nie-
skonczong dla wartosci , znajdujacych sig
na drodze calkowania; jezell nie ma takich
wartosci C, dla ktérych ¢ lub 4, 1 wszystkie
ich pierwsze pochodne az dopochodnych rze-
du r—1, znikajg w dwu punktach drogi cal-
YEIT :
o!—/(,ﬁ‘}est zawsze jed-
nego znaku i nie staje sig nieskonczong dla
wartosci  na tej drodze, wtedy znalezione
rozwigzanie dawaé¢ bedzie z pewnoscig ma-
ximum lub minimum, stosownie dotego, czy
oF
(iR s~

jest stale ujemnem lub stale dodatniem.

W przypadku =1 waryacya druga sprowadza sie do postaci:

kowania; jezeli pochodna

Ol — /—02—[':— lé,z/’ e 2
L Y ¢
a kryteryum na maximum 1 minimum wyprowadza sie z latwo-
$cig z twierdzenia poprzedzajacego.

Dane historyczne i bibliograficzne o réznych twierdzeniach, poda-
nych w tych dwu paragrafach, znales¢ mozna w tomie II[  Rachunku
nieskonczonosciowego“ Pascala (przeklad polski, Warszawa 1897).
Najnowsza prace o wyprowadzeniu dostatecznych warunkéw maximum
i minimum calek pojedyneczych oglosit A. Kneser (Math. Ann, LI,
str. 321 — 345, 1898).

’

8y }‘ A
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§ 3.
Rozre zagadnienia rachunku waryacyjnego.

Zagadnienie Newtona. Znales¢ krzyws
ptaska ostycznejcigglej przechodzaca przez
dwa punkty dane i obrotem swym okolo osi
danej wytwarzajaca bryle ktdora zanurzo-
na w cieczy w kieruunku swej osi, napotyka
opdér najmniejszy. (Cialo okragle onajmniej-
SsZym oporze.)

Wprowadza sie¢ hypoteze, ze opdr, jaki napotyka ecialo
przy zanurzeniu, jest proporcyonalny do kwadratu rzutu pred-
kosci na normalna do powierzchni i ma kierunek tej normalnej.
Znajdujemy krzywa, ktorej spélrzedne , y, wyrazaja sie w fun-
keyi ilosci y! sposobem nastepujacym (x jest osig obrotu:

a 1+4y'?)?
y' 3

3 1
e (jer + v tley +hy=

Krzywa ta posiada ostrze w punkcie, dla ktérego y'= V3.

Zagadnieniem tem zajmowal si¢ Legendre (Mém., de Paris,
1786), patrz August, (Crelle CII, 1888) i § 30 ,,Rachunku warya-
cyjnego E. Pascala, Warszawa. 1897).

Zagadnienie o brachystochronie. Jaka
droge powinno opisywaé cialo, ozywione pred-
kosciag poczatkowsg 7, 1 poddane jedynie sile
cigzkosci, aby wczasie mozliwienajkrdotszym
przenioslo si¢ z punktu ospdlrzednych x, y,
2, do punktuospélrzednych x, ¥, 2, w zaloze-
niu, ze osrodek, w ktérym sie porusza, jest al-
bo préznis, albostawia opér, ktdry jest funk-
cya predkosci ciala?

Krzywa jest cyklojda o podstawie poziome;.

rascal Rep. 1. 16
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Jezeli punkt koficowej krzywejma sig znajdowac¢ na krzywej
z géry danej, wtedy trajektorya przecinaortogonalnie te ostatnig.

Zagadnieniem tem zajmowal sie Lagrange (Misc. Taur. II,
1760—61). Co do szezegélow patrz § 31 ,Rachunku waryacyjnego*
Pascala,

Wyznaczy¢ krzywg dlugosci danej, prze-
chodzgca przez dwa punkty dane,i taka, ze gdy
nakreslimy miedzy temiz punktami druga
krzywa, ktérejrzedne sa potega lub pierwiast-
kiem odpowiednichrzednych krzywej pierw-
szej lub odpowiednich lukdéw tejze, to pole
drugiej bedzie maximum. W przypadku szczegélnym
tego zagadnienia t. j. gdy rzedna drugiej krzywej ma by¢ réwna
lukowi odpowiedniemu danej, otrzymujemy linie Yancuchowa.

Zagadnieniem tem zajmowal sie Jakoéh Bermoulli w jednej
z pierwszych prac swoich nad rachunkicm waryacyjnym (Acta Erudi-
torum, 1697). #

Pomiedzy wszystkiemi wielokagtami zam-
knietemi,majagcemiza bokiodecinki dane, zna-
lesé¢ wielokat o polu najwiekszem., Dowodzi sie,
ze wielokatem tym jest wielokat wpisany w kolo.

Zagadnienie to przy pomocy rachunku waryacyjnego traktowal
Lagrange w drugim dodatku do swej rozprawy: ,Nouvelle méthode
etec.“ (Mise, Taur., t. [1); droga syntetyczna badal je juz Cramer
(Akad. Berl. 1752). Analogiczne zagadnienie dla wieloscianéw o danej
powierzchni i najwigkszej objetosei badat Lindelof (Math. Ann, II,
str, 150).

Jezeli zamiast wieloboku mamy krzywa o danym obwo-
dzie, wtedy otrzymujemy kolo.

Twierdzenie to udowodnil juz Zenodor, a przekazal nam Pap-
pus (patrz Cantor, Geschichte der Mathematik, I, str, 208). Le-
gendre w § VIII swej rozprawy (Acad. de Paris, 1786) bada to zaga-
dnienie szczegolowo przy pomocy rachunku waryacyjnego. Znajduje
sie ono takze u Eulera , Methodus inveniendi ete.‘“ Rozdz. V, § 41,
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O zagadnieniach tego rodzaju na plaszezyZznie, na kuli, i w prze-
strzeni, lecz z punktu widzenia czysto geometrycznego, istnieje obszerna
rozprawa Steinera (Crelle, XXIV, str. 93 i 189; Liouville, VI).

Pomigdzy dwoma punktami danemi lub"
dwiema krzywemil poprowadzi¢ taka krzywa,
aby cialo po niej spadajace osiggalo w koncu
swego spadku predkosé¢ najwieksza,.

Zagadnienie to rozwiazuje Lagrange w ostatniej lekeyi swego
»Caleul des fonctions (Oeuvres, X, str. 448).

Jezeli punkty skrajne majg sie znajdowa¢ na dwu krzy-
wych danych, wtedy znajdujemy, iz styczne do tych krzywych
w punktach skrajnych powinny byé réwuolegle. Jest to rezul-
tat analogiczny do tego, jaki znajdujemy dla brachystrochrony.

Pomiedzy krzywemio jednakowym obwo-
dzie, majacemi tesame dwa punkty skrajne,
znalesé krzywa, dla ktérej srodek ciezkosci
linii jest najbardziej odlegly od podstawy.

Zagadnienie to blednie rozwiazal Galileusz (1638), ktory
mniemal, ze krzywa szukang jest parabola; pézniej zajmowali sie tem
zagadnieniem bracia Bernoulli’owie Jan i Jakéb, Huygens i Leib-
niz (Acta Eruditorum, 1690—1692),

Znajdujemy, ze krzywa szukang jest 1ancuchowa,t.j.
lrzywa, kidrej promien krzywizny réwna sie dlugosel linii nor-
1alnej, pomiedzy krzywa a osia odeigtych lecz jest polozony po
stronie przeciwleglej tej normalnej. Jezeli @ jest stala nieozna-
czong, to nalezy sprawie, by catka

J (v + a)ds

byla maximum, gdyz T'y ds, jak wiadomo z mechaniki, réwna

sie rzednej srodka ciezkosei linii.
Zagadnieniem tem zajmowal sig takze Liegendre (§ 7 rozpra-
wy z r. 1786, Acad. de Paris). Patrz May er, Math. Ann. XIII, str, 65,

Wiele z nastepujacych zagadnief podal i rozwiazal Euler
w slawnej rozprawie ,, Methodus inveniendi etc.’* 1744,
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Przez dwa punkty przeprowadzié krzywa
taka, aby pole, zawarte pomiedzy ta krzywa,
jejrozwinieta inormalnemi w punktach skraj-
nych, bylomozliwie najmniejszem.

Znajdujemy, ze krzywa jest galezig cyklojdy (Euler 1. c.
Rozdz. Ii, § 51).

Co do tego zagadnienia patrz Jellet ,,Variationsrechnung',
(przeklad niemiecki, Brun$wik 1860, str. 191 i 422) i Todhundter
,.Researches i t. d.*, Londyn 1871, str. 250.

Pomiedzy wszystkiemi krzywemi, Iacza-
cemi dwa punkty i wytwarzajacemi przez obrot
okolo osi powierzchnie o polu jednakowem,
znalesé krzywa, dla ktérej ta powierzechnia
zamyka objetos¢ najwieksza (Euler, Rozdz. V
§ 44).

Zagadnienie to dalo powod do wielu kontrowersyj. Patrz Lin-
delof, Calcul des variations, str. 218 1 Greve ,Ein Problem aus der
Variationsrechnung®, Getynga, 1875.

Pomigdzy wszysthkiemi krzywemi, prze-
chodzagcemiprzez dwa punkty 1 zamykajace-
mi pole jednakowe, znales¢ krzywe, ktore obro-
tem swym okolo osi wytwarzaja powlerzchnig
opolunajmniejszem (Euler, Rozdz. V. § 45).

Otrzymujemy krzywa rzedu trzeciego z punktem podwdj-
nym, podana pod numerem 63 w klasyfikacyl krzywych rzedu
3-go, utworzonej przez Newtona.

Pomiedzy krzywemio jednakowym obwo-
dziei przechodzacemi przezdwa punkty, zna-
lesé¢ krzywe, ktére obrotem swym okolo osi
wytwarzaja cialo o najwiekszej objetosSci
(Euler, Rozdz. V, § 46).

Otrzymnjemy tak nazwana krzywag sprezysta, ma-
jaca te wlasnosé, Ze jej promien krzywizny jest odwrotnie pro-
poreyonalny do odeietej.



§ 3. — Rdzne zagadnienia rachunkn warvaeyjnego 245
= CURt

Pomiedzy krzywemi o jednakowym obro-
cieznales¢ krzywa, ktédra obrotem swym okolo
0si wytwarza powierzchnie o polu najwiek-
szem lubnajmniejszem (Euler, 1. c. Rozdz. V, § 47),

Znajdujemy lini¢ fancuchows. Powierzchuia wytworzona
jest powierzchnig lanicuchowa lub katenoidg (Platean..

Patrz Goldschmidt (Determinatio superf. min. ete., Getynga,
1831; Lindeldf (,Sur les limites entre lesquelles la caténoide est une
surface minima“, Math. Ann. Vol. II, st, 60; 1870).

Pomiedzy krzywemio jednakowym obwo-
dzie i zamykajgcemi tozsamo pole, znalesé¢
krzyws, ktéra obrotem swym okolo osi wy-
twarza powierzchnie, zamykajaca objetoseé
najmniejszg (Euler, Rozdzial VII, § 22).

Znajdujemy krzywsa sprezysta.

Pomiedzy krzywemiotychsamych odcie-
tychzamykajgcemipole jednakowe 1 wytwa-
rzajgcemi obrotem okolo osi powier zchnie
zamykajace jednakowag objetosé. znalesé krzy-
wi, ktérej srodek ciezkosci znajduje sie naj-
nizejlubnajwyzej (Euler, L. c. IV, § 23).

Znajdujemy linie prosta.

Danesg dwie plaszczyzny rownolegtle
ipunkt na jednej z nich; poprowadzi¢ ztego
punktudodrugiej plaszczyzny linie dlugosci
danej taka, aby pole powierzchni walcowej,
ktédrg otrzymujemy, prowadzgc zrozmaitych
punktéw linie prostopadle dodwu plaszczyzn
ipomiegdzy temiz plaszczyznamizawarte, bylo
najwieksze,.

Znajdujemy helise.
Prtrz Moigno: ,Calcul des variations“, (Paryz, 1861, str. 299).

Ustaliwszy dwie rzedne, poprowadzié¢
zpunktu jednej do punktudrugiej krzywa ta-
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ka, aby figura, okreslona przez os, przez dwie
rzedneiprzez krzywa, miata obwodd z gdry da-
nyizarazem polenajwieksze.

Patrz Challis: On the solution of three problems ete. (Phil.
Mag. 1872. '

Znalesé powierzchnie o polu danem, zumy-
kajacag objetosé najwieksza.
Patrz: Sarrus (Mém. des Sav. étrang., t X, 1846), Sabinin
(Zbiornik mat., Moskwa, X1V, str. 451, 1890).

Znales¢ krzywa, majaca krzywizne pierw-
sza stalg 1 punkty skrajnenadwodch danych
krzywych lub powierzchniach, a ktérej .dlu-
gos¢ jest najwieksza lub najmniejsza.

Zagadnieniem tem zajmowali sig; Dalaunay, Jellet, Tod-
hunter. Nowa prace o tym przedmiocie oglosit Venske, Getyn-
ga, 189].

Wyznaczyé krzywa, majaca moment bez-
wladnosci wzgledem punktu danego, najwie k-
szy lubnajmniejszy.

Euler rozwiazal zagadnienie to Dblednie. Rozwiazanie dokla-
dne podal Ossian Bonnet (Liouville, IX, str. 97, 1844). Analo-
giczne zagadnienie w pracy: ,Sur le minimum du potentiel de I'arc®,
rozwiazal De la Goupilliere (Assoc. Frane. Besan¢on, t. XXII,
str. 164, 1893).




ROZDZIAL XII.

TKEORYA NIEZMIENNIKO W.

§ 1.
Formy dwdjkowe. Przedstawienie symboliczne.
Funkcya wymierna calkowita jednorodna stopnia n-tego

o zmiennych x,, x, nazywa si¢ formg dwéjkowa stopnia
n-tego. Przedstawié ja mozemy w ten sposcb:

nin
f (@, 2p) = 2( v \‘ Ar Ty Ty
r=0\ 7|

gdzie dla dogodnosci rachunku nadajemy spélezynnikom postaé
(\ :t ) a,, uwidoczniajac przez to spélezynniki dwumianowe.
Symbolicznie piszemy te forme tak:
= (a2 + aa,)" = a,
przyjmujac, ze

Gy = s o e e SRR TS Nty == (',
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1 rozumiejac, Ze strony pierwsze tych réwnosci sa tylko symbo-
lami do oznaczenia stron drugich; ilosci x,, z, sa wigc takze
symbolami, ktdryh mozna nadawaé¢ znaczenie tylko wtedy, gdy
83 skombinowane ze stopniem .

llosci « sy spélczynnikami istotnem1 formy f, ilosci o--
spélczynnikami symbolicznemi.

Kazda funkcya ilosci u daje sie wyrazié¢ jako funkcya ilosci
a,lecz nie odwrotnie. Jezeli wprowadzimy symbole réwno-
wazne symbolom q, t. j. napiszemy :

f=aa:”=ﬂz"=)'f":-'~°')

wtedy funkeya ilosci a, 8, y . .., ktérej kazdy wyraz zawiera
ilosci a az do stopnia n, ilosci § az go tegoz stopnia i t. d. moze
byé odrazu sprowadzona do funkecyi spélczynnikéw istotnych a.
Stopien jej co do spétezynnikéw istotnych réwna sig liczbie sym-

boléw @, 8,7 . . ., wystepujacych w danem wyrazeniu.
g (o) + — (B)
oznaczamy wyznacznik symboliczny
ettt 3
Biv B

Pomigdzy czynnikami liniowemi symbolicz-
nemi a wyznacznikami symbolicznemi zachodzy
nastepujace tozsamosci zasadnicze:

(aB) y= + (By) az + (ya) B = O,
@ By — ay fz = (af) (xy),
@B) (70) + (By) (ad) + (ya) (85) = O.
Jezeli polozymy
2 = A, + Apdyy x, = And) + dyy @,

11 Al?

= dul
A= modud ),
(r )

21 S
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to forma
% n n—1 n
f=a0:1,,+.1a,a:l bR PR — 7
przejdzie na nastepujaca:
f__ (I Im (7"\ ’ '"__] 4 - ' n
_a(,ml—}—\lla,x, AR ST ] (/7

Spélczynnikio wyrazajag sie liniowo przez
spoélezynniki a. - Jezeli wyrazimy spéGlezynniki o' symbo-
]iczni(? przez ilf)s'ci a', to zwiazki, zachodzace pomiedzy spol-
czynnikami @' 1 @ mozna, wyrazi¢ w ten sposob:

! = - o / ol
a'y = 40, + Agay; dy = Ao + dyay,

skad:
da, = — A22a,§ + “nay; da = Ayd, — 4;,4d,.
§ 2
Niezmienniki i spotzmienniki.
Niechaj bedzie ukfad form stopni n, %', . ... Wyobrazmy

.sobie funkcye wymierng spélezynnikéw form danych oraz zmien-
nych x 1 uskutecznijmy wskazane przeksztalcenie liniowe, t. j.
podstawmy zamiast zmiennych x ich wartosei, wyrazone
w zmiennych «’, lub zamiast dawnych spélezynnikéw ich warto-
sci, wyrazone w nowych.

Jezeli funkeya przeksztalcona daje sig wyrazié jako iloczyn
potegi 7-tej modulu przez wyrazenie, utworzone ze spélczynni-
kow przeksztalconych i ze zmiennych, przeksztalconych wtensam
sposob, w jaki funkcya dana utworzona zostala ze spdlezynni-
kéw dawnych 1 zmiennych dawnych, wtedy méwimy, ze funkcya
ta ma wlasnos¢ niezmiennicza. Jezell zawiera zmienne,
to jest spolzmiennikiem; w przeciwnym razie nie-
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zmiennikiem. Jejstopien co do zmiennych nazywa sie
rzedem; liczba v-skaznikiem. Ogdél form danych na-
zywa si¢ ukladem zasadniczym,.

Mozna rozszerzy¢ pojecie spélzmiennika, pomysliwszy
taks funkcye niezmiennicza, ktora, précz zmiennych x,, ;, za-
wiera jeszcze inne szeregl zmiennych yy, ¥y, 2y, Zs, « - . ; praytem
wszystkie maja podlega¢ tym samym podstawieniom (o tych sa-
mych spolezynnikach), ktérym podlegajg zmienne z. Mamy
wtedy spédtzmiennik o wielu szeregach ilosci
zmiennych.

Jezeli skaznik r jest parzysty, forma niezmiennicza nazywa
si¢ formg o charakterze parzystym; w przeciwnym
razie nazywa si¢ forma o charakterze nieparzystym.

Jozelin, n'. .. sy rzedami form =zasadniczych, %, &' ...
stopniami formy niezmienniczej co do spétezynnikéw réznych
form, m zas rzedem tej formy, t. j. stopniem jej co do zmien-
nych, wtedy zachodzi zwigzek :

2r + m = nk + n'k' +

Jezeli wszystkie formy danesgrzedu pa-
rzystego, to ich niezmiennik nie moze byé¢
rzedu nieparzystego.

Kazda forma dwéjkowa rzedu nieparzy-
stego n>3 posiadaconajmniej dwa niezmien-
nikiliniowe, ktérych wypadkowa jest rézna
od zera (Clebsch).

Kazda formadwoéjkowarzedu parzystego
n>4 posiada conajmniej dwa spélzmienniki
stopnia 2-go, ktéryeh wypadkowa jest rézna
od zera (Clebsch).

‘W kazdym wyrazie formy niezmienniczej, wyrazonym przez
spélezynniki istotne formy lub form zasadniczych, t. j. przez
@y, Gy Bgy + « - 3 Dgy Dy by, ..o, utworzmy sume iloczynow skaz-
nika kazdego ze spélezynnikéw @, b . . . przez odpowiedni wy-
kladnik. Ta suma nazywa sie waga wyrazu.
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Wlasnosé zasadniczg form niezmienniczych wyrazajg
twierdzenia :

W kazdej formie niezmienniczej waga
kazdego wyrazu jest stata, co wyrazamy mod-
wige, ze formy niezmiennicze sg funkcyami
izobarycznemispéleczynnikdéw form zasadni-
czych. Waganiezmiennika lub spélzmienni-
ka zlewa sie z wyzej okreslonym skaznikiem 7.

Kazda forma niezmiennicza J czyni za-
dosé¢ nastepujagcymrownaniom rézniczkowym:

5kl - a.J
2 I n—r)0, — — 1w ——— —=inJ,
n o oa, x cxy

S o] e 2.
SX3ra, =— — X Xy —— = 1,

i o, r (97‘_,

a.J o/
Y>3 n—r)u, 4y ~—— 3 =0
4:-4 nl—r ( ) 41 3”‘,_ ¥ 1 8&1:2 )
SiE o.J 3 o7
S Xra_, — Xy — =0,
3 o,

gdzie: sumowanie wzgledem » rozciagga sie na wszystkie spol-
ezynniki formy; wyrazy wzgledem « zmieniaja si¢ od jednej for-
my zasadniczej do drugiej; sumowanie wzgledem & oznacza, ze,
gdy idzie o spélzmiennik o kilku szeregach zmiennych z, y . . .,
to nalezy utworzy¢ tylez wyrazéw podobnych, jeden wzgledem
x, drugi wzgledem y i t. d.

Jezeli w szczegdlnosei idzie o niezmiennik, to odpowiednie
rdwnania rozuiczkowe otrzymujemy z poprzednich, znoszac su-
mowanie wzgledem .

Powyisze réwnania rozniezkowe znalazl Cayley (1854), potem
badali je Sylvester, Aronhold i inni.

Niezmienniki, uwazane jako funkeye pierwiastkéw zasa-
dniczej formy dwdjkowej, czynia zadosé¢ pewnym réwnaniom
rézniczkowym, ktore znalazl Brioschi (Ann di mat. V).
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Najwazniejsza wlasnos¢ form niezmienniczych streszcza
nastepujace twierdzenie Clebscha.

Forma niezmiennicza, wyrazona za pomo-
cy spulczynnikéw symbolicznych, przedsta-
wia sig zawsze jakosuma wyrazoéw, z ktorych
kazdy jest iloczynem symbolicznym wyzna-
cznikoéw typu (ef),(ae;) , .. 1 czynnikow symbo-

Fiezpyeh by -pll owmd: Buis s G s sty & Az 10 0, B
sg symbolami réwnowaznemi pierwszej for-
my zasadniczej;a,f ..., takiemizsymbolami

drugiejit.d.i gdzie naturalnie stopien wzgle-
dem kazdego zesymboléwa, ... jest n, wzgle-
dem kazdego ze symboldwa, f ...jest n it. d;
n,n ...sgstopniami form danych.

Liczba czynnikéw liniowych symbolicz-
nych przedStawiarzad formy niezmienniczej;
liczba wyznacznikdow symbolicznych jest ro-
wna skaznikowilub wadze .

Dziatania nie zmieniajgce wiasnosci nie-
zmienniczej. Niechaj, jak zwykle, «,, a;, a, . .. beda
spolezynniki jednej, 4, by, b, . . . spélczynniki drugiej formy
tego samego rzedu.

~ Jezeli J jest niezmiennikiem lub spédl-
zmiennikiem ukladu, do ktérego nalezy pierw-
sza forma, to wyrazenie

oJ

21‘ ['i aa/,

bedzie mialordwniez wartos¢ niezmiennicza
1 begdzieniezmiennikiem lub spélzmiennikiem
vkladu plerwotnego, rozszerzonego przez do-
laczenie formy drugiej.
: Jins Ty d : g
Dziatanie X' b; —— nazywa si¢ dzialaniem lub proce-
dy

sem Arenholda.

JezeliJ jest spélzmiennikiem rzedu m-tego,
towyrazenie



§ 2. — Niezmienniki i spotzmienniki. 253

eJ

SRRy
N oy T ¥ Oy

m \
jestrowniez spolzmiennikiem.
Dzialanie
it 3 )
pat
Nl Xy
nazywa si¢ dzialaniem biegunowem o biegunie #;
nie zmienia ono, jak to wynika z poprzedzajacego twierdzenia,
wlasnoscl niezmienniczej.
Przez symbol A, * rozumiemy dzialanie biegunowe o biegu-
nie y, powtorzone k razy
Jezelioznaczymy symbolicznieprzez p.”
spélzmiennik rzedu m-tego, to bedzie:

‘\!Ik l'lm = p‘m—k I)yk’

Jezeli J jestspdélzmiennikiem odwu sze-
regachiloscizmiennych 2, y, stopnia m-tego
wzgledem pierwszych zmiennych stopnia m'-
tego wzgledem drugich, to dzialanie

: 1 (o 82
mm' \dx, dy,  dx, Yy ) e

nie zmienia wlasnosci niezmienuiczej. Dzia-

: ke F ; 5
lanie — -——— | nazywamy dzialaniem lub proce-
mm' \0x, dy, 9%, 6y, ' '
sem £.
Jezeli funkeye dwu zmiennych przedstawimy symbolicz-
nie w postaci [ (x,y) = a," b,”, to bedzie:
£* (0 by AR b

Istnieja jeszcze dwa dzialania niezmiennicze symboliczne;
jedno z nich zwane tfatd owaniem (Faltung, piega), wprowe-
dzil Gordan; polega ona ra tem, ze w iloczynie symbolicznym,
zlozonym z wyznacznikéw symbolicznych 1 czynnikéw linio-
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wych symbolicznych, zastepujemy dwa czynniki liniowe a,, b,
wyznacznikiem (ad).

Drugie dzialaunie t. zw. nasunigcie (Ueberschiebung, spinta)
wprowadzil Clebsch, polega ono na twierdzenin z dwu form
danych a,", b, wyrazenia

0 DY i =20

Dzialanie Clebscha daje si¢ w ten sposéb wyrazi¢ przy po-
mocy dzialania £2:

$a 0y a," b7l — | 82 (@ Ui e

Dziatanie to powtorzone & razy na formach f, ¢, wyraza sie sym-
bolem (f, (p)k.

Tozsamoscl, odnoszace sie do dziatania
Clebscha. Pomiedzy trzema formami f, ¢, w
zachodzitozsamose¢:

2 (f, ¢)?, fw), f|
@ N (p.9)F. (pw?), ¢ | R
(v, 7";_"’, e, (pwf, W
f ®, v, Y

0.

Pomiedzy czterema formami /, ¢, g, y za-
chodzizwigzek:

N, (fe?, (fiw?, (2P
TR U R RO
(y f)2 ) (v, (P)? ) (y, 'L/")z y (y, XV

b 12, (o 2)2, (1. v)2, (2, 2)?
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Wzor Clebscha-Gordana.

Jednym z naj wéiniejszych wzoréw do symbolicznych prze-
ksztaleen form niezmienniczych jest wzoér Clebscha-Gor-
dana, dajacy rozwiniecie funkeyi o dwu szeregach ilosci zmien-
nych x, y przez biegunowe wyrazenie o jednym tylko sze-
regu, pomnozone przez potegi calkowite dodatnie wyzna-
cznika (2y). Niechaj /(x,y) bedzie funkcys o dwu szeregach
ilosci zmiennych stopnia m wzgledem jednych, stopnia n wzgle-
dem drugich. Jezeli przez A oznaczymy dzialanie biegunowe
o biegunie y i zmiennej x, przez JI)—dzialanie biegunowe o bie-
gunie x 1 o zmiennej y. bedzie:

f = AYDf 4 a,® (@y) A1 D1 QF
+ @ (ay) At D2 QY 4+ + @ QkF.

Spolezynniki a sa liczbami, czyniagcemi zado$é wzorom
zZwrotnym :

(m — p - 1) R
nFE—2pF2) (mFhi—2pF38) %

Dla k=mn bedzie:

NG ER AL

[n\ [m)\
4 — pl\p
(m - n—p—}—l)
\ P

Dla symetryi co do skaznikéw m, n mozna wyrazenie to
oznaczac tez przez a,™" .

W przypadku k=mn wyrazenia D¥f, D*—'Qf, ... nie za-
wierajg zmiennej y 1 wtedy otrzymujemy wyrazenie funkeyi f
za pomocg samych biegunowych A funkeyj zmiennej .



256 Rozdziat XII.

Oto tablica wartosci liczb a,™ * dla réznych wartosci skaz-
nikéw m, n:

-
P=1(P=2 p=3|p=4%
m=l, n=—1 .;]__ ’
B b s
m=2 n=1 i
» s
m=3, n=1 L
T
m=4 n=1 %3
)
m=>5 n=1 _5_
(]
m=26, n=1 i
[
1
= R
m n =2 1 3 TSI
5 1
m=3, n=2 _g_ -
m=4, n=2 % =
B) 5 |
=y D= 10 _2_
i 3
m=6, n=.2 _3_ i
2 7
m=3, n=3 _3 i. _1_
2 1v AL e
m=4 n=3 S0 "
7 5 5 |
m =5 n=3 —1_5.. I_O 1
8 ' 2
3 45 4
—6, n=3 % s
5 " /| T
12 4 1
=4 =4 2 Yrsh s =T
m y R 5 E 5
m=n,, n="4 % _173 _g_ %
12 H 10 3
— 6w LS DRSS S 10 )
% g |- 7
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Kazda forma (f,z.y.) tylko jednym sposobem daje
sig rozwing¢ na szereg uporzgdkowany wediug po-
tegrosngecych wyznacznika (xy); spélczynniki tego
szeregu sg biegunowemi. Jezeli forma fjest syme-
tryczna wzgledem z iy, to spéleczynniki poteg pa-
rzystych wyznacznika (xy) sa zerami.

§ 4
Zestawianie nazw, uZywanych w teoryi forn.

Do teoryi form rézni autorowie, zwlaszeza angielscy, wpro-
wadzili wielks liczbe nazw, ktérych znaczenie dobrze jest rozu-
miec.

Quantics (quantica) — tak anglicy zwykle nazywaja
forme,

2. Konkomitanty. Jest to nazwa, nadana przez
Sylvestera utworowl niezmierniczemu ogélnemu.

3 Niezmiennik widoczny. Jest to ilosé stala.

4. Niezmiennik bezwzgledny. Jest to niezmiennik
wymierny ulamkowy o skazniku zero.

5. Przeciwzmiennik (kontrawaryant) jest to
utwor, majacy wlasnosé niezmienniczs, wtedy gdy iloscl & w nim
zawarte poddajemy przeksztalceniu liniowemu nie prostemu, lecz
odwrotnemu; jest to zatem utwor, ktéry odtwarza sig, pomnozo-
ny przez potege modulu, jezeli zamisst spélczynnikéw dawnych,
podstawimy ich wyrazenia w spéleczynnikach przeksztalconych,
zamiast zas ilosci z,, z, wyrazenia:

Azy =+ Ao — A&'s; Awy = — A2’y 4 A2, .

6. Konkomitanty mieszane Nazwe tg nadaje
Sylvester utworowi o dwu szeregach ilosci zmiennych, ma-
Jjacemu wlasnosé niezmienniczg wtedy, gdy jedne zmienne podda-

Pascal. Rep. I. 17
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jemy przeksztalceniu prostemu. drugie za$ odwrotnemu. Utwo-
ry te nazywamy takze

7. Formami posredniemi(Zwischenformen, Aron-
hold) patrz § 6. 3

8. Diwarianty (Salmon) patrz § 6.

9. Nadwyznaczniki (Hyperdeterminants). Tak
Cayley nazgywal pierwotnie niezmienniki.

10. Spélpodstawieniowemi (cogredienti) nazy-
waja sig dwa szeregi zmiennych, ktére poddajemy tym samym
podstawieniom.

11. Przeciwpodstawieniowemi (contragredienti)
nazywaja sie dwa szeregi zmiennych, z ktérych pierwsze podda-
jemy podstawieniom liniowym prostym, drugie—odwrotnym.

12 Emananty. 8tosujac k razy dzialanie Aronholda
do niezmiennika formy f, dochodzimy do niezmiennika formy f
1 formy, ktdrej spélezynniki wprowadzaja sie przy powyzszem
dzialanin.  Utwor ten nazywa sie emanantem form f
19 (Cayley).

13. Kombinanty. Sa toniezmienniki lub spélzmien-
niki jednoczesne ukladu form jednego stopnia, do ktérych stosujac
dzialanie Aronholda. odniesione do obu form ukladu, otrzy-
mujemy na rezultat zero (patrz G ordan, Invariantentheorie,
IT. str. 60).

Kombinant zmieniasie o czynnik liczbowy, je-
zeli zamiast ukiaduform danych wezmiemy uklad,
ktérego formy sa kombinacyami liniowemi form -
przewrotnycl.

14. Ewektanty. Jezeli w procesie Aronholda, za-
miast mnozy¢ kazdy pochodna ‘przez spélezynnik 4, o tym sa-
mym skazniku, jaki ma spélezynnik, wzgledem ktérego wzieto
pochodng, mnozymy pochodng przez (—1) x,*~"x,", t. j. jezeli
tworzymy

oJ

2 ( _l)r.l. W Rl S
2 1 a(t,- ¢

gdzie «, sy spdlezynnikamni istotnemi danej formy rzedu n-tego,

ktérej J jest niezmiennikiem, . otrzymujemy t. z ewektant

(Cayley).
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15. Katalektykanty. Forma rzedu nieparzy-
stego2m—-1dajesie zawsze wyrazi¢ jako suma m po-
tegg form liniowych

@t=" =", (y—aymPn-1- =+ b (27— @ )2
Réwnanie, od ktérego zalezy wyznaczenie
sp6lczynnikéw a;,...,an jest postaci
| @, s it A S Tl ettt ]| “
y, . S . . oy gy Q
=0
O B s b o 2w G S T

inazywasie¢ katalektykantem (Sylvester).

Tez same rozwazania. stosowaé mozna 1 do form rzedu
parzystego (patrz Cayley, Crelle LIV).

16. Syzygie. Tak nazywaja sie zwiazki, zachodzace
pomiedzy formami niezmienniczemi ukladu zupelnego.

17. Formy skosne (schiefe Formen, formes gauches.
forme gobbe, skwew); sa to formy niezmiennicze o charakterze
nieparzystym (patrz wyzej § 2).

18. Pélzmienniki (Seminvarianten,peninvarianti), sa
to utwory, majgce wlasnosé niezmiennicza nie dla wszystkich
mozliwych podstawien liniowych, lecz tylko dla podgrupy grupy
calkowitej.

§ b.
Uktady zupetne form niezmienniczych.

Kazdy niezmiennik lub spélzmiennik spdl-
zmiennika jest niezmiennikiem lub spélzmien-
nikiem uktadu zasadniczego.

Kazda forma niezmiennicza ukiadu form
daje sie zawsze zlozy¢ przy pomocy kolejnego
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stosowania procesu faldowania (Twierdzenie Gor-
dana.)

Dla danej formy lub danego nktadu form
zasadniczychistnieje zawsze liczba skoriczona
niezmiennikéwispdélzmiennikéw, ktéorych klaz-
dy inny niezmiennik nkladu jest funkcya cal-
kowitg (Twierdzenie Gordan a).

Ogol tych niezmiennikéw i spétzmiennikéw tworzy to, co
nazywamy ukladem zupelnym.

Liczba form ukladu zupelnego nie jest znana a priori.
Granice jej wyzsza wskazal G or dan (Jour. de Liouville, 1879).

[Liczba spolzmiennikdéw J stopnia mirze-
dup formyrzedunréowna sig liczbie spdlzmien-
nikéw stopnianirzedup formy rzedu m(Twier-
dzenie o wzajemnosci Hermite'a.

Inne wazne twierdzenie {(Brios chi’e g o, Tow. naukowe
w Erlangen, 1895) jest nastepujace:

Jezelidwie formy dwdjkowe majag wspdl-
ny czynnik liniowy, to ich spélzmiennik jedn o-
czesny stopni p, ¢ 1 rzedu m wyraza sie przez
niezmiennikiispéltzmienniki form, ktore otrzy-
mujemy z form danych, opuszczajac ich czyn-
nik wspdélny (Zastosowanie tego twierdzenia podal Brioschi
Ace. Torino, 1896).

Uktad zupetny uktadu form liniowych. Kazdy spdlczyn-
nik lub niezmiennik uktadu form liniowych a., 5,,. .. tworzy
sie¢ z agregatow czynnikéw trzech nastepujacych typow :

1) niezmienniki typu (ab), . . .

2) spélzmienniki typu a,, bz, @y, 0,.

3) spdlzmienniki typu (zy), . . .

Uktad zupelny jednej lub dwu form kwadratowych. Uklad
zupelny formy kwadratowej a,® tworzy sie ze spélzmiennika
a,’ oraz z niezmiennika (wyroznika) (aw)?. Niezmiennik (aa')?
wyraZa sig przez sp6lezynniki w ten sposéb: 2 (a,ay — a,?).
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Uktad zupetny dwu form kwadratowych /= a,?, ¢ = 0*?
tworzy sie :

1) .z dwu form danych;

2) z wyréznikow

A= () s — (Do)
3) z niezmiennika
A= (ab)? = a,by + a0y — 2a;h, :

4, z jakobianu form danych:

& = (ab) b= (ay0,—a, b)) @, +(aby—agby) @@y + a,by—a,0) 2,

Pomigdzy temi-formami zachodzi zwigzek:

W= — § (4 @ — 24/ fot Ao [?) .
Jezeli ¥ jest tozsamosciowo zerem, wtedy funkcye f1 ¢ sa
proporcyonalne. .

Jezeli A, 4,, — A%, jest tozsamosciowo zerem, wtedy
obie formy maja czynnik wspéiny.

Uktad zupeiny trzech lub wiecej form kwadratowych
(=022 ‘o=0,% w=r¢c,% . > tworzy sie:

1) z m form danych; ' :

| (n-1
2) z %_’ I e W

3) z n(ng—hl) spolzmiennikéw kwadratowych

(fs (P) = 19./"}’7 (fw p) = “9_/'/'7 e e ey

) ( 72—16) (1—2)

niezmiennikéw typu
A, by, €
R,,= ((f,9), v), = (ab) (ac) (b)) = | a;, b, ¢

(Pt 15

2
ol n(n +gn+8)

Raze form niezmienniczych, whczajac

w to formy dane.
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Pomigdzy temi formami, précz zwiagzkow
powyzszych, odnoszgcych sie do spélzmien-
nikéw pomiedzy kazdemi dwiema formami,
istniejag zwigzkinastepujace:

Aff )
A'P.f )
A7,

[

Aff ’

2Ujpy == | Aoy, Agy,

A./‘

P

4‘1 S

A'P i

-Al[)f y Arpzp ) Aqv iy
.

Affp >

Aoy,

4y g,
®,

“1f )
A’Pv’ ’

Ay »

Y,

¢

5%

y
0

0,

[Bow —I' Py + wdp = 0,

Brpw + Ay Ppw + Asp

Pomiedzy niezmiennikami 4 lub

istniejgnadto zwigzki:

AO’./!
Ay,
: Agf ’

| Affy
!
1

AJ'W 3
4

A »
Ayg,

‘49'177

4

Ay,
Afpl/l

Avep s

Ae'ﬂ‘

By + Af'/"?w g

b form

gdzie g moze by¢ w szczegolnosci samg forma gynadto mamy zwig-

zek

'Af')” H'wz@ LA AJ"I' Rze'ﬁ + A.fx R@w g A/@ Ru"rz =0 4]

i inne podobne.

Pomigdzy niezmiennikami szesciu form
zachodza (précz poprzedzajacych) nastepujgce zwiazki:
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RBrowllyos — Bipy Roow + Brgo oy, — Hyyolfyye = 0;
Ayys Aje, Ajo

2B.py Ryoe =

4
va “Aeoo Atra

Ay dye Ay

Otoniektére zwigzki pomiedzy niezmien-
nikami4lub wigcej form:

: Af'/” Afl’ f

20509, = gy, doun oy |,
v, X 0]
e aed v O eedl
295 Roye = | Apyy  Agy, Age |
¥, % 0

[lRopy — 9Ryyi+ whyy ~ zHipy = 0,
[Bopy = digp 4y + Ay Bye + Ay Peu.

Znikanie niezmiennika #, nalezacego do trzech form kwa-
dratowych f, ¢, y ma znaczenie nastepujace:

Jezeli Hy, jest tozsamosciowo zerem, to
trzy pary punktéw, przedstawiajgcych pier-
wiastkitrzech form kwadratowyech, przy ré w-
nanych do zera, nalezg do tej samej inwolu-
cyl,iodwrotnie,

Uktad zupelny formy rzedu 3-go. Uklad zupelny for-

my f==a,*==u,'?. . . . tworzy sig z form nastepujacych :
e s
doy : @y, Ly° ‘
2. A= (aa)?a,a', = 2 | &, Uy — Ty |,

l(‘:*r g, y?
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3. R=(AA)?2=(aa)?(a"a")?(aa")(a'a")
214 (a,05—a,2) (a,8,—ay%) — (Qgay—a,a,)?];
(a Q) a,?d, = (aad)? (a'a")aya",?
(ap? ay — 3Baya,ay + 2a,8) x,®
3 (aga 0y — 2a4a,% - ay%a,) x,% x,
3 (agay0, — 2a,% ay + a, a,?) =, x,?
— (a* — Baa.05 + 2a,%) x,° .

Tlosei A, R, @ sg odpowiednio: hesyanem, wyrdézni-

kiem i jakobianem; pomiedzy niemizachodzie

zwigzek
2@  A34 Rf? = 0.

Wyréznik formy /. jezeli pominiemy czynnik staly, réwna
sie wyréznikowi formy A, t. j. /.

Jezeli R=0, wtedy 1 A maja podwdjny czynnik liniowy,
wsp6lny obu tym formom; @ zas jest zupelnym szescianem tego
czynnika liniowego.

Jezeli A jest tozsamosciowo zerem, wtedy ) jest szescianem
zupelnym formy liniowej.

Punkty,przedstawiajace pierwiastki f=01i ¢=0,
sg trzema parami punktéw w inwolucyi, ktérej
punktami podwéjmemi sa pierwiastki réwnania
A = 0.

Uklad zupetny formy kwadratowej i szesciennej. Uklad
By form f = 0, = a2 = oL sl = U=
tworzy sie:

1. z pieciu niezmiennikéw:

Ay =Adaa’)%;  Aph = (AA)) A= (ald)?,
F=(ap)’, M= -—(6p)*;

4. @

o I

2. z czterech spélzmiennikéw liniowych:
p=(ab)h,; g = (ap)as: 7~ (pA)A;; s= (Gp)b,
3. z trzech spélzmiennikéw kwadratowych:

17 B S AR B e = ({7 N g, A 7
4. z trzech spélzmiennikéw szesciennych :

P (@t (AN D NGBSl A = (D)) il e

b
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Wszystkich form jest 15. Znakowanie powyzsze
pochodzi od Gordana; znakowanie Clebscha jest nieco
odmienne.

Pomiedzy pigcioma niezmiennikami za-
chodzizwigzek:

. - 2M2= AJ:/LQ"“ 2A/‘AI’1.L+;“AAF2,
gdzie
L = % (‘4”AAA == A2fA) .

Niezmiennik L jest wyréznikiem formy 6.
Inne zwigzki sq:

QP =fF— §p*Ay; ' =AL — §p?ds: —s*=0M- $piL.

Forme 6 mozna, zamiast przez nasuniecie (f, A), wyrazié
przez nasuniecie (@, p) tak, ze:

b = (f’ -\) = (¢, 77)'

Wypadkowa form fi ¢, wyrazona przez niezmienniki za-
sadnicze, réwna sie F— 2.4,y A, .

Uktad zupetny dwu form szesciennych.
Uklad zupelny dla form f=u*=a',"=...;p==0,3 =U/,=..,
skladasie z nastepujacych 26 form:

1) siedmiu niezmiennikéw :

Agg, Age, Ayv, Apo, Avo,
J = (f, 9), Q= (AV) (V) (a0).

2) szesciu spétzmiennikéw liniowych:
= (f, V) P =g, )%
(A, p) (A, ), ¥, p (V, m)
3) szedciu spolzmiennikéw kwadratowych:

A=(f.f~ V= (g, pi% b = (f, )3
(AT, (Q, @) (K, 1);
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4) szesciu spélzmiennikow szesciennych:
i v R=((23), K=(@@V), (V) (93
5) spélzmiennika stopnia czwartego:

4 = (f, 9).

Zachodzi tuzwiazek zasadniczy bardzo
prosty

(f?n) + (p.p) = 0.

Wyréznikiem formy 0 jest:

~
e

Avo = Ayy — —5 ;

nadto jest:
(¥ r )=V X N OR ()e

Pomi¢dzy "niezmiennikami zachodzg dwa zwiazki:

App s Aoe, Ava

2!.)2 = 44A(‘) 1 A(")ﬂ ) AVB
|

| dav, Aoy, dyy

2J8 = (A_mzlvv = AVAAAV) — 4(AAHA(-)V = A@s:]dv) -
Wypadkowa form f, ¢ r6wna sie 2JQ — 2.J

Dawniej mniemano, ze uklad zupelny dwu form szescien-
nych sklada sie z 28 form (patrz np Clebsch: ,Binire For-
men“), potem odkryto, ze dwa spélzmienniki liniowe byly zby-
teczne, bo mozna je wyrazié¢ wymiernie przez inne (patrz Sylve-
ster C.R. 1877, D'Ovidio i Gerbaldi, Acc. Torino, 1830).

Mozna tworzy¢ i inne spélzmienniki liniowe; wyrazenia ich
za pomoca niezmiennikéw ukladu zupelnego sa:

(@, V)2 = (7, A); (K, A= (p,V);
(o5 A ¥ me (- )k (f, Vadime (77, V),
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— (fy mp)* = (9, p°)° = doyn—+ (doo + £ J) p+J (A, 7);
—{p,ap)? = (f, 2*)? = Ao, p+ (doo + 1§ S°) w — T (V, p);
(L p*)? = Aysm + Aoy p+ J (A, ) ;

(p, #%)? == Ayop -+ Asy 4 J (v, 7).

Jezeli Q =0, a nie sg zerami minory wyznacznika 2-go
rzedu, przez ktéry wyraza sig ©? (patrz wyzej), wtedy istnieje
korabinacya liniowa f4Ap form fi ¢, bedgca szescianem zupel-
nym spolzmiennika liniowego p lub z; te dwie formy w tym
przypadku (po za ezynnikiem) zlewaja sie. Zachodzi réwniez

twierdzenie odwrotne.
Jezeli sg zérami wszystkie minory 2-go rzgdu wyznacznika,

za pomocs, ktérego wyraza sig 27 (a wige jest zerem 102), wtedy
@ jest typu f + AQ, (jest spélzmiennikiem formy f) lub f1i¢ sg
szescianami zupelnemi. W obu przypadkach p iz sg tozsamo-

$ciowo zerami.
Ukladem trzech form szesciennych zajmowal sig v. Gall (Math.

Ann, XLV, 1894).
Uktad zupetny formy dwoéjkowej dwukwadratowej. Uklad
ten dla formy f = % = U, tworzy sie z utworéw nastepujacych:

1) Dwa niezmienniki:

i=(aa)* = 2(sga,— 4a,a,+3a5%);

= (f, H)* = ad)? @a)? (@)

2) Dwa spétzmienniki dwukwadratowe f,
H=(aa) a,2a’s® = 2| (@, a, —a,%) 2,4~ 2 (@g @y — a,29) 2,2y -
+ (g g F20a, a3 — Bay?) x2ay? 4 2(ay @y — @y @)1y o

+ (v @y — 6% 2.



268 Rozdziat XII.

3) Spoélzmiennik rzedu 6-go:
To= (fi Hiv—=\agah*(a"a’) as2a s a's®
= (a,?a; — Bu, a, ay + 2a,%) x,6
+ (@,2a; + 2u5a, ay — aya,® + 6a?ay) xS,
~+ b (o a, ~-Bay,aya, -+ 2a,%a;) a2
-+ 10 (ay? @y — ao a3?) 2,* x5*
+ 5 (—uya,a, +3a, a0, — 2a, 0% o2 xyt
=+ (9 tl:‘tI:Q — @ty — 2u,ay0, — 6 ay%ay) x,wy®

~+ Bagaya, —a,a,* — 20, x," .

Formy Hi T Gordan oznacza przez A it. Pomiedzy wy-
pisanemi formami zachodzi zwigzek :

g 17 ) ] g
I? == — ;_‘)——[H“———?H/z‘*“;;—fsr -

Jezeli przez m, m', m" oznaczymy trzy pierwiastki réwna-
nia szesciennego

Q2 =273 — % z — —';2‘4 — (0} (réwnanie rozwiazujace)
(>
1 polozymy :
H4+mf=—2¢; Htnw'f==2y* HImn"f=--25

bedzie :
T=2pvyy.

Trzy formy kwadratowe @, y, y majg ciekawg wlasnosé,
mianowicie, ze kazda z nich jest jakobianem dwdch pozostalych

. m'—m" m' - m m—m’
= 7% Le=—g W (Pw="7

V&)
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Wyréznikiem formy f jest:

flAsE S )
/)’j' = g,‘: (t'l _— 6]2) .

Rugownik form fi H, pomijajgc czynnik liczbowy, réwna
sig kwadratowl wyréznika formy f.

Jezeli wyréznik formy f jest zerem, to f ma czynnik po-
dwéjny, i ten sam czynnik jest zarazem czynnikiem dwukrot-’
nym dla H, pieciokrotnym dla 7.

Jezell /1 H réznig sie czynnikiem stalym, wtedy 1 tylko
wtedy f jest kwadratem zupelnym formy rzedn 2-go.

Jezeli H jest dokladny czwartg potega, nie znikajacy tozsa-
mosciowo, wtedy ¢ =0, j==0, f zas$ ma czynnik potréjny. Od-
wrotnie, jezeli f ma czynnik potrdjny, . H bedzie czwarts potega
dokladng, 7 1 j za$ beds zerami. W tym przypadku 7' bedzie
potegsa szosta dokladna tego samego czynnika, ktéry w [ wy-
stepuje trzykrotnie.

Jezell H jest toZsamosciowo zerem, to f jest dokladnie po-
tega czwartg wyrazenia liniowego i odwrotnie; w tym przypad-
ku 7, i, j sg oczywiscie zerami.

Uktad zupelny formy kwadratowej i dwukwadratowej.
Niechaj bedzie

e — e el D =]t = e

uklad zupelny sklada sie z 18 form nastepujacych :

1) Szesciu niezmiennikow :

&) (jak wyZej),

D = («a)?, A= (uh)?(d)) = (pa)?,

B = (aH)* (WH)? = (ga)*, C=(ppypn)(ga)=(ra).

2) Szesciu spolzmiennikéw kwadratowych:

£ op= (a2,  y= (aHVH,2,

T= (YY), V=1(pa)y,a,, X =1(ya)z.a.
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3) Picciu spélzmiennikéw dwukwadratowych:
¥, H = (bb'fzbz2 Z,’zﬂ’
L= (aba,, M= Ha)H?a,, K= (wHe,H>.
4) Spélzmiennika stopnia 6-go:
T = (p, H).

Wszystkich form jest 18.
Pomiedzy temi formamizachodzi zwigzek:

D, A, B,

, iD AT

By b B rage e g Wiy
DR R B T T ¢
g s iy e SR ARG

Rugownik form fi ¢ ma posta¢

A*— 4DB+ 31D,

Jezeli C jest zerem, wtedy i tylko wtedy istnieje forma kwa-
dratowa ¢ taka, ze ¢ mozna wyrazi¢ jako funkcye kwadratows
form f i g. Tym ukladem zupelnym zajmowal si¢ Harbordt
(Math. Ann. I, 1869,

Inne uktady zupeine

Uklad dla formy szesciennnejidwukwa-
dratowej obliczal Gundelfinger (Tybinga 1885); potem
Sylvester C.R.1878 sprowadzil uklad do trzech formacyj.
Uklad ten skiada sie z 61 form, mianowicie: 20 niezmienni-
kéw, 15 spétzmiennikéw liniowyeh, 10 niezmiennikéw kwadra-
towych, 8 niezmiennikéw szesciennych, b niezmiennikéw dwu-
kwadratowych, 2 niezmiennikéw rzedu 5-go, jednego nie-
zmiennika rzedu 6-go.

Wypadkows dla formy szesciennej i kwadratowej obliczyl
Brioschi (Collect. math. in memoriam Chelini, Medyo-
lan 1881).
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Dwie formy dwukwadratowe. Uklad, obliczonyprzez G or-
dana (Math. Ann. II, patrz przeklad niemiecki dziela Faa di
Bruno), sklada sie z 28 form, a mianowicie: o$miu niezmien-
nikéw, osmin spélzmiennikéw kwadratowych, siedmiu spél-
zmiennikow rzedu 4-go, pieciu spolzmiennikéw rzedu 6-go.

G ordan poczatkowo wprowadzil dwa utwory zbyteczne, jak to
poznie] zauwazyl Sylvester (C, R. 1887), Pomiedzy osmiu nie-
zmiennikami zachodzi zwiazek, ktérego obliczenie rozpoczal Bertini
(Math Ann, XTI, 1877) a ukoneczy! d'Ovidio (Ace. Torino XV, 1880).
I inni autorowie zajmowali si¢ tem pytaniem (patrz wiadomosci, za-
warte w nocie d’Ovidio ,Sopra alcune classi di sizigie binarie*, Acc.
Torino 1893) i note Brioschi’ego (Ace. Torino, 1896). Wy-
padkowa dwu form kwadratowych obliczyl d’Ovidio (Ace. Torino,
1880) .

Forma rzedu pigtego posiada najwyzej 23 formy niezmien-
nicze, a mianowicie :

4 niezmienniki stopni 4, 8, 12, 18
4 spoélzmienniki 1-go rzedu ,, 5, 7, 11, 13
3 . 2 y o=t (5 (5

3 i 9 Sl GEE B

2 % 4 e e

3 4 b A EA L W 003 T

2 5 6 L e il

1 spolzmiennik 7 ,, stopnia 5

1 &

2 ’

Niezmienniki sg tedy stopni 4, 8, 12, 18 co do spélezynni-
kéw formy rzedu 5-go; przez dwie pierwsze z pomiedzy nich
wyraza sie wyroznik, obliczony przez Salmona (Camb. math
Journ. V, 1850).

Uklad zupelny dla formy rzedu 5-go znajduje sie u Clebscha
Patrz: Gordan ,Invariantentheorie¥; Faa di Bruno (przeklad)
,Binéire Formen* str. 328—355; Cayley; d'Ovidio (Ace. Torino,
1880). Co do wypadkowej formy 5-go rzedu i kwadratowej patrz
d’'Ovidio (Mem, Soc, ital. delle scienze, t. IV, 1881), a co do wypad-
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kowej formy 3-go rzedu i dwukwadratowej lub dwu form 5-go rzedu
d’0vidio (Mem, Lincei IV, 1888),

Uktady zupelne dla form rzedu 5-go i wraz z inng forms
nie sg jeszcze zupelnie znane, jezeli wylgczymy tylko prace
Wintera (Progr. Darmstadt, 1880), gdzie badany jest przypa-
dek formy kwadratowej i formy rzedu 5-go.

Uklad zupelny formy dwdjkowej szdstego rzedu sklada sie:

z 5 niezmiennikow stopni 2, 4, 6, 10, 15
,» 0 spélzmiennikéw 2-go rzedu ,, 3, 5, 7,.8,-10; 12
, D p 4 % 5 i 59
AT o 6 - o 1, 3, 4, 6
B X 8 % 2 R ()
] ) 10 4 . 4
1 12 [ 9 3

bE

Ten uklad zupelny znajduje si¢ u Clebscha (Binire Formen),
u Gordana (L. c.) i innych. Wyrdznik tej formy obliczy! pierwszy
Brioschi (Crelle LIII, Ann. di Math. I). Zwiazki pomiedzy forma-
mi ukladu zupelnego znalezli: Clebsch, Gordan, Stephanos
(Comptes rendus XCVI), Maisaxno (Lincei XIX, Math, Ann, XXXI),
d’Ovidio (Ace. Torino 1889, 1892, 1863). Wypadkows formy 6-go
rzedu i formy szesciennej obliczyl d’Ovidio (Ace. Torino 1892);
ukladem formy 6-go i 4-go rzedu zajmowal sig v. Gall (Progr.
Lemgo, 1873).

Uktad zupelny formy dwoéjkowej rzedu 7-go sklada sie
z utworow, przedstawionych w ponizszej tablicy, gdzie widaé
odrazu numer kolejny, rzad 1 stopien kazdego z nich.
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Rzad w zmienn ych,

e e o e el e e

~

Stopienn w spolczynnikach,

Uklad zupelny dla formy 7-go rzedu badali: Krey (Diss, Ge-

tynga, 1874), Gordan (Ueber das Formensystem bindrer Formen,
Lipsk, 1875); Sylvester (Am. Journ. of. Math,, II, 1879) podal
tablice form ukladu zupelnego, lecz wymagala ona poprawek; v. Gall
(Math. Ann, XXXI, str. 318) traktowal zagadnienie ogélniej i podak

tablice, wyzej umieszczona,

Uklad zupelny dla formy rzedu 8-go jest nastepujacy :

Pasecal. Rep L 18
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Rzad w zmiennyech.

v 2 4 6 8 10 12 14 18

1} 1

2 1 1 1 1

3 1 it i 1 1 i 1 1
4 1 2 1 1 2 1 1 1
b 1 1 2 2 1 3 1'
6 1 1 2 3; 1 1

Stopien wzgledem spélezynnikéw.

10 1 2 l

| | T
1Hil 2 ! |

| ‘
12 1 l

Razem form 69.

Uklad ten znalazt Sylvester (Am. Journ. II); pézniej badal go
ve Gall (Math. Ann, XVII, str. 81, 149, 456), ktéry poczatkowo mnie-
mal, iz znalazl trzy utwory zbyteczne w tablicy Sylvestera oraz
brak jednego utworn (C,,*, t. j. spélzmiennika 4-go rzedu i 10 stopnia);
potem na str. 456 t. XVII poprawil sig¢ co do utworéw zbytecznych;
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wreszcie co do (% to Sylvester (C. R. 1881) uznal jej zby-
tecznose,

Co do innych ukladéw zupelnych patrz prace Sylvestera (Am.
Journ, IT), ktére dla 9-go rzedu znalazl! utworéw 415, dla rzedu
10-go zad 475.

Wyrdznik formy rzedu 7-go badal Gordan (Math. Ann, XXXT).
Co do zwiazkéw pomiedzy dziewiecioma niezmiennikami formy rzedu
8-go patrz Alagna, Rend, Palermo VI,

Wazna praca o utworzeniu ukladéw zupelnych jest praca G o r-
dana: ,Ueber des Formensystem etc.“, Lipsk, 1875,

8 6.

Przedstawienia typowe form dwdjkowych. Formy stowarzyszone.

Przedstawieniem typowem jednej lub wielu form
nazywamy takie przedstawienie, ktérego zmienne sg spélzmien-
nikami wymiernemi, spéleczynniki zas niezmiennikami wymier-
nemi form danych.

Dla formy a,” rzedu nieparzystego dochodzimy do
przedstawienia typowego w sposéb nastepujacy:

Wiemy, ze dla takiej formy, gdy n >3, istniejs zawsze dwa
spétzmienniki liniowe, ktérych wyznacznik jest rézny od zera;
niechaj temi formami beds a,. f.. Podnoszac do potegi n-tej
obie strony tozsamosci symbolicznej

ty (0f) = az (af) — = (aa),

otrzymamy po stronie pierwszej f.(ap)", po drugiej zas forme
rzedu m-tego ze spélzmiennikami a, i f., ktérej spolezynniki
sg niezmiennikami. Pozostaje tedy tylko wyrazi¢ te spélczyn-
niki przez niezmienniki zasadnicze.

Toz samo mozna uczyni¢ dla ukladu form zasadniczych,
ile razy istniejg dwa spélzmienniki liniowe.

Do przedstawienia typowego formy " rzedu parzyste-
go dochodzimy sposobem nastepujacym:
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Wiemy, zZe dla % parzystego 1 >4 istniejg zawsze dwa
spolzmienniki kwadratowe, ktérych wypadkowa jest rézna od
zera. Za ich pomocg mozna zawsze utworzyé trzeci, liniowo od
pierwszych niezalezny, t. j. ich jakobian.

W kazdym przypadku mozemy tedy pomysle¢ trzy spél-
zmienniki: a%, p%, y®%.. Za ich pomoca mozna otrzymac

przedstawienie typowe, podnoszgc do potegi —% obie strony

zwiazku tozsamosciowygo
a:? Bug, = a(a, 47 + B(1, B + y(a, O)*,

glzie 4, B, C sa odpowiednio jakobianami dla 8, y; y, a; a, .
Jozell w szczegolnosci y = C. wtedy:

Ragy = 4 {(a,0)* (B, 8)* — | (a,$)°)*},

a podnoszac do potegi —g—, otrzymujemy :

"

[-[Bapy)? = [u(a, 4)* + B(a, B)* +y (a, C)°]7 .

Rozwijajac, otrzymamy przedstawienie funkeyi f za pomocg
zmiennych a, 8, y ze spélezynnikami, ktére sa niezmiennikami.

Formy (niezmienniki, spélzmienniki), za pomoca ktérych
otrzymujemy przedstawienie typowe, nazywaja si¢ formami
stowarzyszonemi (Schwesterformen).

Liczba form stowarzyszonych jest k-3,
jezeli &k liczba spdlczynnikéw formdanych
ijezeli za nowe zmienne wybieramy spédl-
zmiennikiliniowe; jezeli zas wybieramy spél-
zmiennikil kwadratowe, toliczba form stowa-
rzyszonych wynosi k-4 10.

Kazdy niezmiennik lub spdlzmiennik ukla-
dudanego moze byé¢ wyrazony wymiernie (lecz
nie w funkcyachcatkowitych) za pomocg form
stowarzyszonych przedstawienia typowego.
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§ 7.
Przedstawienie kanoniczne form.

Przedstawieniem kanonicznem form nazywa
sig takie przedstawienie, w ktorem liczba spélczynnikéw jest moz-
liwie najmniejsza; daje sie to uskuteczni¢ za pomoca odpowie-
dniego podstawienia liniowego (liczba spdlezynnikow podsta-
wienia liniowego jest 4, a wiec liczba, do ktérego zredukowac
mozna liczbg spélezynnikéw, wynosi najwyzej 4).

Jezeli w szczegblnosci nowe wprowadzone zmienne i nowe
spélezynniki sa spélzmiennikami i niezmiennikami formy, mamy
wtedy przedstawienie kanoniczne typowe.

1. Forma szescienna.

Kazda forme szescienng mozZna przeksztal-

cié wtensposdéb:

b TR

tu &, &, wyrazone przez x,, x,, sa dwoma czynnikami liniowemi
spolzmiennika kwadratowego 3; A = —2¢&,&,.
2 Forma dwukwadratowa
Kazda forma dwukwadratowa daje sie
sprowadzié¢ do postaci

=81+ 6mérE4 &,
gdzie m jest pierwiastkiem réwnania

id 2 (143m2)?

3T 9 wr(l—m?)2

stopnia 3-go wzgledem m?; &, &, sg czynnikami liniowemi jednej
z trzech form kwadratowych ¢, v, , na ktére rozklada si¢ nie-
zmiennik rzedu 6-go (patrz wyzej str 268).
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Modul (rs) podstawienia
&= rxy + roky; & = 812 + 5,1,

oblicza sig¢ z wzoru
. 14+3m? g
AR ..,
bt Bm (- m?) i’
gdzie 7, ¢ nalezy obliczy¢ dla formy kwadratowej ogélnej (nie-
zredukowanej do postaci kanonicznej).
Aby forma dwukwadratowa dala sie prze-
ksztalci¢ na forme £*4&,4 jest koniecznem, by j=0.
3. Forma rzedu 5-go.
Kazda formarzedu 5-go daje sie przedsta-
wié w postaci:

ky (& —m &)° ~+ ko (& —mg &) + kg (£, —my )%

t.j. jako suma trzech poteg pigtych (Sylvester).
Tlosei &, &, sa dwoma spélzmiennikami liniowemi formy
rzedu 5-go, a mianowicie spéizmiennikami, ktdre oznaczamy

przez a, 0;
a ==&, jest spolzmiennikiem liniowym stopnia 5-go
6 = 52 2 29 2 2 13 »

my, My, M, sg pierwiastkami spéizmiennika szesciennego stopnia
3-go (ktéry oznaczamy zwykle przez j), ilosci k sa okreslone za
pomocs trzech zwiazkdw:

(fy -+ leg 4 1) B> = L = — (f,§,°)°
S (e ny 1= fooamty 1 kymy) B> ="T; = —(f, 52 &;°)
10 (kymy® 4 kamy® + kymy?) R = Iy = = (f, §° &)%;

strony drugie sg tu wyrazone jako nasunigcia formy f na kom-
binacye liniowe &, &,, zas R jest niezmiennikiem, ktéry otrzy-
mujemy, tworzac nasuniecie drugie spélzmiennika kwadrato-
wego stopnia 8-go & na forme &, :

R — ("9, 51)2: (&, j, El)g'

Szezegdly znale$é mozna u Gordana (Invariantheorie).
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Jezeli j ma jeden pierwiastek podwdjny, ktory bedzie wéw-
czas pilerwiastkiem rownania é = 0, wtedy poprzedzajaca forma
kanoniczna nie jest mozliwa. Bedzie wtedy R?2j = 8%, a kla-
dac dla symetryi d=1#;, p==7, olrzymamy forme kanoniczns
(Bringa 1786):

6 R'f = By = 5B’714’72 T 4A2’725:

gdzie 4, B sg niezmiennikami formy rzedu 5-go stopni 4, 8. Pod-
stawiajac tu
Ol = ==Y, M =n, X1,

otrzymujemy forme Hermite'a
1

9, i X——}—I~7.
9

4. Forma rzedu 6-go.
Forma ta moze byé¢ sprowadzona do postaci kano-
nicznej

uS 4 08+ wb - Auvw (v—v) v—w) (w—u),
gdzie u, v, wsg trzema formami liniowemi, 1 zas pier-
wiastkiem rownania

Wy, @y .y, y—- 4

Gy, Uz, @yt 34 a, dutg
i s, wg— %4, a, ay '
| ag—t+1, 4y, @, (g

Jezeli niezmiennik stopnia 4-go

ay, iy, agy, as

as, Uy, (s g

jest zerem, wtedy forma rzedn 6-go sprowadza sie

do postaci
A RIS AT
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O redukeyi formy 6-go rzedu do sumy czterech poteg széstych
patrz Salmon, Lessons, art. 246).

Inne tormy kanoniczne w przypadku ogdlnym podali: Brill
(Math. Ann. XX, str. 330), Brioschi i Maschke (Math. Ann,
XXX, str. 496, Acc. Lincei 1888, Acta math. XII). Forma ostatniego

jest postaci
a

2
28+ agt + oy + T @ +ya 48,

gdzie a, B, y, 0 sa czterema niezmiennikami formy; to przedstawienie
jest typowem i kanonicznem.
Inne jeszcze przedstawienie kanoniczne podal Brioschi (Ann. di

mat. XI, 1883).

Co sig tyczy historyi teoryi niezmiennikéw, powiemy, ze—jezeli
pominiemy pewne rozwiazania GaussaiLagran ge'a)—wziela ona
poczatek swego rozwoju od Aronholda, CayleyaiSylve-
stera., Potem Clebsch i Goordan wprowadzili rachunek tak
zwany symboliczny i doprowadzili go do mozliwego rozwiniecia; jakkol-
wiek pierwszy pomys! rachunku symbolicznego, pod inna— co prawda—
forma, pochodzi od matematykéw angielskich,

Szczegolowa historya teoryi niezmiennikéw miesei sie w pracy
Fr. Meyera (,Bericht iiber den gegenwiirtigen Stand der Invarian-
tentheorie“, Jahresbericht der Deut. Mathem.-Vereinig, IT, 1892), prze-
klad S. Dicksteina w ,Pracach matematyczno-fizycznych“ t. V1I,
VII, IX i X).

Najwazniejszemi dzielami, traktujacemi o teoryi niezmiennikéw
sa: Salmon ,Lessons to the modern higher Algebre“, Dublin
18591885 (przeklad niemiecki Fiedlera, Lipsk 1863—1877,
polski Sa gajly, wt. IT Algebry, Paryz, 1875): Brioschi, An-
nali di Tortolini, I, 1861; Fiedler, Lipsk 1862; Cle b s c b, Binire
Formen, Lipsk 1872; Faa di Bruno, Formes binaires, Turyn
1876, przeklad niemiecki Waltera i Noethera, Lipsk 1881;
Gordan, ,Invariantentheorie“, Lipsk 1887; Kllis, ,Algebra of
Quantics, Oxford 1895,




ROZDZIAL XIIL

FUNKCYE ZMIENNYCH ZESPOLONYCH.

§ L
Wiadomoseci ogd/ne.

Do prostoty 1 dogodnosci przyjmiemy, zZe zmienna zespolona
x-Hy przedstawia wedlug znanego sposobu punkt na plasz-
czyznie.

Zmienns zespolona X -7 Y nazywa si¢ funkcya mon o-
geniczng (lub wprost funkcys) zmiennej zespolonej x— iy,
jezeli X 1 Y sa (w pewnej czesci plaszczyzny, ktérej punkty
maja za spolrzedne 2 i y) funkeyami rzeczywistemi cigglemi dwu
zmiennych rzeczywistych xiy,czynigcemi zadosé¢ dwém zwiagzkom:

o QY Y’ X (okreslenie

dy ox oy o Cauchy’ego);

b

albo inaczej: jezelli w — X - ¢V zalezy w pewnej czesci
plaszezyzny od z=x— iy w ten sposéb, iz stosunek odpowied-

nich przyrostéw, t. j. % , ma granice okreslong i jedyna, bez
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wzgledu na sposob, w jaki Az dgzy do zera, t. j. bez wzgledu na
to, w jaki sposob punkt, przedstawiony przez zmienng zespolong
(x—+Az)-i(y+Ay), zbliza sig do punktu, przedstawionego
przez i« -y (okreslenie Riemanna).

W § 3 podamy definicye funkcyj analitycznych we-
diug Weierstrassa.

Jezeli X, ¥ sa funkeyami rzeczywistemi jednowarto-
Sciowemi zmiennych z, y, wtedy funkeya nazywa si¢ jedno-
wartosciowa, jednoznaczng, lub jednopostaciows
(monodromiczng lub monotropowa); jezeli zas sy to fun-
keye, majace wiecej wartosci, to funkcya w nazywa sie¢ wielo-
znsczna, wielowartosciowa, Ilub wielopodstacio-
wa, (polidromiczng lub politropowa).

W przypadku pierwszym, jezeli dla wszystkich wartosci
Iub wszystkich punktéw wewnatrz uwazanej czesci plaszczyzny
funkeya w jest skonczonsg, mamy funkcye holomorficzna,
albo inaczej funkcyg o charakterze funkeyi calkowi-
tej, albo wreszcie regularng (Weierstrass).

Jezeli funkcya w staje sig nieskonczons w jakims punkcie
z= P, lecz w ten sposdb, ze istnieje zawsze otoczenie tego pun-

ktu, wewnatrz ktorego funkeya —3; jest holomorficzna, wtedy

funkcya w nazywa si¢ meromorficzna, a punkty, w kté-
rych staje si¢ nieskonczona, nazywaja sie biegunami.
Przypadkiem szczegélnym funkeyi holomorficznej jest fun-
keya wymierna, calkowita; przypadkiem szczegdlnym
funkecyi meromorficznej jest funkeya wymierna; przypadkiem
szezeg6liym funkeyi monogenicznej jest funkeya algebra-
iczna, ktdra mozna okresli¢ ogdlniej w sposob nastepujacy.
Zalézmy, ze pomiedzy ilosciami w i z zachodzi zwigzek calko-
wity wymierny ¢ (w,2)=0; wtedy w bedzie w ogole funkcya
wieloznaczng zmiennej z; funkeya wymierna F(w,2) dwu zmien-
nych wiz nazywa si¢ funkcya algebraiczng ogdlng
zmiennej z. Funkeyom algebraicznym poswigcamy roz-
dziat XV,
Funkeya monogeniczna niealgebraiczna jest funkcys p r z e-
stepn a.
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Powiadamy, zZe z=a jest pierwiastkiem lub ze-
rem rzedu k funkcyi jednoznacznej f(z), gdy. f(a)=0, oraz
gdy (z” il ; hie staje sie ani zerem ani nieskonczonoscig dla
z =a.

Powiadamy, ze z=oc0 jest pierwiastkiem lub ze-
rem rzedu k funkcyi jednoznacznej f(2), gdy f(co)=0
nadto & f(2) nie staje sig ani zerem, ani nieskonczonoscia dla
2 == oo

Nazwiemy punkt z=a blegunem rzedu k funkeyi f(z)

gdy funkeya ma w punkcie z=ga punkt zerowy rzedu

/()

ki-tego  Jezeli w jest funkcys jednoznaczng zmiennej z, wtedy
tak czes¢ jejrzeczywista X jakispdlczynnik
czesciurojonej, tj. ¥, czyniag zadosé réwnaniu
rézniczkowemu (Laplace’a)

% %
o B

Kazda funkeya dwu zmiennych rzeczywistych z, y, czy-
nigca zados$¢é rownaniu Laplacea, nazywa sig funkecysa
potencyalng lub funkcya harmoniczna,.

Odwrotnie: jezeli X, ¥ sg3 funkcyami cig-
glemiilosciz, yiczynig zadosé powyzszemnu
rownaniurdézniczkowemu, to mogg one stano-
wi¢ czesé rzeczywista i spolczynnik czesci
urojonej funkcyi jednoznacznej.

Jezeliczegsé rzeczywista zmiennej w jest
dana, to mozna wyznaczyéczesé caysto uro-
jona (z dotgczeniem statej dowolnej).

Jezeli znanym sposobem przedstawimy za pomoca punktow
na plaszczyznie () wartosci zmiennej zespolonej w, to ustano-
wimy odpowiednio$¢ pomiedzy punktami plaszczyzny w a pun-
ktami plaszezyzny z. Mowimy wtedy, ze plaszczyzna z jest
odwzorowana na plaszczyznie w.
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Rozpatrzmy czesé plaszezyzny z, na ktérej funkeya w jest
funkcya jednoznaczna; punktowi z odpowiada punkt e
linii ciagle] w obszarze zmiennej z odpowie linia ciagla w ob-
szarze zmiennej 7. Odwzorowanie posiada wtedy nastepujacs
wazing wlasnosé.

Kgt miedzy dwiema liniami, spotykaja-
cemisiena plaszczyznie z, ro6wna sie katowl
pomiedzy odpowiedniemi liniami na plasz-
czyznie w.

Takie odwzorowanie nazywa sig podobnem (conforme,
patrz ,Geometrya rdézniczkowa“) i odpowiada przeksztalceniu,
zwanemu ortomorficznem (Cayley).

Trojkat nieskonczenie maly na pltaszczy-
Zznie z jest (pomijajac nieskonczenie male
rzedéw wyzszych) podobnydo odpowiedniego
tréjkatunieskonczonostkowego na plaszczy-
Znie w.
dw

T 0, odwzorowanie po-

W punktach, w ktérych jest
dobne ustaje.

Linie plaszczyzny #, dla ktorych X —=stalej, nazywaja sie
liniami poziomemi, to dla ktérych Y=stalej — liniami
pradu (przeplywu), obie — liniami rédwnego poten-
cyalu (ekwipotencyalnemi).

Linie poziome sa prostopadle do linij
przeptywu.

Zamiast na plaszczyznie, mozna zmienny zespolona przed-
stawié na kuli, rzucajac stereograficznie punkty ptaszczyzny na
kule. Otrzymujemy wtedy te dogodnosé¢, ze punkt w nieskon-
czonosci staje sie jedynym punktem na kuli.
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Szeregi potggowe zmiennych zespolonych.

O dzialaniach na zmiennych zespolonych, mianowicie o do-
dawaniu, odejmowaniu, mnozeniu, dzieleniu, podneszeniu do po-
tegi rzeczywiste] mdwiliSmy juz w rozdziale I-ym; funkeye al-
gebraiczne tej zmiennej okreslilismy w § 1 rozdzialu niniejszego.
Pozostaje jeszcze rozpatrzenie podnoszenia do potegi zespolonej,
logarytmu, funkeyj trygonometrycznyeh zmiennych zespolo-
nych i t. p., co pozwoli nam na wprowadzenie funkeyj przestep-
nych tych zmiennych. W tym celu zajmiemy sie najprzéd sze-
regami, a mianowicie szeregainl potegowemi.

Okreslenie szeregéw o wyrazach zespolonych podalismy
wyzej w rozdziale IV ym.

Okreslenia 1 twierdzenia zasadnicze o szeregach funkeyj
zmiennych zespolonych sa analogiczne do okreslen i twierdzen
o szeregach funkeyj zmiennych rzeczywistych. W tenze sam
sposob okreslamy zbieznosé 1 zbieznos¢ bezwzgledna; nalezy
tylko wszedzie w okresleniach dawniejszych przez wartosc
bezwzgledna rozumie¢ to, co nazywa si¢ modulem
lub wartoscig bezwzgledng liczby urojonej (patrz Rozdz. 1, § 2).

Obszarem zbieznosci takiego szeregu jest nie juz odcinek
prostej, lecz pole plaskie.

Rownozbieznosé danego szeregu funkcyj zmiennej
zespolone] okreslamy w ten sposob: zachodzi ona wtedy, gdy
dawszy sobie >0, mozna znalesé takie n, ze dla kazdego m_>n,
reszta [, (21 szeregu ma modul mniejszy od o, dla wszelkiej war-
toscl z w obszarze zbieznosci:

Rozpatrzmy szereg poteg calkowitych dodatnich zmicnnej
zespolonej 2, t. .

o+ Wz a2 4
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Jezelidla z=¢, moduly réznych wyrazéw
szeregu potegowego pozostajsg mniejsze od
liczby A4, wtedy dla kazdej wartosci z, ktorej
modul jest mniejszy od 2z, szereg potegowy
jest zbiezny bezwzglednie, a wigc niezaleznie
od porzadku wyrazdw.

Jezeli dla 2=2, szereg jest zbiezZny nie
bezwzglednie, wtedy dla kazdej wartosci z
omodule mniejszym niz modul s, szereg be-
‘dzie zbiezny bezwzglednie, a dla kazdej war-
toscizomodule wigkszym od modulu z, bedzie
rozbiezny.

Obszar zbieznosci szeregu potegowego
tworzy koto, ktérego srodek znajduje sig w po-
czatku spolrzednych. Na punktach okregnu
tego kola szeregmoze byé¢ zbiezZnym bezwzgle-
dnie, zwyczajnie, albo tez byé rozbieznym.
Moga byé¢ szeregizbiezne jedynie zwyczajnie
dla wszystkich punktéw okregu (Pringsheim,
Math. Ann. XXV).

Jezelli spétezynniki a,, @, a5 ... szeregu
potegowego sa takie zZe poczgwszy od pewne-
an+k—41

goskaznika n stosunek daje sigroz-

ant+k
wingé naszeregi typu:

(et T e R I
—T".T—1+—1z gt R
tokolo zbieznosci szeregu potegowego ma
promienrowny l. W punktachokreguszereg
jest rozbiezny, jezeli u;>0; jest zwyczajnie
zbiezny (wyjawszy dla z=1), jezeli 0 >u, > —1
jest bezwzglednie zbiezny, jezeli pu <7 —1;

(Twierdzenie Weierstrassa, Crelle, LI).

Suma szeregu poteggowego jest funkcys
cigglag zmiennej 2z dla kazdego punktu we-
wngtrz kola zbieznosci,
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Granica dla =0 sumy wyraz6éw, pocza w-
szy od wyrazu n-tego (n>>1) szeregu potegowego
zbiezZnego, jest zerem.

W kole, znajdujacem sie calkowicie we-
wnatrz kolazbieZnosci szereg potegowy jest
réwnozbiezny.

Jezeli dwa szeregi potegowe majag toz-
samo kolo zbieznosciijezeli dla kazdej licz-
by dodatniej o znales¢ mozna taksg war-
tos¢ z o module mniejszym od ¢, ze warto-
sciobuszeregdéw bgdg réwne dla tej wartosei
z,to wtedy spéliczynniki odpowiednie obu sze-
regéw sg réwne. Twierdzenie to utrzymuje sie i wtedy,
kiedy oba szeregi majs skonczong liczbe wyrazéw z pote-
gami ujemnemi calkowitemi

Pochodna szeregu potegowego jest sumay
pochodnych jego wyrazéwimatosamo koto
zbieznoscicoiszereg dany.

Szereg poteg ujemnych, jezeli jest zbie-
zny dla wartosci z, zmiennej 2z, to jest bezwa-
runkowo zbiezny dla kazdej wartosci z, kto-
rej modul jestwiekszy od mod z,. Obszar zbie-
Zznoscitakiego szeregu przedstawia cala pla-
szeczyzna,po wylgczeniu z niej pola kola, ktérego
srodek znajdujesie w poczagtkuspdélrzednyech.

Jezeliszereg poteg dodatnichiujemnych

+oo
t.j. 2 a.2" jest zbiezny dla 2=z, to z dwu sze-
=

o0 [oo]
regow AO‘/L,,Z", zl‘a_,,Z‘”, pierwszy bedzie zbiezny

bezwzglednie dla kazdej wartosciz, ktérej
modutl jest wiekszy od mod z. Obszar zbiez-
nosci uwazanego szeregu stanowi wogoéle pier-
$cien kolowy, zawarty pomiedzy dwoma ko-
lami, majacemi srodek w poczagtku spdélrzed-
nych. W szczegdlnosci obszarem tym by¢ mo-
ze cala plaszczyznalub tylko punkty okregu.
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Jezelidwa szeregi poteggowe (0 potegach
dodatpich i njemnych) majg ten sam obszar
zbieznosci,wktérym istnieje przynajmmniej je-
den punktc¢taki, Zze gdy opiszemy okolo tego pun-
ktu, jakosrodka, koloodowolniemalym pro-
mieniu, bedziemy mieli zawsze wewngtrz te-
go kola taki punkt 2, Ze wartosci obu szere-
gow dla z=z"bedg réwne, wtedy spélczynniki
odpowiednie obu szeregéw muszg byé réwne.

Jezeli mamy nieskonczong liczbe szeregdw
potegowych bezwzglednie zbieznych w obsza-
rze, zawartym pomiedzy dwoma okregami;
mianowicie:

+co
f(Z) = zam,n Z”,
—o0

1 szereg
2@ =Ff@+AOFAEF

jestrownozbiezny wtymze obszarze, wtedy
szereginieskonezone

Qo + Oyn + don -+

sg zbiezne dla kazdej wartoscim, a oznaczy w-
szy ich wartosciprzez a, bedziemy mieli:

+ o0 w
2 Ay 2y = 2 fm (Z)7

m=0

(Twierdzenie Weierstrassa, Berl. Akad. 1880; Stolz, Math.
Ann. XXIV).
Jezeli szereg poteg calkowitych dodat-

nich Xa,z* jest zbiezny dla wszystkich pun-
0

ktow 2 kolaze srodkiem w poczgtku spdlrze-

dnych, to sume tego szeregu mozna wWyrazic

za pomocgszeregu poteg, odniesionego do pun-

ktu 2" t. j.
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i)

n! (z_zl)no

1@ =re)+y
1

a obszarem zbieznoscitego szeregu bedzie
koto, opisane okoto punktu 2.

Jezeli 2’ jest punktem okregu pierwszege kofa o promieniu
R i jezeli on porusza sig na tym okregu, to promien zbieznosei
R’ drugiego kola bedzie sig zmienial i bedzie mial swojg granice
WYZSza.

Warunkiem koniecznym i dostatecznym na to,
aby R bylo prawdziwym promieniem zbieznosci
szeregu pierwszego, jest, by ten szereg nie
byl juz zbieznym dla punktu zewnatrz kola
opromieniu #1aby granicanizsza dla R’ byla
zerem.

Jezeli granicg nizszg dla R’ jest#, wtedy
prawdziwym promieniem zbieznoscip erwszego
szeregu jest R +r.

Jezeli wezmiemy 2’ na obwodzie pierwszego kola lub
blizko obwodu, to drugi okrag bedzie mégl obejmowaé¢ punkty,
nie zawarte w pierwszym.

§ 3.

Jeszcze o definicyi funkeyj zmiennych zespolonych. Funkcye
analityczne Weierstrassa.

Funkeye zmiennych zespolonych okreslilismy wyzej sposo-
bem szczegolnymiotrzymalismy t.z.funkcye monogeniczne.
Wilasnose¢ zasadnicza tych funkeyj polega na tem, ze w kazdym
punkcie majg one pochodng jedyna, t. j. ze granica stosunku
przyrostow nie zalezy od sposobu, w jaki przyrost zmiennej nie-
zaleznej dazy do zera.

Pascal. Rep. 1. 19 -
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Lecz moznaby oczywiscie rozwaza¢ funkcye zmiennej ze-
spolonej z punktu widzenia ogdlniejszego: mozna mianowicie
powiedzie¢, ze zmienna rzeczywista lub zespolona jest funkeya
zmiennej z=x--14y, gdy dla kazdej wartosci z (w pewnym
obszarze) ma wartos¢ oznaczona. . Wtedy wszeika funkecya
rzeczywista lub zespolona dwu zmiennych x, ¥ moze by¢ uwa-
zana za funkcye zmiennej zespolonej; gdyz dawszy .sobie z,
mamy jednoznacznie wartos¢ x oraz wartos¢ y, a stad i wartosé
funkeyli zmiennych x 1 y. Pozostaje jeszcze zbada¢ warunki,
przy ktérych tak okreslona funkcya jest ciagly i ma pochodna.
W ten to sposéb ogélny mozna wprowadzi¢ do analizy funkeye
zmiennych zespolonych (patrz np. Stolz, ,Vorlesungen iiber
allgemeine Arithmetik* 1I, oraz ,Grundziige der Diff. und Inte-
gralrechnung“ II, Lipsk, 1893). Wprowadzajac nastepnie roz-
niczkowalnose¢, przychodzimy do funkeyj monogenicznych;
dla pozyskania tedy funkeyj monogenicznych wprowadzamy po-
jecle rézniczkowalnosci, lecz nie wprowadzamy przed-
stawienia analitycznego, od ktérego to pojecia funkcya
monogeniczna jest jeszcze niezalezna.

Lecz wtedy powstaje mysl postepowania odmiennego, t. j.
uprzedniego wprowadzenia drugiego pojecia, aby dopiero z niego
wyplywalo pojecie pierwsze. Dochodzimy tym sposobem do
funkeyj monogenicznych analitycznych Weierstrassa.

Nrechaj bedzie szereg poteg catkowitych dodatnich ilosci
z—2z,; jego prawdziwe kolo zbieznosci okoto punktu z, niechaj
ma promien K. Wezmy na okregu punkt 2z, 1 przeksztalcmy
szereg na inny, odniesiony do punktu z; (patrz § 2). Niechaj
promien nowego kola zbieznoseci bedzie R, (zalézmy, ze jest on
rézny od zera); tym sposobem rozszerzamy funkcye pierwotna
na obszar, ktérego szereg pierwotny nie obejmowal. Dla tych
punktow szereg nowy jest dalszym ciagiem analitycz-
nym lub przeprowadzeniem analitycznem pierwszego.
Tak postepujac, mozemy przeprowadzié funkcye w obszar
rozleglejszy. Ogo6l tych wszystkich funkeyj, ktére przedsta-
wiajg te rozne szeregi stanowi funkeye jedyna, ktors, wediug
Weierstrassa, nazywamy funkcya monogeniczng-
analityczna; rdézniczkowalnosé jej jest zapewniona skut-
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kiem rézuniczkowalnosci szeregu potegowego, Jest jasnem, ze
wybierajac odpowiednio rézne srodki réznych kél zbieznosei,
po sobie nastepujacych, mozna wyobrazi¢ sobie rézne drogi,
prowadzace do tego samego punktu. Jezeli na kazdej z tych
drég dochodzimy zawsze do te] samej wartosci funkeyi, ta funk-
cya bedzie jednowartosciowa; w przeciwnym razie bedzie
ona wielowartosciowa.

Szereg pierwotny, dajgcy poczatek wszystkim innym sze-
regom, rozszerzajacym kolejno obszar pierwotny, nazywa sie
elementem poczagtkowym lub pierwotnym fun-
keyianalitycznej. Jezelitu i owdzie na pewnej linii
przeprowadzenie nie jest mozliwe, wtedy mamy funkcyg
oobszarze osobliwym.

Funkeya analityczna w pojmowaniu powyzszem jest oczy-
wiscie zarazem funkcyg monogeniczng w tem znaczeniu, o jakiem
mowa w § 1. Naodwrdt, funkeya monogeniczna w tem ostatniem
znaczeniu niezawsze jest funkcya analityczng; moze ona (jak to
zobaczymy) daé sie rozwing¢ na szereg potegowy Ww otoczeniu
pewnych punktéw i wtedy obszar jej zbieznosci przypada w ob-
szarze zbieznosci funkeyi analitycznej. Iecz moze sie zdarzyé:
albo ze ta funkcya analityczna nie daje si¢ przeprowadzi¢ po za
ten lub 6w obszar, chociaz funkcya po za tym obszarem istnieje;
albo tez, mimo ze daje si¢ przeprowadzié, nie daje wszakze wartosci
réownych wartosciom funkeyi zewnatrz obszaru.

O funkcyach analityeznych Weierstrassa cytujemy prace
nastepujace: Weierstrass (Functionenlehre, Berlin, 1886)
Pincherle (Giorn. di Batt.,, XVIII), Biermann (Analytische
Functionen, Lipsk, 1887), Puzyna (Teorya funkcyj analitycznych,
t. I, Lwow, 1898).

Przyklady, odnoszace sia do uwag w ustepie poprzedzajacym,
znajduja sie u Tannery'ego (Berl. Akad. 1882), Schrodera
(Schlom. Zeitsch. 1876), Pringsheima (Math. Ann. XXII, 1883)
i innych.

Funkeyami o obszarach osobliwych zajmuja sie gléwnie: P oin-
caré (Acta Soc, Fennicae, 1881), Appel (Acta math. I 1882),
Goursat (Comptes rendus XCIV, 1881, Bulletin des sciences math.
XTI, 1887), Lerch (Rozprawy Czesko - Krdl. Tow. nauk w Pradze,
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dze, 1887, Dziennik Teixeiry 1892), Stieltjes (B.ull. des sciences
math., XI, 1887) Kry g o ws ki (Bull. de la Société math, de France,
1897, Prace mat.-fiz. IX, 1898),

§ 4.

Najprostsze funkcye przestgpne.

Funkcya e, gdy z jest liczba zespolona, okresla sie przez
szereg
2 Foid
Ut V7 Bt
1 4 1—}—2!4—....,
zbiezny dla kazdej wartosci 2.
Wiasnose glédwna tej funkecyi ¢. e = ets
utrzymuje sig tubez zmiany, jak rowniez wla-

ety :
Snosé — & =¢.
dz
Funkeye sin z, cos z, gdy z jest liczbg zespolong, okreslajg

8ig przez wzory:

£ 23 ; 25
Sin 2 =2 — —3—' =i ? ot LA )
22 Ze

COSZ=1—"2—!+ -iT— .....

Twierdzenie ododawaniu funkcyi ,wsta-
wa' i ,,dostawa‘ i twierdzenia z niem zwig-
zane, pozostajag bez zmiany idlaargumentdw
zespolonych.

Wzorem zasadniczym jest wzor:

e*t¥ = e*(cos b - isin b).
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¥

Funkcya ¢ jest peryodyczna, t.j. nie zmie-
nia swejwartosci jezeli z powiekszamy o 2kné
(k jestliczbg calkowityg jakgkolwiek).

Kazdy pierwiastek réwnania ¢ée=4-4iBna-
zywa'sig logarytmem neperowym liczby ze-
spolonej A4-¢B. Réwnanie toma nieskoncze-
nie wiele pierwiastkow, ktére sg w ogole
wszystkie zespolone; jeden z nich otrzymuje-
my zdrugiego, dodajac liczbe postaci 2kans
(k catkowite), Mozemy nazwa¢ wartoscia glowna
logarytmu neperowego wartosé, w ktérej spolczynnik przy ¢
jest zawarty migdzy —=z a -}z (wlaczajac: - m); oznaczamy
ja przez log. (4 + < B).

Funkeye a, o kreslamy za pomoca wzoru

a’ = elog,at2kmi)

W ten sposéb a° moze mie¢ w ogdle nieskonczenie wiele warto-
sei; uwaza¢ bedziemy tylko wartosé, odpowiadajaca wartosci
k = 0 inazywac¢ ja bedziemy wartoscia gléwna po-
tegi as.

Jezeli polozymy 2 = x ¢y, @« = p (cos a - ¢sin a), bedzie

@ = p|cosxz(a~+2kn) +isinx (a+2ka) |
X e ¥t [ cos (ylog, o+ sin (ylog.o) |-
Jezeli przez a* rozumiemy jedynie wartosé gléwna, wuedy

«F nie czynl juz zados¢ wszystkim gtéwnym wlasnosciom poteg,
t. j. zwigzkom:

@. = @ th, () =0a", loga*==zloga,

gdyz wartos¢ gléwna np. wyrazenia (a° ) jest jedng z wartosci
wyrazenia @, lecz nie jest jego wartoscig glowna.

Co do réznych okreslen funkeyj wykladniczych i logarytmowych
patrz: Dur ége, Theorie der Functionen, Lipsk, 1864, rozd. V; Briot
et Bouquet, Fonctions elliptiques II; Stolz, Arithmetik II, it. d.
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§ 5.
Granica, ciggtosé, roZniczkowanie i catkowanie w obszarze zespolonym.

Okreslenie i twierdzenia zasadnicze, odnoszgce sie do gra-
nic i ciaglosci, pozostaja bez zmiany dla funkcyj zmiernych ze-
spolonych.

Pochodna, jak powiedzielismy, okresla sie, jak zwykle,
jako granica stosunku przyrostéw i mozna dowies¢, ze twierdze-
nia, odnoszace sie do sumy, iloczynu i ilorazu, funkeyi zlozonej,
funkeyi odwrotnej i t. d., pozostaja bez zmiany, jak réwniez
prawidla, odnoszace sie do rézniczkowania funkcyj elemen-
towych.

Godnem jest uwagi twierdzenie: Istnienie pierw-
szej pochodnej funkcyli zmiennej zespolonej
pocigga za sobgistnienie pochodnych wszel-
kiegorzedu.

Jezelifunkeya jednowartosciowa jest ze-
remrzeduk wpunkcie (nie znajdujgcym sie
w nieskonczonosci), to jej pochodna jest ze-
remrzeduk—1; jezeli punktem tym jest nie-
skonczonosé¢, wtedy pochodna dla z=oc0 bedazie
zerem rzedu k1.

Jezeli funkcya jednowartosciowa ma bie-
gunrzedu 4 wpunkcie, znajdujgcym sie w od-
leglosciskonczonej to pochodna jej ma w tym
punkcie biegun rzedu k-4 1; jezeli tym pun-
ktem jest nieskonczonosé, to pochodna ma
wnim biegunrzedu k—1.

Podamy kilka spostrzezef, odnoszacych sie do calkowania.

W przypadku zmiennych rzeczywistych droga calko-
wania jest z gory ustalona przez to, ze zmienna przebiega zaw-
sze po osi odcigtych. Wezmy teraz dwa punkty na plaszczy-
znie zespolonej i polaczmy je liniag. Podzielmy te linig na n
czescl 1 niechaj d,, d,, . . . oznaczaja réznice pomiedzy wartoscia-
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mi zmiennej zespolonej, odpowiadajacemi kolejnym punktom
podziatu. Niechaj f;, f, . . . oznaczaja wartosci funkeyi f w pun-
ktach, znajdujacych sie pomiedzy temi punktami podziatu. Gra-
nica sumy X/, d,, w zaloZeniu, ze §,, d,, . .. dazg do zera, gdy
n rosnie do nieskoviczonosei, jest caikg okreslong funkeyi.
Jezeli zmieniamy granice gérna calki, mamy funkecye catko-
wg. Otdéz tu ujawnia sig fakt nowy, jakiego niema w przypad-
ku zmiennych rzeczywistych, t. j. ze do kazdego punktu dojse
mozna w nieskornczenie wielu kierunkach, gdy tymeczasem
w przypadku zmiennych rzeczywistych dochodzi sig do pewnego
punktu, wychodzae z innego, tylko w jednym kierunku (jezeli
wylaczymy przejscie przez nieskonczonose.

Calka funkcyi monogenicznej jest rd w-
niez funkcyg monogeniczna. Bedzie ona jedno - lub
wielowartosciowa, stosownie do natury funkeyi danej.

Jezeli funkcya dana jest monogeniczna,
jednowartosciowa 1 holomorficzna wobsza-
rze jednvobwodowym, to calka jej ma zaw-
sze wdanym punkcie jedne warto§¢é, niezalez-
nie od drogi, ktéra do tego punktu dochodzimy.
Twierdzenie to zawdzieczamy Cauchy'emu; powrécimy do
niego w paragrafie nastepnym, w ktérym podamy rézne twier-
dzenia, odnoszace si¢ do funkeyj monogenicznych.

§ 6.

Rozne twierdzenia o funkcyach monogenicznych, holomorficznych

i meromorficznych.

Funkecya holomorficzna w danym obszarze
nie moze mie® wszystkich pochodnych row-
nych zeru wpewnym punkcie, nie bedgec w ca-
Iymtymobszarze ilosciag stala.
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Funkcya holomorficzna w danym obsza-
rzeistala dla wszystkich punktow linii cho¢-
by najmniejszej, jest stalg wcalym obszarze.

Funkcya holomorficzna wdanym obsza-
rzema wszystkie pochodnerédwniez holomor-
ficzne.

Funkcya holomorficzna wobszarze skon-
czonym ma skonczong liczbe zer stopnia skon-
czonegolcaltkowitego.

Jezeli funkcya jest meromorficznag w pe-
wnym obszarze, to aniona sama, ani jej pocho-
dne niemoga znika¢ w punkecie.

Funkcya meromorficzna w obszarze skon-
czonym ma pierwiastkéw 1 biegundéw liczbe
skonczonag 1 wszystkie one sg stopnia skon-
czonegoicalkowitego.

Funkcya meromorficzna w danym obszarze
réowna sig funkecyi wymiernej, powiekszonej
ofunkcye holomorticzng w tymze obszarze
Jezeli ay, a,, . .. sg biegunami funkcyi danej, to roziozywszy
funkcye wymierng ta ulamki proste (patrz Rozdziat I), wyra-
zimy ja W ten sposéb:

A A B; B
L R G SRET P . | < LT AN
(- ay) ' Y r—a, ' (x—ay)s 7 + r—a,
gdzie stale 4, By, . ., bedace licznikami ulamkéw, ktérych mia-

nowniki sg plerwszemi potegami dwumiandw &—a,, t—dy, . .. ,
nazywaja si¢ pozostalosciami (residua) funkeyi
(Cauchy).

Funkcya holomorficzna na calej plasz-
czyznie, ktérej modul jest wszedzie mniej-
szy od liczby danej, jest iloscia stala.

Funkcya holomorficzna na calej plasz-
czyznie, majgca jako jedyny biegun 2z=oo,
jest funkcya wymierng calkowita.
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Funkcya meromorficzna na calej plasz-
czyznie (1 dla ¢=o0) jest funkcys wymiernsa, mo-
ze wiecmieé tylkoskonczonag liczbe pierwiast-
kéwibiegunéw stopniaskonczonego.

Jezeli funkcya f(2) jest holomorficzna

wobszarze jednoobwodowym, tocaltka If(z)dz,

wzieta po krzywej zamknigte] Wewnqtfz tego
obszaru, jest zerem. (Twierdzenie Cauchy’ego).
Przy zalozeniach twierdzenia poprzedza-

jacego,calka ,f(z)dz ma wartosé zaleing jedy-

nie od granic a niezalezng od drogicalko-
wania,

Jezeli funkcya f(z) jest holomorficzna
wobszarze oobwodzie zespolonym, to calka
’f(z)d:,rozcia,gniqta od jednego punktu do dru-

glego, a takze od punktu do tegozsamego pun-
ktu polinii zamknietej, zachowuje wartoseé
statla przy zmianie drogi calkowania wtedy,
gdy nowa droga daje sig sposobem cigglym
otrzymaé z dawnej 1 gdy na wszystkich sta-
dyach odksztalcenia pozostaje wewnagtrz ob-
szaru, niespotykajagcnigdzie obwodu.

Méwimy, ze zmienna przebiega obwdd w kierunku dod a-
tnim, jezeli podczas przebiegu pozostawia obszar zawsze po
stronie lewej.

Jezeli funkcya jest holomorficzna w ob-
szarze, majgcym postaé pierscienia, t. j. w ob-
szarze o dwéch obwodach, z ktérych jeden
znajduje si¢ wewngtrz drugiego, wtedy catka
jej,rozciggnigta w kierunku dodatnim po ob-
wodzie zewneglrznym, réwna sig calce, rozcig-
gnietej w kierunku ujemnym poobwodzie we-
wnetrznym.

Jezeli funkcya jest holomorficzna w pe-
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wnej czescl plaszczyzny oobwodzie pojedyn-
czym, to jej wartos¢ w pewnym punkcie a daje
sig wyrazi¢ w tensposéb:

f(a) = 1 [ 1@ i

2ni )] z2—a
gdzie calka jest rozciggnieta wkierunku do-
datnim poobwodzie pola.

Jezeli funkcya f(z) jest meromorficzna
wobszarze o obwodzie pojedynczym, tocalka

<38 / 0 aF,

2m

wzieta poobwodzie w kierunku dodatnim, roé-
wna sie sumie pozostalosci funkcyj] wzgle-
dem biegundw, znajdujacych sie w obsza-
rze.

Jezeli funkecya f(z) jest meromorfieczna
wobszarzeijezeli my m, ...s3 rzedami jej zer,
Moo, Moo, YZedami jej nieskoniczonosci, wtedy

1 [_f1)

m.’ %)— 2 == z”lo —_—" 2,1"00,

gdzie calkarozciaga sig poobwodzie obszaru
w kierunku dodatnim. Toz samo twierdzenie mozna
wypowiedzie¢ W ten sposéb:

Jezeli funkcva f(2) jest meromorficzna
wobszarze opojedynczym obwodzie i jezeli
wychodzgc z pewnego punktu obwodu, przebie-
gamy go w kierunku dodatnim i obliczamy
zmiane, jakiej wsposéb ciggly doznaje argu-
ment, gdy powracamy do punktu wyjscia; wte-
dyréznica pomigdzy temi dwoma argumenta-
mi jest wielokrotnoscig liczby 27. a mianowicie
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réowna sig 2kn, gdzie k= 3Zm;—Imw, (Casorati, Teori-
ca ete., str. 430). "

W funkcyi meromorficznej na calej pla-
szezyznie liczba zer rowna sig liczbie nie-
skonczonosci, jezeli zerolub nieskonczonosé¢
rzedu { uwazamy za zjednoczenlie ¢ zer lub
nieskonczonosci. Stad otrzymuje sie latwo twierdzenie
zassdnicze algebry, ze wielomian wymierny ma tyle pierwiast-
kéw, ile wynosi jego stopien.

Funkcya holomorficzna w kole, ktérego
srodek jest w punkcie z,, daje sig rozwinagé
na szereg wedlug poteg catkowitych dodat-
nich dwumianu z—z, zbiezny w tem kole. Sze-
regten mozZna napisaé¢ w postaci, nadanej mu
przez Cauchy’ego (Acc. Tor., 1831-2, Comptes rendus 1846).

B e f(e)dz | 1 [ fl2)de

i Per el i b g e
. [ f(2Vdz

+‘Z—-—ZO)‘.’ il T e e

(z—2,)*

gdziecalkirozciggajagsie wkierunkudodat-
nim po obwodzie kola lub po jakimkolwiek
obwodzie spélsrodkowym, zawartym w obsza-
rze. Mozna ten szereg przedstawié¢ tez w po-
staci wzoru Taylora-Maclaurina:

BTz |- (- 2,) L) 4 g LY L0000

Jezeli funkeya jest holomorficzna w ob-
szarze pierscieniowym, zawartym pomiedzy
dwoma kolamispolsrodkowemiosrodku 2. to
dajesigerozwing¢é na szereg, postepujgcy we-
dlug poteg dodatnich 1 ujemnych dwumianu
z2—z,, zbieiny wtem polu.Otrzymujemy wtedy
szereg Laurenta (Comptes rendus 1843, t. XVII, str. 939)
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g . [(f@)dz
f(") 2nl$‘(~-2) ’(Z ,)n ’

gdzie calkarozciaga sie wzdluz jednego z ob-
wodéw w kierunku dodatnim lub wzdluz okre-
gu spéls’rodkowegoizawartegowpierécieniu,
ograniczonym dwoma okre gami.

§ 8.
Punkty osobliwe istotne.

Niechaj bedzie funkeya dana na calej plaszczyznie; jezeli
funkeya ta, nawet w nieskonczonosei, nie posiada innych pun-
ktéw osobliwych précz biegunéw (t. j. punktow, w ktérych od-
wrotnos¢ jej pozostaje jednowartosciowsg 1 jest zerem), t. j. jezeli
jest funkcya meromorficzng na calej plaszezyznie (poréw. § 1),
wtedy, jak wiemy, jest funkcya wymierna.

Jezeli mamy funkcye przestepna, okreslong .dla calej
plaszezyzny, to musza istnie¢ takie punkty, w ktorych ani ta
funkcya, ani jej odwrotnosé, nie pozostaja jednopostaciowemi;
takie punkty nazywaja sie istotnie osobliwemi. Ze mogs
istnie¢ punkty, majace taks wlasnose, okazuje odrazu rozwaza-
nie jednej z najprostszych funkcyj przestepnych, mianowicie
funkeyi wykladniczej.

Jezeli pewien punkt jest punktem osobli-
wym istotnym funkcyi, to punktten jest za-
razem punktem istotnie osobliwym jej odwro-
tnosci.

Granica funkeyi, jezeli zmienna jej zbli-
za sie jakimkolwiek sposobem do punktu isto-
tnie osobliwego, jest nieoznaczona.

Przy zblizaniu zmiennej do punktu isto-
tnie osobliwego mozna sprawié¢, by modul r¢z-
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nicy pomiedzy wartoscia funkcyi 1 jakakol-
wiek dana wartosciag 4 byl mniejszy od wszel-
kiejiloscidanej dowolnie

Jezelidamy 4, tomozemy wogdleznalesé¢
wotoczeniu punktu istotnie osobliwego nie-
skonczenie wiele punktéow, w ktérych war-
tosé funkecyiréwna sig 4; moga wszakze ist-
nie¢ dwieinie wigecej niz dwie wartosci wy-
jatkowe na 4, dla ktérych niema wotoczeniu
punktua zadnego takiego punktu, wktéorymby
wartosé funkcyi byta A. (Twierdzenie Picarda, Com-
ptes rendus LXXXVIII, LXXXIX; Ann. de 'Ecole Normale
1830; Traité d’Analyse, t. II, str. 1')2).

Wedlug tego ostatniego twierdzenia punkty istotnie oso-
bliwe dzielg si¢ na trzy kategorye:

1) punkty, dla ktérych wartosei wyjatkowe 4, o ktorych
mowa wyzej, nie istnieja;

2) punkty, dla ktorych istnieje jedna taka wartos¢ wy-
jatkowa. Takim naprzyklad jest punkt z=0 dla funkeyi \

a wartoscig wyjatkowsg 4 w tym przypadku jest 4=0;
3) punkty, dla ktorych istnieja dwie wartosci wyjatko-
1

we A. Takim jest punkt z==0 dla funkcyi ¢, a wartosciami
wyjatkowemi sg 4 =0, A=oc0.

Funkcya Jednopostamowa majgca nieskon-
czenie wiele biegundéw, ma, jako punkt istotnie oso-
bliwy, punkt graniczny biegunéw

Funkecya, nie majaca bieguna w odleglosci skonczonej na
plaszczyznie, jest funkcys calkowita lub holomorficzng na calej
plaszczyzme oprécz w punkme nieskonczonym Jezeli w nieskon-
czonoscl nie ma bieguna, to nie moze by¢ wielomianem calkowi-
tym: jest funkcya przestepna catkowita i ma
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w nieskonczonosci punkt istotnie osobliwy. Fun-
kcya taka daje sie rozwingé na szereg poteg cal-
kowitych dodatnich, zbiezny dla kazdego punktu
plaszczyzny.

Funkcya taka moze mie¢ nieskonczong liczbe
zer w odleglosci skonczonej.

Jakie jest wyrazenie ogdlne takiej funkcyi, majacej zera
z géry dane? Na pytanie to odpowiada slawne twierdzenie
Weierstrassa (Berl. Akad. 1876), bedace rozszerzeniem twier-
dzenia, podanego przez Cauchy ego. Twierdzenie Cauchy’ego
brzmi.

Jezeli a,, 15, ..sa punktami zerowemi funkeyi,
jeielinlizxiloa,.zoo 1 szereg Z [% ; jest zbiezny, to
funkecya, majaca za zera tylko punkty powyzej da-
ne, nie majgca zadnego bieguna a jakojedyny punkt
osobliwy punkt w nieskonczonosci, ma postac

oo ¢ 28
— ¢ef® | bl aca?
f(2) = ce 111(1 a,./"

gdzie G(z) jest funkcyg holomorficzng na calej pla-
szczyznie.
Twierdzenie Weierstrassa jest nastepujece:
A 1
Jezeli szerngE 5
zna dobraé zawsze liczbe calkowita dodatnia o,
stala lub zmieniajaca sie wraz z n, W ten spo-

s6b, aby szereg
2 o,
. aw (2—ay)

byl réwnozbiezny na calej plaszczyinie, i wtedy
bedzie:

nie jest zbiezny, to mo-

f(2) = ce®® ;ﬁ [(1 i az" ) en,(i)] ,
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gdzie
Z (l)
P"’(Em_,,_) o + 2u : + T o

wa‘" !

W kazdym przypadku ew=n—1 czyni zadosé¢
powyzszemu warunkowi.

7o

Czynnik ( 1 — _,_/ nazywa slg czynnikiem

pierwszym lub pierwotnym. W twierdzeniach poprze-
dzajacych zakladamy, ze punkt —zero nie zawiera sie pomiedzy
punktami @,. Jezeli jest tam k-razy, to do iloczynu przybywa
czynnik zF.

Jezeli o jest stale, to otrzymujemy funkcye holomorficzne,
majace rodzaj; liczba w nazywasie rodzajem, gdy niezmienia
sie wraz z n 1 jest najmniejszg pomigdzy wezystkiemi liczbami,
czynigcemi zado$é powyzszemu warunkowi (Laguerre, Com-
ptes rendus, XCIV, XCV, XCVIII; Cesaro, Comptes rendus,
XCVIILi t. d.).

Funkcya jednowartosciowa na calej plasz-
czyznie, majgca w odleglosei skonczonej tylko
biegun, jest zawsze ilorazem dwu funkcyj calko-
witych; mozna przeto, przy pomocy pOwyzZszego
otrzymaé¢ wyrazenie takiej funkeyi.

Jezeli chcemy w podobny sposéb przedsta-
wi¢ funkcye jednowartosciows na calej plaszezy-
zZnie (nawet w nieskonczonosci) 1 majgca jedyny punkt
istotnie osobliwy z=a« w odleglosci skonczonej,
to mozna zastosowa¢ wz6r podobny do poprze-

. . An—Q
wyrazenie .
@, z—a

Z poprzedniego twierdzenia wyplywaja wnioski naste-
pujace:

Funkcya jednowartosciowa, ktéra nie ma ani
zer'ani biegunéw wodleglosci skonczonej, a jako
punkt istotnie osobliwy ma punkt w nieskonczo-

dniego, kladac tylko zamiast




304 Rozdziat XIII.

nosci jest postaci e%®, gdzie G(2) jest funkcya
calkowitg.

Funkcya jednowartosciowa, ktéra ma skon-
czong liczbe zer w nieskonczonosci, nie ma bie-
gundéw, a w nieskonczonosci ma jedyny punkt
istotnie osobliwy, jest postaci

Pl2le e,

gdzie F(z) jest wielomianem
Funkeya jednowartoscowa, majgca skonczons
liczbe zer i skonczong liczbe biegunéw, wnieskon-
czonosci zas jedyny punkt istotnie osobliwy, jest
postaci
P(2)
@ (2)

gdzie P, Q sg dwoma wielomianami.

Postepowanie, za pomocg ktérego dowodzi sie wzoru
Weierstrassa, moze sluzy¢ do wyrazenia funkcyi, majacej
na plaszczyznie nieskonczenie wisle biegunéw, ktérych punktem
granicznym jest punkt w nieskonczonosci, za pomocg sumy
funkcyi holomorficznej i szeregu zbieznego na calej plaszczy-
znie, ktérego kazdy wyraz jest funkcya wymierns zmiennej z,
majaca jeden tylko biegun w jednym z biegunéw funkeyi da-
nej. Tym sposobem otrzymujemy przedstawienie funkcyi o nie-
skonczenie wielu biegunach, rézne od przedstawienia pod posta-
cig ilorazu iloczynéw.

Rozszerzenie tego wzoru na przypadek, w ktérym istnieje
nieskonczenie wiele punktéw istotnie osobliwych (zamiast bie-
gunow), stanowi twierdzenie Mittag- Lefflera.

Twierdzenie Weierstrassa daje wyrazenie funkeyi je-
dnopostaciowe]j, majacej je den punkt istotnie osobliwy; na-
suwa sie tu przeto. odrazu zagadnienie o przedstawieniu funk-
cyi ze skonczong lub nieskonczong liczbg osobliwosci istotnych.

Moznaotrzymaé zawsza wyrazenie takie jako
sume pewnejliczby funkeyj, zktérych kazdama tyl-
kojedne osobliwosé¢istotna.

ef:‘(:)'
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Tym sposobem rozszerzamy twierdzenie o rozkfadzie funk-
cyl wymiernej na ulamki prostsze.

Kazda funkcya jednowartosciowa holomor-
tficzna w calej plaszczyznie, précz w punktach
Uy, oy -« . 4y, W ktorych posiada bieguny lub osobli-
wosci istotne, daje sig zawsze przedstawié¢, jako
suma % funkecyj, majagcych pojednymtylko biegunie
lub punkcie osobliwym istotnym wjednym z pun-
ktéw danych. Jezelijedenzpunktéw danychajest
w nieskonczonosci, wtedy odpowiednia funkcya
jest holomorficzna nacalej plaszczyznie z pun-
ktem istotnie osobliwym w nieskonczonoseci.

Jezeli mamy nieskonczenie wiele punktow
gy by, .. ., majaycych punkt graniczny w nieskonczo-
nosci, to tunkeya, majagcatylko w tych punktach
punkty istotnie osobliwe lub bieguny, wyraza sie
za pomocgszeregu

i l(’( o F..(Z)J + @(2),

g2—ay)

=

gdzie G, sg funkcyami, majgcemijedyny punktisto-
tnieosobliwy w a,; I, sg wielomianami, ktédrych sto-
pniezawsze oznaczyé mozna; wreszcie G jest funk-
cya holomorficzng na calej plaszczyznie, majaca
jedyny punktosobliwy punkt wnieskonczonosci.
Wielomiany Fi Gniew jedyny tylkosposéb wy-
znaczycésiedaja. Jezelipunktyasa wszystkie bie-
gunami tojestrzeczg naturalny, Zze wyrazy szere-
gustajasie wszystkie funkecyamiwymiernemi.

Co do tych twierdzen cytujemy prace Mittag-Lefflera (Comptes
rendus 1882, Acta mathem. IV); Weierstrassa (Functionenlehre,
str. 23, 67, 102); Hermite’a (Crelle XCI); Casorati'ego (Annali
di mat. X), traktat Forsytha (Theory of tunctions 1893), gdzie za-
gadnienie to traktowane jest obszernie i w wielu przypadkach szczegdl-

Pascal. Rep. I. 20
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nych; dalej lekeye analizy Hermite'a i Picarda. Co do przypadku,
w ktérym zamiast punktow osobliwych sa linie osobliwe, patrz Picard
(Compt. rendus 1851), a co do rozszerzenia twierdzenia W eierstrassa
na funkeye wielowartosciowe (funkeye jednowartosciowe na powierz-
chni Riemanna) patrz Appel (Acta math. I).

Teorye funkeyi zmiennej urojonej ugruntowal, rzeec mozna, gto-
wnie Cauchy w slawnej rozprawie: Sur les intégrales définies, prises
entre les limites imaginaires 1825, Comptes rendus 1846. Drugi krok
wazny uezynil Riemann (1851) genialnym pomyslem swym, za po-
moca ktorego z najwieksza prostota i elegancys bada¢ mozna funkeye
wielowartosciowe, czego nie mozna bylo czyni¢ dosé prostym sposobem
za pomocg metod Cauchy'ego, jakkolwiek nie jednemu z piszacych
dawniej o tej teoryi zdawalo sie z poczatku inaczej (patrz np. przedmowe
do drugiego wydania wyzej cytowanego dziela Briota i Bouqueta).

Z innego stanowiska i prawie réwnoczesnie z Riemannem
Weierstrass utworzyl teorye funkey;.

Roznica obu pogladéw, zaréwno glebokich, polega gléwnie na
tem, ze Riemann bierze za punkt wyjscia przedstawicnie geometryczne
tunkeyi i uwaza utwoér, ktory ja przedstawia, jakby co$ wezesniejszego
niz sama funkcya, Weierstrass wychodzi znéw z analitycznego
przedstawienia funkeyi i rozwaza tylko takie funkeye, ktore daja sie
przedstawié analitycznie sposobem danym. Zreszta glebokie badania
nad osobliwo$ciami istotnemi funkcyj enalitycznych zawdzigezamy
tylko Weierstrassowii jego uczniom,

Stawnym traktatem o teoryi funkeyj, napisanym prawie wylacznie
pod wptywem pomystéw Cauchy’ego, jest cytowane juz dzielo Briota
i Bouqueta, ,Théorie des functions elliptiques“ (2 ed., Paryz, 1875;
pod wplywem pomystéw Cauchy’egoi Riemanna powstaly dziela:
Durége ,Elemente der Theorie der Functionen“Lipsk 1864, Neumann,
, Vorlesungen iiber Riemann’s Theorie der Abel'schen Integrale®, Lipsk
1867, w ktérem wprowadzono przedstawienie funkeyj na kuli; Caso-
rati ,Teorica delle functioni di variabili complesse“, Pawia, 1868;
Holzmiiller ,Theorie der isogonalen Verwandschaften und conf-
Abbildungen®, Lipsk 1882, Pomysly Weierstrassa, rozwinigte na
jego lekeyach i w ,Functionenlehre (Berlin 1886) przedstawia, lubo
niezupelnie poprawnie w wielu punktach Biermann ,Theorie der
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analytischen Functionen*, Lipsk 1887. Najnowsze dziela staraja sig
godzié¢ idee Riemannai Weierstrassa; do nich nalezy przede-
wszystkiem obszerne wyzZej cytowane dzielo Forsytha, dzielo Pi-
carda (Paryz 1893), dzielo Burkhardia ,Einfithrung in die Theo-
rie der analytischen Functionen“, (Lipsk 1897), dalej Petersena
»Functionstheorie* Kopenhaga 1898 i cytowane wyze] dzielo Puzyny
»leorya funkeyj analitycznych®. Lwéw 1898,
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ROZDZIAL XIV.

TEORYA FUNKCYJ W ZWIAZKU Z TEORYA GRUP; PERYODYCZNOSC;
AUTOMORFIZM.

Bl

Podstawienia /iniowe.

Podstawienie liniowe ogdlne, uskutecznione na

zmiennej z, jest postaci

G Ll e (ad — bec=1),

CZ 1 a@:’
co wyrazamy symbolem :
/ ( __L_ : /
(z,ﬁ' “), lubtez(al).
cz+d ¢ d

Jezeli z jest zmienng zespolong, przedstawiang sposobem zwy-
klym na plaszczyznie, to podstawienie liniowe kazdemu punktowi
przyporzadkowuje punkt tejze plaszczyzny. 1 ta odpowiedniosc
jest dwujednoznaczng.  (Przeksatalcenie homogra-

ficzne)
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Dla tego podstawienia istniejag dwa punkty
2z, ktéorych kazdy odpowiada sobie samemu; sg
niemipunkty:

b a—d+V(a-~d)’44be

04 2o =
i ia 2¢

Podstawienie, w ktérem te dwa punkty podwdéjne
(Fixpunkte, wedlug Kleina) zlewajs sig, nazywa si¢ para- -
bolicznem.

Jezeli dla danego podstawieniadwapunkty
podwdéjne sgréznemi, to podstawienie daje sig
sprowadzié do postaci

22—z z — z,
_’_‘=k__‘___
Z— z, 2 - 2

[a4d—Vie—dy@FF4be]®
4ad — be) :

gdzie
k=

Jezeli k jest liczbg rzeczywista dodatnia, podstawienie na-
zywa sie hyperbolicznem; jezeli jest liczbg zespolong
o module 1, nazywa si¢ eliptycznem; wreszcie jezeli k jest
liczbg zespolong o module réznym od 1 1 o argumencie réznym
od zera, podstawienie nazywa sie Joksodromicznem.

Kazde podstawienie loksodromiczne mo-
znazlozy¢ z podstawienia hyperbolicznego
w polagczeninzeliptycznem.

Nazwy te napotykamy poraz pierwszy w pracach Kleina
(Math. Ann. XIV, str, 142, XXT, § 3).

Aby lepiej zrozumie¢ réznice pomiedzy temi trzema pod-
stawieniami, rozpatrzmy ich postacie prostsze:

2'=1Lkz; I rzeczywiste dodatnie,
Z=¢%z; a jakiekolwiek,

2'=pge%z o4 1, a==0.
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Jezell w plerwszem z nich zneniamy /% sposobem ciaglym,
to punkt ¢’ porusza¢ sie bedzie po prostej, wychodzacej z po-
czatku spélrzednych. Jezeli w drugiem podstawieniu zmieniamy
a, to punkt 2’ poruszaé¢ sie bedzie po okrggu, majacym srodek
swdj w poczatku spélrzednych. W loksodromicznem podsta-
wieniu wreszcie punkt doznaje przemieszezenia, ktére jest kom-
binacyy przemieszczen poprzednich: mamy tu przedluzenie pro-
mienia wodzgcego w polaczeniu ze zmiang kierunku.

Podstawienie eliptyczne posiada te wila-
snosé. ze jestalbo peryodycznem, albo nie-
skonczonostkowem, t. j. wychodzac z punktu danego
albo powracamy do tego samego punktu po calkowitej liczbie
kolejnych podstawien, albo tez, kolejno stosujac to podstawienie,
mozna zblizy¢ sie do punktu wyjscia tak blizko, jak chcemy
(patrz Forsyth, Theory of functiens, str. 521).

Przeksztalcenie za pomocg promieni od-
wrotnych lub odwrdcenie (inwersya), jest to dziala-
niem, w ktérem, majac kolo na plaszezyznie, danemu punktowl
przyporzadkowujemy inny, lezacy na prostej, laczacej punkt
dany za srodkiem kola i po tejze jego stronie tak, aby iloczyn
dwu promieni wodzacych réwnal sie kwadratowi promienia
kota,

Przeksztcenie przez odbicie jest to przeksztal-
cenie, przy pomocy ktorego, majac prosta dana, kazdemu jej
punktem przyporzadkowujemy punkt symetryczny z nim odno-
énie do prostej.

Kazde podstawienie liniowe mozna zaw-
sze zlozy¢ zodwrdcenia w polagczeniu z odbi-
ciem.

Iloczyn dwdéch odwrécen daje podstawie-
nieliniowe, ktére jest hyperbolicznem, para-
bolicznem lub eliptycznem, stosownie do te-
go,czy dwa kola, stanowigce podstawe odwro-
cenia, niemajg wcale punktu wspdélnego, lub
majag l, 2 punkty wspodlne.

Kazde podstawienie liniowe przeksztalca
kolana kota.
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Kazde podstawienieliniowe daje sig przed-
stawi¢ nieskonczenie wielusposobami, jako
wypadkowa parzystej liczby odwrécen.

Mozna wraz z Poincarém wprowadzié pewne pojecie
uzyteczne do okreslania wlasnosei, charakteryzujacych rozmaite
gatunki podstawien liniowych. Roztézmy podstawienie liniowe
na parzystg liczbe 2m odwrdcen wzgledem 2 kél plaszezyzny
(co mozna uskuteczni¢ nieskonczenie wieln sposobami). Kazde
kolo zastapmy kula o tym samym srodku i promieniu i, dawszy
sobie punkt w przestrzeni, utworzmy w tym samym porzadku
odwrdcenie wzgledem wszystkich kul. Mozna dowiese, ze
bez wzgleduna sposéb, w jaki uskuteczniono
pierwszy rozklad podstawienia na odwrdce-
nla, otrzymamy zawsze ten sam punkt, jako
odpowiadajgcy punktowi danemu (Poincaré,
Acta math. ITI, str. 53). Mamy tedy s$rodek interpretacyi pod-
stawienia liniowego jako przeksztalcenia punktéw w przestrzeni.
Otrzymujemy stad nastepujace wyniki:

Jezeli dane podstawienie jest eliptyczne
to przeksztalca same na siebie punkty kola,
ktére przechodzi przez dwa punkty podwéjne
podstawienia, ma za Sredniceg prosta te pun-
kty laczagcag 1 znajduje sie na plaszczyznie
prostopadlej do plaszczyzny danej (kolo po-
dwédjne); dalej przeksztalca na siebie same
wszystkie kola takie, ze kule, przez nie prze-
chodzagce, przecinaja ortogonalnie kolo po-
dwdjne.

Jezeli podstgwienie jest hyperboliczne,
toistnieja tylkodwa punkty przestrzeni, po-
zostajace stalemi; sg to punkty podwodjne, a
podstawienie przeksztalca same na siebie
wszystkie okregii kule, przechodzgce przez te
punkty.

Jezelipodstawienie jest paraboliczne, to
jeden tylko punkt pozostajestaly; jest to je-
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dyny punkt podwéjny; podstawienie prze-
ksztalca same na siebie wszystkie okregii ku-
le, przez punkt ten przechodzace i styczne
wnim do pewnej prostej na danej plaszczyznie.

Jezeli podstawienie jest loksodromiczne,
toono przeksztalcana siebie samo kazde koto,
majgce za srednice prosta, fgczacg punkty po-
dwoéjnei polozone w plaszczyznie prostopa-
dlej do danej, lecz zmienia punkty tego kota
jedne na drugie, précz oczywiscie punktow
podwéjnych.

Kazde podstawienie, nie zmieniajyce pun-
ktu, polozonego zewnatrz plaszczyzny, jest
koniecznie podstawieniem eliptycznem.

Niechaj kula o promieniu 1 bedzie styczng w poczatku
spélrzednych O do plaszezyzny zmiennej zespolonej z; nie-
chaj kazdemu punktowl plaszezyzny odpowiada punkt na
kuli, otrzymany za pomoca rzutu punktéw plaszczyzny z gor-
nego bieguna kuli, t. j. z punktu kuli wprost przeciwleglego pun-
ktowi stycznosci 0. Obracajmy kule okolo jednej z jej srednic,
wtedy zmienna z doznaje przeksztalcenia liniowego. Wzér od-
nosny znalazl Cayley (Math. Ann. XV, 1879), jest on:

(84iy) 2 — (B—ia)
(f+ia)z+(B—ip)

7

gdzie a. f, y, 4 sa liczby rzeczywiste dowolne, czynigce tylko za-
dos¢ zwigzkowi a* 4 g% + p?+ 6°=1, wyrazajacemu, Ze wy-
znacznik podstawienia jest jednoscig dodatnis.
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Grupy podstawieri linfowych.

Grupy podstawien liniowych mozna tworzyé ze skon-
czong lub z nieskonczong liczba podstawien. Grupy
z nieskonczong liczba podstawien mogg byé ciggle lub nie-
ciggle; grupy sa ciagle wtedy, gdy w nich znajduje sie
podstawienie nieskonczonostkowe; rozumiemy
przed to takie podstawienie, w ktérem moduly ilosci a—1, b, ¢,
d—1 sg nieskoneczenie male.

W stosowanin do teoryi funkeyj niema potrzeby rozwaza-
nia grup ciaglych, gdyz funkcya analityczna, ktéra nalezalaby do
takich grun, musialaby przyjmowaé tez samg wartosé w punktach
nieskonczenie blizkich, a wiec moglaby byé¢ tylko iloscig stala.
Nalezy rozwaza¢ przeto jedynie grupy nieciagle; lecz 1 pomiedzy
temi trzeba uczyni¢ nowe wyréznienie. Istotnie mozna wyobrazié
sobie grupy ciagle dla punkiu ogélnego plaszczyzny, ktore
w specyalnych punktach zezwalajg na przeksztalcenie nieskon-
czonostkowe, t. j. mozna wyobrazié sobie, zeistniejg punkty pla-
szezyzny takie, 1z punkty, odpowiadajace im skutkiem pewnych
podstawien grupy, stajg sie tak do nich blizkiemi, jak chcemy.
W tym przypadku grupa nazywa sie¢ niewladciwie nie-
ciggla; wprzypadku przeciwnym mamy grupy wlasci-
wie nieciggle (Klein, Math. Ann. XXI, str. 176; Poin-
caré, Acta math. ITI, str. 57).

Naprzyklad, grupa utworzonaz podstawien,
ktérych spélczynnikisg liczbami calkowite-
mi dodatniemi, jest niewlasciwie nieciggla
dla punktéw z rzeczywistych, a wlasciwie nie-
ciggla dla punktéw zzespolonych. Kazda gru-
pa, utworzona z podstawien ospélczynnikach
rzeczywistych, jest zawsze wlasciwie niecia-
gla dla kazdej wartosei z zespolonejimoze
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byé¢ niewlasciwie niecigglyg tylko dla warto-
scizrzeczywistej. (Poincaré, Actamath,III str.58).

Rozwazmy grupy, ktorych wszystkie podstawienia mozna
utworzy¢ przy pomocy podstawien zasadniczych
w liczbie skonczonej.

Jezeli mamy grupe nieciagly, to moze zdarzy¢ sie, ze pla-
szezyzna 2z dzieli sig na pewng liczbe pdl skonczonych lub nie-
skonezonych, ktére przeksztalcajg sie wzajemnuie
za pomocy podstawien grupy. Jedna z takich czesci moze sie
dzieli¢ na nieskonczong liczbe obszaréw w ten sposdb, ze kiedy
punkt z przebiega ten obszar, to punkt, przeksztalcony przy po-
mocy podstawienia grupy, przebiega inny obszar, ktory mozemy
nazwaé kongruentnym z pierwszym. Kazdemu obszarowi
odpowiada tedy podstawienie grupy; linia, oddzielajaca dwa sty-
kajace sig obszary, nazywa sig¢ bokiem. Te boki sg po dwa za
soba sprzezone, t. j. podstawienie przeksztalca punkty je-
dnego na punkty drugiego; punkt przeciecia dwéch bokéw ko-
lejnych nazywa sie wierzcholkiem obszaru.

MozZna zawsze sprawié¢, ze obszar bedzie
wielokatem, ograniczonym okregami lub fu-
kamiokreguw kol; przytem wielokgt taki mo-
zenie byé pojedynczo-spéjny.

Na sp6jnosci tego wielokata polega pojecie rodzaju
grupy.

Badanie grup i ich istnienia sprowadza sig do badania po-
dzialu plaszczyzny na obszary kongruentne: jezeli znamy jeden
taki obszar (wielolkat poczatkowy lub tworzacy), oraz
rozklad jego bokéw na pary bokéw sprzezonych, to grupa jest
okreslong.

Podstawienia zasadnicze sa te, ktére od-
powiadajag wszystkim obszarom sgsiednim
wielokata tworzgcego.

Pomiedzy grupami o skonczonej liczbie podstawien miesz-
czg sie grupy wieloscianowe (dwuscianowe, czworoscia-
nowe, osmioscianowe, dwudziestoscianowe, patrz § 3).

Pomiedzy grupami o nieskonczonej liczbie podstawien naj-



§2 — Grupy podstawien iiniowyel. 315

prostsza jest grupa peryodyczna, do ktérej nalezg fun-
kcye peryodyczne (patrz § 4).

Nastepnie idzie grupa, utworzona z podstawien, ktéra na-
zywasiegrupg modulowa; do niej naleza funkcye modu-
Towe. Potem idzie grupa, ktorej podstawienia maja spélczyn-
niki rzeczywiste (jest to grupa Fuchsa, a odpowiadajace
jej funkeye nazywaja sie funkcyami Fuchsa Wreszcie
idzie grupa, zlozona z podstawien o spdlczynnikach zespolonych;
jest to grupa Kleina (jak jg nazywa Poincaré), a odpo-
wiadajace jej funkeye nazywaja siz wogéle funkeyami auto-
morficznemi (Klein).

Nalezy zauwazye, ze Poiuncaré zachowal nazwe
grup Fuchsa, dla pewnych przypadkéw specyalnych grup
o spolezynnikach zespolonych. Jezeli przyjmiemy, ze

aiz -+ B\
Yi2 “i' d; }

sa podstawieniami grupy o spoélezynnikach rzeczywistych, to
podstawienia, wyrazone symbolem

{ a,z—{—b,-]
. _|az+8 “[_(Tzwt,- Tl

yetd [1"_z+._b‘J+(s :

1
s = [z,
\

¢z + d;

gdzie a, f, y, 8 sa liczbami jakiemikolwiek, spelniajacemi waru-
nek ad —yf =1, tworza rowniez grupe o spélczynnikach ze-
spolonych. Te grupe nazywa Poincaré grupa Fuchsa.

Grupa podstawien ospélczynnikach rze-
czywistych pozostawia bez zmiany osrzeczy-
wistqa plaszczyzny z i przeksztalca na same
siebie dwie pélptaszeczyzny. Ta grupa Fuch-
sa wznaczeniu szerszem przeksztalca na sie-
bie samo kolo (kolo zasadnicze), ktdrego ré wnaniem
jest

CZQSC'B rzeczyw. wyrai .
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W przypadku grupy Fuchsa w znaczeniu $cislejszem
suma pol wszystkich obszaréw jest nieskonczona: w przypadku
grupy Fuchsa, w znaczeniu obszerniejszem, suma ta jest skon-
czona, gdyz obszary rozciagaja sie tylko wewngtrz kola zasadni-
czego 1 moga pokrywaé cate kolo lub tylko czesé jego.

W przypadku najogoélniejszym grupy Kleina suma pdl
obszaréw jest w ogélnosci skonczona.

Co sie tyezy historyi i bibliografii teoryi funkeyj automorficznych
zauwazymy, ze—pomijajac funkcye peryodyczne—pierwsze przyklady
funkeyj, nalezacych do grup o nieskonczonej liczbie podstawien znalazl
Schwarz wr. 1872 (Crelle LXXYV), badajac funkcye, ktére powstaja
z szeregu hypergeometrycznego Gaussa, Potem Klein i inni ba-
dali funkeye modulowe. Poincaré i Klein z dwéch réznych pun-
ktow widzenia utworzyli teorye funkeyj, nalezacych do grup liniowych.
Z pomiedzy prac Poincarego w tym przedmiocie wymieniamy naj-
wazniejsze i najobszerniejsae, ogloszone w Acta math I, II1, IV, V, oraz
w Math. Ann, XIX, précz ogloszonych w Comptes rendus w r, 1881
i pézniej. Z prac Kleina wymieniamy ogloszone w Math. Ann, XIV,
XYII, XIX, XX, XXTit.d. Do tegoz przedmiotu odnosza sie tez
prace Dycka (Math, Ann, XX, XXII). Bolza’y (Am. Journ. XIII),
najnowsze Rittera (Math. Ann, XLV), Funkcyom automorfieznym
poswiecone jest osobne dzielo: R. Fricke und F. Klein ,Vorle-
sungen itber der Theorie der autcomorphen Functionen®, ktérego t. I p. t.
.Die gruppentheoretischen Grundlagen“ ukazal si¢ w r. 1897 (Lipsk,
Teubner).

§ 3.
Grupa anharmoniczna. Grupy i funkcye wieloscianowe.

Pierwsza grups, zlozona ze skonczonej liczby podstawien,
jest grupa, wynikajaca z podstawien:

1
z'n=2, Z’=?, z'=1——-z, 2 =
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ktérych strony drugie odpowiadaja szesciu wartosciom, jakie
przyjmowac moze stosunek anharmoniczny czterech ilosei. Fun-
keya, nie zmieniajgca sie przy podstawieniach
tej grupy, jest

22—z 4+ 1)

(2 —2)?

)

Do grup skonezonych nalezy t. zw. grupy wieloscia-
nowe (polyedralne).

Wyobrazmy 'sobie wieloscian foremny, wpisany w kule
o promieniu 1; istniejy pewne obroty wieloscianu takie, Ze po ich
uskutecznienin wierzcholki wracaja w swe polozenia pierwotne.
Jezeli rzucimy tedy kule stereograficznie na plaszczyzne styczna,
na ktdérej rozmiescimy zmienny 2, to kazdy taki obrét kuli
odpowiada specyalnemu przeksztalceniu liniowemu zmiennej 2
{patrz § 1). Funkcya. ktdrej pierwiastkami sa wartosci 2, odpo-
wiadajgce wierzcholkom wieloscianu, pozostanie oczywiscie nie-
zmieniong dla wszystkich obrotéw, utworzymy tym sposobem
grupe wieloscianows i odpowiadajacs jej funkcye.

1. Grupa cykliczna, jest to grupa, utworzona z 1 podsta-
wien

2ika
’

Zammyeets s S (=0l Sl bl O
Najprostsza funkcya, do tej grupy nale-
Zgca, jest

az* + b.

gdzieaidsystale jakiekolwiek. _
2. Grupa dwuscianowa (diedralna) tworzy sie¢ z 2n pod-

stawien

‘2/(1',1_
/ Tt P SN SIS, 1
R R s L
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3. Grupa czworoscianowa (tetraedalna). Stosownie do podo-
Zenia czworoscianu wpisanego w kule, sg dwie rézne grupy, kto-
rych podstawienia przemieniaja pomiedzy sobs wierzcholki
czworoscianu. Grrupy tezawieraja 12 podstawien
1sg holoedrycznie izomorficzne z grupa na-
przemieuna o 4 elementach. Pierwsza z tych grup
tworzy sie z 12 podstawien:

=tz —+—i
e R
S 21 . i z—1 :
Vo e el . z-1
=iz+'c_, S z—_z._,
2inid o2t

druga zas z 12 podstawien:

=—__f—z’ ’ i.i.
b4
SRR L L WAPPRENG 1 o Ta
= V2z—i1—9) ' (A48z4+V2 '
s i)e i S V2.e—(1+19)
Gty | SR L — (1—9e+V2

Dla pierwsze] grupy pozostajg bez zmiany (przy pominie-
ciu czynnika) dwie funkeye:

2+ 2V—38.2241;
przy drugiej zas grupie dwie funkcye:
24+ 2V8.22—1.

Te wielomiany, przyréwnane do zera, daja réwnania, ktd-
rych pierwiastki odpowiadaja wierzcholkom czworoscianu, wpi-
sanego w kule i znajdujacego sie w czterech réinych poloze-
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niach. Dla tego to kazde z tych réwnan nazywa sie r 6 wn a-
niem czworoscianu.

4. Grupa o$mioscianoway (0ktoedralna). I tych grup jest
dwie. Skladajg sie one z 24 podstawienisg ho-
loedrycznieizomorficzne z grupg symetrycz-
ng 4 elementéw. Pierwszg z grup odmioscianowych jest

2 ==akyz gd=—,
z
@ Z+1 )
st S P R L,
ol B e A= S (=05 158253)
R i . A B
-, = = — .
i —"1) 4—*—2

Réwnanie, ktorego pierwiastki pozostaja bez zmiany przy
podstawieniach grupy, jest

z(e*—1)=0. (réwnanie o$mioscianu.)

Druga grupa osmioscianowsg jest:

G = 5 By
gagguldldboztV? -, aVeess e i oy gy
V2.2 — (1 —1) (1+4+d)z4V2
21 - z'k (1+i)Z"‘I—_l/_2—: {), i -k V2 . Z~L1_+é)
e o (h5)7).. (1—dz4V2 -’

Odpowiedniem réwnaniem jest:
z(zt -+ 1)= 0, (réwnanie osmioscianu).

5, Grupa dwudziestoScianowa (ikozaedralna) zawiera
60 podstawienijestizomorficzna z grupa sy-
metryczng b elementdéw. Podstawienia te sa:
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ik
— &
i mie= (a0 2 = e
ks T ANE gl 2 e 5 )
£l =t —
(2 —eP ek 2+ (e—et)
SRUANEONE (e — &%) él. 2 4 (e — &%)
C —(e—eb) etz 4 (2—€P)°

gdzie e = ¢ 3 ; k1l przybieraja wszystkie wartosci O, 1, 2, 3, 4.
Roéwnaniem dwudziestoscianu jest:

z(YF1)1 (35— 1) = 0.

Teorya grup skonczonych, a w szczegdlnosci grup wieloscianowych, jest
rozwinigta w dziele Kleina ,Vorlesungen iiber das Ikosaeder“, Lipsk,
1894, gdzie znales¢ tez mozna odnosne wskazdwki historyczne i biblio-
graficzne, Wymieniamy nadto prace Kleina ,Binire Formen mit
linearen Transformationen in sich selbst“, Math. Ann. XX, dalej prace:
Gordana (Math., Ann. XII), Brioschi’ego (Lincei 1889), Ann. di
mat. VIII, Comptes rendus XCVIit. d.; Cayley’a (Quart. Journ, of
math. XVI, 1879)1i t, d.

§ 4.
Funkcye peryodyczne.

Grupy, utworzone z jednej lub z dwu podstawien typu (pa-
rabolicznego)

Gl 73t @' Y =2z-+ 20
mozna nazwaé grupami peryodycznemi, a funkeye.
im odpowiadajace, funkeyami pojedynczo lub podwdj-
nie peryodycznemi. Ilosci 2w, 2w’ nazywaja sie pe-
ryodami
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Grupe, utworzong z powyzszych dwu pod-
stawien, mozna utworzyé¢ przy pomoecy jedne-

go podstawienia tejze postaci, jezeli stosu-
4

@ . ¢ :
nek—TJest rzeczywlsty, wymilerny; jest to
o

’
grupaciggla, jezell % jest liczba zespolona,.

Grupa, utworzona z trzech lub wiecej pod-
stawien typu poprzedzajacego, albo daje sie
zbudowaé¢ za pomocag dwu podstawien tegoz,
albo jest grupa ciggta.Inaczej médwigec, mozna
zawsze znalese liczby calkowite m, m/, m" takie,
ze mw —+ n'o + o’ albo bedzie zerem, albo czesé
rzeczywista 1 urojona tego wyrazenia bedsg
mniejsze od jakiejkolwiek ilosci danej, t.j. be-
dg nieskonczenie mate.

Te twierdzenia ogdélne w formie nieco odmiennej mozna
znales¢ u Clebscha-Gordana (Abel’sche Functionen, § 38).

Nie istniejag funkeye jednowartosciowe
jednego argumentu wiecej niz dwuperyody-
czne. (Twierdzenie Jacobiego, Werke II, str. 202).

Kazda funkcya jednowartosciowa 2p— pe-
ryodyczna musi byé¢ funkecys przynajmniej p
argumentow (Jacobi).

Stosunek peryodéw funkcyi podwdjnie pe-
ryodycznejniemoze byé¢ liczbg rzeczywista
(Jaco bi, Werke II, str. 5).

Wielokat tworzgcy dla grupy podwdjnie peryo-
dycznej mozna sprowadzié do réwnolegloboku, ktérego jednym
z wierzcholkéw jest poczatek na plaszczyznie z, a jeden z bo-
kéw przypada na osi rzeczywistej. Roéwnoleglobok ten nuzywa sig
réwnoleglobokiem zasadniczym. Cala plaszezy-
zna pokrywa sig siecig réwnoleglobokdw, przystajacych do row-
nolegtoboku tworzacego.

Funkeya podwdéjnie peryodyczna nie moze
byé¢ holomorticzna.

Pascal. Rep. I. 21
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Summa pozostalosci (rezydudw) w kaz-
dym rownolegtoboku funkcy: meromorficz-
nej podwdjnie peryodycznej jest zerem.

Kazda taka funkcya posiada przynajmniej
dwa bieguny w kazdym réwnolegloboku.

Dla kazdej takiej funkcyi suma punktdow
zerowych wkazdym réwnolegloboku elemen-
tarnym rowna sie sumie rzeddéw jej nieskon-
czonosciwtymzeréwnolegloboku.

Dwie funkcye meromorficzne podwdjnie
peryodyczne, majace te same peryody, te same
zera lte same nieskonczonosci, réznig sie tyl-
koczynnikiem stalym.

Suma punktéw zerowych, zmniejszona osu-
me punktow nieskonczonosci funkcyi podwdj-
nie peryodycznej wréwnolegloboku elemen-
tarnym, ré6wna si¢ wielokrotnosci peryoddw.
(Twierdzenie Liiouville’a).

Majac dane peryody, ® punktow zerowych
itylez punktéw nieskonczonosci, mozemy za-
wsze znalesé odpowiadajgca im funkcye po-
dwdjnie peryodycznag.

Suma punktéow, w ktédrych funkcya podwéj-
nie peryodyczna posiada tez sama wartose
w rownolegloboku elementarnym, jest sta-
a (Jezell pominiemy wielokrotnosci peryodow).

Funkcya podwdjnie peryodyczna nazywa sie funkcysy
rzedu n-tego, jezeli w réwnolegloboku zasadniczym ma n
nieskonczonosci.

Funkcya podwodjnie peryodyczna rzedu 2-go
czynizadosé zwigzkowi frad4-f—2z)=[f(2), gdzie
aipfsapunktamijejnieskonczonosci

Poclhodna funkcyi podwéjnie peryodyecz-
nejrzedu 2-go znika w czterech punktach (o1l o’
sy polperyodami):

[ D) -+ @,

+w+w
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Funkcya F(z), majaca te same nieskonczo-
noscii peryody co funkecya f(z) w twierdzeniu
poprzedzajacem i1czyniagca zadosé réwnaniu
F(a+p8- 2) = F(z), wyraza si¢ wymiernie przez
funkeye f(2).

Kazda funkcya podwdjnie peryodyczna
rzedun wyrazasig wymiernie przez funkecyg
rzedu 2-go, majagca tesame przyrody, iprzez
jej pochodna. (Twierdzenie Liouvillea.)

Dwiefunkcye podwdjnie peryodyczne, dla
ktéorych sieciréwnolegle bokéw majag wspol-
na jedne sieé¢ wierzcholkdéw, sg zwigzane ré w-
naniem algebraicznem.

Funkcya podwdjnie peryodyczna 1ijej po-
chodnasg zwigzane r6wnaniem algebraicznem.

Powiadamy, ze funkeya analityczna posiada twierdze-
nie o dodawaniu algebraicznem, jezeli pomiedzy
wartosciami f(2), f(2), /(z+2'), gdzie z 1 z/ sa jakiekolwiek
punkty na plaszczyzuie, istnieje zwigzek algebraiczny.

Jezeli funkcya, posiadajaca twierdzenie
ododawaniu, jest jednowartosciowa, wtedy
flz+2) wyraza sig¢ wymiernie przez f(2), f(Z),
'@, /().

Kazda funkcya podwéjnie peryodyczna
meromorficzna jednowartosciowa posiada
twierdzenie o dodawaniualgebraicznem. Od-
wrotnie: kazda funkcya meromorficzna na ca-
lej ptaszczyznie (z wylagczeniem punktu o0),
dla ktdrejistnieje twierdzenie o dodawaniu
algebraicznem (poniewaz niemainnych pun-
ktow istotnie osobliwych précz o0), jest fun-
kcyg wogéle podwéjnie peryodyczna,.

Funkeya meromorficzna na calej plaszezyznie (précz co)
1 podwdjnie peryodyczna, a wiec majaca twierdzenie o dodawa-
niu algebraicznem, nazywa si¢ w ogdle funkcyg elipty-
czng jednowartosciowa.
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Funkeya p(w) moze byé¢ nazwana funkcys eliptyczna ele-
mentarng. Jest ona rzedu 2-go, za pomocg niej i jej pochodnej
mozna wyrazié kazdg inng funkeye eliptyezna (na podstawie po-
wyzszego twierdzenia).

Widzimy tedy, Ze teorya funkeyj podwdjnie peryodycz-
nych sprowadza sig do teoryi funkeyj eliptycznych; do tej wiec
odsylamy czytelnika |0 szczegdly (patrz Rozdzial XVI).

Dodajemy, ze teorye funkcyj eliptycznych, oparta gléwnie na
pojeciu podwdjnej peryodyecznosei, wylozy! Liouville w r, 1847
i oglosit w Comptes rendus w r. 1851 (patrz tez Crelle, LXXXVIII);
potem taz droga poszli Briot i Bouquet (Journ. de 1'Ecol. Polyt.
1856), oraz M éray. Wyklad jasny twierdzeir o funkeyach podwéjnie
peryodycznych znajdujemy w dziele: Briot et Bouquet ,Théorie
des fonctions elliptiques* (Paryz, 1872).

Funkeye, nie pozostajace bez zmiany przy powiekszaniu
argumentu peryodu, lecz pozyskujace wtedy czynnik staly lub
wyktadniczy stopnia 1, nazywamy zwykle funkcyami podwaj-
nie peryodycznemil 2go i 3-go gatunku, stosownie
do tego, czy czynnik ten jest stalym, czy tez wykladniczym
stopnia 1-go co do zmiennej.

O zwiazku tych funkeyj z funkeyami peryodycznemi zwyczajnemi
znale$¢ mozna wiadomosei w pracach Hermite'a (Comptes rendus
1861—62, 85), Mittag-Lefflera (tamze 1880), Brioschi'ego
(tamzZe 1881), Frobeniusa (Crelle XCIII) i t. 1, Poréwn. tez dzielo
Forsytha  Theory of functions ete., Cambridge, 1893, Cap. XII, str.
273 i nast.

§ 5.

Funkcye modutowe.

Funkeya jednopostaciowa nazywa sie modulowa, jezeli
nie ulega zmianie przy wszystkich podstawieniach grupy lub.
podgrupy modutowej
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@z -+ b \

z, —(m: , y ((h d,'—‘ {I, ¢y = 1)

gdzie a, b, ¢, d sa liczby rzeczywiste dodatnie. Nazwa ,mo-
dulowa“ pochodzi stad, ze modul k? funkeyj eliptycznych, uwa-

zany za funkeye stosunku peryodéw przestepnych z == ;Zi’ jest

wlasnie funkeys tego gatunku.

Grupa modulowa jest niewlasciwie niecig-
glag dla wartosci zrzeczywistych (patrz§2).

Jezeli F(z), f(2) sa funkeye modulowe, na-
IeZzgee do grup @, @G, gdzie G jest podgrupa
grupy G, to funkcecya F wyrazasie wymiernie
przez funkecye f£.

Dwie funkeye modulowe, nalezace do tej
samej grupy, wyrazaja sie wymiernie jedna
przez druga.

Niezmiennik bezwzgledny funkcyj elip-
tycznych (patrz Rozdzial XVI)

B o A Rl F

e k(1 — k)

jest funkcys modulows, nalezgcg do grupy
calkowitej.

Podstawieniami tworzacemi grupy cal-
kowitej sg podstawienia

e z-—}—l), (z, ——;),

z ktédrych pierwsze jest parabolicznem, dru-
gie zas eliptycznem peryodycznem.

Wielobok poczatkowy lub tworzacy dla funkcyi A% jest
czworobokiem Krzywokreslnym nieskonczonym na pélplaszczy-
znie dodatniej; dwa jego boki sa réwnolegle do osi rzednych



3% B R

1 majg odciete -1, —1, dwa drugie sg potkolami na plaszczy-
Znie dodatniej o promieniu i, majacemisrodki w punktach -4, —4.

W tym wieloboku funkeya k? przyjmuje raz jeden wszyst-
kie swoje wartosci; t. j. wartosci, jakie przyjmuje w innych cze-
sciach plaszczyzny, sg réwne tym, jakie ma wewnatrz wielo-
boku.

Grupa funkcyi modulowej £k*k‘? tworzy
sig zdwu podstawien (z, z+2), (z, —%)

Dwie fukcye (p:li//?, v,u=;//7' sa funkeyami mo-
dulowemi, nalezgcemi odpowiednio do grup
nastepujacych. Funkcya g nalezy do podgru-
py grupy funkcyi k2 tworzacej sie¢ z trzech
podstawien

{

£ ’ C=(Z,

o (g, o3 2 e
(2, 242, B= (2, —=—

)
22+1)’

lecz wten sposdéb, ze w kazdym iloczynie licz-
ba czynnikdéw 4 jest kongruentiig z zerem
wedlug mod. 8. Funkcya v nalezy do podgru-
pygrupy funkeyik® tworzacejsigztychzetrzech
podstawien, lecz wtensposdb, ze w kazdym
iloczynie liczba czynnikdw B,zmniejszona o li-
czbe czynnikdow C, jest=0 (mod. 8).
Wielobok tworzacy dla niezmiennika bezwzglednego

S R sl
27 k(1 —k??

J(2)=

ma trzy boki; jednym jest luk kola o promieniul ze srod-
kiem w poczatku, rozciggajacego sie¢ od punktu z odcietg -4
do punktu z odcieta + §; pozostale boki sg prostemi, wycho-
dzacemi z konca tego boku i rozciagajacemi sig¢ do -+ oc réwno-
legle do osi rzednych. Funkeya J(z) w punktach z=94
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—1—+;V3 1 oo, t.j. w wierzcholkach péitréjkata tworzacego,

przyjmuje odpowiednio wartosci 1, 0, co.
Grupa funkcyi modulowej 4 imodul Legen-
dre'a) jest utworzona z podstawien:

(:‘ 2):(3) (1)) (mod. 2);

jej podstawieniamitworzgcemi sg
z —L— 2, z-+2)
(1 22—+—1), (' _}_ :

Teorya funkeyj modulowych jest najscisle] zwiazana z tedrya
przeksztalcen funkeyj eliptycznych (patrz Rozdz. XVI).

Nazwa: ,funkcye modulowe eliptyezne“ pochodzi od Dedekin-
da (Crelle LXXXIII, 1877). Badaniem w niej zasadniczem jest to,
ktére odnosi sie do podgrup grupy zasadniczej i do funkeyj do nich na-
lezacych. Klein zbadal rozlegls klase tych podgrup.

Gléwnemi pracami o tej teoryi sa prace: Kleina (Math. Ann.
XVI, XVII),Hurwitza (tamze XVIII'), Dycka, Gierstera (tamze
XVIIL, XX), Frickego (tamze XXI, XXYIII, XXIX), Kieperta
(Crelle LXXXVII).

Punktem wyjscia prac Kleina byly jego wlasne badania nad
grupami skonezonemi, a potem studyum rozprawy Schwarza (Crelle
LXXYV) o szeregu hypergeometrycznym, Niedawno wyszlo obszerne
dwutomowe dzielo o funkeyach modulowych, opracowane przez Fri-
chego, wedlug wykladéw Kleina (,Vorlesungen iiber die Theorie der
elliptischen Modulfunctionen, Lipsk, 1890—92)
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N § 6.
Funkcye Fuchsa i Kleina (automorficzne).

Teorye funkeyj podwéjnie peryodycznych rozpoczynamy
od zbudowania funkeyi 6, ktérych stosunki wlasnie funkeye te
wyra‘aja. Poincaré usifowal pdjsé ta samg droga dla funk-
cyj ogélniejszych. ktére nas w tej chwili zajmuja,.

Zanwazywszy, ze szereg

1

Gl el )

jest zbiezny, zbudowat on szereg zbiezny

H [ @iz =+ b; \ 1

@) =ds ez +d. } (Ciz—di )™’

(gdzie H jest symbolem jakiejkolwiek funkcyl wymiernej), przed-
stawiajacy funkecye jednopostaciows, ktora nazwat teta-fuch-
sowag lub teta-kleinowa stosownie do tego, czy grupa zasa-
dnicza jest grupg Fuchsa czy Kleina Mozna te funkeye
nazwa¢ takze pseudo-automorficzna.

Liczba punktéow zerowych i nieskoncze-
nosciowych tej funkecyi wewngtrz wieloboknu
poczgtkowego lub tworzacego R, jest zawsze
skonczona

Funkcya b sprawdza zwigzek:

Kazda taka funkcya analityczna istnieje tylko w tej czesci
plaszezyzny, do ktore) nalezy wielobok poczatkowy oraz wszyst-
kie wieloboki w liczbie nieskonczonej, ktore otrzymujg sie z nie-
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go przez podstawienia grupy. Tak np. w przypadku grup fuch-
sowych w znaczenin obszerniejszem funkeya istnieje tylko w kole
zasadniczem lub w czescl tego kola, ktérego okrag jest linig oso-
bliwg dla tej funkcyi. Mamy tu funkcye o obszarach
osobliwych. (Patrz Rozdzial XIII).

Iloraz dwn takich funkcyj, odpowiadaja-
cych tej samej liczbie m, jest funkcya*auto-
morficzna, majagcg nieskonczong liczbe zer
inieskonczonosci wewngtrz R, Odwrotnie,
funkcye automorficzng mozna zawsze wyra-
zi¢ za pomoca funkecyj 6.

Pomigdzy dwiema funkcyami automor-
ficznemi, odpowiadajgcemi tejsamej grupie,
zachodzizawsze zwiazek algebraiczny,i kaz-
da inna funkeya tej grupy wyraza sie wymier-
nie przez dwie takie funkecye

Spélrzedne punktéow krzywej algebraicz-
nej jakiejkolwiek daja sie¢ zawsze wyrazié
jako funkcye fuchsowe jednegoitego samego
parametru. ,

Kazde réwnanie rézniczkowe liniowe o
spétczynnikach algebraicznych daje sig zaw-
sze calkowac¢ przez funkcye fuchsowe i teta-
fuchsowe.

Co do innych szczegoléw patrz prace, cytowane w § 2.



. * ROZDZIAL XV.

FUNKCYE ALGEBRAICZNE 1 CALKI ABELOWE.

&

Ogolne wiadomosci o funkcyach algebraicznych. Rozgafgzienie.

Wyobrazmy sobie zwigzek f(w, 2) = 0, gdzie /" jest funk-
cya wymierng calkowitg pomiedzy dwlema zmiennemi zespo-
lonemi wiz Ilosé w. okreslona jakofunkcyailosci g,
bedzie wogdle wielowartosciows, a mianowi-
cie bedzie miala n wartosci, jezell n jest sto-
pniem rownania wzgledem w. Funkeya taka nazywa
sie funkcysg algebraiczng zmienej 2. Ogdlniej:
Kazda funkcya wymiernailosciwiz pomie-
dzy ktéremi zachodzl zwiazek powyZszy, na-
zywa sie funkcya algebraiczng zmiennej 2.

Zreszty od drugiego okreslenia mozna powréeié do pierw-
szego, gdyz, jezell polozymy w, =i (w, z) 1 wyrugujemy v po-
miedzy tem réwnaniem i danem f(w,2) = 0, otrzymamy réw-
nanie wymierne F(w,, z)=0.

Jezeli zmiennej z nadamy wartosé z=2z,, wtedy rownanie
stopnia n-tego wzgledem w, f(w,2)=0, da nam n pierwiast-
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A

kow w, ktére mogs byé¢ wszystkie rézne, lub tez niektore pomie-
dzy niemi mogsg by¢ i réwne. Jezeli przyjmiemy, ze jest w 0go-
le m pierwiastkow rownych, bedziemy mieli twierdzenie Cau-
chy'ego (Exercices, 1841).

Jezeli dla z=zyréwnanie mam pierwiastkow
wréwnych wy, wtedy dla wartosci z blizkiej z,
m pierwiastkéw rdwnania posiadaé¢ bedzie
wartoscinieskonczenie malo réznigcesie od uw,.

Gdy dla 2=z, pierwiastek w=1w, nie jest
wielokrotny, wtedy: jezeli w plaszczyznie 2
zmienna ¢z opisze kolo dostatecznie maleokolo
punktuz, tvzmienna w w plaszczyznie w opi-
sze kolo dostatecznie male okolo punktu r;
jednemu obrotowi w plaszczyznie z odpowiada
jeden obrdét lub calkowita liczba obrotdw
w plaszczyznie w. W otoczeniupunktu z, fun-
kcya w=w, daje si¢ rozwingé¢ naszereg, upo-
rzgdkowany wediug poteg calkowitych ro-
sngcychrdéznicy 2—¢, poczymnajac od potegi
pierwszej,lub od potegi wyzszej,niz pierwsza.

Gdy dla z=2, tfunkcya f ma m pierwiast-
kéwréwnych w, wtedy: jezeli zmienna 2z opi-
sujewswej plaszczyznie okolo punktu ¢ kolo
dostatecznie mate, wartose¢ w okrazy punkt
my, lecz wten sposdb, ze gdy 2z czyni jeden
obrét wswej plaszczyznie, w przechodzi¢ be-
dzie od jednego z pierwiastkow nieskoncze-
nie blizkich w, (zgodnie ztwierdzeniem Cauchy’ego)
doinnego. Jezeli pouskutecznieniupewnej li-
czby m obrotéw w plaszczyzniez powrdecimy
wplaszczyznie w do pierwiastka, z ktdrego wy-
szlismy, przeszedlszy przez m; z pomiedzy m
plerwiastkow, mowimy wtedy, ze m, plerwiast-
kéw tworzy cykl Z pozostalych pierwiast-
kéwznowu m, tworzy nowy cykl 1 t. d; sama
m,—+my, +..* réwna sie oczywiscie liczbie m.
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Pierwiastki wliczbie m;, tworzace cykl daja

sie w otoczeniu punktu 2, rozwingé¢ na sze-

regi, ktérych pierwszym wyrazem jest 2,

a pozostale wyrazy postepuja wedlug poteg
1

calkowitych dodatnich czynnika (2—z,)™; podo-
bnie sie rzecz ma dla m, pierwiastkéw, two-
rzagcych cykl drugiit. d. Wartos¢ tedy funkeyl w
w punkcie najblizszym punktu z, wyobraza tyle szeregéw, ile
jest cykléw, na ktdre rozpadaja sie pierwiastki uwazanego ré-
wnania.

Jezeli wszystkie liczby mi,, m,, . . . sa réwne jednosci, wte-
dy w otoczeniu punktu z, otrzymujemy m rozwinie¢ szerego-
wych, odpowiadajgcych m réznym wartosciom funkeyi w tym
punkeie. Jezeli przedstawimy zwiazek f(w,2)=0 za pomocy
krzywej na plaszczyznie, to przypadek ten odpowie rozwazanin
punktu m-krotnego krzywej o stycznych réznych.

Jezeli nie wszystkie liczby m sg rowne jednosci, punkt 2,
nazywa sie punktem rozgalezienia rzedu m;—1 dlam,
wartosci funkeyi w, stanowiaeych cykl pierwszy, rzedu m, — 1
dla m, wartosci, stanowiacych cykl drugi i t. d. W przedsta-
wieniu geometrycznem punkt rozgalezienia odpowiada punktowi
takiemu krzywej, ze przechodzaca przezen rzedna przecina
w dwu przynajmnie; punktach nieskonczenie blizkich tez sama
galez krzywej; w szczegdlnosci zas punktowi, w kiérym styczna
do galezi linii krzywej jest prostopadla do osi odcietych.

Jezeli w szezegoélnosci rozwiniecie funkceyi ' na szereg we-

1
dlug poteg ilosci 12—z;) ™ rozpoczyna sie od wyrazu z czynni-

”,

\

kiem (z2—z,)" = z—2z,, t. j. jezeli sa zerami pierwsze m;—1
spblezynnikow rozwiniecia, to1 wtedy ¢, bedzie punktem roz-
galezienia, lecz natury bardziej zlozonej. W przedstawieniu
geometrycznem krzywej ten przypadek zachodzi dla ostrza, Iub
ogdlniej dla punktu wielokrotnego o zlewajacych sie stycznych.
Takie rozgalezienie nazywaé¢ bedziemy rozgalezieniem
ostrzowem.
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Jezeli z, nie jest punktem rozgalezienia lub jezeli jest pun-
ktem rozgalezienia ostrzowego, wtedy otoczenie tego punktu
1 otoczenie punktu w, odpowiadaja sobie wzajemnie w odtwo-
rzeniu podobnem; jezeli za$ z, jest punktem rozgalezienia zwy-
klego rzedu m,—1, odtworzenie nie jest podobnem.

Punkt rozgalezienia zwyklego rzedu u;—1 mozna uwa-
za¢ jako zjednoczenie m; —1 nieskonczenie blizkich punktéw roz-
galezienia rzedu 1-go.

Dzieje sie to (jezeli wylaczymy rozwazanie rozgalezienia
ostrzowego) na podstawie nastepujacego twierdzenia Noethera
(Math. Ann. IX; por. takze rozprawe Halphena: Surlespoints
singuliers des courbes algébriques“, gdzie mozna znales¢ tez
wskazowki bibliograficzne):

Mozna zawsze, za pomoca przeksztalcen Cre-
mony przeksztalci¢ krzywa algebraicznag plaska
f(w,2)=0 na inng, majgcag tylko punkty wielokro-
tne o stycznych réznych.

Liczba punktéw rozgalezienia pojedynczych,
zwyczajnych 1 ostrzowych, odpowiadajacych ro-
wnaniu f(w,2)=0, wynosin(n—1)—2d—2r, gdzien jest
rzgd krzywej, ktora przedstawia torownanie, d jest
liczba punktéw podwéjnych krzywej, » liczba
ostrzy. Jezeli krzywa ma punkty wielokrotne, to
kazdy z nich powinien by¢ liczony w tym wzorze
za pomocs swego rownowaznika w punktach po-
dwéjnych i ostrzach, jak tego uczy teorya krzy-
wych algebraicznych.

Dla kazdego punktu rozgalezienia byé musi:

Nie jest to wszakze warunek dostateczny roz-
galezienia, gdyz jezeli np.
of A e of
S 0, 1 oprécz tego TS =0,

wtedy rozgalezienia niema.
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Jezeli réwnanie zasadnicze jest postaci

z— (g4 aw—+4 ...+ a,)=0,

wtedy punktami rozgalgzienia jest punkt z= oo,
ktory jest punktem rozgalezienia‘rzedu (n—1) go,
oraz punkty z,ktérym odpowiadaja wartosciw, beda-
_ce pierwiastkami réwnania

Ny W~ (n—1) a ™ 4. . ... —+ @z =0,

ktérego strona pierwsza jest pochodng strony
pierwszej ré6wnania f= 0.

Jezeli rownanie zasadnicze f=0 jest postaci

to punktéw rozgalezienia jest » i sg niemi pier-
wiastki réwnania:

a2+ a2 .....+ a, = 0.

Wigksza czes¢ twierdzen w tym paragrafie podaje klasyezna
rozprawa Puiseux’go (Journ, de Liouville, XV, 1850).

§ 2.

Konstrukcya powierzchni Riemanna.

Do badania funkeyj algebraicznych nadaja sie dos¢ dobrze
tak nazwane powierzchnie Riemanna, wprowadzone po raz
pierwszy przez tego uczonego. Powierzchniom tym poswiecamy
specyalny rozdzial w tomie 2-gim tej ksigzki, gdzie moéwi¢ be-
dziemy o nich ze stanowiska geometrycznego (,Teorya spdéjno-
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‘§21 powlerzchni“); tu damy pojecie o nich o tyle tylko, o ile to
jest potrzebne do przedstawienia funkeyj algebraicznych.

Dajmy, ze funkeya algebraiczna ma n wartosci. Zamiast
jednej plaszczyzny z, wyobrazmy sobie 1 plaszezyzn z, polo-
zonych jedna na drugiej w ten sposob, aby punkty, dla ktérych
z ma te sama wartosé, znajdowaly sie na sobie. Na kazdej
z plaszezyzn polézmy jedna z n wartosci, jakie przyjmuje w dla
tej samej wartosci z: nastepnie spéjmy plaszczyzny w ten spo-
s6b, aby wyszedlszy z pewnego punktu i obieglszy plaszezyzny
po pewnej drodze, mozna bylo powrdei¢ do punktu wyjscia z ta
samg wartosclg na w.

Plaszczyzny, lezace na sobie 1 tworzgqce powierzchnie Rie-
manna, nazywaja sie jej lisemi.

Dla ustalenia mysli, przyjmijmy, ze mamy tylko dwie plasz-
czyzny (n=2); oznaczmy na nich punkty rozgalezienia, ktérych
liczba powinna byé¢ w tym przypadku parzysta,i polaczmy je po
dwa (t.j. 1-y z 2-gim, potem 3-1z4-ym i t.d.) za pomocg jakichkol-
wiek linij (ktére moga byé 1 prostemi), nie przecinajacych sie ze
soba (linie spéjnosci). Przetnijmy plaszczyzny wzdluz tych
linij, a nastepnie zlaczmy brzeg prawy plaszezyzny gornej z brze-
giem lewej plaszczyzny dolnej, oraz brzeg lewy plaszezyzey
gornej z brzegiem prawym plaszezyzny dolnej. Skutkiem
takiego spojenia plaszczyzn mozna przejs¢é od jednej z nich
do drugiej, lecz nie mozna okrazyé¢ punktu rozgalezienia w je-
dnej i1 tej samej plaszczyznie; przebiegajac tedy po okregu okolo
punktun rozgalezienia. przechodzimy od plaszczyzny goérnej do
dolnej, aby po tem po obrocie wréci¢ do plaszezyzny goérnej.

Niechaj w ogdlnosci bedzie n plaszczyzn z, polozonych na
sobie 1 niechaj z=z, bedzie punktem rozgalezienia, w ktérym
z pomiedzy 1 wartosci » przemienia sie wzajemnie kolowo, inne
my tworza cykl drugii t. d. (patrz § 1), wtedy poczynajac z pun-
ktu z,, robimy tylez cie¢ w rozmaityvch plaszczyznach i spajamy
je ze sobg w ten sposéb, aby m, z pomiedzy nich stanowito eykl
pierwszy (l-y z2-gim, 2-gi z 3-im, . .. m,;-ty z 1-ym), my—cykl
drugiit. d

Jezeli krzywa, przedstawiona przez réwnanie
f(w,z2)=0, jest nierozkladalng, t. j. nie moze rozpadaé
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sie na krzywe nizsze, wtedy uklad tak spojonych
n plaszczyzn stanowi powierzchnie jedyna, kto-
ra moze sie przeksztalcaé¢ sposobem cigglym wten
sposob, ze powstaje stad powierzchnia zwyklego
wygladu réznie spleciona 1 na ktdrej z jednego
punktu mozZna, sposobem cigglym, przejsé do kaz-
dego innego.

Jezeli funkeya fjestrozkladalna, wtedy mamy
nie jedne lecz tyle powierzchni, na ile czynni-
kéw rozklada sie f; na kazdej z nich mozna przejsé
%z jednego punktu do innego sposobem cigglym.

Jezeli krzywa nierozkladalna, przedstawiona
przez réwnanie f(w,2)=0, jest rodzaju p (patrz ,Teo-
rya krzywych“), wtedy odpowiadajaca jej powierz-
chnia Riemanna jest takze rodzaju p. Ta liczba
calkowita dodatnia przedstawia najwiekszg liczbe
cie¢ zamknietych, ktére mozna uskuteczni¢ na po-
wierzchni, nie doprowadzajgc jej do rozpadniecia
{patrz ,Teorya spdjnosci“).

Powierzchnia Riemanna rzedu p moze byt
sposobem cigglym przeksztalconana kule p— powtlo-
kowa, t. j. na kule, w ktérej uczyniono 2potworéw
ipolaczonoje dwa po dwa powierzchniami postaci
rur zwinietyech.

Powierzchnia nazywa si¢ pojedyneczo-spdjna lub je-
dno-spéjna, jezeli rozpada sie skutkiem jakiegokolwiek usku-
tecznionego na niej ciecia zamknietego, albo skutkiem -ciecia,
Iaczacego punkt brzegu z innym punktem tegoz brzegu, gdy po-
wierzchnia posiada brzegi. Tak np. jednospdjng jest kula (po-
wierzchnia bez brzegéw lub czesé plaszezyzny ograniczona
kotem).

Kazdg powierzchnie Riemanna rodzaju p mo-
znauczynic¢ jednospdéjna za pomocy pcie¢ zamknie-
tych (ciecia 4), p cieé otwartych (cigeia B), Iaczacych
dwa punktycalkowitego brzegu, ktére powstaly na
pow1e1zchn1skutk1emp1erws7ychmqo wreszcie za
pomocainnych p—1 cieé otwartych (ciecia C).
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Ogoéttych wszystkich cigé przedstawia
brzeg jedyny, ktéry mozna przebiedz calko-
wicie, wychodzac z pewnego punktu; jest to
brzeg powierzchni ktdéra stala sie jedno-
spojna.

Jezeli powierzchnia Riemanna rodzaju p daje sie za-
mieni¢ na inna, majaca tylko dwa liscie. to nazywa si¢ hy per-
eliptyczna.

Typem kanonicznym powierzchni hyper-
eliptycznej Riemanna rodzajup jest powlierz-
chnia, z1ozona zdwulisci i majgca 2p+2 pun-
ktow rozgalezienia.

Dla p=1 kazda powierzchnia Riemanna
jest hypereliptyczna; wlasciwiemamy wtedy
tak zwang powierzchnie eliptyczng Riemanna.

Dla powierzchni hypereliptyczne) o dwu lisciach, uklad
cie¢ 4, B, C, zamieniajacych ja na jednospojna, tworzy sie spo-
sobem nastepujacym. Niechaj punkty a;, a,, ..., ds+1 bedy
punktami 1ozgalqz1en1a a proste (@, a,), (@ a,). (o),,+1,a) p2)
liniami spdjnosci. Wykreslmy na jednej z pla.bzczyzn krzywe zam-
knigte, zawlerajace w swem -wnetrzu pierwsze p z pomiedzy
linij spojnosei, otrzymamy tym sposobemlinie A4, 4, ... 4 ,. Naste-
pnie tworzymy B, kreslac krzywe zamknigts, kidra Wychodzqc
z jednej z plaszozyzn z punktu linii a, a,, dochodzi do punktn
linii @aptq @2y 1, przeszedlszy nastepnie do drugiej plaszezyzny,
wraca do tegoz samego punktu linii (@, @,). Podobniez tworzy-
my B, ... B, 1 kreslimy te linie tak, aby si¢ nie przecinaly.
Wreszcie tworzymy linie €y, ... .. , Cy—1, 1aczac punkt hinii 4,
z punktem linii B;, punkt linii 4, z punktem linii B, i t, d

b ascal. Rep. I. 929
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§ 3.
Funkcye na powierzchni Riemnanowskiej.

Dla kazdego punktu powierzechni Riemanna mamy jedne
wartosé z 1 jedne wartosc w; ta ostatnia pozostaje bez zmiany
bez wzgledu na droge, jaka na powierzchni dochodzimy do
punktu. >

Niechaj bedzie funkeya monogeniczna zmiennych z i w
taka, ze dla kazde] pary wartosci z, w, czynigcych zadosé zwiaz-
kowi f (w,2)=0, t. j. dla kazdego punktu powierzchni Rieman-
na ma ona jedne wartos¢. Taka funkeya nazywa sie funkcya
jednopostaciowa na powierzchni Riemanna.

Kazda funkcya jednopostaciowa na po-
wierzchni Riemanna, nie majgcainnych oso-
bliwosci précz biegundw (t. J. punktow, w ktérych
staje sie nieskonczong tak, ze jej odwrotnosé¢ jest w tych pun-
ktach zerem i funkcya ciagla) jest funkcya wymiernag
ilosciwiz (funkcyaalgebraiczng iloseci 2.

Kazda funkeya jednopostaciowa na po-
wilerzchni Riemanna musi koniecznie posia-
da¢ bieguny, t. j. nie moze by¢ skonczonygna
catlej powierzchni chyba ze jest stala.

Kazda funkcya algebraiczna (funkcya jedno-
postaciowana powierzchni Riemanna) przyjmuje kazdag
wartosc¢ krazy; wszczegdlnosci zas ma tyle
zer,1le ma biegundw. Liczba k nazywa sie stopniem
funkecyi.

Grupa k punktéw, z w ktérych funkeya algebraiczna przy-
biera te sama wartosé, nazywa sie rownoresztng (korre-
sydualna), z grupg innych & punktéw, w ktérych taz sama
funkcya przybiera inng wartose.

Nieistnieje funkcya algebraiczna, maja-
ca mniej niz p41 biegunéw dowolnie danyech,
gdzie p jest rodzajem zasadnicze] powierz-
chni Riemanna.
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Funkcya algebraiczna ogdlna, majaca p+1
biegunow dowolnie danych, zawiera liniowo
dwie stale jednorodne, t. j. jest postaci ¢, Ft-c,,
gdzie F jest funkcya okreslong tejze natury.

Funkecya algebraiczna ogélna, majagca £k
biegunéw dowolnie wybranych,zawiera linio-
wo k—p+41stalych dowolnych, t. j.istnieje k—p
prawdziwych funkcyj (wylaczamy ilos¢é stala) 1i-
niowoniezaleznych, majagcych bieguny swoje
wszystkie lub niektdre w tych % punktach.
(Twierdzenie Riemanna,Crelle LIV, Abel sche Functionenn. 5.)

Uogdlnienie tego twierdzenia odnosi sie do przypadku,
w ktérym punkty dane maja polozenie specyalne.

Jezeli réwnanie f(w,2)=0 rozwazamy jako rownanie krzy-
wej plaskiej rzedu »-tego, to krzywsg dolgczonag rzedu
(n—3)-go nazywamy taka krzywa tego rzedu, ktdra przechodzi
(r—1)-krotnie przez punkty r-krotne krzywej zasadniczej.

Krzywa dolaczonarzedu (n—3)-go ma 2p—2
zmiennych punktéw przeciecia (précz pun-
ktéw wielokrotnych)zkrzywa zasadniczgiist-
nieje p krzywych dotaczonychrzedu (n—3) - go,
liniowo od siebie niezaleznych.

Jezeli i punktéw nalezy do przecie¢ (zmiennych) krzywej
dolaczonej rzedu (n—3)-go z krzywa f, méwimy wtedy, ze te k
punktow tworzy grupe specyalnsg.

Jezeli przez k punktéow danych przecho-
dziz krzywychrzedu (n—3)-go liniowo nieza-
leznych, to funkcyaalgebraiczna, majgca bie-
guny swe wszystkie lub niektére w tych %
punktach zawiera¢ bedzie liniowo k—p+41+41
stalych dowolnych jednorodnych., (Twierdzenie
Riemanna-Rocha, Crelle LXIV.)

Jezeli v=0, mamy wyze] przytoczone twierdzenie R 1ie-
manna.

Funkcya algebraiczna, ktorej bieguny tworza grupe spe-
cyalna, nazywa sie funkcya specyalna.
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S 3.
Funkcye na powierzchni Rienanowskiej.

Dla kazdego punktu powierzchni Riemanna mamy jedne
wartose z 1 jedne wartosc «; ta ostatnia pozostaje bez zmiany
bez wzgledu na droge, jaka na powierzchni dochodzimy do
pucktu.

Niechaj bedzie funkeya monogeniczna zmiennych z i w
taka, ze dla kazdej pary wartosci z, w, czynigcych zadosé zwigz-
kow1 f (w,z)=0, t. j. dla kazdego punktu powierzchni Rieman-
na ma ona jedne wartos¢. Taka funkcya nazywa sie funkeys
jednopostaciowa na powierzchni Riemanna.

Kazda funkcya jednopostaciowa na po-
wierzchni Riemanna, nie majacainnych oso-
bliwosci précz biegundw (t. j. punktéw, w ktérych
staje sie nieskonczong tak, ze jej odwrotnos¢ jest w tych pun-
ktach zerem 1 funkcya ciagla) jest funkcys wymiernag
ilosciwiz (funkecya algebraiczna iloseci 2.

Kazda funkcya Jednouostac:lowa na po-
wierzchni Riemanna musi koniecznie posia-
daé¢ bieguny, t. j. nie moze byé¢ skonczongna
calej powierzchni chyba ze jest stala.

Kazda funkcya algebraiczna (funkcya jedno-
postaciowana powierzchni Riemanna) przyjmuje kazdg
wartosé krazy; wszczegodlnosci zas ma tyle
zer,1le ma biegunodw. Liczba k nazywa sie stopniem
funkeyi.

Grupa k punktéw, z w ktérych funkeya algebraiczna przy-
biera te samg wartos¢, nazywa sie rownoresztng (korre-
sydualna), z grupa innych & punktow, w ktérych taz sama
funkcya przybiera inng wartose.

Nieistnieje funkcya algebraiczna, maja-
camniej niz p41 biegunéw dowolnie danych,
gdzie p jest rodzajem zasadnicze] powierz-
chni Riemanna.
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Funkcya algebraiczna ogdlna, majaca p41
biegunéw dowolnie danych, zawieraliniowo
dwie stale jednorodne, t. j. jest postaci ¢ Ffc,,
gdzie Fjest funkcya okreslong tejze natury.

Funkcya algebraiczna ogélna, majagca k
biegunéw dowolnie wybranych,zawiera linio-
wo k—p+41stalych dowolnych, t. j.istnieje k—p
prawdziwych funkecyj (wylaczamy ilos¢ stala) 1i-
niowoniezaleznych, majgcych bieguny swoje
wszystkie lub niektdre w tych ¥ punktach.
(Twierdzenie Riemanna,Crelle LIV, Abel sche Functionenn. 5.)

Uogdlnienie tego twierdzenia odnosi si¢ do przypadku,
w ktérym punkty dane maja polozenie specyalne.

Jezeli réwnanie f(w,z)= 0 rozwazamy jako réwnanie krzy-
wej plaskiej rzedu #-tego, to krzywa dolgczong rzedu
(n—3)-go nazywamy taks krzywa tego rzedu, ktéra przechodzi
(r—1)-krotnie przez punkty »-krotne krzywej zasadniczej.

Krzywa dolaczonarzedu (n—3)-go ma 2p—2
zmiennych punktéw przeciecia (prdécz pun-
ktéw wielokrotnych)zkrzywa zasadniczgiist-
niejep krzywych dolaczonych rzedu (n—3) - go,
liniowo od siebie niezaleznych.

Jezell k punktow nalezy do przecie¢ (zmiennych) krzywej
dolaczonej rzedu (n—3)-go z krzywa f, méwimy wtedy, ze te k
punktéw tworzy grupg specyalna.

Jezeli przez k punktéw danych przecho-
dzizrkrzywychrzedu (n—3)-go liniowo nieza-
leznych, to funkcya algebraiczna, majaca bie-
guny swe wszystkie lub niektére w tych %k
punktach, zawieraé¢ begdzie liniowo k—p—+7+1
stalych dowolnych jednorodnych. (Twierdzenie
Riemanna-Rocha, Crelle LXIV.)

Jezeli v=0, mamy wyzej przytoczone twierdzenie Rie-
manna.

Funkcya algebraiczna, ktérej bieguny tworza grupe spe-
cyalna, nazywa si¢ funkcya specyalna.
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Liczba biegundw funkecyi specyalnej jest
conajwyzejrowna 2p—2 1 moze dosiegngé tej

granicy.
Kazdag funkcye specyalng mozna przed-
stawicé w postaciig)/, gdzie 91 ¥ sa plerwsze-

mi stronami réwnan dwu krzywych doltaczo-
nych rzedu n—3.

Teorya funkeyj algebraicznych jest scisle zwiazana z teorya grap
punktéw na krzywej. O tej teoryi istnieje pierwsza praca klasyczna
Brilla-Noethera (Math, Ann, VII); po szczegdly odsylamy czytel-
nika do drugiego tomu tej ksiazki,

O twierdzeniu Riemanna-R ocha, oprdcz prac wskazanych,
patrz jeszecze Lindemann:  Untersuchungen iiber den Riemann-
Roch’schen Satz“ (Lipsk 1879), Noether (Spraw. Erlangen 1879).

Przed zakonczeniem tego parvagrafu winnismy jeszcze do-
da¢, ze mozna utworzyé teorye funkeyj monogenicznych na po- -
wierzchni, uogélniajac pojecie funkecyi zmiennej urojonej na
plaszezyznie.

Na powierzchni danej rozwazajmy uklad spélrzednych
krzywokreslnych p, ¢ i niechaj &, I, G beds spélezynniki formy
rézniczkowej, wyrazajacej kwadraty elementu liniowego po-
wierze hni (patrz tom II rozdzial o ,Geometryi rézniczkowej“).

Jezeli p', ¢’ sg funkcyami rzeczywistemi ilesel pi¢, czy-
nigcemi zados¢ dwom zwigzkom:

.. on' : op'
31 ATl 9 op
ep VEG —F* '’
. e
o _ L S T
] VEG — F*

wtedy zmienna zespolona p’—-i¢ bedzie funkcys punktu po-
wierzchni o spélrzednych p i ¢, taks, ze jej wartosé jest nieza-
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lezna od kierunku, w jakim porusza sie na powierzchni punkt
P, ¢; nie bedzie zas funkcya zmiennej zespolonej p+4 4 ¢, chyba ze
P, ¢ stanowig uklad spélrzeduych izometrycznych. W ogéle
wszakze bedzie funkcys innej kombinacyi zespolonej zmiennych
p1¢; kombinacya ta jest mianowicie calks rézniczki dokla-
dnej, ktdra otrzymujemy, mnozac

VE dp + (F + i VEG + Fz)vd!’

przez czynnik catkujacy postaci ogdlnej zespolonej u - i.

Powyzsze zwigzki sg zwiazkami koniecznemi i dostateczne-
mi na to, aby zmienna zespolona byla funkcya innej; z nich
otrzymujemy dwa zwiazki nastepujgce:

,'e_",_ r 20 /pj"(]_ o
9 (( T “'/) =L (” 3 310)_0

» N VEG—1 oq VEG —F?
21) \ 2 op’ 7 op'
) ( 1p i a,, ) {“ B ap )
.\ VEG— o9 VE G — ]

zastepujace zwiazki A? =0 teoryi zwyklej (patrz Rozdz. XIII).

Jezeli przedstawimy p'+ iq' przez punkty plaszezyzny,
to zmienna ta bedzie funkeya punktu powierzchni (w znaczeniu
wyzej wskazanem), jezeli powierzchnia i czesé plaszczyzny od-
powiadaja sobie w odtworzeniu podobnem. Ogdlniej,
jezeli p', ¢ sa spolrzednemi krzywokreslnemi punktu innej po-
wierzchni, wtedy zagadnienie: ,uczyni¢ punkt jednej powierz-
chni funkcya monogeniczng punktu drugiej, odpowiada: ,od-
tworzeniu podobnemu® jednej powierzchni na drugg (patrz roz-
dzial odpowiedni w tomie 2-gim).

Poprzednie rezultaty znajujemy po raz pierwszy w klasycznej roz-
prawie Beltrami’ego (Annali di mat. I, str, 329); inne wskazdwki
i szeczegoly u Neumanna (Abel’sche Integrale, Lipsk, 1865, 1884)
i Kleina (Algebraische Functionen, Lipsk 1892).
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§ 4.
L‘ai/ri. abe/owe.

Niechaj /t (w, z) bedzie funkeya algebraiczng zmiennej z,
ktéra ze zmienng w polaczona jest zwigzkiem wymiernym
f (e, 2) = 0; calka

"'Ii (1w, 2) dz

nazywa sie calka abelowa.

Funkcya 2, ktérag ta calka przedstawia,
jest wogdle funkcysa o nieskonczenie wielu
wartosciach: to znaczy, zZe, idgc na powierz-
chni Riemanna poréznych drogach caltkowa-
nia, mozna dojsé¢ do tego samego punktu zréz-
nemi wartosciami calki.

Jezeli za pomocs cig¢ A, B, C uczynimy powierzchnie je-
dnospdjna (patrz § 2), to réznica wartosci calki w dwu odpowie-
dnich punktach brzegéw, utworzonych za pomocs ciecia, 4 jest
iloscia stala, ktéra nazywa si¢e modufem peryodyczno-
sci pierwszego gatunku; dla cieg¢ Bmamy moduly
peryodycznosci drugiego gatunku, dla ciegé
Ctardznica jest zerem.

Calka abelowama najmniej 2p modutdow
peryodycznosci; réznica dwu wartosci, jakie
ona moze mie¢ w punkcie, jest suma wielokrot-
nosci jejmoduléw peryodycznosci

Calki abelowe rozrdézniaja sie¢ wedlug natury funkeyi
B (w, z), lub lepiej wedlug natury biegunéw tej funkeyi.

Jezeli funkcya R niema innycsh biegundw,
préczpunktéwrozgalezienia, wtedy catka mo-
ze byé¢ stale skonczona,imamycalke gatunku
pierwszego.Jezeli funkcya R ma biegunrzedu
wyzszegonad 1 wpunkeie (u,2), wtedy calka
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staje siewtym punkcie nieskonczonsa, podo-
bnie jak funkcya algebraiczna (punkt nieskonezo-
nosci algebraicznej) i otrzymujemy calke gatunku
2-go. Jezeli wreszcie R ma biegunrzedul-go
w punkecie (w,y, 2), wtedy catka stajesie wtym
punkcie nieskonczonsg, jaklogarytm funkeyi
algebraicznej (punkt nieskoniczonosci logarytmowej)i be-
dziemy mielicalke gatunku 3-go,

Calki dwu pierwszych gatunkow maja jako moduly peryo-
dycznosci tylko wyzej rzeczone moduly w liczbie 2p; calki ga-
tunku 3-go maja, procz tych, jeszcze inne moduly, zalezne od
nieskonczonosci logarytmowych. Jezeli okrazamy takie nie-
skonczonosci, to wartose catki powieksza sie o iloczyn liczby 27,
przez wielokrot nos¢ pozostalosci, ktéra tej nieskonczonosci od-
powiada (patrz Rodzial XIII, § 6).

Suma pozostalosci calek 3-go gatunku jest zawsze zerem,

Kazda calka abelowa daje sig zawsze przed-
stawi¢ za pomocg kombinacyiliniowej catek
1-go, 2-go 1 3-go gatunku.

Jezeli zmienna calki abelowej przebiega sposobem ciaglym
og¢t trzech ukladéw cieé¢ 4, B, (, t.j. kontur calej powierz-
chni Riemanowskiej jednospéjnej, otrzymujemy na re-
zultat tozsamosciowo zero.

W przypadku rodzaju p=0, t.j. wprzypad-
ku zwyczajnej plaszczyzny zespolonej nie-
ma calek 1-go gatunku oznacza to, ze catkil
funkeyj wymiernych zmiennej sg zawsze cal-
kamigatunku 2go lub 3-go; a wige dla p=0 nie
ma funkeyj, ktére pozostajgskonczonemidla
calej plaszczyzny zespolonej (nawet dla 2=o00).

" Jezeli powierzchnia zasadnicza Riemannowska jest
hypereliptyczna lub w szczegélnosci eliptyczna, wtedy odpo-
wiednie calki abelowe nazywaja sie hypereliptyczmne-
mi lub eliptycznemi.
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s b.
Catki abelowe gatunku 1-go.

Istnieje p calek abelowych 1-go gatunku
liniowo-niezaleznych, jezeli powierzchnia
zasadnicza Riemanna jest nierozkladalna
irodzaju p.

Jezeli f(w,2)=0 rozklada si¢ na k czynni-
kow. wtedy istnieje p—Fk-+1 catek abelowych
l-go gatunkuliniowo-niezaleznych (Christof-
fel, Ann. di mat. X).

Kazda calka abelowa 1-go gatunku odpo-
wiada jednej z p krzywych dolagczonych rze-
du (n—3)-go.

Oznaczmy przez w,, 1y, . . ., w, calki 1-go gatunku i nie-
chaj w., w;, , 4+ beda ich moduly peryodycznosci. Niechaj mia-
nowicie w ;: bedzie wartoscig calki w,, gdy zmienna calkowania
przebiega w kierunku dodatnim (t. j. w kierunku przeciwnym
ruchowi skazéwek zegarowych)linie B;; i podobnie w, ,+; niechaj
bedzie wartoscig tejze calki, gdy zmienna przebiega linie A..
Tlosci @, mozna tez okresli¢ jako roznice dwu wartosci calek na
dwu brzegach linii A;; 1 podobnie okreslic mozna w -

Pomiedzy modutami peryodycznosci ist-
niejag zwiazki dwuliniowe, znalezione przez
Riemanna (Werke, str. 124). Sa one nastepujgce:

Y
kzk(wm— @), pti— @4, ppr Qi) = 0,
A A p (p—1)
a jest ich il g

2

Jezeli razem z temi zwigzkami bedziemy rozwazali zwiazki
analogiczne pomiedzy modutami peryodycznosci catek 2-go ga-
tunku (patrz nizej), to przy pomocy pewnego rozwiazania mozna
mie¢ zwiazki, w ktorych drugie skazniki ilosci w sa stale, pier-
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§ 5. - - Calki abelowe getunku 1-go

wsze zas zmienne w sumowaniu, gdy tymczasem ponizej jest
przeciwnie. Zwigzki te otrzymal Weierstrass (Progr. Gymn,
Braunsberg. 1849, patrz § 6).

Jezell poltozymy
wp==a;+ tfa,

to suma
'I
f: (aix Biy k+p — Qi, ketn Birc )
=

bedzie z pewnoscig ré6zna od zera i dodatnia;
przedstawia ona polecalego odtworzenia po-
dobnego powierzchni Riemanna na plaszczy-
znie catki w;. Wyznacznik

D e (D) s e Wi - A et LA
Lo P LT 00 T B s O B 40}
WDy, Wp2. . e 5 A « s Wpp

musi byérézny od zera.

Moduly 1-go gatunku nie moga byé¢ wszyst-
kierzeczywistemi, jakréwniez niemogsa byé¢
wszystkieczysto-urojonemi.

Nieistnieje calka 1-go gatunku, dla ktdrej
sg zerami wszystkie moduly peryodycznosci
wzgledem cigé A, ani wszystkie moduly pe-
ryodycznosci wzgledem cigé B.

Mozna uwazac¢ p calek v pierwszego ga-
ko kombinacye liniowe poprzednich calek
i1takie, ze tablica moduléw peryodycznosci
odnosnie docie¢ 4 jest nastepujgca:
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Te calki nazywaja sie normalnemi. Riemann za-
miast tych calek normalnych rozwazal inne, dla ktérych tablica
poprzednia ma za elementy przekatnej gléwnej liczby én zamiast
1. Clebsch i Gordan (Abel’sche Functionen str. 408) uwa-
zsli za catki normalne takie, w ktérych te elementy sa 2.

Jezeli przez r; oznaczymy moduly peryo-
dycznoscicalek normalnych wzgledem cieé B,
bedziemy mieli zwigzki 7,=17,, nadto czesci
urojone moduléw 7, powinny byé wszystkie
ze znakiem dodatnim. A

Jezeli polozymy vy=y,;+ ¢éy, to forma
kwadratowa d; n n;, gdzie liczby n sg jakiekol-
wiek liczby rzeczywiste, powinna byé zawsze
rozna od zera (forma kwadratowa okreslona).

§ 1.
Catki abelowe 2-go gatunku.

Istnieje p calek gatunku 2-go, liniowo od
siebie niezaleinych i1 stajacych sie¢ nieskon-
czonosciami l-go rzedu wtym samym punkcie
oznaczonym z={.
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Rézniczkujgc jedne z takich calek »r—1
razy wzgledemt otrzymujemy calke gatunku
2-go, ktora staje sig co” w punkecie &

Calka gatunku 2-go, stajgca sigoo! wdwu
punktach, daje sig wyrazi¢ jakosuma dwu ca-
lek, zktdrych kazda staje sieg co' w jednym tyl-
ko punkecie.

Mozemy wyznaczyé¢ calki2-go gatunku ¥®
takie, Zze modulyich peryodycznosci wzgle-
dem cigé¢ 4 sg wszystkie zerami; wtedy moduly
peryodycznosci wzgledem cie¢ B beda funk-
cyamialgebraicznemi iloscit, r6wnemi mia-
nowicie —2inyt), gdzie yi(z) jest plerwszg stro-
ng réwnania krzywej dolaczonej rzedu n— 3,
odpowiadajgcej calce normalnej 1-go gatunku v,

Jezelip punktow ¢, ¢,..., ¢ nie lezy na
krzywej dolgczonejrzedu n—3 wzgledem krzy-
wej zasadniczej f(w,z)=0, wtedy kazda calka
YO gatunku 2-go z nieskonczonosciag jakakol-
wiek wirzedu pierwszego i majgca moduly
rowne zeruna cieciach 4, daje sie wyrazié¢ za
pomocg calek analogicznych majgcych nie-
skonczonosci wpunktacht,¢,.....

Wzér odnosny otrzymujemy, rozwijajgc
wyznacznik

YO, yu')’ B s ¥ 1w
n (1), w(@), . . . ,w(™ gt

vi( i (), /1 — Punlio; el sl
BN vt . o - P

gdzieilosciy majag znaczenie wyzej okreslone.

Jezeli ¥y, ¥,, ..., Y, oznaczajg minory, zawarte w' ma-
cierzy ostatnich p kolumn poprzedzajacego wyznacznika, po-
dzielone przez wyznacznik
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T e B el T (2 00

T R e R T (e )
wtedy zachodzizwiagzek
YW = Xy, (t) I; + funkcya algebr. ilosci ¢.

Catki Y, Y,,...,Y, mozna nazwa¢ normalnemi
zachowuja si¢ one w sposéb specyalny odnosnie do peryody-
cznosci.

Ich moduty na cigciach A4 sg wszystkie
zerami; moduly na cigciach Bsa zerami,procz
jednegoréwnego 2im; dla ¥, jest modul wzgle-
demcie¢ B, réwny 2n; moduly tych calek sg nie-
zalezne od punktow nieskonczonosci.

Jezeli zmienimy punkty nieskonczonosci,
tonowe calki rézni¢ sie beda od dawnych
o funkcye algebraiczne.

Rézniczkujac wzdér poprzedni »r—1 razy,
otrzymujemy calke drugiego gatunku, stawa-
jaca sie co” w punkcie {, wyrazonaliniowo przez
p catek normalnych.

Jezeli Z jest jakakolwiek calkg 2-go gatunku z punktem
nieskonczonosciowym w ¢ rzedu 1-go, toutworzywszy Z, ..., Z(t",
podobnie jak w twierdzeniach poprzedzajacych, dojdziemy do
takichze rezultatéw, pamietajac tylko o tem, ze nalezy ilosci Y
zastapi¢ ilosciami Z, ilosci zas v ilosciami ¢. Przez ¢ rozumie-
my tu strony pierwsze rownan krzywych dolgczonych rzedu
(n—3)-go, odpowiadajacych calkom 1-go gatunku w, nie zas
calkom normalnym » (patrz § poprzedzajacy).

Catki Z,. Z,,...,Z,, wtensposdb utworzone,
nazywaja sig tez calkami normalnemi; maja
one moduly, niezalezne od punktow nieskoneczo-
nosci
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Jezeli przez —y;, —ni 14y 0znaczymy moduly peryody-
cznosel calek 7; na cieciach 4, By, bedziemy mieli zwigzki
dwuliniowe:

((Dtu 7]/ ’z+)l_(01,’+‘)17// ) == O dld L#],
A——

— AT e T
gdzie ilosci w sg modulami catek gatunku 1-go.
Nadto pomiedzy modulami calek gatunku
2-go zachodza zwiazki:

»

= (77"" Wy, itp — i, k+p Nix ) == 0.
=1

=y (p-—1

ktérych jes 5 :

Jezeli napiszemy 4., zamiasty,;, to wszystkie
zwigzkl poprzednie wraz ze zwilagzkami § po-
przedzajacegozawrzeé¢ bedziemozna wzwigzku
jedynym:

2
o (wdw/.Hp— ;i) = 0, jaRi+tp

= 2m; j==it+p

gdzies, jprzyjmuja wszelkie wartosci 1,2,.. ., 2p.
(Zwigzki Riemann a).

Odwracajac te zwigzki, otrzymamy zwigzki
Weilerstrassa:

P
S (cop, s Wipy,j — O, Oktp,i) = 0, j==itp
=i

= 2im, j=1i+p;

zwigzkdéw tych jest 2')(25-—_1_) ;

Wyznacznik rzedu 2p, utworzony ze wszyst-
kich ilosci w, odnoszacych sigdocalek 1-go i 2-go
gatunku:



350 Rozdziat XV.

D) 1R e SRR R o e (D) B p

W2p,15 « =+ o o o« 5 Wzp3zp

jest rézny od zera.

Funkcya algebraiczna ogélna, stajgca sie
nieskonczona w r punktach ¢.¢,...,{®, moze by¢
Wyrazona zawsze za pomoca wzoru

F=d2Z2®+ . .... + ) Z(0) 4 C;

gdzie liczba stalych dowolnych okresla sie na
podstawie twierdzenia Riemanna-Rocha.

S

Catki abelowe gatunku 3-go.

Z twierdzenia, podanego w § 4, wedlug ktérego w calce
3-go gatunku suma pozostalosci logarytmowych jest zerem, wy-
nika, ze calka taka ma co najmniej dwie nie-
skonczonoscilogarytmowe.

Granicg calki trzeciego gatunku o dwu
nieskonczonosciach, gdy tezblizaja sie¢ do
siebie nieograniczenie, jest calka gatunku
2-go, majaca w tym punkcie nieskonczonosé¢
algebraiczna.

Calke gatunku 3-go o »r nieskonczonosciach
algebraicznych mozna wyrazié liniowo przez
r calek gatunku 3-go, zktorych kazda ma tyl-
ko dwie nieskonczonosci.

Abycalke gatunku 3-go o dwunieskonczo-
nosciach uczynié¢ jednowartosciows na po-
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wierzchni Riemanna, zamienionej na jedno-
spéjna, dosé¢ polaczyc obie nieskonczonosci
cieciem; na powierzchni tak przecigtej cal-
ka jest jednowartosciowa.

Pochodna calki gatunku 3-go wzgledem
jednego z punktow nieskonczonosci loga-
rytmowej jest calka gatunku 2-go, majgca
tylko jeden punkt nieskoficzonosci algebra-
icznej rzedu pierwszego.

Jezeli przez P oznaczymy calke gatunku 3-go z dwoma
punktami nieskonczonosci logarytmowych ¢, #,, przez Z® calke
gatunku 2-go z nieskonczonoscig algebraiczna f, bedziemy
mieli wzdr

¢

M=[mw
g
Wrvrazenie Z jest znéw calks pomiedzy dwoma punkta-

mi z, z; powierzchni Riemann a, ktorejoznaczamy przez skaz-
niki dolne, bedzie wtedy:
[
i, R 12h
= ’ Z dt =
e 224

2

P-

Wprowadziwszy calkinormalne gatunku
2-go, bedziemy mieli
?
th tt,

Po=w'2"+ . .. . +uw'Z'+|kdt,
“t

gdzie F jest funkcysag algebraiczng ilosci g,
z,,t1 wszystkich punktdéow ¢ ¢,...,1» zapomo-
cg ktédrychtworzymy catki normalne Z,,2,,.., Z;
ostatni wyraz jest funkcyg algebraiczng je-
dnowartosciowa wzgledem 2z, gdyz calkowa-
nie odbywa'sieg tylko wzgledem zmiennej ¢

Moduly peryodycznosci calki P s a
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»
— Zw g, dla ciecia A;,

==
P
{1,
— W ktes n o B
=

Jezeli wyjdziemy z calek ¥; zamiast z calek Z;, otrzyma-
my calke trzeciego gatunku, ktéra, wedlug Clebscha i Gor-
dana, oznaczamy przez /I.

Moduly peryodycznosci catek II majsg
wartosé¢ zero na cigciach 4; 1 r6wnajg sie
2izv)* na cigciach B

Calka II czyni zadosé réwnosci:

nazywa sieg to przemiennoscig parametréw
itz argumentami 2, 2.
Mamy takze wzdr:

tt

ViR Cn R S )

jezeli droga calkowania od z do 2 nie prze-
cina drogi t4 ¢, ¢.
tt

Dla kazdej calki trzecieigo gatnnku P,
suma
P+ PO+ Py

jest calksg gatunku pierwszego

Calki gatunkdéw 2-go i 3-go, rozwazane w poprzednim i ni-
niejszym paragrafie, zamieniliSmy na normalne, by uczynié
mozliwie najprostszemi ich moduly peryodycznosci Nowsze
badania Kleina i jego uczniéw majg cel odmienny; idzie
w nich o zbudowanie calek 2-go i 3-go gatunku w ten sposéb,
aby ilosci podcalkowe byly wyrazeniami niezmienniczemi wzgle-
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~ dem formy podstawowej f(w, z) = 0, przedstawiajacej powierz-
chni¢ Riemanna. ‘

Nalezy wtedy zamiast w, z wprowadzi¢ trzy zmienne je-
dnorodne, utworzyé calke trzeciego gatunku ), ktéra réwniez
jak i catka I Clebscha-Gordana posiada wlasnosé¢ niezmien-
nosci przy przemianie parametréw i argumentow.

Nie mozemy tu wchodzi¢ w szezegdly 1 dlatego ograni-
czamy sie na podanin wskazowek bibliograficznych, odnoszg-
cych sig do calek abelowych.

Abel pierwszy znalazl slawne i wazZne twierdzenie, o ktorem
moéwimy w paragrafie nastepnym. Teorya calek abelowych jest po-
krewna z teorya funkey) abelowych, o ktdrych méwimy w rozdziale
XVII, tak ze bibliografie obu tych dzialéw wiaza sie ze soba. Dzielami
podstawowemi sg tu: rozprawa Riemanna (Crelle, LXIV), lekeye
Weierstrassa o funkcyach abelowych, dzielo Neumanna (Lipsk
1865, 1884), oraz dzielo Clebscha-Gordamna (Lipsk 1866), ktére
szezesliwie zapoczatkowalo zwiazek pomiedzy pojeciami geometrycznemi
i analityeznemi w tej dziedzinie. Najnowsze prace Kleina mieszczg

si¢ w Math. Ann, XXVII, XXXII, XXXVI.

§ 8

Twierdzenie Abe/a.

Niechaj bedzie funkcya algebraiczna { na
powierzchni Riemannu i niechaj o, x,, . .., Zu;
Yis Yoy« - -3 Yuw Dedg 0dpowiednio jej punkty zero-
welpunkty nieskonczonosciowe (dwie grupy
punktéw spélrvesztowych) jezeli I jest jaka-
kolwiek catkg abelowa, tosuma

&
n
N } (WL
=1,

v

rascal. Rep. I 23
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jest funkeya algebraiczno-logarytmowsa ilo-
$citzdodaniem wielokrotnosci moduléw pe-
ryodycznosci calki J (Twierdzenie- Abela).

Jezeli I jest calkag 1-go gatunku, to powy z-
sza suma jest zerem (nie liczac wielokrotno-
$cimoduldédw peryodycznosei).

Jezeli I jest calksa gatunku 3-go, majaca
dwa punkty & # nieskonezonosci logarytmo-
wej, tosuma powyzsza ma wartoseé, niezalezna
od specyalnego wyborucaltki; wartosé ta ré w-
na sizlog—f}%~ (pomijajac wielokrotnosci modu-
16w peryodycznosci).

Jezeli I jest calka gatunku 2-go z punktem
nieskonczonoscialgebraicznej & to wartose
sumy (jezeli pominiemy wielokrotnosci mo-

t'(&)
dultdéw) jest A
Jezelinapiszemy { w postaci
@ (w2)
y(w, z) ’

ijezeliistnieje taka wartosé¢ 4, dla ktérej krzy-
wa ¢ (w,2) —Ay(w,2) =0 przechodzi przez oba pun-
kty & 5, wtedy strona druga wzoru w twier-
dzeniu Abela dla calek gatunku3-go jest ze-
rem (jezeltpominiemy wielokrotnosci peryo-
dow).

Za pomocyg twierdzenia Abela suma k calek

&/
*

3 | ai,
’_‘!;,(

gdzie k>p—+1, & zasiy sy jakiemikolwiek war
tosciami, daje sig zawsze wyrazié¢ jako suma
analogiczuych p catek (pjest ,rodzajem“ powierzchu!
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Riemanna), pomijajac (jezeli idzie o calki 2-g0
13-go gatunku) pewna funkcyeq algebraiczno-
logarytmowa.

W przypadku eliptycznym p=1 mamy: su-
ma dwua lub wiecej calek eliptycznych daje
sle zawsze wyrazi¢ za pomoca jednej calki
przyczem jedna z granic moze byé wybrana
dowolnie. (Twierdzenie o dodawaniu Eulera.) :

Twierdzenie Abela dla catek pierwszego
gatunku wyraza warunek konieczny 1 dosta-
teczny nato, aby dwie grupy punktow byly
spélresztowe. (Riemann, Weierstrass).

Jezeli we wzorze, wyrazajgcym twierdze-
nie Abela, zmienimy odpowiedniosé pomiedzy
granicami wyzszemlilnizszemi, tocala suma
powiekszysiealbo zmniejszy o wielokrotnosea
calkowite moduldw peryodycznosecl,

Za pomocy twierdzenia A bela mozna udowodnié twierdze-
nie Riemanna-Rocha i inne twierdzenia zasadnicze teoryi fun-
keyjalgebraicznych, np.tak nazwane ,t wierdzenieoreszcie®
ktérego twierdzenie A bela jest tylko forma przestepna. ,Twier-
dzenie o reszcie“ brzmi jak nastepuje:

diez eli x;, &y, ». .3 Bs iy Yoo o+ 5 Y 88 A Wi & SR TEHIE
punktéw spdélresztowych , to gdy przez punkty
z przechodzi jakakolwiek krzywa, przecina-
jaca krzywa zasadnricza winnych k punktach
24y %9, --12r, Wtedy punkty z1iy stanowié¢ beds
przeciecie zupelne innej krzywej z krzywa
zasadnicza.

Jezeli powierzchnia Riemanna ma » liseci,
to suma wartosci, ktére przyjmuje ta sama
calka abelowa 1-goi12-go gatunku przy opisa-
nindrég zamknietych, sprzezonych we wszy-
stkich rlisciach, jest zerem,

Twierdzenie Abela jest najbardziej zasadniczem w calej
teoryi funkeyj algebraicznych i ich calek.
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Odkry! je ADbel najprzéd dla przypadku hypereliptycznego
(Crelle IIT), a nastepnie (1826) dla przypadku ogodlnego (Mémoire sur
une propiété générale d’une classe trés-etendue de fonctions transcend.;
Mémoires des Sav. étrang, t. VII, 1841),

Dowéd tego twierdzenia znaleS¢ moima w dziele Clebscha-
Gordana oraz w innych dzielach, cytowanych w § poprzedzajacym.
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TEORYA FUNKCYJ ELIPTYCZNYCH
SRRl
Funkcye & Jacobiego.
Funkeye & Jacobi’ego sa nastepujace:

d(x) =142 S‘(—])"q’"‘ cos 27
=1

<+ oo
= 2 (—lpyetie,

z‘}l(a)=2.s (—1)y—1 ()1 = Psin (2v—1) =
e :
= X (—1lyiqi @ Veer—1iz
o0

O 2 q"( "V cos (2v—1)

r=1

4+ 00 1
v = (v 1) ey Vi
= 2, (14 e(" el
='co
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Msg

B,@) = 1 4-2
+co

pra— 6\' qv"c‘ZVi.r -
o .

¢’ cos 2y x
1

Te szeregisg zbiezne dla kazdej Wartohéci
xn, jezeli mod ¢<T1.

Funkeya 9 jest nieparzysta, wszystkie
pozostale sg parzystemi:

Pt ia) = hz); Hh@xtia = Hy(z),

h@tia) = F =z, O@@tia) =9 @).
1
S {x+4Lilogg) = T 1q TeX®Y (x),
) 1
d(@iilogg = TF ¢ Teted(x),
: 1 a
B+ Lilogg) = + ¢ Tetsd, (),

1
Dzt Lilogg) = + ¢ Tet® 9y (x),

B (o 157 1il0n o) =T ot =, (47,

D@+ imtdilogy) = g ¥ et8,(),

By(x + tnt+filogq) = d.ig- Tets 9 (@),
Oy bact filogg) = T q" T eked, (@),
Vwm) = 3(@); B (@tm) = — &),
F(x 7)) =" — Fhx);

¥y () i== N(T).,

d(rtilogg) = — ¢ ek P(a),
Sz +ilogq) == — ¢~ let2ei (x),



§ 1. — Funkeya & Jacobi'ego, 359

Oy A-vlogq) = + ¢ ed2 Gy(x),
Dg(xEilogq) = - ¢ lek?= 9, (x).
Wszystkie funkcye & i'ich pochodne czy-
nia zadosé¢rownaniunrézniczkowemu:
% 1 2o Lty
ex8w VLT dtlogg).

Jezeliilosci @' sy polaczone zilosciami @
zwigzkami:

o=@t ayta ), ¥ =4i@Ar—0—a),
aly = 4 (@ — Xy a1y — k), ¥y = L0, — X, — 33+ 1,),
to wtedy mamy nastepujgce trzy wzory Jacobi'ego:

4 4 4 1
1L 8, (2) + I 8y(a) = T 8,@'s) + 11 84(xs),
A=l ol k=1 k==l

4 4 4
I Gz ) = 11 &x'y) — 1L 9(2')),
1 =i} k=1

4
]I 19‘(.7]) =
o1 3

4 4 4 4 "
11 9ar) — IT yary) = IT 9,tat) + IT 9x'y).
=21 k=) = "1

Jezell przez (ijlk) oznaczymy iloczyn &y (xy) 9,(xy) $u(w,) 9,(x,),
a przez (ijhk)’ takiz iloczyn dla argumentéw ', to zachodzié be-
da zwigzki nastepujace:
(0033) 4 (1122) = (0033)" - (1122),
(0033) — (1122) = (2211) + (3300),
(0022) -+ (1133) = (0022)" -+ (1133Y,
(0022) -- (1133) = (2200)" + (3311),
(3322) -+ (0011) = (3322) -} (0011Y,
(3322) — (0011) = (2233) - (1100y,
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(3021) — (2130) = (3021) — (2130,
(2031) — (3120) = (2031) — (3120,
(1320) -+ (2013) = (1320) - (2013)..

95(0) Hae, ) Iy —ap) = I (x;) F¥xy) — H X(z;) 3, Xzy)

h : = $¥x,) 95 X(&;) — 3 3(xy) 9y %,),
92(0) Iy (2, +x5) By (x,—25) = I H@y) 9%(9:y) — P>, ) B, (),
3,200) 9y (2, 2) Oy (2, —us) = ¥ x)) Py () — F(2y) 9,2 (),
$,3(0) Py, -F0) Fy(2,— o). = D3 (@) By %) — Fy*(@1) * (@),
$3(0) 9, (x,F-25) By(@, ) == &, 2a,) Fy3(xy) — 9%z,) H3(,),

= Dy (wy) $ (@) — 9, %(w,) 9, (25)
$,3(0) Dy(wr+22) Fy(11—2y) = 1) B(a5) + By (1) B,%(,),
= 9,%(@1) 95%(xp) + (@) (),

93(0) B(2x) = I (x) — X (x) = BH(x) — Sy4(w),
3,%0) 9,(22) == 9,4(x) — 9 (%) = O 4x) — &} (x),
$,3(0) 95(22) = #¥(x) + &, (@) = F3*@) + (),
3(0) 92(0) 9,(0) h(2x) = 28(z) F1(x) ulx) D) .
Pomiedzy funkecyamid jednego argumen-
tuistniejag dwa niezalezne od siebie zwiazki

algebraiczne. Mozna je przedstawi¢ przez
dwa z pomigdzy czterech zwiagzkdéw nastepu-

jacych:
#,2(0) 9(x) = 9*(0) F,%(w) + 9,%(0) H:(2),
#,2(0) 91%(x) = 9:4(0) #*(x) — 9*(0) P (),
3,%0) 9.2(x) = 9*0) & (x) — 92,0) 9(%),
8,20) 8,2w) = 9%0) 9x) + 952(0) ).
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Pomiedzy funkcyami 4 parzystemi i po-

chodng funkeyi % dla argumentu zero istnie-
a3 dwanastepujace zwigzkialgebraiczne:

$,40) = 3(0) 4 %,40); ¥,(0) = H0) 3,(0) 3,(0).

Zachodzag jeszcze nastepujagce zwigzki
pomiedzy pochodnemi funkcyj & dla argu-
mentu zero:

" " Iv "3 )
3':: ‘()2 =R i_ =43 i}— s 23‘2‘ 334;

TSRS PR ) ¥
) 1 q 9 2
I 91/ 9.1V ?9 "o
‘;42 = ’ﬁ = = T =3 e LAY
9 )
28 —{-5,},J=n?’+z9,“+ﬂ38.

Funkcya 9, czyni zados¢ nastepujgcemu
zwigzkowi, ktérynazywa sierownaniem troj-
Wyrazowem:

O (2 - 25) 9y (0) — 2p) Oy (23 + ) Oy (13 — )

+ & (@t x3) Fy (%) - @) Dy (2,1 xy) Sy (g —y)

+ & @y - xy) 9 (@ — x) Yy (1 ay) Ay (w0 — &) =0.

Pochodne stosunkdéw funkecyj ¥ wyrazajg sie

lilkges stosunki samych tunkch ¥ za pomocag WZzO-
6w nastepujacych:

A \‘)‘{.r} 82 10) _ﬂ &,y (2)
o )T 3@ )

._(_l_ _{}Q(L)_ = — &3 _'al(w) &:;(95)_
dr  ¥(r) i z) Hx)
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d 9(x) o, @ 9y=)
ApEnx) T A H" () Hz) Hx) °
40 B). 28 $,%(0) HE) - (@)

de dy(x) ye)  Wy(x)
d - dx ) ()
= wa — 2O 5e e
@) O AN
S () T ks, d(x) Hylx)

Pochodne logarytmowerzedéw drugiegoi Wy -
szych funkcyj % wyrazajg sie przez same fun-
kecye ¥ za pomoca wzordw:

i 108 o) = 5, — %%? 3 ({”. =k

2 sy 0 30 B

& log 9,2 — g:g)” o (0’ %%}
L log 9o = 29,%0) &'(')%:T‘E: ).
d‘;ld log &(x) = - 28,(0) S LGED D,

l_\:)u‘)u, 3(%)
(@)
{}(z) () ()

l} St

d 3 log ¥, (x) = — 29,"%(0) —

log +,(x) = + 23,'*(0)

Funkcye & sg funkcyami calkowitemi,
ktore nie stajg sie nieskonczonemi dla zadnej skonczonej war-
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tosei ; ich punktami zerowemi, t. j. punktami plasz-
czyzny, w ktérych funkeye ¥ znikaja, sa nastepujgce:

dla funkeyi &,(x) punkty x=ma —nilogq

= . ) . z=1"Lilogg +ma—nilogq,
5 f @) r=—4tat+mn— nilogqg,
5 2 () s w—=—4%ta+4iilog g+ ma—nilogy,

gdzie m 1 % mogy przyjmowaé wszystkie wartoseli calkowite
dodatnie 1 ujemne.

Rozwiniecia funkcyj % na iloczyny mnieskoniczone maja
postac :

Hax) = 3(0),,51,: (1 A mﬁj’(ﬁ.ﬁ%)zlbﬁ) :

N e » — g :'I.t__
¥ (r) = ¥ (O)J’”I.{I (1 M - IHlOg’I) :
e A

q < w b 8T A T
¥y(x) = f.)g(())m{{(l Y v S

gdzie iloczyny II rozciggaja sie na wszystkie wartosci m, n calko-
wite, dodatnie i ujemne, nie wylaczajac zera; tylko dla iloczynu
nieskonczonego, przedstawiajacego tunkeye 9, , nalezy wylaezyé
kombinacye m —=0, n = 0.
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L §2

Funkeye eliptyczna Jacobi’ ego.

Polézmy: .
7 %, (0) % +0) .
Vie = 22— TR iase 10 2 2 __
B e P S
ol | L S yle) Yk
@ Vi . sin @, 7 l T Cos @,
B3(x) T L& DR 1
’&(;) = ’7/775" Vl—/c%m‘zp-: Ti’t‘ A(p,
et 2(O) L

Wzory te okreslajg ilos¢ ¢ jako pewns funkeye zmiennej v,
pazwang funkcya-amplituda ioznaczang symbolem am,
tak ze .

@ == am v.
Funkeye sing, cosp, 4 ¢ oznaczajg sie odpowiednio przez

snv, cunv, dnuy,

i nazywajg si¢ wstawa—amplitudsg, dostawag—am-
plituda, delta—amplituda. Sgto trzay funkcye elip-
tyczne Jacobi'ego; pomiedzy niemi zachodzg zwiazki alge-
braiczne:

sn?v + en*v = i; - dn?e 4+ Kisniv =1,

Funkeya odwrotna wzglqdeni funkeyi—amplitudy wyraza
sie przez calke okreslong :

A &
v = | Le) i
VI—Tsintg ) Ay

i nazywa sie calky eliptyczna gatunkn l-go.
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Funkcye te posiadajg twierdzenie o dodawa-
niu algebraicznem, t. j. wartos¢ funkcyi dla ar-
gumentu ¢ + v, wyraza si¢ algebraicznie przez
jej wartosci dla argumentéw pojedynczych v, v,.
Wzory odnosne sa:

sn v, en v, dn vy T S, cn vy dn V)
1 —/?sn?v, sn? v,

si (v, = vg) =

»

; en vy en v, - sn v, sn v, dnv, dn v
en (v ry) = —- B
1 — /?sn? o) sn?ry

1 ~r=Wpe 2 ik !
dnw, dnv, 7= k?sn v, sn v, cn v, cn ¢
dn (v] _l_’v..)) ad !l ol T s . 1 . 2 2 2 ”
5 1 —17%2sn?r; sn? v,

Inng wlasnose tych funkeyj eliptycznych stanowi to, ze pochodne
ich Wyra.m;q sig algebraicznie przez same funkcye:

d 3
—— SNy = cn?.dnwv,
dv
d
——— cenv = — snv.dnuy,
v
d %
dnv = — k?snvdnn.
do

Wprowadzmy ilosci :

B

) 2
dg K — ” de
(

T
Hi2

R |

V1—kZsintgp JI V1—k?sing

)

(t. t. catki zupelne Legendre'a, gdzie znak ” ma ozna-

cza¢, iz catkowanie odbywa sig na drodze prostoliniowej
pomiedzy wskazanemi granicami. Mamy wtedy wzory :
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LR 9Kk
o (0) = ] —f ; “}2(0)=I/ fc ;

T T £5 L
&10):]/ e e T g=e K,

z
w : 2K’

Poniewaz ¢ ma mie¢ modul muiejszy od 1, przeto czesé rzeczy-
L )

wista stosunku -~
K

Trzy funkcye eliptyczne sny, ene, dnv sa fun-
keyami podwojnie poryodycznemi; wartosciichnie
zmieniaja 'sie, jezell argument v powigkszymy
o wielokrotnosci calkowite nastepunjacych ilosei:

dla snv o 4K, 2¢K’,
cnv . 4K, 4iK’,
dnv ,, 2K, 4i K/,

powinna byé dodatnia 1 rézna od zera.

2

Przy powiekszeniu argumentu o pollub o é¢wierci
peryodow otrzymujemy:

sn (012K )= — sn v; cn (v+24) = — cn v; dn (v4-2 K )=dn v,
sn (v4-2iK)=snv; cn (v}2(K')= —cn v; dn (»4-2K') = —dn ».

Sn(b+A »_— t;, cu(f—f—_K)_.——h §£~ ;dn (v _+_K’)—- Iiv

sn(v4iK’) --1—-~ ; en(r+ik”’ )— . duv_ dn (v+iK'y = o 5 :
kesnw tsnv

Wszystkie trzy funkcye staja sie nieskonczo-
nemi w tych samych punktach

v =2mK -} @n+1)i K’
istaja sie zerami'
funkcya snv w punktach v=2mK + 2nik’,
0 cnv o, 3 n=2m-4-1)K4+2niK’,
- dnv |, - r=2m+1) K-+ 2n+1)i K’
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W punktach, w ktorych argument ma wartosé polowy lub
¢wierci peryodu, funkcye maja wartosci nastepujace:

Vi=F)

:/”,"Vl-;-A iV}

I
v , sn v cn v dn v
L x - L J& Vi
2 VI1E V14
YVt &
—?—K __1 : i Vi Vie
2 Vi+k V1—|-k'
el o i} Vi -~
__l\_+2Kl e o = ———— _Zl/k‘
2 VAl vi—i
3 ; i i Vk R,
ety Jei - 11 eh e 2o 5 il
2 W AT VI
1o A VI+k | yiqn
2 V' Vic
L FESEE Oy LAk e G o
4 Vi Vi
Vi V'IE
3 . Vl I e
K+ iK' = v | =R -
I 2 VEk Vi
S S 1—i Vi
g-h_l_?lK’ — 'V1+I[—L‘ Vl LS - .b, ;’/‘ IV]_ k
V‘.).H. Ve Vi oyt
3 ; T 1—i VI
K+ K’ ’l/l Je—iV1— —Je [ e
2 2 'V2 Vit + Ve Vik
a1 1+ Vie| &
5 Ic—}‘-*‘—lh gret e ,'l /»"ZV].—/ e S i
2 Vorid + YTVE Ve
| -3
|3 K 3 .1t 1-2 Vk' Vi
5T s 1K ’,1 ]C le-']n R
2 2 11/2 V it e 1k 12

41/1"+/‘E’+’ WVi—r'Y

— V1 E—iV1-FK'}
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Przypadkiznieksztalceeia Dla k=0 mamy:

T
9 ?

&

@Y =amov=~1. K= K'=00, ([=0’ k=1,

SNnY = sinv, env = cos 7, dnov = ALY
$(@) =1, % (@) =0, @ =0, ¥ =1

Dla &' =0 mamy:

P
v = log M tg - = e
% o _(p_ 2 P en+1 v
1—tg 9
T
Bwco, Ty Gl =1
et g Uit s Bl
SnYv = e”—{—e——U' cnv——ép—_—Fz:,,—, n ete

szeregi zas ¥ staja sigrozbieinemi.

zr

3.

'L‘ztar_y funkcye o Weierstrassa.

Kladac
AL R el e
P T T e R !
mamy:
—1 i 7
_2 T 0@
o (u) = = 5/(0)’



§ 3. — Uztery funkeye s Weierstrassa. 369

_}. =2 n2 .8- (_1;)
_ 2 w 2
6 (0) = e 3, 0)
= 2o @, (’I’)
e o ) “3
0, (u) — 9, (0’ 3
v 5 Lw Hax)
Oy (0) = 2 @ W :

Tecztery funkcye o(w) sa funkcyami cal-
kowitemi zmiennej u, dajgcemi sie rozwingé
na szeregi wedlug poteg catkowitych rosna-
cych tejzmiennej; pierwsza z uich jest funk-
cya nieparzysta, trzy ostatnie—parzystemi.
Wyraz przy potedze pilerwszej v wrozwinie-
ciuo(w) ma spéteczynnik 1, a wyrazu drugiego
(zawlerajagcego u% nie ma Wyraz pierwszy
rozwiniecia pozostalych funkcyl o jest je-
dnoscia, a wrozwinieciu iloczynu o,(u)o,(%) oy(ut)
brak wyrazu, zawierajgcego u?

Wzory peryodyczno$ci. Poldézmy:

'

logg=inr=in —, o"=ow-+ w.
)

Stad 1 na zasadzie znanych wlasnosci wynika, ze spélczyn-
!
nik czesci urojonej stosunku — musi byé¢ do-
) 2

datniirozny od zera. Polédzmy nadto:

in
’ ’ ) " 8 ?
1](1)‘“7]&0—“—2 3 ) Bkt V5 )
Tlosci w, @' nazywaja sie modulami gatunku pierw-
szego, n, n’ modulami gatunku drugiego. Mamy
wtedy wzory:

6 (W4 20) = — o () cruete)
o (u + 20') = — o (u) e¥nwto)
6 (- 20") = — o (u) e¥"ute")

Puseal. Rep.T. 24
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(o] (‘N, + 20)) =G (r”) e 2n(u+w) ;

o, (v + 20') = + g, (n) ¥ +)

o, (1~ 20) = + o, (n) eI

o, (4 -+ 20') = + o, (1) e2'“t)

o, (4t 20w) = + o, (u) e220nte)

0, (v + 20') = -— g5 (u) ¢®leta)

S o (w) i o (w) AR o (")
Jrs o{w) ' ! o [ T gl ’
6 (U -+ w) = o (w) c"™0, (1),

o (U4 ') = o (w') eT*a, (1),
o (U + 0") = o (0") 7" 0y(1) .

Funkeya o czyni zadose nastepujacym zwigzkom:

o (U, + w,) 0 (U, — Uy) 0, (U —+ 1,0 0 (U — )
~ 6 (16, + 1) o (uy — wy) 6 (1, + u,) o (v, — u,)
=+ o (w -+ wy) 6 (26, — 1)) 6 (2, + %) 0 (26 ~— 2,) = O.

Jest tot. zw.rownanie tréjwyrazowe.

Wzor:
o (uu,) o (wy—uy) g
0y (%) 0, (Uy) T gt loguafey)-= du,? log o (%,).

nazywa sie wzorem na dodawanie.
Dalej jest:

oi (U i‘il‘?) - 701(“1)‘7( 1y )oj(ty)o k(1) 7‘_—_01'( Uy Jo( e, )Gj(uq )o"(_ll’Q,

o (1;4u,) a*(1t)0,°1t,) — o°(1y)0:%(1t;) :

gdzie 4, j, k przedstawiaja jakakolwiek przemiane skazni-
kéow 1, 2, 3.
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Wprowadzmy oznaczenia nastepujace:

1 foe \* s 1]#\ H
Op— —3“%) (=45 (‘2=§(%) (Bt =) = '—r—( ) (O3t
bedzie :
Je2 Cy '—j:s . j €1 —EL
ot — i 2 Rl

€+ eyt ey =0,

v="Ve,—es.u; K= Vle,—c,.0; iK'=Ve, -¢,..
Polozmy jeszcze:

A =16 (ry—ey)? (e,— €)% (e,—¢,)?, (wyrdznik)

g = — 4 (e 1‘)+c>ea+el){ 3 £==3
[ (niezmienniki)

gs =46 ;e

otrzymamy stad:

) 5 5 =1/ = ar
A=g2"—27‘(/3-=VQﬁ(-Q—"—))Jl(O),

4\t 2\
SR AT R VRO NS (i 8 8 8
gs = 3(‘, )} (9,5—34 8,%) 3(20;) (98-4-9,84-9,8),
4 T g 2
Gy = — o (9) (3949,5 — 989,41 29,1292 §12),
3
Wyrazenie SZ nazywa sie niezmiennikiem bez-

wzglednym; w funkeyl modulun TLegendre’a wyraza sie
ono tak:

o 8 _ 4 (—lpep
e W AN T P

Pomiedzy czterema funkcyami o istnieja dwa zwiazki alge-
braiczne; mamy mianowicie cztery wzory nastepujace, z ktorych
dwa sg nastepstwem dwéch pozostalych:



e
-3
w

Rozdzial XVI.

o7 (u) — 0% (u) - (¢, - &) o® (u) = 0,
ay*(1) — o2 u) + (4

e) o (1) = 0,
6,%(1) — 6,2(18) + (e,—e,) o2 (1) = O,
(e3—e3)0,2(16) + (e1—e43)0,% (1) + (e—r1)0,* (1) = 0.

Pomiedzy funkcyami sn, en, dn 1 funkcyami o zacho-
dza zwiazki:

/- o(u) o () —— cnv
sn v = l/el-csr—(—,, ol Ve,—ey,—,
o5 (u) o) sn v
oy 0y (% dn v
T a7 A i i Ve,—ey—- |
o;(u) o(u) sn v
o,(w a,(1 1
dn v = (1) ) o3(®) = Ve,—e
a,(n) (1) Sn v

Punktami zerowemi funkeyj o sg:

dla funkeyi ¢ punkty 2me + 2ne’ = w,

5 SR CIont T 2m-+Ho -+ 2ne’ = w,,

” B Oy AL L @2n+o + 2+’ = w, ,
eSO < 2meo + (2n-+1l)o’ = w,;

tu m inm sy dwie jakiekolwiek liczby calkowite dodatnie lub
ujemne,

Rozwiniecia na iloczyny nieskonczone sa :
4 % %3

1
o(u) = ull (1 — %\’ ew % w

?

__]_,,Mz { m e, +_l w
o(u)y = ¢ "Il — )ew, T e
my,n \ wy
Kladac:
) 3 3
=2 — 2 = 12¢, — + =gt
D 277 2w 277 Sw’ 1 Ys 0 + 3 Js" 5 )
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otrzymujemy :

De; =4de? — — ¢; DA = 0;

1 ’ ]‘ 14 n 1 ’
Dy = o Yo, Dy’ = G Yo', Dy’ = 6 950",

Do = — 2y, Do' = — 2y/, D" = — 29",

oraz réwnania rézniczkowe dla funkeyi o:

a"(u) — Do(u) + 5 92 w?o (u) =

¢ (1) — Doi(u) + (Gi sk 11'2 92 “2) o(u) = 0

Pochodne modutéw jednych wzgledem drugich:

w 9 dw 1159729
N = T(—' - 0o’ + 9 93’7); 3, Y gz —39, ”I)
9 1 3 2 iyl 9
572 = ( g 290 + Js 77) @77% = T(’Ille?w = g.(/?,??);
on 2i (1 AV 2i (1 9 2
b (12 e Tl R S (1 720" =)
_ in dlogd Pt in  2logA
Y S TR T T T

Rozwiniecia funkcyj ¢ na szeregi.

Kladgc :

>0 2t
2n+1 ] (2”+1)|

otrzymujemy nastepujgce wzory zwrotne:

211—1) (n—1)

1 w
o,(1) = 3¢ !

4 <% (ony

b‘.’u«,] — Db'_'n—l s ”—’*-— T e l/., 11211,—3,
1 (s — pY¥ {0, Mgy (n—1)(2n—3) o
2, =g Cilo o 6 J2V8 -4 ¢
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Stad wynikaja nastepujace rozwiniecia:

1 u’ 2w’ 9 ! u'!
o) =1 — 5 a5 — 04 g — Togr — 1894

o ( 3';3 g — 8¢, 23,,,2) —"1‘4 < i
o (u)' =1— e %,i + (—:-13— s — B ed )u_’* 4+ (% s =~ —Z— Jo e,)—é%
—I—(%l- Y2 biF — 349 gs€i — i— 9-* );ﬁ
+(1_4?1"5 hE 1% g'es + 16 & "*) (o s

Nastepne wyrazy znalezé mozna w tablicy, znajdujacej si¢ na
str. 7 dziela;: ,Formeln und Lehrsitze etc.* Schwarza, Ge-
tynga 188D.

Przypadki znieksztatcenia. Jezeli wyréznik 4 staje sig
zerem, a zatem dwie ilosci e réwnemi sobie, np. e,=e,=0, wtedy
bedzie :

7 1 Pt Ul

ey =—Z(6, w = -2~ }—:‘g

a funkecye o przybieraja postac:

— "

O(N) o e * sin (NL _—'_gtl)

1 : 1 1
i —— — —an® — —au?

at )
oy () = ¢ % cos(ubV-3a); o)u)=e¢ 2 ; oy(u)=e¢ ?
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§ 4.
Funkcya p Welerstrassa.

Funkeya p(#) okresla sig za pomocs jednego z nastepujg-
cych wzoréw :

( — f_ lo (")
e d? 8 o\ s

TS ST :
e o  do? da? log 8,(2),
Py =+ G

sn®(Ve,—ey.w0)
Nadto mozna p (u) okresli¢ jako caltke réwnania rézniczko-
wego
§* =44 — g,8 — gy
z warunkiem p(0)=oco. Definicya ta jest rownowazna z naste-

pujaca: funkcya p jest funkcya odwrotng calki

)
ds

—— e =,
.L/ﬁ 2V (s—e;) (s—ey) (s—e3)
Funkeyap jest podwojnie peryodyczng o pe-
ryodach 2w i 20"
Mamy wzory :

plo) = ¢, plo) = e, pw") = e,

ag(u) |*
o(w) 1.

a ()
G

p(u)—p(m)=| I-; p(u)—»p(w')=[
() 1%,

pu) — plw’) = [ o).
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my = I/e_l—i"* g e ], Pl—e, 2 & ]/p(u —ey

pw)—eg’ p(w)—e, plu—e,
pHw) = 4p¥n) — gop(w) — gy.

p(ae) 6p2(u) — Lg,; p"(w) = 12p(w)p'(w);
p"V(w) = 120p¥(w) p'(v) — 18g.p(u) — 12¢,,
p¥(u) = 360p%(u) — 18g,p'(u),

DY (ae) = 36[140p4('::.)—2892p2(u)—20;/32)(u) -+ i gm_,“’l :

Rézne postaci twierdzenia o dodawaniu dla funkcyi p(u).

1§ plg)—ply) )P
plert-us) + pQy) + pluy) =4 pl)—plaey)

. el 1 d  phe)—p(uy)
p(uy + wy) — pluy) = — 2 du, m‘z‘

Jezell w, +u.~41,==0, bedzie:
! 1153 3l 1
Dlaesne e )i v pie)s = 0:
), p(w),  pln)

Jezeli u,~-u,~+. .. -} u, =0, bedzie:

s o Rk S R
), pe), . . ., Py
() argsy . o T i) = 0
1 P LD ey skl £ WSRO & T TP

Dodajac do argumentu pélperyody w, o', znajdziemy
WZzOry :
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(e—ey) (ey—€), ’ (e3—ey) (e,—e,)
(‘N)"‘(u) =6 + ]’(u)—(’) ’ (t¢+w )_ed+ p(u)-—-€3 } ’

(("_el) (eﬂ—e'c)
p(n) — e

plut o) = e; +

Punkty postaci 2mo|+2ne’, gdzie m i n sg liczby
calkowite, sa wszystkie punktaminieskonczonosci
funkeyj 7. Sg to punkty nieskonczonosci rzedu
2-go; poza temi, innych nieskonczonosci funkcya
niema.

Wartosci funkeyj p i p' dla wartosei argumentéw réwnych
éwiartkom peryoddéw sa:

o(

((; ) —Ve,—e, . Ve,—ey; p( 5 -—}— a)) =e,-+Ve,—e, . Ve,—e, .

I~

)): & Ve,—e, Ve,—e,: 7)(‘3 4w )_.el—l—]/el S

Dol

[ ' g
p(\—‘) -+ 72—) = ¢ T ¢ Vey—e, Ve—e,
i/ w\ 3 - /—
p't?) = — e, —ey)le,—e, — 2 (e, — &)V e,—e;
| @ 13 2 T o e
p ?"'")/' = 2i(ey—e)Vey—r, —-2 (e, —ey) l'e,—ey
’ o' « 403 i (¢ 0, ] o Av.e
Pl5)=—2i (e;—ey) Vey—ey - 2i(ey—r Wi —e,
[ o E o | g s y A ta e
p 9 + o) = 2i (e —e,) Vey—ey, — 2i (e,—e5)Ve, —e,,

p'( (23 S 5 )_2 (e,—c We,—e, + 2i (e,—e,)Ve,—e,
W otoczeniu punktu «=0 funkcya p rozwija sie na szereg

: !
o) = 5 S R S S G =
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ktorego spolczynml\l sa fllllkcyann wymiernemi iloscl ¢,,
a mianowicie :

Yas,

R = _ — 30y,
R S U s v ot L N iy T
1 9s® I Y2 ? gy

“o =gr 5 "7+ 73 5«)’ TSP B P
i 3¢9 o g Lo R Ol e e

\ hE
1724 72.11.18 ' 98.3.57.13) ‘¢

Mozna nadto funkeye p rozwinac na szereg podwdjny za pomoca
wzoru:

w 0wh !

p(u)-—_Tlt; + 32 ;‘1—4 -+ but ;‘—1: +

gdzie w = 2mw+ 2nw’, sumowanie zas rozciaga le na wszystkie
kombinacye wartosci catkowitych, dodatnich i wjemnych liezb
m 1 m, wyjawszy kombinacye 0, O.

Przypadki szczegélne; znieksztatcenie funkcyi p. Jezeli
¢3=0, mamy przypadek zwany harmonicznym; calka elip-
tyczna daje sie przeksztalei¢ na

= — 1 ;'I .

Vey + ll——r[
1 bedzie p=e;=2.
W tym przypadkup ma wlasnosc, ktéra

przedstawia wzdr:
plin) = — p (i)

Jezeli 2w jest pevyodem, toi 2iw bedzie pe-
ryodem.

Jezeli g, =0, mamy puypadel\ zwany rownoanhanr-
monicznym. Funkcyap ma wtym przypadkn
wlasnoseé, wyrazona wzorem:

plaw) = ap(u),

19198 5% 7.11.18 7 25.7%.18) °
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gdzie a jest pierwiastkiem szesciennym z jed-
nosci. Jezeli 2w jest peryodem, to i 2aw bedzie
peryodem.

Jezeli wyrdznik A staje sig zerem, wtedy funkcya p
zniekgztalca sig 1 staje si¢ funkeys pojedynczo-peryodyczna,
a mianowicie: albo funkcya trygonometryczna, albo funkeys
zlozong z wykladniczych.

Jezeli e,=¢,= a, wtedy:

p(u)—a————zjﬁ )= e o= o0
sin? (uV — 3a) 2 Y 3g ' R -
a jezell a =0, bedzie wprost p(u)= o5

Jezeli e, = e, = a, wtedy :
P Via + e Vg v 1

2
pu) = ¢; + 3a (‘ Vg i ) ; owmoo; ws= G o
eeV3e __ p—x 3u ]’3@

§ b.
Funkcye wymisrne ilosei p i p'.

Kazda funkcya wymierna iloscipip daje
sig wyrazi¢ jako kombinacya liniowa typu:

c+ X l(v—u,) + Xupu—u'y) + Zd pllu—u) 4. ..
4 w e

t. j.liniowa wzgledem C(u):(I%logo(u),wzglqdemp(u)

oraz wzgledem pochodnych kolejnych funkcyi
p, Nadtosuma wszystkich spélezynnikdw ¢,
LD D = ()

Punkty w, sa punktami nieskonczonosci rze¢du pier w-
sze go funkeyi danej; punkty ', punktami nieskonczonosci
rzedu drugiego; punkty ', —rzedu trzeciego it.d
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Kazda funkcya wymierna 1losci p i p’ daje sig
przedstawi¢ zawsze w postaci:

o(u—wy) o(u—uy) . . . . . a(n—u,)

olu—u"y) o(n—u")) .. . . o(u—u",)

s

gdzie 4 jest stala, u'—punkty zerowe funkeyi, u"—

punkty nieskonczonosci i gdzie suma wszystkich
wartosci u’ rowna sie sumie wszystkich warto-
Sci u". ;

Te dwa przedstawienia funkcyj wymiernych
1losei p 1 p" odpowiadaja dwom przedstawieniom
funkcyj wymiernych jednej zmiennej: jednemu za
pomoca ulamkow elementarnych, drugliemu za
pomocg rozkladu licznika i mianownika na
czynniki.

§ 6.
Teorya przeksztatcenia funkcyj eliptycznych.

Niechaj beda dwie funkcyeeliptyczne:
m=plan+b,w,o), p=p, o o).

Warunek konieczny i dostateczny na Lo
aby pierwsza znich dala wyrazié¢ sie wymier-
nie przez druga, stanowito, by pomiedzy mo-
dulami w, o, », o 1 liczbami a, b zachodzily
zwiazki :

aw = aw, + fo’ ; e = yw, -+ o0’ ;

) = (M -—a—p) o+ (n—pf— deo,
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gdzie a,b,y,0,mn sy jakiekolwiek liczby calko-
wite. Szukanie takiego wyrazenia wymiernego funkeyi p, przez
funkeye p stanowi zagadnienie o przeksztalceniu wy-
miernem funkeyi p. Liczba « nazywa sie mnozni-
kiem; lecz latwo okaza¢, ze w przeksatalcenin wymiernem
funkeyi p mozna mnoznik a przyjac zawsze réwnym 1, liczbe zas b
réwng zeru, gdyz wzory, odpowiadajace réznym od jednosci war-
tosciom « 1 réznym od zera wartosciom b, otrzymuja sie latwo
z wzoréw, odnoszgcych sie do przypadku a=1, 6=0.
Wyznacznik

et P =0
)

)

jest zawsze liczba calkowita dodatnia 1 nazywa
sie rzedem przeksztalcenia. Wlasnosé zasadnicza
liczby n jest nastepujaca. Dajmy, ze p, wyraza sie wy-
) :
—(L,gdzw
w(p)
1y sgdwa wielomiany bez czynnika wspdl-
nego; wtedy liczba» jest rowna stopniowi
réwnania

miernie przez p za pomocyg wzoru p, =

@(p) -—pypip) = 0O

wzgledem p, t. j. jest wiekszemu ze stopni wie=
lomiandéw ¢ iy; innemi slowy: liczba ta wskazuje,
1le wartosci funkeyi p odpowiada jednejitej
samej wartoscl funkeyi .

Jezeli za punkt wyjscia obra¢ nic funkeye eliptyczng p,
lecz funkeye sn, to zagadnienie o przeksztalceniu wymiernem
dla funkeyl sn mozna wypowiedzie¢ w sposéb podobny do po-
Wyzszego; zwracany przytem uwage na to, ze jedno zagadnie-
nie odpowiada drugiemu tylko w pewnych przypadkach.

Warunek koniecznyidostateczny na to.
aby funkecya

sn, =sn (¢'v + 0, K,, K|
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wyrazatasie wymiernie przez funkcye
sn = sn (v, A, K'),
stanowig zwigzki:
a . 2K = a2K, 1 gk’ ; a'.iK'=y2K, } §iK',;
b= 2u'+1—d) K, +4 @0 — §)iK",

gdzie a, f, y 6’sa liczbamicalkowitemi.

W tym przypadku nie mozna juz, jak poprzednio, przyjac,
ze mnoznikréwnasie 1, albowiem mnoznik ' ma wartosé zalez-
na od samego przeksztalcenia; i liczba 0’ nie moze by¢ zerem
w kazdym przypadku.

Zagadnienie o przeksztalceniu mozna przedstawi¢ jeszcze
w nastepujacej postaci:

Danem jest rownanierézniczkowe:

dy , dx

== (

V=9 (y— Py T V(1—x?) (1—kz?)

znales¢ zwigzki, jakie powinny zachodzié po-

miedzy statemil, a’, k, aby calkg tegoréwnania

bylo y=¢(x), gdzie ¢ jest symbolem funkcyi wy-

miernej stopnia okreslonego wzgledem .
Albo tez tak:

Majac éanq catkeeliptyczna
du

V= a?) (1 —4k2a?)

przeksztalci¢ janainng calke tejze postaci,
t. . na calke

1 dy

@ Y A—y?) (1=3y7)
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za pomoca przeksztalcenia y=¢(z) danego stop-
nia i znales¢ zwigzki pomiedzy ilosciami
L, a, .

Widzimy stad, Ze 1w tej postaci zagadnienie o przeksztal-
ceniu funkeyj eliptycznych schodzi sie z zagadnieniem o prze-
ksztalceniu calki eliptycznej na inna, ktére to przeksztalcenie,
odpowiednio zastosowane, sluzy do obliczania przyblizonej war-
tosci samych calek.

Przeksztalcenie jest okreslone przez liczby calkowite a, B,
y, 0 1 dlatego oznacza sie za pomocy symbolu

ktéry jest zwyklym symbolem podstawienia liniowego dwoéch
zmiennych jednorodnych (w naszym przypadku w 1 o'). Dowo-
dzi sie, ze skladanie dwu przeksztalcen uskutecznia sie za po-
mocg zwyklego prawidla o iloczynie dwéch podstawienliniowych.

Kazde podstawienie

rzedu n=ad—fy MmozZna za pomocsg mnozenia
przez odpowiednie podstawienie rzegdu 1-go
sprowadzi¢ do podstawienia typu

7

n
a

Y,
~gdzied jest dzielnikiem liczby n, » za$ przed-

stawia liczbe calkowitg dodatnia, mniejsza

o i e : g
0d —-. Podstawienie takie nazywa sig elementarnem;

; : 2 oy A : :
liczba takich podstawien wynosi X —, odzie suma rozciaga
& p ag
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sig na wszystkie dzielniki d liczby n. Jezelli n jest liczba
pierwsza, to podstawien elementarnych jest
Al ;
Iloczvn dwu podstawien elementarnych
jest takze podstawieniem elementarnem
Kazde podstawienierzeduniepierwszego
mozna zlozyé-—-pomijajgcpodstawieniarzedu
l—zinnych podstawienrzeddéw,bedagcych licz-
bami pierwszemi.
Wszystkie podstawieniarzedu l-go mozna
zlozyé zdwutylko podstawien, tworzgcych

R b e 1)
d={y 7). B={_y o]

Przeksztalcenie liniowe, wykonane na pdlpe-
ryodach w 1 o', daje wyniki nastepujace: 1) Funkecya p pozo-
staje bez zmiany, t. j. wzdr na przeksztalcenie jest wprost p,=p.
2) Niezmienniki g,, ¢, pozostaja bez zmiany. 3) Funkeya ¢ nie-
parzysta pozostaje niezmienna. 4) Funkeye o parzyste oraz
niezmienniki niewymierne ¢ przemieniaja sig wedlug wzoréw:

P Uy P .
Oli=s 0 5 SO Sl Oy L S T3 = Oy
’ ! 4
612"1~ g’=y3, 6;282,
odnoszacych si¢ do podstawicnia tworzgcego A, oraz wedlug
WZOrow :

oy =05, oy =90, 0;=q0,
dr=e, y=¢e, ¢;=n¢,
odnoszgcych sig do podstawienia tworzacego B. 5) Pélmoduly
przestgpne drugiego gatunku y, 5’ przeksztalcajg sie dla podsta-
wienia liniowego przy pomocy tych samych wzoréw, ktére stuza
dla w, »'. 6) Dla podstawienia 4, wykonanego na peryodach
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‘

ilosei it = — stajg sie odpowiednio xy=u, r,=v+1, a funk-
w

cyve ¥ przeksztalcaja sie za pomoca wWzoréw :

B T (5 0) 9o l) = et (5.1

¥ (2, 141) = ¥ (x,7); H(x,v+l) = ¥(a,7).
7) Dla podstawienia B, wykonanego na peryodach w, ilosci
s sfaj@ sie vdpowiednio z; == % T %— , a funkeye #

przeksztalecaja sie za pomoca wzoréw:

x AR x 1 Vit

8(;—, — 7!' — Ll ipe N (T 8'('{" —7> = Vize™ ¥, (2,1);
Lot:— -—1—) =Vite™ & (x, 1) m‘)':;( ‘l———— ) ﬂ/’&‘re’" U, (2, 7).
& ; T/ T /

8) Funkeya p, jak wiadomo, nie zmienia si¢ przy podstawieniu
liniowem, funkeya sn nie zachowuje sie tak prosto. Podstawie-

S a . . p s
nia liniowe ( ; 6) odnosza sie w tym przypadku nie do w, ',
lecz do 2K, ¢K'. Wszystkie rozwiazania zwiazku

A—-B sn (v, k?)

sn (av +b, %) = A'Bsn (v, k?)

zawieraja sie w nastepujacych 24 wzorach :

n (v, k%) = =+ sn (v, k?); sn(—f—v—{—ﬂ(l B A= ﬁlﬁg)
1 7 P e 1
sn ( f ~—) = =+ e sn (v, k?); sn(+ Iw—j—l]i, 'y l‘,) SWFZ)
sn( {ll—-H/k)"’ i Wed 1- Vi \4\ e 1-+Vke 1- Vi sn (v, k‘*’)
TG 2 I b e e
ORI P ) B
ST 2 ‘f 14+-VE 1-—Vk 14-VEsn(v,k?) '

Pascal. Rep. L. 25
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A=V k? A \ zl—!—V/cJ\ 1—Vk 14Viesn(v,k?)
l

RO v+z?'—+-h,|,l R sy ey = T

] (“ “ —Vi T1-+VE " 1—Viksn (v, k)’
(1—Vk)? S AV 1—VE 1--Vk.sn (k)
(i{" one it "'*‘—1 1,, T ) T s
2l 1—Vk l—H ki 1—VFk sn (v, k%)
- 1+7V/c) 1—iVle\® 14+iVk 1—il'k sn (v, k?)
ool = vtighh G 1T e
14-il & 1—il k" 14 ilVk sn (v, k?)
s {(1'*“] ley? g el /1~/V/§) ! l—Hl/k 1—Vicsn(n.k?
L= 2 2 LTy 1—iVE 1+iVksnie, k2’
(l—zV/c)2 L + %) /lj N : 1—iVlk 14iVlksn(v, k%)
‘) li 1—*"‘7‘ /‘) , 1‘+‘ , ,‘ —2] ln,q“(7 ’., )
/ ]ll—zl /c) R l A4Vt 11—k 14V .su (v, 1y
l g i Ky kT ==
1 NV 1+ ik 1—iVisn (nk?)

Wzory pary pierwszej. drugiej oraz kazde dwa polaczone
klamra odpowiadaja tej samej wartosci modutu przeksztalconego
I, ktory moze mieé¢ tylko szes¢ wartosci réznych. Tlosci 2K,
1 £’ sa poélperyodami funkeyi sn przeksztalconej.

Przeksztatcenie rzedu 2-go. Trzy przeksztalcenia elemen-
tarne rzedu 2-go, zastosowane do w, w', s3:

2, 0 : e
(a,):(o 1)_ t.j. 0=2w, o=a},

(b):((l)’g), t. ] o=} ol =24 ,

)

1, 0 ; , '
(G)Z(l’ 2), t.]. o=, o =wo+20,.

1. Dla tych podstawien odpowiednie przeksztalcenia funk-
eyl p (p po drugiej stronie rozumie sie przy wartosciach pélmo-
dulewych w, w’) sa nastepujace:
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_ PHw) — ep(uw) 1 (e, —¢6) (6,—e;)
IJ(u ) = Fid =4 ,
@’ PHu) — esp(n) + (e3—e1) (—¢,)
p(“, w, 9 ) FE p(“) T ’

c) p (15; o0, - ‘ P*(u) — eap (1) 1 (eg—ey) (¢5—€)
A s L / pli) — e,
2. Pruzeksztalcenia funkeyi o parzystej sg:

1
— eyn?

a) (u, 5 w’) == Solvlopl()y;

4

b) (u, w, ‘%) e

1
N e () o, (u),

1
{ o' —w) e’

e) o\u,w,—2—}=6' o (1) o, (1),

3. Odpow1edme przeksztalcenia modulow przestqpnych

2-go gatunku 7, %’ sa:

a)

a)  m=tew-+y; g’ =eo + 2,
b) N = &0 + 27; M ew' + 7',
c) m = egw + 21 ; m' =4 e (0'—w) -+ ('—7).

i

[

I

4. Odpowiednie przeksztalcenia funkcyj o parzystych s :

\ -}-e.u“
G, (u; (;L a), = og,(u) [p(u) —_p (3)]0‘-’ :

p(%) ~ plofo) | 1

— eut
g

o = oy’
02(“’ g wr) 0, (u) : ‘_g_) — pla)

— ayn?

w
ofti 5 » (o‘) = o0y () . ou(u) e
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‘ (l)"l -;-e,«’
b) o \u, o, i B (u) o, (u) e :
&' P (u+tw) —p (—‘—3—) g
(2% {u; ®, _-2——) = o (), —— T er )
2~ 1)
; o % 50
0, (u; 0, o )~a, (u) . [p (1)— p(T)l 2°
o' —

eqn®
e) o ‘\u; of S ) = g, (1) o (W) c2 "

’ . " l !
o (1 @, 25 2) = otw) | pw — (5] | 7 "

e ‘ | pﬁ”— -—p(u—{»d)) g
“L—Qj)) = 0,%(u) .“(;f—g—}r)ip_(m et

a, (u, ®,

5. Niezmienniki niewymierne e, e,, e, przeksztalcaja sie
za pomocy wWzorow:
a) ¢ =-¢ -+ 2e,~e, Ve,—e,; ¢,=e—2Ve,—e, . Ve,—e,;

(‘3"=~— Qf'l )

e
b) € = — 2e; ¢, = ¢ - 2Ve;=¢; . Vey—ey;

¢y =10, — 2Ve,—e; . Ve,—e,,
e) €y = — 20; €y, = e —2Ve,—e, . Ve,—e, ,

¢y = 6, + 2iVe,—e, . Vey—e,

6. Znalazlszy wartosciilosci ¢/, mozna znalesé wartosé mo-
dulu przeksztalconego (? w kazdym z trzech przypadkéw. Mamy:

2 P (KD 4 ik

b) 2= Y 2

ey 2P A =ik
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7. Funkcye ¥ przeksztalcaja sie za pomoca wzoréw:

a) 6= ¢, % =2z,
& (2. 92) = /J/ T e a ) {) Q)
(2%, ¢*) ! AKP = ¥ (x, q) Wz, q

I3

9,2, ¢) = ] :

1 4
e, 3‘ x, '3 x, \,
SEVP 1 (@ 9) ¥y (2, Q)

¥,(2x, ¢*) = 21/.1/7x { V1—k 92 (x,q) - VI-HE 8,2 (=, q)} !

9,22, ¢) z}l K {H—}-k’ ¥, g) — VI—E 9,2 (=, q)f,

(1 k)

- 1
b @D =) oz {%’(w,qw%} * q)}

b £, l’— = /// Jl_. N £ 9 &y »
(2, Vg) ’] Kik (@, Q) %, q)

S @ V=1 T 0,60 89,
K I %

Vi l / 9 B
0, V= b | T o )02 e q)},

b = ¥
9 (x, 6 % g?) = I/ Z‘: ‘k, 3, (2,9) 9, (2, q),

wili

i
Zo2 s 9 (x,q) & (z,q),
Sk (x, q) ¥ (%, 9.
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= |
e ] m {"93’(%9)“}—“}12(%5)}’
gelna
Y. TgP) = ] N9 — %),
2K (k'—ik) | [

8. Podamy jeszeze wzory na przeksztalcenie funk(yi sn.
Gdy © 1 o' sa poddane wszystkiin trzem wska&anym WyzeJ pod-
stawieniom, funkcya p przekS/ta{ca sie wymiernie, -lecz
funkeya sn przeksztalca sie wymiernie tylko przy dwéch
pierwszych z pomiedzy tych podstawien, przy trzeciem prze-
ksztalca sie niewymiernie. Przeksztalcenia funkeyi sn, odpo-
wiadajace wszystkim trzemn przeksztalceniom wymiernym funk-
cyl p, sa nastepujace :

e 1INt L) su? (0, )
a) sn ((1 -}‘]u )UT—I‘l )9(‘1'_{_]{/) ) . 1___(1_kl) Sng (’_' ,C)

(Przeksztalcenie Landena);

; 4% it (1 —[— k) sn (v, )
b) Sn((l+,~) (]—+—/C)’ 1"‘}_1& 5112 (T/ k.) f)

(Przeksztalcenie Ganssa);

5 dilek!
- [__ 1 PEESEe———T e S
¢) sn ((k ik) v, e )2) e

(Przeksztalcenie niewymierne).

(k'—ik) sa(v, k)WV1—Fk?sn? (v, k)
1—/k (ke +4k'y sn2 (v, k)

5T

0 mnozeniu argumentu w funkcyach ellpi_ycznych.
Mnozenie zespolone.

Zagadnienie o mnozeniu argumentu w funkcyach eliptycz-
nych jest nastepujgce:
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Znalesé wzdr, przy pomocy ktérego funk-
cya eliptyczna (n.p.snlubp) o argumencie, po?
mnozonym przez u (gdzien jestliczba caltko-
witg), wyraza sie za pomoca tejze funkecyi elip-
tycznej o argumencie pojedynczym.

Zagadnienie o mnozeniu przez n jest spe-
cyalnem zagadnieniem o przeksztalceniu rze-
dun*, wtakiem przeksztalceniu modul pozosta-
jeniezmienionym, '

Roapatrzmy mnozenie argumentu dla funkeyi sn. Jezeli
’)lJebt nieparzyste, to funkeya sn(nv) Wyraza
sie zawsze wymiernie przez sne; jezeli zas n
jest parzyste, to sn(nv+K) (gdzie 2K jest plex w-
s 7y m polperyodem funkcyi sn) wyraza Sie W y-
miernie przez snv, funkcya zas sn(nv) da_]e sie
wyrazic¢ przez funkcye wymierngilosci sne. po-
mnozong przez Vl—sn?v. V1-kisn. ‘

Co sig tyczy funkeyi p(u), to dla niej p(nu) zawsze da-
jesle wyrazi¢ wymiernie przeaz p(u).

Rozlozywszy liczbe n na czynniki pierw-
Sze, moZemy zawsze mnozenie przez 7 SpProw a-
dzié do kolejnych mnozen przez2i przez czym-
nikipierwsze nleparzyste

Wzory namnozenie przez 2, 3 dla funkeyi

sn s g: S
& 2sn v l/l-—sn v. )V 1—k*sn*v
miv=———— o — . 5
1—k? sin* v
e snv{3—4 (l—f—k sn?v) - 6k? sn v—Kk* sn® v}
SN OV =

1—6k? sn* v  4k?(14-/k?) sn® v—3k* sn®w

‘Wzory na mnozenie przez 4, 5 sa bardziej skomplikowane.
Mozna je znales¢ w dziele Cayley’a o .funkeyach eliptvez-
nych“ (tlom. wloskie Brioschi'ego, Medyolan, 1880, Cap. IV,
str. 73 1 nast.)

Godnym uwagi jest nastepujacy wzoér ogélny (patrzE n n e-
p er Ellipt. Funct. Halle 1890, str. 374), w ktorym wszakze

-
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spolezynniki nie sa przedstawione wyraznie jako funkeye ilosci
« k; liczba n jest w nim nieparzysta:
1 sn® v
% . OmK+2m'iK’
n )
L 2m K4 2m' iK',
SREE e — oI

sn (nv) = n snv JI
mm' 1__,1‘_:

gdzie iloczyn rozciaga sie na wszystkie kombinacye

—1 n—1
m=1,2,...,lo——; m=0,+1,+2,...+—,

-~

oraz na kombinacye :
m=0, m'=-41+2 +3,. ... .+ 9
Wzér na mnozenie dla funkeyi p jest:

Yutl Pa-1_
w,

]

p () = p(u) —

gdzie
po=1 gy = p(u);

3 " 1 B
vy = 3pH(u) — B JaP*(w) — Bg,p(w) — T 2

e [ — 28 12 . PR 2y 1)
o = VW) (= 2+ 90 H100,0* + 5 9a0* $9u9sD+957F 35 957

Wzér zwrotny dla funkeyi ¢ jest w ogélnosei:

Ye2u+1 = Y42 ’l/)u3 — Yu+—y '/’:‘u 1,
Y 4 F
Wow = — L (Puge Yt = Yuoe Y

Patrz Halp hen, Fonections elliptiques I. str. 102.



§ 7. — O mnozenin argumentu w funkeyach eliptyeznyeh i t. d. 393

Zagadnienie o mnozeniu zespolonem argumentu
funkeyj eliptycznych mozna przedstawi¢ pod nastepujacemi po-
staciami :

Dany jest wielomian f(x)stopnia 4-go lub 3-go;
jakim warunkom winny zados$¢ czynic¢ te wie-
lomiany oraz liczba zespolona m, aby réwna-
nierdzniczkowe

dz 1 dy

Vi@ ™ Vi

mialo calke wymierng postaci y=R(x)?

W przypadku, gdy m jest liczba rzeczywista calkowits,
rownanie to ma zawsze calke tej postaci i wtedy mamy zagaduie-
nie o mnozeniu zwyklem. Jezeli wielomian f(x) wezZmiemy
w postaci specyalnej Jacobie'go albo Weierstrassa,
to zagadnienie bedzie mozna wystowié w ten sposéb: Jakim
warunkom powiluny czynié zadosé moduly fun-
kcyi eliptycznej Jacobi’ego albo funkcyi Weier-
strassaijakim warunkom liczba zespolona m,
aby sn(mv) dalo si¢ wyrazié wymiernie przez
sno, albo p(mu) wymiernie przez p(u).

Moduly. ktére w ten sposob znajdziemy, nazywaja sie m o-
dutami osobliwemi, Liczba m powinna by¢ po-
staci atelb), gdzie a1 b sa dwie liczby wymier-

’
1 X 3 :
ne. Stosunek ¢=-" modulow funkeyj elipty-
w '
cznych powinien byé¢ pierwiastkiem réwnania
stopnia 2-go ospéleczynnikachcalkowitych.

Pierwsze wlasnosci tunkeyj eliptycznych. obdarzonych mnoze-
niem zespolonem, w czesci intuicyjnie, przeczul Abel. Najwazniejsze
prace o tym przedmiocie zawdzigczamy Kroneckerowi (Ber,
Monatsber. 1857 1862 —1863—1870—1875—1877--1880—1882)
i Hermite owi (Comptes rendus 1859). Potem zajmowali sig ta
rzecza Greenhill (Proc. of Camb etc,, 1884), Weber (Acta math.



304 Rozdziat XVI.

VI), Pick (Math. Ann, XXV, XXVI), Sylow (Liouville, IIT, 1887),
Kiepert (Math. Ann. XXXIX)i t. d.

0 zastosowaniach tcj teoryi do podzialu tuku lemniskaty pisali;
Abel (Dziela), Hoffmann (Crelle XLVIII), Kiepert (tamze
LXXYV), Schwering (tamze CVII),

-

" Teorya funkeyj eliptycznych powsta®™wraz z zagadnieniem o wy-
prostowaniu elipsy, hyperboli, lemniskaty i t. d, Zajmowali si¢ nig
pierwsi: Fagnano, Landen, d’Alembert, Maclaurin. Euler
{Novi Comm. Petrop. X, 1764) zebral rozproszone rezultaty i ustano-
wil zasady ogélne teoryi. Po Kulerze przedmiotem tym zajmowal
sie Legendre w licznych rozprawach (Acad. de Paris, 1786, 1793
it.d.), poczem w r. 1825 oglosil stawne dzielo p. t. ,Traité des fonc-
tions elliptiques et des intégrales eulériennes* (Paryz 1825 — 1828,
2 tomy z trzema suplementami).

Okres 1815 do 1829 nazwa¢ mozna najwazniejszym dla teoryi
funkeyj eliptyeznych, albowiem w nim, procz klasycznego dziela L e-
gendre’a, ogloszone hyly w krétkich odstepach czasu jedna po’
drugie] genialne prace Abela i Jacobiego. Dzielo Jaco-
bi'ego p. t. ,Fundamenta nova Theoriae functionum ellipticarum® wy-
dane zostalo wlasnie w r. 1829. W klasycznej tej pracy rozpoczal
Jacoli badanie funkeyj &, ktdrych teorye rozwinal nastepnie w pé-
zniejszych rozprawach. O historyi rozwoju teoryi funkeyj. eliptycznych
w latach 1826—1829 mozna czytat¢ z korzyscia dzielko Konigs-
bergera (Zur Geschichte der ellipt. Funect. Lipsk 1879). Wska-
zowki historyezne zawiera tez ‘dzielo Casoratiego ,Teorica delle
funz. ete. Po Jacobim najwazniejszy krok w teoryi funkeyj elip-
tycznych uezynil! Weierstrass przez wprowadzenie funkeyi o.

Teorya funkeyj eliptycznych zajmowali sie prawie wszyscy ana-
lisci tego wieku, jedni nniej, drudzy wigcej: Cayley, Hermite,
Weierstrass, Brioschi, Klein i wielu innych,

Wskazowki historyczne szczegolowe, odnoszace sig do tej teoryi,
zawiera cenne dzielo Ennepera (Elliptische Funct. Halle, 1890).
Najwazniejszemi traktatami, précz Ennepera, sg: Briota i Bou<¢
queta (Paryz 1875), Cayley'a przeklad Brioschiego, Medyo-
lan 1880), Konigsbergera (Lipsk 1874), Greenhilla (Lon-
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dyn 1892, przekiad fr. 1897), Halphena (Paryz 1886). Ostatni
autor stara sie w dziele swem wprowadzi¢ funkeye eliptyczne metoda
elementarna, podobna do tej, jaka wprowadzaja sie tunkcye trygonome-
tryczne. Nie sadze wszakze, aby metoda ta byla najodpowiedniejsza do
wytworzenia ogélnego i rozleglego pogladu, i mniemam, Ze autor nie
ma slusznosei, gdy méwi w pewnem miejscu swej ksiazki, ze odtad
pewne inne metody i pewne inne rozwazania nalezg juz do historyi.

Zbiér wzoréow, odnoszacych sie do teoryi Weierstrassa, za-
wiera dzielo wydane przez Schwarza: ,Formeln und Lehrsitze
ete.“ (Getynga 1889). Najnowszemi traktatami sa dziela: T anne-
ryego i Molka (Paryz 1893), Appela-Lacoura (Paryz
1877), Krausego (,Theorie der doppellperiodischen Funct.*,
Lipsk 1890), Pascala (Medyolan 1896), Burkhardta ,Ellip-
tische Functionen, Lipsk 1899, Riemanna Elliptische Functionen
wyd. H. Stahl, Lipsk 1899.

Teorye funkecyj eliptycznych przedstawié mozna za pomoca roz-
nych metod: albo wychodzi si¢ z odwrécenia calek eliptycznych, allio
z teoryi ogélnej funkeyj, ktora stosuje sie do funkeyj podwdjnie peryvo-
dycznych, albo wreszcie bierze sig za punkt wyjscia tunkeye % J a ¢ o-
bi'ego i liczne pomiedzy niemi zachodzace zwiazki. W dziele, przeze-
mnie ogloszonem,obratem wlasnie ten ostatni kierunek, wychodzac z roz-
prawy Jacobi'ego, w ktérym on zalozyl sobie ten sam cel, o ile to
bylo mozliwem w jego czasach, Nie ulega wszakze watpliwosei, ze
i przy pomocy innych metod mozna w sposéb zupelny i ogdlny wylezy¢
podstawy zasadnicze teoryi funkeyj eliptycznych, ktéra jest jedna z naj-
wazniejszych w matematyce.

Teorya funkeyj podwojnie peryodyeznych, ktore sa ogdlnemi fun-
koyami eliptycznemi, zajmuje sie rozdzial XTIV,



ROZDZIAL XVIIL

FUNKCYE HYPERELIPTYCZNE I ABELOWE.

S

Twiardzenie Jaco b/e'go o odwrdceniu.

Rozpatrzmy calke abelowa rodzaju p (patrz Rozdz. XV).
(w, 3}
Vi = ‘ F(w, z) dz,

“

Ma ona 2p moduldw peryodycznosei (jezeli jest 1-go lub 2-go ga-
tunku); stad punkt (w0, z), uwazany jako funkcya ilosci v, jest
funkecya 2p-krotnie peryodyczng. Na mocy slawnego twierdze-
nia Jacobiego (patrz Rozdzial XIV) wiemy, ze taka funkcya
nie moze byé jednowartosciows dla p>>1; stad z, jako funkcya
ilosciv, bedzie wlasciwie funkecya nie o jednej
wartoseci, lecz o nieskonczonej liczbie warto-
sci. Odwrécenie calki abelowej nie daje sie tym sposobem
uskuteczni¢, gdyz nie doszlibysmy na tej drodze do funkcyj jedno-
wartosciowych. Jacobi pokonal te trudnosé sposobem naste-
pujacym (Crelle, IX).
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Polézmy :
: I o o p l
Uy = | ’+’~}— —}—/ du, ,
) e
u,z:,: ’—}— ‘T . -+ ’-’P v (g
. 1 a

,¢,,7=,||/+ [payinginss +.t""ldup,

“ @y “p

gdzie dla prostoty oznaczamy przez z; punkt powierzchni Rie-
manna, zalezny od dwu ilosei w iz, a nietylko od samych
wartoscl z; gdzie du,, du,, .. ., du, sy rézniczkami p ealek 1-go
gatunku liniowo-niezaleznych; gdzie wreszcie g, tty, .. ., @, 58
punktami z géry oznaczonemi. Calkiwy,.... u,. jako snmy p calek
podobnych, maja te same moduly peryodycznosei co i te calki.
Jezeli te ostatnie staja sie normalnemi (patrz Rozd. XV)
o modulach 7 na cieciach B, wtedy 1 pierwsze strony maja tez
same moduly; nazwijmy wtedy strony pierwsze vy, ¢y, . . ., .

Ustaliwszy granice gérne 2y, 2,, . » . , 2, nalezy wyznaczyc
wartosel ilosci w (pomijajac moduly peryodycznosci). Rozlézmny
kazde w na czesé rzeczywisty 1 urojona 1 rozpatrzmy przestrzen
o 2p wymiarach, w ktérej spélrzednemi punktu niechaj beda 2p
wartosel czesct rzeczywistych 1 urojonych iloscl w,, uy, . .., .

Ozhaczmy ogoélnie przez w; (¢ = 1,2, .. .,p; j=1.2,...,2p)
moduly peryodycznosei ilosci w; 1 polozywszy

’ Wj; = Ojj "+— ﬂU . ]/:.1 3

rozpatrzmy ‘w powyzej okreslonej przestrzeni wszystkie punkty
() = (w;), ktore wraz z punktem (1) = (0) tworzg wierzcholki
réwnolegloscianu w tej preestrzeni. Za pomocs takich réwno-
legloscianéw podzielimy cala przestrzen 2p—wymiarows w ten
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sposob; ze kazdemu punktowl przestrzeni odpowiada¢ bedzie
punkt réwnolegloscianu poczatkowego o spolrzednych, rézniy-
cych sig o calkowite wielokrotnosei moduléw peryodycznosei od
spolrzednych punktu rozwazanego.

Kaidemu ukladowi punktéow z,, z,, ..., 2z, odpowiada
punkt ré wnolegloécia.nu poua,fkowego przestr zeni ilosci w. Uklad
p punktow nie moze w ogdéle zmieniaé sig, pozostajac rJ wn o-
resztowym z samym soba o ile jest nklademn ogélnym, nie
specyaluym (patrz twierdzenie Riemanna-Rocha)
Jezeli zas rozwazamy uklad specyaluny p punktéw, wtedy
wszystkim innym punktom réwnoresztowym 2z uwazanym od-
powiada ten sam punkt przestrzeni (u).

Kazdy punkt rownolegloscianu poczat-
kowego w przestrzeni (u) (pomijajac pewne
miejsce punktéw osobliwych) odpowiada je-
dnemu 1 tylko jednemu z uktaddéw p pun-
ktowikazdy ukladp punktow odpowiada je-
dnemu i tylko jednemu.punktowi réwnole-
gioscianu poczatkowego, Punkty u, odpowia-
daJ@ce wszystkim mozliwym uktadom p punk-
tow, wypelniajag caly rdwnolegloscian po-
czatkowy.

Mozna tedy uklad p punktéw uwazaé¢ wogo-
le za funkecye pargumentdwu; mianowicie fun-
k ¢ y a wymierna symetryczna p punktéw, jakkolwiek
na powierzchni Riemanna wybranych, moze
byé¢ uwazana za funkcye jednowartosciows
ilosciu. Funkeya taka nazywa sie abelowg i jest
funkcysg 2p-krotnie peryodyczng p argumen-
t 6 w. Na tem wlasnie polega Jacobi'ego twierdzenie
0 od wrdceniu, udowodnione przez niego najprzod dla przy-
padku hypereliptycznego, a nastepnie przez Weierstrassa
dla przypadku abelowego (Crelle, ILII.

Mozna jeszcze okreslié funkcye abelows w ten spo-

s0b. Wyobrazmy sobie funkcye wymierna % ilosei w1 z iroz-
v

patrzmy p wartosci tej funkcyi w p jakichkolwiek punktach.



19

- Wiasnosé zasadnieza funkeyi abelowyel. 391

| o

Wartosci te bedy pierwiastkami réwnania, ktérego spolezynniki
sa funkcyami jednowartosciowemi argumentéw w 1 funkcyami
wymiernemi symetrycznemi spolrzednych p punktéw. Funkeya
symetryczna p pierwiastkéw takiego réwnania bedzie funkcya
abelowsg (Clebsch-Gordan. Abel'sche Functionen, str.
138—139).

Funkeya abelowa. wedlug powyzszego, bedzie okreslona
jako jednowartosciowa dla wszystkich punktow przestrzeni 2p—
wymiarowe] ilosci w«, précz pewnego miejsca (p—2)
wymiarowego punktéw osobliwych, w ktérych
moze mie¢ nioskonczenie wiele wartoscl. Dla p=2 miejsce to
sprowadza si¢ do punktu réownolegloscianu poczgtkowego (np.
do punktu (0) i wszystkich mu odpowiadajgcych). Dla p=3
miejsce to tworzy w réwnolegloscianie poczatkowym rozmaitose
jednowymiarowa. W miejscach tych tunkeya abelowa przyj-

2 R 0
muje posta¢ nieoznaczong 0. (Patrz Clebsch-Gordan

I. c. str. 184—-187)

Szukante wyrazen funkcyj abelowych przez catki w stanowi
tak zwane zagadnienie o od wréceniu. Rozwigzujemy
to zagadnienie przy pomocy funkeyi #, podobnie jak w przy-
padku eliptycznym

Jezeli zasadnicza powierzchnia Riemanna jest hyper-
eliptyczna, wtedy odpowiadajace jej funkcye nazywajg sig h y-
pereliptycznemi lub ultraeliptycznemi (Prym)

W rozprawach Weierstrassa funkeye abelowe ozna-
czone sa symbolami Al (u,, w0, . . ., ;).

v
L

Wtasnosei zasadnicze funkcyj abelowych.

Pochodna funkcyiabelowe] jest funkcya
abelowa.
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Pomiedzy p-+1 funkcyami abelowemi, a
w szczegélnosci pomiedzy funkecygabelowa
1jej p pochodnemirzedul-go, zachodzizwia-
zek algebraiczny.

Kazda funkcye abelowag mozna wyrazie
wymiernie przez p+1 danych funkeyj abelo-
wyeh, wszczegdélnosci zas przez dana funkcye -
abelowa 1jejp pochodnyech pierwszegorzedu

Kazda funkcya abelowa posiada twierdzenie
o dodawaniu algebraicznem, t.j. wartos¢ jej dla argu-
mentow u~U; wyraza sie wymiernie przez war-
tosci p+1 funkcyj abelowych dlaargumentow
w1 U,

Istnieje, jak widzimy, analogia tych twierdzen z twierdze-
niami, odnoszacemi sig do funkeyj podwéjnie peryodyecznych.

Co do innych szczegéléw patrz np. Stahl, Abel'sche Functio-
nen, Lipsk 1896, str, 305 i nastep.

§ 3.
Szeregi ¥ i jch wtasnosei.

Uogdlnijmy szeregi «}, znane z teoryi funkcyj eliptycznyeh.

Napiszmy . as
L A Bt (e —— 0y
— o0
gdzie

£ = (1,12 + 250 Nyt . . . G 02)F2(mv e L 4oy,

suma zas S rozciaga sie na wszystkie mozliwe kombinacye war-
tosei calk owitych, dodatnich i ujemnych liczb n,, n,, . . ., n,.
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Hosci uy, vy, ..., v, nazywamy argumentami funkeyi ¢,
ilosel 7, 1,, ..., 75, — modulami. Moduly czynia zadosé
zwigzkom vy =v;.

Aby szeregpowyzszy byl zbiezny,jest ko-
niecznemidostatecznem, by wyznacznik

’ ’
T e Ay g i A

’ '
Ty - . . . . s Top

gdzie v oznacza czeseé rzeczywistg modulu =,
byl rézny od zera i by forma kwadratowa

IShap
S Yspmn;n; byla okreslongiujemnego znaku.
ok .

Gdy te warunki spelniaja sie, wtedy & przed-
stawia funkcye zawsze skonczongiciggla dla
wszystkich skonczonych wartosci argumen-
tow; nadto czyni zados$¢é nastepujacym zwiaz-
kom zasadniczym. 1. Jezeli v, powigkszymy
oni, funkecya nieulegniezmianie. 2, Jezeli ar-
gumenty ¢, vy,...,0, powiekszymy odpowiednio
O Th13 Tz, -+, Ty, NOWwWa wartosé funkecyi bedzie
réwna plerwotnej, pomnozonej przez e %ty
Kombinujac te dwie wlasnosci, otrzymujemy nastepujaca ogol-
niejewge ) 3. AT @ 2ol gy go v gy R by 0D byt 8 g i
calkowite, a G4y1G oznaczajgodpowiednio wy-
razenia

hpawi~+ Zypgitiy; 22540 + Zjn ey gt 20m Xigrlu:
bedzie:

DGR T 0 ) o oy Mg G = (0 St Ll U e
4 Funkcya ¢ jest funkcya parzysta. 5 Funk-
cya ¢ 1 wszystkie jej pochodneczynia zados¢

réownaniom rézuniczkowym:
laseal Rep. L 26
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2 2
4979___319 280=317

3:,-,- 35,2 : 81,;,- 81;, E’u, 4

Powyzsze wlasnosci s charakterystycznemi dla funkeyi ;
funkeya, ktora je posiada, moze rézni¢ sie od tunkeyi & tylko
czynnikiem.

Oznaczmy teraz przez ¢, 0o, .- 0y Nyl .. h, szereg
liczb niecalkowitych, mianowicie ulamkéw o mianowni-
ku 2; wystarczy rozwazyé dwa przypadki, w ktérym licznik jest
zeren lub jednoscia,

Utworzmy przy pomocy liczb ¢ 1/ wskazane wyzej wyra-
zenia (,,. ., G, irozpatrzmy funkeye & (0,4 G,,...,v,-} G,),
ktora oznaczaé bedziemy

J1y -+ 5 9 ( .4 R 15/
przez \‘}( T ]’p) (O i S A b DEZe 7848 (/z ) (v) .

Nowa ta funkcya rézni sie od poprzedniej funkeyi 9, kto-
ra obejmuje i tenze symbol ogdlny, mianowicie gdy wszyst-
kie liczby ¢ 1 I sa zerami. Symbol

Gis oo o Y
( o3 .,hp) e (h )
nazywa sie charakterystyka funkeyi ¢ Kazdej charakterystyce
odpowiada pewna funkeya &; dwie zas charakterystyki, ktérych
odpowiednie liczby réznia sie od siebie o liczby calkowite, daja
te sama funkcye ¢ (pomijajac czynnik). Stad wynika, ze bedzie
mozna mie¢ tyle funkcyj 8, ile mozna utworzye charakterystyk
w ten sposob, aby liczby odpowiednie w dwéch takich charakte-
rystykach réznily sie zawsze o liczby calkowite. Dosé bedazie,
jak juz powiedziano, ograniczy¢ si¢ do takich charakterystylk,
w ktorych liczniki wlamkéw g, & maja wartosci O, 1. Istnieje
2» charakterystyk ktdore mozna uwazac¢ za
rézne, a wiecitylez funkcyj # Funkcya & po-

czatkowa ma charakterystyke {8”8 )
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Te funkcye % sa parzyste lub nieparzyste
stosownie do tego, czy suma (q,h+g.lis+.. Fg.lt)
jest parzysta lubnieparzysta (9 i & sa ulamkami
o mianowniku 2).

Jezeli przez ¢y,...,0,, Iyy...,h, rozumiemy nie same
wlamki o mianowniku 2, lecz liczniki tych ulamkow, wtedy
liczby, sktadajagce charakterystyke, nie sa
juz ulamkowemi, lecz sa calkowitemi i otray-
mujemy tym sposobem symbole uproszczone.

Liczba funkeyj d parzystych jest 207221 1),
nieparzystych jest 20='2¢—-1) Dla p=2 mamy 10
parzystych, 6 nieparzystych; dla p=3 mamy 36
parzystych, 28 nieparzystyech.

Tak utworzone funkgye & czynia zadosé
wyzejnapisanym réownaniom rézniczkowym,
Nadtoczynia zados¢ zwigzkom:

a('z )(L‘,.. R Ly B U .9(Z )(vl,....v,,),
9 g 3 p 520 1)AF o ogt Ty 9 . ea
Ny Wity ... v trn) = (1 e B "“’9‘/‘[ (Try - vey 1

zwlagzkite mozna uwazaé za nogdlnienie zwiaz-
kéw, ktérymezyni zadosé funkcyadzasadnicza.

Jezeli do skladu charakterystyki, zamiast liczb o miano-
wniku 2, bierzemy liczby o mianownikach 3,4 ..., otrzymn-
jemy funkeye, bardziej zloZzone od poprzednich.

Funkeye o dla jakiejkolwiek wartosei liczby p badal pierwszy
Riemann w slawne] rozprawie o funkeyach abelowych oraz w innych
rozprawach (Crelle, LXV). Rozliczne zwiazki w przypadku p==2 ba-
dali: Gopel (Crelle XXXV), Rosenhain (Mém. des Sav. étrang.,
XI,1851) i Hermite (Comptes rendus XL, 1855). WaZne prace
o teoryi funkeyj ¢, o ich zwiazkach i o teoryi charakterystyk oglosili:
Prym (Riemann's Charakteristikentheorie ete, Lipsk, 1822), Krazer
{Theorie der zweifachen unendlichen Thetareihen, Lipsk 1882), W e-
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ber (Math. Ann. XIV, Crelle LXXXIV), Prym i Krazer (Acta
math. IIT), Stahl (Crelle LXXXVIII), Frobenius (Crelle LXXXIX),
Kause (Hyperell. Fanctionen, Lipsk 1886), Schottky (Abel’sche
Functionen, Lipsk 1880) i inni.

O charakterystykach wyzszyeh, t. j. gdy mianownik jest wigkszy
od 2, pisali: Krazer (Math, Ann. XXII), von Braunm it h1 (Math.
Aun, XXXII). Co do rodzaju p-=1 patrz: Th om a e (Math. Ann. VI),
Klein (tamze XVII, str. 132, 565), Bianchi tamze, XVII. str.
234). Badania t. z. kontiguracyi charakterystyk dla p=31i p=4 oraz
réznych zastosowan tej teoryi prowadzil E. Pascal (Ann, di mat. XX,
XNXT i rozmaite noty w Rend. Lincei 1892--93),

§ 4.
Funkeye &, majgce za argumenty catki abelowe gatunku 1-go.

Mozna przyjaé¢, ze moduly r funkeyj d sa
modulami peryodycznosci ukladucalek nor-
malnych gatun ku 1-go, gdyz warunki, jakim te ostatnie
czynig zados¢, sg takie same jak warunki, ktére muszg spelniacilo-
sci 7, aby odpowiedni szereg, wyrazajacy funkcye &, byl zbiezny

Wezmy nastepnie zamiast argumentéw uklad p calek nor-
malnych 1-go gatunku o wiekszej liczbie wyrazéw niz w § 1,
wtedy funkcye # stana sie funkcyami punktéw
powilerzchni Riemanna.

Wezmy argumenty pod postaciy t; —¢;, gdzie e, sg ilo-
$ci stale, v; zas sa réwne I (lu‘. Tak utworzona funk-
cyad jest zawsze skonczonaiciggla dla kaz-
dego punktu powierzchni Riemannajzachowuje
ona tezsama wartose przy przejsciu przezciecia
Aiprzyprzejsciuprzezciecia C, a pozy skuJ e czy li-
nik e-#i-«)—%, ody przekraczamy ciecia I na
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powierzchni Riemanna, Funkecya ta posiada p
punktéw zerowyech czyniacych zadosé zwiaz-
k om:

S N4

’+ T e ‘Ek,'——e,(modrim').

a .u

t.j.sumy, jakie przedstawiajag strony pier w-
sze, sg rowne k—,; (k sastale, niezalezne od punktéw z
1 od statych e; a zalezne od cig¢ na powierzchni Riemanna),
jezeli pominiemy kombinacye liniowa o spol-
czynnikach calkowitych modultéow z1 m (ktdre
sw modulami peryodycznosci calek gatunku 1-go). (Twierdzenie
Riemanna.)

Jezeli ¥ jest tozsamosciowo zerem, to pun-
kty 2,2,...,2, sa punktami zerowemil krzywej
doltgczonej rzedun—3; jezeli zas punkty 2 nie sg
takiemipunktami, to ¥ niemoze by¢ tozsamo-
§ciowo zerem.

Mozna wyznaczy¢ punkty a,a,...,a4, wten
sposéb,aby funkecya:

(4

'&(’(?L—S)’[ (lv\)

@ a; /

znikala wp punktach z=z;; punkty a sa okre-
$lone algebraicznie jako punkty stycznosci
krzywejoznaczonej, stycznej do krzywej za-
sadnicze] [(i,z)=0, oraz okreslone przeste-
pnie jako punkty zerowe (w liczbie) p funk-
cyi 19( ‘ dv \l. Takiez twierdzeniestosuje sie do funkeyi & z cha-

1‘akterysutykaz jakakolwiek; zmienia sie tylko krzywa stycznosci.
Biorac pod uwage funkeye & z charakterystyks jakalol-

. ( h . 47 s
wiek (] ), mozemy powiedzie¢ ogdlnie :
2
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Punktami zerowemi tunkcyti & (%)( ’ndv) sg

punkty stycznosci krzywej dolaczonejrzegdu
n—2, gdy charakterystyka funkcyi1 ¥+ jest pa-
rzysta; punkt aizbidr p—1 punktéw stycznosci
krzywej dolagczonejrzedu n--3, gdy charakte-
rystyka funkcyi & jest nieparzysta. Kazdejcha-
rakterystyce odpowiada specyalny ukifad krzy-
wych stycznosci.

Logarytmilorazudwu funkecyj d, ktorych
argumenty sa catkami gatunku 1-go, wyraza
sieg za pomoca catki gatunku 3-go.

Pierwsze pochodne logarytmowe funkcyi
@ wyrazajasie za pomoca calek gatunku2-go
oraz funkcyjalgebraicznych..

Drugie pochodne logarytmowe funkecyi &
wyrazajasieza pomoca [unkcyjalgebraicznyech;
pochodne te sy wlasciwie funkcyamiabelowe-
mi wtem znaczeniu, w jakiem je okreslono
w§ 1 i

Ilorazy funkcyj & sa funkcyami abelo-
wemil.

Na podstawie tych 1 innych twierdzen podobnych funkcye
& sluza do rozwiazania zagadnieniaoodwrdceniu.

Wiecej szczegolow znajdzie czytelnik w cytowanych juz dzielach

~Clebscha-Gordana, Neumanna, Stahla; w pracach:

Pryma (Akad. wied, 1864, Schweiz, Gesell. 1868), Webera
(Berlin 1876), Thom a e’go (Halla, 1877—1879).

Ze stanowiska teoretycznego uczyniono w ostatnich cza-
sach znaczny postep, wprowadzajac zamiast funkeyj 9 funkcye
0, podobnie jak to uczyni! Weierstrass dla przypadku elip-
tycznego. Funkcye 6, wprowadzone przez Kleina rdéznia sie
od funkeyj & czynnikiem, a przedstawiaja te dogodnos¢ ze wza-
jemnie przemieniaja sie wprost przy przeksztalcenin liniowem
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peryodow, gdy tymczasemn funkcye & przy przemianie tej pozy-
skuja jeszeze czynnik wykladniczy.

Odsylajac czytelnika do dziel Kleina i innych, ponizej
cytowanych, ograniczamy sie tu jedynie na podaniu gléwnych
wzorow nowej teoryii to tylko dla przypadku hypereliptycznego.

Funkeye o Kleina w przypadku hypereliptycznym.

Po wprowadzeniu spolrzednych jednorodnych, t. j. przy zalo-
Zeniu z = —L , forma zasadnicza hypereliptyczna rodzaju p
niechaj quzi-e typu:

w? &y W o= f‘l'& +2(2y, 20) = PR e
gdzie strona druga jest forma dwdjkowa stopnia 2 p—-2 w postaci
symbolicznej (patrz Rozdzial XII).

Niechaj calkami normalnemi gatunku 1-go beda:

W= ' zP71 (z,dzy — 2,d7y)
= )
'y l/ f(zli Z,
Tl zol' ‘(z,d__zg__—-_-_z?dz)
V f(zlﬂ Z?) ’

v

Calks zasadnicza gatunku 1-go z punktem pojedynczo-nieskon-
czonym niechaj bedzie:
20 — "(»—::(l_:l Pf(z) Vf(l) + (iias atV'H
S 2 (et *
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Rézniczkujac to wyrazenie py—1 razy wzgledem ¢, i ¢, dzielgc
przez (n—1)!, otrzymujemy p calek normalnych 2, Z;,... 2%,
Catka normalna gatunku 3-go niechaj bedzie calka, ktéra Klein
oznacza litera ; ma ona wlasnosé, ze jej tunkcya podcalkowa
jest spotzmiennikiem formy dwdjkowe] zasadniczej: jest
tedy :

1
att

W oy }'mm "':'d;’_ Vi(z). Vfiz
¥ e Vi(2)y Viz) 2 (z2')?

v/ &r

alt!

#

Punktami nieskonczonosci logarytmowej tej
catki trzeciego gatunku sa punkty: =/, ¥ .
Przy pomocy calki () utwérzmy wyrazenie:

i LT
Q)= 4“——(“/) % Yay ;

Vi) fly)

gdzie przey (JZ y-”— rozumiemy wartosé @ wtedy, gdy punkty nie-
skoneczonosci «, /' stajs sie punktami odpowiednio sprzezo-
nemi na powierzchni hypereliptycznej dwupowlokowe) (pun-
ktami sprzezonemi na powierzchni dwupowlokowej nazy-
wamy dwa punkty, z ktérych jeden lezy na jednej, drugi na
drugiej potowie). Wyrazenie to ma wazne znaczenie w rozwa-
zaniach Kleina; nazywa si¢ ono formg pierwotna lub
gltéwng (Primform) i ma te wlasnose, ze nie posiada wcale
rozgalezienia na powierzchni Riemanna; ze ma
jeden tylko punkt zerowy z—y inie stajesie wcale
nieskonczonem .
Funkcye o argumentéw

v u' 2 " 5 )
‘ u,-:{ / + / + TR + f } dl('{, (1.:112)" D)

‘yn ) ‘!/(,.)
mozna okresli¢ niezaleznie od funkcyj #. Utwoérzmy wyrazenie

17, 2 (" '),

M = (T, QD Ty Qg
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w ktérem symbol 7Z; ; oznacza iloczyn, rozciagniety na wszystkie
kombinacye i, k=1,2,...,», symbol za$ II',; takiz iloczyn
z wylaczeniem kombinacyi i=%k Wszystkie fukecyeo
posiadac¢ bedg czynnik M; drugiczynnik zmie-
niaé¢ sie¢ bedziewraz z o, budowa jego zalezy
odrozktadu formy dwdéjkowej f madwa czyu-
nikitakie, zerdzinica ich stopni jest wielo-
krotnoscig liczby 4. Polézmy tedy:

" “+1
f2p+'3 — Pop-1—2p Vppi42p » (‘u=0, IS :ﬂ‘f‘

1 napiszmy wyznacznik D, rzedu 2y, ktérego wiersze tworza
sig przez podstawienie zamiast z odpowiednio

m,, x”, e v .y x(v," y,a y"1 O b0 y(V)
w elementach :
g Vo (2), bl CITIRSNEA el LT e

Wtedy kazda funkcya o bedzie miala wyraze-
nie takie:

Opyp = Mun/z .

Poniewaz mozna uskuteczni¢ 2% rozkladéw foimy [/ na
iloczyn ¢ i, istnieje przeto 2° zasadniczych funkeyj o, z kto-
rych kazda jednemu z tych rozkladow odpowiada.

Funkecyeo daja sie wyrazié jakoiloczyny
funkecyj ® przezczynnik wykladniczy stopnia
2-go wzgledem argumentdw « oraz przez czyn-
nik, zalezny tylko od moduldéw ispélczynni-
kow.

Gdy pomnozymy funkcye o przez s=t8’AT,,A(,; , gdzie Az 4,
sa wyrdznikami form @ i ¢ (jezell stopien jednej z funkeyj ¢, w
staje sie O lub 1, zamiast odpowiedniego wyrdznika nalezy pod-
stawic¢ 1), otrzymamy funkeye, ktéra niektérzy autorowie ozna-
czajg symbolem 7% (np. Wiltheiss, Math. Ann. XXXTII).
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Tak ntworzone funkcye o niestaja sie ni-
gdzie nieskonczonemi na powierzchni Rie-
manna. Stosownie do tego, czy liczba u jest
parzysta lubnieparzystaifunkcya s jest pa-
rzysta lub nieparzysts. Funkcyao odpowia-
dajacaspecyalnejwartoscipy staje sig O# w punk-
cle Uy =uUg=...%,=0.

Dla p—=2 istnieje 10 funkeyj o parzystych i 10 nie-
parzystych, Dlap=3 mamy: 28 funkcyj ¢ nieparzy-
stych. odpowiadajacych rozkladom formy rzedu 8go na formeg
kwadratows i forme rzedu 6-go; 35 funkeyj ¢ parzystych
nie znikajacych dla argumentu zero i odpowiadajacych rozkladom
formy f na dwie formy rzedu 4-go; ostatnia funkcya parzysta,
ktora znika dla argumentu zero, odpowiada rozkladowi formy
danej na funkcye rzedu 8-go oraz forme rzedu zerowego.

Funkeye o czyniag zados¢ pewnym réwnaniom rézniczko-
wym czastkowym rzedu drugiego, dajacym sie przy pomocy pe-
wnych modyfikacyj wyprowadzi¢ zréwnan prostszych, ktérym
czynig zados¢ funkeye .

Dla funkeyj T/ réwnanie takie otrzymal Wiltheiss.

Funkcyeosdajyg sig rozwinagé na szeregi,
ktérych wyrazy postepuja wedlug pobqg ar-
gumentéw, sa funkecyami wymlerneml caltko-
witemi spoluzynnlkow form ¢ iypiposiadaja
wlasnosé niezmiennicza. Jezeli polozymy:

fi2) — 1zt — (p—1) uggg?=22, i ,

to kazdy wyraz bedzie niezmiennikiem jedno-
czesnym trzech formdwdéjkowych P W kaz-
dy znich mianowicie jest typu

(# 12 nte o

\ V4 i v
gdzie skazniki, postawione nad literami g,
®,p, 0znaczaja stopnie wyrazu wzgledem spél-
czynnikéw tych trzech formdwéjkowyech.



§ 8. - - Funkeye o Kleina w przypadku hypereliptyeznym. 411

Klein rozciagnal konstrukcye funkeyj a 1 na przypadek
funkeyj abelowych dla p jakiegokolwiek. Przypadek p==3 zbadal
on potem szczegolowiej; lecz nie mozemy wchodzié w szczegoly
tego badania,

Gléwnemi pracami, traktujacemi o funkeyach ¢ hypereliptyecz-
nych, o ich rozwinieciu na szeregi, o réwnaniach rézniczkowyeh, kto-
rym zado$¢ czynia, sa prace: Kleina (Math. Ann, XXVII, XXXII),
Burkhardta (Math. Ann, XXXII, XXXY), Brioschiego (Ace.
dei Lincei 1888), Wiltheissa (Crelle IC, Math. Ann. XXIX,
XXXI, XXXIII), E. Pascala (Ann. di mat, XVI[, XVIII XIX).
Z prac, odnoszacych si¢ do wspomnianej wyzej konstrukeyi ogélniej-
szych funkeyj o, wymienimy badania: K1ein a (Math, Ann. XXXVI),
Wiltheissa (Gotting., Nachr. 1889), E. Pascala (tamze 1889,
Annali di Mat, XVII, XVII[), Wirtingera (Math. Ann. X1,
Monatshefte, I[). Wyklady K leina, ktore daly poczatek tym bada-
niom nad funkeyami ¢ hypereliptycznemi i abelowemi, mialy miejsce
w Getyndze w latach 1887—1889,




ROZDZIAL XVIHI.

FUNKCYE SPECYALNE,

§ 1.
Funkcya wyktadnicza i funkcya logarytmowa. Llczba e.

Funkcye wykladnicza przedstawia szereg

z?

1+;+2!+.....,

zbiezny dla wszelkiej wartosci zespolonej zmiennej z; oznaczamy
te funkcye symbolem ¢*. Wartos¢ tej funkeyi dla z=1, t. j e
nazywa sie podstawag logarytméw naturalnych;
wartos¢ funkeyi wykladniczej dla jaukiejkolwiek wartosci z jest
potega z-ta liczby e.

Liczbae jest nietylko liczbg niewymier-
ng, ale jest nadto liczba przestepna (pa‘az
Rozdz. XXT). Wartos¢ liczby e wynosi :

e = 2, 71828 182841 59045 23536 02874 71353 . .
log vulg. e==0, 434 294 481 903 251 827 651 128919 . . . . .
]e__-l AR AN GG TS
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Funkeya wykladnicza posiada wlasnosé¢ zasadni-
eza, wyrazajacasiegzwigzkiem:

/(2) .« F(#) == f (2+2),
t.j. tak zw. twierdzeniem o dodawaniu.

Funkecya ¢ jest peryodyczna; peryodem jejjest
27i. Réwnanie ¢=0 nie ma zadnego pierwiastku
skonczonego.

Kazdy pierwiastek rowuania e = w nazywa si¢ logary t-
mem naturalnym liczby w. logarytméw liczby
jest nieskonczenie wiele; kazde dwa rdznig sig o
wielokrotnosé¢ liczby 2. Ilosé z, uwazana jako funk-
cya ilosci w, jest funkeys wielowartosciows o nieskonczenie wielu
wartosciach; pomiedzy temi wartosciami obieramy jedne, w kt6-
rej spélezynnik czesci urojonej zawiera sig pomiedzy —z a -,
(wlaczajac +a). Tym sposobem okreslamy funkecye jedno-
wartosciowgilosciw, ktéra nazywa si¢ funkcys loga-
rytmowa naturalng i oznacza sig przez log, w.

Dla kazdej wartosci w, kté6rej modul jest <1
(zwylaczenia wartosciw==—1)szereg

w*

N — 2- + ig'_ e

jestzbiezny, a wartoscig jego jestlogarytm (w zna-
czeniu scislejszem, o ktérem dopiero co byla mowa) iloseci 14w
t. j. log,(1-4+w); czesé urojona tej funkeyi zawierasig
: B2 L]
pomiedzy -~ g 2+ 5
Mozna, wedlug Riemanna, okresli¢ funkeye logarytme-
wy ogolna jako funkcye, czyniaca zadosé zwiazkowi funkeyj-
nemu:

f(0.10) = f(w) + f@r);

wtedy tunkcya jest oznaczona, gdy sig pominie stala mno-
zaca. Z tego zwigzka mamy f(1)=0, f(0)=occ. Rdzniczku-
jac, wzgledem w, 1 kladac nastgpnie w,=1, otrzymujemy
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wl(w)=/"1), astad, gdy oznaczymy [f(1) przez M (modul),
bedzie:

fiw) = M' --’i'-f’

Funkeya tak okreslona jest funkeya odwrotna wzglgdem funkeyi
typu =A% liczba 4 nazywa sig podstawa.

Jezeli modul M=1. wtedy funkeya logarytmowa sta.Je sie
natiuralna; jej podstawa jest liczba e.

Funkecyalogarytmowa nienaturalna réwna
sie funkcyinaturalnejpomnozonej przez sta-
ta (modub).

Gdy zmienna w okrazy punkt zero i powréei do punktu
wyjscia, znajdziemy wtedy na funkcye logarytmows wartose
rézng od pierwotnej, a wiec bedziemy mieli nieskonczenie wiele
wartosci. Uczynimy jednowartosciowsg te funk-
cye, jezelina plaszczyznie w przeprowadzimy
ciegcie od punktu zero donieskoficzonosci (patrz
Rozdz. XIII, § 4).

Dla argumentu rzeczywistego otrzymujemy zawsze wartose
rzeczywista funkeyi logarytmowej naturalnej. Taks wartosé
bedzie mozna wtedy wprost okresli¢ jako liczbe rzeczy wi-
sta 2z, czyniagca zados¢é réownaniu ¢*=w dla danej jakiejkolwiek
wartoscl rzeczywistej na w. Te liczbe nazywamy zwykle loga-
rytmem naturalnym lub hyperbnlicznym (poniewaz
moze sluzyé do kwadratury hyperboli réwnobocznej). Dzielac
liczbe z przez

log e = 2, 30256851

lub mnezac przez
1
M= B10 =0, 43429
otrzymujemy logarytm zwyczajny lub dziesietny
Briggsa, (od nazwiska autora, ktéry prerwszy sporzadzit ich
tablice wr. 1617). Liczba M nazywa sie zwykle modulem
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ukladu logarytméw Briggsa. Adams obliczyl te liczbe
(Proceed. of the Royal Society 1878, str 73) z 282 cyframi dzie-
sietnemi. Logarytmy zwyczajne okresla sie zwykle jako roz-
wiazania rzeczywiste réwnania wykladniczego 10°=w dla
wszystkich wartosei w. Dla logarytmdéw naturalnych podstawa
jest ¢, a modulem 1; dla logarytméw zwyczainych podstawa jest
e

10, modutem Tog,10 = 0, 43429

Logarytmy, utworzone pierwotnie przez Nepera 1614),
nie byly wlasciwie logarytmami naturalnemi. Te ostatnie
zbudowano po raz pierwszy w r. 1619 (New logarithmes, Lon-
don, 1619). Logarytmy Nepera, znajdujgce sie w dzie-
fach ,Canonis descriptio* (Edynburg 1614) i ,Canonis con-
structio® (tamze 1619) maja podstawe zmienng. Jezeli przez
Lu oznaczymy logarytmy N epera, przez log, « logarytmy na-
turalne bedzie;

La @

i 18 =0

a wiec podstawa logarytméw Nepera zmienia sie wraz z a.
I dla tego to pierwotne logarytmy Nepera zarzucono i za-
stapiono je logarytmami naturalnemi (ktére nazywano tez nepe-
rowemi).

Nalezy sie tu wzmianka logarytmom dodawania
1odejmowania, zbudowanym po raz pierwszy przez L e o-
nelltego, anastepnie.przez Gaussa (Werke II, IIT) przy
pomocy ktorych, majac logarytmy dwu liczb a, , mozna znalesé
logarytm ich sumy i réznicy. 'Tablice te skladaja sie z trzech

. £ a & el 1
kolumn: w pierwszej wmieszezono log m, w drugiej log (1 —1—--‘; -
w trzeciej log (14+m). W kolumnie pierwszej szukamy:

log @ — log b = log ;f (w zalozeniu log ¢ > log b)

w drugiej:
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log (1 - ai) = log —uit—l{ = log (¢}+0) — log «,

1 stad juz znajdujemy log (a+5). Podobnie moznaby poslugiwac
sie kolumng trzecig. Tablice takie znajduja si¢ w wielu podrecz-
nikach logarytmowych, np. w podreczniku K éhlera.

V7]

2.
Funkecye kofowe i hyperboliczne.

Funkcye kolowe ,wstawa“ i ,dostawa“ okreslajg sie ana-
lityeznie dla jakiegokolwiek argumentu rzeczywistego lub zespo-
lonego przez wzory:

AR LS

22 Z

cosz=l—————_)T+—-—--— ..... 3

szeregi po stronach drugich sa zbiezne dla wszelkich wartosci 2.
Przy pomocy tych funkeyj okreslamy nastepujace :

sin 2 cos 2
tg 2 = - , COtg 2 = —— , 568 2 — ——, COS€eC 2= —— — .
? cos & : sln 2 cos 2 sin 2

Dla dwéch funkeyj sinz, cosz ma miejsce
zwiazek zasadniczy sin’z 4 cos’2=1. Dla argu-
menturzeczywistego funkcye kolowe sa rze-
czywistemi.

Nie bedziemy sig¢ tu zatrzymywali nad dobrze znanem
przedstawieniem geometrycznem tych funkeyj w przypadku,
gdy z jest rzeczywiste.

Funkcye kolowe sg peryodyczne; modulem
ich peryodycznosci jest 2z
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Wzorami gtéwnemisagnastegpujace:
sin (¢ + &) = sin 2 cos z;, =+ cos z sin 2,
cos (¢ = 2,) = cos = cos 2, - sin Z 8in 2, ,
sin (2 4 2, + 2,) = sin 2 cos 2, cos z, | sin z; €OS 2; COS 2,
~+ sin 2, cos z cos &, — sin ¢ sin z, sin 24,
cos (2 + 2, + 2,) = cos 2 cos z; COS 2, — €Os Z 81N Z,; SIn 2,
— €08 z; sin z sin z, — COS 2, sin & sin 2, ,

tg 2z + tg z,
1 Ftgztgz

&
-
~—

H tg(z+zl+z?+ Sk ') =1 X Sg—f—b';—' %, :

gdzie przez S, rozumiemy sume stycznych argumentow pojedyn-
czych, przez 8, sume iloczynéw stycznych argumentéw, branych
po dwa, przezS, sumeiloczynéw argumentow,branych po trzyit.d.;

sin z 4+ sin 2z, = 2sin £ (2 &+ 2z;) cos & (2 F 2),
cos z +cos 2, = 241 4 (2 2)em L (2 — 2,),
4 e zIz,) 7 ziz,)
A o) i e S R S [ ST
COS 2 - 8s1n z; = Sm(4 B) cos(4 5 5
sin (z =+ z,)
T i o - R T el o
g2 L a ¢OS 2 COS 2,
& dy (5 )ral 9 L 3 2 t’gZ
sin2z = 2sinzcosz, cos 2z = cos®z — sin?ez, thz:l—_jt—gTz—z,
sin3dz = 3sinz — 4sin*z; cos3z = 4 cos?z — 3 cos ¢,
t — t, 3
S, e aitige — ) te ks ke ,
1—(n), tg* z 4 (n), tg* z—|— 3
'1—cos 2 / 1+4-cosz ] 1—cosz
7 = Rl i o e=— = Sy
Z _'tI ; Gl b i_l S Rk -} 1+4-cosz

Bamcal, Rep. T 22
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~Funkeye kolowe sg zwigzane z funkcyami
wykladniczemi za pomocsg godnych anwagi
zwigzkdw Eulera:

e — e— ¥ erz+e~iz
.

RNl gy CO8 Z = 5 , ¢ = cosz —isin 2.

Funkceya ,wstawa“ dla argumentu czysto urojone-
go iz, gdzie 2 jest rzeczywiste, jest iloscia urojons czysta, stad

sm( iz)

funkcya (z rzeczywiste) jest funkcya rzeczywista. Dla

tegoz argumentu czysto urojonego funkcya ,dostawa“ jest funk-
cya rzeczywista, funkeya zas ,styczna“ jest funkeya rzeczywisty
po podzieleniu przez i. Te funkeye rzeczywiste

"l.n,"{) : tg (7 2)
. -

nazywaja sie funkcyami hyperbolicznemi i ozna-
czaja si¢ odpowiednio za pomocs symboli:

sinh z, cosh 2, tgh 2.

Z tych okreslen wida¢ odrazu, ze funkcye hyperboliczne po-
siadaja wlasnosci, podobne do wiasnosci funkeyj kolowych; wzo-
ry dla pierwszych wyprowadzajg sie z wzoréw dla drugich przez
podstawienie isinh zamiast sin, cosh zamiast cos, itgh zamiast
tg. Wzoramiwykladniczemi dla funkcyj hy-
perbolicznych sg:

sinh z = —e‘——o—e—', coshz=e+Tr

Zwigzek zasadniczy pomiedzy wstawgs
idostawag zamienia sie na nastepujacy:

cosh? z — sinh? z = 1.

Funkeye hyperboliczne otrzymaly swoja nazwe z powodu
wlasnoscl nastepujacej:
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Jezeli nakreslimy hyperbole réwnoboczna, ktérej réwna-
niem (w odniesieniu do osi hyperboli) jest ?—y?=1 1 jezeli przez
z oznaczymy pole podwéjne wycinka hyperbolicznego, ograni-
czonego osig x, promieniem wodzacym OA (idacym ze srodka O
hyperboli de punktu 4 na niej) oraz galezia same] krzywej, wte-
dy spolrzedne x, y punktu A beda réwne odpowiednio dostawie
1 wstawie hyperbolicznej ilosei 2.

Jezeli poprowadzimy styczng w wierzcholku M hyperboli
az do przeciecia sie w punkcie 7' z promieniem wodzacym OA
1 przez punkt 7 poprowadzimy réwnolegla do osi « az do
punktu przeciecia sie L z okregiem, opisanym z punktu O pro-
mieniem OM=1, wtedy kat 7z=LOM nazywa si¢ kgtem
przestepnym Lamberta; funkcye hyperboliczne wy-
razaja sie przez funkcye kolowe kata Lamberta w ten sposcb:

A 1
sinh z = tg 7, cosh' z/&== “iiE)
: coS 7

Funkeye hyperboliczne badali w wieku zeszlym Riccatii Lam-
bert; znakowania pierwszego z nich zostaly powszechnie przyjete.
Nastepnie zajmowali si¢ niemi: Gudermann, ktéry zbudowal obszerne
tablice (Crelle VI, VII, VIIl) i Mossotti. Z nowszych autoréw pisali
o nich: Hoiiel. Laisant (Mém. de Bordeaux), Giinther (Die Lehre
von den Hyperbelfunctionen, Halla, 1881), Forti, ktéry oglosil nowe
tablice tych funkeyj, (Rzym, 1892). Szczegoly bibliograficzne i do-
kladna historye tego przedmiotu znajdzie czytelnik w dzielach ostatnich
dwu autorow,
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§ 3.
Funkcya Bernoulli'ego. Liczby Bernoulli'ego i Eulera.

Funkcya luob wielomianem Bernoulli'ego
nazywamy wyrazenie:

"
PulZ) = 2" — 52" + (), Baxm=2 — (m), Bya™*—..:,
—

w ktérem B, B,,,....sa t. z. liczbami Bernoulli'ego
(Raabe, Crelle XLII).
Istnieje wzor:
Pt (@+1) — @t (.1:‘) = (m+1)z";

Dla x=n calkowitego dodatniego jest:

Pu () = m[1"' 201 L (n—1) ]

Wielomiany Bernoulliegodlazcalkowitego daja tedy wyra-
zenie sumy jednakowych poteg pierwszych x—1 liczb catkowi-
tych (przy pominigciu czynnika liczbowego).

Liczby Bernoulli’ego sg spoleczynnikami rozwinie-

3 . xe* s=0 ela = AR
cia na szereg funkeyi O jezell mianowicie rozwiniecie na-
piszemy w postaci:

N 4 B
14+4a+ - o R, il R ST
to liczby B beda liczbami Bernoulliego. Liczby te maja

zwiazek ze¢ spélezynnikami rozwiniecia stycznej. Jezeli na-

piszemy:

:c‘) gzr’—l
tg.’l) == ‘1, ﬂzm ( )Ilt l)' )

bedzie:
22101 (22111 2 S 1)
Pem = 2m Bom .
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Liczby Bernoulliego wyrazaja sie przy
pomocy  réznic wyrazenia 0” (patrz Rozdz. X) w ten
sposob:

B 1 1 1
— Y | DA, wi A g7\ O "m_ i m ()2
om = (—1) !0 5 A2 —r—BAO- —1—2”2_“.\ 0 l

: Przez wyznaczniki liczby Bernoulli’ego
wyrazajasig tak: \

15 O S8 2 IR () 1
3),, 10027 T e e B F A N () ol i
2m (), (B IR ) o

fem—_—‘W—:l—) ‘ (Haussner),

2m—3),, 2m—3),, . . . , L. 1!

1 |
< il 0, $(0,
ﬁ_lf L -21, $ et T Gl 30
By = (2m)! ; : (Glaisher),
] 1 1 1
Om+1)* @m)1” @m—1)° .7 T3

Godnymuwagi jest wzor:

lim Dy,
M=0c0

1
( e )'lm-}« o

Istnieje bardzo wiele wzoréw zwrotnych dla liczb Ber-
noulli'ego. Najdawniejszym jest wzér Moivrea (Miscell
anal. Londyn 1730) :

t-1), Doy — (241), s 0 oo (1)1 (Zunet 1oy By - (—1)" (- §) = 0.
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Nastepnie idzie wzér Jacobi'ego (Crelle XTI, str. 263):
(2m+2)y Boy— (2m+2), Boys—-... (= 1)" =1 (24 2),,, By—-(—1)" m=0.
Wzir Sterna (Crelle, LXXXIV):
(2m+1)y Byy—2m41), By o4 ... H(—1)"""(2ue+ 1), B-H(—1)" § =0,

Inne wzory zwrotne znalezé mozna w cytowanej ponizej ksiazce
Saalschitza.

Do liczb Bernoulli'ego stosuje sie nastepujace wazne
twierdzenie v. Staudta i Clausena (Crelle XXI, Astr.
Nachr. XVII, 1840):

Jezelia, B,7,...88liczby pierwsze niepa-
rzyste, ktére, zmniejszone o jednosé¢, daja
dzielnikiliczby 2m, to wtedy:

Bow = licabie calk. -+ (— 1| LRI SN etk AR X

R l

Mozna otrzymac wzory zwrotne tylko pomiedzy czesciami
calkowitemi liczb Bernoulli'ego; wzory takie podali po raz
pierwszy Hermite (Crelle, LXXXI) i Stern (Crelle, LXXXVI),
a nastepnie ogélnie Lipschitz (Crelle, XCVI).

Spoélezynniki frozwinigcia styczne] (patrz
wyzej) sa liczbami calkowitemi, ktére koncza
sie naprzemianna cyfry 216, poczynajac od
B = 2.

Liezby Bernoulliego otrzymaly swa nazwe od Jakodba
Bernoulli'ego, ktéry wprowadzi! je po raz pierwszy do analizy
(,Ars conjectandi“, Bazylea, 1713); te nazwe nadali im Moivre
i Euler. Bernoulli obliczyl 5 pierwszych z tych liczb, Euler
obliczy! ich 15, O hm 31 (Crelle XX), Adams 62 (Crelle, LXXXV),
Blizsze szezegoly o liczbach Bernoulli'ego znales¢ mozna w dziele
Saalschiitza ,Vorlesungen itber die Bernoulli'schen Zahlen*
(Berlin 1893). :

Prace dalsze otym przedmiocie oglosili: Glaisher (Mess. of. Math.
1876), Seidel (Miinch. Akad. 1877), Radicke (Die Recursionsfor-
meln fiir die Bernoulli'schen und Xuler'schen Zahlen, Halla 1880),
Haussner (Gottinger Nachr, 1892, Zeitschrift fitr Math, 1894)it. d
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Oto tablica pierwszych 18 liczb Bernoulli'ego.

1 1 1 1 5
32:'8'", B4=37)7 Bs=4_2, B, =%a -B]G 5= 66’
T SRl e
P =grgp Pu T g fu= B0 P = 798
174611 8645613 236364091
B, =335 - 522-——138* ¢ B"‘:W
= 856563103 23749461029
By o MX M
p _ SGIBBLI2TG005 . 7709321041217
WS TR T et e N
2577687868367 3 263152715663053477373
T TR T L g ’

Pokrewnemi z liczbami Bernoulli’ego sg liczby Eulera,
odpowiadajace spélezynnikom rozwiniecia siecznej. Jezeli po-
Tozymy :

[ - q?m

sec x = X K, -
o e

to liczby E), bedsg liczbami Eulera. Wyrazaja si¢ one
przy pomocy wyznacznikéw w ten sposéb:

Bl IR o T
1, 4)., 15 a0 |
1l ) Sl e A |
o= (Haussner)
1, 2m—2),, 2m—2),, . . . , 1
1. 2m),, P T e CRSRER R (O B !
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1
—2_!ﬁ 1, 0, & - 5 . ’ 0
1 i
¥ 90 1 T R
sk (Glaisher)
s 1 L 1
@m!’ @m—2)° @m—4)i’ ° 9

Liczby Eulera dajgsie wyrazié przez licz-
by Bernoulli’'ego przy pomocy wzoru:
2m-+1) E,, = 2271 (2+1—1) (2m—-1), Bim
— Qen—1(Qem—3__1) (2m-1), By—s
+ (=123 (2—1) 2m+1)em_y By, + (—1)
Jezeli wprowadzimy wspélezynniki g rozwiniecia stycznej,
otrzymamy wzér Sterna:

EZDI s ﬂ2m + (2'm/ 1)2 E2 ,B’m——z + (9”1—1)2m—2 EZm—?ﬂz v
Wzor zwrotny dla liczb Eulera jest nastjpuiacy:

E?m S (27’1)? Eem—z + (2"‘)4 E2m —4
A (— 1)t (2m)as £y + (=11 = 0

Podajemy jeszcze dwa wzory :

~2m > -‘2"}" ﬁZm s E2m > Mam:ﬂ— .':lm—l'

Liczby Eulerass wszystkie liczbami cal-
kowitemi, dodatniemi, nieparzystemi. Suma
dwu liczb kolejnych jest podzielna przez 3.
Liczba E,,}1 dla m parzystego, liczba zas E,,—1
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dla m nieparzystego jest podzielna przez 3.
Liczby E,, dla m parzystego konczg sie na cy-
fre 1, dla m nieparzystego na cyfre b.

Pierwsze dziewieé liczb obliczyl sam Euler (dziewiata blednie)® °
Liczby te badal (i nadalimnazwe) S ch e r k (Math. Abh., Berlin 1825);
pdzniej zajmowalo sie niemi wielu autoréw, zwlaszeza ci, ktérzy badali
liczby Bernoulli’ego. Stern (Crelle, LXXIX) znalazt wiele
ich wlasnosei.

Podajemy tu tablice pierwszych czternastu liczb Eulera
E, E,E,...,E,, wedlugScherka:
1. 5, 61, 1385, 50521, 2702765, 199360981, 19391512145,
2404879675441, 370371188237525, 69348874393137901,
155145344163557086905,  4087072509293123892361,
1252259641403629865468285.

§ 4.

Stata Eulera. Stata harmoniczna.

Znany jest wzér Eulera, sluzacy do wyrazenia catki réz-
nicowej okreslonej (sumy) przez calke zwykly tej samej funkeyi
(patrz Rozdz. X). Wzor ten jest:

b

E/@ = [ @ ds—4[f@k+ 5 [f@l

“

B I 3
_T!‘” YR ety

tu B,, B,, . .. saliczbami Bernoulli'ego.
Polézmy a=0, b=wx, wtedy wzdr przybiera postac:

i o . gy
2 f@)= ‘ fla) de — = fla) 4 5 £(2) — ¢ F7'(@) +... stala
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gdzie wyraz ostatni (stala) nie zalezy oczywiscie od , a przez
éymbol {f(m) dxr rozumiemy calke nieokreslonsa funkeyi
f e lsoléz'my:

e
a-thx

f(x) = LA b['x-

r.’f(w)dx:b'og o

stala w tym przypadku nazywa si¢ stalsg harmoniczna,
poniewaz suma po stronie pierwszej jest wtedy suma pierwszych
wyrazow szeregu harmonicznego pierwszego rzedu (rozbieznego):
Stata harmoniczna zalezeé bedzie od warto-
$ci ai b, oznaczamy ja przez A(a,b). Dla a=0, b=1 bedzie
ona stalag Eulera, ktérg oznaczamy przez 4.

Stale A(a,b) i A okreslajg sie tedy za pomocs wzordw :

1 a e St ) 13,h%
A(a,[)): ‘Tlog7+ ﬂ + ?,l’) — Li—‘i— _Jl“ ......
. 1 B, B
B e TN )

Mamy zwiazki :

A(a,b) — A (b—a, b) = :— cotg % ¢
1 «
A (a, D) w= b—A(T. 1).

Wartos¢ statej 4 z 26 cyframi dziesigtnemi jest:
4 == 0, BT721 56649 01532 86106 06512 + . . . .

Przez calki okreslone stala A wyraza sig w ten sposéb :

1

"log log zdz = — 4, (Mascheroni)

0
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o e e s T e
./ (e 13 1—{—1:) x —_"j ( 1+x2) TR '
0 0

o) 1 1 .+oo
f(I$F“‘ J/‘.) e—wda;_—_A;'/ e— i = — A,

1
Pl i
f (logm 8 1—a¢) dx = 4; (Legendre)

]

(o]
e~ ?logxdr = — 4.
0
Przez szereg oraz przez iloczyn nieskonczony stala Eulera
wyraza sig w ten sposob:

1

w1 1y) oo o
ey Ea\" [WEOR T 5 o A g
=, log (1 + n)/ 4; log {11 l 4
n

Stals 4 napotykamy w teoryi tunkcyj Eulerowych.

Euler obliczy! te stalg najprzéd z 6, potem z 16 cyframi dzie-
“sietnemi (,De numero memorabili etc*, Acta Petrop. V, 1781) i ozna-
czal ja litera y. Nastepnie zajmowali sie¢ tym przedmiotem: Ma-
scheroni (Adnotationes ad Euleri Cale. ete), ktéry obliczyl stala do
20-ej cyfry, Legendre do 19-¢j, Soldner do 26-ej, Lindemann
(Grunert, Archiv XXIX) do 35-ej, Oettinger (Crelle LX) do 40-ej,
Nicolai do tyluz (patrz Gauss, Werke Il str.154), Shanks
(Proc. Roy. Soc. 1866 —1867) do 59 eyfry (50-ta cyfra jest bledna);
Glaisher (tamze, 1871) do 100 i wreszcie Adams (tamze 1878 oraz -
,Papers“ I, str. 469) do 263 cyfr dziesigtnych.. O stalej Eulera
oglosil prace Knar (Grunert’s Archiv XLI, XLIII). Funkeye 4(aq,1)
badal Gauss w rozprawie o szeregu hypergeometrycznym (Werke IIT).
Tablice wartoseci tych funkeyj podal Nicolai; znajduje sigonana koncu
wspomniane] rozprawy Gaussa,
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e/
(@]

Funkcye Eulera.

Legendre (Fonctions elliptiques, vol. I, str. 365, Paryz
1826) nazwal po raz pierwszy funkcyami Eulera gatunku
pierwszego idrugiego funkcye, badane przez Eulera
(Calec. integr.), a o ktérych obecnie méwié bedziemy.

Calka Eulera gatunku 1-go, jak byla pierwotnie
okreslona przez Legeudre’a, jest:

1
9

“B(p, ¢ )= / w07l —ar)n L dw;

0

tu n jest liczba stala; p, ¢ liczbami zmiennemi, tak ze B jest fun-
keya ilosci p, ¢. Legendre, idac za Eulerem, oznaczal

te funkeye symbolem (]—;) Nastepnie Binet (Journ del Ecol.

polytech. zesz. XXVII) zaczal oznaczaé¢ te funkcye litera grecka
B i dla tego nazywaja ja funkcya beta. Przypadek n—1
rozwazany bywa w podrecznikach; symbol uproszezony B (p,q)
pisze sie¢ zamiast B (p,q, 1).

Funkecya beta dla n=1 jest symetryczna wzgledem p, ¢, t j.

B(p,q) = B(q,p)-

Wartosci funkeyi B (p, ¢; n), gdy p, ¢ s3 wigksze od n, wyra-
zajg sig przez te funkeye dla wartoscip, ¢, zawarte pomiedzy 11
(Legendre). Mamy:
l
B (p,n; n) =711 ; B(p,n—p;n)= .

. T
S1n-——
n
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Bp.g+1;1) = 1”7 B(p+1,¢ 1),

B(p,q+1:1) = B(p,q; 1) — B(p-+1, ¢ 1).
Funkcya B czyni zadose zwiazkowi (Eulera):
B (b, q;n) B(p+q,135m) = B(p,r;n) B(p+r,q;n).

W przypadku n==3, 4, 6, 8, 12 funkcya B daje sie wyrazié
za pomocsg calek eliptycznych (patrz Legendre, 1. c. Rozdz.
iIT) Logarytin funkeyi B daje sig wyrazié za pomoca calki
okreslonej. Zakladajgc n=1, mamy:

1 PSS oo 1—e—ve e

==1C

log B(p,q) = /
o
Nazywamy calka Eunlera gatunku 2-go i ozna-
czamy litera I' funkcye :
. '1 1 —1
1 — m—1 T ¥ o
iEa(g) == I & (log x) da.
0
Bez zmniejszenia ogdlnosci rachunku, mozemy przyja¢c m=1,
1 kladac 2™={, napisaé:

n» (Z) = — 1'1 (Z).

”‘?l
Pisze sie wprost (Legendre):

pAC,

® L =1

20(2) =’ (log J;) dx .
0
Euler 1 Gauss uzywaja symbolu I1(z - 1).
Jezeli z jest liczbg calkowita, mamy:

I'(z) = (z—1)!
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Funkcya I"'jest skonczona dla kazdej war-
toscirzeczywistej z, wiekszejod O.-
Inne wyrazenia funkeyi I' sg :
1‘(z)==‘ et wi=kde,

.
0

y e l)w —2).
B — f}gn ! S (z+,u _1) (E nler, Gauss),
=l
R
FP@e=1I -8 (Buler, 1729).
= z—1
=00 1 : I- ~
M

Funkcya I"'ma wlasnosci, wyrazajace sig
Za pomocag zwigzkow nastepujgcych:

I'(z4+1) = 2I'(2); (z+k)= (z+k—1) (z-+k—2) ... 21'(2),

arz Ty o i O
T, I'(2) l-ogz, ') I'l—z) = W

o : Y 41 SR
et it coszn’ =0 DP(2) @’
F(z—[—%)=—1—'~3-—§—@z—-_1—) Va, (z catkowite)

1 - 3 185
P(—2-)=Vn, F(E')—:—.z— V:’t, .....
Vr I'(22)

(41 = g T (dla z jakiegokolwiek)

) 2 g el Té:l ‘%‘ (m catko-
1"(-”—')1*(*) ..... 1 ( = )_ G F e (e
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m—1\
")
m—1

= I'onz)(2n) 2 m? ', (m calkowite, z jakiekolwiek
Gauss, Werke IIL str. 150),

') z-f-%)lv’(z—f- —) Hoice F(z—}—

m

2

e —e"1 du
l—e * | x

log I'(2) = }Oi (z—1) e== —

Z(1)=A jest stalg KEulera.
‘:—H
‘ log I'(x)dx = zlogz—2+ & log2x. (Raabe).

Wartose funkceyj I'(z), gdy 2 przyjmuje wartosci od O
do 4, zmieniasie od co do Vm=1, 77245, a dla wartosci z,
od 4 do 1 zmienia sie od Va do 1. Funkeya I'(z) ma
wartos¢ najmniejszg dla z=1, 4616321451106 ... .,
a wartos¢ log I'(¢) w tym punkcie wynosi 9, 94723 91743 9340,
co odpowiada przyblizenie wartosci I'(z) = 0,885... .

Droga od 2=0do 2=1 zwykle nazywa si¢ peryodem
pilerwszym funkcyi I, droga od 2=1do 2=2 peryo-
dem drugim i1t.d. Zréwnan poprzedzajacych wida¢, ze
znajac funkcye I'dla peryodu pierwszego, mo-
Zemy wyznaczy¢ja latwo dla kazdej innej
wartosci zmienne]j.

Mozna ndowodnié ogdlnie, ze znajac funkeye I'(z) dla dowol-
nie matej czesci peryodu pierwszego, mozemy wyznaczy¢ ja dla
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kazdej wartosci argumentu, t. j. mozemy za pomocs $rodkéw
elementarnych wyznaczyé jej wartosé dla kazdej wartosei #
(Legendre, L c. str. 446, Rozdz. XI).

Funkcye I' sa wazniejsze od funkcyj B; rachunek tych
ostatnich sprowadza si¢ do rachunku funkcyj I' przy pomo-
cy wzoru zasadniczego

r()r(2)
B(p, q;n) = o _+,v’,,
wL
Dla 2=1 mamy:
I'(p) I
B(p,q) = _T‘(%-f;’)l—)

Tym sposobem rachunek funkcyi B o dwu argumentach
sprowadza sie do rachunku funkeyi I'o jednym tylko argumen-
cie. Do rachunku liczbowego funkeyi log I'(z) Legendre sto-
sowal szeregi rozbiezne, ktére wszakze obliczone w pewien spo-
s6b prowadzily do dostatecznie wielkiego przyblizenia. Wzdr,
stosowany przez Legendre'a, malo rézni sie od nastepujacego:

logI'(z) = (¢ — %) logz—2 - Llog2x + J(2),

gdzie

S B, B,
J(Z’_% .3 428 T 5.6.z% +

_L ( r f BerfZ
(2r1) (2r+2) s+’
gdzie B sg liczby Bernoulli’e go, 0 liczba zawarta pomiedzy
0al. Jezeli przedluzymy szereg po stronie drugiej poprze-
dniego wzoru, otrzymamy szereg rozbiezny.
Wyrazy tego szeregu najprzod zmniejszajs sie, a nastepnie
rosng bez granic; mozna przeto znales¢ taka wartos¢ 7, aby
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reszta byla mozliwie najmniejsza, a obliczywszy nastepnie wy-
razy az do tej wartosci 7, otrzymujemy przyblizenie, wystarcza-
jace w praktyce. Nadto wzor staje sie bardziej przyblizonym,
gdy z jest wieksze, gdyz mozna wykaza¢, iz wyraz najmniejszy
maleje bystro wraz z wrostem ilosci z. Na tej podstawie Le-
gendre zbudowal tablice wartosci log I'(2) z 12 cyframi dzie-
sigtnemi dla wszystkich wartosci z, stanowiacych postep aryt-
metyczny od 1do 2 z réznica réwna jednej tysiacznej. Wyzna-
czenie skaznika » wyrazu o wartosci najmniejszej bylo przed-
miotem badan Genocchi'ego (Mem. Soc. It. VI) i Limbour-
ga (Acad. de Belg XXX). Patrz takze ,Cours d'analyse“
Hermite'a. Dla funkeyi I istnieja tez tablice Gaussa
z 20 cyframi dziesietnemi.

Rozciagniecie funkeyi I'(g) (okreslonej dla wartosci rze-
czywistych dodatnich argnmentn) na wartosel rzeczywiste uje-
mne zmiennej z uskutecznil juz Legendre pray pomocy wzorn
I'(1-}z)=21'{2), w zalozeniu, Ze w tym wzorze wartos¢ z ujem-
ne zawiera sie pomiedzy —1 a 0. Ten wzor okresla wtedy funk-
cye [' dla wszystkich wartosci ujemnych pomiedzy —1 a O
(pierwszy peryod ujemny, wedlug Legendrea);
w tenze sposob idac dalej, mozna okreslic funkeye I dla wszyst-
kich wartosct ujemnych zmiennej z. Znajdujemy wtedy, ze dla
e=—1,—2, —3,... funkcya I'jest nieskonczony. oraz ze po-
miedzy 0 a —1 jest njemns, pomiedzy —1 a —2 dodatnig i t. d.

Rozciggniecie funkeyi I' na cate pole zespolone zapoczat-
kowal Weierstrass (Crelle, [.I), rozwazajac zbieznose ilo-
_czynu (badanego juz dawniej przez Eulera i Gaussa,

Werke I1I, str. 145):

(u—1)! w?

wip+1) ..o (ud=z—11"

gdzie z jest liczby zespolong. Otrzymujemy tym sposobem funk-
cye I'(2) ogélna, majaca dwie wlasnosci charakterystyczne:

lim l__(iz_+ ) = ULy S8 (2=l = (R

=0 ((ll — l)' a8

Pascal. Rep. I 28
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ras
Ld
-~

Funkeya I'(2) dla wartosci 2 zespolonych jest funkeys
jednopostaciowa ‘w calej plaszczyznie, majaca nieskonczonosei
rzedu pierwszego w punktach z==0, —1, - 2,... 1 osobliwosé
istotna w punkcie nieskonczonosei na plaszezyznie; od wrot-
nosé tej funkceyijest funkeya holomorficznag
w calej plaszezyznie i wyraza sig waznym
wzorem Weierstrassa:

1 z {1+ )+ ]
s A i e »
ey | kO &

Funkcya I'z) daje sie rozlozy¢ na sume
dwu funkeyj: I'(z)= Q(2)+ P(2). obu jednowartosciowych;
pierwsza 7z nich jest holomorficzna, druga meromorficzng w calej
plaszczyznie. Pierwsza wyraza sie w ten sposéb:

Q) = etz + 22 -« ... L.
gdzie
6= 7’ e?log" @ e -
1
druga zas
S 1 1
P(z) = — — Tz 1) + T T

uwidocznia nieskonczonosct rzedu pierwszego funkeyr ['(z).
(Twierdzenie Pryma, Crelle LXXXT]). Dowdd tego twierdze
nia znajdujemy w cyt. pracy Prymaorazu Pincherlego
(Rend. Palermo 1880)1 w ,Cours d’analyse“ Her mite'a.

Funkcyal'(z) niemoze byé calkg réwnania
rézniczkowego algebraicznego (Holder, Math.
Ann, XXVIII, 1886).

Podajemy tu szereg wzoréw, odnoszacych sie do funkeyi I’
oraz jej pochodnej logarytmowej Z:
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k! I (—%) I'(p+1)

% oI5+ +1)

, (Plana, Crelle,
XVII).

.i—a:Il 7; \ s
{ - 20l de = Z(p+q) —~ Z(q)
-0 s,

1 v

ey Ak i e S B p—il)
)/1 = (la,—TZ(—4-~) v—d(—~ / (Legendre)

J 1qz i 4
gk y e e
e a ) p
‘ I QZZ(“'*ZIJ ) zhd( z(;)
0

20— b s 7
1‘ .;—- :L ﬁ./:i— R o A

o0
' a?—l gin g dx =

.
]

4 (:") sin EB;

«©
- I'p pn
pp—1 -
' xr—1cos g dx m cos =5
i vz
’ ar=1 M (grx) do = —— e o I'))it‘ (Raabe).
) rVqr 49

Pierwszy wazny, cytowany juz wyzej, traktat o funkeyach I" oglosil
Liegendre. Gauss polozyl podwaliny teoryi tej funkeyi przy pomocy
wzoru podanego na str, 430. Poisson (Eec. Pol. Cahl. XIX). Jacobi
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(Crelfe XI), Dirichlet (Crelle XV, Werke I str. 271) prowadzili
dalsze badania w tym kierunku, [nne prace, précz cytowanych juz
Pryma, Weierstrassa i innych sa: Cauchy (Exerc,), Crelle
(Crelle, VII), Plana (Crelle XVII), Piola (Opuse. mat. e tis, Me-
dyolan 1832), Schlomileh (Analyt. Studien VI), Brunel (Mo-
nographie, Bordeaux 1885 oraz Enoykl. der Math. Wiss. II, 1, Lipsk
1899). W nowszej pracy bada Blaserna (Acc. Lin, 1895) funk-

d|zZ(z+41)]

7 T
Patrz art. [.ercha (Prace mat. fiz., X| 1899—1900).

i podaje tablice jej wartosci,ktora obliczyl A. Sella.

6.

7

Funkcya hypergeometryczna.

Nazywamy funkcya hypergeometryczng funk-
cye, ktora przedstawia szereg

w(a+1) b6 (0+1)
Hemie -~

gdzie a,b, ¢, z sa liczby zespolone jakiekolwiek. Jezeli jedna z dwu
liczb a, b jest liczba calkowitq njemna —mn, szereg urywa sie
1 staje sig wielomianem calkowitym stopuia n tego; jedynie tylko
w tym przypadku mamy wielomian.

Jest widocznem, ze funkcya F' jest symetryczna wzgle-
dem a 1 b.

Prostemi przypadkami szczegdlnemi szeregu hypergeome-
tryeznego sy :

Fa,b,e,2) =1 + {z'lj 24

szereg dwumianowy F(—m, b, b, 2)==(14+2)",
szereg logarytmowy  F(1 1,2, —z) = zlog (1+42);
oraz

F (i,

DO =
NI (o}
N.
9|
ae

ot

=5 F(l, B —Z—):e‘;

Wy



§ 6. — IMunkeya hypergeometryezna. 437

i l""b b, ) sk 1= i St "
l:l=1£lo (4 \ 1! e 2 C(C y 1) ......
n F(h' b, % ? 7;2?) = cos (2:Vz),
limF({; B I e sin 2/z.

.b‘:oo 2 h3 | 27'/2

EL () 12 ((-——(t—];)

oy g TR “T'(c—a) I (¢c—b)

(Ganss).

Szereg hypergeometryczny jest zbiezny
dla|z]<<l, rozbiezny dla |z|>1; jego kolem zbiez-
noscijest tedy koloopromieniul ze srodkiem
w poczatkuspélrzednych (Gauss, WerkeIll).

Jezeli przez R (a+0b—c) oznaczymy czesc rzeczywista wy-
razenia a+-b—c¢, bedziemy mieli nastepujace twierdzenie(W eier-
strass, Crelle; LI):

Jezeli |z| = 1, wtedy
gdy B(a 4-b—¢) > 1, granica wyrazu ogélnego jest co;

s, R@4+b—c)=1, & ) . ,» skonczona

» O<<R(a+b—0c)<1, & E . zerem 1 sze-
reg jest /blezuy dla wwystkmh pun-
ktéw okregu |z|=1, procz punktuz=1;

» Ma4+0b—c)<0, szereg jest zbiezny dla wszystkich pun-
ktow okregu |z|=1.

Jezeli uwazac bedziemy szereg typu hypergeometrvcmeoo,
Jako element funkeyi analitycznej w pojmowaniu teoryi funk-
cyj analitycznych Weierstrassa, wtedy mamy funkcye
holomorficzng wcalej plaszczyznle z wyla-
czeniem punktow r=oo i z=1.

Funkcya hypergeometryczna jest calks szcze-
gélna ro6wnaniardézniczkowego liniowego rze-
dudrugiego (Euler):

d2F

2 (1=2) < +[c — (aHb—1): Fe=0.
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Jezeli polozymy ogdlniej
= Cax*(l —a) F(a,b,¢z2),

to y bedzie calky szczegdlna réwnania :

dty . 1- a——a'+ 1—y—y"| dy ¢ [

T el z—l' dix s 7’7 _pm'] =t

2(z—1)

gdzie dla symetvyi przyjeto:

d=1l—c¢c—a, p =b-a—y, ¥ =c—a—b+y, p=a—a—y;
ata+pHf Tty =

Jezeli polozymy:

r—a c—b

— 3
z—0b c—a

/

to powyzsze réwnanie rézniczkowe przyjmie posta¢ syme-

tryczng :
d*y | 1—a—a’ (3 1.-g-8 | 1—y—'| dy
dr? ] 2—a ' z—b x—c¢ [ dx’
aa (@ —b) (a — ¢) BB (b—a) b—¢)
A BT ¥ Ly =X o) z—b
Lo vy (e—a) c—b) | Y e
5 TP l (x—a) (- b) (x—c) s

(Papperitz, Math. Ann. XXV).

Funkcye hypergeometryczna mozna uwazaé za calke
okreslona. Mamy (wedlug Enlera):

1

Ll A9) P e | OURN
F( == I’(a)l’(c—-cp),.’ wb 1 (1 — w) (1 — zu) “ dae.
- 0
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Uwazana za tunkeye ilosci ¢ lub b funkeya hypergeome-
tryczna jest funkcya holomorficzna w calej plaszezyznie (préez
w punkcie co); uwazana za tunkcye ilosei ¢, jest tunkcya mero-
morticzna w catej plaszezyznie 1 staje sie nieskonczona rzedu
pierwszego w punktach ¢ =0, - 1,—2,.. . W obu przypad-
kach mamy punkt istotnie osobliwy w nieskonczonosei.

Jezeli nwazamy tunkcye hypergeometryczng jako funkcye
argumentu @ i oznaczymy przez A F, A*F, . . . jej kolejne roz-
nice dla wartosei a, a+1, a+2. . . . tegoz argumentu. wtedy
fuankcya hypergeometryczna czyni¢ bedzie
zadosé réwnaniunréznicowemu rzedn 2-go:

(@t D@E—1)A*F+ [(a b+ L)(e—c) |AF + bz F = 0.

Dwie f'unkcye,!F. ktorych parametry a, b, ¢ réznig sig o ilo-
$ci stale, nazywaja sig sasiedniemi (contiguae, Gauss).
Pomigdzy trzema funkcyami sasiedniemi
zachoazl zawsze zwigzek liniowy jednorod-
ny ospolezynnikach, ktére sg funkcyami wy-
miernemi zmiennej 2. Rownanie réozniczko-
we liniowe jest przypadkiem szczegélnym ta-
kich zwigzkdéw pomigdzy funkecyami sgsied-
niemi. Pochodne funkcyi # wzgledem 253 tez
funkeyami hypergeometrycznemi sgsiednie-
miz F. Pochodng pierwsza jest
I R b+1,¢+1,2)
] bl ’ S

¢

Iloraz dwu funkcyisasiednich daje sie rozwi-
naé naulamek ciggly.

Funkeye hypergeometryczna badano z trzech odmiennyeh pun-
ktow widzenia, jako calke okreslona. jako szereg, wreszcie jako calke
szczegolng réwnania rézniczkowego liniowego rzedu 2-go.

Pierwszy badal funkeye te Euler (Nova Acta Petrop. 1778,
Cale. integ. 1769). nastepnie zajmowali sie nin P faff, nauczyciel
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G aussa (Disquisitiones anal. I). Gauss Werkelll) w slawnej
rozprawie, oraz Kummer (Crelle XV) wzieli za punkt wyjscia row-
nanie rézniczkowe. Praca Riemanna z r, 1857 stanowi wielce
wazny krok w tej teoryi; mozna powiedzie¢, ze od niej to datuje nowo-
czesna teorya réwnai rézniczkowych linjowyeh, ugruntowana przez
Fuchsa,

Badanie ilorazu dwu rozwiazan szezegélnych rdéwnania rdznicz-
kowego rzedu 2 -go . zapoczatkowal. rzec mozna, Riemann
w. dwéch rozprawach o powierzchniach najmniejszych ( Werke, Nr. 17
i 26); nastepnie badanie to dla przypadku hypergeometrycznego rozwi-
nal Schwarz w donioslej rozprawie (Crelle, XXV, 1872), ktéra
stala sig punktem wyjscia waznych poszukiwan, miedzy innemni nad nie-
zmiennikami rézniczkowemi rzutowemi.

Niedawno Klein (Math. Ann. XXXVII) znalaz! nowe wazne
rezultaty o punktach zerowych funkeyi hypergeometrycznej (por. tez
Math. Ann, XL, i prace Schillinga (Math. Ann. XT.IV)

Uogdlnienia funkeyj hypergeometrycznych sa roznego rodzaju,
Pomiedzy innemi zasluguja na uwage nogolnienie Heine g o (Crelle,
XXXII, XXXIV) i Thomaego (Math Ann, II), ktorzy uogdlnili
szereg Gaussa, wprowadzajyc wieksza liczhe parametréw. lune
unogolnienie podal Heun (Math. Ann. XXXIII) wziawszy za punkt
wyjScia réwnania rézniczkowe. Wreszcie Pochhammer (Crelle
LXXI, 1870), Appel (Comptes rendus 1880 i Journal de ILiouv.
VIII), Picard (Ann de I'Ecol. Norm. XH, 1881), Goursat
(tamze 1883) i Horn (Acta math. XV) rozpatrywali funkcye hyper-
geometryczne nie jednej, lecz dwu i wiecej zmiennych; pierwszy z tych
autoréw postawil to zagadnienie mniej wyraznie od pozostalych. (‘o do
innych szczegolow tej teoryi patrz kurs litografowany Kleina zr.
1894  TUeber die hypergeometrischen Functionen® oraz wyeciag z karsu
lekeyj Pincherlego (Giorn, di Batt, XXXII).
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§ 7.
Funkeye kuliste (Legendre’a) jednej zmiennej.

Rozwinmy wyrazenie
1

T = (1l —2az 4 a?) 2,
gdzie a 1 2 sy liczby rzeczywiste mniejsze od 1 na szereg wedlug
poteg dodatnich rosnacych ilosci a; spolczynnikami rozwiniecia
beda ilosei:

1.8.5..... (2n—1 n(n—1)
o | ,J P e et sh—1
SR = 7! 2(2n—1)
n(n——l)(n—Z) m—s) o |
) 0 W T TR N YIS T Gl B3 5 I=

Wielomian P® dla z rzeczywistego lab zespolonego na-
zywa si¢ funkcyg kulistg pierwszego gatunku
Liegendre’a; oznaczamy ja zwykle przez X Inb X, . Nazwe
Jdunkcya kulista“ (sferyczna) wprowadzil Gauss.

Funkcye te sa przypadkiem szczegdlnym funkeyi hyper-
geometrycznej; dla n calkowitego dodatniego przed-
stawlaja one mianowicie szeregi hypergeo-
metryczne skonczone:

1.3...(2n—1) s n Ll—m 1 )
n N A N Wl PRS- S iy gt P
PYi{(g)== Y « & l“ utier vt P ) n, z'—’,’
: 1.3...(2n—1) 1 1

3(20) L i e n A4 A y S roAL 2
P (Z) = (—1). el F(—n n+ -5, 2,2),

3.6 ( S
perts) = =1y 2p B it 5 5 a)

gdzie F jest symbolem funkcyi hypergeometryczne] G aussa.
Zasadniczemi wzorami dla funkcyj /" sa nastepujace :
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P(O} p— 1' P(l)(z)‘ |2 = ( =) __é_), PQu(,__ Z) g, 1.121:(3)’
\

3.5 1
PO (—z) = — P@rtii(z), PW(0) = (—1)* } *j : : (ann )

im w = i 3 5. (2n—1)
o 4 = S FOPE T ek

|
Kladac y = cosf, otrzymujemy:

2.4.....9n &

[ (n) — s (13—
1.3 (2"_1)1 (cosf) = cosnb -+ T (Zn cos (18—2) §

1)
[l Ekaa: m-l) )
=F T (271_1 P cos (m—4H 6+ .....
Jezeli 0 jest rzeczywiste to najwieksza wartos¢ P (cos b)
przypada na 6=0; wartosé¢ ta réwna sie jednosei.
Funkcye kuliste mozna wyrazic tez za po-
moca wWzoru:

1 a* (2% — 1)"

Pm(g) = ——
(#) 2u  nl dz"

Wzér ten nazywa sie wzorem Ivoryego i Jacobiego,
lecz nalezy przypisa¢ go Rodriguesowi (patrz Heine
»Kugelfunctionen“, wyd. 2-gie, str. 20); mozna go uwazaé za
ciekawy wzor rachunkn rézniczkowego, wyrazajacy pochodng
rzedu n-tego funkeyi (22— 1)* (Jacobi, Crelle, XV).
Wszystkie pierwiastki rdwnania P"(2)=0
sarzeczywiste, mniejszeod lirézne od siebie;
nadto jezeli g jest pierwiastkiem, to1 —f jest
nim takze. Wartosciliczbowe tych pierwiastkow dla war-
tosci # od 1 do 7 obliczyl G auss, ktéry uzywal ich do swego
wzoru na kwadrature. Podaliémy czesé¢ tablicy Gaussa
w Rodziale X, str. 229. Co do pierwiastkéw funkeyj kulistych
patrz takZe waing rozprawe Markowa (Math. Ann. XXVII),
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Funkcye kulista wyrazié mozna za pomo-
ca waznego wzorn Laplacea (Méc. celeste, t. V, Pa-
ryz 1825, ksigga XTI, rozdz. 1I):

a P () = ’ (z —+ cos @ V2i— 1)* dg.
0

Na podstawie tego wzoru mozna nogdlni¢ tunkcye P* dla przy-
padku, gdy » jest dodatnie lecz niecatkowite.

Jezell wezmiemy argument w postaci dostawy i przyjmie-
my, zZe 0 jest rzeczywiste i 0 <=6 <<z, bedziemy mieli dwa
wzory Dirichleta

] Ed
‘costpcosngdy [* sinjgpcosnepdy

—7-1 F™ (cosh) = ‘ el L o meee ’ -
G J V2(cosp—cosh) [ V2(cosb —cos )

['sinfpsinnpdp 1"cqs§ @ sin ne de

2 pw {cosf) — — — —— = A
2 ol V2 (cos p—cos 6) 4 V 2 (cos § — cos @)

Te wzory nie stosuja sie do przypadku 2= 0.
Funkeya kulista F® czyni zadosé rowna-
niurézniczkowemu:

2 n) z
L PERE) L, dPG

z* dz

- 4+ n(n—+1) P™(2) = 0.

Funkeye kuliste gatunku drugiego okresla
WO :

1
n! I

i St i B P e &

(n+1) (n12) (n+3) (1z+4)
4. (2n+3 (2n-F5)

(n+1) (n 4 2) "

vk 22n+3)

e T

Funkeye te analogiczne do funkeyj kulistych gatunku 1-go badal
Heine (Crelle XVII, Kugelfunctionen, etc ).
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Pomiedzy funkcyami Pi ¢ istnieje zwia-
zek prosty:

: = 3‘ @n-1)P™(x) Q™ (y) (Heine l c.)
y—x 2=0

dla kazdej pary wartoscix, y, dla ktérych:
o — Va2 1| > |y—Vy*-1].

Co do tego twierdzenia patrz (. Neumann (Ueber die Ent-
wickel. e, Function nach den Kugelfunctionen, Halle 1862; Theorie der
Bessel’schen Functionen, Lipsk 1867), Thomae (Crelle, LXVI),

Funkcye " wyrazajy sie przez szereg hy-
pergeometryczny za pomocs wzoru:

n! s I 1z+1 n—+—‘> 8 7}*
(2n—1) P( MO R it 22

Q@) =

Dla z=1 funkcya Q™ jest nieskonczona, przyczem:

lim (1 —2z) Q(z) = 1
z=1

Dla kazdej wartosci z, ktéorej modul jest
mniejszy od 1, funkcya @ jest skonczona. Funk-
cye € mozna wyrazi¢ za pomocs catki wielokrotnej:

Gz = 20 n! | L L ity
Q™ (2, 2 u..’ ..... fE—Ty+
gdzie po stronie drugiej calkowanie wykonywa sie¢ n+1 razy.

Funkcya ¢ jest inna calka szezegdlng tego samego row-
nania rézniczkowego, ktéremu czyni zadosé funkeya /-®,

Funkcye @ mozna tez okreslié¢ za pomocs
wzoru:

A
(Neumanmn, Crelle XXXVII).

Q) = ¢ |

—1
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Nadto funkcye Q*, podobnie jak 1 P®, mozna
wyrazié¢ jako pochodng n-ta, t. j.

©2

(-2 m!  d¥ l S M J
(T AN | e R 485 21 .
@ (2n)! i e , (2t=1)r+1

Funkcye kuliste gatunkn 1-go i 2-go czynia
zadosé zwigzkom:

‘P(W(z) ROz —0: ’ Q" (2) Q™ (2) dz = (O,

.f Pin(z) Qu(2) dz = {25 ibl’

|l 0, gdyni=n,

gdy m =

w ktorych calkowania uskuteczniaja sie w zwroeie dodatnim
po elipsie, majacej ogniska w punktach -1, —1, lub po innej
krzywej zamknigte], dajacej sie przez przeksztalcenie ciagle i bex
przekroczenia drogi (—1, -}-1: zamienié na rzeczong elipse.

7Z pierwszym z powyzszych wzoréw pokrewny jest wzor
Legendre’a dla przypadku zmiennej ¢ rzeczywistej :

l+1
' g P (2) = O T 0e

Funkeye kuliste czynig zadosé nastepu-

jacym wzorom zwrotnym:
(1) Pt — 2n41)z PO 4 Prt) = Q; PY —z PO = 0,
(Gauss; patrz Heine, Kugelf. I str. 91—92)

d Prt+1 d P01
e 1 1 AT e b b
(41 Q"+ — 2n1) 20" +nQ*-D —=0; QV +zQ"}1=0,
/ dq(u.{.—l) dQ(nml)

ot — = (1)
dz dz g
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Funkcya Q" czyni jeszcze zadosé¢ naste-
X J

pujacemu waznemu zwigzkowi (Gauss, Nova integr.

val. per approxim. inv.):

it
QW (2) = 4 0 () log 211 — zo,
gdzie Z™ jest funkcya calkowita stopnia (»—1)-go wzgledem 2.
Wielomian Z™ mozna wyrazi¢ w ten sposéb :

2n—
(n) — » 2 (n—B) I(n—b5)
74 1 P()( )_ir% [( ( +5” 2)]( 5(2)_*_

wyraz ostatni zawiera F (¥ Jub PO stosownie do tego, czy n jest
nieparzyste lub parzyste.

Wskazéwki historyezne i bibliograficzne o funkcyach kulistych
w ogolnosci podajemy w paragrafie nastepnym.

Funkcys kuliste dwu zwiennych (lagrange'a).

W funkeyi kulistej gatunku pierwszego [’® (z) zamiast z
polézmy cos y, gdzie

cosy = cos b cos ' -+ sin B sin 6’ cos (p—¢’).

Temu katowi y mozna daé interpretacye geometryczng, uwazajac
go za kat pomiedzy dwoma promieniami wodzacemi, wy-
chodzacemi z poczatku spélrzednych i idgcemi do dwu punktéw
danych. W rzeczy samej, jezeli (g, 0, ¢). (¢, V', ¢') sg spol-
rzedne biegunowe dwu punktéw danych, to kat pomiedzy dwoma
promieniami wodzacemi jest wlasnie y, a odleglosé punktéw
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1
wynosi r==(p?—2p0 cosy + 0'2)* . Jezeli przez z,y,y; .y, ¢
oznaczymy spolrzedne kartezyanskie obn punktéw, bedzie:

x == pcos b, ar = s
y = psin 6 cos ¢, y!' = p’ sin 6’ cos ¢,
Y = psin 0 sin ¢, z == p'sin 6’ sin ¢’,
+ 3
do e r’)%’ S ¥ s i ey P

Funkcya P staje sie wtedy funkcya zmiennych 6, #', ¢, ¢', a po
wprowadzeniu tych zmiennych przyjmuje postac:
2z
[cos &' -+ ¢sin b’ cos (¢’ — )]

n) B dn i e — = :
acagp) ’ [ cos 6 - ¢sin 6 cos (p—e J+? 4%

l)

Przyjmijmy drugi z dwu uwazanych punktéw za staly, pierw-
szy za zmienny, wtedy P® staje sie funkcys dwu zmiennych

6, @ lub tez trzech zmiennych %, Z ; —Z~ zwigzanychréwnaniem
o+ 8+
WAL P & 48 L
(P t P 25 P

Najwazniejszg wlasnoscig funkeyj P®™, uwazanych za
funkeye zmiennych x, y, 2, jest nast¢pujaca: funkcye te, po-
mnozone przez pewien czynnik, czynig zadoseé
rownaniurézniczkowemu o pochodnych czast-
kowych rze du 2-go:

a*yU U a*U

LR o i - weiie v Rhackl

Mamy mianowicie :

IJ(u)
u+v

A% (p" PM) = (), A“
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Jezeli przeksztalcimy wyrazenie A2U przez wprowadzenie
zmiennych 6, ¢, funkcya P™ czyni¢ bedzie zadosé
rownaniuo pochodnych czastkowych:

321)(1;) ' 1 2P P
g T g g T ote 8 —gg— + whtl) P,

Funkcya P® jest wiec funkcya wymierng calko-
wita ilosci cosf, sinfcosg, sinising, czynigca zados¢ po-
WwyZszemu réwnaniu.

Przechodzac do definicy) funkeyi kulistej dwu zmiennych,
powlemy:

Najogdlniejsza funkcya wymierna caltko-
wita stopnia n-tego tych trzech ilosci (a wieec
funkcya dwu zmiennych niezaleznych), czy-
nigca zadosé poprzedniemuréwnaniu réznicz-
kowemu, nazywa sie funkcya kulistg lLaplace’a
i oznacza siq przez Y@ przypadkiem wweg(')lnym funkcyi o i
jest PO4 ¢, ] funkuya kulista Legendre'a, gdy w niej za
argument plzanu&ny cosf cos b’ 4 sinb smO sin (p—e').

Funkcya Laplacea wyraza sig przez funkcyq Legen-
dre’a za pomoca wzoru:

1 P™(cost)
i 2, 'h,(,()b(t([)) -+ lisin (¢@) |sin‘ 0 s —-—{:;?—‘: -,

=l i (cos Uj
.gdzie h, 1 k, sa statemi dowolnemi.
Innem wyrazeniem funkeyi Laplace’a przez funkcye
Legendrea jest:
2n 41

P = Zemy P (cos y;)

h—1
gdzie m,, m,, . . ., M,y sy state dowolne w liczbie 2n-}1, zas
cosyy = coslcosty | sinfsinb; cos(@—¢y);

0, yi sa spolrzedne 2n+1 punktéw, znajdujacych sie na kuli
o promieniu 1.
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Kazda funkecya wymierna jednorodna catkowita stopnia
n-tego U(x,y,2), czyniaca zados¢ réwnanin A? U =0, podzielona
przez ", jest funkcyg Laplace'a. Funkeya najogdlniejsza
Laplace’a zawiera 2n-1 stalych dowolnych.

Funkcya kulista Y™, uwazana za funkcye
spolrzednych 2,9,z punktéow na kuli o promie-
nin, 1 ma wlasnoseé:

[| Y Yo do =0,  m=n,
gdzie calkowanie rozcigga sig¢ na calg po-
wierzchnie kuli. Mamy takze:

e o
(n) P n) = =
“ Y™ PMde O

y(n)
Yy w s
p=¢
gdzie Yé"io, oznacza wartos¢ funkcyi Y™ dla 6=8, ¢@=¢

p=¢'
Wzory te mozna tak napisaé :

1 2n
} sin 6 d 6 } T (8,0). YW (6, p)dp = 0,  m=n,
& J
‘. in 6 d 8 ’.-Y"” B, @) P™ (cos y)dgp = ol b
sin 6 ¢ T 2) Ver = ooy Yocu
p=@

‘0 "0
gdzie cosy wyraza sig wiadomym sposobem przez 6, 8, ¢, ¢'.

Funkeye kuliste badali ‘réwnoczesnie L e gendre (Sur I'at-
traction des sphéroides, Mém. de Paris 1v85, 1787, Exerc. Fonct.
ellipt.) i Laplace (Mém. de Paris 1785, Mécan. céleste). Poisiej
zajmowali si¢ niemi gléwnie: Gauss (Werke V), Dirichlet (Crelle
XVII), Jacobi (Crelle, XV); w nowszych czasach: Dini (Annali
di mat. VI), F. Neumann (Lipsk 1878) a zwlaszeza Heine,
ktorego praca dwutomowa ,Theorie der Kugelfunctionen“ (2 tomy,
wydanie 2-gie, Llpsk 1878) zawiera najwiecej szczegolow i wskazowek

Pascal Rep. T. 99
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o tym przedmioéie. Badano takze funkeye stozkowe, ~majace
wiele zwigzku z funkeyami kulistemi i walcowemi., Patrz
Mehler (Crelle LXVIII) ,Ueber eine mit den Kugel- und Cylinder-
functionen verwandte Function® it d. (Progr. Elblag 1870), a takie
cytowany traktat Heine go. (t. I str. 300, H str. 218). Najwazniej-
szy rezultat dla funkeyj stozkowych jest ten: sa to funkcye kuliste
w przypadku, gdy skaznik 5 jest zespolony.

Zarys teoryi funkeyj kulistych zawiera si¢ w najnowszej ksiazce
Frischaufa (Lipsk 1897).

o)
Funkcye walcowe Bessela.

Funkcya walcowsy (cylindryczng) lub funkcya
Bessela gatunku pierwszego nazywamy funkeye,

okreslong za pomocg wzoru: 8
’ " {‘ 22 ~,4
") L= X
IJNE) =g 1= 3@ty T mo et )
1z 1z 1 (o
fa— T LT e IRSFR AT Y R + ol S X0
o2 T T2 T amyene)

Szereg ten jest zbiezny dla kazdej wartosci 2.
Bessel dal (Akad. Berl. 1824) definicye nastepujacs :

T

(2= -1~/ cos (z sin w — now) do.
"o
Jest nadto: .
FO) e =, ""In- — =4 cos (zcosw)sin® w dw ,
1.83.5...(2n—1) mJ
J0 (2) = -(——i)u—’l escosweosnwdw.

T
0
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Funkcya J"(z) jest calka szczegolng roéw-
naniaréozniczkowego:

31 v 4 / 2
F 'l oF e n P
IV g R

Dla »=0 funkcya .J ) (2) staje sie:
2.'_' z‘)
J(‘l)(z)zl—T+ ')T.}‘-‘v_ .....

1 jest granica funkeyi kulistej °¢) (00s '—i\, dla n=oco.

Wraz z funkeya J Neumann rozwazal inng funkeye,
ktéra oznacza przez O™ 1 nazywa funkcys Bessela ga-
tunku 2-go. Okresla sie ta funkcya przy nomocy wzoru:

. 0" (2) _2ml it o 2 s )
S T T Ry 2 AR (2 :
gdzie ¢,=1 dla =0, ¢, =2 dla n>>0 i gdzie liczba wyrazow
w nawiasie jest skonczona; ostatnim wyrazem jest:

2"

2.4, .0.2n—2)(2n—4)...n ' Rl

21

7 N P N RS [ R P PR e L

Poprzednie wyrazenie mozna 1 tak napisac:

1y REL) n+2 AR \n—
En Oh')(z) Z((_n_l_)(z) ._+_(n 2)!13) j}_(’n d).(Q) —-;- ST );

o M \z LR P

ostatnim wyrazem jest:

2\ 21\ ;
—~A’——( ”—) , 2dy n parzyste. albo (7} , gdy % nieparzyste.
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Funkcye 0O"(z) mozna wyrazi¢ za pomodsg
catkiokreslonej

e da .

" (w +Vw- z’) + (0 — Vo? + 2%)"

0(") (3) = ) zuj—l

0
Funkecya 0"(z) jest funkcya wymierna cal-
kowitg ilosci — stopnia (n}1)-go, znikajacyg dla
z=o00; czyni ona zadosé réwnaniu rdzniczko-
wemu:

2F Bl Sl ( ni—1

922 + 7 ['1 — .{/u ’
: 1 ; n !
gdzie g, = - dla »n parzystego, 5 dla » nieparzystego.

Przez wprowadzenie funkcyi O™ gatunku 2-go Neumann
pokazal, ze mozna utworzyé¢ teorye funkeyj walcowych analo-
giczng do teoryi funkcyj kulistych; wiele wlasnosci pozostaje
bez zmiany, réznice jedyng stanowi to, ze funkeye kuliste gatun-
ku 1-go 1 2-go sa rozwigzaniami szczegdlnemi jednego i tego sa-
mego réownania rézniczkowego, gdy funkeye walcowe I, O
sg rozwigzaniami dwu réznych réwnan rézniczkowych.

Funkecya J®(2) znika dla nieskonczenie
wielu wartosci rzeczywistychitylkorzeczy-
wistych zmiennej z (twierdzenie Fouriera).

Funkcye J®W1 O®W maja trzy wlasnosci ana-
logiczne do wlasnosci funkcyj kulistych, mia-
nowicie:

[T (2) T (5)de = O; | Om(2) Om(2)de =0; ' T (e) O¥)(s) dz=I,

gdzie catkowanie odbywa sie¢ wzwrocie dodatnim wzdluz krzy-
wej zamknietej. Gdy krzywa ta nie zawiera w swem wnegtrzu
punktu zerowego, jest zawsze k=0; gdy go zawiera, wtedy k=0,

L % A R :
jezeli m=wn; k=—" jezeli m=n. Gdy krzywa przechodzi przez

& n
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punkt zero, wtedy wzory, w ktérych zachodzi O® nie maja
miejsca.

Dla kazdej wartoscin (wyjawszy n=0) za-
chodzg zwigzki zwrotne:

o) ")
9 (lez(Z) = J» '1)(.3’)—J("+1)( ) 9 dO (Z) ln—-—l)(z)_o("'*“l)(Z).
Dla =0 mamy:
dJO(2) s T d 0V (z) X )
a5 . S Cole e

Funkcya J®™(z) czyni zados$é zwiazkowli
zwrotnemu (Bessela) dla n>0:

% J0)(2) = JO-D(z) — Jo0(g),
Nadto jest:
J0(5) = - JW(z) — g (; (#)_
Wzdr:
U_—I:_L =n§ en JO(T) O™ (y)

ma miejsce dla wszelkich par wartoseci x y,
czynigcych zados¢ warunkowi modz < mody.
Ciekaws, zwlaszcza ze wzgledu na zastosowania, wlasnoscia
funkeyj Bessela jest nastepujaca:
Niechaj » bedzie odlegloscig dwu punktow o spélrzednych
x, y; &y, yy; funkeya JO(#) czyni zadosé réwnaniu o pochodnych
czastkowych:

20U .
ayt S = 6,

U
Coxt "t
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1 tez wlasnos¢ posiada inna funkeya Y (r), ktora wraz z funk-
cya Jr) jest inng calka szczegdlny réwnania rozniczkowego li-
niowego rzedu 2-go, ktéremu czyni zadosé funkeya (.

O rozwinieciu na szeregi wedlug funkecyj Bessela patrz
Rozdzial XIX.

Najwazniejsze prace o funkeyach Bessela oglosili: Bessel
(Abh. der Berl. Akad. 1824), Jacobi (Crelle XV), Schlémilch
(Zeit. f. Math. u. Phys. 1857), Lipschitz (Crelle LLVI),C. Neumann
(Besselsche Functionen, Lipsk 1867), Heine (Kugelfunctionen) ete

§ 10.
Funkcye Lamégo.

Wprowadzimy funkeye Lamégo pod postacia najogol-
niejsza, nadana im przez Heinego. Niechaj y(2) bedzie wie-

lomianem stopnia (p—+1) wzgledem z; polozmy du = | ———gi——-

V(e)
1 niechaj bedzie réwnanie rézniczkowe:
@ v
T + @)V =0,

w ktérem ¢(z) jest znowu wielomianem tak wybranym, aby to
réwnanie mialo rozwigzanie V, réwne funkcyi calkowitej
stopnia n-tego wzgledem z. W takim razie funkcye V nazywamy
funkcysg Lamégorzedu p-tego i stopnia n-tego.

Funkcye l.amégo mozna takze okreslieé
jako funkcye calkowita stopnia n-tego, czynia-
cazadosérownaniu:

)1 -

a* e oge dav e
4y(2) — + Zy/(2) 5 + p(2) V=0,

4 o

we
gdzie y jest wielomianem danymn stopnia p41, ¢ wielomianem
tak dobra¢ si¢ majacym, aby to réwnanie rézniczkowe mialo
wlasnie takie rozwiazauie, o jakiem mowa.
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("+1H_’?lilf~”~ i-)ﬂ't%r_l_’%_z! (2n4p —1) fonkeyj @,
dajacych poczatek tyluz funkeyom L am égo, pomiedzy kto-
rem nie zachodzi zaden zwiazek liniowy jednorodny o spétezyn-
nmikach stalych. Wielomian ¢ jest stopnia p — 1. Funkeye,
wprowadzone przez l.amé go, sa wlasnie przypadkiem szcze-
golnym tu uwazanych; sg one rozwigzaniami réwnania

Istnieje

(2 — 1) (2% — ¢?) %E_ —+ 2222 — U — ¢?) (;ltl:

+ [P eHm-—n(n-+ 1)z2 ] K = 0.

Jezeli wprowadzimy calke eliptyczna w, okreslona za po-
mocy zwiazkn

A= — ¢ ——— _(,L:_A,,M
V(22 - b2) (¢2—2?)

wtedy powyzszemu rownaniu nada¢ mozna postaé typu:

d? E'(2) 8 "
e = | 9 (: °y ] Ez.
an [0 (e 1)k sn2u—+ 1] Ez
Funkeye tu uwazane badali: I.amé (Legons sur les fonctions
inverses, ete., Paryz 1857; ,Chaleur®, tamze 1861; Joun. Licuville’a 1V,
V, VIII; w przypadku ogélnym Heine (Crelle, LX. LXI, LXII, Berl,
Monatsb, 1864, patrz takze  (Kugeltunctionen®, 1 str. 445).




ROZDZIAY, XIX.-

PRZEDSTAWIENIE ANALITYCZNE FUNKCYJ.

§ L
RozwazZania ogdlne, szereg W rornskiego. Szereg Lagrangea.

Zagadnienie zasadnicze o przedstawieniu analitycznem funk-
cyj jest bardzo dawne. Rozwazania, odnoszace sie do tego
przedmiotu, podzieli¢ mozna na dwie kategorye: albo idzie o wy-
razenie funkcyi przez inne funkeye, z géry dane; albo, tez o wy-
razenie funkcyi danej przez wartosci, jakie ona 1 jej pochodne
posiadaja w pewnych punktach i t. p.

Kazde wyrazenie analityczne o skonezonej lub nieskonezo-
nej liczbie dzialan mozna rozwazac¢ z dwojakiego punktu widze-
nia, stosownie do tego, czy dajemy z gory ilosci stale, jakie maja
zachodzi¢ w rozwinieciu, czy tez dajemy forme ilosci zmiennych.

Najprostszem rozwinieciem, nalezacem do tego porzadku
rzeczy, jest stawne rozwiniecie, znane pod nazwa wzoru T a y-
lora-Maclaurina. Mozna je uwaza¢ za wzor pierwszej
kategoryi, jezeli zadamy rozwiniecia, ktérego wyrazy postepuja
wedlug poteg calkowitych dodatnich réznicy 2—z,; za wzor zas
kategoryi drugiej, jezeli widzimy w nim rozwiniecie, za pomoca
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ktérego mozna oblicza¢ wartosci funkcyi przy pomocy danych
wartosei funkceyi i jej kolejnych pochodnych w punkcie z, .

Do tego samego rzedu rozwazan naleza wzory Cauchy’e-
goiLaurenta (patrz Rozdz. XIII), rézne wzory interpolacyj-
ne (patrz Rozdz, X), wzory Weierstrassa 1 Mittag-
Lefflera (patrz Rozdz. XIII). Wreszcie innemi wzorami,
nalezacemi do pierwszej kategoryl, sa wzory Wronskiego
i Lagrange’a.

Pierwszy z tych autoréw stawia sobie zadanie, dotyczace
wyrazenia funkeyi za pomocy szeregéw, ktérych wyrazy zalezs
od innych funkecyj, dowolnie danych. Wzér, ktéry otrzymuje,
nazywa prawem najwyzszem. Jest to wzdr bardzo ogélny,
lecz daleki od tego, aby mozna bylo uwaza¢ go za scisly z pun-
ktu widzenia analizy dzisiejszej; Du Bois-Reymond nadaje
mu znaczenie jedynie formalne. Praca Wronskiego, do-
tyczaca tego przedmiotu, byla przedstawiona Instytutowi fran-
cuskiemu w r, 1810, lecz pomysly jego pozostaly nieznanemi pra-
wie przez lat 60, poki nie ukazala sie praca Cayley’a (Quart-
Journ. 1872), po ktérej nastapily dopiero prace Transona
(Nouv. Ann. de Math. 1875, Ch. Lagrange’a (Comptes Rendus
1884, Acad. de Belgique 1884) i innych.

Wigksze szczegoly o szeregach Wronskiego znale$¢ moZzna w pra-
cach Dicksteina (Prace matemat. - fiz., Warszawa t- H18901i t. V,
1893; Bibliotheca mathematica, Stockholm 1894; ,,Zycie i dzieta Wron-
skiego¥, Krakow 1896). Poréwn. Laurent, Cours d’analyse, t. III.

Jest rzeczg naturalna, ze z szeregu Wronskiego wyni-
kaja jako przypadki szczegélne—wzér Taylora, wzory Biir-
manna (rozwiniecte funkeyi, wedlug poteg innych funkeyj)
oraz tak zwany szereg Llagrangea. Ten ostatni ma postaé
nastepujaca :

ey S e ) (@ e g et |
f(zl — f(ﬂ-\) _} ‘_d (n_*_l)' l(p(z)] ! dz ‘::a’

#'=ll)

gdzie @ (2) jest funkcya dowolna z tem zastrzezeniem, aby byla
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holomorficzng w czesci plaszezyzny otaczajgcej punkt a. Dla
¢(z) =1 otrzymujemy rozwiniecie Taylora.

Szereg ten stosujemy przy szukaniu pierwiastkow réwna-
nia postaci (z—a)— a¢(2)=0, ktorego rozwigzanie dla przy-
padku szczegdlnego ¢ (2)==sinz stanowi wazne zagadnienie
mechaniki niebieskiej.

Wymieniamy nastgpujace prace o szeregu Lagrange’a: Chio
(Savants étrang. XI, Ace. di Torino 1872), Genocch i (Comptes rend.
1873), R o u ¢ h éj(Ecole polytech. cah, XXXI1X), Zorawski(Prace
mat.-fiz. V, 1894; Rozpr. Akad. krak. XXXVII, 1899).

Nalezy zwrdci¢ uwage na to, ze do wzoréw drugiej kate-
goryi nalezg wzory, ktorych wyrazami sa funkeye kolowe (sze-
regi Fouriera), kuliste, funkcye Bessela it. p. O tych
rozwinieciach jest mowa w paragrafach nastepnych.

/3
(8

Rozwinigeie na szereg: Fouriera.

Szereg typu
E [ax sin (kz) -+ b cos (kz) ]
k=0

nazywasieszeregiem tr ygonometrycznym. Jezeli wszcze-
golnosci spoleczynniki tego szeregu wyznaczaja sie za pomocs
WZOrow :

+ 5 +~n
by = -l-—l flayda; b= 2 | fa)coska) du;
a./ £
el i £

“‘k:%l fla)sin (ka)d=,

-
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gdzie f(2) jest funkcya, ktora szereg przedstawia, mamy wtedy
szereg Fouriera. Sadzono dawniej, ze wszystkie szeregi
trygonometryczne sg szeregami Fouriera; pézniej pokazalo
sie, zeo tak nie jest (Hoin e, Crelle LXXT).

Méwi sie, ze funkeya czyni zadosé warunkowi Diric h-
leta, jezeli w pewnym przedziale jest zawsze skonczona, nie
ma nieskonczenie wielu niecigglosci zwyklych i nie ma nieskon-
czenie wielu maximow 1 miniméw; wtedy zachodzi twierdzenie
(Dirichleta):

Funkecya f(2), czynigca zados§é¢ wszystkim
warunkom Dirichleta, daje sie rozwinag¢ na
szereg Fouriera, ktorego wartosé¢ wkazdym
punkciezwyczajnym jest wartoscig funkeyi;
w kazdym zas punkcie przerwy zwyklej jest
srednig dwu granic prawej i lewej, do ktéd-
rych dazy funkcya, zblizajac sie do punktu
przerwy. Rozwinigcie takie jest mozliwe
tylko jednym sposobem (Heine, Crelle LXXI).

Jezeli funkcya staje sie nieskonczona
w punkeciec¢, wtedy warunhiem dostatecznym
na to, aby szereg w dalszym ciagu przedsta-
wial funkcye, jest, by calka

oo
’ f(a)da

byta zbiezng (Dirichlet, Du Bois Reymond, Crelle
LXXXIX).

Jezeli funkcya posiada skonczong liczbe
punktéow osobliwych, w ktédrych otoczeniu ist-
niejenieskonczenie wiele punktow przerwy
zwyczajnej, wtedy twierdzenie powyzsze
utrzymuje sig, lecz szereg nie daje wartosci
funkcyi w punkcie osobliwym (Dirichlet, Lip-
schitz, Crelle LXIII).

Jezeli funkeya ma nieskonczenie wiele
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maximéwiminimdéw 1 jezell dla kazdego ta-
kiego punktu fczyni zadosé¢ warunkowi:

lim | f(f+ 8) — f(p) | logd = 0,

d=0v

tolwtedy daje sie rozwingé¢ na szereg Fou-
riera Jest to twierdzenie Lipschitza, a warunek poprze-
dzajacy, ktory jest warunkiem bardziej sciesniajacym niz wa-
runek ciagloseci funkeyi, nazywa sie¢ warunkiem Iiipschit za.

Istniejg napewno funkcye, nie eczyniace
zadosé warunkowi Lipschitza, dla ktérych sze-
reg Fouriera jest rozbiezny(DuBois Reymond,
Abh. der Bayr. Akad. XII, 1876).

Zbieznosé¢ szeregu Fouriera w punkcie
okreslonym zalezy jedynie od sposobu, w jaki
zachowuje sieg funkcya w sasiedztwie tego
punktu (Riemann).

Istnieja funkcye calkowalne z nieskon-
czenie wielu maximamiiminimami, nie daja-
ce sie przedstawié¢ za pomoca szeregu Fou-
riera (Riemann).

Sa funkecye niecalkowalne ze skonczong
liczba maximdéw 1 minimdéw, nie dajace sie
przedstawic¢ za pomoca szeregu Fouriera (Rie-
mann).

Szereg Fouriera jest jednostajnie zbiez-
ny, gdy przedstawia funkcye ciggla albo tez
nieciagla tylko wskonczonejliczbie punktéw
1 nie majgca nieskonczenie wielu maximoéw
iminiméw (Heine, Crelle LXXI).

Funkcya skonczona, posiadajaca nieskon-
czenie wiele osobliwosci takich, ze jedna
4z grup pochodnych tej grupy nieskonczenie
wielu punktow jest skonczona, jezeli daje sie
rozwingcé¢ na szereg Fourilera, tojednym tylko
sposobem (twierdzenie Cantora, Math. Ann. V). .
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Bez wzgledu na sposéb. w jaki funkeya
daje sierozwina¢ naszereg trygonometryez-
ny, ktorego spdélczynniki a;, by stajag sie¢ nie-
skonczonie matemi gdy rosnie, liczba & spdl-
czynnikitemajg zawsze posta¢ wyzej wska-
zang przez szereg Fouriera, o ile tylko calki
zachodzace wich wyrazeniuniesa pozbawio-
ne znaczenia (Twierdzenie Du Bois-Reymonda Abh.
der Bayr. Akad. 1875).

Badaniu przedstawicnia funkeyj za pomoca szeregdw trygonome-
tryeznych dalo poezatek calkowanie réwnania t. zw. struny drgaja-
9
. e . 24 :
cej, t. J. rownania o pochodnych czastkowych = @ 3 ktore-

2 ox*

mu ezyni zados¢ szereg trygonometryczny, liuler postawii zagadnie-

()

Q|

nie, czy kazda funkcya daje si¢ zawsze przedstawié za pomocg szeregu
trygonometrycznego; Fourier za$ (Acad. de Paris 1807) mniemal,
ze mozna na nie odpowiedzie¢ twierdzaco. Rozwazania Fourier a
byly bardzo dalekiemi od $cislosci; po nich nastapily prace Poissona
i Cauchy’ego; lecz pierwszy praca istotnie wazna o tym przedmio-
cie byla praca Dirichleta (Crélle, IV, 1829). Z pozniejszych
wazna jest rozprawa Riem anna (Diss, inaug. 1854), ktéry rozwaza
ten przedmiot z nowyeh punktéw widzenia, a w pierwszej czesci roz-
prawy daje wyborny rys historyezny i krytyczny wszystkich poprze-
dnich badan, odnoszacych sig¢ do szeregéw trygonometrycznych. Z prac
nowszych wymieniamy prace juz cytowane: Heinego, Du Bois
Reymonda, Lipschitza, dalej Diniego (Ann. di mat, VI),
A,scoliego (Lincei 1878), ksiazke Dini'ego: ,Sulla serie di Fou-
rier* (Piza 1880), studyumn krytyczne i listoryczne Sachsego
(Inaug. Diss., Getynga 1879), podane w przekladzie w Bull. Darboux
zr. 1880. Dirichlet i Riemann mniemali, ze kazda funkecya
ciggla moze by¢ w kazdym punkeie bez wyjatku przedstawiona przez
szereg Fouriera; Du Bois Reymond dowiédl pierwszy, iz to
mniemanie jest bledne. Schwarz podal na to przyklad dostatecznie
prosty.
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Badano tez szeregi trygonometryczne o dwu zmiennych i przed-
stawialnodé funkeyj przez takie szeregi; patrz co do tego prace A sco-
1i’ego (Lincei 1879 —188(0).

§ 3.
Rozwinigeie na szereg wedftug funkcyf kulistych Legendre’a.

Kazda funkcya jednowartosciowa f(z), kté-
ra jest skonczona i ciggla wewnatrz elipsy
zogniskami w punktach 1, —1, daje sig roz-
winaé¢ naszereg typuw

f(2) = a®PO() +a POz + . . W . .,

gdzie spolczynnikia okreslajg sie za pomoca
wzoru:
2n—+-1 5
e _-—‘ f(x) P (x) du.
—1
Rozwiniecie takie jest mozliwe tylko je-
dnym sposobem.

Kazda funkcya jednowartosciowa f(2), skon-
czonaiciggla wewnagtrz pierscienia eliptyecz-
nego, ograniczonego dwiema elipsami spol-
ogniskowemioogniskachwpunktach -+1, —1,
daje sigrozwingé na szereg typu:

f(2) = ay PO(2) + o, PO(2) +
+ 8 Q) + QU + . . ...,

ktéry zachowuje swe znaczenie dla wszystkich punktéw pier-
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scienia. Spoélczynnikia, f, okreslajasie za po-
moca wWzZerow:

-+1
a =250 [ fo) Qo) da,

3

+1
2n4+1 [
B = __)i_ | (@) P () da .
2 "e
Potega z" w rozwinieciu wedlug funkeyj kulistych przed-

stawia sie tak :

pi ! 2n+4-1 . .,
2 == gy 1) @0oF D PO Rn 8 T P

ad (2n+7)(2"+1 ‘i”—-- B yu }(Legendre 1784)

Wzér analogiczny stanowi :

1 .3.5.(2n— - O,
o = — 2 W g1y @ @nt B T 0 (o)

- (2n+9) (2"«"}'12).(42”—{‘3) Q(”“}'ﬂ(z) _}_ 2

Godnemi uwagi ss rozwiniecia nastepujace (Bauer,

Crelle LVI):
it = PO+5 ( ) I’(2)+9(1 3) POt .. ... )
al1—2? 4
2 2

— arc sin z = 3 PV | (—}:) PO+ 11 (1'3’ . g SRS, ,
2 1 I 8 / 1 \?

o i RETIET (1))-ie b ool © _ T (4

Vi z‘_zl" 5. (2)13 9 6(2.4’P

el
-
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Rozwinigcia funkeyj sinnb i cosnl wedlug funkeyj kuli-
stych (Heine, Kugelf. I, str. 86 i dalsze; Most, Crelle LXX) sa:

4 2. 2n—2) .
=y ((2::_3') sinnf = (2n—1) F*1 (cos 6)
+ (2n +3) :: ;)) 2 P (cos B)
2___ 02 2
_|__ Zn 7) [(n 1) n l l (n+1’ n J [”+3)(COSUJ _+_ .....

| (n+2)2—nt] | (n}4) w’J

3.5...(2n+1) i
2 T cosn —= (272+1) i (')(COSO)

1
1 2n- 3) E:"‘Q; P2 (cos )

= 1) 1)
S S e ey e v

P cosO)y 4 . .. ..

Rozwinigeie funkcyi punktéw na kuli na szereg wedtug funkcyj
kulistych Lapl/ace'a.

Niechaj bedzie kula o promieniu 1 i punkt na niej, okreslony
przez dwie spélrzedne biegunowe: jedne 6 (zmieniajace sig
od Odo ) i drugs ¢ (zmieniajaca sig od O do 27). HKunkcya
zmiennych 6, ¢ nazywa si¢ zwykle funkecya punktdéw
kuli lub takize funkcya dwéch katow.

Funkcya f(0,9), skonczonaiciggla dla wszy-
stkich punktéw kuli, majagca przerwy w skonczo-
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nej liczbie punktéw lub linij, daje sie rozwingé na
szereg funkeyj kulistych Llaplace’a w postaci:

f(6,p) = TOL FTOL FOL ... :
gdzie

= b2 4

2n+4+1 ' }
Y0 = -—Ij;— } df, sin 6, } f(0,, @) P™(cosy) de,,
0

i)

cos y = cosb cos8;, - sinb sin 6, cos(p—e,).

Rozwiniecie to ma miejsce dla kazdego punktu kuli, o ile
w punkeie srednicowo-przeciwleglym funkeya jest takze ciagla,
a na kolach wielkich, przez punkt dany przechodzacych, ma skon-
czong liczbe maximoéw i miniméw. Rozwiniecie to daje sie tez
rozciagnaé na przypadek, w ktérym ta liczba maximéw 1 mini-
moéw nie jest skonczona; lecz wtedy zachodzg warunki, w ktérych
szczegoly wehodzié nie bedziemy.

Rozwazania nad przedmiotem, o ktérym mowa, rozpoczal Poisson
(Ecole polyt. cah. XIX, ,Chaleur str, 212); pézniej zajmowali sig nim:
Dirichlet (Crelle XVII), ktéry sprostowal blad w dowodzeniu P ois-
sona; Bonnet (Liouville, 1852); Kronecker (patrz Heine, Ku-
gelf. I str. 434) i Dini (Annali di mat VI, 1874) stwierdzili, ze do-
wodzenia Dirichleta wymagaja jeszcze pewnych uzupelinien.

§ b.
Rozwinigcie funkcyi na szereg funkeyj Bessela.

Kazda funkeya f(2), jednowartosciowa, skon-
czonaiciggla wewngtrz kola o promieniul,
daje sierozwingé na szereg:

[(2) = ay JO2Z) + a, TV (2) + ag J®(2) + . .. ..

Pascal. Rep 30
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stosuje sie do wszystkich punktéw tego kotla.
Spélezynniki wyrazaja sie w ten sposéh:

— —»——8" ; (m) {
an P '/ f(z) OM(2)de,

gdzie calkowanie uskutecznia sie w zwrocie dodatnim wzdluz
okregu; wzér powyzszy na rozwiniecie daje si¢ obustronnie réz-
niczkowadé.

Kazda funkcya, jednowartosciowa skon-
czonaiciggla w pierscieniupomiedzy dwoma
kotami spélsrodkowemi, ktérych srodki sa
w punkcie zero, daje sie rozwingé na szereg
postaci:

f(2) = agJ(z2) +a;JMe) + . .. ..
—+ B 09(2) 4+ B ON2) + ... .. ;

ktory stosuje sie do wszystkich punktéw piers-
cienia: spotezynniki maja wartosci:

En 3 : D &4
a, == _é?l_ ,/‘ /(2) ()(“)(Z)(I,l, ﬁn =1 2;{2 ! f(z)'[(")(z) dZ,

gdzie oba calkowania wykonywaja sie;w zwrocie dodatnim wzdluz
krzywej zamknietej, zawartej w pierscieniu i otaczajacej punkt .
zero.

Przypadkami szezegdélnemi tych rozwinieé ss nastepujgce:
cose = JONg) — 2J@(2) + 2JW(2) — . .. ..
sinz = 2JW(2) — 2J@(2) 4+ 2J0(2) — . . ...
1 =J03) +2J% () +2J%(2) + .. ...
Yz =J02)+3J0@)4+579() . ....
JO (¢4 2) = JV(¢) JW(2) —2J D (c) ]V (2)F2J @ (¢) JZ (2)—...
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Jezeli rozwiniemy na szeregi Fouriera funkeye
cos (zsinw), sin(zsinw), to spolezynniki wstaw 1 dostaw beds
funkcyami Bessela.

Jezeli funkcya f(z) jest skonczona i ciggla
dla wartoscirzeczywistych 2z, zawartych mie-
dzyOinimapochodna zawsze skonczong, wte-
dy mozna jagrozwinac¢ wedlug wzoru:

F(2) = f10) + 4 dg+ A, T () 4,T0 (22)+ 4,09 B2)+ ...,
gdzie

g

9
oy == ‘uoos(nu)du‘ / Pt dt.
7 e el

Do prac, odnoszacych sig do tego przedmiotu, précz wymienionych
juz poprzednio, nalezy doda¢ prace C. Neumanna ,Ueber dienach
I{reis-Kugel- and Cylinderfunctionen forischr., KEntwick.“ Lipsk 1881

Bibliotekg
maematyezp »-fizyezna
= ANTONIEGO WILKA. &«

Liczba:



ROZDZIAL XX.

TEORYA LICZB CALKOWITYCH: WYMIERNYCH 1 ZESPOLONYCH.

il

Podzielnosé liczb wymiernych catkowitych. Liczby pierwsze.

Liczba catkowita jest podzielna przez druga, jezeli
reszta po podzieleniu pierwszej przez drugg jest zerem.

Liczba calkowita pier wsza jest liczba podzielng
tylko przez siebie sama 1 przez jednosé.

Kazda liczba calkowita rozktada sie jed-
nym tylko sposobem na iloczyn skonczonej
liczby czynnikdéw pierwszych. :

Jezeli liczba N, rozlozona na czynniki pierwsze, jest
a"f'....., to suma jej wszystkich dzielnikéw
pierwszychiniepierwszych wynosi:

am-}-] S 1 ‘610-{'1 == {1
A Sy

aliczba tych dzielnikow:

mG+1)@+1) . . . .
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Liczba N daje sie: 4 (m~-1)(n—-1)... albo & (m—4-1)(n+1).. 41
réznemi sposobami rozlozyc¢ na dwa czynniki, stosownie do tego,
czy przynajmniej jeden z wykladnikéw m, n . .. jest nieparzy-
sty lub zaden.

Dwie liczby nazywaja sie wzglednie pierwszemi,
jezell nie maja innego wspolnego dzielnika précz jednosci.

Oznaczamy symbolem ¢{N) liczbe liczb pierwszych wzgle-
dem liczby N i mniejszych od niej.

Istnieje zwigzek (Eulera):

¢ (N) = N(l & %) (1 %) ......

gdziea, f...sg czynniki pierwszé rézne licz-
by N.
Jezeli N, N saliczby wzglednie pierwsaze,
to:
? (NN') = @(N)g(N).

Jezeli z przyjmuje kolejno wszystkie wartosci dzielnikéw
liezby N, to:
2 ¢(2) = N.

Jezeli N=N,~+}-N,+}. . ., gdzie N, N|, N, . . . sa liczby cal-
kowite, to wyrazenie

jest liczbg calkowita.
Jezeli p jest liczbg pierwsza, to najwyzsza jej potega, za-
warta w N! jest N+ N"4N"" 4. .., gdzie N' jest czescig cal-

AT

kowita ulamka—;i, N" czescia calkowita ulamka ¥ " (i 6le
Dirichlet dowiddl nastepujacego twierdzenia (Akad. Berl.
1837).
Kazdy nieograniczony postep arytmetycz-
ny, ktérego wyraz pierwszy irdinica sg licaz-
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bami wzglednie pierwszemi, zawiera nie-
skoficzenie wieleliczb pierwszych.

Wymieniamy jeszcze nastepujace twierdzenia o liczbach
pierwszych 1 zlozonych.

Aby 2"+ bytoliczbaypierwsza, ]est. konieczue,
by mbylopotegaliczby 2.

Nie mozna wszakze twierdzié, by wszystkie liczby postaci
22" t-1 (jak mniemal byl Fermat) byly liczbami "pierwszemi;
istotnie dla =0, {,2 3,4 otrzymujeimny liczby pierwsze 3, 5, 17,
257, 656537, lecz juz dla n=4 liczba

224 1 =4294967297

jest podzielna przez 641,

Abyliczba 2241 byla pierwsza, jest ko-
niecznem i dostatecznem, by dzielila liczbe
32" L1 (Lucas). J

Aby 2»—1 bylo li(,7bq pierwsza, koniecznem
']eqt bv pbyloliczba pierwszag. Warunek ten
nie jest wszakze dostateczny, gdyz np. 2''—1=23 .89,

Dzielniki nieparzyste liczby 2°“~-1 maja postac 21! ¢4 1.
Duzielniki pierwsze nieparzyste liczby postaci a?+! —1 lub
a1+ 1, gdgie 2n+41 jest liczba pierwsza, albo maja postaé
2(2n+-1)+4-9+-1, albo sa odpowiednio dzielnikami liczb a—1, a+1.

Jezeli p jest dzielnikiem nieparzystym liczby a”--1, to
mozna p przedstawi¢ w postaci 2wq-+1, gdzie o jest jeduym
z dzielnikéw liczby m (wlaczajac liczbe 1). Nadto liczba -»7%
bedzie nieparzysta i pierwsza wzgledem ¢, p zas bedzie dzielni-
kiem liczby av - 1.

Dowody nlektorych tych twierdzen oparte sg na teoryi kon-
gruencyi, ktorg nizej podajemy.

Aby liczba nieparzysta byla liczba pierwsza, jest koniecz-
nem i dostatecznem, by jednym tylko sposobem byla réwna réz-
nicy kwadratow dwu liczb calkowitych.

Zadna liczba postaci a*-4 z wyjatkiem 5, nie jest liczba
plerwsza (Zofia Germain).
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Jezeli 2a>>7, toistnieje przynajmniej jed-
na liczba pierwsza, zawarta pomiedzy a i 20a—2
(Twierdzenie Czebyszewa, Journ. de Tjouwlle XVII, Akad.
Petersb. 1850).

Tloczyn n pierwszych liezb catkowitych nie moze byé po-=
tega liczby calkowitej ani iloezynem poteg liczb calkowitych,
(Liouville, (2), IT).

Liczba nazywa sie doskonals wtedy, gdy réwna sie
snmie wszystkich swoich dzielnikéw.

Liezby doskonale,dvtad znane,otrzymuja sie za pomoca wzoru
(edpowiadajacego metodzie, znalezionej juz przez Euklidesa)
E, =212 —1) w przypadku, gdy czynnik drugi jest liczba
pierwszy.

Niema innyech liczb doskonalych parzy-
stych,préocztych, ktdresg zawarte we wzorze
Euklidesa.

Nie znamy dotad liczb doskonalych nieparzystych.

Dotychezas znane liczby doskonale odpowiadaja nastepu-
jacym wartosciom liczby p: 2, 3, b, 7, 13, 17, 19, 31, 61; oto osm
z nich :

6; 28; 496 BI28; 33550336: 8389869056; 137438691328:
2305843008139982128.

Lucas zapewnia, 12 dowiddl, ze dla p=67 1 p=89 nie
otrzymujemy liczb doskonaltych (Théorie des nombres, I, str. 376),
.Zagadnienie o znalezieniu liczby liczb pierwszych, mniejszych
od liczby danej lub zawartych pomiedzy danemi granicami, dalo
pobudke do licznych badan,

Euler (Pam. Akad berlinskiej 1772, str. 36) zunalazl wzor
2?4441, z ktorego kladac, 2 =0,1,2..., otrzymal, 40 liczb
pierwszych; analogicznemi wzorami sg 22~} - 17, dajacy dla
(#==0,1.2...) 17oraz wzér 22?29, dajacy 29 liczb pierwszych,

Legendre (Théorie des nombres) znalazt wzér przy-
blizony, wyrazajacy liczbe liczb pierwszych, mniejszych
od liczby danej x. Jezeli te¢ liczbg oznaczymy przez ¢(x), bedzie
z dostatecznem przyblizeniem dla = bardzo wielkiego:
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I

log oz — 1,08366

P (x) =

Riemann (Werke, str. 136) zajmuje sie w pracy spe-
cyalnej zagadnieniem o znalezienin dokladnej wartosci
funkeyi @(a); lecz wzdr jego jest bardzo skomplikowany.

Temze zagadnieniem zajmowali sie: Gauss (Werke IT, str.
435—447), Dirichlet (Berl. Akad, 1838), Czebyszew (Liou-
ville XVII, a takze w ,Teoryi kongruencyi“ Dodatek IIT). Inne prace
o tym przedmiocie sy: Curtzego (Annali di mat. I), Meissela
(Math. Ann. H, II, XXI, XXIII, XXV), ktory obliczyl liczbe liczb
pierwszych dla pierwszego miliarda liczb naturalnych, Mertensa
(Crelle, LXXVHI), de Jonquiéres’a (C. R. XCV), Lipschitza
(tamze XCV, XCVI), Piltza (Jena 1884) Poincarégo (C.R.
CXIIT), v. Mangoldta (Akad. Berl. 1897, Ann. de I'Ecole Polyt.
1896), Cahena (C. R. 1893, Annales de 1'Ecole Normale 1894),
Levi-Civita (Lincei, 1895). © Wyklad tego przedmiotu znajduje sig
w rozdziale 12-ym dziela Bachmanna ,Zahlentheorie“ t 11, 1894,

Niektore prostsze twierdzenia, odnoszace sie do tego przed-
miotu, sa nastepujace:

Granica wyrazenia q);&‘)— — log z dla ¥ =00 jest —1
(Czebyszew..
Wartose calki
[
: log

wyraza wartos¢ funkceyi ¢(x) z przybliZzeniem tem
wigkszem, im wieksze jest @ Ten wzér na wartosc funk-
cyl @(x) jest daleko bardziej przyblizony, niz powyzej podany
wzor Legendre’a; znajdujemy go u Gausa (1. c. str. 444).

Nastepujaca tablica daje liczbe liczb pierwszych, zawar-
tych w granicach miedzy 1 a 100, migdzy 101 a 3001 t. d.:
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Pomiedzy 1L 463 100 zawiera sie 25 liezb pierwszych

% FQIN % ¢ 200 n P TS 9
o AT 300, - = ; 1652 i
A 301, . 400 ., o Togee 2
3 01, 00T L8 3% T e =
. {0 600, ™ 1% 3
a9 n i OO1ESS, S 00K . 10
s qomE 800 ) 14 ., 5
” 501 ” 900 1] & 15 2 B
= 901, 1000, X 14,
1 (B 1000 ., x 168 ., 5
= 10013, 2000, o 1308 5
- 2001, 3000 -, ‘, 17 %0 2
oy 2000, 4000, ) 120 4
2 4001, 5000 . o 19, 3
£ 5001 6000 . L TS .
2] 6001 ” 7000 Lt 1” 17 ” )
5 7001 . 8000, ,, 10 )
¥ 8001, 9000, = 110 A
g 9001 . 10000 . 112 4
# 1505, 1000000 s 78498 , 8
- 1, 100000000 » DI61455 .,

Podobna tablica czestosci liezh pierwszych, dosé
daleko posunieta, znajduje sie w tomie IT ,Dziel“ G aussa; w niej
pomieszezono liezby liczb pierwszych w réznych chiliadach az do chi-
liady 1000-ej, t. j. do 1000000, Tablice te nalezy w kilku miejscach
sprostowa¢ wedlug wskazowek Meissela w Math. Ann, II.

Tablice dzielnikéw liczh pierwszych dla 1-go i 2-go miliona wraz
z liczbami pierwszemi w nich zawartemi ulozyli: pierwszaq Chernac
(1811), druga Burkhardt (Paryz 1814); patrz G auss, (Werke 11,
str. 181—183). W tablicach Burkhardta mnalezy uskutecznié
poprawki (patrz np. Meissel L. c¢.). Wspomnimy wreszcie o tabli-
cach Ve gi (Sammlung math. Tafeln, r. 1796, wydanie, opracowane
przez Hitlsse go, Lipsk, 1840),

Pytanie, pokrewne z zagadnieniem poprzedzajacem odnosi,
sie do funkeyi 4 Mertensa (Crelle, LXXVII). Rozumiemy
przez u(n) jednosé dodatnia lub ujemns, stosownie do tego, czy
n jest illoczynem parzystej lub nieparzystej liczby czynnikéw
pierwszych r6znych, przytem u(l)=-1, un)=0 jezeli n
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ma czynniki kwadratowe (wyjawszy jednos¢). Pierwszem pros-
tem twierdzeniem o funkeyi u jest nastepujace:

Suma Xu(d),rozciagnigta nawszystkiedziel-
nikiliczby jakiejkolwiek N (wlaczajgc w nie
sama liczbe Nijednosé) jest zerem.

O tej funkeyi patrz note Lipschitza (C. R, 1879)1 wyklad
u Bachmanna, I c.

§ 2.
0 funkcyi liczbowej E(z).

Za pomocsy symbolu E(x) (lLegendre) oznaczamy naj-
wiekszg liczbe calkowita wymierng, zawarta w liczbie dodatniej
rzeczywistej x

Za pomoca symbolu (2} (Hermite) oznaczamy wyra-
zenie
Eie) Kir+1) ... E(x+q9--1)

q!

() =

Funkcya Il jest oczywiscie funkcya nieciagla. Godnem
jest uwagi, ze funkeya

(p(.L) = l(x) -+ Va— I )

jest funkeys ciggla zmiennej . dla rzeczywistych dodatnich war-
tosci z. Funkcye te zastosowal Schwarz do zbadania funkeyi,
nie majgcej pochodnej w nieskonczenie wielu punktach.

Dla funkeyi E mamy wzory nastepujace:

m—1

ZA( -{—-—) E(na)— E(z),  (Hermite)

m

Tl(na—r){]yl(z—}- o)+ B~ )}

= K, (mx) —m Ky (x). (Hermite)
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m—| o n—1
= K (m: e 250 (mx SRS L A —n, (Stern)
r=1 \ m =1 " , g
m—1 » 9 m—1 7\
‘ s A —] — I, e s =“:J‘.: St

,ﬁ : by (J o ) I(’(x M) } = F(' i in/'( kg

O funkeyi E'(x) oglosili prace: Hermite (Acta math. V, str.
315, VII, Correction), Stern (Acta math. VIII, X, Crelie CII),
Pringsheim (Math, Ann. XXVI), ktéry szukal rozwinigcia na
szereg trygonometryczny funkeyi I (2), wreszcie Bertolan i (Giorn.
di Matem. XXXIV, 1895).

Wiadomosci ogdine o kongruencyach.

Dwie liczby «, B nazywaja sie kongruentnemi
lub przystajgcemi wedlug modulu n, jezeli ich
réznica jest podzielna przez n. Oznaczamy to za pomocyg sym-
bolu

a = f (modn)

i nazywamy kongruencyg.

Wszystkie liczby, w odniesieniu do modutu n, dziela sie na
n klas (Gauss); w kazdej klasie znajdujg sig liczby, przystajace
wedlug tego modutu. Liczby 0,1,2...%—1 mozna uwazaé za
przedstawicielki tych n klas.

[iczba danej klasy jest niekongruentna (nie-
przystajaca) doliczby innej klasy.

Uklad n liczb, wybranych dowolnie po jednej z kazdej klasy
np uklad 0,1,2...n—1, tworzy uklad zupelnyliczb
nieprzystajacychlubuklad zupelny reszt wzgle-
dem modulu n.
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Dwie liczby, przystajace do trzecie] we-
dlug tego samego modulu, sg przystajacemi
dosiebie wedlug tegomodulu.

Dwielub wiecej kongruencyj otym samym
module mozna dodawaé¢, odejmowa¢, mnozyé¢
stronami; wyrazy kongruencyi mozna wszyst-
kiemnozyé¢ przez jedne ite samag liczbe.

Wyrazy kongruencyi mozna dzielié¢ przez
icheczynnik wspdlny k jezeli czynnik ten jest
wzglednie pierwszy do modulun; jezell zas
ten przypadek nie zachodzi, tomozna dzieli¢
modul przeznajwiekszy wspdélny dzielnik po-
miedzy nim a liczba k.

Jezeliajestliczbg pierwszg wzgledem #n,
@(n) zas oznacza liczbe liczb pierwszych mniej-
szych od i wzglednie pierwszych z tg liczba,
to:

a?" = 1 (mod n). (Euler.)

Dla n==p", gdzie p jest liczbg pierwsza, zachodzi twier-
dzenie:

Jezeli @ jest niepodzielne przez liczbg
pierwszg p, to:

a® "1 =1 (mod. p¥).

Dla k=1 otrzymujemy twierdzenie Fermata:
Jezeli anie jest podzielne przez liczbe
plerwszg p, to:
a? ' =1 (mod p).

Jezelip jestliczbg pierwsza, to:
(p—I)!+1 = 0 (mod p). (Twierdz. Wilsona.)

Niechaj f bedzie symbolem funkcyi wymiernej calkowitej;
jezeli a=f (mod n), to bedzie takze fla)=sf(f)(modn).
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Niechaj f(x), F(x) beda wielomiany. Dawszy sobie modul
n, mozemy postawi¢ nastepujace zagadnienie: :

Jakie sa wartosci wymierne calkowite
liczby z, ktore, podstawione zamiast x, czynis
zadosé kongruencyi:

f(x) = F(z) (mod n)?

Przenidslszy na strone pierwsza wszystkie wyrazy ze stro-
ny drugiej i wyrazajac tymze znakiem f nows funkcye, jaks
otrzymamy na stronie pierwszej, mozemy poprzednig kongruen-
cye napisa¢ w postaci:

f(z)= 0 (mod n).

Powstaje wtedy pytanieo rozwigzaniu kongruen-
cyl, analogicznedo pytania o rozwiazywaniu réwnan. Stosownie
do stopnia funkeyi /, mamy kougruencye stopnia 1-go, 2-go it.d.

Jezeli z=a czyni zadosé¢ kongruencyi
f(x)=0(modn), to kazda liczba, przystajaca do
liczby a wedlug mod n, r6wniez czyni zadosé
kongruencyi.

7Z tego twierdzenia wynika, ze kongruencya, jezeli ma je-
dno rozwiazanie, to ma ich nieskonczenie wiele; wszakze rozwia-
zan przystajacych do siebie nie bedziemy uwazali za réine idla
tego mozemy powiedzie¢, ze kongruencya moze mie¢ naj-
wyzej tyle roznych rozwigzan, ile jest klas
liczb wedlug n.

Jezelin jest liczbg pierwsza, to liczbg roz-
wigzanroznych kongruencyi f(x)==0(modn) okre-
sla stopien wielomianu f(z), jezeli jest nizszy
od n.

Jezeli modul n jest liczbg pierwszg p, to rozwiazanie kon-
gruencyi f(x)==0 (mod p) mozna sprowadzi¢ do rozwigzania
kongruencyi R(z)==0 (mod p), gdzie R(») jest wielomianem
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stopnia p-—1, a mianowicie resszts, z podzielenia funkeyi f(x)
przez »¥ — x.

§ 4.

Kongruencye stopnia 1-go.

Kongruencya arx-—b=0(modn) ma zawsze roz-
wigzanie, jezeliainsaliczby wzglednie pier-
wsze.

Jezeli n jest liczba pilerwszg p, to rozwiazaniem kon-
gruencyi ax —b=0 (mod p) jest x==bar*=*(mod p).

Jezeli n jest liczba zlozona, to rozwiazaniem kongruencyi
a2 —b0=0(mod n) jest a=0ba "~ (mod n), gdzie @(n) ma zna-
czenie wyzej podane (str. 469).

Kongruencya ar—-b==0(modn) nie ma rozwiy-
zania, jezeli ktérykolwiek czynnik wspélny
liczb ¢ i mniejest dzielnikiem liczbyd. Jezeli
najwiekszym wspolnym dzielnikiem liczb ain
jestd,iliczba d jest zarazem dzielnikiem licz-
by b, to kongruencya bedzie miala drozwiazan:

. 9 : 1
x=d, xza—{——:—}, r=a + —C—?, . ..'.v_==a-f—~(d~ié—l—-”~' (mod n),

gdzie a jest pierwiastkiem kongruencyi

o O n
P Rt i 0 (mod d ) :
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§ b,

Kongruencye stopnia 2-go. Reszty kwadratows.

Jezeli w kongruencyi stopnia 2-go :
az? + bz 4 ¢ == 0 (mod n),

« jest podzielne przez n, to kongruencya sprowadza sie do kon-
gruencyl stopnia 1-go, ktéra otrzymujemy, odejmujac od strony
plerwszej wyraz ar?.

W przypadku n=2, kongruencya daje sie¢ réwniez sprowa-
dzi¢ do kongruencyi stopnia 1-go, ktérej strona pierwsza jest
reszty z podzielenia ax? 4 bz - ¢ przez x?*—x (patrz § 3).

Rozwigzanie kongruencyi:

ax® + bx + ¢ =0 (mod p),

gdzie p jest liczbg pierwszg, nie dzielgcy
liczbyairdozna od 2, sprowadzasie dorozwig-
zania kongruencyil

2?2 == (b*— 4uc) (modyp),

gdzie pomie¢dzy zie zachodzi zwigzek 2ax{b=z.
Kladac 02— 4ac==¢, mamy:

Jezeli ¢==0 (mod p), to powyzsza kongruencya ma jedyne
rozwigzanie z =0 (mod p); jezeli ¢ =z O(modp) (znak zjz ozna-
cza: ,jest nieprzystajace“), to kongruencya z2=q (modp), albo
wcale nie ma nierozwigzania, albo ma ich dwa, stosownie do tego,

‘E__-l
czy q ® przystaje do —1 lub do 41, wedlug modulu p. W przy-
padku, gdy z*=¢(modp), kongruencya ma dwa rozwigzania, t. j.

}:1
gdy ¢ * = +-1(modp), liczba ¢ nazywa sie¢ res zta kwadra-
towa liczby p.
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Jezeli p jest liczbg pierwszg nieparzysts, to liczba reszt

: : el
oraz liczba niereszt wynosi = (p—1).

Iloczyn dwureszt jest reszta, iloczyn re-
szty przezreszte jest niereszta; dwuniereszt
jest reszta,.

Liczba l jest zawsze resztg liczby p, licz-
ba zas —1 jest reszta lubniereszts, stosownie

p—1

do tego, czyliczba 5

jest parzysta lub nie-

parzysta.

Liczba 2 jest resztg kwadratowa wszyst-
kich liczb pierwszych postaci 8n+t1, 8047; jest
niereszta wszystkich liczb pierwszych po-
staci 8n}3, 8n-+5 (Lagrange).

Dwie liczby, przystajace do siebie wedlug modulu p, sgréw-
noczesnie obie resztami lub obie nieresztami.

Wszystkie twierdzenia o resztach wzgledem modulu pier-
ws$zego mozna wyrazi¢ sposobem latwym za pomocs tak zwa-
nego symbolu Legendrea.

Niechaj (—1";—) oznacza -}-1 lub —1, stosownie do tego, czy

g jest lub nie jest reszta kwadratows liczby p. Poprzednie
twierdzenia dajg sie wtedy wyrazi¢ sposobem nastepujacym:

Jezeli:
=00 s . 5 to:(g—) == (—(§~) (‘?}—,L) .....
(-11,—) =+ 1; (—;1) - (#1)112:; (—3—) =(— 1))£5:1-

Jezeli (jak w § 1) E oznacza najwieksza liczbe calkowits
nie wiekszg od z, to:

(_%—) Ui l)h'("?“)wL k(—f—) ANV ¥ E(i’l.i;?)?)-
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Jezeli g jestnieparzyste i mniejsze odp, to:

o0— = 2 Tl)(a—- 1)p
e O

Najwazniejsze twierdzenie z teoryi reszt kwadratowych
znane jest pod nazwa prawa wzajemnosci dwuliczb
pierwszych.

Jezelipigsagdwieliczby pierwsze, to:

qQ [ p ) sy —
A o R

Twierdzenie to znal juz Euler (Opuscula anat I, 1772, patrz
Kummer, Berl. Akad, 1859, Kronecker, (Berl. Monatsber.
1875); dowiéd! go po raz pierwszy L.egendre (Acad. des sciences
1785); potem G auss (Disquis. arithm) dal wiele dowodéw, z kté-
rych niektdre opieraja sie na réwnaniu podzialu kola. Inne dowodze-
nia podali: Eisenstein (Crelle, XXVII), Lebesguae (Liou-
ville XII); Kummer {Abh. der Berl Ak (861), Zeller (Berl
Monatsber. 1872) i t. d.

W poprzednich twierdzeniach byla mowa o resztach kwa-
dratowych wzgledem modulu pierwszego nieparzystego.
Dla modulu niepier wszego okreslenie reszty kwadratowej
pozostaje bez zmiany. Nadto:

Iiiczba g jest resztag lub nieresztag kwadra-
towa potegi p® liczby pierwszej nieparzystej
p, stosownie dotego, czy jestresztag lub nie-
reszta tej ostatniej.

Liczba ¢ jestreszta kwadratowsg potegl
20 gdy w=1, albo gdy w=2, ¢g=1(mod 4), albo wresz-
cie gdy w >3, q=1(mod8). Aby liczba q byla resz-
ta kwadratowg liczby ztozonej P=p, p,..., gdzie
PisPoy-+- 58 liczbami pierwszemi, jest koniecz-
nemidostatecznem, aby byla resztag wzgle-
dem kazdego zczynnikéw pierwszych p,p,, ...

rascal. Rep. I. 31
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Twierdzenia te mozna tez wypowiedzie¢ w ten sposob:

Kongruencya a?=¢(modp®) ma rozwigzanie
wtedy, jezeli ma je kongruencya a?=q(modjp)
iwtakimrazie madwarozwiazania.

Kongruencya ax?=¢(mod2”) jest zawsze mo-
zliwa, gdy w=11iwtedy ma jeden pierwiastek;
gdy w==2,jest tylkomozliwa, jezeli ¢9=1 (mod 4)
i wtedy ma dwa pierwiastki; gdy wreszcie
w>3, jest tylko mozliwa, jezeli q¢=1(modS&)
iwtedy ma cztery pierwiastki

Kongruencya 2*=q(modpp,...) jest mozliwa
wtedy tylko, gdy sa mozliwemi kongruencye
ge= g (mod p,), r*=¢g(mod p,)... Jezeliliczby p;,»,..- 58
wszystkienieparzyste lub jedna tylko réwna2,
aliczba wszystkich wynosi g, to kongruencya
ma 2# rozwiagzan. Jezelidwa z pomiedzy czyn-
nikéw p,py ... sa réwne 2, wtedy byé powinno
9g=1(mod4) i wtym przypadkumamy 2¢t roz-
wigzan Wreszcie jezelitrzylub wiecejz po-
miedzy ezynnikow p,py, ... rownajgsie 2, wtedy
byé¢ musi g—=1{(mod8) i rozwigzan begdzie 2v¢t2,

Symbol Legendrea rozciagnal Jacobi na przypa-
dek modulu z1ozonego. Kladziemy jako okreslenie:

=R

wtedy (~%) ma wartosé -1 lub —1. Lecz nie mozna juz mo-

~

wic. ze (—;L) = —+ 1 jest warunkiem koniecznym i dostatecz-
nym na to, by ¢ bylo reszta kwadratows liczby P, albo-

wiem wedlug wyzej wskazanego twierdzenia trzeba, aby kaz-

dy z symboléw (%}, (%—\) , ... byl +1, a nie wystarcza, aby
1 21
iloczyn ich byl 1.
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Symbol Jacobie'go (—;’—_,—) ma wszystkie wlasnosci sym-
bolu Legendrea w przypadku modulu pierwszego nieparzy-
stego. Poslugujac si¢ wzorem wzajemnosci, ktéremu ten symbol
takze czyni zadosé, mozemy npraszcza¢ rachunek z symbolem
ILegendre’a w przypadku modulu pierwszego.

Dla znalezienia pierwiastkéw kongruencyi kwadratowej
2% = ¢ (mod p) trzeba uciec sie do teoryi skaznikéw, ktérg wy-
lozymy w § 7.

W jednym tylko przypadku latwo znales¢ rozwigzanie kon-
gruencyl, mianowicie, kiedy p jest liczba pierwszg postaci 4r4-3.
W tym przypadku (jezeli kongruencya jest rozwigzalna) jedno
jej rozwigzanie jest reszta a z podzielenia ¢'t! przez p, drugiem
rozwigzaniem jest p—a.

§ 6
Kongruencye dwumienne  Reszty szescienne i rzgdow wyzszych.

Kongruencya postaci:
am = 4 (modp),

w ktorej p jestliczbg pierwszg nieparzys
jest mozliwa tylko wtedy, gdy:
E
A= Slatmodsps

gdzie w jest najwiekszym wspélnym dzielni-
kiem liczb m i p—1.

W tym przypadku kongruencya ma w rozwiazan, ktére sq
zarazem rozwigzaniami kongruencyi

a%® = A® (mod p),
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gdzie s jest liczbg, czyniaca zadosé warunkowi:

)
)

w

m
w

&

lll

Liczba 4 w tym przypadku nazywa sie reszta rzedu
m-tego liczby p.

Liczba -1 jest zawsze resztg rzedu m kazdej liczby p.
Liczba —1 jest reszty, gdy dzielac p—1 przez w (najwiekszy
wspolny dzielnik liczb w1 p—1), otrzymujemy liczbe parzysta.

Co do rozwigzania kongruencyj dwumiennych patrz § 7.

Analogicznie do symbolu Legendrea (I:I) dla reszt

kwadratowych, wprowadza sie symbol l% dla reszt szescien-

nych oraz symbol ((%)) dla reszt dwukwadratowych.

Dla utworzenia teoryi zupelnej tych reszt i ustanowienia
twierdzenia analogicznego z twierdzeniem o wzajemnosci, nalezy
rozszerzy¢ dziedzineg liczb wymiernych i obja¢ w niej liczby po-
staclt a0 V—1, gdzie @, b sa liczbami calkowitemi, oraz liczby
a+ be, gdzie ¢ jest pierwiastkiem szesciennym z jednosci. Patrz
nizej §§ 91 10.

§ 6.
Kongruencye wyktadnicze. Pierwiastki pierwotne i skaZniki.
Jezeli kongruencyi

A4¢ = q (mod p),

gdzie p jest liczbg pierwszg, nie dzielgcg ani
A anig czynizadosé¢ x=a, toczynic¢ bedzie je]
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zadoéé i kazda liczba,przystajaca doa wedlug
modutu p—1.

Liczba rozwiazan (nieprzystajacych wedlug modutu p—1)
kongruencyi 4% = q (modp) jest ta sama, jak kongruencyi
4* =1 (mod p).

Najmniejsza'a z liczb (précz zera), czynigcych zadosé kon-
gruencyi 4° =1 mod. p (ktéra ma zawsze puzynajmniej jedno
rozwigzanie), jest dzielnikiem liczby p—1 (wlaczajac i p—1);
inne rozwigzania sa wielokrotnosciami liczby a.

Na podstawie twierdzenia Fermata wiadomo, ze p—1
czyni zawsze zados¢ kongruencyi A% =1 (mod p); otéz, jezel
p—1 jest najmniejsza z pomiedzy liczb, czynigcych zadosé tej
kongruencyi, 4 nazywa si¢ wtedy pierwiastkiem pier-
wotnym liczby p.

Istnieje @(p—1) pierwiastkow pierwotnych
liczby p, zawartych pomiedzy 01 p—1.

Jezell 4 jest pierwiastkiem pierwotnym liczby p, kongru-
encya A7= ¢ (mod p) ma jedno rozwigzanie. To rozwigzanie
jedyne, zawarte pomiedzy 0 i p—1, nazywa sie skaznikiem
(indeksem) liczby ¢ 1oznacza si¢ w ten sposéb: x —1ndq.

Teorya skaznikéw ma analogie z teorys logarytméw; liczba
A nazywa sig¢ podstawsg ukladu skaznikéw; twierdzenia
o skaznikach sg podobne do twierdzen o logarytmach.

Dwie liczby przystajace maja skazniki
rowne.

Skaznikiem jednosci jest zero.

Skaznik 1loczynu przystaje (mod. p—1) do
sumy skaznikow. .

Skaznik potegiprzystaje (mod. p—1) do ilo-
czynu wykladnika przez skaznik podstawy
potegi.

Za pomoca tych twierdzen mozna rozwiazywaé¢ kongruen-
sye dwumienne (patrz § 415):

" =q (mod p),
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albowiem z kongruencyi takiej wyplywa nastepujaca:

m.ind. x = ind.q (mod p—1).

W tablicach skaznikéw szukamy ind ., a dla mozliwosci
tej kongruencyi potrzeba, by najwiekszy wspdlny dzielnik w
liczb m 1 p—1 byl dzielnikiem skaznika liczby ¢. W tym przy-
padku kongruencya ma w rozwigzan, ktére znajdujemy przy po-
mocy metody, podanej w § 3.

Twierdzenia, odnoszace si¢ do pierwiastkéw pierwotnych,
sa nastepujace:

" Pierwiastkiem pierwotnymliczby pierw-
szej postacl 2211 jest 3.

Jezeli 4n+1 jest liczbg pierwsza, to2 jest
pierwiastkiem pierwotnym liczby 2(4n+41)-41,
gdy ta jest pierwsza, a jezell 4n+3 jest liczba
pierwsza, to 2(4n+3)-—-1 jest pierwiastkiem
pierwotnym liczby 2(4dn—3)-41.

Liczba pierwsza postaci 4n+41 ma pierwia-
stek pierwotny 2, jezeli m jestliczbg pierw-
szg >2.

Liczba pierwsza postaci 4.2”.n+1 ma za
pierwiastek pierwotnyliczbe 3, jezeli njest

2

liczba pierwszag wieksza od492m igdy m>0.

Pierwiastki pierwotne i skazniki obliczyl Jacobi w pracy ,Ca-
non arithmeticus“ (Berlin 1839), ktérej nie wlaczono do wydania dziel
zupelnych Tablice tych pierwiastkow obliczyli rowniez: Crelle (Crelle
1X), Kulik (Crelle XLV), a tablice obszerne az do modulu 353 znaj-
duja sie we wloskim przekladzie ,Teoryi liczb*. Czebyszewa
Hotel obliezy! tablice (az do mod 199) wedlug wskazdéwek Le-
bes gue’a (Tables arithmétiques, Paryz 1866; patrz takze Journ. de
Liouv. X1X, 1854), W tablicach tych za podstawe bierze sig
najmniejszy co do wartosci bezwzglednej z pierwiastkéw pierwotnych
wzgledem danego modulu.
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§ 8.

Formy kwadratowe. Przedstawialnosé liczb przez formy.

Formag kwadratowa liczbowa nazywa sie wy-
razenie typu

ax? 4 20xy 4 ey,

gdzie «, 0, ¢ sg liczbami danemi wymiernemi catkowitemi; x, y
liczbami calkowitemi nieoznaczonemi lub niewiadomemi. Forme
taka oznaczamy za pomocs symbolu (a, b, ¢). Wylaczamy prazy-
padek, w ktorym wyroznik lub wyznacznikformy, t. j.
D =0*—ac, jest kwadratem zupelnym, albowiem wtedy torma
rozpada si¢ na dwa czynniki liniowe o spdlczynnikach wy-
miernych.
Jezeli polozymy:

z=a2' -+ By’; v =ya' + oy’

to forma dana przeksztalci sig na inna, ktdorej spélczynnikami
beda :

@ = ua®—+ 2bay + cy?,

0 = aaf -+ b(ad - By) -+ ¢y 9,

¢ = af® -+ 2086 -+ cé*.

Podstawienie powyzsze oznaczamy, jak zwykle, symbolem

( Z’ g ) Jezeli D jest wyznacznikiem formy przeksztalconej,
bedzie :
D' = (ad — By D.

Stosownie do tego, czy wyznacznik ad — fy (wyznacznik
podstawienia liniowego) jest dodatni lub ujemny, podstawienie
nazywa si¢ wlasciwem lub niewlasciwem. Dwa pod-
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stawienia sa podobne, gdy oba sg albo wlasciwe, albo oba
niewlasciwe

Méwimy, ze forma (&', V', ¢’) jest zawarta w formie
(a. b, ¢), gdyz kazda liczba przedstawialna przez drugg forme
moze by¢ przedstawiona i przez pierwsza.

Moéwimy, ze forma (a', ¥, ¢) jest zawarta w formie (a, b, ¢)
wlasciwie lub niewlasciwie, stosownie do tego, czy

podstawienie ( ;’ g ) jest wlasciwe lub niewlasciwe.

Dwie formy, zawarte wzajemnie jedna w drugiej, nazywaja
sieréwnowaznemal.

Dwieformysardwnowaznemi, jezell maja
wyznacznikiréwneigdy jedna znich jest zas
warta w drugiej.

Dwie formy nazywaja sie ré6wnowaznemi wlasci-
wie lub niewlasciwie, stosownie do tego, czy wyznacz-
nik przeksztalcenia, przy pomocy ktérego przechodzimy od je-
dnej do drugiej, jest +1 lub —1. Dwie formy moga by¢ réwno-
waznemi jednoczesnie jednym 1 drugim sposobem.

W zagadnieniu o przedstawianiu liczby m za pomocs formy
kwadratowej (a, b, ¢) mozemy ograniczy¢ sie na przedstawie-
niach tak zwanych wlasciwych, t.j. takich, w ktorych 2 iy sa
liczbami wzglednie pierwszemi, albowiem z tych przedstawien
wlasciwych latwo otrzyma¢ mozna niewlasciwe.

Aby liczba m dala sie przedstawi¢ wlasci-
wie przez forme (a,0,¢) jest koniecznem, by
D=10.—acbyloreszta kwadratowa liczby m.

Teorya przedstawialnosei liczb za pomoca form kwadra-
towych (odpowiadajaca znowu teoryl réwnan nieoznaczonych
stopnia 2-go o dwu niewiadomych) daje sig sprowadzi¢ do teoryi
réwnowaznosci samych form (Poréwn. Dirichlet — Dede
kind § 60).

Dwa zagadnienia zasadnicze teoryl rownowaznosci sa na-
stepujace :

I. Znales¢ kryteryum, przy pomocy ktdre-
gomoznarozstrzygnaé, czy dane dwie formy
sgrownowazmne lub nie. ; 5 Py
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II. Znales¢ wszystkie podstawienia, za po-
mocg ktérychdana forma przeksztalca sie na
inng jejréwnowaszna.

To drugie zagadnienie, gdy znanem juz jest jedno z tych
podstawien, sprowadza sie do nastepujacego:

IIbis. Znales¢ wszystkie podstawienia, za
pomoca ktérych dana forma przeksztalca sie
nasamg siebie.

To znow zagadnienie przeksztalca si¢ na inne (patrz nizej

II-ter), za pomocs twierdzen nastepujgcych:
a, B\
) 6. "
ma (@, b, ¢) o wyznaczniku D, w ktérej niechaj ¢ bedzie najwiek-
szym wspélnym dzielnikiem spélezynnikéw a, 20, ¢, przeksztalca
sie na siebie samg, to bedzie zawsze:

Jezeli jest podstawieniem, za pomocsa ktérego for-

—bu I Cu
a = ¥ p=— .
¢ o
au 4 bu
y = —, a == ———— ;
o o

t, u sg liczby calkowite, czyniace zado$é réwnaniu nieoznaczone-
mu, zwanemu réwnaniem Pella:

t2 — Du? == o2,

gdzie
D = O(mod¢?) lub 4D = o¢?(mod 4¢?).

Odwrotnie, jezeli ¢, w sa dwie liczby calkowite, sprawdzajace
poprzednie réwnanie, to liczby «a, 8, y, 6, wyrazone podanemi
wyzej wzorami, sa spolezynnikami podstawienia, ktére prze-
ksztatca forme (a, b, ¢) na siebie sama.

Stad wyplywa zagadnienie:

II-ter. Znalesé¢ wszystkierozwiazania cal-
kowiterownania nieoznaczonego:

2 — Du? = gt
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gdzie
D = 0 (mode?) lub 4D = ¢* (mod4s?).

Dla rozwiazania zagadnienia I wprowadzamy pojecie for-
my zredukowanej. Okreslenie tej formy jest inne w przy-
padku D ujemnego, niz w przypadku D dodatniego.

Jezeli /) jest ujemne, to foring zredukowans nazy-
wamy forme o spélezynnikach skrajnych «, ¢ dodatnich i spraw-
dzajacych nieréwnosei:

C- 2l P 2 :b.“

gdzie |b| oznacza wartos¢ bezwzgledna ilosci 4. Mamy wtedy:
Kazda forma o wyznacznikuujemnym jest
rownowazna formie zredukowanej.
Jedynemi typami dwn form zredukowa-
nych r(')wnovx;aznych owyznaczniku ujemnym
inietozsamosciowych sga:

(a, +a, ¢c) 1 (4, —ta, ¢,
(@, b, a) 1 (a, — 0, a).

Podstawienia, za pomoca ktérych przecho-
dzimy od jednej do drugiej, sa odpowiednio:
L B T AV R 3K

e O b e

Dane formy o wyznacznikach ujemnych przeksztalcajy sig
najprzod na odpowiednie formy zredukowane (patrz co do te-
go w § 64 dziela Dirichleta-Dedekinda), a nastep-
nie bada sie. czy formy zredukowane podchodzg pod jeden
z tych przypadkéw.

Jezeli D jest dodatnie, to forme nazywamy zreduko-
wana, jezeli pierwiastki jej sq znaku przeciwnego i takie, ze co
do wartosci bezwzglednej jest:
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s D iz

Tl 1;

'__ b= VD

¢ | ¢

gdzie przez VD rozumie sie zawsze wartos¢ dodatnis pierwiast-
nika. Mamy wtedy:

Dla kazdego wyznacznika dodatniego ist-
nieje zawsze skonczonaliczba form zreduko-
wanych.

Kazda forma o wyznaczniku dodatnim jest
zawszeréownowazna formie zredukowanej,

Forma (a, 0, ¢) nazywa si¢ sasiednig po stronie
prawej wzgledem formy (a, ¥/, ¢), jezeli obie formy maja
ten sam wyznacznik, jezeli nadto ¢'=a, suma zas b-}-b' jest przez
a podzielna. Forma druga nazywa si¢ wtedy sasiednisg
po lewej wzgledem formy pierwszej.

Kazda forma zredukowana o wyznaczniku
dodatnim ma jedne tylko sagsiednig po pra-
wej,ktéra jest zredukowana, i podobnie jedne
tylko sasiednig zredukowana polewej.

Majac forme zredukowana o danym wyznaczniku budujemy
jej zredukowane sasiednie po prawej i po lewej; nastepnie z kaz-
dg z form zredukowanych postepujemy tak samo. Otrzymujemy
tym sposobem szereg nieograniczony form zredukowanych; po-
niewaz wszakze liczba ich jest skonczona, wiec po pewnej liczbie
dzialan musimy powréci¢ do zredukowanej pierwotnej.

Ogodl wszystkich form zredukowanych w ten sposéb otrzy-
manych tworzy to, co Gauss nazywa peryodem.

Jezeli istniejg inne formy zredukowane o tym samym wy-
znaczniku i nie zawarte w tym peryodzie, to mozna wyjsé jednej
z nich i utworzyé peryod drugi i tak dalej.

Po takiem ustaleniu pojeé, mozna dowies¢ nastepujacego
twierdzenia zasadniczego Gaussa.

Warunkiem koniecznym i dostatecznym
na to, aby dwie formy zredukowane o tym sa-
mym wyznacznikudodatnim byly réwnowaz-
ne, jest, by nalezaly do jednegoitegosamego
peryodu.
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Twierdzenie to daje rozwigzanie zagadnienia I dla wyzna-
eznika dodatniego. :

Waznem jest nastepujace rozwazanie zwigzku pomiedzy
peryodami form zredukowanych a ulamkami cigglemi.

Jezeli dang jest forma zredukowana o wy-
znaczniku dodatnim D, ktérej pierwszy spo1-
czynnik jest dodatni, to jej pierwszy pierwiastek
(t. j. pierwiastek, w ktérym pierwiastnikowi VD dajemy znak
wjemny) bedzie dodatni. Jezeli wiec rozwiniemy na ula-
mek ciagly pierwszy pierwiastek w, otrzymamy ulamek ciagly
peryodyczny, ktérego peryod ma tyle wyrazéw, ile ma wyrazéw
szereg form zredukowanych sasiednich.

Za pomocs wyrazow tego ulamka cigglego mozemy utwo-
rzyé cztery liczby a, g8, y, 6 podstawienia, ktére forme o wyzna-
czniku dodatnim D przeksztalca na samg siebie. Odbywa sie to
w spos6b nastepujacy: Niechaj bedzie

o = Iy + 71— 1
Ntetor 0B :

co napiszemy w skréceniu tak :
(e rileime ks v bt nd

Ilorazy niezupelne & powtarzaja sie w peryodzie, zloZonym
z parzystej liczby 2i elementéw, tak ze:

k, = ky, jezeli r = s (mod 2¢).
Wprowadzmy parametr i1 =1,2, ..., 1 poléimy:
(/—‘ — | ]':(P H /"l y e e oe /[2[“‘_2 ], -/),* = [ kO' "‘1 B /t'g[,;__g, /-'A_)[,,'_l].

a nastepnie wezmy za a, 8, y, 0 odpowieduio liczniki i miano-
wniki tych wlamkéw ciaglych s konczonych.

Liczbya. 8,7, 0, wten sposéb obliczone, sa
wszystkie dodatnie i stanowia spéleczynniki
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podstawienia ktére przeksztalca forme o pier-
wiastku w nasamg siebie. Wszystkie takie
podstawieniaotrzymujemy,kladac za 2 kole j-
AINORIZ 3L L :
Majac cztery spotezynniki a, 8, y, §, znajdujemy przy po-
mMocy Wzorow:
t—bu cie aw .t

(0 se—= —_ —— = — 0= -
o =P ot et o

wartoscl dedatnie ilosei ¢, e, czynigeych zadosé rownaniu Pell a.
Nieskonczenie wiele rozwiazan tego rdwnania (gdy D> 1)
otrzymujemy, nadajac liczbie & wszystkie mozliwe wartosci cal-
kowite dodatnie. Nadawszy liczbie I wartosé 1,
otrzymujemy rozwigzanie najmniejsze, t. j. to, dla
ktérego ¢1 w maja wartosci najmniejsze.

Oto, w jaki sposob nalezy postepowac celem 7nalez1enla
rozwigzan réwnania Pella

¥ — Du? = o?, gdy D=0.

Wyznaczamy forme zredukowana o wyznaczniku D1 o dziel-
niku o, ktdrej pierwszy spdleczynnik jest dodatni, rozwijamy
pierwiastek dodatni tego rownania na ulamek ciagly, znajdu-
jemy ilorazy niezupeine k,, k;, ..., nastepnie stosujemy wzory
powyzsze.

Zwracamy uwage na to, ze w powyzszych rozwiazaniach
zakladamy, iz D nie jest kwadratem zupelnym.

Za pomocg metody powyzszej mozna znales¢ wszystkie
rozwiazania rownania Pella; lecz istniejy tez wzory, za
pomoca ktérych mozna rozwigzania te wyra-
zi6 przez rozwigzanie najmniejsze. Wzory tesg:

— 1 {T(")--}—(n)2 L5 U 2D 3 M) Tt oD 2= a5 2 } "

0"

u,,=6i {(n) T U4 m)y T~ SUPD },
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gdzie 7, U nalezs do rozwiazania najmniej-
szego, zas n przyjmuje wartosci l, 2,3, ...

Dla uzupelnienia teoryi réwnania P ella rozpatrzmy jesz-
cze przypadek, w ktorym 0 jest ujemne.

W itym przypadkuréwnanie Pella ma skon-
czona liczbe rozwigzan.

Jezeli D=0 (mod) ¢?, mamy dwa rozwiyzania, gdy wartos¢
bezwzgledna wyznacznika D jest wigksza od 0% catery rozwig-
zania, gdy —D=o0?%; sa niemi:

= S e =W
i odpowiednio:

= dew " =08 = i s S ==l g

Jezeli 4 D = o? (mnod 40?), mamy dwa rozwiazania:
t=-+o0 u=0, gdy —4 D> 30%

$ZOSC rozwigzan :

= o N O — 1 (1= G S Sl e =— IS o =— =]

gdy —4 D = 3¢*.

13—

Rownanie, zwane réwnaniem P ella, bylo zaproponowane przez
Fermata irozwigzane przez Pella. Petem zajmowali sig niem:
Euler, Lagrange (Oeuvres I, [I)i Dirichlet (Berl. Monats-
ber. 1841, 42, 46; Comp. Rend. 1840).

Powyizszy zarys teoryi form kwadratowyech ulozony zostal wedlug
dziela Dirichleta-Dedekinda, w ktérem przedstawiono teo-
rye, po raz pierwszy podana przez G aussa w ,Disquis. arithm.“

Dodamy jeszcze niektdére twierdzenia, odnoszace sie do
teoryi form kwadratowych.

Kazda liczba pierwsza dodatnia postaci
4n+1 moze by¢ zawszeijednym tylko sposo-
bem rozlozonana sume kwadratoéw (Twierdzenie
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Ferm ata, dowiedzione po raz pierwszy przez Eulera, Novi
Comm. Petrop. V, patrz tez Smith, Crelle ). Wyznaczenie
podstaw tych kwadratow zawdzieczamy G a usso wi (Theoria
resid. biquadr. Werke 1I).  Jezeli wyznaczymy liczby a i b naj-
mniejsze pod wzgledem wartosei liczebnej i czyniace zadosé kon-

gruencyom :
Pl
A ik ( 2 )

a,=_—';(—-l) 4 —é— _E?—T_" (mod p).
4

il 2 —1
e 2/,| (»’LIL)z I = (—1)"T (mod p),

to bedzie: p = a* - I~

Kazda liczba plerwsza p postaci 3n+1 moze
by¢ zawszeitojednymtylkosposobemrozlo-
zonana kwadratikwadrat potréjny.

Kazda liczba pierwsza jednej zdwu po-
staci 20n+1, 20n+9 daje sie zawsze 1 to jednym
tylko sposobem rozlozy¢ nasume kwadratu
i pleciokrotnego kwadratu; kazda zas liczba
pierwsza jednej zdwu postaci 20n-+3, 20047
daje sie zawsze czterema sposobami przed-
stawiéjako forma (21,3).

Kazda liczba pierwsza postaci 6n+1l daje
sl1e zawsze przedstawic jako forma a? —ay-4y2

Poczwérnosé liczby pierwszej postaci
6rnt+1 daje sie przedstawié w postaci sumy kwa-
dratuipotréjnego kwadratutyput.j. 4p=4243 B2,
liczba A jest resztq szescienng liczby p Liezby
A1 B okreslaja jako najmniejsze co do wartosel bezwzgled-
nej % pomiedzy czyniacych zadosé kongruencyom:

)

Al( -7)';1 )!‘ls-sr l; 4+B (g‘%l—g“?’—?x—) = 0 (mod p),

gdzie 4 jest pierwiastkiem pierwotnym liczby p.
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Twierdzenie to znajdujemy najprzod u J acobi’ego (Crelle II,
De residuis cubicis ete), nastepnie u Cauch y'ego (Mém, sur la théo-
rie des nombres), Lebesgue’a (Liouville 1I), Sterna (Crelle
VII; IX), Clausena (tamze VILI).

Kazda liczba pierwsza jednej zdwu po-
staci 8u-}+1, 8n-}3 daje sie zawszelto jednym
tylko sposobem roztozyé¢ na kwadrat i podwdj-
ny kwadrat (Jacobi, Crelle XXX; Stern, tamie

XXXII).

S BL
Liczby zespo/one' catkowite Gaussa. Reszty dwukwddratowe.

 Liczba postaci a = a}-bi, gdzie i =V—1, a, b za$ sa licz-
bami wymiernemi calkowitemi nazywa sie liczbg calko-
wita zespolona Gaussa (porown. Rozdzial T, § 2), licz-
ba zas +Va?*40? — jej modulem lub norm a.

Jezeli liczby @ 1 1) sg obie parzyste, liczba zespolona nazywa
sig zespolona parzysta; jezeli jedna z nich jest parzy-
sta, mamy liczbe zespolong nieparzysta; jezeli obie
nieparzyste—liczbg zespolong polparzysta.

Méwimy, ze liczba calkowita u jest podzielna przez
liczbe catkowity B, jezeli a=g. y, gdzie y jest liczbg zespolong
calkowitsg. -

Jednoscig nazywa sie kazda liczba zespolona, ktorej
modul jest jednoscia. Mamy cztery jednosci: +1, —1, -4, —i.
Cztery liczby, ktdre otrzymujemy, mnozac jakakolwiek liczbe ze-
spolona przez kazda z tych jednosci. nazywaja sig stowarzy-
szonemi.

Liczba a 4 bi nazywa sig pierwotna, jezeli a—1
i 0, podzielone przez 4, daja réwnoczesnie reszte O lub reszte 2.
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W kazdej grupie czterech liczb stowarzyszonych istnieje zawsze
liczba pierwotna.

Liczba a-+0: nazywa sie pierwsza, jezeli nie mozna jej
rozlozy¢ na iloczyn dwu liczb zespolonych catkowitych, obu réz-
nych od jednosci.

Prawa zasadnicze (tak zwane euklideso-
we) podzielnosci liczb calkowitych wymier-
nychutrzymuja sie bez zmiany i dla liczb ze-
spolonych, pod warunkiem, ze liczb stowarzy-
szonychnie bedziemy unuwazali za zasadniczo
rézne.

Kazda liczba zespolona catkowita daje
sig zawsze—i to jednym tylko sposobem—wyra-
z1¢ jakoiloczyn skonczonejliczby liczb pier-
wszyech.

Jezeli liczba a jest podzielna przez liczbe f. to norma liczby
@ jest podzielna przez norme liczby f.

Norma liczby jest podzielna przez sama liczbe.

Najmniejsza ze wszystkich liczb wymiernych, podzielnych
przez liczbe pierwszg zespolona, jest liczbg wymierna pierwsza;
kazda liczba pierwsza zespolona jest przeto
dzielnikiem liczby pierwszej wymiernej i to
jednej tylko.

Norma liczby pierwszej zespolonej jest
ré6wna albo liczbie pierwszej albo kwadrato-
wiliczby pierwszej. W pierwszym przypadku
mamy liczbe zespolong pierwsza stopnia 1-go,
wdrugim takaz liczbe stopnia 2-go. W obu przy-
padkach norma jest zawsze postaci 4n-1.

Tiiczba 2 jest stowarzyszona z kwadratem liczby pierwszej
stopnia 1-go 1—i.

Kazda liczba pierwsza wymierna postaci 4n-3 jest liczba
pierwsza zespolong stopnia 2-go.

Kazda liczba pierwsza dodatnia wymierna postaci 4 n—1
jest iloczynem dwu liczb pierwszych zespolonych stopnia 1-go,
niestowarzyszonych.

&
~

Pascul. Rep. 1.
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Powiadamy, ze dwie liczby calkowite zespolone a, f sa
przystajacemi wedlug pewnego modulu zespolonego w, jezeli
a - f} jest podzielne przez w.

Yiatwo rozeiagna¢ na liczby tu badane wszystkie twierdze-
nia (V, § 314) o kongruencyach z liczbami wymiernemi. Tak
np. kongruencya:

a4 g a4 -+ a, =0 (mod. m),

ktérej spélczynnikisgliczbamizespolonemi
calkowitemi, m—rowniez liczba zespolona cal-
kowita, nie moze mie¢ wiecejniz n pierwiast-
kéw nieprzystajacych.

Kazda liczba a-0i jest przystajaca wedlug mod ne do jed-
nej tylko liczby u-l-yi, gdzie 2, y wybrano z dwéch szeregow:

AN _(’_JJ';_I_, 4 1); 0,152 % v (dee 1

tu |m| oznacza mnorme liczby m, d zas najwigkszy wspolny
dzielnik dwu spétrzednych liczby m
Kombinujac wszystkie wartosel # z wartosciami y, otrzy-
mamy razem |m| liczb zespolonych, z ktérych kazde dwie sa
nieprzystajacemi; tworzgone uklad zupelny reszt we-
dlug modutlu m.
Jezelim jestliczbg zespolona pierwsza nieparzy-
sta, u—jejnorma,n—liczba przez nia niepodzielna,to

sl == 1 (mod m).

Jest to nogolnione twierdzenie Fermata.
=l
Jest tez m ¢ = 2¢ mod m), gdzie p =0, 1,2. 3.

Reszty dwukwadratowe. Liczba n nazywa sie resazty
dwukwadratowa liccby zespolonej m, jezeli jest mozliwa
kongruencya:

at == n (mod. m).
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Liczba zespolona u jest resztg dwukwa-
dratowa liczby m (pierwszej zespolonej nie-
parzystej), jezeli:

.=l

n 4 =1 (mod m),

gdzie pu jest norma liczby m.

Dla przedstawienia charakteru dwukwadratowego liczby =
wzgledem liczby m stosujemy symbol Jacobiego (\ :})’ ,
ktory oznacza liczbe ¢; jeseli to wyrazenie jest réwne -} 1,
n jest reszta kwadratowa liczby m.

Dwieliczby, przystajace wedlug mod.m, m a-
Jatensamcharakter dwukwadratowy.

Charakter dwukwadratowy iloczynu dwdch liczb réwna sie
iloczynowi charakteréw dwukwadratowych ich czynnikow.

)

Jest : ((—;T)) =4,

Jezeli m=a—+hi jest liczba zespolonag pier-

wotng i pierwszg, to:
- 1
A N1
(E};l)) iy (a—b—13—1) :
m

Jezeli m, n sa dwie liczby zespolone pierwsze (bez dzielni-

nikéw wspolnych précz jednosei', m zas nieparzyste, to jest zaw-

n o
sze ((m )) = -+ 1.

Twierdzenie o wzajemnosci dla reszt dwukwadratowych
jest nastepujace.

Charaktery dwukwadratowe dwuliczb ze-
spolonych pierwotnychipierwszych sa réw-
ne, jezeli przynajmniej jedna z liczb =1(mod.4);
saréowneiznakuprzeciwnego, jezeli obie licz-

by sa =3-{2i(mod. 4).
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Teorye reszt dwukwadratowych utworzyl Gauss (Werke II,
Theoria residuorum biquadraticorum); potem zajmowali si¢ nia: Ei-
senstein (Crelle XXVIII), Lebesgue (Liouville IV) i t.d. Wy-
klad jej prosty znajduje sie w dziele Bachmanna (, Kreistbeilungs
lehre4).

§ b.
Liczby zespolone szescienne catkowite. Resily szescienne.

Nazywamy zespolona szescienna liczbe posta-
ci a}be, gdzie ¢ jest pierwiastkiem szesciennym z jednosei, t. j.
&= -—{;V , @10 s liczbami catkowitem1 wymiernemi. Licz-
ba a—be* nazywa sig liczba sprzezong z poprzednia, a ilo-
czyn obu jest norm a.

Nie powtarzamy tu okreslen podstawowych, ktére sa podo-
bne do okreslen w paragrafach poprzedzajacych.

Liczba, ktérej norma jest -1, jest jednoscig zespolong. Jest,
tu szesé jednosei zespolonych:

_}_11 -11 +£7 T 1+8='—621 —’1—8=+82'

Liczba 3 w tej teoryi nie jest liczba pierwszg lecz iloczynem
liczby 1—e przez 1—¢2.

Stosownie do tego, czy a—le jest lub nie jest podzielne
przez 3, liczba a-+-be ma czynnik 1—¢ lub go niema.

Mnozac liczbe dang przez szes¢ jednosei, otrzymujemy
liczby stowarzyszone.

Liczba nazywa sie pier wotna, jezeli spolezynnik przy
¢ jest =0 (mod. 3), a czes¢ pozostala jest = — 1 (mod. 3).

W kazdej grupie szesciu liczb stowarzy-
szonych istnieje zawsze liczba pierwotna.

W obszarze liczb calkowitych szesciennych istnieja
trzy gatunkiliczb pierwszych:
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1. liczba 1—¢, ktora jest dzielnikiem liczby 3.

2. liczby rzeczywiste pierwsze postaci 6’)1—}-5; te liczby sg
tez pierwotnemi.

3. liezby zespolone pierwsze, ktérych norma ]est postaci
6n-+1.

Jezeli m jest liczbg zespolona pierwszg (rézna od 1—e) i nie
podzielna przez m, wtedy otrzymujemy uogéinione tw1erdzenle
Fermata:

n#—1 =="1 (mod. m),

gdzie u jest normg liczby n, lub

/4—1
n 8 = ¢ (mod. m),

gdzie o =0, 1, 2, :
ket
Reszty szeScienne. Jezelin * =1 (mod.m), to n jest
reszta szesciennag liczby m (jezeli m nie jest podzielne
przez m). Charakter szescienny liczby n wzgledem m wyrazamy

symbolem Eisensteina [5]

Charakter szescienny liczby 1—¢ okresla

wzor:
S
a—i—(‘;g

Twierdzenie o wzajemnosci dla reszt szesciennych jest na-
stepujace:

Jezelin, m sag dwieliczby szeécienne pier-
wsze pierwotne. tocharakter szescienny licz-
by n wzgledem m réwna sie charakterowi licz-
by m wzgledem n.

w’l-.

Resztami szedciennemi zajmowali sie: ‘Jacobi (Crelle, IT),
Eisenstein (tamze XXVII, XXVIII)), Lebesgue (Liouville,
IV)it. d. Poréw. lekcye 14 i 15 w cytowanem dziele Bachmanna,
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Fermatowi zawdzigezamy zwrocenie uwagi analistow na ten
gatunek problematow liczbowych, ktére, zlaczone pozniej w jedno
cialo doktryny, utworzyly to, co dzi$ nazywamy teorya 1i czb
lub arytmetyka wyzsza Pierwsze wielce wazne odkrycia
w tej teoryi zawdzieczamy Eulerowi, ktory utworzyl tez pierw-
szy teorye tak zwanych skaznikéw (Comm. Petr. 1773) i rveszt
kwadratowych. Po Eulerze, Lagrange zajmowal si¢ wiele
teorya liczb i pierwszy pbloiyl podstawy teoryi ogdlnej form kwadra-
towych, Pozniej ukazaly sie dwa wielce wazne dziela: ,'Théorie des
nombres* Legendre’a (kol. VI), ktére doczekalo sie za zZycia au-
tora trzech wydan, ostatnie bylo w r. 1830--tu znajdujemy pierwszy
dowdd twierdzenia o wzajemnosci reszt kwadratowych—oraz | Disqui-
sitiones arithmeticae* G a u s s a (Lipsk 1801), ktéremu zawdzieczamy,
miedzy innemi, teorye zupelna form kwadratowych, jak ja wyze}
podalismy.

Dzielo Legendre'a, jest rzec mozna, repertoryum wszyst-
kich badan. znanych wowczas o tym przedmiocie. Gaussowi za-
wdzleczamy pierwsze studyum systematyczne o liczbach zespolonych
i mysl pigknego wyzyskania jej celem uogélnienia, uzupelnienia i udo-
wodnienia roznych twierdzen z teoryi liczb wymiernych.

Pomijajac dla krdtkosei tytuty prac innych autoréw: Cauchy’e-
go, Dirichleta, Kummera, Jacobiego, Eisensteina,
Kroneckera, Liouville'a it. d., ktoray zajmowali sig teorya
liczb, powiemy tylko, ze do najwazniejszych traktatow nowoczesnych
naleza: ,,Vorlesungen tiber Zahlentheorie von Lejeune-Dirichlet*, wy-
dane przez Dedekinda (wydanie czwarte. Brunswik 1894, gdzie
zebrano 1 specyalne badania innych auteréw; traktat Czebyszewa
(przeklad niemiecki Schapiry, Lipsk 1889, wloski Masseri-
nie’go, Rzym 1895); Theorie des nombres, L ucasa (Paryz 1891);
wyborne dzielo ,,Zahléntheorie* Bachmanna (Lipsk 1894). Kurs
litografowany Klein a:,, Ausgewahlte Kapitel aus der Zahlentheorie**
1896) ma gldwnie na celu badanie teoryi form kwadratowych ze stano-
wiska geometrycznego.

Historye teoryi liczb zawiera znana praca Smitha: ,Report on
the theory of numbers* (Dzieta, Oxford, 1894),




ROZDZIAL XXI1.

TEORYA LICZB ALGEBRAICZNYCH 1 LICZB PRZESTEPNYCH

§ 1.
Wiadomosci agodlne

Kazdy pierwiastek réwnania algebraicznego o spolczynni-
kach wymiernych, nazywa sie liczba algebraiczna;
liozba ta moze by¢ rzeczywista lub zespolong.

Jezeli pierwszy spolczynnik rownania jest jednoscig, a po-
zostale liczbami catkowitemi, mamy liczbe algebraiczng
calko wita; w innych przypadkach mamy liczbe algebraiczng
niecaltkowita lub utamkowg.

Liczba zespolona a-pi, gdzie a 1 § s liczby wymierne, jest
przypadkiem szczegélnym liczby algebraicznej, obejmujacym
zno6w w sobie, jako przypadek szczegélny, liczby wymierne.

Mowimy, ze ogol liczb tworzy cialo, jezeli odtwarza sie
przez cztery dzialania zasadnicze, ktére mozemy nazwa¢ d zia-
faniami wymiernemau.

Ogodl wszystkich liczb wymiernych sta-
nowicialoliczbowe. 3

Ogdél wszystkiech liczb algebraicznych
stanowi cialo.
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Liczby wymierne calkowite odtwarzaja sie juz
przy pomocy trzech pierwszych dzialan wymiernych.

Kazdy pierwiastek réwnania, majgcego pierw-
szy sp6leczynnik ré6wny jednosciizainnespdélezyn-
niki liczby calkowite algebraiczne, jest tez licz-
ba calkowitg algebraiczna,

Pomiedzy mnieskonczenie wielu réwnaniami
o spoleczynnikach wymiernych. ktérych pierwiast-
kiem moze by¢ liczba algebraiczna, rownaniestop-
nia najnizszego jest nieprzywiedlnem, t.j. pierw-
sza strona jego niema dzielnikéwospéleczynnikach
wymiernych.

Niechaj liczba algebraiczna 6 bedzie pierwiastkiem réwna-
nia nieprzywiedlnego rzedu n-tego; utworzmy ogoél liczb typu

P0) = G+ 20+ ottt . L . L a b,

gdzie x,,x,, ...,z sa jakiemikolwiek liczbami wymiernemi.
Liczby tak utworzone stanowia ciato 2, ktdre nie
daje sie wytworzyé¢ w ten sam sposéb z innego
pierwiastka 6’ innego réwnania nieprzywiedlnego
stopnia réznego od n.

Takie cialo liczb nazywa sig¢ cialem skonczo-
nem stopnia n-tego.

Mozna wybra¢ n liczb ciala £ w ten sposob,
by kazda inna liczba tegoz ciala datasie przez nie
wyrazié liniowo przy pomocy spdélczynnikédw wy-
miernych. Méwimy, ze te n liczb tworzy podstawe ciata Q.

Ciata Q, O, Q" ... 6 utworzone ze wszystkich pierwiast-
kéw 6, 6, 67, . . ., réwnania nieprzywiedlnego stopnia #-tego,
nazywajg sie cialami sprzezonemi.

Jezeli w=¢(0) jest liczbg ciala 9, to w'=¢ (06") nalezeé
bedzie do ciala ', 1liczby w1 o’ beda sprzezonemi. Jezeli
wszystkie ciala spfzezone z ciatem £2 sg identyczne z tem cialem
(jak to np. ma miejsce, gdy 6 jest pierwiastkiem réwnania dwu-
miennego), wtedy {2 nazywa sie cialem normalnem lub cialem
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Galois’a. Nazwa ta, wprowadzona przez Dedekinda,

przypomina teorye Galois'a rozwiqzalnoéci réwnan algebra-

icznych przezpierwiastuiki(t.j. za pomocg réwnan dwumlennych)
Jezeli w =¢(6) jest liczbg ciala Q, to iloczyn:

wo'. . ... oD = p(0)p(8) . . .. pD,

gdzie 6, &', . . ., 6"~ sg wszystkiemi pierwiastkami danego
réwnania nieprzywiedlnego, nazywa sie norm g liczby wiozua-
cza sie przez Nw).

Norma liczby o jest zawsze liczbag wy-
miern a.

Jezeli w jest liczba wymierna ciala 2, to
l1jejsprzgzonesagrowne wibedzie N(w)=o"

Jezeli o, w, sg dwieliczby ciala £, to

N(w,@,) = N(w;) N(w,).

Wyrdznikiem n liczb ciala 2 nazywa sig wyznacz-
nik, utworzony z tych liczb i ze wszystkich jej sprzezonych
w kazdem z cial &', ", 2 B g

Wyréznik ]est liczba wymierng. Jezeli
mamy # liczb ciala £, toonetworzsg podstawe
tegociala lub jej nie tworza, stosownie do
tego,czyich wyrdznik nie jestlub jest zerem.

Kazda liczba algebraiczna za pomoca mno-
zenia przez liczbe wymiernag calkowita, rdz-
ng od zera, moze byé zamieniona na liczbe
calkowitg algebraiczna.

Mozna znalesé nieskonczenie wielu sposobami podstawe
ciala Q, zlozona z samych liczb calkowitych 1 mozna jeszcze
wybraé rzeczona podstawe tak, aby wyréznik liczb w niej za-
warty byl minimum. Taki wyréznik minimum nazywa sie
liczbg zasadnicza ciala Q lub wprost wyroznikiem
ciala Q.

Jezeli n=2, t. j. gdy réwnanie zasadnicze jest stopnia 2-go,
mamy ciato kwadratowe. Liczby zespolone a--0¢, gdzie
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i=V—1, aib sy liczbami wymiernemi, stanowia przypadek
szezegolny tego ciala. Norma liczby - 0i odpowiada ilo-
czynowl (a+bi)(a—-bi), t. j. zwyklej normie lub modutowi liczby
zespolonej.

Liczbg zasadniczy ciala kwadratowego, utworzonego z liczb
zespolonych wymiernych, jest — 4.

Podzielnosc liczb catkowitych algebraicznych. Liczby idealne
Kummera.

Liczba calkowita a nazywa sig¢ podzieln g przez liczbe
catkowita B, gdy a=gy, gdzie y jest liczbg calkowita.

Jezelia, § sg liczby calkowite algebra-
iczne podzielne przez u, to atp, a—p beda ro6w-
niez podzielne przez u.

Jezeli a jest podzielne przez 4, 4 podziel-
ne przez u, to a begdzie takze podzielne przez u.

Jednoscignazywasieg kazda liczba calko-
wita algebraiczna, bedgca dzielnikiem liczby
1, a wiec kazdejliczby calkowitej algebraicz-
nej. Kazdy pierwiastek réoéwnania algebra-
icznego, ktdrego spoleczynniki skrajne sg réw-
ne 1, a pozostalte spélteczynniki sa liczbami
calkowitemi, jest jednoscia. Jednosci jest
nieskonczenie wiele.

Jednosci odtwarzajg sie za pomoca mno-
zenia, dzielenia i pierwiastkowania.

Jezelidwieliczby sg podzielne wzajemnie
jedna przez druga, ich ilorazy sg jednoscia-
mi; dwie liczby nazywaja sig wtedy stowarzy-
szonemi
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Dwie liczby, stowarzyszone z trzecia, sg stowarzyszonemi
wzgledem siebie.

Jezeli a jest podzielne przez g, kazda stowarzyszona z licz-
by a jest podzielna przez kazda stowarzyszong z liczba g,

Dwieliczby calkowite algebraiczne a, g
nazywaja sieg wzglednie pierwszemi, jezeli
istniejg dwieinne liczby catkowite algebra-
iczne & 5, takie, ze:

af + fig = 1.

Jezeli a jest pierwsze wzgledem B, g pierwsze wzgle-
dem 7, to 8 jest pierwsze wzgledem gy.

Jezeli kazda z liczb ay, a,, . . . jest pierwsza wzgledem kaz-
dej zliczb B, f,, . . , to dwa iloczyny ajay ..., Bify ... 88
wzglednie pierwsze.

Kazdy wspélny dzielnik dwdéch liczb wzglednie pierwszych
jest jednoscia.

Dwieliczby calkowite a, § maja zawsze
wspolny dzielnik, ktéry daje sie przedstawie
w postaci:

0 =aé~+py,

gdzie & 5 sq dwie liczby calkowite; nadto & jest
podzielne przez kazdy wspélny dzielnik liczbailp.

Jezeli dwie liczby nie maja zadnego wspélnego dzielnika,
procz jednosci, to beda wzglednie pierwszemi w znaczeniu powy-
zej wskazanem,

Norma liczby a, nalezacej do ciala £ (patrz § po-
przedzajacy), jest podzielna przez a, ailorazjestlicz-
ba calkowits, nalezgcg do ciata Q.

Jezeli a1 nalezgdociala Q, zasajest podziel-
ne przez f, to N(a) jest podzielne przez N(f).

Dwie liczby a, g nazywaja sie przystajagcemi (kon-
. gruentnemi) wediug modulu jezeli ich réznica jest
podzielna przez u; sa nieprzystajgcemi (niekongruentnemi)
w przypadku przeciwnym.
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Liczba liczb ciala £, nieprzystajacych do sie-
bie (po dwie biorac) wedlug modulu u, réwna sig
wartosci bezwzglednej modulu g, t.j. Mu). Jezeli u
jest jéednoscia, wtedy wszystkie liczby ciata £
przystaja do zera wedlug mod u i jest N(u)=—+1.

. Liczba algebraiczna u nazywa sie rozkladalng, jezeli
ma dzielniki rézne od jednosci i od liczb z sobg stowarzyszo-
nych; w przeciwnym razie nazywa sig nierozkltadalna. Tych
dwu definicyj nie nalezy miesza¢ z nastepujacemi:

Liczba calkowita u, rézna od zera, nazywa sig pier wsza,
jezeli dwie jakiekolwiek liczby ciala Q niepodzielne przez u,
dajg iloczyn réwniez przez u niepodzielny; gdy ten przypadek
nie zachodzi, liczba u nazywa si¢ ztozona.

Tylka dla specyalnych cial £ obie definicye sa réwnowaz-
‘ne, t. j. ze kazda liczba pierwsza jest takze nierozkladal-
na.iodwrotnie. Tak np. ma to miejsce dla ciala liczb wymier-
nych 1 dla ciala kwadratowego liczb zespolonych wymiernych.

W ogdlnosci kazda liczbarozkladalna jest zlo-
zona, lecz nie kazda liczba zlozona jest koniecznie
rozktadalna.

Jezeli dla ciala £ oba pojecia powyzsze zle-
wajg sie, wtedy kazda liczba rozkladalna moze
byé przedstawiona i to jednym tylko sposobem
Jako iloczyn skonczonej liczby czynnikédw nieroz-
ktadalnych (w zalozZeniu, ze dwie liczby stowarzy-
szone nie sa uwazane za rézne); w innych przypad-
kach rozktad liczby rozkladalnej na czynnikimoz-
na uskutecznié wielu sposobami.

Dla usuniecia tej osobliwosci, skutkiem ktérej prawa eukli-
desowe podzielnosci moglyby stracié wszelkie znaczenie dla liczb
ciala £, Kummer wprowadzil pojecie liczb idealnych,
dzigki ktorym dawne prawa podzielnosci zostaja przywrécone.
Wyjasnimy to nowe pojecie na przyktadzie szczegélnym.

Niechaj bedzie cialo kwadratowe £, ktéremu daje poczatek
pierwiastek réwnania 62-+5=0 (Dedekind w dziele cyto-
wanem). Cztery liczby calkowite
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a=2 f=3, u=1—6 p=146

sg nierozkladalne, lecz zachodzi pomiedzy niemi zwiazek af=pur;
stad wynika, zea nie jest liczbs pierwsza, poniewaz iloczyn
dwu liczb y, » jest podzielny przez a.

Gdyby a, 8, u, v byly wszystkie liczbami wymiernemi, wte-
dy z poprzedzajacego zwiazku wynikaloby:

a=aa,, B=PpHB, n=apf,, r=ap,

gdzie a, , f, sa wzglednie pierwsze, a, i B, réwniez wzglednie
pierwsze; kazda zas liczba o podzielna przez a, czynitaby zadosé
kongruencyi :

aw = O(modu); rw = 0 (moda).

W przypadku, gdy powyzszego rozkladu nie mozna istot-
nie wykonaé¢, przypusémy, ze zostal on wykonany idealnie
i wprowadzmy liczby idealne a, a; f;, f;, okreslone w ten
sposéb, ze kazda liczba, podzielna przez a;, czyni
vadosé jednejzdwu poprzedzajgcych kongruen-
cyj- W naszym przypadku liczby idealne aj,a,, B, f,,
ktérychniemozna faktycznie utworzy¢, beda okreslone w powyz-
szem znaczeniu przez kongruencye:

14+6)w=0(mod2), . . . .(a),
(1—0w=0(mod3), . . . . (a),
(I—8)w = 0(mod2), . . . (B
(1=—08)w = 0(mod 3), . . . . (B

Wprowadziwszy liczby podobne, znajdziemy, ze liczby po-
przedzajace a, 8, u, v, wystepujace jako nierozkladalne, rozkla-
daja sie obecnie w ten sposdb:

==t == 31 == [ihh

pn=1—80=ap8,; »=1-40=qp,
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mozna nastepnie okazac¢, ze liczby a,, f,; f; nie sg ideal-
nemi pierwszemi.

Wprowadzenie liczb idealnych przywraca zupelnie, jak
powiedziano, ciatu 2 wszystkie zwykle prawa podzielnosci; wpro-
wadzenie to jest przeto dogodnem do utworzenia teoryi podziel-
nosci, stuzacej we wszystkich przypadkach.

Powiemy jeszcze, w jaki sposéb rozumial Kummer
wprowadzenie tych nowych liczb.

Niechaj beda dwa przecinajace si¢ kola na plaszczyznie;
prosta, przechodzaca przez ich punkty wspdlne, uazywa sie
osia pierwiastna; jest ona miejscem punktéw takich, ze
styczne do dwéch kol przez taki punkt przechodzace (az do pun-
ktow stycznosci) sg réwne, Jezeli kola nie przecinaja sig, wtedy
nie stosuje sie pierwsze okreslenie osi pierwiastnej, lecz mozna te
os okresli¢ jako miejsce geometryczne punktéw, dla ktérych zacho-
dzi wlasnosé druga.

Podobnie rzecz sie ma z pojeciem liczb idealnych ; wycho-
dzimy z przypadku, w ktérym liczby a;, . a,, f, istnieja, znaj-
dujemy wlasnosé¢ tych liczb, wyrazona za pomocs wyzej poda-
nych kongruencyj 1 rozciagamy te wlasnosé i na ten przypadelk,
w ktérym liczby nie istniejg. W ten sposéb indywidualizujemy
utwory, ktére mozna uwazac za uogélnienie liczb, istniejacych
faktycznie w przypadku pierwszym.

Pojecie liczb idealnych zostalo wprowadzone przez Ku m-
mera w przypadku specyalnym réwnania podzialu kota (Crelle
XXXV, XL, LIII, Akad. Berl. 1856).

Liczbami algebraicznemi i ideatami zajmowali sie: Dirichlet
(Akad Berlin. 1840, 1841, 1846), Dedekind (Ueber die Anzahl der
Ideal-Classen“, Brunswik 1877,
rie der Ideale“ etc. Rozprawy getyngskie, XXIII,  Sur la théorie des
nombres algébriques*‘, Bull, Darboux (I),X1,(2}1,1877; Fuchs (Crelle
LXYV), Selling (Zeitschr. fir Math. 1865); Zolotarew (Liouville,
1880); Sochocki (Prace mat fiz. V, Warszawa, 1895). Wyklad zu-
pelny calej teoryi w cytowanem dziele Dirichleta-Dedekinda
i w rozdz, XVII dziela ,.Kreistheilung® Bachmanna, Wazny refe-
rat o teoryi liczb algebraicznych, zawierajacy nadto wskazowki histo-
ryczne i bibliograficzne oglosil Hilbert w tomie V Rocznika stowa-

Ueber der Zusammenhang der Theo-
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rzyszenia niemieckiego matematykow. Wyklad teoryi liczb algebra-
icznych, funkeyonaléw i idealow znajdujemy w Algebrze H. Webera
t. I, Branswik 1899,

S B,
Liczby przestopne.

Jezell pomiedzy liczbami algebraicznemi rozwazamy tylko
rzeczywiste, to mozna zapyta¢, czy kazda liczba rzeczy-
wista, w ogéle niewymierna, jest liczba algebraiczng, t.j. czy
moze by¢ pierwiastkiem réwnania algebraicznego o spélezynni-
kach wymiernych. Odpowiedz na to pytanie jest przeczgca:
istnieja liczby niealgebraiczne czyli przestepne.
Pierwszy Liouville dowidd! istnienia liczb takich (Comptes
Rendus 1844, Journ. de Liouville X VI, 1851); potem pytanien:
tem zajmowal sie ponownie G. Cantor (Crelle LXXVII,
1873). Wyktad dowodzenia Cantora znalesé mozna w $wie-
zem dzielku Kleina ,Vortrige iiber ausgewithlte Fragen der
Elementargeometrie“, Lipsk, 1895.

W zwiazku z teorya liczb przestepnych jest pytanie, czy
liczba z (stosunek okregu kola do srednicy) i liczba e (podstawa
logarytmow naturalnych) daja sie wykreslic za pomoca kon-
strukeyl geometrycznej elementarnej, t. j. za pomoca linijki
1 cyrkla. Z pierwszem z tych pytan wiaze si¢ stawne zagadnie-
nie o kwadraturze kola

Dowiedziono, ze liczby z 1 e sa nietylko niewymiernemi,
lecz 54 1 przestepnemi, t. j. nie moga by¢ pierwiastkami réwnan
algebraicznych o spélezynnikach wymiernych, stad juz wyptywa
niemozliwos¢ powyzszej konstrukeyi geometrycznej.

Niewymierno$¢ liczby n udowodnil Lambert (Vorliutige
Kenatnisse fiir die so die Quadratur des Cirkels suchen, 1770), Legen-
dre wykazal, ze liczba n® jest niewymierna. Hermite w slawnej
rozprawie ,Sur la fonction exponentielle (Comptes rendus 1873) do-
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wiodl, Ze liczba e jest przestepna Pod wplywem rozwazan Hermi-
te'a Lindemann w 1882 (Math. Aun. XX) udowodnil, ze liczba =
jest przestepna. Uproszezenie dowodéw tych autordw zawdzigezamy
Weierstrassowi (Berl. Berichte 1881), Bachmannowi (Vorle-
sungen iiber die Natur der Irrationalzahlen, Lipsk 1892), Hilberto-
wi, Hurwitzowi i Gordanowi (Gott. Nachr. 1893, Comptes
rendus 1893, Math. Ann. XLIII, Prace mat.-fiz V), Mertensowi
(Prace mat -fiz. IX).

§ 4.
Liczba =

Liczba ta jest, jak wiemy, jest nietylko niewymierna, lecz
1 przestepna. Nazywamy ja niekiedy Indolfina (liczbg Lud ol-
pha) od imienia matematyka (XVII wieku), ktory ja obli-
czyl z 35 cyframi dziesigtnemi. Euler podal 100 cyfr (In-
troductio etc. 1748). De Lagny — 112, Richter — 330,
Shanks kolejno: 440, 530, 707 (Proceed. Royal Society, XXI),
Wartosce liczby 7 z 40 cytrami dziesigtnemi jest:

7==3, 14 159 26535 89793 23846 26433 83279 50288 41971 . . .
W papyrusie Rhinda (2000 lat przed Chr.) wartos¢ =
dana jest przez (—196—)= 3,16 ... Wartosciami przyblizonemi
Liczby = sa utamki:

22 333 355 103993 104348 208341 312689
7°106° 113° 33102 ° 33215 ’ 66317 ° 99632

Najwazniejszemi wzorami do obliczania wartosci liczby =
83 nastepujace:
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%: %—j——j—%—%t—; ..... (Wzér Wallisa),
f;__: [ -;——}- —21;—— —i——{- é—— ... (Wzor Leibniza)
.}:1_ i_.}._é__—;—-}——;—~ .....
'g‘z ‘L+71_.3_123+ ;: 5.125+‘zl i 5 7121+ """
2’;§ = +'§_/%_ %-{- ;—5- 111 .....

. T

n il 1 5

Co do innych szeregéw, utworzonych z kwadratéw, szes-
cianéw lub poteg wyzszych odwrotnosei liczb naturalnych, a kto-
re wyrazaja sie przy pomocy liczby =, patrz Rozdz. IV, § 2.

O liczbie e, o liczbie Eulera, it. d. patrz Rozdz. XVIIL

Pascal. Rep. L. . 33



ROZDZ1AL XXII

RACHUNEK PRAWDOPODOBIENSTWA.

SRl

Wiadomosci ogdlne. Prawdopodobierstwo skutkow i prawdopodobieri-
stwo przyczyn.

Jezeli nie sg dane wszystkie przyczyny zachodzenia zja-
wiska, lecz niektére z tych przyczyn sa nieznane lub niemozliwe
do wykrycia, wtedy oczekiwaé mozna zajscia zjawiska raczej je-
dnym niz innym sposobem. Kazdy ze sposobéw, w jaki zjawisko
zachodzi¢ moze, nazywa si¢ jednym z przypadkow mozli-
wyeh, aliczba wszystkich tveh przypadkow moze byé skon-
czona 1 mala, skonczona i1 bardzo wielka, wreszcie nieskonczona.

Wiszystkie te przypadki mozliwe mozna lyezyé w grupy,
zbierajac w kazdej grupie wszystkie te, ktére dla pewnego po-
wodu chcemy lub mozemy uwaza¢ za réwnowazne. Ogol
wszystkich przypadkdw, objetych w grupie, uwazamy za jedno
zjawisko. A wiec kazda grupa charakteryzuje zjawisko.
Jezeli np. z urny, zawierajacej galki biale i gatki czarne, wyecia-
gamy jedne galke, to jest rzeczg naturalng uwazacé za réwno-
wazne dwa zdarzenia wyciagniecia po galce bialej, chociazby
za kazdym razem innej. Méwimy wtedy, ze w obu przypadkach
zachodzi to samo zjawisko.
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Liczba wszystkich przypadkow, zawartych w grupie, sta-
nowi liczbe przypadkdédw sprzyjajacych zdarzeniu
zjawiska, scharakteryzowanego przez te grupe. Jezeli w urnie
poprzedzajacej sa 4 galki biale i jest 10 czarnych, to liczba przy-
padkéw sprzyjajacych wyciagnieciu galki bialej jest 4.

Nazywamy prawdopodobiefistwem matema-
tycznem zdarzenia zjawiska stosunek liczby przy-
padkow sprzyjajagcych do liczby wszystkich
przypadkdéw mozliwych, w zalozeniu, ze wszystkie
przypadki mozliwe uwazamy za ro wnomozliwe.

Przez to ostatnie zastrzezenie rozumiemy, ze w zdarzeniu
zjawiska nie uczestniczg przyczyny zakldcajace, albo—inaczej
méwiagc—ze przyczyny dzialajace sy takie, iZ nie mozemy zna-
les¢ zadnego powodu, dla ktérego zjawisko mialoby zachodzié
raczej wedlug jednego przypadku mozliwego niz wedlug ‘dru-
giego. Tak np. jezeli w poprzedzajacym przykladzie jedna
z galek mu rozmiary inne niz pozostale. to rzecz jasna, iz sta-
nowi to nie malg przyczyne zaklécajaca, z powodu ktdrej nie
mozemy juz stosowaé wzorow prawdopodobienstwa matema-
tycznego.

Z powyzszego okreslenia wynika, ze prawdopodo-
bienstwo przedstawia sie zawsze jako ulamek,
zawarty miedzy Oa l (wlaczajgc granice). Je-
zeli prawdopodobieistwo jest zerem, mamy
wtedy niemozliwosé zjawiska; jezeli jest réwnem
1, mamy pewnosé zachodzenia zjawiska,

Jezeli podzielimy grupe wszystkich przypadkéw sprzyja-
jacych na pewng liczbe podgrup 4, B, ..., to jest oczywistem,
e toz zjawisko zdarzy sig bez wzgledu na to, czy zachodzi ktéry
z przypadkdéw sprzyjajacych grupy A4, czy ktéry z przypadkéw
grupy Bit. . Prawdopodobienstwa zachodzenia zjawisk w pod-
gruplie Alub B i t. p., nazywajasi¢ prawdopodobien-
stwamiczgstkowemi, a prawdopodobienstwo samego
zjawiska nazywa si¢ wtedy prawdopodobienstwem
calkowitem.

Prawdopodobienstwo calkowite jest suma
prawdopodobienstw czastkowych.
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Niechaj bedzie dwa lub wigcej zjawisk (niezaleznych) za-
chodzacych rownoczesnie. Np. niechaj beda dwie urny: jedna
z gatkami bialemi i czarnemi, druga z gatkami' czerwonemi i zie-
loneémi; mamy wyciagnac jedne gatke z urny pierwszej i jedue
zurny drugiej. Zjawisko, wynikajace z kombinacyi pierwszego
i drugiego zjawiska, nazywa sie zjawiskiem'ztozonem.

Prawdopodobienstwo zlozone rowna sig
iloczynowi prawdopodobienstw pojedynczych
zjawisk sktadowych.

Zagadnienia o prawdopodobienstwach dziela sie na dwie
kategorye: zagadnienia 0o prawdopodobienstwie skut-
kéw i zagadnienia o prawdopodobienstwie przy-
czyn; albo inaczej, zagadnienia o prawdopodobien-
stwie a posteriori 1 zagadnienia o prawdopodo-
bienstwie a priori. W zagadnieniach pierwsze] kategoryi
rozwazamy tylko prawdopodobienstwa tego, czy zachodzg lub nie
skutki przyczyn ustalonych. W zagadnieniach drugiej katego-
ryl wiemy, ze zaszlo w pewien sposob jedno zjawisko lub wigce]
zjawisk, ktore mozna uwazad jako zalezne od tej samej przy-
czyny, 1 pytamy, w jaki sposéb wyznacza sie prawdopodobieni-
stwo, ze przyczyna tego zjawiska jest raczej ta niz inna pomie-
dzy przyczynami, okreslonemi jako mozliwie, oraz jaka pomiedzy
temi przyczynami jest najprawdopodobniejsza.

Namestsay tego przyklad jest Ila.atqpu]qu Niechaj be-
dzie n urn, 4aw1eraJ jacych gatki biate 1 galki czarne; pierwsza
niechaj zawiera a, galek bialych i ), czar nydl druga a, bialych
10, czarnych 1 t. d. Wyciagnieto galkq bialy 1 niewiadomo
z jakiej urny. Jakie jest prawdopodobienstwo, ze wyciagnieto
ja z urny pierwszej; jakie, ze wyciagnieto ja z drugiej?

Do zagadnien o prawdopodobienstwie przyczyn nalezy talk
nazwana teorya bledodw. Pewnsg wielkos¢ wymierzono
pewng liczbe razy 1 otrzymano tylez réznych rezultatow: jaka
jesst najprawdopodobniejsza, t.j. majgca najwieksze
prawdopodobienstwo miara tej wielkosci?

Objasnimy jeszcze pojecie nadziei matematycz-
nejiwartosci prawdopodobnej.
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Jezeli gracz wygrywajac, moze pozyskac sume 4 i jezeli
prawdopodobienstwo jego wygranej wynosi p, wtedy méwimy, ze
iloczynpd4 jestjego nadzieja matematyczna. Jezeli moze
wygra¢ sume'd’ 1 jezeli prawdopodobienstwo tegozdarzenia jestp’,
sume A" z prawdopodobienstwem wygranej p" 1 t. d., wtedy jego
nadzieja matematyczng bedzie py A+ p"4A"-1.. Aby gra byta
sprawiedliwa, jest koniecznem, by nadzieje
matematyczne wszystkich graczy byly row-
ne. Nadzieja matematyczna graczaréwna sie
jegostawce, t.j. sumie, ktédrg on do gry wklada.

Wartoscia prawdopodobng wielkosei 4 jest na-
dzieja matematyczna gracza, ktéry majac prawdopodobienstwo
P wygranej, ma pozyskac sume réowng 4; jezeli wielkos¢ 4 moze
przyjmowac wartosei 4', 4", ..., wtedy wartoscia prawdopodo-
bna ilosci‘A4 jest p’d'+p"A"+ . .. ..

W przedmiocie nadziei matematycznej slawnem jest zagad-
nienie, zwane paradoksem petersburskim, podane
przez Daniela Bernoulli’ego. " Dwaj gracze A1 B grajs na
nastepujgcych warunkach: 4 wyrzuca w powietrze monete: jesh
ta padnie na- ziemie strong z géry umowiona, to B placi mu
sume 1 fr. i gra jest skonczona; jezeli przeciwnie moneta padnie
strong przeciwlegia, wtedy gra trwa dalej. Jezeli po powtdrnem
rzuceniu moneta padnie na ziemie strona umoéwiona, B placi 2 fr.
a jezeli padnie strona przeciwlegla, gra trwa dalej. Za trze-
cim razem osoba B zaplaci 4 fr. jezeli moneta padnie na ziemie
strong umowiona i t. d. W dalszym przebiegu gry pod temi wa-
runkami D placi¢ bedzie odpowiednio 8, 16, . . . fr. Zacho-
dzi pytanie, jaks stawke powinna . osoba A postawie, aby gra
byla sprawiedliwa,. albo inaczej, jaka jest nadzieja matematyczna
gracza 4. Rachunek, wedlug powyzsze) zasady wykonany, pro-
wadzi do wyniku, Ze nadzieja matematyczna o0so-
by A jest nieskonczona.
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Prawdopodobieristwo skutkow. Twierdzenie Jakoba Bernoulliego.

Prawo wielkich liczb.

Jezeli prawdopodobienstwem pewnego
zdarzenia jestp, a prawdopodobienstwem zda-
rzenia przeciwnego jest g1 jezelirobimy u prob
w tych samych warunkach, to prawdopodo-
bienstwo, aby zdarzenie pierwsze powtérzylo
sie n razy (niezaleznie od porzadku) wynosi:

!
;Aﬂ' . mt ap—n
n!(u—n)! i R

Jezeli wyznaczymy » tak, aby to prawdopodobienstwo bylo
maximum, znajdziemy:

Wartosciag najprawdopodobniejsza liczby n
jestliczba calkowita, zawarta pomiedzy up—¢
1 up+p; wartoscig najprawdopodobniejszg licz-
by u—mnliczba calkowita, zawarta pomiegdzy
1p—q i ug~4q. To prowadzi do wniosku: Kombinacya,
majacg najwieksze prawdopodobienstwo, jest
ta, w ktérej zdarzenia unkazuja sie wliczbie
proporeyonalnej do ich prawdopodobienstw.

Ot6z twierdzenie Bernoulli'ego orzeka, ze powigksza-
jac liczbe prob, dojdziemy do tego,iz zachodzgca kombinacya
zbliza sie do tej wlasnie, ktdéra ma najwieksze prawdopodobien-
stwo, Jezeli zastosujemy wzdér Stirlinga:

1

2 r!

lm ——mM =1,
3R I c—-r,A/’]/L)n’.
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znajdziemy, ze prawdopodobienstwo, aby zdarze-
nie o prawdopodobienstwiep powtdrzylo sie
up razy w uprébach (prawdopodobienstwo maximum)

wynosi:
1

4 271#2'7;(177‘ .

To prawdopodobienstwo maximum dazy
zatem do zera, gdy liczba u prob rosnie nie-
ograniczenie. Tem bardziej zatem dgzyé be-
dzie do zera dlarosnagcego u prawdopodobien-
stwa, aby liczba n (t.]. liczba razy powtdrzenia sie zda-
rzenia) byla pewna liczbg oznaczona, ré6zng od up.

Nazywamy odchyleniem bezwzglednem rdznice
pomiedzy wartoscig liczby # a wartoscig najprawdopodobniej-
szg tej liczby, t. j. up, i kladziemy l=pp—n; odchyleniem

wzglednem nazywamy stosunek % .

Prawdopodobienstwo, aby zdarzenie sprzyjajace zachodzi-
lo » razy, t.j., aby odchylenie réwnalo sig &, wynosi przyblizenie:

1 _Tlh-‘
—— e 20
V2mupq
N 3 T h ¢ ; ;
jezeli zalozymy, ze — , —— sa jest dostatecznie male. Liczba
&

iz matury swej jest liczbg calkowita, dodatnig lub ujemna;
w rachunkach wszakie bywa dogodnem zastgpowaé jg przez
zmienny ciggla, mogacy przyjmowaé wszelkie wartosci mozliwe.
Mamy wtedy: prawdo podobienstwo odehylenia, zawartego po-
miedzy —a 1 +a daje wzor:

.-f—a h?
, e Wi dh,

-

1
Vempupq .
h

ktére—mu kladac-————— =¢ — mozna nadaé¢ postac:
V2upq
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9 f'ym
Vo)

e "dt.

Jezeli powiekszamy liczbe u préb i pozostawiamy stala
liczbe a (granice wyzsza odchylenia), wtedy prawdopodobien-
stwo, aby odchylenie bylo mniejsze od a, dazy do zera; jest to
wiec dazenie do pewnosci, ze odchylenie powinno przewyzszac
jakakolwiek liczbe a; innemi slowy, przy powiekszaniu liczby pu
zwieksza sie bez granic odchylenie bezwzgledne. Powiekszajac

. sle, powieksza sie wszakze tak, Ze jego stosunek do u, t. j. —Z s
czyli odchylenie wzgledne dazy do zera. Twierdzenie to w poniz-
szej latwiejszej postaci nazywa sie twierdzeniem Ber-

noulli'ego.
Gdy p rosnie nieograniczenie, t. j. gdy powiekszamy nie-

ograniczenie liczbe prob, stosunek £ .. , gdzie n jest liczba przy-
7’
padkéw, w ktérych zachodzi zdarzenie o prawdopodobienstwie p,
dazy do zlania sie z samem prawdopodobienstwem p, t.j. lim— =
7’

Tak np. gdy wyciagamy galke z urny, zawierajacej galke
czarng i dwie biale, kladziemy do urny galke wyciaggniets i zno-
wu powtarzamy toz samo wielka liczbe razy, to liczba razy,
w ktérych wyciaggnieto galke biala,jest przyblizenie réw-
na podwdjnej liczbie razy, w ktérych wyciagnieto galke bials.

Twierdzeniem, ktére mozna  uwazaé¢ za ogélniejsze od
twierdzenia Bernoulliego iz ktérego to ostatnie wyplywa
jako wniosek, jest t.. zw. twierdzenie o sredniej arytme-
t y ¢ zn e j. Niechaj pewna wielkos¢ moze mie¢ wartosci 4,, 4,,...,4;
1 niechaj prawdopodobienstwami tych wartosci mozliwych bedy
Py P, - .., Pr. Wedlug definicyi (§ 1), wartoscig prawdopodobna
tej wielkosci jest p 4, +p.dy+ . oo +p-4,=V. Czynimy p préb
i otrzymujemy raz wartos¢ z, (ktéra jest jedna z wartosei 1)
potem wartos¢ z, (ktéra jest znowu jedng z wartosci 1)/i t. d.
Srednia arytmetyczna tych wartosci, t. J. :

.
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e ¥+2+ . ... +2,
,u.

=M)

gdy 'u rosnie, da,zy do wartosci prawdopodobneJ P
hm (M—V) =

Zalézmy w szczegolnosei, ze r = 2; dla ustalenia mysli
przyjmijmy nadto, ze stajemy w warunkach twierdzenia B e r-
noulli'ego, t. j. wyobrazamy sobie zdarzenie o prawdopodo-
bienstwie p i zdarzenie przeciwne o prawdopodobienstwie ¢, tak
ze p—+q=1 (biorgc przyklad zwykly, wyobrazamy sobie, ze
w urnie jest @ kul bialych 1 b kul czarnych, tak ze a:0=p:9).
Tu wartosci mozliwych jest dwie: zdarzenie zachodzi lub nieza-
chodzi, t. j. zachodzi zdarzenie przeciwne. Aby wyrazi¢ zada-
nie w liczbach, musimy ‘mie¢ wartosci na ;1 4,, t. j. ustali¢,
ktora liczba odnosi si¢ do zdarzenia o prawdopodobienstwie p,
ktéra do zdarzenia przeciwnego. Gdyby szlo np. o gracza, to
liczba 4, odpowiadalaby stawce gracza, kidry wygrywa, gdy za-
chodzi zjawisko o prawdopodobienstwie ¢, 1 odwrotnie. Warto-
scig tedy prawdopodobng jest pi; + ¢4, Dla prostoty przyjmij-

my ja za zero, t. . weimy A,==¢q, 1, = —p. Wtedy wzoér twier-
dzenia poprzedzajacego staje sie wprost: lim M?=0 1 nalezy tylko
g =00

wyznaczyé M. Niechaj w u prébach powtarza sie n razy zdarzenie
o prawdopodobienstwie p, a wiec u—n razy zdarzenie przeci-
wne. Poniewaz nadajemy wartos¢ liczebng ¢ kazdemu zda-
rzeniu pierwszej kategoryi. wartosé liczebng —p kazdemu zda-
rzeniu drugiej, to Srednia arytmetyczna otrzymanych wartosci
bedzie:

M n—(p=-n)p _ n—pp b

12 P T
a wiec srednia staje sig tem, co nazywamy odchyleniem
wzglednem 1 na tem wlasnie polega twierdzenie Beer-
noulliego. ‘
To rozwazanie ustanawia zwiazek pomiedzy teorys twier-
dzenia Bernoullilego a teorya bleddw, ktéra poda-
jemy w paragrafie nastepnym. :
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Nazywamy wartosciag prawdopodobnsa odchylenia
lub kwadratu odchylenia sume iloczynéw wartosci bezwzglednej
kazdego odchylenia lub jego kwadratu przez prawdopodo-
bienstwo samego odchylenia. Te wartosci prawdopodobne przed-
stawiaja od powiednie calki:

5 i W o S B
#‘ he 2vwi dh; —1‘]126—.%(1/!.
V2mupq 2 Vemupq J A

Wartosé prowdopodobna kwadratu odchyienia po u probach
wynosi upg; wartosé prawdopodobna samego odchylenia wynosi:

V2r29 o 79789 Vg,

Vo

wielkos¢ te nazywamy odchyleniem sredniem, Wynika
stad :

Stosunek wartosci prawdopodobnej kwadratu zboczenia do
kwadratn wartosci prawdopodobnej samego zboczenia bezwzgled-
nego rowna sie m:2.

Jezeli wartos¢ powyzszej calki uczynimy réwng i, znaj-
dziemy wartos¢ odchylenia 0,4760363V2upq, o prawdopodo-
bienstwie §: nazywamy je odchyleniem prawdopodo-
bnem. Stosunek odchylenia prawdopodobnego do sredniego
jest staly i réwny 0,8463. Odchylenia tak prawdopodobne jak
i$rednie, sg proporcyonalne do pierwiastku kwadratowego z licz-
by préb. Prawdopodobienstwo, aby w u probach odchylenie bylo
mniejsze od a, wyraza sie; calkg okreslona, ktorej granica nizszg jest

zero,wyzsza zas zalezy ol 7“: ; jezeli granice wyzsza oznaczymy
M

przez i, otrzymamy calke, ktérg G a uss oznacza symbolem 6 (¢).

Jest przeto niezbgdnem utworzenie tablicy wartosci tej calki

okreslonej, tak, aby mozna bylo dla danych waitosci a i u obli-
cza¢ prawdopodobienstwo. Dajemy te tablice na konecu roz-

o i e o i e
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dzialu. Jezeli powiekszamy ;ii— , to wartosé calki szybko dazy
u

do jednosei.

Prawo wielkich liczb Poissona (Comptes ren-
dus 1835) jest préba uogdlnienia prawa Bernoulli'ego wprzy-
padku, gdy prawdopodobienstwo p w ciggu préb jest zmiennem.

§ 3.

Prawdopodobieristwo przyczyn. Teorya bigdow.

Najwazniejszem zagadnieniem w teoryi prawdopodobienstwa
jest zagadnienie teoryi bleddw Ilub metody naj-
mniejszych kwadratoéw, utworzone przez Gaussa
(Theoria motus 1809), jakkolwiek slady tegoz znajdujemy juz uL e-
gendre'a (Nouv. méth. pour la déterm. des orbites des comeétes
Paryz 1806)

Jezeli uskuteczniamy pomiary jednej i tej samej wielkosei
w tych samych warunkach, to mozna przyjac¢ zasade, ze najod-
powiedniejszg wartoscig jest wartosé t. z. sredwa, ktora jest
funkcys symetryczna wartosci 1 ma te wlasnosé, iz staje sie
réwng k, gdy wszystkie wartosci uczynimy réwnemi %. Srednich
jest nieskonczenie wiele; najprostsza z nich jest Srednia
arytmetyczna, t.]. stosunek sumy wielkosei do ich liczby.
G auss przyjal postulat nastepujacy:

Jezeli uskuteczniamy pomiary jednej i tej samej wielkosel
w tych samych warunkach, to wartosciag naprawdopodobniejsza
mierzonej wielkosci jest srednia arytmetyczna wartosci, otrzy-
manych z pomiaréw.

Niektérzy matematycy starali sie udowodni¢ postulat
G aussa, przyjmujac inne postulaty bardziej bezposrednie, lecz
nie zdajesie, by teréznedowody (Encke, Schiaparelli it.d.)
byly wolne od zarzutiw; zreszts nie twierdzimy bynajmniej, ze
postulat powyzszy nalezy przyja¢ za matematycznie pewny. Patrz
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np. dyskusye 0 tym puedmlocle W naj nowwych traktatach Ber-
tranda i Poincarégo oraz uwagi. zawarte w cytowanych
nizej rozprawach WL GosiewskiegoiwpracyCzubera.
Niektérzy (jak Bessel iinni) usilowali uzasadni¢ doswiad-
czalnie zasade G aussa. r ,

. Godnem jest uwagi, ze Jezell aalozymy, 1z blqdy obserwa-
eyl a@ dostatecznie male, to wszelka srednia da zawsze wartose,
zawarta pomiedzy granicami obserwacyi, a wartosci wszystkich
srednich nie wiele wzajemnie sie réznia.

Srednia arytmetyczna ma wlasnos¢ osobliwa:  Jezeli
Ly gy X S wartosel otrzymane z wu pomiardw 1 jezeli &. &;... &,
oznaczaja quy, t. j. réznice pomiedzy tem1 wartmcmml a sred-

nia, X = - ~(.L =505 SR el O S AT Y kwadratow bte-

déw jes t minimum. .Jezel zamiast x wezmiemy inng ja-
kakolwiek liczbe, to suma bedzie miala zawsze wartosé wieksza.
Ta wlasnosé¢ charakteryzuje srednig arytmetyczna.

Jezeli przyjmiemy zasade sredniej arytmetycznej, t. j. ze
ona przedstawia wartosé najprawdopodobniejsza
wartosci prawdziwe] wielkosci mierzonej, to znajdziemy, iz
prawdopodobienstwo, aby réznica pomigdzy
ta wartoscia a wartosciag prawdziwa wielko-
$cizawierala sie pomiedzy A, 1/, wyraza sieg
przez calke: ;
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wyraza prawdopodobienstwo, ze tasama réznica
(t.J. btad, ktéry popelniamy,przyjmujac wartosé sre-
dnia arytmetyczna), jest codo wartosci bezwzgled-
nejmniejsza od a.
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Prawo, przedstawione przez ten wzor, nazywa. sie¢ pra-
wem bleddw. Gdybysmy za wartosé najprawdopodobniej-
szg przyjeli wartosé r6zna od sredniej arytmetycznej, mielibysmy
inne prawo biedow. ;

W teoryi. bledow znajduje tedy, jak widzimy, zastosowa-
nie funkeya 6, o ktorej byta mowa w § poprzedzajgcym.

Bledem prawdopodobnym jest ten, ktorego pra-
wdopodobienstwo jest .

Stafa & jest odwrotnie proporcyonalna do bledu prawdopo-
dobnego 4, jest mianowicie k1 =0, 476936 ... . Stala & nazywa
sig zwykle miara dokladnosciobserwacyi Dokla-
dnos¢ jest wprost proporcyonalna do pierwiastku kwadrato-
wego z liczby obserwacyj.

Po ustanowieniu prawa bleddw, okreslamy, podobnie jak
wg§li2. wartosé¢ prawdopodobng bledu jako sume
iloczynu wszystkich mozliwych wartosci bledéw przez odpo-
wiednie prawdopodobienstwo; wartosc¢ te prawdopodobna
bledu (ktérej nie nalezy mieszaé z btedem prawdopodobnym 2)
przedstawia calka:
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a wartosci prawdopodobne kwadratu, szescianuit.p.
blgedu przedstawiajg odpowiednio catki:
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Wzory te sa bardzo wazne, albowiem przy ich pomocy oraz
przy pomocy twierdzenia osredniej,podanego w § poprzedzajgcym,
mozemy oblicza¢ wartos¢ & 1 réwnoczesnie sprawdza¢ doklad-
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nos¢ obserwacyj. W samej rzeczy, jezeli przypomnimy sobie,
ze przy wielkiej liczbie u préb srednia otrzymanych wartosci
dazy do wartosei prawdopodobnej i jezeli przez s,, s,, ¢,, 8, 0zZna-
czymy odpowiednio sume wartosci bezwzglednych bledéw
&, &, ..., &, 1ch kwadratow, szescianéw i poteg czwartych,
otrzymamy wzory przyblizone:

e T U el FIRESN S U TR
B k¥Vz s 22 p T pym’ o Y

ktore mogsa stuzy¢ do wyznaczenia liczby & 1 do wzajemne]j kon-
troli. Z wzoréw tych otrzymuja si¢ nastepujace:

Sq <83 8
.7_7 T n B T by 372
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ktére doswiadczalnie winny sprawdzaé sig dokladnie. Jezeli
tedy przy danych obserwacyach nie spelniaja sie, to pozostawiaja
stuszna watpliwose co do czynionych obserwacyj i ich wyni-
kow. Pierwszy =z tych wzoréw wyraza twierdzenie nastepu-
jace: Stosunek sredniej kwadratéw bledéw do kwadratu ich
sredniej dazy przy wzrastaniu liczby obserwacyi do polowy
liczby 7.

Osobliwym jest fakt, ze podobne prawo zdaje sie rzadzic
zachodzeniem zdarzen, ktorych nie mozna uwazaé za przypad-
kowe. Tak np. pomiedzy 10000 logarytmami tablic o 10 cyfrach
dziesietnych, znaleziono, ze siédma cyfra dziesigtna jest zerem
990 razy, jednostka 997 razy, dwdjka 993, czworka 10121 t. p.
Jezeli do tych liczb zastosujemy w pewien sposéb pierwszy

z powyzszych wzoréw znajdziemy 1,561.. ., t.j. liczbe bardzo
bliska liczby »72’— = 1,570.... Przyklad ten podaje Bertrand

(Probab. Paryz 189).
Podamy jeszcze jedno wazne twierdzenie:
Uskuteczniamy pewien pomiar, dzielimy go na » czesciizmierz-
my kazda z nich, uwzgledniajac odpowiednie poprawki, nastep-
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nie dodajemy do siebie wyniki. Jest oczywistemn, ze im wigkszo
bedzier, tem mniejsza bedzie dokladnosé miary calkowitej; zacho-
dzi tu twierdzenie, przewidziane przez Fouriera.

Dokladnos¢ pomiaru calkowitego, ztozo-
nego zr pomiaréw czgstkowych, jest odwrot-
nie proporcyonalna do pierwiastka kwadra-
towego liczby r

Tablica wartoscl calki 6(¢) Gaussa.

t 8 (1) SRy | 0(t)

0,0 (1, D000000 2,0 | 0,9953223

0,1 | 0,1124630 | 2,1 | 0,9970205

05 | ooz | 22 | o sesiar

0,3 | 0,3286267 2,3 | 0,9988568

0,4 | 0,4283022 2,4 | 0,9903115

0,5 | 0,5204999 2.1 | 0,9995930

0,6 | 0,603851 2,6 | 0,9997640

0,7 | 0,6778010 2.7 | 0,9999657

0,8 | 0,7421010 2,8 | 0,9999250

0,9 | 0,7969082 2,9 | 0,9909589

4,1 | 0,827 08 3,0 | 0,9999779

1,1 | 68802050 3,1 | 09999584

1,2 | 0,9103140 3,2 | 0,9999940

1,3 | 0,9340080 3,3 | 0,9909969

1,4 | 0,9522851 3,4% | 0,9099985

1,5 | 2, 9661052 3,5 | 0.99999925691

1,6 | 0,9763484 3,6 | 0,9999996441%

1,7 | 0,9837904 3,7 | 0,99999983285

1,8 | 9,9890005 3,8 | 0,99999992200

1,9 | 09927904 3,9 | 0,99999996522
40 | 0,99999998459
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Kimpfe (Phil Stud. IX, 1893) ulozy! tablice czterocy-
frows, postepujacg od tysigeznej do tysiacznej . czescl ilosel t
w przedziale od .000 do 1.509. :

Zagadnjeniami, nalezgcemi do rachunku  prawdepodobienstwa,
zajmowali sig pierwsi:-B. Pascal, Fermat, Huygens, Moivre,
Daniel, Jan, MikolajiJakéb Bernoulli'owie, Euler,
Lagran ge. Najwazniejszym traktatem systematycznym o teoryi anali-
tycznej prawdopodobienstwa jest dzielo Liaplace’a: Traité analy-
tique du calcul des probabilités (Paryz 1812, 1814, 1820, 1847); w nim
zebral autor wszystkie badania dawniejsze- wlasne i muych matematy-
kéw. Prawie réwnoczesnie rachunek prawdopodobienstwa uczynil po-
step w innym kierunku, dzigki Gausso wi (Theoria motus 1809, The-
oria combinationis observationum i t. d., Tow. Getyngskie 1821 —1826
it. d.), ktéry utworzyl teorye najmmniejszych kwadratow;
teorya ta szybko przeniosla si¢ na pole praktyczneiuczynila tam znacz-
ne postepy. Istnieje bardzo wiele rozpraw Laplace’a, Cauchy’e-
go, Fouriera, Enckego, Bessela, Bienayme'go, Pois-
sona, Puissanta, Czebyszewa iinnych z teoryi prawdopo-
dobienistwa 1 najmnicjszych kwadratéw. Po wskazowki o tych pracach
odsylamy czytelnika do ksiazki Todhuntera ,A history of the ma-
thematical theory of the probability“ (Londsn 1865), albo do listy, zala-
czonej na koncu traktatu Laurenta, Paryz 1873, wreszcie do naj-
nowszej pracy E. Czubera:  Die Entwickelung der Wahrschein-
liehkeitstheorie und ihrer Anwendungen“, ogloszonej w VII tomie
Sprawozdan niemieckiego Stowarzyszenia matematykow (Berlin 1899),
Z traktatow systematycznych o rachunku prawdopodobienstwa i naj-
mniejszych kwadratéw, préez klasycznego traktatu Laplace'a, wy-
mienié nalezy dziela Inacroix’a (1806), Poissona (1837), Gal-
lowaya (Edynburg 1832), Jahna (Lipsk 1839), Queteleta
(Bruksela 1815, 1853), Laurenta (Paryz 1873), Ferrero
(O najmniejszych kwadratach, Florencya 1876), Bertranda (Paryz
1889), Poincarégo (Paryz 1896). Z rozpraw o teoryi bledéw
i metodzie najmniejszych kwadratéw wymieniamy nadto artykuly orygi-
nalne W1. Gosiewskiecgo w tomach II, 111, V, IX  Prac matem.-~
fizyes.“ O metodzie najnowszych kwadratéw patrz prace Br. Gusta-
wicza ,Rachunek wyréwnania bledéw ete.” (Krakow 1896).




ROZDZIAL XXIII

NARZEDZIA 1 PRZYRZADY ANALITYCZNE .

W rozdziale tym pragniemy poda¢ niektére wiadomosci
o réznych narzedziach, wymyslonych do wykonywania dzialan
analitycznych sposobem mechanicznym. Nie mozemy opisywaé
ich tu szezegélowo 1 dla tego ograniczamy sie na krétkim opisie
niektérych tylko; o integrafie powiemy nieco szczegélowiej.

Podzielimy ten rozdzial na trzy czesci: w pierwszej poda-
jemy zarys wiadomosci o narzedziach, sluzacych do rachun-
kow elementarnych, i dla tego nazwanych narzedziami
arytmetycznemi; wdrugie] méwimy o narzedziach, stu-
zaeych do rachunkéw, ktére nazwaé mozemy przewaznie alge-
braicznemi, np. szukanie pierwiastkéw rzeczywistych réwnania
1 ukladu réwnan; wreszcie w czesci trzeciej] poméwimy o narze-
dziach rachunku calkowego, t. j. o narzedziach, stuzgcych do
obliczania calek okreslonych lub do kreslenia krzywej calko-
wej (calki nieokreslonej).

SHAlE
Narzgdzia arytmetyczne. Dziatania elementarne. Abaki

Dwie sa kategorye narzedzi arytmetycznych. Do jednej
zaliczamy narzedzia, dajace rezultaty $cisle dzialan arytme-

Pascal. Rep. I. 34
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tycznych zasadniczych; do drugiej narzedzia—zwane narzedzia
mi o skali logarytmowej — dajace rezultaty z przyblizeniem
w praktyce wystarczajacem.

Narzedzia kategoryi pierwszej bywaja dwéch rodzajow.
W jednych otrzymujemy wyniki, kombinujac ze soby rozma-
itemi sposobami opatrzone podzialami linialy, ktéryeh ruchy sa
wzajem niezalezne. W innych narzedziach czesci skladowe sa
tak zesoba polaczone, iz tworza, machine we wlasciwem znaczenin
tego wyrazu, tak ze ruch jednych czesci okresla juz w sposob
jedyny ruch pozostalych.

Neper w r. 1617 zbudowal po raz pierwszy przybor
plerwszego rodzaju i opisal go w swoim dziele: ,Rhabdologia
sive numerationis per virgulas libri duo“. Jest to w zasadzie tablica
pytagorasowa, na dziesie¢ podzielona kolumn, zloZzona mianowicie
z dziesigciu ruchomych linialéw (listewek), zwypisanemi na nich
liczbami tablicy pytagorasowej 1 przysuwanych dosiebie po odpo-
wiedniem przestawieniu. Forma narzedzia usprawiedliwia nazwe
laseczek Nepera. Zadanie ich polegana otrzymywaniu ilo-
czynow tilorazéw liczb wielocytrowyeh przy pomocy samycl
dodawan 1 odejmowan.

Pierwszs modyfikacye tego narzedzia wykonal Gaspar
S chott, umiesciwszy listewki zliczbami na walcach ruchomych
okolo ich osi. Inne zmiany i ulepszenia zawdzieczamy: Peti-
towi (1678), Poetiusowi (1728), Mdéanowi (1731),
Roussainowi (1738, Hist. de 'Acad), Prahlowi (1789,
1 Rothowi (1841). Najnowszego 1 najwazniejszego udcsko-
nalenia w najnowszych czasach dokonali Genaille i Lucas
(1885).

Pierwsze narzedzie, nalezace do kategoryl arytmetycz-
nych wlasciwych, w ktérych za pomocy ruchéw mechanicznych
odpowiednio skombinowanych wykonywaé mozra cztery dzia-
lania arytmetyczne, zbudowal po wielu zmudnych usilowaniach
Blazej Pascal wr 1642; nastepnie Lheibniz w r. 1673
przedstawil inne podobne narzedzie Towarzystwu krélewskiemn
w Londynie 1 wkrétce potem Akademii paryskiej. Wspominamy
dalej o machinie Rotha 1 oarytmometrze Thoma-
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s a (1820), praktycznym i doskonalym. Pomiedzy narzedziami
rachunkowemi bardziej zloZonemi 1 pomystowemi wymieni¢ na-
lezy narzedzie Scheutza, urzeczywistniajace pomys! Bab-
b a ge’a; bylo ono wystawione w Paryzu wr. 18556. Czeb y-
s z e w zbudowal inng machine taka o ruchu cigglym.

Opis szezegolowy wszystkich tych narzedzi znale$¢ mozna wdzie-
le d’'Ocagne’a: ,Le calcul simplifié ete.“ (Paryz 1894). Opis in-
nych narzedzi rachunkowych, przedstawionych na zjezdzie Stowa-
rzyszenia niemieckiego matematykéw w r. 1893 w Monachium, znale$é¢
mozna w dziele W. Dy cka ,Katalog mathematischer Modelle, Ap-
parate und Instrumente'* (Monachium 1892 -1893). Pordwn. art.
Mehmkego:  Prayczynek do historyi machin rachunkowyeh® (Pra-
ce mat.-fiz. t. VI, 1895).

Przechodzac do narzedzi kategoryi drugiej powiemy prze-
dewszystkiem, ze typem ich jest t. zw. linijka rachunko-
wa o podzialce logarytmowej, pomyslana po raz
pierwszy przez Edmunda Giinthera wir 1624, wkrétce po
wynalezieniu logarytméw. Narzedzie to ulegalo kolejno znacz-
nym modyfikacyom: przez umieszczenie skali, ktéra w narzedzin
pierwotnem byla prosto-liniowa, na kole (Boucher. Wron-
s k1), na elipsie (Fuller) i t. d.,, lub przez zagiecie samej skal:
i zmniejszenie tym sposobem rozmiaréw narzedzia (Mannheim).
Stopien dokladnosci rachunkow przy pomocy tych linijek zalezy
gléwnie od dokladnosei ich konstrukeyi, gdyz zasada w nich
jest, ze linijka ruchoma przesuwa sie po linijce stalej, na ktorej
wypisane sa tak zwane skale logarytmo we, £ j. podzia-
ly odpowiadajace lo garytmom liezb. Wprowadzenie loga-
rytméw na linijce daje te same uproszczenia, co w rachunku
zawyklym; mamy tu wigc niejako narzedzie, ktére nalezy postawic¢
obok poprzednio wspomnianego narzedzia Nepera, tylko ze
zamiast liczb mamy tu ich logarytmy. Précz rachunkéw zwyk-
Iych mozemy za pomoca linijki rozwigzywaé¢ tez réwnania
stopnia 2-go 1 3-go.

Opis szczegolowy linijki rachunkowej znajdzie czytelnik w dzie-
Iach: .alanne’a (Paryz 1851), Benoita (Paryz 1851) Elliota
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(A treatise on the slide rule, London), Guy'a (Paryz 1855), Vo g-
lera (Anleitung zum Entwerfen graphischer Tateln ete., Berlin 1877),
Selli (Regola calcolatore, 1886, przeklad francuski Montefiorego-
Leviego). Historye i klasyfikacye roznych rodzajow linijek o podzial-
ce logarytmowej podal A. Favaro (Ist. Venete (5) V, 1879).

Abakiem lub tablica graficzna nazywamy
w ogole narzedzie, sluzace juz to do wykonywania rozmaitych
rachunkéw elementarnych. juz to do rozwiazywania réwnan,
do rachunkéw trygouometrycznyehit. p. Abak jest w istocie
rzeczy tablica, na ktérej oznaczone sa punkty proste 1 krzywe,
z odpowiedniemi liczbami; jezeli mamy dane wielkosel pew-
nych zmiennych i polgczymy na tablicy prostemi punkty, tym
wartosciom odpowiadajace lub punkty spotkania prostych z na-
kreslonemi krzywemi, otrzymamy wartos¢ szukanej niewiado-
mej. Juz zwyczajna tablica mnozenia jest jednym z najprost-
szych abakéw. Teorya konstrukevi takich abakéw stanowi
nauke, zwana nomogurafia.

Pierwsze prace, odnoszace si¢ do tego przedmiotu, zawdzigczamy
Lalanneowi (1843), Massau'owi (1884), Lallemandowi
(1886), a rozwiniecie i udoskonalenie d'Oca gne’owi, ktorego naj-
nowszy traktat o tym przedmiocie wyszed! §wiezo p. t.:  Traité de
nomographie (Paryz 1899). Tamze podana jest dawniejsza i najnow-
sza literatura tego przedmiotu,

Za pomocy metody nomograficznej rozwigzywaé mozna
rownania stopnia 3-go 1 4-go, zagadnienia trygonometryczne
it. p., nie mowigc juz o waznych zastosowaniach tej metody do
zagadnien technicznych,
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§ 2.
Przyrzqdy algebraiczne. Rozwigzywanie rownar.

Do rozwigzywania réwnan, oprécz wspomnianych juz aba-
kow, istnieje bardzo wiele przyrzadéow d'Ocagne’a, Mehm-
kego iinnych. ktérych opis znajduje sie we wspomnianym
wyze] ,Katalogn* Dycka. Mozemy tez rozwigzywaé réwna-
nie stopnia 2-go i 3-go, a nawet réwnania tréjmienne stopnia
5-go za pomocs linijki rachunkowej. I integraf, o ktérym mé-
wimy w § nastepnym, daje metode graficznego rozwigzywania
rownan przy pomocy calek.

Précz tego zbudowano narzedzia mechaniczne do rozwig-
zywania ukiadu réwnan liniowych. Opis jednego z nich. pomy-
slonegoprzez Veltmann a, znajdujesie w ,Katalogu“ Dy cka;
inne zbudowal W. Thomson (lord Kelvin: por. Proc. of
Roy. Soc. XXVIII, 1878; Natural. Philosophy, 1886, I, str. 482).
Narzedzie Veltmanmna zbudowane jest na zasacach hydro-
statyki, a mianowicie na zasadzie.naczyn polaczonych; skla-
da sie¢ z drazkéw, stykajacych sie z naczyniami napelnio-
nemi cieczg; wszystko zas miesci sie W naczyniu napelnionem
wodg. Kazdy drazek odpowiada réwnanin liniowemu, a walec
na kazdym drazku odpowiada jednej niewiadomej. 7Z wartosci
slupdw cieczy otrzymujemy wartosci przyblizone niewiadomych,
a powtarzajac dzialania, mozemy takze oblicza¢ poprawki. Przy-
rzad Thomsona nie zawiera cieczy 1sklada sie z drazkéw
kélek 1 nici nawinietych na kélka.

§ 3.
Narzedzia cathowe. Integrafy. Analizatory.

Do narzedzi calkowych naleza nastepujace: -
L. Narzedzia do mierzenia pé6l krzywych plaskich, a wiec
dajace wartos¢ okreslonej calki funkeyi, graficznie wykreslonej
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Narzedzia takie nazywaja si¢ w ogéle planimetrami Jest
ich wiele rodzajow; najlepiej znanym jest planimetr A m-
slera (pierwsza konstrukcya w 1854).

2. Narzedzia, stuzace do kreslenia krzywej calkowej,
a ktore daja to, co daje rachunek catki nieokreslonej funkeyi, gra-
ficznie nakreslonej. Sato integraty lub integratory;
moga one sluzyé do tego samego celu co 1 planimetry,i do
wielu innych celéw.

3. Narzedzia, sluzace do calkowania pewnych typow row-
nan rézniczkowych.

4. Narzedzia, sluzace do wyznaczenia dlugosci Iuku linii
krzywej (krzywomierze). Takie narzedzia buduje Coradi
w Zurychu.

5. Analizatory harmoniczne, ktére sa w istocie
rzeczy integratorami do obliczania calek okreslonych, wystepu-
jacych jako spélezynniki szeregu Fouriera, a mianowicie
calek:

2x 2x

[ cosnitft)dt, (sinnt.f(mu.

0 o

Do narzedzi tego rodzaju nalezg narzedzia Thomson a,
Henrici'ego, Sharpa; wiadomosé o nich podaje artykul
Henricie'go w cytowanej ksigzce Dy ck a.

Zajmiemy sie tu tylko opisem integraféw. Pierwsze na-
rzedzia tego rodzaju zawdzigczamy Zmurce (1861), Thom-
sonowi (1876). Cayley'owi (1877); najbardziej wszakze
godnym uwagi jest integraf Abdanka-Abakanowi-
cza (1882, pierwszy model wykonano w 1878; patrz Sprawozda-
nia Akademii krakowskiej, marzec 1880, Comptes rend. 21 lutego
i7 marca 1881), ktérego wykonanie do znacznej doskonaloseci pod-
niést G. Coradi w Zurychu. O wynalazkn swoim napisat
Abakanowicz dzielo p. t. ,Les intégraphes et la courbe
intégrale“, Paryz 1886 (przeklad niemiecki Bitterli’ego, Lipsk
1889).

Zasada, na ktérej opiera si¢ to narzedzie, jest najprostsza.
Wyobrazmy sobie nakreslona krzywa, ktorej rownaniem jest
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x=f(x) 1 wezmy punkt Ftej krzywej o spélrzednych prostokgt-
nych x,, ,. Na osi odcietych odetnijmy dlugosé¢ 1, poczawszy
od spodka rzednej y, 1 rozwazajmy trojkat prostokatny, ktérego
wierzchotkami sa: punkt P, spodek rzednej tego punktu i koniec
odcinka o dlugosci 1. Przeciwprostokatna tego
tréojkata jest stalerdwnoleglta do stycznej

Eor . 7 xd 9 . ; &
lini krzywej. ktdorejréwnaniem jest y=|f(x)du.

Coradi zbudowal dwa modele integraféw, opartych na
tej zasadzie: model mniejszy 1 model wigkszy. Opiszemy tylko
mniejszy.

Rame prostokatna metalows rozmiaréw 30 cm. na 14 cm.
podtrzymujg trzy kétka » 14/, stuzace do nadawania jej ruchu
prostoliniowego mna arkuszu rysunkowym. Na nim kreslg
sig dwie osle, wzajemnie prostopadle, z ktérych jedna (y) jest
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réwnolegla do hoku NN, druga przechodzi przez punkt, w kté-
rym znajduje sig ostrze FF wtedy, gdy wézek ruchomy G @ znaj-
duje sie w swem polozeniu poczatkowem (pofozenie to otrzymu-
jemy latwo, przez przytwierdzenie srubki w otworze oznaczonym
na boku 4). Wézek GG moze przesuwaé sig wzdluz boku NN.
a ruch ten, skombinowany z ruchem calego narzedzia w kie-
runku prostopadlym, sprawia, Ze ostrze f moze opisywaé
slad krzywej dowolnej (rézniczkowej); stad nazwa ostrza
iwoézkarédzniczkowego. Przy pomocy pewnego sy-
stemu polaczen stawowych sprawlamy, ze sztabka F jest
w kazdem polozeniu réwnolegla do plaszezyzny krazka &
1 z drugiej strony réwnolegla do przeciwprostokatnej tréjka-
ta prostokatnego, o ktorym wyzej byla mowa. Stad wynika,
ze w kazdem polozeniu plaszczyzna pionowa krazka R jest
zawsze rownolegla do tej przeciwprostokatnej; z drugiej strony
krazek R $cisle przywiera do papieru rysunkowego pod naciskiem
ciezaru wozka VV (wédzka calkowego). Ten krazek tedy
poruszac si¢ bedzie we wlasnej plaszczyznie 1 przenosic bedzie
wraz z soba wzdluz bokn NN’ wézek calkowy, a z nim oléwek
Z i nie bedzie zmienial kierunku swego ruchu, o ile nie zmienia
go sztabka £ ta zas nie moze go zmienia¢, jezeli wozek réznicz-
kowy nie schodzi z boku NN. Z wézkiem calkowym polaczony
jest noniusz, przesuwajacy sie po skali N’ N’, podzielonej na
centymetry 1 milimetry, tak ze-w polozeniu poczatkowem zero
noniusza schodzi sie z zerem podzialki, a po przebiezeniu luku
krzywej przez ostrze F, mozemy odczytaé liczbe, wyrazajacs
wielkosé pola pomiedzy tym fukiem osig x 1 dwiema skrajnemi
rzednemi. W ten sposéb oléwek Z opisuje krzywg catkowa krzy-
wej danej. Tu wlasnos¢ pozwala nam na wielokrotne zasto-
wania narzedzia.

Ze sztabg L jest zlaczony czop staly, okolo ktérego obraca
sig sztabka ruchoma F, odleglosé pomiedzy tym czopem a srod-
kiem boku A przedstawia jednostke miary narze-
d zia, a prosta, laczaca dwa takie punkty stale, jest w kazdem
polozenin podstaws trdjkata prostokgtnego, o ktérym méwi-
lismy. Narzedzie jest zbudowane w ten sposob, ze ten czop staly
mozna umieszcza¢ w roznych miejscach, jezeli chcemy zmie-
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§ 3. - - Narzedzia catkowe i t. d.

niaé¢ jednostke miary narzedzia od minimum 7 cm, do maximum
124 cm.

Liczby, ktore otrzymujemy na skali N’, nalezy mnozy¢ przez.
jednostke miary narzedzia. Na skali mamy centymetry, mili-
metry i dziesiate czesé milimetra; jezeli wiec miara narzedzia
jest 10 em., to otrzymamy wyniki w centymetrach kwadrato-
wych 1 milimetrach kwadratowych Jezeli na skali N’ czytamy
np. 7,26 cm., to mnozac przez 10, mamy 72,6 i otrzymujemy 72
cm. kw. 1 60 mm. kw.

Roéznica modelu wiekszego od mniejszego jest miedzy inne-
mi ta, ze ostrze rozniczkowe 1 ostrze calkowe znajduja sie na
jednym boku, a nie na bokach przeciwleglych.

Zwigzki wzajemne osobliwosci krzywej calkowej 1 krzywej
rézniczkowej sg nastepujace: jezeli krzywa rozniczkowa ma
maximum lub minimum, to krzywa catkowa ma punkt
przegiecia; jezeli krzywa rdzniczkowa spotyka os «,
to krzywa calkowa ma maximum lub minimum: jezeli
krzywa rozniczkowa zmienia nagle kierunek, to krzywa catkowa
ma ostrze. Aby otrzymac styczng do krzywej calkowej w pun-
keie danym, dosé nada¢ ostrzu rézniczkowemu ruch po prostej
rownolegtej do osi «, t. j. pusci¢ reka wézek 1 pozwoli¢ narze-
dziu przesuwac sig na jego kolkach. Jezeli wozek rézuiczkowy
przebiega prostg prostopadla do osi a, t. j. przesuwa sie po na-
rzedzin, ktére samo pozostaje nieruchomem, wtedy ostrze calko-
we pozostaje stale.

Pozytki narzedzia tego sa nastepujace: 1° Sluzy ono do
mierzenia pol, t.j.spelnia uslugi planimetru; slad krzy-
wej nalezy wtedy opisywa¢ w zwrocie ruchu skazowek  ze-
gara . 2' Moze sluzy¢c do opisywaniaruchem cigg-
Iym paraboli; dos¢ bowiem, by ostrze rézniczkowe prze-
biegalo jakakolwiek prosts. Stosownie do nachylenia prostej,
otrzymujemy parabole o réznych parametrach. 3 Mozna
dzieli¢ dane pole zamkniete na czesci propor-
cyonalne do wielkosci danych przy pomocy
prostej danego kierunku; dos¢ w tym celu obra¢ ten
kierunek za os y, zbudowa¢ krzywa calkowa, odpowiadajaca
catkowitemu obwodowi krzywej, podzieli¢ na czesci proporcyo-
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cyonalne odleglos¢ pomiedzy punktem poczatkowym 1 pun-
ktem koncowym kizywej (te punkty beda na jednej 1 tej sa-
mej rzednej) 1 powtérzy¢ dzialanie tak, aby punkt poczat-
kowy krzywej calkowej byl jednym 2z punktéw podzialu.
Nowa krzywa calkowa przetnie poprzednia w punkcie, ktérego
odeieta bedzie odcieta proste] rownoleglej de osi x 1 przecinaja-
cej pole wsposéb zadany. 4" Mozna oblicza¢ momenty
statyczne pola wzgledem prostej danej. Dose w tym celn wy-
bra¢ os ¢ réwnolegle do tej prostej, jednemu z punktéw przecie-
cia prostejiobwodu krzywej pozwoli¢ opisaé krzywa calaiwrdcié
do tego punktu; otrzymamy krzywa calkows, poczem ostrzem réz-
niczkowem opisa¢ te ostatnia krzywa 1 otrzymaé¢ nowa krzy-
wa calkows. Odleglose pomiedzy punktem poczatkowym i pun-
ktem koncowym tej ostatniej, dajaca sie odezytac na skali, sta-
nowl moment szukany. Liczbe milimetréw i dziesigtnych cze
$ci milimetra, odezytywanych na skali, nalezy oczywiscie po-
mnozy¢ przez jednostke miary narzedzia. Gdyby prosta nie
przecinala pola, to dos¢ byloby polaczyé jakakolwiek linia jeden
z jej punktéow z punktem obwodu krzywej, przesunaé ostrze
rézniczkowe najprzéd wzdluz tej linii, nastepnie wzdluz obwodu
pola (w zwrocie ruchu skazdwek zegara) 1 wreszcie znéw po
linii w zwrocie przeciwnym. 5" Powtarzajac wskazane dzia-
lania na ostatnie] krzywej, otrzymujemy wartos¢ momentu
drugiego rzedu pola wzgledem prostej; w tenze spo-
s6b mozemy otrzymywa¢ momenty réoznych rzedow.
6° Przyjmijmy, ze krzywa catkowa obwodu pola danego zostala
opisana przez punkt, polozony najbardzie] na lewo na ob-
wodzie, i ze punkt poczatkowy krzywej calkowej lezy na osi
x; calkujemy te krzvwa calkowa w przypuszezeniu, ze punkt
poezatkowy nowej krzywej jest na osi . Skonczywszy to
catkowanie, pusémy reka wozek rézniczkowy 1 pozwdélmy na-
rzedziu przesuwac sie na kolkach; wtedy krzywa catkowa opi-
sze styczna do krzywej w punkcie koncowym. Styczna tu
przetnie os x w punkcie, ktérego odcieta réwna sie odciete]
prostej rownoleglej osi » 1 przechodzi przez srodek ciezkosci
pola danego; mamy tym sposobem, powtarzajac dzialania przv
innym kierunku osi, sposéob znajdowania srodka
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ciezkosci pola. 7 Mozemy wykresla¢ graficz-
nie pierwiastkiréwnania algebraicznego f(z)=0.
Polézmy w tym celu y=/f(x) 1 utwérzmy pochodne kolejne
y=f"(z), y"=f"(x)...., poki nie dojdziemy do ilosci sta-
lej. Nakreslmy nastepnie prosta réwnolegla do osi 1 majaca
rzedna rowng tej stalej i calkujmy; otrzymamy prosta, kto-
ra, przy odpowiednim doborze osi, moze przedstawiac¢ przed-
ostatnig pochodng. Calkujmy powtdrnie, znajdziemy pocho-
dng poprzedzajaca i tak dalej postepujac, wykreslimy gra-
ficznie krzyws y =f(x). Pierwiastki réwnania f(x)= 0 odpo-
wiada¢ beds punktom spotkania tej krzywej z osig x; beda
nieml mianowicie odleglosci tych punktéw od poczatku, po-
dzielone przez jednostke miary narzedzia. Jednostki, ktdre
obra¢ nalezy do kreslenia prostej réwnoleglej do osi 1 inne
kolejne stale calkowania sg niezalezne od jednostki miary na-
rzedzia 1 mogs by¢ obrane dowolnie. Uwaga ta jest wazna,
gdyz mogloby si¢ zdarzyé, Ze chegc utrzymaé jedne 1 tez
same jednostke miary, moglibySmy nie znales¢ miejsca w ob-
szarze dzialan narzedzia. 8° Mozemy rozwigzaé¢ gra-
ficznie slawne zagadnienia o kwadraturze
kolta 1 o podwojeniuszescianu. Dla rozwiazania
pierwszego zadania dos¢ wykresli¢c graficznie dlugosé a, t. j.
krzywa calkowa kola o promieniu 1 (jednos¢ miary narzedzia);
otrzymamy wtedy krzyws zygzatowata, a odleglosé pomiedzy
dwoma kolejnemi ostrzami krzywej daje nam n. Dla rozwia-
zania drugiego zadania dos$¢ zcalkowa¢ dwa razy réwnanie
y==6r; otrzymamy w ten sposéb krzywa y=az* odcieta tej
krzywej, odpowiadajaca rzednej réwnej 2 (t.j. dwom jednost-
kom miary niezaleznej od jednostki miary narzedzia), przed-

stawia 13~2 (w jednostkach miary narzedzia). Mozna tez roz-
wiaza¢ graficznier zagadnienie o podziale kata na trzy réwne
czesel; szezegoly pomijamy. 9° Procz tego integraf znajduje
liczne zastosowania w mechanice, w teoryi krzywej sprezystej,
w nauce o elektrycznosci i t. d. Szczegély znales¢ mozna
w cytowanem dziele Abakanowicza.
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najnowsze prace I'rohbeniusa wSprawozdaniach Akademii
berlinskiej.

ROZDZIAL TII.

2, str. 53. Co do literatury ostatniego réwnania na tej stronie

patrz Clebsceh-Lindemann ,Vorlesungen iiber Geome-
trie“ I, 5. 168.

§ 3, str. 59.° Do literatury dolaczamy: Frobenius (Crelle
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prace P ade’'go (Journ. de math. (4), X, 1894, Comptes rendus
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Jezelirownanie odwrotne jest stopnia nie-
parzystego, wtedy spoétezynniki rownood-
dalone od wyrazow skrajnyeh sa albo réw-
ne i tego samego znaku, albo réwne i zna-
ku przeciwnego; wtedy réwnanie ma pier-
wiastek z=—1 w przypadku pierwszym, z=-1
w drugim. Podzieliwszy pierwsz:y strone tego réwnania
przez x—1 lub odp. przez x—1, sprowadzamy je do réwnania
odwrotunego stopnia parzystego.

§ 3, str. 97. Do literatury tego przedmiotu nalezy dodaé: podreez-
niki algebry: Webera, Netto (Lipsk 1898, 1899) oraz
prace Kroneckera (Akad. Berl. 1853, 1856, 1879, Crelle,
XCII).

6, str. 107. O réwnaniach stopnia 3-go i 4-go patrz najnowszay
prace J. Sochockiego (Prace mat.-fiz. X. 1899—1900,
oraz , Wiadomosei matematyczne III, 1899).

9, str. 113.  Twierdzenie Budana przypisuja takZe Jou-
rieno wi(Analyse des équat. déterm., Paryz 1831), ktory sto-
sowal je w swoich wyktadach przel Budamnem.

§ 12, str. 119. O teoryi Galois’a patrz takZe ,Algebre* Webera,

ROZDZIAL VI.
2, str. 127. (o do twierdzenia o zmianie porzadku brania pochod-
nyeh patrz prace Blaneheta (Liouville VI, 1841), Lin-
deldfa (Aeta Soe. Fen. VII), Genocehiego (Akad. Tu-
ryfiska IV, 1869), Seh warza (Abhandlungen t. II, s 275),
Peano (Math. Amn. 1890) Stolza (Grundzige der Diff.
und Int. Rechnung, Lipsk 1899), E. P aseala (Note eritiche).
3 7, str. 142, Do literatury o maximum i minimum funkeyi nalezy
dotaezyé Genocchi-Pean o (Differential und Integralrechn.
Lipsk 1899, s. 177—189).

)]

ROZDZIAL VH.

4, str. 163. 'Pablice Bierens de Haana (zawierajyce 8339
wzoréw) byly drukowane poprzednio w r. 1858 w tomie IV
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Pamietnikow Akademii nank w Awmsterdamie. W r. 1862 tenze
autor wydal dzieto; ,Exposé de la théorie des transformations
et des méthodes d'¢valuation des intégrales définies. Do litera-
tury dotaczamy nadto: M ey er, Vorlesungen iiber die Theorie
bestiminiter Integrale ( Lipsk 1871), Kromneecker, Vorlesun-
gen [, Brumnel; art. w ,Encyclopddie der math. Wissensehaf-
ten® (Lipsk 189 ))

§ 4, str. 166. Redukeya eatki eliptyeznej do kombinaeyi trzech ealek
zasadniczych zajmowszli sig: Legendre (Fonet. ellip. I, rozd,
4i3) Riehelot (Crelle XXXLV), Plana (tamZze XXXIV),

4, str. 106, Funkeye p (wiersz 3) sa tunkeyanii Weierstrasa.

Calki eliptyezne sg szezegolnym przypadkiem calek abelo-
wych (p. Rozdz, XV).  Charakterystyezne ich wilasnosci sa na-
stepujace:  Jezeli zmieung niezalezna przyjmiemy jako zespo-
lona, to catka gatunku 1-go nigdzie nie staje sie nieskonezona;

l“\"l gatunku 2-go staje sie nieskoficzona algebraicznie; to jest
granica stosunku jej do pewnej funkeyi algebraicznej nieskofi-
czonej w punkeie jest skohczona; eatka gatunkn 3-go ma nie-
skofiezonosé logarytmowa, t. j. granica stosunku jej do logaryt-
mu funkeyi algebraicznej nieskonezonej w punkeie jest skofi-
CZONA. :

WazZna wlasnosé catek eliptyeznyeh wyraza t wierdze-
nie o dodawaniu, stanowidie przypadek szezegaolny takie-
2oz twierdzenia dla catek abelowyeh,

Twicrdzenie o dodawaniu dla eatek gatunku 1-go brzmi;

@z z l

{ Wl ’ tl‘. i e dt
’V(l—:c) 1 —k2?) ’)(1 iy ’ (1 —8) \— k%)

gdy pomiedzy x, y, ¢ zachodzi zwiazek algebraiczny:

2V (1 =221 —k22) 4+ ZV(1—o2) (1 —k22?)
1—/2a822

Twierdzenie o dodawaniu dla catek eliptyeznyeh gatunku 2-go
ustanowit Legendre (Fonet. ellipt. I); ma ono postac:

Bk, @)+ E(l,p) — E(k, x) = k*singpsin?ysiny,
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gdzie pomiedzy @, y, y zachodzi zwiazek, ktory otrzymujemy
z wyZej podanego, kladac x=siny, z=siny, {=siny.

I dla calek gatunku 3-go Legendre podal twierdzenie
nastepujace ;

I (n, k, @) 4 U, l,yp)y — Il(n,ky)

],,/ b T ( sin @ sinwsin y Vo (1-n)(k*+n) )
= [/ —————— arctg : - : o
(1+n) (k2+n) l——usin?y—nsinpsinycos y Ay

gdzie Ay=V1—Fk*sin?y. JeZeli pozostajemy w dziedzinie zmiemnej
rzeezywistej, to wzlr tenm musi by¢ zmieniony, gdy 2 jest ujemmne
i mniejsze od jednosci. Mozna wtedy otrzymaé wzor, w ktérym po
stronie prawej wystepuje wprost logarytm. Jezeli zas wprowadzamy
liczby urojone, to wyrazamy arctg przez logarytm za pomocs wzoru
a)=~]~ log i—a)

20 ° 1t o

Twierdzenie to jest wlasciwie tylko inna postacia twierdzenia
o dodawaniu funkeyj eliptyeznyeh sinaw, cosam, Aam (patrz Rozdz.
XVI) oraz twierdzenia o ecalkowaniu rownania Fulerowego
(patrz Rozdz. VIII § 2).

Dla catek gatunku 1-go w postaci Weierstrassowej
twierdzenie o dodawaniu ma postac;

- 4 r
dp d { dr
Jrmre + [t = [
JVap'—gup - g5 . Vag'—gyq—g* . Vari—g,r—yg,
gdy pomiedzy p, q, r zachodzi zwiazek;
P ([ . : 4
| b 1 =T

VAP —gop—gs, VAP —g00—0s, V4r*—gyr—q,

Pierwsze badania nad tym przedmiotem zawdzigezamy Eul c-
rowi (Novi. Comm. Petr. 1761, VI, VH); péZniej ukazala si¢ praca
Lagrange'a (Mise. Taur. IV, 1766, 1769) i druga KEulera
(Acad. Imp. 1778). Wymieniamy nadto: Richelot (Crelle XXIII,
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XL1V), Liouville (Comptes rend. 1856), gdzie podana jest wy-
tworna metoda catkowania réwnania réZniczkowego eliptyeznego;
Schellbaech (Crelle, LIV). Wiadomosei historyezne podaje G e-
noechi (Bull. Boncompagni, III, 1870).

Wyrazenia I (k, -;L), F(k’, Z ), gdzie k'=V1—k*, gdy dro-

ga calkowania jest prostoliniowa, nazywaja sie catkawi zupel-
nemi; Legendre oznaczal catki zupeine gatunku 1-go przez K,

K'. Podobniez F ‘k -—) E(k '3 ) nazywaja sie catk ami zu-

petnemi gatun l\ u 2-go i oznaczaja sie przez K i E'. Jest:

T

'

{* log sing 3 ¢ 1 1 7
—— =}lo sinam.vdv=—Klog— — —— K’
" V1—k?sin? ¢ v J % 2 &% ) e
K A
3 k' 1 ;
’logcosamvdv =Klogl/ — —~ —aK’,
é k 4
.A'
/ log damv dv — i) Klogl'.

.
0

A Przedmiotem tym zajmowali sie: R o b erts (Liouville (1), XIX,
1854, Schlom. Ztschrif. I, 1857), Genocchi i Sylvester
(Phil. Mag. 1860), Brioschi (Annali di mat. (1), ITT, 1860), Wan-
gerin (Schlom. Ztsehrif. XXXIV).
Na rozwiniecie K i £ podajemy wzory:

T L [ o (R
rmg (- (U - e -,

Inne rozwinigeia, gdy K bliskie jednosci, znajdujemy u L e -
gendre’a (Mém. de Paris 1780, Fonet. ellipt.I) i Sehlomileha
(Zeitsehrif. £. Math. und Phys. i, 8. 49).

Pascal. Rep 1. 35
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Pomiedzy X, K, E, E' zachodzg zwiazki:

BB R E dK' kK’ E
ey i - ARty s 7
iE_"_ =gl __/‘_ *I_ “_‘_bl OE' Pl kK’ LE’
o le Je Y sl g M

KE' 4- K'E - KK'!= ’: (zwiazek Legendre'a).
Teorye zupelia ilosci K, K', E, E' snajdujemy u Glai-
s hera (Quarterly Journ. 1885); porown, Rozdz. XVI,
Calki gatunku 2-go i 3-go dajy sie wyrazié przez tunkeye & Iub
o, jezeli calke gatunku 1-go przyjmiemy za argument. JeZeli polo-
zymy :

=
U = ‘ ___itg____
L Vapi—g,p—y,
bedzie (patrz Rozdz, XVII, § 5)
Al o'(w) Sl = g a(w) ., | o) .
o (1) : Y o (U—1y) a(uy)
: o (u—1,) 5 B v g
Q== i o gdzie g =p(,), 9, =p).

§ 4, str. 168. O praeksztalceniu Gaussa pisal Borchardt
(Crelle LVIIIL, Berliner Ber. 1876).

§ 5, str. 179. O calkach wielokrotnych patrz prace Jacobie'go
(De determ. funct., Crelle XII, Werke 3). Przypadek n=2 roz-
wazal Euler, n=3 Lagrange. Porown. Kronecker
(Crelle LXXH, , Vorlesungen ete.“, Lipsk 1894 &. 225).

Twierdzenie Stokesa o przeksztalceniu calki potrojnej
rozeiggnietej na objetoS¢é na catke podwdijna, rozciagnieta na
powierzchnie, ogtoszone zostalo w Cambr., Univ. Cal. 1854 r.
O catkach podwdjnyeh patrz najnowsze dzielo Stolza:
«Vorlesungen iiber Doppelintegrale“, (Lipsk 1899).
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6.

(=3

-1

&
4

str. 172, Calkowaniem rézniezek zupelnyeh zajmowal sie pierw-
szy Euler: ponim: Morgan (Quest. J. 1858) Natani
(Crelle LXII), Du Bois-Reymond (Crelle LXX, Math.
Am. XII), Collet (Annales de I'Ecole norm. (1), VII, 1875),
Bertrand (Comptes rend. LXXXIII, 1876). Poréwn. F or-
s v th Theorie on diff. equ. (Przektad niemiecki, Lipsk 1893).

ROZDZIAL VHI.

str. 195, Jezeli réownaniu  rézniczkowemu nadamy postaé
Ay —fudr=0(i=1,2....,m), to bedziemy mieli uklad réwnan
zupelnyeh Iub Ptaftfa, catkowalny nieograniczenie, t. j-
za pomoca nm rownah, co znaczy, Ze daje sie wyznaczyé n
uktadow mmoinikow gy, ..., pa (4==1,2. ... n), pray pomoey
ktorego dochodzimy do 2 réZniczek zupelnyeh, Mnoznik p ezyni
zadosé rownania: :

b T e
str. 201, wiersz 8 od gory, powinno byé drgajaceyeh za-
miast dZwieczacyeh.
str. 202 wiersz 12 od gory, do literatury dodaé. Servret,
Compt. rend. LXXIV,

§ 7, étr. 204. Do literatury nauki o réwnaniach rézniezkowyeh do-

dajemy: I.. He ffter .LKinleitung in die Theorie der linearen
Differentialgleichungen“ Lipsk 1894, L. Koenigsbheeger
»Liehrbueh der Theorie der Differentialgleichungen® Lipsk 1889,
C. Jordan Cours d'analyse, t. ITl; Picard Traité d'ana-
lyse; Helge v. Koel wnowej pracy (Akad. Sztokholmska
1899) rozwaza uklady nieskonezenie wielkiego rzedu réwnan
rézniezkowych zwyezajnych.

Do literatury teoryi rownan réZniczkowyeh zupeinyeh i row-
nania Pfafta dodajemy: 1) DIla rownan catkowalnyeh nieogra-
niczenie: Deahna (Crelle XX), Natani (Crelle LXHI,
8. 314), Meyer (Math. Anmn, V), Frobenius (Crelle LXXXIT);
2) Dla ukladéw niecatkowalnyeh mnieograniczenie: P faff
(Berl. Ak. 1814, 1715), Gauss (1815), Jacobi (Crelle II,
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XVII), Natani (Crede LVII), Clebsch (Crelle LX; LXI),
Grassmann (Ausdehnungslehre 1862), Lie (Archiv fiir
Math. II, 1887), Frobenius (Crelle LXXXII), Darboux
(Bull. Darboux (2), VI), Forsyth (Theoris on diff. equ.),
Vivanti (Rend. Palermo XI1), Engel (Leipz. Berichte),
Rusjan (Prace mat.-fiz. VIII, IX)it. d. Guldberg (Akad,
w Chrystianii 1898, 1899, Comptes rendns 1899),

ROZDZIAL IX.

§ 1, str. 209, Mozna wykazaé, Ze istuiejy grupy, nie zawierajace

przeksztateenia  toZsamosciowego; przyklad podal Engel

w r. 1894 (patrzstr. 163 i 165 t. I dzieta Liego-Engela,

Theorie der Transtformationsgruppen).

§ 3, str. 213, Pojecie przeksztalcenia stycznoSciowe-
g o daje sie rozciagnaé¢ na przypadek wielu zmiennych,

4. str. 217, Niezmiennikiem calkowym nazywamy
wyrazenie postaci :

/8

b — H ’ WD G0, (T8 ostoe Vti

gdzie @ jest taka funkeya zmiemnyeh ), Zyy...; Zuy 21y Zogeery 2
i pochodnyeh ilosei 2 wzgledem ilosei x, Ze wartosé¢ ecalki
nie ulega zmianie przy przeksztatceniach grupy. Niezmiennikami
catkowemi zajmowali sie: Liie (Leipz. Ber. 1886), Poinearé
(Aeta mat, XTI, str. 52, 1890, Zorawski (Rozp. Ak, kra-
kowskiej 1895), Koenigs (Compt, rend 1895), Cartan

( (Bull, Soe, Math, 1896), Hur witz (Gott. Nachr, 1897), Lie
(Leipz. Ber. 1897),

ROZDZIAL X,

$ 4, str, 231, Do literatury teoryi interpolacyi dodajemy jeszeze:
Gauss (WerkeIIl), Lagrange (Oeuvres VHf, Czeby-
szew (Akad. Peters, 1859), Hermite (Crelle LXXXIV),
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Frobenius (tamze LXXII1), Méray (Anu de I'Ec. norm,
1884), Teixeira (Crelle CX), Bendixson (tamze CIL
Acta IX), Pincherle (Akad, bolonska 1893), Netto (Math.
Ann. XLH).

7 literatury o kwadraturach przytaczamy: J a ¢ o bi (Crelle
I, Christoffel (tamZe LV), Czebyszew (Liouville (2)
XIX), Markott (Math. Ann, XXI), Stieltjes (Ec. norm
(3) I, Compt. rend. XCIX).

Do literatury rachunku odwrotnego vréZnic: Thomae
Zeitschr. . M. XVI), Le Paige (Nouv. Corr. II, III), Syl-
vester (Phil Mag. 1879, Am. J. IV, Messenger (2) XVIIL),
Cesaro (Nouv, Ann. (3) V), Pincherle (Ist. Lombh. 1886,
1894, Ace. Bol. 1895, 1896).

ROZDZIAL X1,

§ 1, str. 249. Ostatnie dwa wzory w tym paragrafie brzmie¢ pow nuy
Aoy, = Aypa'; — Ayd'y; Aay = — A0y + Ay

§ 4, str. 257. Po wzorach na koficu Nr. 5 nalezy dodaé: spotezyn-
niki tego przeksztaleenia otrzymujemy, podstawiajac, zamiast
spolezynnikéw podstawienia danego, ich dopelnienia algebraicz-
ne w wyznaczniku 4,

§ 4, str. 259, wiersz 1 u géry: zamiast katalektykanty, po-
winno byé kanonizanty, Dla form rzedu parzystego 2m
istnieje zwiazek pomiedzy spolezyunikami postaci:

i o e SRR e - T
(5 0 N TORST oSS B SRS ()
O T O e, ey,

ktory nazywa sie katalektykante m wyznacanika.
§ 4, str. 259, wiersz 13 od gory, zamiast potzmiennik powinno
by¢ potniezmiennik,
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§ 4, str. 259, w wierszu ostatnim, zamiast «,_» napisac a,,. zamiast
Wam NAPIBAC Ay, ; Wyrazy w wierszu tuz pod wyznacznikiem
nalezy przekreslic.

" CROZDZIAE XIV. ™,

+

§ 4, str. 321, wiersg 4 od giry: zamiast W'y m’
niewymier ; sl
R e SR SWIES

rny powinno hyé
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potzmienniki, 249. I
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Stala Eulera. 426.
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Symbol Eisensteina, 501.
»  Jacobi'ego, 482, 400. l
,»  Legendre’a, 480.
Szeregi: Biirmanna, 457.
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,,  Fouriera, 458.
» funkeyj Bessela,
,»  funkeyj kulistyeh.
,» harmoniczne, 74.
»  Lagrange’a, 457.
,» Lamberta, 77.
» logarytmowe, 136.
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Stokesa, 546.

Sturma, 113.
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302.

% Wilsona, 476.
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Uklady rownan liniowyeh, 101,
rozniczkowyeh jedno-

”

: czesnyeh, 194.

» ,, zupetne form niezmien-
niezyeh, 259.

X , ukladu form liniowyeh,
261.

Y 5 Jjednej lub wiecej form
ukfadu form rzedu 3-go
203,

. , ukiladuforicy kwadrato-
wej i szeSciennej, 264.

P ,» ukfaduformy dwéjkowe’
i dwukwadratowej, 267

o »  ukfadu formy kwadrato-

wej i dwukwadratowej,
269.
Ulamki ciggte, 13.

Wartodé prawdopodobna, 517.

Warunki catkowalnosei, 172.

Waryaeya calki pierwsza, 232.
5 s druga, 234.

Wektor kwaternionu, 8.

Wronskiany, 60.

Wypadkowe, 98.

Wyrézniki rownania, 1.

> formy kwadratowej, 487.
- ciata liezbowego, 505.
Wyznaezniki, 47.
5 Cauchy’ego, 55.
& czgstkowe (minory, pod-
wyznaezniki), 49.
) dotgezone, H1.
- formy kwadratowej, 487.
| funkeyjne, 62.
P kolujgee, 55.
b ortogonalne, 58.
o perysymetryezne, H4.
H polsymetryezne, 52
H skosne, 52.
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