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P R Z E D M O W A
DO DRUGIEGO WYDANIA

W zniszczonej przez wojnę Polsce dawał się odczuwać brak wszelkich 
podręczników, a w szczególności podręczników dla szkół akademickich; 
należało więc jak najprędzej przystąpić do przygotowania odpowiednich 
dziel, pomimo trudności uzyskania potrzebnych do tego źródeł.

Autor niniejszej książki, prof.dr Leon Staniewicz, prace wstępne 
do drugiego wydania rozpoczął zaraz po zakończeniu wojny, w r. 1945, 
początkowe jednak powojenne trudności wydawnicze uniemożliwiły 
wcześniejsze jej wydanie.

Doceniając potrzeby młodzieży akademickiej studiującej elektro­
technikę teoretyczną na Politechnice Gdańskiej, prof. dr Leon Stanie­
wicz, niezależnie od prac związanych z przygotowaniem drugiego wyda­
nia książkowego, wydał tymczasem dwukrotnie swoją książkę w postaci 
skryptu.

Obecne wydanie wykazuje znaczne różnice w porównaniu z pierw­
szym, które trzeba było opracować i uzupełnić, dostosowując je do obec­
nego sianu nauki, z zachowaniem jednakże pewnych ram, zakreślonych 
programami szkół akademickich. Szczególnie uległa zmianie teoria 
czwórników, linii łańcuchowych oraz zastosowania metody składowych 
symetrycznych do obliczania prądów zwarcia; poza tym usunięto szereg 
błędów, które się wkradły do pierwszego wydania.

Drugiego wydania książki autor niestety już nie doczekał, zmarł 
bowiem nagle przy pracy nad pierwszą korektą niniejszej książki.

Korektę książki po śmierci autora przeprowadzili pracownicy nau­
kowi Katedry Elektrotechniki Teoretycznej Politechniki Gdańskiej: 
adiunkt mgr inż. Piotr Ciechanowicz i st. asyst, mgr inż. Jerzy Dziedzic. 
Rysunki wykonał st. asyst, mgr inż. J. Dziedzic. Poza wymienionymi 
w końcowej korekcie wzięli udział pracownicy naukowi Katedry: st. asyst, 
mgr inż. T. Mazurkiewicz i st. asyst, mgr inż. J. Cimoszko.
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rozpatrywanych wielkości.



R O Z D Z I A Ł P I E R W S Z Y

PRĄD ZM IE N N Y  S IN U S O ID A L N Y

§ i
OKREŚLENIE PRĄDU ZMIENNEGO. PRĄD SINUSOIDALNY

Prądem zmiennym nazywamy prąd elektryczny, którego wiel­
kości charakterystyczne: napięcie, natężenie itp., zmieniają z biegiem 
czasu swe wartości oraz kierunki. W elektrotechnice mamy do czy­
nienia przeważnie z prądami zmieniającymi się okresowo, czyli 
z takimi prądami, które po upływie określonego czasu przybierają 
te same wartości i te same kierunki. Najprawidłowszą postacią prądu 
zmiennego jest prąd o przebiegu sinusoidalnym, który będziemy 
w skróceniu nazywali prądem sinusoidalnym.

Przebieg sinusoidalny określamy funkcją
y =  A sin x.

Dla tej funkcji na wykresie (rys. 1) otrzymujemy krzywą, 
zwaną sinusoidą.

Dla x =  0 y — 0;
71 A

” X =  2 y = A -

A stanowi wartość szczytową lub maksymalną sinusoidy, zaś x 
jej argument.

Dla x = n y — 0,

x — 2n y =  0.
Całkowity przebieg sinusoidy dla wartości a: od 0 do 2n będziemy 

nazywali falą sinusoidy.
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Prąd sinusoidalny może powstać, gdy istnieje siła elektromo­
toryczna o przebiegu sinusoidalnym. Siłę elektromotoryczną będziemy 
nadal oznaczali przez S E M.

Gdy przewodnik porusza się w polu magnetycznym, przeci­
nając strumień magnetyczny, powstaje w tym przewodniku S E M 
indukcji, której wartość e w chwili t otrzymujemy ze wzoru

d & ,  ■ Ae = ------^  -  jedn. cgs

lub ,
e ---------- -jjj- 10—8 woltów,

gdzie oznacza wyrażoną w makswelach wartość strumienia magne­
tycznego przez powierzchnię ograniczoną przewodnikiem, l czas 
w sekundach.

Najprostszy przypadek mamy, gdy przewodnik obraca się 
z jednakową szybkością w jednostajnym polu magnetycznym, gdzie 
natężenie pola ma wartość stałą. Przypuśćmy, że mamy takie pole 
między dwoma biegunami N  i S magnesu lub elektromagnesu (rys. 2); 
rozpatrzmy przewodnik np. w postaci prostokątnej ramki z drutu, 
która może się obracać naokoło osi a — a. Gdy ramka znajduje się 
w położeniu x — x, strumień magnetyczny przez powierzchnię ogra­
niczoną ramką będzie miał największą wartość i kierunek prosto­
padły do powierzchni. Jeżeli oznaczymy przez B indukcję magne­
tyczną w rozpatrywanym polu, zaś przez s pole powierzchni ograni-
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czonej ramką, wówczas strumień 0 m, objęty ramką w położeniu
x — x, będzie równy

= B s-

Rys. 2

Gdy ramka obróci się o kąt ^ i zajmie położenie y —y, wtedy

objęty przez nią strumień magnetyczny będzie równy 0. W położeniu

pośrednim, gdy ramka tworzy z osią a: — x X 
kąt a (rys. 2 lub rys. 3), strumień objęty J 
przez ramkę będzie równy

B s cos a =  cos a.Ul
Załóżmy, że ramka, obracając się ze 

stałą prędkością kątową to, obróciła się 
o kąt a po upływie czasu t, tak iż a = to t, 
wówczas powyższy wzór możemy napisać 
w sposób następujący:

B s cos a — 0 „  cos co t.
X

Rys. 3Widzimy stąd, że strumień magne­
tyczny objęty przez ramkę jest funkcją 
czasu okresowo zmienną. Rozpoczynając liczenie czasu od chwili, 
gdy strumień ma swoją największą wartość, będziemy mieli dla 
wartości strumienia w chwili ł wzór

0, =  0 m cos to l.I rtl ( 1 )

Teoria prądów zmiennych 2
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Badając ten wzór widzimy, że:
dla w t =  0 0 , =  (I>m,

>t n 0, =  0.

wt = n 0t =  — 0m, 
3

0)1 = ryJl 0 t =  0 .

(2)

Przechodząc następnie od strumienia do S E M, otrzymamy 
dla rozpatrywanego przykładu 

d0te = dl — — 0m • (— o) sin wl) = 0m u) sin m t.

Jak widać z tego wzoru, S E M  określona jest funkcją sinu­
soidalną. Oznaczając iloczyn <pm tu przez Em, otrzymamy

e = Em sin oj t. (3)
Otrzymaliśmy w ten sposób w obwodzie S E M  sinusoidalną. 

Widzimy, że jest ona wynikiem obracania się przewodnika z pręd­
kością stałą w jednostajnym polu magnetycznym. Em ma wartość 
stałą i nazywa się wartością szczytową albo maksymalną S E M; 
e jest funkcją czasu i nazywa się wartością chwilową S E M.

Badając wzór (3) widzimy, że
dla

JJ

II*w3 0 e = 0.

co t  =
71

2
e = Em,

OJ l  = 71 e — 0,

0 )1  =
3
2 71 e = ■ Em.

)

(4}

Porównywając ze sobą wyniki (2) i (4) widzimy, że strumień 
magnetyczny i S E M  zmieniają się w ten sposób, że gdy strumień 
przechodzi przez swą wartość największą, S E M  przechodzi przez 
wartość 0 i na odwrót.

Analogicznie do przebiegu sinusoidalnego S E M  możemy roz­
patrywać sinusoidalny przebieg natężenia prądu według wzoru

i = Im sinwf, (5)
gdzie i oznacza wartość chwilową, zaś Im wartość szczytową lub 
maksymalną natężenia prądu.
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Tak samo otrzymamy wzór dla napięcia sinusoidalnego
u =  Um sin co t. (6)

Wzory (3), (5) i (6) wyrażają przebiegi rozpatrywanych wiel­
kości w obwodzie elektrycznym, w którym pewien kierunek został 
przyjęty jako kierunek dodatni.

Prądy zmienne, które nie mają przebiegu sinusoidalnego, na­
zywamy prądami odkształconymi, jak wskazuje to np. rys. 4.

W dalszych rozważaniach będziemy rozpatrywali najpierw 
prądy sinusoidalne.

§ 2
OKRES. CZĘSTOTLIWOŚĆ. PULSACJA

W rozpatrywanych przebiegach sinusoidalnych wartości funkcji 
czasu powtarzają się dla argumentów różniących się o 2kn, gdzie 
k jest liczbą całkowitą. Oznaczając przez T najkrótszy czas, po 
upływie którego następuje powtórzenie wartości funkcji, będziemy 
mieli

co T = '2jt,

skąd T =  (7)

Czas T nazywamy czasem okresu lub w skróceniu okresem 
prądu zmiennego. W ciągu jednego okresu T funkcją przybiera 
wszelkie wartości fali. Przebieg zmian wartości rozpatrywanej 
wielkości okresowej w ciągu jednego jej okresu nazywa się również 
cyklem. Po upływie czasu T rozpoczyna się druga fala itd.

2*
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Liczba okresów na sekundę stanowi wielkość zwaną często­
tliwością prądu zmiennego; oznaczamy ją literą /; mamy więc

, 1 (O
t =  T = 2n ‘ (8)

Częstotliwości nie należy mieszać z liczbą zmian kierunku 
prądu na sekundę; ta liczba zmian jest dwa razy większa od często­
tliwości.

Częstotliwość ma wymiar odwrotności czasu; wyrażamy ją 
w okresach na sekundę; na terenie międzynarodowym jest tendencja 
do nadania jednostce częstotliwości, czyli jednemu okresowi na 
sekundę, nazwy „herc“ [Hz).

Ze wzorów (7) i (8) możemy napisać

lub
(9)

co — 2 n / . ( 10)

Wielkość co, która w poprzednich wzorach stanowiła prędkość 
kątową podczas obrotu ramki w polu magnetycznym, nazywamy 
pulsacją prądu zmiennego.

W zależności od tego, którą z trzech wielkości: pulsację, okres 
lub częstotliwość chcemy wprowadzić do wzorów na wartości chwi­
lowe funkcji sinusoidalnych czasu, możemy wzory te napisać 
w trzech równoznacznych postaciach, korzystając z zależności (9) 
i (10), np. wzór (3)

e =  Em sin cof;

T-, • 2 zt ,e =  Em sm T *5

e = Em sin 2 n ft.

W urządzeniach prądu silnego dla siły i światła częstotliwość 

wynosi najczęściej 50 Hz: f = 50, T =  w trakcji elektrycz­

nej spotykamy częstotliwość l62/3Hz] w urządzeniach telekomuni- 
k cji np. w urządzeniach telefonicznych, częstotliwość dochodzi 
do kilkunastu tysięcy Hz, w radiotechnice zaś mamy nawet miliony Hz.
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§ 3
FAZA. PRZESUNIĘCIE FAZY

Argument funkcji sinusoidalnej wzrasta w miarę wzrostu zmiennej 
niezależnej. Wartość argumentu, zawartą w granicach jednego okresu, 
czyli pomiędzy 0 i 2n lub — n i + n, nazywamy fazą tej funkcji. 
Rozpatrując funkcję sinusoidalną czasu powiemy, że faza jej w pew­
nej chwili wynosi a, gdy w chwili tej co ł = a, przy czym 0 <  a < 2 n 
lub — n ^  a <  + n. Gdyby wartość argumentu co t przekraczała 
podane granice, należy dla otrzymania fazy odjąć lub dodać wielo­
krotność okresu 2n, tak aby rezultat był zawarty w wyżej przyto­
czonych granicach.

Gdy piszemy wzór na wartość chwilową, np. natężenia prądu
w postaci . _ .i = 7 sin co t ,

widzimy, że w tym przypadku, w chwili gdy rozpoczynamy liczenie 
czasu, prąd przechodzi przez fazę 0. Jeżeli rozpoczynamy liczenie 
czasu w chwili, gdy sinusoida posiada inną fazę, wtedy do argu­
mentu co t musimy dodać lub odjąć odpowiedni kąt fazowy.

Sinusoidę, która w chwili l — 0 przechodzi przez fazę 0, będziemy 
nazywali sinusoidą normalną.

Zestawmy 3 sinusoidy (rys. 5): I, normalną, której równanie 
jest i = Im sin co t, oraz II i III, o tej samej wartości maksymalnej, 
lecz przesunięte względem sinusoidy normalnej w lewo i w prawo 
o kąt a. Rozpatrując sinusoidę II widzimy, że w chwili t =  0 prze­
chodzi ona przez fazę +  a; jej równanie będzie

i — Im sin [w ł +  a) .
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Rozumując analogicznie, napiszemy dla sinusoidy III równanie
i =  Im sin (co t — a) .

Porównywając obie te sinusoidy z normalną, widzimy, że 
sinusoida II wyprzedza ją ze swoją fazą, a więc wcześniej przechodzi 
przez wartość maksymalną i zero. Z tego samego względu sinusoida 
III jest opóźniona pod względem fazy w stosunku do sinusoidy 
I — normalnej. Możemy dla tych sinusoid napisać ogólne równanie

i =  Im sin (mt + a),

jeżeli kątowi a będziemy nadawali znaki + lub — w zależności od 
tego czy rozpatrywana sinusoida będzie wyprzedzona, czy też opóź­
niona w fazie względem sinusoidy normalnej.

Dla a =  0 otrzymamy sinusoidę normalną. Kąt a nazywamy 
kąlem przesunięcia fazy.

§ 4
W ARTOŚĆ ŚREDNIA I WARTOŚĆ SKUTECZNA

Wartością średnią funkcji sinusoidalnej nazywamy średnią 
arytmetyczną wszystkich wartości bezwzględnych tej funkcji w ciągu 
jednego jej okresu. Rozpatrując funkcję sinusoidalną czasu

У =  Ym sin wt = Ym sin -p l  (11)

będziemy mieli, na podstawie powyższego określenia, dla wartości 
średniej tej funkcji wzór

т
Yir=-}f - J  \Y\dt,

o
gdzie | K| stanowi wartość bezwzględną rozpatrywanej funkcji. 
Ponieważ wartości bezwzględne funkcji sinusoidalnej w drugiej 
połowie okresu są zupełnie takie same jak w pierwszej połowie, 
przeto dla takiej funkcji możemy dla obliczenia średniej wartości 
ograniczyć się do połowy okresu i napisać

772

Yir = ~ f y d l .
0

( 12)
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Podstawiając wartość y z (11) i wykonując całkowanie, otrzy­
mamy

śr

Tl 2

-  rfY-Ym sin - j l d l 2 7 l \

‘In  , — cos - jr t
Tl 2

=  .1 m *
71

(13)

Wyraz — w przybliżeniu równa się 0,64, możemy więc napisać
71

przybliżony wzór
— 0,64 Ym

Rozpatrując na przykład przebieg natężenia prądu przedsta­
wiony na rys. 6, określony wzorem

i = I  sin co t ,m 7
otrzymamy dla wartości średniej tego prądu

7ir = l / w^ 0 ,6 4 /m;
71

wartość ta na rysunku odpowiada rzędnej O A.

Obliczmy ładunek elektryczny Q, który przepływa przez obwód 
z rozpatrywanym prądem w ciągu połowy okresu. W pewnej chwili ł 
natężenie prądu ma wartość i; w ciągu nieskończenie małego czasu dt 
ładunek elektryczny przepływający w obwodzie będzie

d q = i d l .
Ładunek elektryczny, jaki przepłynie przez obwód w ciągu 

połowy okresu, wyrazi się wzorem
Tl,

Q = J  i d ł  ■
0
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Całka ta stanowi pole ograniczone połową fali sinusoidy i osią 
odciętych, z drugiej strony pole to jest równe polu prostokąta O ABC,  
którego jeden bok stanowi połowę okresu, drugi zaś bok równy jest 
wartości średniej natężenia prądu, czyli

T
Q =  h Ą .

Możemy więc określić średnią wartość natężenia prądu zmien­
nego jako natężenie takiego prądu stałego, przy którym ładunek 
elektryczny przepływający w ciągu połowy okresu będzie ten sam co 
i przy rozpatrywanym prądzie zmiennym. Na rysunku pole O A BC  
odpowiada wartości O.

Wartością skuteczną funkcji sinusoidalnej nazywamy pier­
wiastek kwadratowy ze średniej arytmetycznej kwadratów jej war­
tości, obliczonej dla całego okresu. Dla funkcji przedstawionej 
wzorem (11) wartość skuteczna Y będzie określona wzorem

(14)

lub, po podstawieniu wartości y,

Y = V i j 2 n
Ym2 sin 2 tdt =

= Y,Y i f sin 2 td t .

Całka pod pierwiastkiem, którą możemy łatwo rozwiązać, zakła- 

2n 1 - c o s - ^ f
dając sin2 ~ t = -------- --------- , równa się — ; wobec tego otrzymu-

i /£ &
jemy

Y 1

V 2 ‘
(15)

1
Wyraz y== w przybliżeniu równa się 0,707, więc dla wartości 

skutecznej możemy napisać przybliżony wzór:

Y ^  0,707 Y .' Ttl
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Wartości skutecznej natężenia prądu możemy nadać pewne zna­
czenie fizyczne, rozumując w sposób następujący. Rozpatrując 
obwód elektryczny, przez który przepływa prąd stały o natężeniu I, 
wyrazimy energię Ws przetwarzającą się na ciepło w ciągu czasu T

WZOrem Ws =  P R T ,  (16)

gdzie R oznacza oporność obwodu. Gdy przez ten sam obwód prze­
pływać będzie prąd zmienny, energię Wz w ciągu okresu T obli­
czymy rozpatrując nieskończenie mały przeciąg czasu dt po chwili t, 
gdy natężenie prądu ma wartość i; w tym czasie energia d Wz wyrazi 
się wzorem

d Wz =  i2 R d t;

całkując w granicach od 0 do T, znajdziemy wartość energii Wz\ 
więc

W, ■I i2 R d ł . (17)

Dobierzmy teraz taką wartość natężenia prądu stałego / ,  który 
by w okresie T dał energię taką samą co i rozpatrywany prąd zmienny; 
w tym celu przyrównamy do siebie wzory (16) i (17), wtedy

P R  T
T

= /' 2R d ł

W przypadku, gdy oporność R obwodu pozostaje taka sama jak 
przy prądzie stałym, obie strony ostatniej równości możemy podzielić 
przez R, wtedy

V~fJ > -
Wyraz z prawej strony stanowi wartość skuteczną natężenia 

prądu zmiennego, możemy więc dać następujące określenie: wartość 
skuteczna natężenia prądu zmiennego jest to taki umyślony prąd 
stały, który, płynąc w obwodzie ze stałą opornością, wytworzyłby 
w ciągu okresu T taką samą energię, jaką w rzeczywistości wytwarza 
w tym samym czasie prąd zmienny.

Wartości skuteczne mają wielkie znaczenie przy rozważaniu 
prądów zmiennych. Gdy podajemy wartości natężenia lub napięcia 
prądu zmiennego, zwykle mamy na myśli wartości skuteczne tych
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wielkości. Przyrządy pomiarowe używane w technice do mierzenia 
napięć i natężeń prądu zmiennego wskazują najczęściej wartości 
skuteczne.

Wartości skuteczne przyjęto oznaczać dużymi literami bez 
wskaźników, piszemy więc, uwzględniając wzór (15),

1 E

Wprowadzając do wzorów na wartości chwilowe — zamiast war­
tości szczytowych, czyli maksymalnych — wartości skuteczne, mo­
żemy napisać

/V 2  sin co t; u =  U V2 sin ca t; e =  E V2 sin co t itd.

§  5
MOC PRĄDU ZMIENNEGO. WSPÓŁCZYNNIK MOCY

Rozpatrzmy część obwodu elektrycznego (rys. 7), na końców­
kach którego działa napięcie o wartości chwilowej

u = Um sin co l (18)

i przepływa prąd o wartości chwilowej i. W obwodach prądu zmien­
nego, jak o tym niejednokrotnie się przekonamy, natężenie prądu 

i na ogół nie jest w fazie z napięciem; pomiędzy
tymi wielkościami zachodzi przesunięcie fazy; 
oznaczając kąt przesunięcia fazy pomiędzy natę­
żeniem i napięciem prądu przez cp, przy czym <p 
może mieć znak zarówno dodatni jak i ujemny, 
otrzymamy dla wartości chwilowej natężenia 
prądu wzór

i = Im sin (co t + 9o). (19)

Przy prądzie stałym moc pobierana w roz­
patrywanej części obwodu byłaby określona ilo­
czynem napięcia przez . natężenie prądu i mia­

łaby wartość stałą w ciągu czasu, w którym napięcie i natężenie 
prądu pozostają bez zmiany. Przy prądzie zmiennym iloczyn war­
tości chwilowych napięcia i natężenia prądu daje nam wartość 
mocy w określonej chwili; oznaczając wartość chwilową mocy przez p,

czv

7
Rys. 7
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możemy napisać ui;

podstawiając na miejsce u oraz i wartości ich ze wzorów (18) i (19), 
otrzymamy p = £ / „ / „  sin „ i  sin ( „ ! + , ) .

Iloczyn sinusów możemy przekształcić na zasadzie wzoru trygo­
nometrycznego:

wtedy

sin m sin n — —  [cos (m n) — cos (m 4- n )],

p = Um lm [cos <p — cos (2 w t +  q>) ]. ( 20)

Jak widać z tego wzoru, wartość chwilowa mocy składa się 
z dwóch części, z których pierwsza

Y  Um Im cos cp

jest wielkością stałą w czasie, natomiast część druga

— ~ U mIm cos (2 wt +  cp) =  Um Im sin ^2 wt +  cp - )
stanowi funkcję sinusoidalną czasu z pulsacją, a więc i z częstotli­
wością dwa razy większą od tej, jaką mają napięcie i natężenie prądu. 
Okres tej funkcji jest dwa razy mniejszy od okresu napięcia lub 
natężenia prądu, czyli wynosi T/2. Znak wartości chwilowej mocy 
może być na ogół dodatni lub ujemny, co oznacza, że w pierwszym 
przypadku moc jest pobierana, w drugim zaś oddawana przez roz­
patrywaną część obwodu. W szczególnym przypadku, gdy cos cp =  1, 
(p =  0, tzn. gdy prąd jest w fazie z napięciem, wartość chwilowa mocy 
stale jest dodatnia, czyli stale jest pobierana.

W praktyce chodzi nam zwykle o wartość średnią mocy, obliczoną
Tdla całego okresu przebiegu mocy, czyli dla czasu —; tę średnią

moc nazywamy mocą czynną, pospolicie często się mówi wprost 
moc prądu zmiennego, rozumiejąc pod tym moc czynną.

Oznaczając moc czynną przez P, napiszemy na podstawie po­
wyższego określenia następujący wzór
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podstawiając wartość p ze wzoru (20), otrzymamy

1 2 < i I ,
p  = 2 Um 74 J[ cos y — cos (2 cot +  cp) dl =

1 „ r 2
0

1 T 1 f  . , „  , ~\
~2Um

l  -x m rji j-^-cosy — 2 ~ Sin (coT +  y) — sm y)

a ponieważ to T — 2 n,

P = Y UmImC GS<P'

wprowadzając wartości skuteczne napięcia i prądu, czyli zakładając 
u m = u  V 2~, / „  =  i V 2 ; otrzymamy ostatecznie

P ~ U I  cos y # (21)

Cos y nazywamy współczynnikiem mocy prądu zmiennego. 
Gdy cp = 0, cos cp = 1, czyli gdy prąd jest w fazie z napięciem, 

moc czynna prądu zmiennego jest taka, jak gdybyśmy mieli prąd 
stały o napięciu U i natężeniu I. Gdy natężenie prądu jest prze-

7Zsunięte w fazie względem napięcia o kąt prosty, czyli cp — — , spół-

czynnik mocy staje się równym zeru i moc czynna będzie równa 
zeru.

Iloczyn napięcia przez natężenie prądu zmiennego nazywamy 
mocą pozorną; oznaczając ją przez Pz, mamy

P z =  U l. (22)

Współczynnik mocy cos cp możemy określić jako stosunek mocy 
czynnej do mocy pozornej

Oprócz tego wprowadzamy pojęcie mocy biernej określają 
ją jako pierwiastek kwadratowy z różnicy kwadratów mocy pozornej 
i mocy czynnej. Oznaczając moc bierną przez Px napiszemy:

P * = j / i V - JP2= P * l /  (24)

Uwzględniając (23) będziemy mieli:

Px = Pz ~\ 1 — cos2 Cp =  P z sin cp= U I siny. (25)
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Dla odróżnienia rozpatrywanych mocy przyjęto wyrażać moc 
czynną w watach, moc pozorną w wolloamperach, zaś moc 
bierną w warach (voll-amper-reactif), oznaczając odpowiednie jed­
nostki przez W , VA i VAr. Tak np., gdy w części obwodu działa 
napięcie prądu zmiennego o wartości skutecznej 220 woltów i płynie 
prąd o natężeniu 10 amperów, zaś współczynnik mocy cos <p =  0,8 
(sin q> = 0,6), będziemy mieli:

moc czynną P  = 220.10.0,8 = 1760 W,
moc pozorną Pz =  220.10 = 2200 VA,
moc bierną Px =  220.10.0,6 = 1320 VAr.

§ 6
DODAWANIE FUNKCJI SINUSOIDALNYCH

Przy badaniu prądów zmiennych często będziemy się powoływali 
na następujące twierdzenie: jeżeli mamy szereg funkcji sinuso­
idalnych czasu o jednakowej częstotliwości, np.

yt =  A x sin (wt + ot*), 
y2 = A 2 sin (wt +  a2),

yn = A„ sin (wt + a j,
wtedy algebraiczna suma tych funkcji będzie również funkcją sinu­
soidalną o tej samej częstotliwości; więc

y1 + y2 +  ... + y „  = A sin (wt +  a).
Aby tego dowieść, przepisujemy dane funkcje w sposób nastę­

pujący:

A x cos ax sin wt + Ax sin ax cos wt + 
+ A 2 cos a2 sin wt + A 2 sin a2 cos wt + = A cos a sin w t + A sin a cos w t

+A n cos an sin wt +  An sin an cos wt

Wyrażenia te muszą stanowić tożsamość, wobec czego współczyn­
niki przy sin « f i przy cos w t z lewej i z prawej strony muszą być 
sobie równe.

Mamy więc:
A 1 cos ax + A 2 cos a2 + ... + An cos an =  A  cos a \
Ai sin ax + A 2 sin a2 +  ... + A„ sin an =  A sin a j'
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Podnosząc oba równania do kwadratu i dodając, otrzymamy 

A =  V (^i cos ai + ■•■ +  A n cos a,,)2 +  [A-l sin ax + ... + A„ sina„)2, (26)
dzieląc zaś drugie równanie przez pierwsze, będziemy mieli: 

A x sin a, +  A 2 sin a, +  ... + A n sin a„
CL =  —r --------------------- . ---------- - -------------------- j ---------------- .A xcos ax + A 2 cos a2 +  ... +  A„ cos a„ (27)

W ten sposób zagadnienie nasze zostało rozwiązane.
W szczególności, gdy mamy dwie funkcje sinusoidalne przesu­

nięte o kąt prosty, czyli
yx = A x sin coł,

y2 = A 2 sin (co t + = A 2 cos coł,

wówczas suma tych funkcji może być przedstawiona w postaci

to znaczy
yx +  y2 = A  sin (coł +  a),

A x sin wt + A 2 cos coł =  A sin (coł + a). (28)

W myśl rozumowań powyższych winno być

•• A cos a =  A x, 
A sin a = A 2,

skąd wyznaczamy
A = . V A X2 + A 2*, (29)

i otg a -  T i (30)

Co do znaków A^ i A 2, to mogą one być jednakowe lub różne; 
w pierwszym przypadku kąt a jest dodatni, czyli wypadkowa sinu­
soida wyprzedza sinusoidę normalną o kąt a; jeżeli zaś znaki Ax i A 2 
są różne, wówczas a ma wartość ujemną, co wskazuje, że sinusoida 
wypadkowa opóźnia się o kąt a względem sinusoidy normalnej.
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OBWODY PRĄDU ZMIENNEGO ZE SKUPIONYMI 
OPORNOŚCIAMI

§ 7
OBWÓD Z OPORNOŚCIĄ RZECZYW ISTĄ

Każde ciało posiada własność przeciwstawiania się przepływowi 
elektryczności w większym łub mniejszym stopniu, przy czym w ciele 
zachodzi przemiana energii elektrycznej w ciepło. Własność tę na­
zywamy oporem elektrycznym. Wielkość fizyczną charakteryzującą 
tę własność będziemy nazywali opornością; jest ona zależna od 
oporności właściwej rozpatrywanego ciała oraz od jego kształtu 
i rozmiarów.

Przy prądzie stałym oporność stanowi iloraz różnicy potencja­
łów pomiędzy końcami przewodnika przez natężenie prądu, gdy w tym 
przewodniku nie występuje siła elektromotoryczna; wynika to bez­
pośrednio z prawa Ohma.

Moc P  prądu I, wydzielana w postaci ciepła w części obwodu 
z opornością R, wyraża się wzorem

P  = P R ;

wobec tego oporność można określić jako iloraz mocy wydzielonej 
w postaci ciepła przez kwadrat natężenia prądu przepływającego 
przez rozpatrywaną część obwodu.

Przy prądzie zmiennym, w samym przewodniku, o czym później 
będzie mowa, zachodzi zjawisko naskórkowości, powodujące pozorne 
zwiększenie oporności. Wobec tego iloraz mocy wydzielonej w po­
staci ciepła w samym przewodniku przez kwadrat natężenia prądu 
jest na ogół większy przy prądzie zmiennym niż przy prądzie stałym.
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Nazwijmy tego rodzaju oporność przy prądzie zmiennym opornością 
rzeczywistą.

Poza tym przy prądzie zmiennym zachodzą jeszcze zjawiska 
w otoczeniu przewodnika (w izolacji, w masach żelaznych), o których 
również później będzie mowa, a które powodują wytwarzanie się 
ciepła w tym otoczeniu; w tych warunkach ogólna ilość wytworzo­
nego przez prąd ciepła jest większa niż ilość ciepła wytworzonego

______ ć w samym przewodniku. Nazwijmy iloraz mocy
wydzielonej w postaci ciepła z uwzględnieniem 
wszystkich zjawisk, przez kwadrat natężenia 
prądu, opornością czynną,

W przypadku, gdy w przewodniku zjawi- 
 ̂ sko naskórkowości wpływa bardzo mało na 

zwiększenie oporności, możemy oporność rze­
czywistą założyć równą oporności, jaką mieli­
byśmy przy prądzie stałym; wówczas oporność 
rzeczywistą nazywa się jeszcze opornością omową.

Rozpatrzmy część obwodu z opornością rze­
czywistą o stałej wartości R (rys. 8). Niech na-

u

Rys. 8

pięcie działające na tę oporność będzie

u =  Um sin ca t .

Wartość natężenia prądu w każdej chwili na zasadzie prawa 
Ohma będzie tt

m i— -  sin CO I,l = R R

a więc w danym przypadku prąd i ma również przebieg sinusoidalny 
i jest w fazie z napięciem. Jak widać z ostatniego wzoru,

U » j
R m’

czyli i = /  sin ca t ;m 1
wartość skuteczna natężenia prądu będzie

I  =  JŁ
1 R ’

taka sama, jak gdybyśmy mieli prąd stały.
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§ 8
OBWÓD Z OPORNOŚCIĄ RZECZYW ISTĄ I INDUKCYJNOŚCIĄ 

W  POŁĄCZENIU SZEREGOWYM

Prąd płynący w obwodzie powoduje powstanie pola magnetycz­
nego, a więc i strumienia magnetycznego. Strumień ten zależy od 
natężenia prądu płynącego w obwodzie i zmienia się jednocześnie 
ze zmianą prądu.

Gdy strumień magnetyczny objęty przez obwód podlega zmia­
nom, powstaje w obwodzie S E M  indukcji, którą możemy określić 
z ogólnego wzoru

n r '

gdzie e. oznacza wartość S E M  w chwili t, <Pt — wartość strumienia 
magnetycznego w tejże chwili; gdy obwód zawiera wiele zwojów, 
tworząc cewkę o z zwojach, należy we wzorze powyższym pomnożyć 
strumień magnetyczny przez liczbę zwojów.

Stosunek strumienia magnetycznego 0 , objętego przez obwód, 
do natężenia prądu i, płynącego w obwodzie i wytwarzającego ten 
strumień, stanowi indukcyjność własną danego obwodu. W ten 
sposób indukcyjność własna L określona jest wzorem

0

skąd

L =

0  = Li.

Wartość indukcyjności zależy od kształtu i rozmiarów geome­
trycznych obwodu; dla próżni oraz praktycznie dla środowiska 
magnetycznie obojętnego ma ona wartość stałą, w przypadku zaś, 
gdy środowisko ma zmienną przenikalność magnetyczną, indukcyj­
ność będzie funkcją prądu i.

Podstawiając wartość 0  do wzoru na S E M  indukcji, otrzymamy

_  d  ( L t ~) •e,- =  — dt

w przypadku szczególnym, gdy mamy środowisko o stałej przeni- 
kalności magnetycznej, a więc praktycznie i dla powietrza,

di
e,- = dt'

Rozpatrzmy obwód, w którym oprócz S E M  o wartości chwi­
lowej e powstaje S E M  indukcji o wartości chwilowej e-. Oznaczając

Teoria prądów zmiennych 3
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przez R oporność tego obwodu, otrzymamy, według prawa Ohma,  
dla wartości chwilowej prądu i płynącego w obwodzie

i = e + e{ 
R

lub na podstawie poprzedniego wzoru

i =
t d i 

e ~ L dł
R

skąd
e =  R i +  L di

di

Iloczyn Ri stanowi napięcie na oporności rzeczywistej. Drugi 
diwyraz L-jj stanowi wartość S E M  indukcji, wziętą ze znakiem prze­

ciwnym, można go więc traktować jako napięcie idące na przeciw­
działanie, czyli pokonanie S E M  indukcji; nazywamy ten wyraz 
napięciem indukcyjnym. Oznaczając to ostatnie napięcie przez u. 
i rozpatrując prąd o przebiegu sinusoidalnym

otrzymamy

u, = L di
U

i = I sin (O t ,m 1

(O L Im cos cot =  co L Im sin (W ł + i ) '

Z tego wzoru widać, że napięcie indukcyjne wyprzedza w fazie
n . .

natężenie prądu o kąt — ; odwrotnie, możemy powiedzieć, że prąd
n

opóźnia się w fazie względem napięcia indukcyjnego o kąt-g"- Wartość 

skuteczna tego napięcia będzie

U; =  w L I.

Jak łatwo zauważyć, coL, stanowiące stosunek napięcia do 
natężenia prądu, ma wymiar oporności, a więc może być wyrażone 
w omach; wyraz ten nazywamy opornością indukcyjną.

Oporność indukcyjna coL =  2nfL  zależy, jak widzimy, od 
częstotliwości prądu zmiennego i jest proporcjonalna do częstotliwości.

Rozpatrzmy teraz obwód zawierający oprócz oporności rze­
czywistej jeszcze indukcyjność, np. w postaci cewki w szeregowym 
połączeniu.
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Schemat takiego obwodu mamy na rys. 9. Działa napięcie
u =  £/ sin co t .m

W każdej chwili powinno być

czyli

Bi +  L

di

di
dl

Ri + =  Um sin wł. ( 1 )

Jest to równanie różniczkowe liniowe o współczynnikach stałych.
Rozwiązujemy najpierw równa- 

*  _  me uproszczone:

H U i n » !
rozdzielamy zmienne

di R ,,
1  T dl'

Rys. 9 po scałkowaniu, oznaczając przez A
stałą dowolną, którą możemy napi­

sać również w postaci In A, otrzymamy

Ini R l + In A lub In - Ł t
L ’

skąd R
~ L ‘i =  A e L . (2)

Aby otrzymać całkę ogólną rozpatrywanego równania (1), 
musimy do znalezionej wartości i dodać całkę szczególną równania. 
Szukamy jej w postaci ogólnej i =  M  sin wt + N  cos a>ł lub, za­
stępując sumę tych dwóch funkcji jedną funkcją na podstawie
wzoru (28) z § 6, n • , , , . /ox' 1 ° i = P  sin [ml +  a), (3)

gdzie P  i a są stałe do znalezienia. Wtedy

= Pcocos (cot +  a), dt
Po podstawieniu tych wartości do równania (1) otrzymujemy 

PR  sin (wt + a) + PwL cos (wt + a) ~ Um sin wt.
Rozkładając sin (wt +  a) i cos (wt + a), otrzymujemy po zgru­

powaniu i przyrównaniu współczynników przy sin wt i cos wt
s*
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z lewej i z prawej strony
PR  cos a — PcdL sin a = £/ ,m 7
PR  sin a + Po) L cos a =  0.

Podnosząc oba równania do kwadratu i dodając otrzymujemy

P  =  — ...Um--------,
V R* + (wL)*

z drugiego równania mamy zaś
, o j  L
tg a -------- j ,  "

Wyraz zawsze jest większy od 0, tg a jest mniejszy od 0, 
Ft

wobec tego a < 0. Załóżmy cp =  — a, tak iż (p >  0
ojL

t g v - R-

Podstawiając wartość P  do równania (3) oraz zamieniając 
a na — q> otrzymujemy

i = sin Icot — cp),V« 2 + (a>L)2
zaś całka ogólna równania naszego będzie miała postać

Um
Vi?a + (wL)2 

Zbadajmy wyraz

sin (cot — cp) + Ac L . ( 4)

_  R
Ae  ł *. /

W miarę wzrastania czasu funkcja ta maleje dążąc do 0. 

Teoretycznie staje się ona równą 0 przy -A-t— oo; może to być:
1Li

1) przy R =  oo (przerwa w obwodzie), lecz wtedy znika prąd i,
2) przy L =  0 — przypadek ten już rozpatrywaliśmy w § 7, wreszcie
3) przy t =  oo. W rzeczywistości, po upływie bardzo krótkiego czasu

_  R
wyraz A e L otrzymuje zwykle wartość bardzo małą, czyli prak­
tycznie równą zeru. Mamy wtedy tak zwany stan ustalony prądu. 
Obecnie będziemy rozpatrywali wyłącznie stany ustalone. W tym 
przypadku wzór (4) upraszcza się, mianowicie

i =  ------ sin (wt — <p). (5)Vi?2 + (wL)2



OBWÓD Z fi i Z. W  POŁĄCZENIU SZEREGOWYM 37

Porównywając ten wzór ze wzorem na napięcie i mając na 
względzie, że <p > 0, widzimy, że natężenie prądu jest opóźnione 
w fazie względem napięcia, przy czym

t g ? = ^ -  (6)

Wartość maksymalna tego natężenia prądu wynosi
r _ um

\R2 + (coL)2 

Wobec tego wartość skuteczna będzie

/ = U ( 7)\R* + (wL)2
Przy prądzie stałym mielibyśmy według prawa Ohma

j = u_
1 R ’

gdyż nie występowałoby zjawisko indukcji własnej.
Chcąc zastosować prawo Ohma do prądu zmiennego, musimy 

zamiast oporności R wprowadzić wyraz
V i?2 +  (<x>L)2 >  R.

Wyraz ten nazywamy opornością pozorną i oznaczamy 

PFZeZ Z ’ Z =  Vi?2 +  (WL)2.
W ten sposób możemy napisać

I - ! Ł .
Z

Oporność pozorną mierzymy w omach.
Ze wzoru . , . , ,

1 = Im Sm (<0t~<p)

(8)

( 9)

mamy i = Im cos <p sin w t — Im sin y cos co t .

Ponieważ
cos cot =  sin ( i - » ' ) -

—  COS (O t =  -  sin 0^- — cotj — sin f̂t> t — ^  

możemy napisać
i = Im cos (p sin wt + Im sin <p sin
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otrzymaliśmy wartość chwilową prądu w postaci dwu funkcji sinu­
soidalnych. Załóżmy T .Im cos <p sm co t =  ix,

Im sin <p sin

czyli i — ą "f

następnie, oznaczając
/ mcosę>=/lm, / msin<p = / 2m,

otrzymamy . T . .
ii =  h m sm al,

¿2 — ¡“ ( » i - i ) .

Pierwszy z tych prądów jest w fazie z napięciem, drugi zaś
jr

opóźniony względem napięcia o kąt — •

Wartość skuteczna prądu pierwszego wynosi
h  = I  cos <p,

zaś prądu drugiego T T .r ° ° I2 = I  sin (p.

Moc czynna rozpatrywanego prądu zmiennego równa jest 
P = U I cos <p.

Tę właśnie moc daje prąd pierwszy, gdyż jest on w fazie z na­
pięciem i moc jego równa się

U Ii = U l  cos

Moc prądu drugiego, wobec przesunięcia jego fazy wzlędem 
n

fazy napięcia o kąt ~7p  będzie

U I2 cos 0.2 2
Z tego powodu nazywamy pierwszy prąd o wartości skutecznej 

/  cos 9> prądem czynnym, prąd zaś drugi o wartości skutecznej 
I sin cp prądem biernym. Dawniej były w użyciu jeszcze terminy: 
prąd watowy i prąd bezwatowy.
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§ 9
OBWÓD Z f i i C W  POŁĄCZENIU SZEREGOWYM

Każdy przewodnik posiada pewną pojemność elektryczną, 
określoną stosunkiem ładunku elektrycznego, znajdującego się na 
przewodniku, do potencjału tego przewodnika. Oznaczając pojem­
ność przez C, ładunek przez Q i potencjał przez V, mamy

C — Q- 
L ~  V '

Większe skupienie ładunków elektrycznych otrzymujemy w kon­
densatorach elektrycznych, których pojemność określamy jako sto­
sunek ładunku do napięcia istniejącego między okładzinami konden­
satora, czyli

C — -3Ł-
”  Ue*

gdzie przez Uc oznaczyliśmy to napięcie.
Gdy kondensator w pewnej chwili t włączymy do napięcia 

prądu zmiennego
u =  Um sin co t ,m 7

otrzyma on w ciągu nieskończenie małego czasu dt ładunek

d (j =  i dl,

gdzie i oznacza wartość natężenia prądu w rozpatrywanej chwili, 
idącego na ładowanie kondensatora; ten ładunek dq spowoduje 
powstanie napięcia duc pomiędzy okładzinami kondensatora, przy
czym

^ dq idt 
duc duc

skąd
duc i 
dt ~ C

lub
^ duc 

l ~ L dt -

( 10)

Napięcie na kondensatorze, spowodowane napięciem z zewnątrz 
przyłożonym, ma przebieg również sinusoidalny, czyli

uc = Ucm sin “ i.
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wobec czego
i =  Cco Ucm cos wł =  to C Ucm sin |'a> l + .

Z wzoru tego widać, że prąd ładujący kondensator wyprzedza
71napięcie na kondensatorze w fazie o kąt — • Wartość skuteczna tego

/  =  (oCUc,prądu wynosi

skąd
U ę__J _
I oiC

Ostatni wyraz, jako stosunek napięcia do natężenia prądu- 
ma wymiar oporności, nazywamy go opornością pojemnościową,

1 1Oporność pojemnościowa jest odwrotnie propor-

r -aruuuir

wC 2jifC
cjonalna do częstotliwości prądu zmiennego, a więc maleje przy 
wzroście częstotliwości.

Rozpatrzmy teraz obwód zawierający oporność rzeczywistą i po­
jemność w postaci kondensatora w szeregowym połączeniu.

Schemat takiego obwodu mamy na rys. 10, gdzie C oznacza 
pojemność włączonego kondensatora.

p  Przy prądzie stałym prąd pły­
nąłby w obwodzie tylko do chwili, 
gdy kondensator zostanie naładowa­
ny, co zwykle następuje bardzo 
prędko po zamknięciu obwodu.

Przy prądzie zmiennym kon­
densator podlega ciągłym ładowa­
niom i wyładowaniom, powstaje 
prąd przesunięcia, wobec czego prąd 
stale będzie płynął w takim obwo­

dzie. W każdej chwili napięcie przyłożone z zewnątrz równać się 
musi sumie napięć powstałych w rozpatrywanym obwodzie. Napięć 
tych mamy w danym przypadku dwa: jedno na oporności B równe 
Bi, napięcie zaś drugie — na kondensatorze, zmienne w czasie; ozna­
czamy to napięcie przez uc.

Wtedy

i
Rys. 10

B i + uc = u. ( U )

Biorąc w równaniu (11) pochodne względem czasu i uwzględ­
niając wzór (10), otrzymujemy
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ponieważ

otrzymamy

r> di duc du
*  ~dt + ~dT ~ ! t  ’

u = U„  sin m t,m *

r. di i TT .R ~ri—1— ~ u m (O COS (O 1. at L ( 12)

Stosując przy całkowaniu tego równania tę samą metodę co 
w § 8, znajdujemy najpierw całkę ogólną równania uproszczonego 
w postaci

i =  Ae~~RĆ1’
gdzie A jest stałą dowolną.

Całki szczególnej szukamy w postaci 
i =  P  sin (wt +  a),

gdzie P  i a są stałe, które należy znaleźć.
Różniczkując ostatnią funkcję, będziemy mieli

di
dl —  P o j  cos (et)i +  a);

po podstawieniu tych wartości do (12) będziemy mieli
p

ojR P  cos [ml +  a) +  -y? sin [wt + a) =  Um w cos ml.(-4

Rozkładając cos [ml +  a) i sin [ml +  a) i przyrównując następnie 
współczynniki przy coseofi sin w t z lewej i z prawej strony, otrzy­
mujemy dwa następujące równania:

P
w RP  cos a + sin a =  Umw,

P
— m RP sin a +  cos a = 0.

Podnosząc oba równania do kwadratu i dodając, otrzymujemy

R 2 P 2 +

P =

P 2

[wC)*

u,
= u  2u m >

\l + ( »V)' ’

stąd
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następnie z drugiego równania

tg a =
1

a> C
~ R ~ ‘

Zamieniając a na <p, gdzie <p >  0, otrzymamy dla całki ogólnej 
równania (12)

i =  A e  i C N ----- , ....m . . ■ sin (cot + w).

V" + Ur)*
1

Funkcja A e RC maleje ze wzrostem czasu i zwykle po upływie 
bardzo krótkiego czasu staje się praktycznie równą zeru. Dla stanu 
ustalonego natężenie prądu ma wartość

i = Um

\IR°+ i-
Y=f= sin (co i + cp), (13)

przy czym

tz v  =  - i r *  (14)
Widzimy, że natężenie prądu wyprzedza napięcie w fazie.
Ze wzoru (13) wynika, że

Im = Um

więc wartość skuteczna natężenia prądu wynosi
UI = (15)

Mianownik ̂ R 2 +  î  stanowi oporność pozorną rozpatrywa­
nego obwodu.

Ze wzoru (13) mamy
i - Im sin (cot +  cp),

skąd otrzymujemy
i =  Im cos cp sin cot + Im sin cp cos COl =

= Im cos cp sin cot + Im sin <p sin
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W ten sposób prąd i rozłożyliśmy na dwa prądy sinusoidalne 
o amplitudach Im cos (p oraz Im sin cp. Pierwszy, o wartości sku­
tecznej I  cos <p, jest w fazie z napięciem, a więc jest to prąd czynny;

71
drugi jest przyspieszony względem napięcia w fazie o k ą t —-, jest 

to więc prąd, który czynnej mocy nie daje, czyli prąd bierny.

§ 10
OBWÓD Z OPORNOŚCIĄ RZECZYWISTĄ, INDUKCYJNOŚCIĄ 

I POJEMNOŚCIĄ W  POŁĄCZENIU SZEREGOWYM

Na rys. 11 podany jest schemat obwodu zawierającego w sze­
regowym połączeniu oporność rzeczywistą B, indukcyjność L oraz 
pojemność C. Oznaczając przez u napięcie przyłożone z zewnątrz 
do rozpatrywanej części obwodu, przez uc zaś napięcie na pojem­
ności C powstające przy prądzie i, będziemy mieli w każdej chwili

B i + L ^  + uc = u  = Um sin co t. at
(16)

Biorąc pochodną względem t i zamieniając na podstawie 

wzoru (10) na -gr, otrzymamy

T d2 i _ di i TT , L -jp  +  B - j j  +  =  coUm cos wj. (17)

Całka ogólna tego równania stanowi sumę całki ogólnej równania
uproszczonego

o

oraz całki szczególnej rozpatrywa­
nego równania (17). Pierwsza całka 
zawiera funkcje wykładnicze zmie­
nnej niezależnej t z ujemnym wy­
kładnikiem potęgi, a więc funkcje 
malejące z biegiem czasu. Rozpa­
trując stan ustalony prądu, który
następuje zwykle po upływie bardzo krótkiego czasu, odrzucimy te 
funkcje, czyli całkę ogólną równania uproszczonego. Pozostaje więc 
do znalezienia całka szczególna danego równania; szukamy jej, jak

Rys. 11
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i w poprzednich przypadkach, w postaci

i =  P  sin (mt + a),

gdzie P  i a są stałe do znalezienia.
Wtedy di

(18)

dl
d2i

— co P  cos (m t + a),

=  —  o j 2 P  sin (cot + a).

Podstawiając te wartości do równania (17), będziemy mieli
p

— co2 L P  sin (ml +a) +  m R P  cos (cot +  a) +  sin (ml -f a) =
= wUm cos mt.

Dzieląc obie strony przez m i grupując odpowiednie wyrazy, 
otrzymamy

P ( — — wL \ sin (ml +  a) + PR  cos (m l +  a) =  Umcos mt;
\wC )

1P  cos

skąd

a — mL^j sin ml + P  sin a — “>L  ̂cos m t 

P  sin a R sin mt +  P  cos a R cos mt = Umoos m

\l  i \
( - V — mL )l\mC /

u  V mL )
/
^ sin a +  R cos a J =  Um.

Podnosząc oba równania do kwadratu i dodając, znajdziemy

P 2

skąd
P  = U„

Z pierwszego z powyższych równań po skróceniu przez P  bez­
pośrednio otrzymujemy 2

tg a  = mC —  oj L

~R
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Załóżmy (p =  — a, wtedy
coL------~

t g ----------(19)

W ten sposób dla wartości chwilowej natężenia prądu w stanie 
ustalonym otrzymujemy

i = Um - ■■■ sin Iwt -  a), (20)

\/fil + h - i : ) ’
skąd wartość skuteczna I natężenia prądu będzie określona wzorem 

I -  r  u  = T = r -  (21)

Wyraz w mianowniku we wzorze (21) stanowi oporność 
pozorną obwodu, którą przyjęto oznaczać przez Z, więc

■ ( 2 2 )

Różnicę oporności indukcyjnej i pojemnościowej nazywamy 
opornością bierną i oznaczamy literą X. W skróceniu przyjęto ozna­
czać oporność indukcyjną przez X L oraz oporność pojemnościową 
przez X c ; w ten sposób

X  = w L -----^  (23)coL
lub

X  = X L- X C. (24)
Czasami spotykamy w literaturze polskiej jeszcze następujące 

terminy międzynarodowe odpowiadające terminom polskim:
impćdancja — oporność pozorna,
rezystancja — » rzeczywista,
reaktancja — » bierna,
induktancja lub reaktancja 
indukcyjna — ?> indukcyjna,
kapacitancja lub reaktancja 
pojemnościowa — JJ pojemnościowa.

1 ... . ,Rozpatrując oporność bierną: X  =  coL------widzimy, że gdyWij

coL >  tg cp >  0, cp >  0;co L
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ponieważ we wzorze (20) przed <p pozostanie wtedy znak —, będziemy 
mieli opóźnienie natężenia prądu względem napięcia; gdy

coL < w <  0, co C/
otrzymamy we wzorze na natężenie prądu przed <p znak +, czyli 
przyśpieszenie natężenia prądu względem napięcia.

Wreszcie, gdy

I = U_
R

ojL = - , 
coL

tg (p =  o , (p =  0.

W tym przypadku natężenie prądu jest w fazie z napięciem, 
a wartość skuteczna natężenia prądu będzie taka sama jak i przy 
prądzie stałym.

Ze wzorów (19) i (21) możemy wyprowadzić wszystkie już po­
przednio otrzymane wzory, dotyczące poszczególnych obwodów. 
Więc gdy obwód zawiera tylko oporność rzeczywistą, wtedy

L =  0, cuL =  0

C* =  OO, - ^ = 0 .
cu L

Podstawiając powyższe wartości L i C do wzoru (21) otrzymamy
U

oraz

I  = R ’
Jeżeli obwód zawiera tylko indukcyjność, wtedy 

R = 0,
1

CU CC = 0,

* UWAGA. Brak pojemności w obwodzie zamkniętym w szeregowym 
połączeniu odpowiada C =  oc; prąd nie napotyka przeszkód ze strony kon­
densatora, oporność pojemnościowa staje się równą zeru. Możemy to łatwo 
udowodnić matematycznie, rozpatrując np. kondensator płaski, dla którego

tS 
d ’C =

gdzie S —  pole powierzchni każdej okładziny, e —  przenikalność dielek­
tryczna, d —  odległość pomiędzy okładzinami. Jeżeli będziemy zbliżali okła­
dziny do siebie, wtedy d będzie malało, C będzie wzrastało i dla d = 0 ,  tj. 
wtedy gdy kondensator przestaje odgrywać swoją rolę, stając się wprost 
przewodnikiem, C równa się oc.



OBWÓD Z R, L  i C W POŁĄCZENIU SZEREGOWYM 47

wzór powyższy daje

wreszcie, gdy obwód zawiera tylko pojemność,
R =  0,

otrzymujemy
L = 0, toL =  0, 

/  =  i/coC.
Co się tyczy kąta przesunięcia fazy ę>, to ze wzoru (19) otrzy-

Ponieważ kąt <p wzięty jest we wzorze (20) ze znakiem ujem­
nym, więc w pierwszym przypadku prąd jest w fazie z napięciem, 
w drugim — prąd jest opóźniony o kąt 90°, w trzecim przypadku 
zaś przyśpieszony o kąt 90° względem napięcia.

Na odwrót, jeżeli określamy napięcie mając wartość natężenia 
prądu oraz odpowiednie oporności, będziemy mieli dla wyżej roz­
patrzonych przypadków: napięcie na oporności rzeczywistej

jest ono w fazie z natężeniem prądu; napięcie indukcyjne

jest ono przyśpieszone w fazie o kąt 90° względem natężenia prądu; 
napięcie na kondensatorze

jest ono opóźnione w fazie o kąt 90° względem natężenia prądu.
Jak widzimy, dla otrzymania napięcia musimy natężenie prądu 

pomnożyć przez odpowiednią oporność bądź czynną, bądź bierną.

mujemy

U r  =  IR ; (25)

U l  =  I(oL; (26)
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§ 11
REZONANS NAPIĘĆ

Rozpatrując obwód z opornością rzeczywistą R, indukcyjnością L 
i pojemnością C, połączonych w szereg, wyprowadziliśmy wzory 
(21) i (19), które nam dają wartość skuteczną natężenia prądu oraz 
kąt przesunięcia fazy natężenia prądu względem napięcia. Z wzorów 
tych widzimy, że w przypadku szczególnym, gdy oporność indukcyjna 
ma taką samą wartość co i oporność pojemnościowa, czyli gdy

r 1fflt =  r  ’ a> C (28)

otrzymujemy w obwodzie prąd
x UI —

R ’ (29)

przy czym (p — 0.
W tym przypadku, jak to można zauważyć ze wzorów (26) i (27),

UL =  Uc,
czyli napięcie indukcyjne staje się równe napięciu na kondensatorze. 
Zjawisko takie nazywamy rezonansem napięć.

Każde z tych napięć może w znacznym stopniu przekroczyć 
z zewnątrz przyłożone napięcie U.

Rzeczywiście, według tychże wzorów, z uwzględnieniem (29), 
otrzymamy

1

UL = Uc -  Ia>L =  U ~ = *

w przypadku więc rezonansu napięć napięcie indukcyjne oraz równe 
mu napięcie na kondensatorze będzie tyle razy większe od napięcia 
z zewnątrz przyłożonego, ile razy oporność indukcyjna lub oporność 
pojemnościowa większa jest od oporności czynnej.

Warunek, przy którym powstaje rezonans napięć ujęty we 
wzorze (28), możemy wyrazić jeszcze w sposób następujący:

1
}/LC'

(O (30)
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2 nPonieważ co = 2 nf = - j r , więc przy rezonansie napięć
1

/ = 2 7i y  LC ’

49

(31)

T =  2 n ^ L C . (32)
Przykład.  Obwód zawierający cewkę o oporności jR = 20 omów 

oraz indukcyjności L =  0,7 henra jest przyłączony do sieci prądu 
zmiennego o napięciu U =  120 woltów oraz częstotliwości / = 50 
herców.

Wówczas co = 2 n f =  314, 
co L =  314 • 0,7 ^  220 omów.

Podstawiając wartości te do wzoru (7) otrzymujemy 
120 120I = ~  "220 ~  amPera-Y400 +  48400

Jeżeli w obwód ten włączymy jeszcze w szereg kondensator 
o pojemności C, czyniącej zadcść warunkowi rezonansu napięć, czyli

1
Oj C

coL,

będziemy mieli 

skąd
C =

— = coL = 220 omów,coc

14 mikrofaradów.314 • 220

Po podstawieniu tych wartości do wzoru (29) otrzymujemy
r 120 A /  = — = b amperow.

Napięcie na kondensatorze lub na cewce będzie w tym przy­
padku Uc = UL = 6 • 220 =  1320 woltów.

§ 12
ZALEŻNOŚĆ OPORNOŚCI POZORNEJ OD CZĘSTOTLIWOŚCI]

W poprzednich paragrafach wprowadziliśmy określenia nowych 
pojęć, dotyczących różnego rodzaju oporności. Mamy więc oprócz 
oporności rzeczywistej, względnie czynnej, oporność pozorną i opor­
ność bierną; ta ostatnia składa się na ogół z oporności indukcyjnej

Teoria prądów zmiennych 4
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i oporności pojemnościowej, stanowiąc ich różnicę. Rozpatrując 
poszczególne oporności widzimy, że z wyjątkiem oporności rzeczy­
wistej, którą zakładaliśmy w poprzednich rozważaniach jako wiel­
kość stałą, wszystkie inne oporności są zależne od częstotliwości 
prądu zmiennego; we wzory na te oporności wchodzi pulsacja co,

która, jak wiadomo, jest proporcjonalna do częstotliwości, gdyż
O) =  2 7tf.

W  urządzeniach prądu silnego dla siły i światła pobieranego 
z elektrowni — częstotliwość prądu zmiennego stanowi wielkość 
stałą, wobec czego i omawiane wyżej oporności nie podlegają zmia­
nom, natomiast w urządzeniach telekomunikacyjnych, a więc tele­
fonicznych lub radiowych, częstotliwość podlega znacznym waha-
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niom, o czym już wspominaliśmy w § 2 ; w tych urządzeniach opor­
ności bierne i pozorne zmieniają się bardzo znacznie w zależności od 
częstotliwości. Należy tu zaznaczyć, że przy wielkich częstotliwościach, 
czyli przy prądach szybkozmiennych. występują jeszcze inne zja­
wiska, które powodują zmianę wartości indukcyjności i pojemności,

a także wpływają na wartość oporności rzeczywistej i czynnej 
O tych zjawiskach będzie mowa później; na razie ograniczamy się 
do rozpatrzenia takich urządzeń, w których B, L i C możemy założyć 
jako wielkości stałe, niezależne od częstotliwości.

Na rys. 12 podane są wykresy oporności indukcyjnej X L = toL,

oporności pojemnościowej X c = ^  oraz oporności pozornej Z =

= \] R2 + X 2 w zależności od częstotliwości; liczby są wzięte z przy­
kładu rozpatrzonego w § 11 .

Na rys. 13 podany jest wykres natężenia prądu w zależności 
od częstotliwości. Punkt M  na tych wykresach odpowiada zjawisku 
rezonansu napięć.
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METODY ROZWAŻANIA PRĄDÓW ZMIENNYCH

§ 13
METODA WYKREŚLNA

Przebieg każdej funkcji sinusoidalnej czasu możemy przed­
stawić na rysunku w postaci sinusoidy wykreślonej we właściwej 
skali w układzie spółrzędnych prostokątnych. Mając taki wykres, 
znajdujemy wartości chwilowe tej funkcji, odkładając na osi od­
ciętych wartość czasu i odmierzając odpowiednią rzędną. Te same

wartości chwilowe możemy 
otrzymać łatwiej, przeprowa­
dzając z początku osi spół­
rzędnych O (rys. 14), jako ze 
środka, koło o promieniu O A, 
równym wartości maksymal­
nej rozpatrywanej funkcji si­
nusoidalnej, np. napięcia Um. 
Wyobraźmy sobie, że pro­
mień O A od kierunku osi X  
obraca się w'płaszczyźnie X Y  
równomiernie naokoło punk­
tu O w kierunku odwrotnym 
do ruchu wskazówki zegara 
z prędkością kątową co. Po 
upływie czasu tx, t2... pro­
mień będzie w położeniach 

OAx, OA2... Łatwo zauważyć, że rzuty promienia w tych położeniach 
na oś Y :O B lt OB2... będą odpowiednio równe:

OBx =  OAx sin (otlt

Rys. 14

OB2 =  OA2 sin wt;. itd.
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Ponieważ OAx = OA2 = OA = Um, więc rzuty te wyrażać będą 
wartości chwilowe funkcji 
• u = U„  sin co t.

Innego rodzaju jest następujący wykres: kreślimy koło o pro­
mieniu równym amplitudzie (rys. 15) danej sinusoidy, np. O A  = Um, 
i przez środek tego koła pro­
wadzimy dwa koła o średni­
cach równych jego promienio­
wi. Prowadząc promień OAx 
pod danym kątem eo ,̂ otrzy­
mujemy punkt B1 przecięcia 
się OAi z kołem górnym.
Wielkość O B1 = O B sin co tx =
= Umsino)ł1. W ten sposób 
możemy znaleźć wartości chwi­
lowe funkcji U = Um sin cot 
dla dowolnej wartości t. Górne 
koło służy dla wartości cot za­
wartych w pierwszej połowie 
okresu, czyli od 0 do n, drugie 
koło dla wartości co/od n do 2n. R y s .  15

Mając dane funkcje si­
nusoidalne przesunięte względem siebie w fazie o kąt <p, np. 
napięcie u = Uw sin co t
i prąd i = Im sin (cof — 95),

musielibyśmy, stosując powyższe wykresy, przeprowadzić dla każ­
dej z tych funkcji koło o promieniu równym odpowiednio Um i Im. 
Ponieważ w chwili l =  0, gdy napięcie przechodzi przez wartość 0, 
prąd przechodzi przez fazę q>, więc na wykresie musimy promień 
prądu przesunąć względem promienia napięcia o odpowiedni kąt tp. 
Na rys. 16 mamy przypadek, gdy prąd opóźnia się względem na­
pięcia O A =  Um, O B =  lm.

Obracając oba promienie z tą samą prędkością kątową co 
w płaszczyźnie X  Y i rozpatrując rzuty tych promieni na oś Y, 
określimy odpowiednie wartości chwilowe napięcia i prądu, np. 
OC = Um sin c o OD = Im sin (cofx — 9?).

W praktyce elektrotechnicznej rzadko kiedy potrzebujemy 
rozpatrywać wartości chwilowe napięć i prądów, przeważnie mamy 
do czynienia z wartościami skutecznymi. W tym przypadku możemy
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się ograniczyć do przeprowadzenia na wykresie samych tylko pro­
mieni o długości odpowiadającej wartościom skutecznym rozpatry­
wanych wielkości, np. napięcia i prądu, z uwzględnieniem jednakże

kątów przesunięcia fazy,
1 Y więc zamiast rys. 16 bę­

dziemy mieli rys. 17, 
gdzie w odpowiednich 
skalach napięcia i natę­
żenia prądu 0 A = U, 
OB =  I.

W ten sam sposób 
moglibyśmy rozpatry­
wać jednocześnie dowol­
ną ilość wielkości sta­
nowiących sinusoidalne 
funkcje czasu o tej sa­
mej pulsacji, czyli o tej 
samej częstotliwości. 
Każdą taką wielkość 
oznaczylibyśmy na wy- 

Rys. 16 kresie odcinkiem prostej
przeprowadzonej z okre­

ślonego punktu jako początku; długość odcinka w przyjętej skali 
odpowiadałaby wartości, np. skutecznej, rozpatrywanej wielkości; 
kierunek odcinka byłby zależny od kąta przesunięcia fazy oma-

U
~1
<p

B

Rys. 17

wianej wielkości względem innej, dla której obieramy dowolny 
kierunek, najczęściej poziomy lub pionowy, jako podstawowy. 
W wykresie na rys. 17 za podstawowy kierunek wzięty jest kierunek 
napięcia; moglibyśmy również wziąć za podstawowy, kierunek na­
tężenia prądu, jak np. na rys. 18.

Jeżeli jeden z dwóch krańców odcinka obieramy jako jego począ­
tek, drugi zaś jako jego koniec, to otrzymamy twór, który w geometrii
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nazywają wektorem, a kierunek prowadzący od obranego początku do 
obranego końca — kierunkiem wektora. Takie odcinki na płaszczyźnie 
stanowią wektory płaszczyznowe w odróżnieniu od wektorów prze­
strzennych. W elektrotechnice znalazły szerokie zastosowanie wektory 
płaszczyznowe, które dla uproszczenia nazywane są wprost wektorami.

Z tego powodu przyjęto w elektrotechnice nazywać wektorami 
wielkości, które na wykresie przedstawiamy odcinkiem prostej okreś­
lonej długości i określonego kierunku; mówimy więc: wektor napięcia, 
wektor natężenia prądu itd., wykres zaś, na którym mamy takie wektory, 
nazywamy wykresem wektorowym.

Na wykresie wektorowym kąty dodatnie odkładamy w kierunku 
przeciwnym do ruchu wskazówki zegara; w tym leż kierunku wyobra­
żamy sobie ruch wektorów; jeżeli więc jakiś wektor jest przeprowa­
dzony na wykresie pod kątem dodatnim względem wektora podsta­
wowego, oznacza to, że ten pierwszy wektor wyprzedza wektor 
podstawowy w fazie, i odwrotnie, gdy jakiś wektor jest odłożony 
pod kątem ujemnym (w kierunku ruchu wskazówki zegara), wówczas 
wektor ten opóźnia się w fazie względem wektora podstawowego.

Na rys. 17 i 18 widać, że wektor OB = I  jest cofnięty wzglę­
dem wektora O A = U, czyli że natężenie prądu jest opóźnione 
w fazie względem napięcia. Nie jest jednakże rzeczą obojętną, od 
jakiego z dwóch wektorów odmierzać kąt przesunięcia fazy y, od 
tego bowiem zależy znak tego kąta. Jeżeli w rozpatrywanym przy­
padku (rys. 17 lub 18) będziemy odmierzali kąt y od wektora na­
pięcia, wówczas powiemy, że kąt jest ujemny; natomiast jeżeli 
tenże sam kąt będziemy odmierzali od 
wektora natężenia prądu, wówczas kąt y 
wypadnie dodatni.

Jeżeli mamy kilka prądów do roz­
patrzenia i bierzemy pod uwagę przesu­
nięcia fazowe tych prądów względem okre­
ślonego napięcia, wówczas wektor napię­
cia bierzemy jako wektor podstawowy, 
wektory zaś natężeń poszczególnych prą­
dów przeprowadzamy pod właściwymi 
kątami. Tak np. na rys. 19 widzimy, że 
prąd I0 jest w fazie z napięciem U, prąd Ix wyprzedza napięcie, 
wreszcie prąd /2 opóźnia się w fazie względem napięcia.

Wykresy wektorowe są bardzo dogodne i znacznie ułatwiają 
orientowanie się w zawiłych często zjawiskach zachodzących w obwo-
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dach prądów zmiennych. Za pomocą takich wykresów możemy 
również często znacznie prędzej uskuteczniać obliczenia, zwłaszcza 
gdy nie chodzi nam o większą ścisłość rachunków.

Pokażemy to na przykładach.
Rozpatrzmy wykresy znanych już nam obwodów. Jeżeli dany 

obwód posiada oporność rzeczywistą B i indukcyjność L, wówczas 
napięcie na oporności E U — IE

jest w fazie z prądem I ; napięcie zaś indukcyjne
UL= I coL

TT
jest przyśpieszone o kąt względem prądu. Zróbmy wykres wek­

torowy. Jako podstawowy wektor weźmiemy wektor prądu I  (rys. 20); 
na tym wektorze odmierzamy odcinek O A jako wektor IE . Od

Tlpunktu A odkładamy pod kątem dodatnim odcinek AB  jako

wektor Ia>L. Napięcie U z zewnątrz przyłożone jest sumą wektorów 
UR i UL, otrzymamy je dodając geometrycznie te wektory jako 
odcinek OB. Z trójkąta O AB  otrzymujemy

U2 =  I2E2 + I2 [coL)2, 
stąd „  U212 =
wreszcie

oraz

E2 +  (coL)2 
U

VR2 +  (wL)2
10L

t" “ T?

Widzimy, że w sposób znacznie prostszy doszliśmy do otrzy­
manych już inną drogą wyników. Trójkąt O A B  nazywamy trój­
kątem napięć. Dzieląc każdy bok tego trójkąta przez / ,  otrzy­
mamy tak zwany trójkąt oporności (rys. 21).
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Jeżeli obwód zawiera oporność rzeczywistą R i pojemność C, 
wtedy, postępując analogicznie, możemy również zbudować trójkąt 
napięć; odcinek AB  (rys. 22), oznaczający napięcie na kondensa­

torze I — -x) należy odłożyć na dół, ponieważ w danym przypadku co C
mamy napięcie opoźmone 
względem prądu o kąt pro­
sty. Wektor zamykający OB 
wyraża napięcie U, przyłożo­
ne z zewnątrz.

B

C,

IX
A s  CĄ

C,

W przypadku, gdy obwód zawiera oporność B, indukcyjność L 
i pojemność C, postępujemy tak: na linii O A odkładamy wektor równy 
napięciu na oporności rzeczywistej IR  (rys. 23). Następnie od 
punktu A odkładamy w górę wektor AB  = IcoL i od punktu B na

dół wektor BC wyobrażający napięcie I — na kondensatorze.

Tu, zależnie od wartości napięcia pojemnościowego, możemy otrzy­
mać punkty Clt C2 lub C3:

Ci

c2

w przypadku gdy < wL;

99 f t 99

1
w c =  coL;

C, co C > co L .

Biorąc np. przypadek pierwszy, gdy przewagę ma oporność 
indukcyjna nad opornością pojemnościową, łączymy punkt O z punk­
tem Cv Wektor OC1 = U wyobraża napięcie przyłożone z zewnątrz
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Odcinek A C1 =  IX , gdzie
X  =  coL-----^ .

stanowi oporność bierną.
Dzieląc bok trójkąta przez I  otrzymamy w odpowiedniej skali 

trójkąt oporności danego obwodu (rys. 24) z bokami R, X  i Z; z tego 
trójkąta otrzymujemy znane już wzory:

z = V fi2 + x 2, tg,> = A .

Z trójkąta O A Ct (rys. 23) otrzymujemy
U cos cp =  //? ,
U sin = /X .

Każde zatem napięcie w ob­
wodzie prądu zmiennego można 
rozłożyć na 2 składowe. Przez ana­
logię do składowych prądu możemy 
nazwać napięcie U cos cp napięciem 
czynnym, napięcie zaś U sin cp na­
pięciem biernym.

Rozpatrując moc pozorną prą­
du zmiennego U l  jako wektor, 
możemy zbudować trójkąt mocy 
A B C  (rys.25), w którym A B =  UI 
będzie mocą pozorną, A C  =  U I 
cos cp stanowi moc czynną, zaś Rys. 26
BC  =  U l  sin cp moc bierną.

Jeżeli oprócz wielkości R i X  wiadome jest napięcie U i trzeba 
znaleźć prąd I, wówczas zadanie takie można rozwiązać wykreślnie 
w sposób następujący: na dowolnej linii prostej odkładamy odcinek
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O A  = U (rys. 26); na tym odcinku, jako na średnicy, przeprowa­
dzamy koło. Z punktu 0 odmierzamy względem odcinka O A kąt <p,

X
obliczony ze wzoru tg <p =  —  i przeprowadzamy pod tym kątem

R
prostą do przecięcia z kołem w punkcie B.

Wtedy OB =  IB, BA =  I X ;  mierząc więc odcinek OB w skali 
napięć i dzieląc przez B, otrzymamy I.

Odcinek OB został przeprowadzony pod kątem <f naprzód, 
czyli w przypuszczeniu, że X  <  O (przewaga pojemności); gdyby 
przeważała indukcyjność, otrzymalibyśmy trójkąt O AC.

§ 14
METODA SYMBOLICZNA

Położenie dowolnego punktu M  (rys. 27) na płaszczyźnie mo­
żemy określić w układzie współrzędnych za pomocą promienia wo­
dzącego OM =  r i kąta biegunowego a, odmierzonego od osi bie­
gunowej OX  z początkiem O.

Oznaczając współrzędne punktu M  w układzie prostokątnym 
osi X  i Y, czyli rzuty promienia wodzącego r na te osi przez a i b, 
będziemy mieli

a = r cos a, (1)
b = r sin a, (2)
r =  YaM-~P, (3)

t g a - Ą .  4)

Rozpatrując na płaszczyźnie odci­
nek prostej, któremu nadajemy pewien 
kierunek, np. OM, możemy go w zupeł­
ności określić w sposób dwojaki: albo 
podając długość tego odcinka r i kąt a 
pomiędzy tym odcinkiem i obraną osią, R ys. 27
przechodzącą przez jego początek, albo
za pomocą rzutów tego odcinka a i b na dwie prostopadłe do siebie osie, 
przechodzące przez jego początek. Odcinek OM stanowi geometryczną 
sumę rzutów a i b. Z matematyki wiadomo, że taką geometryczną 
sumę można przedstawić w postaci liczby zespolonej a + jb, gdzie
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/ = y  —  i, a jest rzutem na oś rzeczywistą, zaś b rzutem na oś urojoną. 
Moglibyśmy więc napisać OM =  a + jb, ale wtedy nie widzieli­
byśmy różnicy pomiędzy odcinkiem mającym określony kierunek 
a długością tego odcinka. Aby zaznaczyć, że w rozpatrywanym od­
cinku uwzględniamy nie tylko jego długość, lecz również i jego kie­
runek, będziemy dawali u góry daszek; więc pisać będziemy 
OM =  a + jb lub •=a + jb. ( 5)

Wprowadzając zamiast rzutów a i b ich wartości ze wzorów 
(1) i (2), możemy napisać

r =  r (cos a + / sin a); (6)

r nazywamy modułem, zaś a argumentem liczby zespolonej wyrażonej 
symbolem r.

Gdy argument a =  0, to znaczy, gdy rozpatrywany odcinek 
znajduje się na obranej osi, wówczas

r = r ,

czyli zamiast liczby zespolonej otrzymujemy dla naszego odcinka 
liczbę rzeczywistą.

Przy rozważaniu prądów zmiennych, jak to już widzieliśmy, 
mamy do czynienia z wielkościami, które na wykresie przedsta­
wiamy jako odcinki prostej z uwzględnieniem ich kierunków. Każdą 
więc taką wielkość możemy wyrazić symbolicznie jako liczbę zespo­
loną za pomocą modułu i argumentu lub też za pomocą rzutów na 
osie rzeczywistą i urojoną. Wprowadzenie takich symboli i dzia­
łania nad nimi nazwano metodą symboliczną.

Metoda ta znalazła szerokie zastosowanie w elektrotechnice 
prądów zmiennych, gdyż w znacznym stopniu upraszcza matema­
tyczne działania nad rozpatrywanymi wielkościami; daje ona moż­
ność przeprowadzania ścisłych obliczeń, często w bardzo zawiłych 
zagadnieniach.

Przy stosowaniu metody symbolicznej będziemy się spotykali 
z zagadnieniem obracania wektorów naprzód lub wstecz o kąt 
prosty; działanie takie sprowadza się do mnożenia lub dzielenia 
przez j. Rzeczywiście, niech OMx (rys. 28) oznacza wektor rx z rzu­
tami a i b, czyli „* fx =  a + ]b; (7)

gdy obrócimy ten wektor w kierunku dodatnim, o otrzy-
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mamy nowy wektor 0M 2 =  r2, przy czym
= — b + ja; (8)

71obracając następnie ten wektor naprzód o kąt -g-, otrzymamy 

wektor OM3 =  r3, przy czym
= . — a — j'b, (9)

. . 71wreszcie obracając ostatni wektor o kąt — , otrzymamy wektor

OM4 =  r4, dla którego r4 =  b — ja. ( 10)

Łatwo jest sprawdzić, że mnożąc wzór (7) przez /  otrzymamy 
wzór (8), mnożąc wzór (8) przez /  otrzymamy wzór (9), wreszcie 
mnożąc wzór (9) przez /

wektora przez /  daje w
rezultacie wektor obrócony naprzód o kąt prosty, natomiast po­
dzielenie przez / lub, co jest jedno i to samo, pomnożenie przez— /, 
daje nam wektor obrócony o kąt prosty wstecz.

Na zasadzie znanego wzoru Eulera

e±i* =  cos a ±  /  sin a,
gdzie e jest podstawą logarytmów 
przepisać w postaci - _

naturalnych, możemy wzór (6)
re,a.

( U )
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Argument a stanowi pewien kąt, który należy odłożyć od 
obranej osi podstawowej, by na wykresie otrzymać kierunek od­
cinka wyobrażającego symbol r. Kąty dodatnie odkładamy w kie­
runku przeciwnym do ruchu wskazówki zegara; mogą się one na 
ogół zmieniać w granicach od 0° do 360°, czyli od 0 do 2 te; jednakże 
w elektrotechnice prądów zmiennych dogodniej jest odmierzać kąty 
w dwóch kierunkach: jako dodatnie i jako ujemne; wówczas kąty 
te będą miały wartości w granicach od — 180° do +180°, każdy 
kąt ponad +180° może być rozpatrywany jako kąt ujemny, stano­
wiący dopełnienie do 360°, jak również każdy kąt ujemny mniejszy 
od — 180° będzie stanowił kąt dodatni, stanowiący dopełnienie war­
tości bezwzględnej tego kąta do 360°.

Jak widzieliśmy (wzór 4), argument a w zależności od liczby

zespolonej określa się wzorem tg a =  — , jeżeli symbol f  =  a + jb;

ale znaki przy liczbach a i b mogą być zarówno dodatnie jak i ujemne, 
wobec tego i znak tg a może wypaść dwojaki. Rozpatrzmy możliwe

Gdybyśmy określali argumenty a2, a3, a4 tylko na podstawie 
wartości ich tangensów, mielibyśmy dwoistość, gdyż, jak łatwo 
zauważyć,

tgai = tga3 = — ; tg ct2 = tg ct4 = — — •

Dla określenia więc kąta a musimy wiedzieć, w jakiej ćwiartce 
powinien się on znajdować, a to możemy stwierdzić tylko na pod­
stawie znaków stojących przed a i przed b, przy czym, stosownie do 
umowy, kąty w pierwszej i drugiej ćwiartce ax i a2 będą dodatnie,
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zaś kąty w trzeciej i czwartej ćwiartce a3 i a4 będą ujemne i ich 
bezwzględne wartości nie przekraczają 180°.

Działania nad symbolami sprowadza się do działań nad licz­
bami zespolonymi; tak np. mając dwa symbole

fi =  ai +  jbi =  ii (cos ax + / sin ax) =  rx e3“1, 
r2 =  a2 + jb2 =  r2 (cos a2 + j sin a2) =  r2 eia' 

i dodając je, czyli określając ich sumę geometryczną r, otrzymamy 
r = + r2 = ax + a2 + j (6j +  62) = r (cos a + / sin a),

gdzie

f =  J  («i +  a2)2 + (¿i +  ¿2)2; t? a =  4 LZ V "

W celu otrzymania iloczynu symboli napiszemy
r2 = rxe;a> . r2eJa’ =  r1r2e-'(a> + 0>) =

= r1r2 [cos (ax +  a2) +  / sin (ax +  a2)],
skąd widać, że moduł iloczynu symboli równa się iloczynowi mo­
dułów, argument zaś równa się sumie argumentów mnożonych 
symboli.

Przy dzieleniu symboli będziemy mieli

=  - ? S ít  =  “ a,) =  T "  [ C0S âi “  a2) +  i sin (ai —  “ 2)] >2 2 2 1 I

czyli moduły się dzieli, argumenty się odejmuje.
Przy podnoszeniu do potęgi symbolu

r = r (cos a + / sin a) = reia
będziemy mieli

ř” = rne-'"“ =  rn (cos na +  j sin na),
moduł jest podniesiony do potęgi, argument zaś jest pomnożony 
przez wykładnik potęgi; przy wyciąganiu pierwiastka

\J ř = re ^cos ~^+ j sin

należy wyciągnąć pierwiastek z modułu, argument zaś podzielić 
przez wykładnik pierwiastka.

Łatwo też jest zauważyć, że mnożenie wektora przedstawionego 
liczbą zespoloną przez ei? powoduje obrót tego wektora o kąt cp. 
Np. gdy rozpatrujemy wektor r =  r (cos a + j sin a) = reJa i pomno­
żymy go przez e39, czyli przez cos cp +  /  sin cp, otrzymamy nowy



64 METODY ROZWAŻANIA PRĄDÓW ZMIENNYCH

wektor rv = reia eir =  = r [cos (a + <p) + j  sin (a + 9?)], którego
moduł jest ten sam, lecz argument jest zwiększony o kąt cp; inaczej 
mówiąc, nowy wektor jest obrócony względem poprzedniego o kąt cp.

Mnożenie wektora przez e)u>‘ przy zmianie czasu t daje obrót 
z prędkością kątową co.

Na tej podstawie możemy symbolicznie ująć również wartości 
chwilowe funkcji sinusoidalnej czasu; rozpatrzmy np. funkcję

y =  Ym sin ojt.

W § 13 widzieliśmy, że wartości chwilowe rozpatrywanej funkcji 
możemy otrzymać obracając z prędkością kątową co promień odpo­
wiadający największej wartości Ym tej funkcji i biorąc rzuty na 
oś OY. Gdybyśmy brali rzuty na oś OX, otrzymalibyśmy również 
wartości chwilowe w postaci

!J =  Y m cos

z tą tylko różnicą, że moment, od którego rozpoczynamy liczenie 
czasu (t =  0), w tym drugim przypadku odpowiadałby przejściu 
danej funkcji przez wartość największą, nie zaś przez wartość 0, 
jak to ma miejsce w pierwszym przypadku. Oczywiście wartości 
chwilowe można otrzymywać biorąc rzuty na dowolnie przeprowa­
dzoną oś; nazwijmy tę oś — osią czasu. Tak np., gdy oś czasu jest

przeprowadzona pod kątem a do 
osi OX (rys. 30) i obrót Ym roz­
poczniemy od tej osi czasu, wów­
czas wartości * chwilowe możemy 
otrzymać jako rzuty na tę oś w 
postaci Ym cos cot albo też jako 
rzuty na osi OX lub OY w po­
staci Y„ cos (cot +  a) lub Y„ sin 
[cot +  a). Często dogodniej jest brać 
za oś czasu jedną z osi współ­
rzędnych.

W założeniu, że wartości chwi­
lowe będziemy traktowali jako 

rzuty na określoną stałą oś promienia obracającego się z prędkością 
kątową co i odpowiadającego największej wartości rozpatrywanej 
funkcji sinusoidalnej czasu, możemy pisać symbolicznie równanie 
wirującego promienia

$ = Ym eiwt =  Ym (cos wt + j sin cot)
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lub ogólniej
y = Ym e; (“ t+a) = Ym [cos (cot +  a) + j sin (oot +  a)].

Czasami zachodzi potrzeba rozpatrywania pochodnej lub całki 
wektora względem czasu. W ogólnym przypadku będziemy mieli

= jco Ymei(“ ‘ + °'> =  jwy;

widzimy więc, że pochodna wektora względem czasu stanowi nowy 
wektor, którego moduł jest zwiększony co razy i który jest obró­
cony o kąt prosty naprzód względem poprzedniego.

Następnie

/
(* V  pj (.la t +  a)ydt  =  / Ymei^t+a)dł =  Jmg ------+ c,

gdzie C stała dowolna, czyli

J y d l - J ^  +  C-,

znaczy to, że pomijając stałą dowolną, która w zależności od wa­
runków granicznych może mieć taką lub inną wartość, otrzymujemy 
po scałkowaniu nowy wektor z modułem zmniejszonym co razy, 
obrócony o kąt prosty wstecz względem poprzedniego.

Rozpatrzymy teraz kilka przy­
kładów zastosowania metody symbo­
licznej do rozpatrzonych już poprzed­
nio obwodów prądu.

Jeżeli mamy oporność rzeczy­
wistą i indukcyjność (rys. 31), wów­
czas, biorąc wektor natężenia prądu 
jako podstawowy, będziemy mieli

V = IR + j IcoL =  I (R + jcoL),

przy dowolnej zaś osi podstawowej zamiast I musimy wprowadzić 1
O =  1{R  + jcoL);

IR  = U cos <p; IcoL =  U sin cp; O = U (cos ę> + j sin <p). 
Jeżeli zamiast trójkąta napięć weźmiemy trójkąt oporności 

(rys. 3?"), wówczas Ż = R + jcoL]

IcoL

R = Z cos cp] coL = Z sin cp\ 
Ż = Z (cos <P +  } sin cp).

Teoria prądów zmiennych 5
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Jeżeli w obwodzie mamy oprócz oporności rzeczywistej kon­
densator (rys. 33), wówczas

O - l R - j l - T U - l ( « 7 i ^ u ) '
1

IR  = U cos <p; I m q = U sin cp; L =  U (cos <p — j sin tp);

W przypadku zaś najogólniejszym, gdy obwód zawiera R, L i C 
w szeregowym połączeniu, będziemy mieli przy dowolnej osi pod- 
stawowej O -  1 (R +

gdzie ^ w 1
( 12)

X  = X L - X C = a>L to C

może mieć znak dodatni lub ujemny.
v

Ponieważ znak tg <p =  —  zależny jest wyłącznie od znaku X ,  

gdyż R zawsze jest >  0, przeto kąt <p może się zmieniać tylko w gra- 
mcach -  90° <  <p <  + 90°,

przy czym skrajne wartości <p otrzymujemy teoretycznie dla R = 0, 
praktycznie dla bardzo małych wartości oporności rzeczywistej. 

Następnie mamy
Z = R + jX , . (13)
R = Z cos <p, (14)
X  — Z sin tp, (15)
0  = Iż . (16)

Mocy prądu zmiennego w symbolicznym ujęciu na ogół nie 
otrzymamy przez pomnożenie wektorów napięcia i natężenia prądu.
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Jeżeli bowiem napięcie jest przesunięte w fazie względem dowolnie 
wybranego kierunku podstawowego o kąt a, prąd zaś względem 
napięcia o kąt <p, będziemy mieli:

V  =  Ueia, 1 =  +
V I  =  t / /e ;(2“ + ?) =  U l  cos (2 a +  ?>) + / [ / / s i n  (2 a + ?>).

Dla otrzymania właściwego wzoru mocy musimy wziąć albo 
jeden z dwu wektorów napięcia lub prądu za podstawowy, wtedy 
bowiem a = 0 lub a = — (p, albo też jeden z tych wektorów w postaci 
liczby zespolonej sprzężonej, czyli

Vs =  U e~Ja 
/  = Ie~J(a+r\

W pierwszym przypadku
VI — U I  cos ±  jU I  sin ę1, 

w drugim przypadku
0 ,1  =  i / / c o s  ę> + j U I  sin ę>,
V l s = U l  cos <p — jU I  sin 9?.

Część rzeczywista odpowiada mocy czynnej, część zaś urojona 
mocy biernej; ta ostatnia może mieć dwa znaki w zależności od 
znaku kąta <p. Z powyższych wzorów wynika, że moc pozorna równa 
się sumie geometrycznej mocy czynnej i mocy biernej.

Zamiast oporności dogodniej jest czasami posługiwać się prze­
wodnością. Jeżeli Z oznacza oporność pozorną, wówczas

nazywamy przewodnością pozorną.
Zobaczymy, jakie będą jej składowe. Stosując metodę symbo­

liczną otrzymujemy

ż , B  + ix. i
1 _  R — j X  R — j X  R . X

R + j X  R2 +  X 2 Z2 Z2 1 Z2’

?  =  (Z = \ R 2~ X ^ „

5*
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U 
IBiorąc pod uwagę, że Z 

żerny napisać:

a także wzory (14) i (15), mo-

B 1 B I  COS (p
Z2 z z U
X 1 X I  sin Cp
Z2 z z U

Z prawej strony ostatnich wzorów mamy ilorazy prądu przez 
napięcie, czyli pewne przewodności. Pierwsza z tych odpowiada prą­
dowi czynnemu, nazywamy ją przewodnością rzeczywistą lub 
czynną i oznaczamy literą G. Druga przewodność odpowiada 
prądowi biernemu i nazywać ją będziemy przewodnością bierną 
oznaczając literą B ; w terminologii międzynarodowej, rzadko spo­
tykanej w literaturze polskiej, przewodność rzeczywista nosi nazwę 
konduktancji, przewodność bierna —  susceptancji, zaś przewodność 
pozorna — admitancji. W ten sposób:

r  = -Ł
G Z2 ’

B = Z2 
=  G -

skąd
ÍB,

Y = V G 2 + B2, 
. B
t g * “ — G ‘

Znak B we wzorze symbolicznym na przewodność pozorną, 
jak widzimy, jest przeciwny do znaku X, jaki występuje w opor­
ności pozornej, więc gdy przeważa oporność indukcyjna X  >  0, 
B <  0; gdy przeważa oporność pojemnościowa X  <  0, B >  0.

Zestawienie rozpatrzonych wielkości i najważniejszych wzorów
Moc

czynna P = U I  cos <p 
bierna Px = U I  sin <p 
pozorna P z = UI

Napięcie U 
czynne U cos ep =  IB  
bierne U sin cp — I X

O = I ż

;  = er
z O Ý.

Prąd I
czynny I  cos <p — U G 
bierny I  sin q> =  U B
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Oporność

czynna (rzeczywista, omowa, rezistancja) R = U cos cp

bierna (reaktancja) X  = U sm cp

indukcyjna (reaktancja indukcyjna, induktancja) X L — coL
1pojemnościowa (reaktancja pojemnościowa, kapacitancja) X c =  —co

jr  =  ArL- * ,  '  1

pozorna (impedancja) Z — YR2 +  X 2 

Ż  =  R  +  j X ;

c — Cj Lc ooC

COS <p
R_m 
Z ’

, x

xsin cp

Przewodność

czynna (rzeczywista, konduktancja) G =  - ^  =   ̂ ^
Z U

bierna (susceptancja) R = X  I  sin cp 
~Z~2= U 

1pozorna (admitancja) Y =

Y = G — jR

. R Gtg cosgs =  —  ; Sin cp —
Cj  i

R
Y

§ 15
WYKRESY ZMIENNOŚCI WEKTORÓW

Przy rozpatrywaniu wzajemnych zależności wielkości charak­
terystycznych w obwodach prądu zmiennego, może zajść potrzeba 
sporządzenia wykresów, gdy jednej lub kilku z tych wielkości chcemy 
nadawać dowolne wartości zmienne. Jako przykład mogą służyć 
zmiany napięć lub prądów przy zmiennych R, L, C lub częstotli­
wości /. Na takich wykresach otrzymujemy więc zmienne wektory, 
których końce stanowią różne geometryczne miejsca w postaci albo 
linii prostej, albo linii krzywych. Wykres tego rodzaju można nazwać
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wykresem zmienności wektorów. Najczęściej w obwodach prądu 
zmiennego mamy do czynienia z wykresami w postaci linii prostej 
albo koła.

Poprzednio (rys. 26) podany był już przykład takiego wykresu, 
gdzie dla określonego napięcia przy dowolnych wartościach kąta 
przesunięcia fazy cp między napięciem i natężeniem prądu, czyli przy

Rys. 34

zmiennym tg cp =  poszukiwane

jest natężenie prądu I. Geometrycz­
ne miejsce końców wektora /, czyli 
wykres zmienności wektora /, sta­
nowi koło o średnicy U. 

Rozpatrzmy wzór (12)
€  =  1R + j l x

Niech I  i R mają stałe wartości, zaś X  = coL — jest zmienne.

Biorąc za podstawowy wektor — natężenie prądu (rys. 34), odkładamy 
na nim w odpowiedniej skali IR  = O A, następnie przeprowadzamy 
w punkcie A  prostopadłą BC do 
O I. Łącząc O z dowolnym punk- ^ 
tem prostej BC, otrzymamy wek­
tor napięcia U, przy czym dla 
X  >  0, gdy jest przewaga opor­
ności indukcyjnej nad opornością q  
pojemnościową, odkładamy dla od­
powiedniej wartości X = X Lwartość j  
I X L w górę, natomiast dla X <  0 
odkładamy dla wartości X  =  X c D 
wartość I X C w dół. Wykresem Rys. 35
zmienności wektora U jest w tym
przypadku prosta RC. Gdy R jest zmienne, X  stałe, bierzemy 
również za wektor podstawowy natężenie prądu I (rys. 35), odkła­
damy od punktu O stałą wartość IX ,  w razie przewagi oporności 
indukcyjnej I X L = O A w górę, zaś przy przewadze oporności po­
jemnościowej I X C= OR w dół, i przeprowadzamy z punktów A i R 
równoległe A A '  i BR' do osi O l.  Łatwo zauważyć, że obie te proste 
stanowią wykres zmienności wektora U, np. dla IR  = AM

Û =  OM w przypadku X  >  0; dla IR  = BN  
Û =  ON w przypadku X  <  0.
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Czasami zachodzi potrzeba przejścia od wykresu pewnej wiel­
kości do wykresu innej, która jest odwrotnie proporcjonalna do 
pierwszej, np. oporność pozorna i przewodność pozorna, oporność 
pozorna i natężenie prądu przy stałej wartości napięcia itp. Tego 
rodzaju przekształcenia dokonać można 
za pomocą tak zwanej inwersji.

Rozpatrzmy na płaszczyźnie dwie 
krzywe A B  i A'B' (rys. 36), które mają 
następujące własności: iloczyn promieni 
wodzących, przeprowadzonych do tych 
krzywych z początku O w tym samym 
kierunku, jest wielkością stałą, a więc

lub
OA •OA’ = O B -O B ' =  ... = k

OA' = k
O A  ’

Znajdowanie jednej z tych krzywych, gdy druga jest dana, 
nazywamy inwersją lub przekształceniem przez promienie odwrotne. 
Punkt O nazywamy środkiem inwersji zaś k stopniem inwersji lub 
współczynnikiem przekształcenia przez promienie odwrotne. Każdemu 
punktowi jednej krzywej np. punktowi A odpowiada punkt A' na 
drugiej krzywej lub odwrotnie.

Najczęściej spotykamy się z wykresami kołowymi, gdy jedną 
krzywą stanowi koło i trzeba dla koła znaleźć krzywą przekształ­
coną przez promienie odwrotne. Tu należy rozpatrzyć 2 przypadki,
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w zależności od tego, gdzie się znajduje środek inwersji: 1) poza 
danym kołem; 2) na danym kole.

W pierwszym przypadku, gdy środek inwersji 0  (rys. 37) znaj­
duje się poza danym kołem ze środkiem Clt przeprowadzamy i prze­
dłużamy prostą 0C X oraz styczną 0A\ następnie budujemy drugie 
koło, podobne do danego, ze środkiem C2 na przedłużeniu OCx, ze

kwspólną styczną O A A', tak aby O A' =  gdzie k stanowi sto­

pień inwersji, czyli HA .D A ’ -  b

Z podobieństwa trójkątów
A  O A B co A  OA'D’

mamy OB OA,
OD' OA' ’

z podobieństwa zaś OAD co .A OA'B'
OD OA
OB' " OA' ’

z tych proporcji wynika, że
OB OD

'O W  =  ~OW '
skąd OB • OB’ =  OD • OD’.
Ale OB • OD = OA2,

OD' • OB' =  OA'2; 
mnożąc stronami, otrzymamy

OB • OB' • OD • OD' =  OA2 • OA'2 = k2 
i ostatecznie QB . QB, =  QD . QD, =  k

Przeprowadzając dowolny promień OM NN'M ' , znajdziemy 
w sposób analogiczny, że

OM ■ OM' = ON • ON' =  fc.
W ten sposób dochodzimy do wniosku, że koło ze środkiem C2 

stanowi dla danego koła krzywą przekształconą przez promienie 
odwrotne, czyli krzywą otrzymaną za pomocą inwersji. Przy kon­
strukcji tego koła prościej jest znaleźć na przedłużeniu prostej 0C X

k kpunkty D' i B ’ ze wzorów OD' =  , OB' = qB~, a następnie zna­

leźć środek koła C2, dzieląc odcinek D'B' na połowę.
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Łatwo zauważyć, że gdy na danym kole przechodzimy od je­
dnego punktu do drugiego, idąc według ruchu wskazówki zegara, 
np. od B do M, na kole przekształconym odpowiednie punkty otrzy­
mamy idąc w kierunku przeciwnym: 
od B' do M'.

Gdy środek inwersji znajduje
się na samym kole (rys. 38), wtedy A/‘
w porównaniu do poprzedniego przy­
padku (rys. 37) OB = 0, wobec czego

kOB' = OB =  oo:

OD' = OD OJD = OD'

średnica drugiego koła OB' — OD' 
staje się nieskończenie wielką; ina­
czej mówiąc, zamiast koła otrzymu­
jemy prostą przechodzącą przez

kpunkt D' w odległości od środka inwersji O, skierowaną pro-

D'

stopadle do średnicy danego koła OD. Z podobieństwa trójkątów

A

X
O

_ OND  i ON'D' mamy R M  n J
ON OD' .. 
OD O N ' ’ CZyi

KON-ON’^OD-OD'=k.7/ /  y/A y

/  ///
Oczywiście, od-

\ \  » wrotnie, przez inwer- \  M ,. .. . .

\ *

sję unii prostej otrzy­
mamy koło przecho- 

1 dzące przez środek
inwersji.

Jako przykład 
rozpatrzmy obwód,

Rys. 39 w którym- oporność
bierna X  jest stała,

zmienia się natomiast oporność czynna B. Biorąc dowolną oś OK
jako podstawową (rys. 39) i odkładając stałą wartość X  = X L — X C 
w górę lub w dół w zależności od znaku X  (na rys. X  >  0), otrzy­
mamy dla zmiennej oporności pozornej OM wykres w postaci linii
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prostej A B  równoległej do osi odciętych, przeprowadzonej w od­
ległości X  od tej osi.

Dla otrzymania wykresu przewodności pozornej Y = ~  sto-

sujemy metodę inwersji. Środkiem inwersji będzie punkt 0, stopień 
inwersji w tym przypadku będzie 1. Otrzymujemy dla Y [OM') koło

przechodzące przez środek inwersji, średnica tego koła wynosi - r̂-

§ 16
NAPIĘCIA ORAZ OPORNOŚCI POZORNE W  SZEREGOWYM

POŁĄCZENIU

Rozpatrzmy część obwodu, w której mamy dwie oporności 
pozorne Z1 i Z 2 połączone w szereg (rys. 40).

Gdy włączymy taki układ do napięcia o chwilowej wartości u, 
popłynie prąd o chwilowej wartości i.

Na opornościach Zx i Z 2 powstaną napięcia o chwilowych war­
tościach uxi u2, przy czym

A / V W V
2

rAAAAAf
U

U, Ux

ux +  u2.

Rys. 40

Przechodząc od war­
tości chwilowych napięć 
do wartości skutecznych, 
posiłkując się metodą 
symboliczną i mając na 
względzie,

ze u =  Ume39 • eiu>t ux = e;tot; u2 = U2melr' ■ e’ wt,

gdzie <p, tp1 i ę?2 oznaczają kąty przesunięcia faz prądu i, względem 
napięć, otrzymamy po skróceniu przez e,wt

U„ e’ 9 =  Ulmei9' +  U,'2 m 1
lub wprowadzając wartości skuteczne

Ue3'9 =  Uxe391 + U2eJ9t,
albo symbolicznie

ü  =  ü i  +  ü 2. (17 f
Czyli napięcie przyłożone z zewnątrz równa się sumie geometrycznej 
napięć w rozpatrywanej części obwodu.
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B

Na rys. (41) OA =  Ult A B  =  £/„ OB =  U.
Łatwo zauważyć, że na ogół suma geometryczna napięć po­

szczególnych części obwodu jest większa od napięcia z zewnątrz 
przyłożonego (O A + A B > O B ). Wyjątek będziemy mieli w przy­
padku, gdy w obwodzie mamy do czynienia tylko z opornością 
rzeczywistą oraz gdy zachodzą rezo- 
nansy napięć, to znaczy gdy

<P =  <Pi =  <P*
w szczególności, gdy 99 =  0.

Dzieląc obie strony wzoru (17) przez 
wartość skuteczną 1 natężenia prądu 
płynącego w rozpatrywanym obwodzie, 
będziemy mieli

, tf2
1 — r + -

ale
5 l _ żj  — 1 1 j  — z- 2 ;

zaś iloraz -y- stanowi oporność pozorną całej rozpatrywanej części

obwodu, czyli oporność wypadkową, zastępującą dwie oporności 
pozorne Zx i Z 2 połączone szeregowo; oznaczając tę oporność pozorną
przez Z, otrzymamy Z =  Żx +  Ż 2;

a więc przy szeregowym łączeniu oporności pozornych należy je do­
dawać geometrycznie, aby otrzymać oporność pozorną wypadkową. 
Oczywiście, rozumowanie, które zastosowaliśmy do dwóch oporności 
pozornych i do dwóch napięć, możemy zastosować do dowolnej 
liczby tych wielkości, czyli ogólnie możemy napisać

0  =  +  Cr2 + . . .
Z  = Zi +  Z 2 +  • • •

f _  v t)n
Z Z x Zn

Stosując do oporności pozornych metodę symboliczną, będziemy
mieli Ż i =  i?i +  j X x,

Ż2 ”  B2 +  j X 2,
¿ 2=  (7?i +  B2) + / (-̂ 1 X,
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i?j +  /?, stanowi oporność czynną, +  X 2 oporność bierną wy­
padkowej oporności pozornej Z.

Na rys. 42 podane jest geometryczne zestawienie rozpatrywa­
nych oporności, przy czym oporności 
X x i X 2 na tym wykresie mają war­
tości dodatnie, to znaczy, że założo­
na jest tutaj przewaga oporności in­
dukcyjnej nad opornością pojemno­
ściową.

§ 17
SPADEK NAPIĘCIA I STRATA  

NAPIĘCIA W  OBWODACH PRĄDU 
ZMIENNEGO

W poprzednim paragrafie wyja- 
Rvs 42 śniliśmy, że przy prądzie zmiennym

napięcie z zewnątrz przyłożone na 
ogół jest równe sumie geometrycznej napięć w poszczególnych czę­
ściach obwodu. Rozpatrzmy obwód składający się ze źródła prądu, 
na zaciskach którego mamy napięcie U, z odbiornika i przewodów 
łączących (rys. 43). Oznaczmy opor­
ność pozorną odbiornika przez Z0, 
a oporność pozorną obu przewodów 
łączących przez Zp ; natężenie prądu 
płynącego ze źródła przez odbiornik 
niech będzie / ;  wówczas

C = l ( ż o + ż t ) =  l ż a + l ż p,
ale tŹ0 = 0 „
więc O =  0 0 + IŻp.

Na wykresie (rys. 44), gdzie za podstawową oś wzięty jest kie­
runek wektora natężenia prądu,

O A =  IZ0 =  U0, A B  =  IZp, OB =  U, OC =  OB.
Bóżnicę geometryczną napięcia u źródła i napięcia na odbiorniku 

nazywamy spadkiem napięcia w przewodach, natomiast różnicę alge- 
braicznątych napięć nazywamy stratą napięcia. Tak więc spadek napięcia

Rys. 43

A  O =  0 -  
A  U =  U

Oo
u.zaś strata napięcia
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Na wykresie strata napięcia stanowi odcinek AC, spadek zaś 
napięcia odpowiada odcinkowi AB. Jak widać z wykresu O A  + 
+ A B  > OB, OA + AC = OB, czyli A B  > AC, zatem spadek na­
pięcia na ogół jest większy od straty napięcia.

Jeżeli oporności czynne i bierne oznaczymy dla odbiornika 
przez B0 i X 0, dla przewodów zaś przez Bp i Xp, wówczas będziemy

0 . = I(Re + jX.),
O =  i  [(B. +  Bp) + i ( x a +  X p)], 
u0 = IyJ B0* + X*,
u  =  JV {R,+ Rp)2 + (X. +  x Py,
A U = U — U0 = I  [\ P „ + Rp)2 + (Xo + Xpy  - V i i 02 + X,*], 
A O = 0 - 0 o= I (Rp + jXp),

mod. A  0 = 1  VĄ>2 +  ^ p2-

PRAWA KIRCHHOFFA W  ZASTOSOW ANIU DO PRĄDÓW ZMIENNYCH

Jak wiadomo, przy prądzie stałym stosujemy prawa Kirchhof fa ,  
gdy zachodzi rozgałęzienie prądów. Przy prądzie zmiennym możemy 
również stosować prawa K i r c h h o f f a ,  wyrażone takimi s amymi wzo­
rami, gdy chodzi o wartości chwilowe; przy tym należy zaznaczyć

B

O

c

Rys 44

mieli

§ 18
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z góry, jakie kierunki na przewodach przyjmujemy za dodatnie. 
Więc w dowolnej chwili algebraiczna suma prądów powinna się 
równać zeru, jak również algebraiczna suma S E M, działających 
w zamkniętym obwodzie, powinna się równać algebraicznej sumie 
iloczynów natężeń prądów przez odpowiednie oporności; czyli

2 ^  = 0,
= S  ikE k.

W obwodach rozgałęzionych każda gałąź posiada na ogół inną 
oporność pozorną, wobec czego przesunięcia fazy prądu względem 
wspólnego wektora podstawowego będą w każdej gałęzi inne. Ozna­
czając te kąty przesunięcia fazy odpowiednio przez <px, <p2, ..., <pk, 
będziemy mieli

h =  h m sin M  + ?i) 
h  = hm Sin M  + <Pt)

h  =  hm Sin + ?*)•
Przechodząc do wartości skutecznych tych prądów i biorąc 

za podstawową oś kierunek wspólnego napięcia, będziemy mieli
h  =  h e ir'-, h  =  - h =  V >r*-

Jeżeli więc zechcemy stosować prawa K i r c h h o f f a  do wartości 
skutecznych, musimy rozpatrywać omawiane wielkości symbolicznie 
jako wektory. Wtedy warunkiem istnienia zależności wyżej podanych 
dla wartości chwilowych będą następujące wzory dla wartości sku­
tecznych 2 /*  = 0, (18)

(19)
czyli zamiast algebraicznych sum mamy sumy geometryczne.

Przy stosowaniu tych wzorów należy ustalić, jakie kierunki 
nadajemy chwilowym wartościom dodatnim S E M  oraz prądów, 
od tego bowiem zależeć będzie, z jakim znakiem, dodatnim czy ujem­
nym, wejdzie każda z omawianych wielkości do równań układanych 
na podstawie rozszerzonych praw K i r c h h o f f a .  Przy prądzie stałym 
działanie S E M  w obwodzie zewnętrznym przyjęto oznaczać w kie­
runku od bieguna dodatniego do bieguna ujemnego, czyli w kierunku 
ruchu dodatniej elektryczności; takiż sam kierunek dajemy prądowi. 
Przy rozważaniu wartości chwilowych prądów zmiennych możemy 
również zastosować te same oznaczenia kierunków odpowiadają­
cych biegunowości S E M  w pewnej określonej chwili.
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W ten sposób przy prądzie zmiennym strzałki będą odpowiadały 
dodatnim wartościom chwilowym*.

Tak np. na rys. (45) strzałki wskazują kierunek prądów ir oraz 
i2 w chwili, gdy prądy te mają wartości dodatnie; według pierw­
szego prawa K i r c h h o f f a  . _  .

I d- 2̂*

Rys. 45 Rys. 46

przechodząc zaś do wartości skutecznych, będziemy mieli (rys. 46)

l - h  + u*
przy czym znaki przy wektorach I, Ix i / 2 bierzemy według dodat­
nich kierunków, założonych dla wartości chwilowych.

Rozpatrzmy dwie gałęzie (rys. 47) między węzłami A i B. 
Strzałki odpowiadają 
kierunkowi dodat­
nich wielkości chwi­
lowych; oznaczając 
przez U napięcie mię­
dzy tymi węzłami, 
będziemy mieli

/ - W . ;
i — l<tż2 =  o 

lub 1XŻX = I2Ż 2= 0.
Na wykresie (rys. 48), gdzie ę, q>x i <p2 oznaczają kąty przesu­

nięcia faz względem napięcia U prądów I, Ix i / 2,
OA =  Jlt OB =  AC  =  I 2, OC = I.

Rys. 47

•Prof. S. F r y z ę  wprowadza obok strzałek kierunkowych, wskazujących 
kierunek wartości chwilowych, strzałki kierunkowości. Dla zrozumienia tego 
terminu zwróćmy uwagę, że dla funkcji okresowo zmiennej w czasie wartości 
chwilowe mają znak dodatni w ciągu części okresu, w szczególności dla funkcji 
sinusoidalnej znak pozostaje bez zmiany w ciągu połowy okresu. Strzałki 
kierunkowości, niezależne od czasu, wskazują kierunek działania lub przebiegu 
w obwodzie rozpatrywanych wielkości dla dodatnich wartości chwilowych 
tych wielkości.
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Biorąc rzuty prądów na podstawową oś O U oraz na oś do niej 
prostopadłą, otrzymamy

I  COS (p = I\ COS <pi +  / 2 COS ęj2 ,

I sin (p =  sin ę>x + J2 sin <p2,

co oznacza, że składowe czynne i składowe bierne prądów dodają się do 
siebie algebraicznie. Podnosząc ostatnie wzory stronami do kwa-

U

Rys. 48

dratu i dodając do siebie, otrzymamy

skąd
I2 i2 +  / 22 + 2^/2 (cos”^  cos cpz +  sin <p± sin ęj2), 

I =  V^i2 + h 2 +  % Iih  cos (<Pi — ę>2); (20 )

następnie, dzieląc stronami drugi wzór przez pierwszy, będziemy
mie  ̂ . /1 sin <p! +  /2 sin 992tg W =  —=-------------- ,------------  •I 1 COS 9?! +  I2 cos <p2 (21)
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§ 19
OPORNOŚCI POZORNE POŁĄCZONE RÓWNOLEGLE

Rozpatrzmy najpierw dwie oporności pozorne Zx i Z 2, połączone 
równolegle, jak na rys. 47. Jak widać z tego rysunku,

ż  '
I -  0i i =  —— >

ponieważ 

przeto

+ 4 A ;
U i ^ 2/

t)

t  -  A  + / ,

0;
/

7  + 7z,2
Z i + Ż 2

Stosunek -y- stanowi pewną oporność pozorną, którą możemy

rozpatrywać jako oporność równoważną dwóm danym opornościom; 
oznaczając tę równoważną oporność przez Ż, będziemy mieli

7 _  Z x Ż 2 
ż  i +  ż 2

(22)

lub 1 1  1 
ż  ż x Z 2

(23)

Przy dowolnej ilości równolegle połączonych oporności pozor­
nych 2 X, Ź2, ..., Żk, otrzymalibyśmy dla oporności Ż, równoważnej
danym, wzór l 1 1 1

.. H— ~  .
' 2 2 k

1
Z

1 1
-3--- h -~r-
ż x ż ,

Odwrotności oporności pozornych stanowią przewodności po­
zorne; oznaczając przewodności pozorne poszczególnych gałęzi przez 
Yx, F2, ..., Yk, a równoważną przewodność pozorną przez Y, otrzy-

mamy f - ? l +  t t +  ... +  Tk.

Widzimy stąd, że przy równoległym połączeniu oporności po­
zornych równoważna przewodność pozorna równa się geometrycznej 
sumie przewodności pozornych poszczególnych gałęzi.

Zbadajmy bardziej szczegółowo dwie równolegle połączone opor­
ności pozorne; każda z nich składa się z oporności czynnej i oporności 
biernej; równoważna oporność pozorna będzie też zawierała obie te 
oporności: czynną i bierną. Podstawiając do wzoru (22) zamiast

Teoria prądów zmiennych 6
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Ż, Żx i Ż 2 ich wartości R + jX , Rx + j X 1, R2 + j X 2, będziemy mieli

d  , : Y  ( / ? !  +  jX j) (R2 +  j X 2) _
1 (R1 +  B2) +  j (X1 +  X 2)

[BiB, -  * i X 2 +  / (# 1*2  + B2X x)] [(i?i +  Ą )  ~  j ( * i  +  X ,)]
(/?! +  / i2 2 +  (*1 + * 2)2

i?12JR2+ /?1/?22-/?1X 1X 2- i ? 2X 1Z 2+i?1X 1Z 2+i?2Z 1Ji2+ JR1Z 2H ii2X 12
(Rx + R,)* +  ( * x + X,)»

.ii !2X 2+B 22X 1+R iB2X  x+RlR %X2—R ]i?2 X  x-  R XR 2X  2+ X 12X 2+X  22 X x
+ 1

skąd

(R, + ii,)* +  (X, +  X,)*
RXZ ?  +  R2ZX2 , . X 1Zt* +  X aZ1*

(Ri +  ^ ) 2 +  [ x x

R =

X 2)2 + , \Rx +  R2)2+ { X x +  X 2)2’ 
BXZ22 + R2ZX2

X

(Rx + R2)2 + (X x + X 2)2’ 
X xZ22 +  X 2Zx2

(24)

(25)
(i?x + ii,)» + (X, +  X 2)2

Równoważną oporność pozorną Z znajdziemy ze wzoru 
Z = -\JR2 Ą^Jl2-, co, po podstawieniu wartości R i X  i odpowiednich 
skrótach, daje

Z x Z 2Z = 1 №V (Bi
2 + X x2) (R22 +  X 2) _________________________
+ R2)2 + (X x + X 2)2 V(^1 + B2)2 + (X x + X 2)2

(26)

argument równoważnej oporności pozornej, czyli kąt <p przesunięcia 
fazy prądu I  względem napięcia U, znajdujemy dzieląc wzory (25) 
przez (24):

t g '  = 4 = # f 4 ± # # ) -  (27)R RXZ 2 R2Z 2

W wyrażeniu tym mianownik zawsze jest większy od zera, 
w liczniku zaś mamy oporności bierne, które mogą mieć znaki do­
datnie lub ujemne, w szczególności równać się zeru.

Równoważną oporność pozorną Z dla dwóch równolegle połą­
czonych oporności pozornych Zx i Z 2 można również znaleźć wy- 
kreślnie. W tym celu, biorąc dowolną oś OX jako podstawową, 
przeprowadzamy odcinki wyrażające oporności pozorne Zx =  O A 
i Z 2 = OB (rys. 49). Dodając je geometrycznie, otrzymamy OC =  Z '.

Wzór (22) możemy przepisać w sposób następujący:
Z Żx
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Oznaczając kąty, które tworzą z osią OX oporności pozorne 
Z, Z lf Z 2 i Z ' odpowiednio przez a, at , a2 i a', możemy ostatni wzór 
napisać w postaci Ze, a z

Z2e’ a> Z'eia'
lub z  z

z2e Z'e
skąd Z _  Z Ł

X 2~ Z7’
a — o£2 = ax — a '.

Widzimy stąd, że Ż musi tworzyć z Ź 2 taki sam kąt, jak Zj 
tworzy z Ź '. Wobec tego odkładamy od OB wstecz (ponieważ Żi 
przesunięte jest wstecz względem Ż') kąt BOD  równy kątowi CO A ; 
szukana oporność Ż  powinna f
leżeć na prostej OD , znamy 
więc jej argument. W celu 
znalezienia jej modułu bu­
dujemy A  O A A' podobny 
A  OBC, np. z punktu O lu­
kiem koła o promieniu OC 
odcinamy na przedłużeniu 
prostej O A odcinek O C ;  w 
podobny sposób lukiem OB 
odcinamy na prostej OD od­
cinek OB’, mamy zatem:

O C  =  OC =  Z' ,
OB' =  OB =  Z 2 ;

łączymy następnie punkty
B' i C  i z punktu A prowadzimy prostą równoległą do prostej B' C  
aż do przecięcia się z prostą OD w punkcie A'. Z podobieństwa 
trójkątów widzimy, że

O A' OA
OB' O C '

Podstawiając tu wartości powyższe, otrzymujemy
O A' Z x
Z 2 Z '

Porównując proporcję tę z poprzednią, widzimy, że odcinek 
OA’ = Ż.

6'
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§ 20

REZONANS PRĄDÓW

Rozpatrując dwie oporności równolegle połączone, stwierdzi­
liśmy (wzór 27), że kąt przesunięcia fazy prądu /,  dopływającego do 
węzła, względem napięcia U między węzłami może się równać zeru, 
czyli że prąd I  będzie w fazie z tym napięciem.

Jak widać z tego wzoru, ten szczególny przypadek będzie miał 
miejsce wówczas, gdy

czyli inaczej, gdy
X xz ?  +  X 2Z *  = o, 

X ,  X ,
z\ ~

L 2

zK (28)

Wyrazy stojące po obu stronach ostatniego wzoru stanowią 
przewodności bierne; oznaczając je dla pierwszej gałęzi przez Bx, 
dla drugiej zaś przez I?2, będziemy mieli warunek

Bx = B2 ■
Znaki przeciwne tych przewodności biernych wskazują, że 

w jednej gałęzi powinna przeważać oporność indukcyjna, w drugiej 
zaś oporność pojemnościowa.

Mnożąc obie strony ostatniej równości przez wspólne obu ga­
łęziom napięcie U, otrzymamy

UB1 = - U B 2;

wyrazy te stanowią bierne prądy, płynące w rozpatrywanych gałę-
ziach, czyli

Ix sin (px = I2 sinęv (29)

Rys. 50

A więc prąd dopływający do 
rozgałęzi nia będzie w fazie z na­
pięciem istniejącym między węzłami 
rozgałęzienia, gdy prądy bierne, 

I sinty Ptyncłce w obu gałęziach, będą sobie 
równe, łecz będą miały znaki prze­
ciwne; zjawisko to nazywamy rezo­
nansem prądów.

Na rys. 50 przedstawiony jest przypadek rezonansu prądów. 
Prądy bierne Ix sin <px i i^sinę^ są sobie równe, lecz mają znaki 
przeciwne.
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Rozpatrzmy bardziej szczegółowo warunki możliwości powsta­
wania rezonansu prądów. Przypuśćmy, że w pierwszej gałęzi mamy

przewagę oporności indukcyjnej: coL1 >  — w drugiej zaś a>L2 < —L-ćtz C# j CO C/ 2
mamy przewagę oporności pojemnościowej, czyli że w pierwszej 
gałęzi oporność bierna jest dodatnia, a w drugiej ujemna; wtedy, 
oznaczając

X i = CO-I/! — — — X; ,

Xn — &>La

wC1 
1

- ~ x Ct'2
możemy warunek rezonansu prądów na podstawie wzoru (28) 
przepisać w sposób następujący:

X l X c

stąd
i?!2 + X\ B 22 +  X%

XL (B22 + X C2) -  Z c (-Rj2 + X\) =  0; 

X L2 -  X l + B 12 =  0;

rozwiązując równanie względem X L, otrzymamy
B2* + Xh ±  y  B2* +2 B2*XC 2+ 4 B j X ^

X L = 2 X c (30)

Jak widać z tego wzoru, nie zawsze można dobrać oporność X  
zależnie od X c lub odwrotnie; możliwe to będzie w przypadku

(B22 +  X c2)2 >  4i?,2* c2 ,

CZyh B22 + X c2 ^ 2 B 1X C.
Jako przypadek szczególny rozpatrzmy dwie gałęzie, w których 

oporności rzeczywiste są jednakowe, a więc w jednej mamy dane 
wielkości B i L, w drugiej zaś B iC ;  wtedy ze wzoru (30) będziemy
mieli v (B2 + X c2) ±  (B2 

X l 2X c , ■
skąd
1) VJII-i

2)
B2X L =  lub B 
A c

Pierwsza równość odpowiada warunkowi, gdy oporność induk­
cyjna i oporność pojemnościowa są sobie równe, podobnie jak przy
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rezonansie napięć. Druga równość wskazuje, że oporność rzeczywista 
stanowi średnią geometryczną oporności indukcyjnej i pojemnościo­
wej. W pierwszym przypadku na podstawie wzoru (26), gdzie 
X 1 = X L, X t = ~ X c

z  =  ^ R2 +  X l *) ■ (R2 +  X l * ) _ B 2 + Xl \

wobec czego 

W drugim przypadku

4jR2

I  =  — — —  . 'u  
R2 + X L* U-

2 R ,

A ( W4R2+ l ^ - - X c

R2 +  (R2+ X c 2) / (R*XC*+ R*)(R* +  X c 2)
Z =  1 /  ----------- r^ =  y  --------------------- ------—  = fí,

(R2 + X*c )

I = U
R

czyli prąd jest taki, jak gdybyśmy mieli prąd stały z opornością R.

§ 21
PRZYKŁADY NA RÓWNOLEGŁE POŁĄCZENIE OPORNOŚCI

POZORNYCH

I. R i L połączone równolegle.
Mamy Żx =  Zx =  R,

Ż2 = jwL.
Równoważna oporność pozorna będzie

~ ŻX Ż 2 jR w L jRa>L(R  — jcoL) 
= Ż j +  Ż 2 = R + jmL R2 +  (oj L)2

R (co L)2 + jR2co L

skąd Z =

R2 +  (coL)2, 

R<o L
y P T F r p

. Rtg <P =  'CO

II. ii i C połączone równolegle.
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Mamy Z x — Z x — R ,

Ż2= - l

— I
. R

Z =
co C - j R

. 1

/  R {R co C + i)

R - j . 1 R c o C - j  {RojC)2 +  1
co C

skąd Z =

R — j R2co C 
{RwC)*+1 ’

R
V(7?o>C)2 + 1 

tg Cp =  — /? (O C .
III. L i C połączone równoległe.

MamJ' Ź r ~ io > L ,
.. . 1 _  1

2 7 0)C jcoC'

z  =

L
C

= -  /

gdy co L >  — , Z =co L Tco L—

tg ę) = — oo, cp =  — -

X "  ' I Z
co C coC

L,
C

— co L

1 ’
co C

71
2~’

gdy L < 1
<C’ Z =

_L
C

co C 
n

—coL

tg cp =  +  oo, 9 =  ~2

IV. Dwie oporności pozorne Z x i Z 2 są połączone równolegle, 
trzecia oporność pozorna Z0 jest połączona w szereg do pierwszych
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dwóch (rys. 51). Jaka powinna być zależność pomiędzy tymi opor­
nościami przy spełnieniu następującego warunku: prąd przepły­
wający przez taki układ powinien zachować swoją wartość, gdy 
jedna z dwóch równoległych gałęzi, np. z opornością Z lt zostanie 
przerwana? Tego rodzaju przypadek mamy np. wtedy, gdy przy 
prądzie zmiennym łączymy szeregowo żarówki i gdy w razie prze­
palenia się jednej z żarówek chcemy, aby inne żarówki nie zgasły 
i aby natężenie prądu przy tym nie uległo zmianie. W tym zagadnieniu

chodzi o to, by wartość 
oporności pozornej ukła­
du zawierającego Zx, Z2 
i Z0 pozostała bez zmia­
ny, gdy zostaną tylko 
oporności Z 2 i Z0. W pier­
wszym przypadku całko­
wita oporność wynosi 
Ż0 + Ż  gdzie Ż  stanowi 
oporność równoważną 
opornościom Z1 i Z 2 po­
łączonym równolegle; w 
drugim przypadku całko­

wita oporność wyniesie Ż0 + Z 2. Aby natężenie prądu w obu przy­
padkach pozostało bez zmiany (napięcie z zewnątrz przyłożone 
przyjmujemy jako stałe), trzeba, żeby moduły tych całkowitych 
oporności pozornych były równe .sobie; argumenty w tym zagad­
nieniu roli nie odgrywają.

Wobec tego otrzymujemy warunek

Z,

Niech
mod (Z0 + Ż) =  mod (Ż0 -f Z2). (31)

Żo = Ą> + /* 0 ,
Z x = JF?i +  j X ly «
Z 2 = i?2 + j X  2 i

wtedy na podstawie wzorów (24) i (25) równoważna oporność Ż 
będzie się równała

r .z  ̂+ r .z  ̂ . A 1 Z 22 +  A 2 Z 12

(R, +  i?2)2 + ( X  + A 2)2 + 1 (Ą  + R t f  + (X,  +  X 2)2 ’

gdzie z2 = V Ri2 + z2=v R ł + *22-
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Podstawiając symboliczne wartości Ż0, Ż i Ż2 do wyżej podanego 
warunku (31), będziemy mieli

mod i B0 + BXZ22 + B2ZX2
+ / ( ^ o + P i

X xZ 2 +  Z 2 Z ,2
+ B2)2 + (X1+X 2)2

— mod [B0 + B2 + j (X 0 + X 2) ],
skąd 

B0 +[
BXZ22 +  B2ZX2

(B, +  B2)2 + (Xx + X t)№ X xZ22 +
(Bx +  B2)2 + (Xx + x 2y

= (B0 + B2)2 + (X0 + X 2)2. (32)
Taka więc powinna być zależność pomiędzy trzema rozpa­

trywanymi opornościami. Jeżeli wiadome są dwie oporności pozorne, 
dla znalezienia trzeciej będziemy mieli równanie nieokreślone, 
gdyż każda oporność pozorna ma dwie składowe. Otrzymamy więc 
w rezultacie równanie z dwiema niewiadomymi, czyli nieskończoną 
ilość rozwiązań. Zwykle się zakłada z góry, jaki ma być stosunek 
oporności biernej do oporności czynnej w poszukiwanej oporności 
pozornej, i wtedy otrzymuje się równanie z jedną niewiadomą. 
Najłatwiej rozwiązuje się takie zagadnienie, gdy wiadome są opor­
ności Zx i Z2, szukamy zaś oporności Z0 z jej składowymi B0 i X 0;

zakładając z góry = k i oznaczając we wzorze (32) w skróceniu

BXZ22 + B2ZX2
(B1 +  B2y + (x1 + X2y = M,

X xZ *  +  X %Z £_  _
’  i V  \2 iV *(Ul + B2y  + (xx + x 2y

przy czym M  i N oblicza się na podstawie danych wielkości; otrzy­
mamy z tego wzoru

(B0 + M)2 +  (kB0 + N)2 = (B0 + B2)2 + (kB0 + X 2)2,

skąd po odpowiednich skrótach pozostanie równanie pierwszego 
stopnia, z którego ostatecznie znajdujemy

B22 + X 22 - M 2- N 2 
0 2 (M +  kN — B2 — kX2) '

Ponieważ sens mają tylko dodatnie wartości B0, przeto w razie 
otrzymania B0<  0 należy zmienić założoną z góry wartość k i dobrać 
ją tak, aby B0 wypadło dodatnie.



90 METODY ROZWAŻANIA PRĄDÓW ZMIENNYCH

Ostatnie zagadnienie łatwo można rozwiązać wykreślnie. W tym 
celu najpierw znajdujemy wykreślnie równoważną oporność pozorną Z 
sposobem wskazanym w § 19 i podanym na rys. 49. Po znalezieniu Z 
wykreślamy względem dowolnej osi OX (rys. 52) oporności pozorne Z 
i Z 2; na rysunku O A =  Z, OB =  Z 2.

Łączymy A z B i ze środka odcinka A B przeprowadzamy prostopa­
dłą do tego odcinka. Rozpatrzmy dowolny punkt M  na tej prosto­

padłej i połączmy go z początkiem O. Łatwo jest zauważyć dodając 
geometrycznie, że

MO + OA =  MA,
MO +  OB =  MB

albo
MO + Ż =  MA,
MO A Ż  — MB

ale wartości M A  i M B  są równe sobie, więc
mod (MO + Ż )  =  mod (MO +  Z 2);

porównując otrzymamy rezultat ze wzorem (31) stwierdzamy, że 
MO =  Z0.

/\ /\
Składowe MO, czyli, tym samym składowe OM' będą B0 = OC

i X 0 = CM’ . Otrzymujemy więc nieskończoną ilość punktów M, cżyli 
rozwiązań, ale te tylko będą miały sens, które dają dodatnią 
składową B0.

V. Otrzymywanie przesunięcia fazy o kąt prosty pomiędzy 
prądem i napięciem.
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Nieraz zachodzi potrzeba otrzymania w pewnej części obwodu 
prądu, który względem napięcia z zewnątrz przyłożonego przesu­
nięty jest w fazie o kąt prosty. Można to osiągnąć włączając równo­
legle do tej części obwodu pewną oporność czynną. Na rys. 53 mamy 
dwie oporności pozorne i Z 2 szeregowo połączone; równolegle 
do oporności Z x przyłączona jest oporność rzeczywista R0. Po­
staramy się określić R0 tak, aby prąd Ix płynący przez część obwodu

z opornością Z x był przesunięty w fazie o kąt prosty względem 
napięcia U z zewnątrz przyłożonego. Oznaczając przez / 2 prąd 
płynący przez Z 2 oraz przez I0 prąd płynący przez R0, będziemy 
mieli

-f2 ~ A. + A>>
1\Ż\ — l0Roi

0  =  % %Ż 2 +
z drugiego wzoru określamy

T =
R0

i podstawiamy do pierwszego, wtedy

Podstawiając to do wartości 11, otrzymujemy 

( i?oŻ2floŻlŻa)  + 11ż 1 = 
i ( R0Ź1 +  R0Ź2 +  Ż1Ż2 }
i  i ’
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Każdą ź oporności Żx i Ż 2 możemy wyrazić tak:
Żx = Rx + jX x,

¿2 ~ B 2 H* i X 2 ■

Podstawiając wartości te do wzoru poprzedniego, otrzymamy 

0  =  | Ho^l +  jB 0X x +  + /  BqX 2 + BxR2 — ^1^2 +

+ i Bi x 2 + jB 2X x |.

Grupując w tym wzorze części rzeczywiste i urojone, otrzymamy 

ry i ( B0BX +  B0B2 +  BXB2 X xX 2 ,
u ~ h \ w ,  +

• BxX 2 +  B2X x +  BqX 2 +  B0X x |
1 (■

Jeżeli wzór ten napiszemy pod postacią

O = 1X(R + jX ),

wtedy przesunięcie fazy pomiędzy prądem Ix i napięciem U otrzy­
mamy ze wzoru

tg 9 = ~R ’
gdzie cp oznacza kąt przesunięcia fazy prądu Ix względem napięcia U.

n(p— —r dla R = O .

czyli

skąd

Warunek zagadnienia będzie więc spełniony, jeżeli

B0B1 +  B0B2 + B1B2 — X xX 2 A 
Bo

B0B1 + B0B2 +  B1B2 — X xX 2 — 0,

R _  X XX 2 B1B2
0 Ję+ĄT

Oczywiście, że tylko wtedy można znaleźć realną wartość na 
Bo, gdy X xX 2 > BXB2.
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PR ĄD Y W IE L O FA ZO W E

§ 22
OKREŚLENIE I POWSTAWANIE PRĄDU WIELOFAZOWEGO

W § 1 rozpatrzyliśmy powstawanie siły elektromotorycznej 
o przebiega sinusoidalnym w czasie; ma to miejsce, gdy przewo­
dnik, np. w postaci ramki z drutu, obraca się ze stałą pręd­
kością w jednostajnym polu magnetycznym, przecinając przy tym 
strumień magnetyczny. Jeżeli zamiast jednego przewodnika bę­
dziemy w taki sam sposób obracali dowolną ich ilość, powstanie 
wówczas szereg S E M  o przebiegach sinusoidalnych w czasie, 
które, w zależności od rozmieszczenia przewodników, będą się różniły 
między sobą w fazie. Układ, w którym działają S E M  przesunięte 
w fazie, nazywamy układem wielofazowym.

Jeżeli przewodniki tworzą układ taki, że są rozmieszczone 
symetrycznie naokoło osi i układ ten obraca się w polu magnetycz­
nym, wówczas taki układ wielofazowy nazywamy symetrycznym.

Na rys. 54 mamy symetryczny układ n przewodników, np. 
w postaci ramek rozmieszczonych naokoło osi w jednakowych od­
stępach. Kąt pomiędzy dwiema sąsiednimi ramkami będzie miał 
wartość 2 n

• n
Załóżmy, że cały ten układ obraca się ze stałą prędkością 

kątową w jednostajnym polu magnetycznym w kierunku wskaza­
nym przez strzałkę i że rozpoczynamy liczenie czasu, gdy układ 
znajduje się w położeniu podanym na rysunku. W chwili l =  0 
S E M  w pierwszej ramce będzie =  0, jej wartość chwilowa e1 
w chwili t będzie wyrażona wzorem

e, =  E„ sin co ł.a m
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Łatwo zauważyć, że S E M  powstające w następnych kolejnych 
ramkach będą opóźnione w fazie względem pierwszej odpowiednio 
o kąty a, 2a, (n — 1) a; zakładając, że wszystkie przewodniki 
(ramki) są jednakowe i że wobec tego największe wartości powsta-

x

jących w nich S E M  będą również jednakowe, otrzymamy dla 
wartości chwilowych następujące wzory:

ex = Em sin cot, 
e2 = Em sin (cot — a),
e3 = Em sin (cot — 2 a), (1)

e„ =  Ems™ [®f — (n — 1) a].
Gdybyśmy obracali nasz układ w przeciwnym kierunku, mie­

libyśmy nie opóźnienia, lecz przyspieszenia w fazie wszystkich 
następnych S E M  i w  naszych wzorach musielibyśmy postawić 
przed a, 2 a itd. znak +.

Taki sam rezultat otrzymalibyśmy niezależnie od rodzaju prze­
wodników, np. gdyby to były całe uzwojenia. Poszczególne prze­
wodniki lub uzwojenia w takim układzie przyjęto nazywać w skró­
ceniu fazami. Mówimy więc: S E M, napięcie, natężenie prądu pier­
wszej, drugiej itd. fazy, odnosząc te terminy nie tylko do źródła 
prądu, lecz również i do odbiorników połączonych z poszczególnymi 
uzwojeniami prądnicy dającej prądy wielofazowe.
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§ 23
TWIERDZENIE MATEMATYCZNE O SUMIE WARTOŚCI CHWILOWYCH  

WIELKOŚCI UKŁADU WIELOFAZOWEGO SYMETRYCZNEGO

W dalszych rozważaniach powoływać się będziemy często na
2ntwierdzenie następujące: jeżeli a = — , gdzie n jest liczbą całko­

witą większą od 1, wtedy
sin x + sin (x ±  a) +  sin (x ±  2 a) + ... + sin [x ±  (n — 1) a] = 0. 

Opierając się na wzorach Eulera, możemy napisać
eiz _  e-jz

sin z =

oraz
COS Z -

2/

e1* +  e~J>

gdzie
/ = V —1 -

Powyższą sumę możemy wobec tego napisać tak:
g i x   g - j x  g / ( * ± a )  g —j ( x i a) g i  [ x ± ( n — l ) a ]  g  - j [ x ± ( n — D a l

+ ----------K----------- +  ... + ---------2 i ' 2/ ' 1 2 /
Po uporządkowaniu wyrazów otrzymamy

g i*  _|_ g /(*± a ) g / [* ± (« - l )a l

27

{g - j x  g —7C*±a) g - ; '[* ± (n -l)a ]

W ,
Widzimy, że wyrazy w licznikach tworzą postępy geome­

tryczne. Suma w liczniku w pierwszym nawiasie
g i (*± na)  gj  x

e ±Ja — 1
suma zaś w liczniku w drugim nawiasie

g -j(.x±na) —  g -> *
s 2 = g±ja --  1

Wobec tego rozpatrywany wzór po sprowadzeniu do wspólnego 
mianownika przyjmie postać
g i  [ x ± ( n  — l ) a ] ___g —j ( . x ± n a )___ g ; ( * ± a )  g i x  —  g  —y [x ± (» i—l)a ]_| _g—y (x ± n a ) - ) _ g —y ( x ± a ) ___ g ~ J *

(2 — e±ja — e±Ja) 2/
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Grupując wyrazy w liczniku, otrzymamy
sin [x ±  (n — 1) a] — sin (x ±  na) — sin [x ±  a) +  sin x 

2 — 2 cos a
2 n

Biorąc pod uwagę, że a = — , (n — 1) a = na  — a — 2n — a i że

wobec tego pierwszy wyraz licznika skraca się z trzecim, drugi skraca 
się z czwartym, otrzymujemy w rezultacie, że licznik = 0. Mianow­
nik nie jest równy zeru dla n >  1, wobec tego rozpatrywana suma 
sinusów zawsze będzie równa zeru dla całkowitego n > 1.

Zupełnie tak samo można dowieść, że
cos x +  cos (x ±  a) -y cos (x ±  2 a) + ... + cos \x + (n — 1) a] = 0, 

gdzie
2 jz ,a =  — ; n >  1. n

Rozpatrując wartości chwilowe S E M  w symetrycznym układzie 
wielofazowym, podane we wzorze (1), widzimy, że na podstawie 
dowiedzionego twierdzenia suma ich równa się zeru.

§ 24
UKŁADY WIELOFAZOWE

Rozpatrując ogólny wzór (1) dla waitości chwilowych S E M  
wielofazowego układu symetrycznego, widzimy, że dla n =  1 otrzy­
mujemy zwykły prąd sinusoidalny jednofazowy; dla n =  2 otrzy­
mamy dwie S E M  równe sobie, lecz znaków przeciwnych, czyli prze­
ciwnie skierowane, gdyż

ex =  Em sin cot, 
e2 = Em sin [cot — n) =  — ev

Schematycznie układ taki mamy na rys. 55 w postaci dwóch 
uzwojeń — faz.

Dla n =  3 otrzymamy układ trójfazowy. Będziemy mieli w tym 
przypadku następujące wartości S E M :

ex — Em sin co t,

e9. =  Em sin |

e3 = Em sin

i ł  2 \m I co t — g- n i,

(cot — =  Em sin^cuf + — ^ .
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Schematycznie układ trójfazowy przedstawiony jest na rys. 56. 
Dla n = 4 otrzymujemy układ czterofazowy. Dla S E M  w poszcze­
gólnych fazach wartości chwilowe będą następujące (rys. 57):

Em sin co t,

e2 =  Em sin

e3 = Em sin (coł — n) =  — eii

e4 = sin ĉo f — g- = — e2.

Układ, w którym fazy działają samodzielnie, nazywamy układem 
nieskojarzonym. W przeciwnym razie otrzymujemy układ skoja­
rzony. Skojarzenia, czyli połączenia faz, bywają następujące:

1) w gwiazdę, czyli gwiazdowe, kiedy początki wszystkich faz 
łączymy w jednym 
punkcie (rys. 58); 2) wie- 
lobokowe (rys.59), kiedy 
początek pierwszej fazy 
łączymy z końcem dru­
giej, początek drugiej 
z końcem trzeciej itd., 
wreszcie początek ostat- 

R ys 58 niej z końcem pierwszej. R ys 59
Drugie połączenie sta­

nowi układ zamknięty, pierwsze — układ otwarty. Połączeń gwiaz­
dowych i wielobokowych możemy dokonać nie tylko na uzwoje­
niach źródła prądu, np. prądnicy, lecz również na odbiornikach, 
do których doprowadzamy prądy idące od poszczególnych faz prąd­
nicy i które odpowiednio ze sobą łączy my.

Teoria prądów zmiennych 7



98 PRĄDY WIELOFAZOWE

Rozpatrując napięcia i prądy w układach wielofazowych, mu­
simy odróżniać te wielkości w poszczególnych fazach oraz między 
fazami i w przewodach łączących fazy źródła prądu z odbiornikami. 
Pierwsze nazywamy fazowymi, mówimy więc o napięciu fazowym 
i o prądzie fazowym; w drugim przypadku mówimy o napięciu 
między przewodowym. Tak samo odróżniamy prądy fazowe i prądy 
przewodowe.

Napięcia na poszczególnych fazach układu wielofazowego za­
leżne są z jednej strony od SE  M, działającej w rozpatrywanej fazie, 
z drugiej zaś strony od prądu płynącego w tej fazie i od jej oporności. 
Jeżeli prąd nie jest pobierany, napięcie jest równe S E M, w przeciw­
nym przypadku jest ono zmniejszone o iloczyn natężenia prądu 
przez oporność fazy. W prądnicach wielofazowych zwykle uzwojenia 
stanowiące poszczególne fazy są jednakowe, wobec czego i S E M  
powstające we wszystkich fazach różnią się tylko kątami przesunięcia 
faz; natomiast napięcia na poszczególnych fazach będą miały jedna­
kowe wartości i będą różniły się tylko kątami przesunięcia faz w dwóch 
przypadkach: albo gdy prąd w żadnej fazie nie jest pobierany, albo 
gdy we wszystkich fazach będą pobierane jednakowe prądy, czyli,

jak mówimy, gdy wszystkie fazy 
będą jednakowo obciążone i gdy 
uzwojenia mają jednakowe opor­
ności pozorne.

W następnych rozumowa­
niach będziemy mieli na względzie 
najpierw te przypadki, gdy napię­
cia na poszczególnych fazach mają 
te same wartości największe lub 
skuteczne, różnią się zaś tylko 
kątami przesunięcia faz.

Rozpatrzmy układ gwiazdowy 
np. prądu trójfazowego (rys. 60). 
Wartości chwilowe napięć w trzech 

fazach wynoszą ut , u2, u3. Między końcami faz pierwszej i drugiej 
istnieje napięcie między fazowe

1̂2 = 1̂ 2̂ *
Przez odbiornik, włączony pomiędzy tymi fazami, popłynie 

prąd i12. W chwili gdy u1 > u2, prąd płynie tak, jak wskazuje ry­
sunek, zaś w chwili gdy u2 > ulf prąd płynie w kierunku przeciwnym.

¿ 3
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Natężenie prądu w obu fazach w tym przypadku będzie takie same 
jak i w odbiorniku:

l12 = li = l2-
Widzimy stąd, że w układzie gwiazdowym różnią się pomiędzy 

sobą tylko napięcia międzyfazowe i fazowe. Napięcie międzyfazowe 
nazywamy w tym przypadku sko­
jarzonym.

Gdy mamy układ wielobokowy, 
w tym przypadku trójkątowy (rys.
61), wówczas, jak to łatwo zauwa­
żyć, napięcie międzyfazowe równe 
jest napięciu fazowemu; natomiast 
prąd przewodowy równy jest róż­
nicy odpowiednich prądów fazo­
wych, np.

*12 “  *1 *9•

Rys 61Rozpatrzmy wielofazowy układ 
symetryczny z napięciami na fa­
zach różniącymi się tylko kątami przesunięcia faz, a więc

ui — Um sin co t,

u9 = Um sin

[•
u„ =  Um sin I oj t— (n— 1) t ]

Wyprowadźmy ogólny wzór na napięcie skojarzone. Weźmy 
w tym celu dowolne dwie sąsiednie fazy k i  k + 1:

uk = Um sin 

Uk + i = Um sin

[ c o ł - ( k - 1)'“ }

Odejmując stronami drugi wzór od pierwszego, otrzymamy dla 
napięcia skojarzonego, które oznaczymy przez up:

up = uk — uk + 1 C7m| s m [ . l - ( * - l , £ ]  —'.sin jjuf —

7*
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Przekształcając różnicę sinusów na zasadzie wzoru
n  . X —  U  X  +  Usm x — sin y =  2 sm — cos —

otrzymamy

up = 2 Um sin ^ cos [ » i - ( 2 * - l ) = ] -

= 2Um sin^sin |a> f +  ̂  — (2fc — 1, (2)

Widzimy stąd, że napięcie up jest przesunięte w fazie względem 
napięć fazowych; wartość maksymalna tego napięcia wynosi

Upm =  2Um sin^ ,
wartość skuteczna zaś

Up = 2 Uf sin ̂  , (3)
gdzie Uy stanowi napięcie fazowe.

Analogicznie możemy wyprowadzić wzór dla natężenia prądu 
skojarzonego w przypadku układu wielobokowego, gdy obciążenie 
faz jest jednakowe; otrzymamy wtedy

IP =  %If sin (4)
gdzie If stanowi natężenie prądu płynącego w dowolnej fazie.

§  25
MOC PRĄDÓW WIELOFAZOWYCH

Rozpatrzmy układ symetryczny n fazowy z jednakowym ob­
ciążeniem wszystkich faz.

Wartości chwilowe napięć będą 
«i =  Um sin w ł,

u2 = Um sin I cot —
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Każdy prąd fazowy względem swego napięcia będzie przesu­
nięty w fazie, np. o kąt (p wstecz; wtedy wartości chwilowe odpo­
wiednich prądów będą

i1 = Im sin (cot — (p),

I, =  Im sin

[ik = Im sin \a)t — (k — 1) '71
■<p

i,, = lm sin ĵ o)f — (n — 1) ^  — 99J.

Oznaczmy wartość chwilową mocy prądu w fazie k przez pk. 
Wówczas możemy napisać •

Pk = u k ik = Um I m sin (fc —1 ) sinawi — (/c—1)^—ę>J.
Na podstawie wzoru

sin x sin y = ~  j^cos (x — y) — cos (x +  y )]
będziemy mieli

Pk = |cos <p — cos ^2att — 2 (k — 1)

W układzie mamy n faz, a więc k zmienia się od 1 do n. Ponie­
waż dla n >  2, na podstawie twierdzenia z § 23,

 ̂ w r~ O ~1
£ c o s  2 « f - 2 ( k - l ) ^ - « p  =  0,

więc wartość chwilowa mocy prądu w całym układzie będzie

p = n ^"l^m cos <p = n Ul cos cp.
2

Widzimy stąd, że wartość chwilowa mocy układu nie zmienia 
się z biegiem czasu, czyli ma wartość stałą. Układy, w których to 
ma miejsce, nazywamy układami wyrównanymi. Oczywiście, że 
w tym przypadku moc średnia P  będzie miała taką samą wartość 
co i moc chwilowa. Każdy układ wielofazowy symetryczny jest 
układem wyrównanym.
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§ 26

PRĄD TRÓJFAZOWY

Rozpatrzmy bardziej szczegółowo najwięcej rozpowszechniony 
w praktyce prąd trójfazowy.

Jeżeli mamy połączenie gwiazdowe, to ze wzorów (2), (3) i (4) 
wynika:
dla k = 1, czyli między pierwszą i drugą fazą,

u12 =  2Um s i n s i n yojt +|r — V3 sinawi + 

dla k = 2, czyli między drugą i trzecią fazą,

«23 =  Um V3 sin (a> t — ;

dla k =  3, czyli między trzecią i pierwszą fazą,

«31 =  um̂ 3 ĉot — ~ n j  =  £/mV 3  s i n  

Up = C7/V3; / ,  =  If .
Dla połączenia w trójkąt będziemy mieli między fazami napięcie 
równe napięciu fazowemu, prąd przewodowy zaś będzie skojarzony

i przy jednakowym obciążeniu 
trzech faz

ip = if  V3.
W układzie gwiazdowym 

wprowadzamy czasami oprócz 
trzech przewodów idących od 
końców trzech faz, czyli prze­
wodów fazowych, jeszcze czwar­
ty przewód, idący od punktu łą­
czącego początki wszystkich faz, 
czyli tak zwanego punktu zero­
wego, który często bywa uzie­
miony; przewód ten nazywamy 
przewodem zerowym (rys. 62). 

Włączając odbiornik między dowolnym przewodem fazowym i prze­
wodem zerowym, otrzymamy na nim napięcie fazowe, włączając 
zaś odbiornik między dwa przewody fazowe, będziemy mieli na nim 
napięcie międzyprzewodowe — skojarzone.

Rys. 62
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Oznaczając przez I lf / 2, I3 wartości skuteczne prądów płyną­
cych w poszczególnych fazach, a przez I0 wartość skuteczną prądu 
płynącego w przewodzie zerowym, będziemy mieli na zasadzie I 
prawa K i r c h h o f f a

+ 12 + 13 + 10 =  0,
czyli

i 0 — 1 1 i 3-

W przypadku szczególnym, gdy wszystkie fazy są jednakowo 
obciążone i prądy będą się różniły tylko przesunięciem faz o ±  120°, 
będziemy mieli dla wartości chwilowych

i\ = Im sin (ot; ¿2 =  Im sin (cot — 120°); i3 =  l m sin (<ot + 120°).
Na podstawie twierdzenia z § 23

h +  *2 +  h  = 0)
a więc również

/ i  + / 2 + / 3 = 0;
w tym przypadku przez przewód zerowy żaden prąd nie będzie 
przepływał.

Jeżeli zaś obciążenie trzech faz nie jest jednakowe, wówczas
ii +  K + ¡a 4= 0; 10 4= 0

i przez przewód zerowy będzie 
przepływał prąd o mniejszym na 
ogół natężeniu niż natężenia prą­
dów fazowych.

Gdy mamy połączenie trój­
kątowe (rys. 63)

Wobec tego
i l  2 +  i  31 +  /  23 =  0 .

Zależności pomiędzy napięcia- Rys 63
mi fazowymi i międzyfazowymi,
a także pomiędzy napięciami i prądami, możemy przedstawić wy- 
kreślnie. Dla układu gwiazdowego z jednakowym obciążeniem faz 
odkładamy od dowolnego początku O (rys. 64) trzy promienie, wy­
rażające napięcia O A =  Ult OB = U2 i OC =  U3; łącząc między
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sobą punkty A, B i C, otrzymamy równoboczny trójkąt, którego 
każdy bok stanowi odpowiednie napięcie międzyfazowe, a więc 
między fazą pierwszą i drugą mamy napięcie BA, stanowiące geome­
tryczną różnicę napięć Ux i U2, widzimy, że to napięcie jest przesu-

7tnięte w fazie naprzód względem napięcia Ux o kąt 30° = następnie
6

CB stanowi napięcie między fazami drugą i trzecią, jako geometryczna 
różnica napięć U2 i U3; jak widać z wykresu, to napięcie między-

Ut

fazowe jest przesunięte wstecz względem napięcia Ux o kąt prosty; 
wreszcie AC  stanowi napięcie między fazami trzecią i pierwszą, jako 
geometryczna różnica napięć U8 i Ux, to międzyfazowe napięcie

jest przesunięte naprzód względem napięcia Ux 
o kąt 150°. Z równoramiennych trójkątów 
O AB, OBC  lub O AC otrzymujemy wiadomą 
zależność pomiędzy napięciami międzyfazo- 
wymi — skojarzonymi, i napięciami fazowy­
mi Up =  Uf \[3.

Na rys. 65 mamy zestawienie napięć i prą­
dów w układzie gwiazdowym również w przy­
padku jednakowego obciążenia wszystkich 
faz. Wszystkie prądy są przesunięte względem 
swych napięć fazowych o ten sam kąt cp (na ry­

sunku mamy opóźnienie prądów względem napięć).
W układzie trójkątowym napięcia fazowe i równe im napięcia 

międzyfazowe tworzą trójkąt zamknięty (rys. 66), natomiast prądy
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przewodowe będą skojarzone. Wykres dla prądów w przypadku 
jednakowego obciążenia faz otrzymamy taki sam jak dla napięć 
w układzie gwiazdowym (rys. 64).

§ 27
ROZKŁAD UKŁADÓW NIESYMETRYCZNYCH NA UKŁADY 

SYMETRYCZNE PRĄDU TRÓJFAZOWEGO

W symetrycznym układzie trójfazowym mamy trzy równe co 
do wartości wektory, przesunięte względem siebie o kąt 120°.

Mogą to być S E M  lub przy jednakowym obciążeniu wszystkich 
faz — prądy albo napięcia. Oznaczmy te wektory przez R, S i T 
(rys. 67), ich wspólny moduł przez 
W. Niech wektor R tworzy z pod­
stawową osią OX kąt a, wówczas

R = WeJa,
S =  We,(o~12°0), 
f  =  WV(a + 1 2CO

albo
R = We1'*,
Ś =  R e-J'no°, 
f  = Reil20°.

Rys. 67
Ponieważ

eyi2o° = cos 120° + / sin 120° = — ~  +  / y V 3,

e - ;T 2 0 °  _  cos 120° — / sin 120° = — j -J-Y3, 

więc oznaczając w skróceniu
1 • 1 /ó

a — —  ̂~2~V 3»
skąd

d2 = — y  — /'-|-V3,

będziemy mogli rozpatrywać trzy omawiane wektory w postaci

R, S = d2R, T = aR
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Wektor T jest przesunięty względem wektora R naprzód 
o kąt 120°, wektor S względem wektora T — również naprzód o kąt 
120°. Łatwo zauważyć, że & stanowi w rozpatrywanym zagadnieniu 
pewien czynnik, przez który mnożąc dowolny wektor przesuwamy

o. go naprzód o kąt 120°, natomiast 
/  mnożąc dowolny wektor przez a2 

przesuwamy go wstecz o kąt 120°. 
Zwróćmy również uwagę, że 

1 + a + d2 = 0, 
d3 = 1.

Rozpatrzmy teraz niesymetry­
czny układ R, S, T (rys. 68). Każdy 
z tych wektorów możemy zastąpić 
trzema składowymi, tak aby

R — R0 + R\ +  R2 
S  =  S 0 +  § ,  +  ś 2 

t  = T 0 + t  x +  f ,
( 5)

przy czym dobieramy
§0 =  R0, Si = d2i?x, Ś2 = dR2;
T o = n o, A  = a^i, t 2 = d2R2.

Otrzymujemy trzy 
grupy wektorów

0 Ro, Ro, Rq>
1 Rlf d2??!, d-Rj,
2 Rz, a R2, a2R2.

Każda z tych grup 
0, l i 2 przedstawia 
symetryczny układ; 
przy czym grupa 0 sta­
nowi jeden wektor, R ys. 69
grupa 1 odpowiada nor­
malnemu symetrycznemu układowi trójfazowemu, grupa 2 zaś różni 
się od normalnego układu tylko tym, że wektory S i T mają zmienioną 
kolejność. Często nazywają grupę 0 układem zerowym, grupę 1 
układem współbieżnym i grupę 2 układem przeciwbieżnym.
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W ten sposób każdy niesymetryczny układ trójfazowy możemy 
przedstawić przez trzy symetryczne układy składowe.

Podstawiając wartości poszczególnych wektorów składowych 
do układu równań (5), będziemy mieli

R =  /?o+ Ri +  R%
S =  R0 +  d2f?! +  &R2 
f  = R()-ł- o.R\ + q2/?2

(6)

Dodając stronami i biorąc pod uwagę, że 1 + a + a2 = 0, znajdu­
jemy

£<> = 4 - ^  +  3 + ( 7 )

mnożąc drugie równanie przez a, trzecie przez a* i dodając stronami 
wszystkie równania, otrzymamy

R + &§ + &2t  =  3 Rlt
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Skąd /łx =-J- {B +  dS +  a2T);

wreszcie, mnożąc drugie równanie przez a2, trzecie przez a i dodając 
stronami wszystkie równania, otrzymamy

B + d2Ś + d f  = 3 B2, 
skąd ,

B2 =  (i? + a2S + d f).

Wielkości B0, i?! i B2 można znaleźć również wykreślnie w spo­
sób następujący:

B0 równa się 1/3 geometrycznej sumy danych wektorów (rys. 69).
Dla znalezienia Bx przeprowadzamy najpierw wektory aS 

i a2T (rys. 70), następnie bierzemy x/8 geometrycznej sumy B, aS 
i a2T.

Wreszcie analogicznie znajdujemy (rys. 71) B2 jako %  geome­
trycznej sumy B, a2S i aT.

§ 28
MOC PRĄDU TRÓJFAZOWEGO

Rozpatrzymy, jak się wyraża moc prądu trójfazowego w naj­
ogólniejszym przypadku, gdy obciążenie poszczególnych faz jest 
różne, to znaczy, że i prądy płynące w przewodach, i napięcia między- 
przewodowe nie są jednakowe.
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Gdy odbiorniki połączone są w gwiazdę z trzema przewodami 
(rys. 72), wartość chwilowa mocy pobieranej przez odbiorniki wy-

n° S1 P = «1*1 + «2*2 + “ 3*3 >
gdzie ux, u2, u3, oznaczają wartości chwilowe napięć w poszczegól­
nych fazach odbiorników, zaś ix, i2, i3 wartości chwilowe prądów 
płynących w przewodach oraz, w tym t 
przypadku — przez poszczególne fazy 
odbiorników. Ponieważ

a i

ll + l2 +
czyli i3 = — ix 

możemy napisać
p =  («i — « 3) ix + (Ug 

a ê u, — fio = u

0,

« 3) ¿2;

13 Rys. 72

stanowi napięcie między pierwszą i trzecią fazą odbiorników, liczone 
w kierunku od końca trzeciej do końca pierwszej fazy; tak samo

«2 «3 = u2 3
stanowi napięcie między drugą i trzecią fazą, liczone w kierunku od

końca trzeciej do końca dru­
giej fazy; w ten sposób

P =  «13 ii + «23 ¿2 •
Przechodząc od wartości 

chwilowej mocy do wartości 
średniej, czyli do mocy czyn­
nej P, wprowadzając wartości 
skuteczne napięć i prądów i 
oznaczając przez q>1 różnicę 
faz prądu ix i napięcia uX3 oraz 
przez <p2 — różnicę faz prądu 
i2 i napięcia u23 (rys. 73), 

Rys. 73 otrzymamy

p  =  t / i s A c o s ę » !  +  t / 23/ 2 COS 9 V  (8 )

Gdy odbiorniki połączone są w trójkąt (rys. 74), będziemy mieli 
dla wartości chwilowej mocy układu

P ~  «12 *1 +  «23*2 +  «31 h  >

1
♦ U i  i
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gdzie u12, u23, u31 oznaczają wartości chwilowe napięć międzyfazo- 
wych, które w tym przypadku równe są napięciom fazowym. Kie­
runki tych napięć, zgodne z kierunkami prądów, które przyjęliśmy

jako dodatnie, wskazane są na 
rys. 74.

ii. Ponieważ w każdej chwili

«1 2  +  «2 3  +  «3 1  =  0 ,

czyli «1 2  =  «3 1  « 2 3 i

zaś «3 1  =  «131

Rys. 74

przeto możemy napisać

P =  «13  ( * i  —  *3) +  «23 (*« -  ¿1); 
ale L — i - = 1ip. 12 ii — i2/> i
gdzie ilp oraz i2p oznaczają prą­

dy płynące w pierwszym i drugim przewodzie.
W ten sposób

P — u 13l lp +  U23l 2p-

Jeżeli przez ę>x i <p2 oznaczymy różnice faz odpowiednio pomię­
dzy u13 i ilp oraz u23 i i2p 
i przejdziemy do wartości 
skutecznych napięć i prądów 
(rys. 75), otrzymamy dla mo­
cy czynnej rozpatrywanego 
układu trójkątowego (9)
P —  ̂' i3 Aipcos yy-j- U23I2pCOS<p2
wzór analogiczny do wzo­
ru (8).

Widzimy więc, że zarów­
no w układzie gwiazdowym 
jak i w układzie trójkątowym 
moc pobierana przez odbior­
niki wyraża się sumą dwóth 
składników, z których każdy 
oznacza pewną moc czynną. R ys. 75

Mierzenia mocy prądu
dokonywamy za pomocą przyrządów, które nazywamy watomie- 
rzami;  zawierają one dwie cewki: prądową i napięciową. W ogólnym 
przypadku, dla zmierzenia całkowitej mocy układu prądu trój fazo-
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wego musimy zmierzyć obie wyżej wyprowadzone moce składowe, 
czyli zastosować dwa watomierze.

W tym celu watomierze W1 i W 2 (rys. 76) włączamy przed od­
biornikami O, połączonymi w gwiazdę lub trójkąt, w ten sposób, że 
przez cewki prądowe płyną prądy przewodów 1 i 2, zaś cewki napię­
ciowe mierzą napięcia: pierwsza między 1 i 3 fazą — U13, druga między 
2 i 3 fazą — U23 ■

Moce wskazywane przez te watomierze odpowiadają składowym 
mocy we wzorach (8) lub (9), przy czym przy odchyleniu wskazówek 
watomierzy w tym samym kie­
runku należy te moce do siebie 
dodać, a przy odchyleniu w róż­
ne strony — odjąć.

Przy jednakowym obciąże­
niu trzech faz moc prądu trój­
fazowego wyrazi się wzorem 

P  =  3 f7 / cos  9?,

gdzie U i I oznaczają fazowe 
napięcia i prądy. Jeżeli wpro­
wadzimy do powyższego wzoru 
wielkości międzyprzewodowe, to

dla układu gwiazdowego U =  1=  Ip, dla trójkątowego zaś U=Up,
I yd

I — - ¡= ; wobec tego, po podstawieniu tych wartości do wzoru 
\ó

na moc, otrzymamy w obu przypadkach jeden i ten sam wzór
P  =  V3 UpIpc o s  <p.

Watomierze W 1iW 2 w przypadku jednakowego obciążenia trzech 
faz wskażą na ogół różne moce, ponieważ kąty przesunięcia faz <p1 
i ę>2 we wzorach (8) i (9) na ogól będą różne; tylko w przypadku, gdy 
prądy Jj, I2, 13 są w fazie ze swymi napięciami fazowymi, czyli gdy 
odbiorniki posiadają tylko oporność rzeczywistą, wskazywane przez 
oba watomierze moce będą sobie równe. Wtedy bowiem, jak łatwo 
sprawdzić na rys. 71 i na rys. 73,

<Pi= <P 2 =  30°,
wobec czego ze wzorów (8) lub (9) otrzymamy

P  = 2UP Ip cos 30° = V3 Up Ip ,

<p =  0 °.
przy czym
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Przy dowolnym kącie cp pomiędzy fazowym napięciem i fazo­
wym prądem zarówno w układzie gwiazdowym jak i w układzie 
trójkątnym

<Pi =  30 — <p, 
ę?2 = 30 + cp.

Wobec tego moce, które mierzą watomierze W x i Vk2, będą 
określone następującymi wzorami:

P x = U l cos {30°-cp),
P 2 = U l cos (30° + <p).

Stąd otrzymujemy
Px + P 2 = U l  (cos 30° cos cp +  sin 30° sin cp +  cos 30° cos <p —

— sin 30° sin cp) =  V3 U I cos cp,
P x — P 2 = U l  sin Cp.

Dzieląc stronami ostatni wzór przez poprzedni, będziemy mieli
. _/q"P i — P 2
18 f~ V3 P 7 T K '

W zależności od wartości i od znaku cp poszczególne moce mogą
7twypaść dodatnie lub ujemne, więc gdy 30° — cp >  P x < 0, gdy 

30» + cp>~, P2 < o.
W ten sposób moc równa jest sumie algebraicznej mocy wskazy­

wanych przez oba watomierze.

§ 29
WYZNACZANIE PRĄDÓW W  UKŁADACH PRĄDU TRÓJFAZOWEGO

Rozpatrzmy następujące zagadnienie. Mamy prądnicę prądu 
trójfazowego w połączeniu gwiazdowym (rys. 77), w każdej fazie 
działa S E M  o wartości skutecznej E\ od źródła są przeprowadzone 3 
przewody fazowe i przewód zerowy do odbiorników, które są również 
połączone w gwiazdę. Dane są poza tym wszystkie oporności uzwojeń 
prądnicy, przewodów i odbiorników; trzeba wyznaczyć prądy I lt / 2, 
/ 3 i J0, które będą płynęły w odpowiednich przewodach fazowych 
i w przewodzie zerowym, w przypuszczeniu, że odbiorniki w poszcze­
gólnych fazach różnią się między sobą, czyli że obciążenie faz nie jest
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jednakowe, a więc i w przewodzie zerowym będzie płynął pewien 
prąd. Oznaczmy oporność pozorną pomiędzy punktami 0  i 0 ', za­
wierającą oporność uzwojenia jednej fazy, oporność przewodu i opor­
ność odbiorników włączonych do tej fazy odpowiednio przez Z1, Z2 
i Z3, a oporność przewodu zerowego między tymiż punktami O i O' 
przez Z0; następnie oznaczmy S E M  działające w poszczególnych fa­

zach, różniące się tylko kątami przesunięcia faz, odpowiednio przez 
Ei, E2 i E3.

Na podstawie praw K i r c h h o f f a  będziemy mieli przy założeniu 
dodatnich kierunków prądów chwilowych, jak na rysunku,

A + 2̂ +  3̂ +  A> —
£ i =  l i ż i - i 0ż  o ,

F‘2 = 1%̂  2 i0Ż0 ,
£ 3 = / 3Z3 ;„ż 0.

Wyrażając z ostatnich trzech równań prądy I x, 12 i 13 i podsta­
wiając ich wartości do pierwszego równania, otrzymamy

Ei + 10Ż0 , E2 + I0Ż0 , E3 + 10Ż0 , f
' rr "> . +  ¿0

skąd

0̂ ŻQ =  —
A
Zi

0,

e2 e3+-■■*-+ -3- 
Ż2 Ż 3

1 1 1 1—----1—z----1--- ;----1—;—
Żi Ż2 Ż3 Żq

Ei? i + E2Y2 +  E3Y3 
Y 1 + Y 2 +  Y3 + Y0

( 10)

gdzie Yx, Y2, Y3 i F0 oznaczają przewodności pozorne odpowied­
nich części układu; stąd znajdujemy 10; podstawiając zaś otrzymane 
wartości I0Ż0 do powyższych równań, znajdziemy prądy I ±, 12 i I3. 
Należy zauważyć, że iloczyn I0Ż0 stanowi napięcie między punktami

Teoria prądów zmiennych 8



114 PRĄDY WIELOFAZOWE

0 i 0'. Przy rozwiązywaniu zadania należy jedną z S E M , np.E lt 
przyjąć jako wektor z kierunkiem podstawowym, wówczas
E ,=  E,

E 2 =  U  (cos 120° — /  sin 120°) =  £ ^ - i - / ^ ^  = _ ^ ( i + / V 3 Y  

£ 3 = £(008 120° + /sin 120°) =  £ ( ~  + / ^  = - y ^ l - / V 3 V

Przykład (rys. 78).
Dane Ex =  i?2 = E3 — 120 woltów 

oraz oporności poszczególnych części układu, wskazane na rysunku; 
trzeba znaleźć prądy Ix, / 2, I3 i I0.

Mamy
stąd f x =  0 ,919-/0 ,175, 

f 2 =  0 ,710-/0 ,103, 
f 3 = 0 ,483-/0 ,047, 

12,5.Y0 = G 0

Zx =  1,05 + /  0,2,
Ż 2= 1,38 + /0 ,2 ,
Ż 3 = 2,05 + / 0,2,
Ż fl =  i?0 = 0,08,

Biorąc kierunek za podstawowy i oznaczając przez T2j T3 i To 
kąty przesunięcia faz poszukiwanych prądów względem E1: będziemy

Ex =  220 woltów;
Ą  - - 1 1 0 ( 1 + /V3) ;
£ 3 = -n o (i  — /V3 ).
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Na zasadzie wzoru (10) otrzymujemy
» S. 2(0,919-/0,175)-(l+ /\ '3 )-(0 ,710-/0 ,103)-(1 - / W ) -(0,483-/0,047)
0 0 (0,919+0,710+0,483+12,5 )-/(0 ,175+0,103+0,047)

Po wykonaniu wskazanych działań i uczynieniu mianownika 
liczbą rzeczywistą, znajdujemy

10Ż0 = (— 4,53 + /4,38) woltów;
I0Z0=  6,2 woltów;

skąd /„  = (— 56,7 + /54,8) amperów
I0 = 78,6 amperów

tg y>0 =  —1,014, tp0 =  135° (bo w II ćwiartce).
Następnie obliczamy

l x =  (£ x + loŻ,,)?! =  (198,9 — /33,7) amperów 
Ix = 201,7 amperów

tg Wi = — 0,168, y>i= — 9°30' (bo w IV ćwiartce).
12 =  (— 99,4 — j 120,4) amperów 

I2 = 156,1 amperów
tg rp2 = 1,11, xp2 =  — 129°30' (bo w III ćwiartce).

I3= (— 45,3 + /99,3) amperów 
J3 = 109,1 amperów

tg \pa =  — 2,15, y>3 =  115° (bo w II ćwiartce).
Możemy teraz jeszcze znaleźć 

napięcia na poszczególnych fazach 
odbiornika.

Cx = 1XBX"  = 203 woltów,
U2 = 727?2'' =  207,6 woltów, 
t)s — I3B3" =  219 woltów.
Kąty przesunięcia faz tych na­

pięć względem będą takie same 
jak dla odpowiednich prądów, czyli 
Wii Tai rp3, ponieważ w rozpatrywa­
nym przykładzie odbiorniki posiadają 
tylko oporność rzeczywistą.

Znalezione wielkości przedsta­
wione są na wykresie (rys. 79),
OEx = Ex, OE2 = E,2 , OE3 = E3,
OI0 = I o, oux = ux, ou2 = u2

OIx = Ix, 
0U3 = u3.

Rys.

OI2 — 12, 0 / 3 = / 3,

8*
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Gdy odbiorniki są połączone w trójkąt, stosujemy metodę po­
daną przez Kenel ly ’ego, polegającą na przekształceniu trójkąta 
w równoważną gwiazdę. Nazywać będziemy gwiazdę (rys. 80) rów­
noważną trójkątowi, jeżeli oporności pozorne między trzema punk­
tami A, B i C gwiazdy będą takie same jak pomiędzy odpowiednimi 
punktami trójkąta, które powinny być znane.

Oporność pozorna pomiędzy punktami A i B trójkąta składa 
się z oporności pozornych Żs oraz Żx + Ż2, równolegle połączonych. 
Oznaczając tę oporność pozorną przez ZAB, będziemy mieli

Oporność pozorna pomiędzy punktami A i B gwiazdy wynosi

B

C

Rys. 80 a Rys. 80 b

Ż3 {¿ i  +  Ż2)
Z\ + ż 2 + ż 3

Z, AB — Z  A +  Z  B.

Warunek równoważności będzie spełniony, jeżeli

analogicznie

_  Źx (Ż2 +  Zs) 
Z 1  + Z 2 + Ż  3

oraz
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Z tych równań znajdujemy 

ZA = z 2z2^3

z« =

Z c =

ż i + z 2+ Z 3'
Z\Z a
+ Z 2 + Z  3 
Z\Z 2

Z\ + Ż  2 + Z 3
Bardzo łatwo można znaleźć oporności pozorne równoważnej 

gwiazdy sposobem wykreślnym. ^
Na rys. 81.

OA = Zj,
O B = Z 2,
O C= Z3,

OZ) = Z = + Z 2 + Zg .

W celu znalezienia np. ZA pi­
szemy na podstawie wyżej wypro­
wadzonego wzoru proporcję na­
stępującą:

ZĄ _  z 2 
z * ~  z  ‘

Musimy więc zbudować A OCM 
podobny A O DB, w którym 
<COM  = -ZDÓB, -K O C M =  Rys. 8i
= ODB ; wtedy powyższa pro­
porcja będzie miała miejsce i oczywiście OM — ZA.

§  30
PRĄD DWUFAZOWY

Układ dwufazowy symetryczny, jak o tym była mowa (§24), 
nie bywa stosowany, natomiast spotykamy w praktyce prąd dwu­
fazowy w układzie niesymetrycznym.

Jeżeli w dwóch uzwojeniach połączonych jak na rys. (82), 
tworzących w przestrzeni kąt prosty, powstają S E M  przesunięte 

n
w fazie o 2' > otrzymamy układ dwufazowy niesymetryczny.
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W uzwojeniach powstają S E M : et i e2, przesunięte w fazie
71o kąt — , a mianowicie

e, =  E„ sin to t-i m

oraz

/,

e2 = Em sin ot — ^  = — Em cos cot.

W układzie tym korzystamy z trzech przewodów: dwóch fazo­
wych, idących od końców faz, 
i zerowego, idącego od punktu 
połączenia początków faz, tak zwa­
nego punktu zerowego.

Napięcie międzyfazowe będzie 
napięciem skojarzonym; przy jed­
nakowym obciążeniu obu faz war­
tości chwilowe napięcia fazowego 
wynoszą odpowiednio

ux = Um sin cot,

u2 = Um sin(WÍ 2 ) - Um cos (»ł;

wartość chwilowa napięcia międzyfazowego będzie

U12 = U1 — «2 =  ^m(sin Cot + COS Cot) = Um~\/2 SU1 (tot + .

Przechodząc do wartości skutecznych napięcia, będziemy mieli

yo . 71 
1 2#12= #1 — # 2 =  U e' - U e '  2 = U + jU  = 17(1 + /1), 

gdzie U stanowi moduł napięcia fazowego.
Skąd

t/i2 =  Í/V2,
t g < ( # i ,  # 12) = 1 ,

< ( 0 1, 0 12) =
71

7 '
<4To samo otrzymalibyśmy z wykresu 

(rys. 83), gdzie O Ux = U1, OU2 = U2,
U2U ,=  U12.

Oznaczmy prąd wychodzący z fazy pierwszej przez Ix, z drugiej 
zaś przez I2. Przez przewód zerowy niech płynie prąd I0. Wówczas
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na podstawie I prawa K i r c h h o f f a

lub
A  + A  + A = o

i 0 = — (A + A).
Widzimy stąd, że przez przewód zerowy odpływa prąd o war­

tości równej sumie geometrycznej prądów obu faz; wobec tego prze­
krój przewodu zerowego powinien być większy od przekrojów prze­
wodów fazowych. Przy jednakowym obciążeniu faz, gdy Ix = I2 =  I, 
wartość skuteczna prądu w przewodzie zerowym wyrazi się tak:

A = 'V2.
Dla wyrażenia mocy rozpatrzonego układu dwufazowego przy 

jednakowym obciążeniu obu faz mamy
u1 =  Um sin w t, 

u2=  — Um cos o j  t
oraz wartości chwilowe prądów pobieranych z obu faz, np. przy 
obciążeniu indukcyjnym,

*1 =  A sin M  — <P)> 
i2 = — I„  cos (0)1 — (p).

___ £
Of-wwww1-

/, Z ,

±  Z,

/0 Zo

T^H
-0$ -

Rys. 84

W każdej chwili moc p takiego układu będzie 
p = u 1 ix + u2 i2.

Podstawiając do tego wzoru powyższe wartości, otrzymamy 
P = UmIm{sin cot sin (0)t — <p) +  cos out cos [ooł — 9?)} = UmIm cos (p. 

Wprowadzając zaś wartości skuteczne napięcia i prądu, 
p =  2 U I  cos <p.
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Wartość chwilowa mocy jest, jak widzimy, stała, nie zależy od
czasu, czyli układ jest wyrównany. Średnia moc P  wyrazi się tym
samym wzorem „  „ TT TJ P  =  2 U I  cos <p

lub, wprowadzając napięcie międzyfazowe Up= U V2 i prąd prze­
wodowy Ip =  /,

P= Up Ip cos <f.
Obliczanie prądów w układzie dwufazowym uskuteczniamy tak 

samo jak dla prądu trójfazowego (§29). Wprowadzając oznaczenia, 
jak na rys. 84, będziemy mieli:

f @1 +  loŻo 1 ^2 + A>̂ 0 t V ^1^1 + ^2^ 2
* 1 — ~ 2 — -------- --------—  » 0 — ZZ ^ ~  •Zj Z 3 f 1 + Yi + Y o

§ 31
WPŁYW WZGLĘDÓW EKONOMICZNYCH NA ROZWÓJ PRĄDÓW  

ZMIENNYCH WIELOFAZOWYCH

Rozpatrzmy następujące zagadnienie: mamy przenieść moc 
PkW  na odległość l km przy napięciu U. Porównajmy ilość metalu 
w przewodach, jaką należy zużyć przy przenoszeniu takiej samej 
mocy, przy tym samym napięciu, w rozmaitych układach prądu 
zmiennego, jednofazowego, trójfazowego i dwufazowego, tak aby 
strata mocy w przewodach była ta sama. Przy zwykłym jednofazo­
wym prądzie zmiennym

P =  U l  COS<p, (1 )

gdzie I  oznacza natężenie przenoszonego prądu, zaś <p — kąt prze­
sunięcia fazy tego prądu względem napięcia U.

Dla przeniesienia tej mocy potrzebujemy dwóch przewodów 
Oznaczmy oporność każdego przewodu przez B1, przekrój jego 

przez Sjj wówczas strata mocy w przewodach wyniesie

A P = 2 R R x. (2)

W tym przypadku objętość metalu użytego na przewody wy­
nosić będzie „ ,vx =  2 s j. (3)

Dla prądu trójfazowego obliczamy moc ze wzoru
P = 2̂>Up Ip cos (p.
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Przy połączeniu w trójkąt Up =  U i wtedy 
P  =  £/(■/*, V3) cos cp.

Zestawiając ten wzór z wzorem (1), otrzymamy 
U I cos (p — U Ip Y3 cos cp , 

skąd i _  I
P V3 ‘

Widzimy stąd, że przy przenoszeniu jednej i tej samej mocy 
w postaci prądu trójfazowego przez każdy przewód płynie prąd Y3 
razy mniejszy od prądu, który jest potrzebny przy zwykłym prądzie 
jednofazowym.

Dla rozpatrywanego prądu trójfazowego potrzebujemy trzech 
przewodów; oznaczmy oporność każdego z tych przewodów przez B3, 
przekrój zaś przez s3.

Strata mocy w przewodach wyniesie
A P  = 3 = I2B3.

/  Zestawiając ten wzór z wzorem (2), otrzymamy 
PB 3 =  2 / 2i?1; B3 = 2 B 1 .

Widzimy stąd, że oporność przewodów dla otrzymania tej sa­
mej straty mocy w przypadku prądu trójfazowego musi być dwa 
razy większa od poprzedniej, czyli

Objętość metalu użytego na przewody będzie w tym przypadku 

v3 = 3s3l =  — •

Biorąc stosunek tej objętości do vx z wzoru (3), otrzymamy ®/4, 
czyli 75%.

To oznacza, że przy układzie trójkątowym na przewody zuży­
wamy 75% materiału potrzebnego w przypadku prądu jednofazo­
wego, czyli uzyskujemy 25% oszczędności.

Rozpatrzmy teraz z kolei układ gwiazdowy prądu trójfazowego; 
zakładamy, że wszystkie fazy są jednakowo obciążone. Moc prądu
będzie .—

P = \3UpIp cos cp =  3UIp cos cp.
Po zestawieniu tego wzoru z wzorem (1) otrzymamy
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Oznaczmy oporność każdego z trzech przewodów przez R'3, 
przekrój zaś przez s’3. Strata mocy będzie

Aby ta strata mocy była ta sama co w przypadku, gdy stosu­
jemy prąd jednofazowy, musi być przez porównanie z wzorem (2)

Porównując ten wzór z wzorem (3) widzimy, że ilość mate­
riału zużytego na przewody w przypadku układu gwiazdowego 
z trzema przewodami stanowi 1/i , czyli 25% tego, co jest potrzebne 
przy prądzie jednofazowym; oszczędność wynosi 75%.

Rozpatrzmy teraz układi gwiazdowy z czwartym przewodem 
zerowym; załóżmy, jak to zwykle bywa, że przekrój tego przewodu 
będzie dwa razy mniejszy od przekroju przewodów pozostałych. 
Wówczas objętość zużytego na przewody materiału wyniesie

W porównaniu do objętości metalu przy zwykłym prądzie jedno­
fazowym (wzór 3) wynosi to około 29%.

Przy układzie dwufazowym niesymetrycznym z trzema prze­
wodami: dwoma fazowymi i jednym zerowym, moc prądu wynosi

A P = 3 v ą ' = - ^ / ? ' 3 .

4 r /? '3 = 2I2R1: skąd R'3 = 6 R 1.

Przekrój przewodu w danym przypadku stanowić będzie

Objętość metalu użytego

P  = 2 U Ip cos q>.
Porównując ten wzór z wzorem (1) mamy

Ponieważ prąd płynący w przewódzie zerowym
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Oznaczmy oporność przewodów fazowych przez P 2, oporność 
przewodu zerowego przez P '2, przekroje zaś odpowiednio przez
s, i s

Strata mocy w przewodach wyniesie
A P = 2Ip2B2 +  I02B'2.

Podstawiając tu na t  i I0 ich wartości, otrzymujemy 

A P  = —  (B2 + B'2).

Przez przewód zerowy płynie prąd Ip \J2; aby spadek napięcia 
w tym przewodzie był ten sam co w innych przewodach, oporność 
jego musi być proporcjonalnie mniejsza, czyli

J ?2
V 2

a przekrój

B', '2 7

s 2 —
Wobec tego strata mocy wynosi 

PA P 2 R* (I + w H 85 PB 2.

Przyrównując tę stratę do straty mocy przy prądzie jednofazo­
wym (wzór II), otrzymamy

0,85 PB 2 =  2P B 1:
skąd

P 2= 2,3 Bx.
Z tego wynika, że przekrój przewodów powinien być w danym 

przypadku tyleż razy mniejszy, czyli

s, = 0,435! .2 2,3
Wobec tego

s' 2 =  s 2 } / 2 =  0,43 Y^Sj, =  0,605!. 
Objętość materiału zużytego wyniesie

a2 = (2s2 + s'2)l =  (0,85 + 0 , 6 0 ) l,45s!/. 
W stosunku do objętości vx (wzór 3) otrzymamy

* # = 7 3 % .
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§  32
POLA WIRUJĄCE

H

Osobliwością prądów zmiennych wielofazowych jest powstawa­
nie tak zwanego wirującego pola magnetycznego.

Przypuśćmy, że mamy cewkę, przez którą płynie prąd zmienny 
__________ o wartości chwilowej

i — Im sin (wt — 9o).
W dowolnym punkcie A przestrzeni 

prąd ten (rys. 85) wytwarza pole magne­
tyczne, którego natężenie H  zmienia się 
sinusoidalnie w czasie, zależnie od zmiany 
prądu w cewce.

Jeżeli mamy dwie połączone ze sobą 
cewki tworzące kąt prosty, przez które 
przepływa jeden i ten sam prąd sinusoi­

dalny, wówczas każda cewka w dowolnym punkcie otoczenia wy­
woływać będzie w sposób analogiczny natężenie pola o wartościach 
H1 i H2. H1 i H2, zmieniając się sinusoidalnie w czasie w sposób

H ł

Rys. 85

jednakowy, dają w każdej chwili wypadkową H, która będzie się 
również zmieniać sinusoidalnie, przy czym kierunek jej pozostawać 
będzie stały (rys. 86).

Zupełnie odmienne zjawisko otrzymamy przy prądach wielo­
fazowych. Jeżeli na przykład mamy układ dwufazowy, wtedy przez
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uzwojenia będą płynąć prądy (przy jednakowym obciążeniu faz)

oraz

H

h  =  4 s i n  { ( o t  —  tp)

w dowolnym punkcie wytworzonego pola magnetycznego natężenie 
pola będzie wypadkową składowych Hx i f / 2, wywołanych prądami 
ix i i2. Wartości tych składowych będą na ogół różne (rys. 87). Roz-
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patrzmy chwilę, gdy H1 przybrało wartość największą, wówczas 
H2 =  0. Wypadkowe natężenie pola w takiej chwili będzie

H1.
W chwili następnej wartość Hx się zmieni, a mianowicie zmniej­

szy się, zaś wartość H2 wzrośnie; wskutek tego wypadkowa H zmieni 
swój kierunek itd., obracając się o pewien kąt od położenia pierwot­
nego. Łatwo zauważyć, że wektor natężenia pola obraca się z szyb­
kością kątową równą pulsacji prądu zmiennego.

Pole, w którym natężenie zmienia w ten sposób swój kierunek, 
nazywamy polem wirującym.

Analogicznie otrzymalibyśmy pole wirujące, rozpatrując trzy 
przesunięte względem siebie w przestrzeni uzwojenia prądu trój­
fazowego. Jak widzimy, warunkiem koniecznym do powstania pola 
wirującego jest obecność co najmniej dwóch składowych natężenia 
pola, przesuniętych względem siebie i w czasie, i w przestrzeni.

Własności wirujących pól magnetycznych są wyzyskane w elek­
trotechnice w silnikach, licznikach indukcyjnych itd.

Rozpatrzmy teraz, jakie linie krzywe opisuje koniec wektora 
natężenia pola w dowolnym punkcie wirującego pola magnetycz­

nego w niektórych szczególnych 
przypadkach. Przy prądzie dwu­
fazowym z jednakowym obciąże- 

i niem faz będziemy mieli (rys. 88)

*1 = SÍn M  — 9>),
2̂ ¿2 — I m cos (co t ę>).

Oznaczając wartości chwilowe 
natężenia pola wywołanego tymi 

prądami, w dowolnym punkcie M  pola przez hx i h2, ich wypadkową 
zaś przez h, będziemy mieli

K  =  H m s i n  M  — ?1),

Rys. 88

h2 =  — Hm COS (wt — <p).
Składowe te są prostopadłe do siebie. Biorąc osie współrzędnych 

w ten sposób, aby w punkcie M  był początek, oś X  była skierowana 
w prawo w kierunku składowej h2, zaś oś Y prostopadle do góry 
w kierunku składowej hx, będziemy mieli dla końca wektora natę­
żenia pola h następujące współrzędne

x = — Hm cos (co i — <p),
U ~ Hm Sin {<°t — (p).
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Z tych równań otrzymujemy
x2 + y2 — Hm2.

Jest to równanie koła ze środkiem w początku współrzędnych 
i z promieniem równym Hm. To znaczy, że koniec wektora, którego 
moduł wynosi Hm, opisuje koło z prędkością kątową ca.

Jeżeli przy prądzie dwufazowym obciążenia obu faz są różne, 
ale prądy płynące w fazach są jednakowo przesunięte w fazie wzglę­
dem swych S E M, wówczas

h  =  A msin M ~  <P),

¿2.7= — hm cos (caf — 99), 
y = K  = Hlm sin (caf — 99), 
x = h2 = — H2m cos (caf — 9?),

skąd
y2 i

Jest to równanie elipsy. Koniec wektora /1 opisuje więc z pręd­
kością kątową ca elipsę, której półosie równe są Hlm i H2m .

Przy prądzie trójfazowym 
w układzie gwiazdowym z jed­
nakowym obciążeniem wszyst­
kich faz mamy

h = Im sin (caf— 9?),

i2 = Im sin 

¿3 =  -¿m S in

¿»1 =  -fim Sin (caf — 9?),

fi2 = Hm sin

fig = sin

Biorąc kierunek h± za oś X, a prostopadle do tej osi oś Y (rys. 89) 
1 oznaczając rzuty wypadkowego wektora h na osie współrzędnych
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przez x i y, będziemy mieli
2 2 1x — /ij 4- h2 cos n + h3 cos -g- n = hx — g- (h2 + h3),

5 V3y = h3 cos -g- +  h2 cos -g- n =  -v2— (h3 — h2); 

po podstawieniu wartości hx, h2 i h3 otrzymamy

x =  Iim ( sin (cof — 9o) —- i  ĵ sin ^(ot — <p — 7l j +

+  sinawi — (p +  71̂ j|  =

= Hm | sin (cot — (p)  i-| j2 sin [cot — (p) COS-̂ j- w jj =

= j sin (co f — 9?) +-g- sin (co 1 — 95) | = -g - Hm sin (cot — cp),

y = Hm l̂ sin ĈOt — <p +  — sin ^cof — (p — =

a/3  2 3= - ̂  H m • 2 sin -g-yrcos (cof— <p) = ~2 H m cos (cof— 9?),
skąd

x2 + y2 -

koniec wektora h opisuje więc koło z prędkością kątową co; moduł
3

tego wektora, czyli promień koła, wynosi
/w

Przy obciążeniach niejednakowych koniec wektora h opisuje na 
ogół złożone krzywe.



R O Z D Z I A Ł P I Ą T Y

ZJAWISKA MAGNETYCZNE PRZY PRĄDACH 
ZMIENNYCH

§ 33
HISTEREZA MAGNETYCZNA

Gdy ciało ferromagnetyczne, np. żelazo, po raz pierwszy pod­
lega magnesowaniu, indukcja B w tym środowisku wzrasta od 
zera do pewnej wartości, zależnie od natężenia pola magnetycznego H. 
Przebieg indukcji w tym przypadku dają nam na wykresie cha­
rakterystyki magnesowania (rys. 90), których kształt zależny jest 
od rodzaju ciała ferromagnetycznego. Jeżeli po namagnesowa­
niu żelaza zaczniemy 
zmniejszać indukcję 
przez zmniejszenie na­
tężenia pola, wtedy 
indukcja nie będzie 
się zmieniała według 
tej samej krzywej, 
lecz z pewnym opóź­
nieniem. Na rys. 91 
wskazany jest prze­
bieg indukcji w przy­
padku magnesowania 
i rozmagnesowywania pys. 90
ciała ferromagnetycz­
nego. Krzywa OA jest to krzywa pierwotna, dająca przebieg 
indukcji w środowisku magnesowanym po raz pierwszy. Największa 
wartość indukcji AA' odpowiada wartości natężenia pola OA'. 
Gdy natężenie pola zacznie się zmniejszać, indukcja spada według

Teoria prądów zmiennych 9
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krzywej AC w ten sposób, że przy H =  0, B =  OC, to znaczy, 
że pomimo zniknięcia pola magnetycznego, w środowisku pozo­
staje jeszcze tak zwany magnetyzm szczątkowy, wobec czego in­
dukcja magnetyczna nie staje się równa zeru. Zmieniając następ­
nie kierunek natężenia pola, zmieniamy indukcję według krzywej 
CDE  w ten sposób, że w punkcie D, gdy B — 0, natężenie pola H 
ma wartość ujemną OD. Taką wartość natężenia pola, która jest 
potrzebna dla sprowadzenia indukcji do zera, nazywamy natęże­

niem powściągającym (koercyjnym). 
Po doprowadzeniu indukcji B do 
wartości ujemnej EE' dla H =  OE', 
gdy zaczniemy zmniejszać natęże­
nie pola do zera, a następnie znów 
zmienimy kierunek na dodatni — 
indukcja będzie miała przebieg po 
krzywej EFG A . Rozpatrzone zja­
wisko, polegające na tym, że zmia­
na indukcji opóźnia się względem 
zmiany natężenia pola, nazy­
wamy histerezą magnetyczną. Obie 
krzywe A C D E F G A  tworzą tzw. 

obieg albo cykl histerezy. Obieg ten dla różnych ciał ma różny 
kształt i zależy również od największej wartości B, do której do­
prowadzamy namagnesowanie.

Przy prądzie zmiennym powstaje pole magnetyczne o zmien­
nym natężeniu; liczba zmian odpowiada częstotliwości prądu zmien­
nego. Oczywiście, że w ciele ferromagnetycznym znajdującym 
się w takim polu magnetycznym — zachodzi 
zjawisko histerezy magnetycznej. Dla przy­
rostu energii magnetycznej Wm, odniesionej 
do jednostki objętości obwodu magnetycz­
nego, gdy indukcja zmienia się od O do B, 
mamy wzór

Wr HdB.

Łatwo jest zauważyć, że całka w tym wzorze odpowiada po­
wierzchni O A M  (rys. 92). Możemy więc powiedzieć, że energia ma­
gnetyczna przy zmianie indukcji od O do B jest proporcjonalna do 
tej powierzchni. Rozpatrując obieg histerezy przekonamy się, że
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energia magnesowania zachodzącego raz po krzywej EFGA, drugi 
raz po krzywej ACD E  — ma różne wartości; przy magnesowaniu 
zużywamy energię z zewnątrz pobieraną, przy rozmagnesowywaniu 
otrzymujemy ją z powrotem, lecz w mniejszej ilości; zachodzi więc 
strata energii, która, jak wykazały doświadczenia, przejawia się 
w postaci ciepła. Ta strata energii przy jednym całkowitym obiegu 
magnesowania jest proporcjonalna do powierzchni objętej przez obieg 
histerezy; łatwo to jest sprawdzić rozpatrując energię odpowiadającą 
dowolnej zmianie indukcji, 
np. od Bx do B2 (rys. 93): 
energia zużyta przy magne­
sowaniu po krzywej N M  
jest proporcjonalna do po­
wierzchni PMNQ, energia 
zaś oddana przy rozma­
gnesowywaniu jest pro­
porcjonalna do powierzchni 
PM'N'Q; więc strata ener­
gii będzie proporcjonalna 
do różnicy, czyli do po­
wierzchni zakreskowanej 
M N Ń 'M ' ; rozpatrując 
zmianę indukcji przy cał­
kowitym obiegu magneso­
wania, czyli w granicach o d —B d o + B ,  znajdziemy w ten sposób, że 
strata energii przy jednym obiegu histerezy jest proporcjonalna do 
powierzchni objętej przez ten obieg. W elektrotechnice obchodzi 
nas przeważnie strata mocy w postaci ciepła, spowodowana zjawi­
skiem histerezy. Dla obliczenia tej straty mamy dwa wzory. Pierwszy 
wzór, Steinmetza,

PH =  r]fB j’6 10" 7 watów,

gdzie PH oznacza stratę mocy w jednym cm3 środowiska, / oznacza 
częstotliwość indukcji, czyli w przypadku otrzymywania pola magne­
tycznego za pomocą prądu zmiennego częstotliwość tego prądu, 
Bm — wartość maksymalną indukcji magnetycznej w rozpatrywanym 
środowisku, wyrażoną w gausach, zaś rj —  współczynnik zwany 
współczynnikiem histerezy magnetycznej, który jest zależny od ma­
teriału; tak np. dla blachy twornikowej współczynnik ten wynosi 
od 0,001 do 0,002, dla stali 0,01 do 0,02.

8»
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Doświadczenia wykazały, że spółczynnik histerezy magnetycznej 
we wzorze Ste i nmetza  nie jest wielkością stałą dla danego gatunku 
żelaza, zwłaszcza miękkiego; zależy on od indukcji magnetycznej, 
co się szczególnie uwydatnia przy większych wartościach tej indukcji.

Tak np. dla blachy twornikowej przy maksymalnej wartości 
indukcji Bm =  4000G, rj =  0,00137, zaś dla Bm =  16000G, 
i) =  0,00185, natomiast dla stali odchylenia są nieznaczne.

Drugi wzór, podany przez Richtera,  ma postać

Ph =  f [ «  + ß (löQjj-) ]  watow>

gdzie PH, f i Bm mają te same znaczenia co i w poprzednim wzorze, 
S t e i n me t za ,  zaś a i ß stanowią współczynniki zależne od materiału.

Dla większych wartości Bm, powyżej 1000 G, Richter podaje 
wzór strat na 1 kg materiału w postaci

Ph —
y f (  Bm V  
100 V 10000 / watów;

r] dla blachy twornikowej ma wartości 4,4 — 4,7; dla blachy wysoko- 
wartościowej 2,4 — 3,0.

Jak widać, w obu tych wzorach strata mocy na histerezę jest 
proporcjonalna do częstotliwości indukcji magnetycznej.

Rozpatrzmy teraz, jaki wpływ wywiera zjawisko histerezy 
magnetycznej na przebieg prądu zmiennego, powodującego zmienne 
pole magnetyczne. Jeżeli mamy np. cewkę posiadającą z zwojów 
o bardzo małej oporności rzeczywistej, bez rdzenia żelaznego, i przez 
tę cewkę przepuścimy prąd zmienny o przebiegu sinusoidalnym, 
wówczas indukcja magnetyczna wewnątrz cewki również będzie 
miała przebieg sinusoidalny; powstanie wewnątrz cewki strumień 
magnetyczny, którego wartość chwilową <Pt możemy wyrazić wzorem

@t =  &m sin o j  ł .

Pod wpływem tego zmiennego w czasie strumienia powstaje 
w cewce S E M  indukcji własnej, której wartość chwilową określamy 
ze znanego wzoru

d 0 , , .  ,  .
Z ■ =  — WZ<Pm COS 0)t  == t ú Z 0 m s in

z tego wzoru widzimy, że największa wartość S E M  indukcji własnej 
wynosi coz0m i że ta S E M  jest opóźniona w fazie względem wy­
wołującego ją strumienia o kąt prosty. Jeżeli rozpatrywany strumień
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powoduje powstanie S E M , to, na odwrót, dla otrzymania takiego 
strumienia musimy z zewnątrz dać napięcie, które w każdej chwili 
będzie

u =  — e,
czyli

u = — mz0m sin

= co z 0 m sin (wt +

WZ<l>m COS U) t =

)
Jak widzimy, napięcie z zewnątrz przyłożone jest przyśpieszone 

w fazie względem strumienia magnetycznego o kąt prosty, czyli 
strumień magnetyczny jest opóźniony w jazie o kąt prosty względem 
wywołującego go napięcia. W przypadku powstawania S E M  indukcji 
własnej strumień magnetyczny jest przyczyną, a S E M  skutkiem, 
w drugim przypadku przyczyną jest napięcie, zaś skutkiem jest 
strumień magnetyczny; widzimy więc, że w rozpatrywanym zagad­
nieniu skutek jest opóźniony w fazie względem przyczyny o kąt prosty.

Z ostatniego wzoru wynika, że maksymalna wartość Um na­
pięcia z zewnątrz przyłożonego wynosi

U m =  2 jifz 0 m\ ( 1)

wprowadzając wartość skuteczną U tegoż napięcia, będziemy mieli
2 nfz0 m,

skąd _
U = V2 n fz0 m;

ponieważ yj2n w przybliżeniu równa się 4,44, dla wyrażenia zaś na­
pięcia w woltach należy prawą stronę ostatniego wzoru pomnożyć 
przez 10-s , otrzymamy wzór praktyczny, używany w elektrotechnice,

U =  4,44f z 0 m 10~8 woltów (2)
lub

U 1°8 ' ”  (3)makswelów4,44/z
i tak samo dla S E M  indukcji powstającej pod wpływem strumienia 
magnetycznego 0  będziemy mieli w jednostkach bezwzględnych

Em =  2 n fz0 m, (4)
E = \ 2n fz0m,

zaś w woltach

E =  y2tt/ z fpm 10~8 =  4,44fz 0 m 10-8 woltów. (5)
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Ponieważ strumień 0 m opóźniony jest w fazie względem na­
pięcia U o kąt prosty, tak samo jak i prąd przy oporności indukcyjnej, 
wnioskować możemy, że prąd I przepływający przez cewkę jest 
w fazie ze strumieniem 0. Prąd ten I nazywamy prądem wzbudza­
jącym lub magnesującym.

Rozpatrzmy, jaki jest przebieg prądu magnesującego w po­
równaniu z przebiegiem indukcji lub strumienia magnetycznego, gdy

Rys. 94

w cewce jest rdzeń żelazny, a więc w obecności zjawiska histerezy 
magnetycznej.

Strumień 0 t z biegiem czasu ma przebieg sinusoidalny; prąd 
magnesujący O'L' (rys. 94), odpowiadający krzywej pierwotnej in­
dukcji O A, jest w fazie ze strumieniem, natomiast przy następnym 
magnesowaniu wskutek histerezy zachodzi przesunięcie fazy prądu 
względem strumienia, przy czym krzywa prądu staje się odkształcona.

Krzywa K'M'D'.L' odpowiada krzywej’ indukcji CMDA, zaś 
krzywa L'N'F' — krzywej indukcji A N F , 0'D' = OD, punktom 
M  i N  (prąd równy zero) odpowiadają punkty M' i N' na krzywej 
prądu itd. Widzimy, że wobec zjawiska histerezy krzywa prądu 
K'D'L'N' jest odkształcona i przesunięta w fazie względem strumie­
nia w ten sposób, że prąd wyprzedza w fazie strumień. Prąd ten mo-
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żerny rozpatrywać jako sumę dwóch prądów: takiego, który idzie na 
magnesowanie, jest to prąd wzbudzający, czyli magnesujący img, oraz 
prądu idącego na wytworzenie ciepła wywołanego zjawiskiem histe- 
rezy, oznaczmy go przez ih.

1 = Lg + h-
Dla przybliżonych rozważań wprowadzamy zamiast prądu od­

kształconego prąd zastępczy sinusoidalny, mający tę samą wartość 
skuteczną co istniejący prąd i takie przesunięcie w fazie względem 
napięcia, aby moc czynna prądu sinusoidalnego była równą mocy 
wytwarzającej ciepło histerezy; wówczas wartość skuteczną I takiego 
zastępczego prądu sinusoidalnego możemy rozłożyć na sumę geome­
tryczną prądu magnesującego Img i prądu Ih idącego na wytwarzanie 
ciepła histerezy, czyli

^ mg "b '  h '
Pierwszy prąd Img jest w fazie ze strumieniem, drugi zaś Ih 

(czynny) jest w fazie z napięciem.
Oba te prądy i prąd wypadkowy przedstawione są na rys. 95.
Oznaczając kąt odchylenia prądu od strumienia z powodu histe­

rezy przez a, widzimy, że
Ih= I sin a

oraz
l mg =  1 cos a;

kąt a nazywamy kątem histerezy. Jest on tym większy, im większy
jest wpływ histerezy. Mnożąc U przez Ih
otrzymamy moc prądu straconego na hi- 
sterezę Ph, czyli

Ph = U Ih = U l  sin a.

Dla słabych pól magnetycznych indukcja B zmienia się propor­
cjonalnie do H, czyli ta część charakterystyki magnesowania jest 
linią prostą. Rozpatrzmy (rys. 96) punkt M, dla którego natężenie
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pola = H, indukcja zaś = B. Przy małym zmniejszeniu natężenia 
pola o AH indukcja zmniejszy się o AB, gdy zaś z powrotem dopro­
wadzimy natężenie pola do poprzedniej wartości H, indukcja przyj­

mie znowu wartość B. Stosunek ¡ir AB 
A  H nazywamy przenikalnością

magnetyczną odwracalną. Przenikalność tę bierze się pod uwagę 
wówczas, gdy żelazo magnesuje się prądem stałym i na prąd stały 
nakłada się słaby prąd zmienny. Przenikalność odwracalna jest na 
ogół mniejsza od przenikalności magnetycznej punktów znajdują­
cych się na obiegu histerezy.

§  34
PRĄDY WIROWE

W masach metalowych znajdujących się w zmiennym polu 
magnetycznym powstają prądy indukcyjne, mające na ogół różne 
kierunki i tworzące jakby wiry w tych masach. Prądy te, zwane są 
prądami wirowymi lub prądami F o u c a u l t a  od fizyka, który pierw­
szy je spostrzegł; wytwarzają one ciepło i powodują w ten sposób 
stratę mocy. Straty te na ogół można obliczyć tylko w przybliżeniu, 
zakładając, że mają one przebieg prawidłowy i że indukcja magne­
tyczna we wszystkich punktach rozpatrywanej masy ma jednakową

wartość. W elektrotechnice musimy 
się liczyć przeważnie ze stratami mo­
cy, powstającymi w ośrodkach ferro­
magnetycznych, gdzie indukcja ma­
gnetyczna osiąga największe wartości, 
a więc głównie w masach żelaznych 
w postaci okrągłych drutów lub bla­
chy. Ograniczymy się więc tylko do 
tych dwóch przypadków.

Rozpatrzmy kawałek okrągłego 
drutu o długości 1 cm i średnicy 
d cm, znajdującego się w zmiennym 
polu magnetycznym (rys. 97). Induk­
cja magnetyczna, a więc i strumień — 

mają kierunek prostopadły do płaszczyzny przekroju poprzecznego 
i równoległy do osi, czyli do długości tego drutu. Podzielmy cały 
drut na nieskończenie wielką liczbę walców współosiowych o ściankach
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nieskończenie małej grubości dx. Rozpatrując jeden z takich wal­
ców w odległości x od osi, otrzymamy obwód zamknięty o długości 
2nx cm i przekroju dx ■ 1 = dx cm2. Pole objęte tym obwodem wy­
nosi nx2. Zakładając, że pole magnetyczne, w którym się znajduje 
rozpatrywany kawałek drutu, jest jednostajne, i oznaczając przez Bm 
maksymalną wartość indukcji w dowolnym punkcie, otrzymamy 
dla maksymalnej wartości strumienia objętego rozpatrywanym obwo­
dem wzór

</> nx2B„

Oznaczając przez Ex wartość skuteczną SEM  indukcji powsta­
jącej w obwodzie pod wpływem tego strumienia, będziemy mieli na 
podstawie wzoru (5)

Ex =  4,44/<I>xm 10-8 woltów
albo

Ex = 4,44 fn x2Bm 10 8 woltów.
Oporność rozpatrywanego obwodu wynosi

2nx
Rx = Q dx

gdzie g oznacza oporność właściwą metalu drutu. Strata mocy w po­
staci ciepła wyniesie

dPx = 1\ Rx = E£  =

-  10~ 16 _  10nf*Bm*a?10^_ dx w a tó w
Q 2 n X  Q

Dla znalezienia strat w rozpatrywanym kawałku drutu wzór 
ten należy scałkować w granicach zmiany x, czyli od zera do d/2. 

Otrzymamy

p  =  p  2
1 za ■LJm

X* 10- i 6 5 nf2
32 g Bm2d4 10- 16 watów.

Dla otrzymania straty mocy na 1 cm3 objętości żelaza musimy
70

ostatni wyraz podzielić przez-7*— ; strata więc na 1 cm3 żelaza wynosi

Pa =  -E-— Bm2 d2 10- 16 watów.8 Q

Dla określenia straty mocy zachodzącej w blasze rozpatrzmy ka­
wałek blachy o długości 1 cm i o przekroju poprzecznym następują-



138 ZJAWISKA MAGNETYCZNE PRZY PRĄDACH ZMIENNYCH

cych wymiarów: grubość d cm i szerokość 1 cm (rys. 98). Indukcja 
magnetyczna ma kierunek prostopadły do płaszczyzny przekroju 
i wartość jednakową we wszystkich punktach.

Podzielmy rozpatrywany kawałek blachy na nieskończenie cien­
kie blaszki o grubości dx. Dwie takie blaszki rozmieszczone syme­
trycznie po obu stronach linii środkowej AB  w dowolnej odległości x,

A łącznie z bokami, możemy rozpa­
trywać jako obwód ab c f dla prą­
du powstającego pod wpływem 
S E M  indukcji. Pole objęte tym 
obwodem wynosi 2x cm2, więc od­
powiedni strumień magnetyczny 
będzie

CP,„ =  2 xB m,xm m 1

wobec tego S E M  indukcji po­
wstająca w tym obwodzie będzie

Ex =  4,44f2xBm 10-8 woltów.
Długość obwodu możemy w 

przybliżeniu przyjąć równą 2 cm, 
nie uwzględniając krótkich boków 
o długości 2x; przekrój obwodu 
2; wobec tego oporność będzie

Strata mocy w rozpatrywanym obwodzie wynosi

dp  =
* R, ~

40 f2Bm2x2dx 10— watów.

Stratę mocy dla całego kawałka blachy otrzymamy całkując 

wzór ten w granicach od x = 0 do x = — , czyli

p  = j '40f2Bm2x2dx 10_18 =  40 f2Bm210_16

- i o -  -  -t- 10_16 w atów .
q 24 3 q
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Dla określenia straty mocy na 1 cm3 objętości blachy musimy 
podzielić powyższy wzór przez objętość rozpatrzonego kawałka, czyli 
przez d x  1 X 1 = ¿i w ten sposób strata mocy na 1 cm3 wyniesie

P'„ =  -K-—  /2i?m2 10~16 watów. ó Q

Z wyprowadzonych wzorów na stratę mocy z prądów wirowych 
widzimy, że straty te są proporcjonalne do kwadratu częstotliwości / 
oraz do kwadratu indukcji magnetycznej Bm i są odwrotnie pro­
porcjonalne do oporności właściwej metalu, z którego sporządzone 
są drut lub blacha.

Przy dużych masach żelaza w zmiennym polu magnetycznym 
otrzymalibyśmy bardzo znaczne straty z prądów wirowych, szcze­
gólnie przy znacznej grubości drutu lub blachy. W celu zmniejszenia 
tych strat robimy zazwyczaj rdzeń żelazny nie z jednolitego kawałka, 
lecz z cienkich drutów lub też blach przekładanych izolacją (np. 
dobrym, suchym papierem lub lakierem). Również w celu zmniejsze­
nia strat z prądów wirowych używamy, zamiast czystego żelaza, 
stopów, czyli aliaży, np. żelaza z domieszką krzemu. Oporność właś­
ciwa takich stopów jest większa od oporności właściwej żelaza i przez 
to straty mocy na prądy „wirowe są mniejsze.

Gatunki żelaza pod względem strat na histerezę i prądy wi­
rowe często określamy za pomocą tzw. słratności magnetycz­
nej, rozumiejąc pod tą nazwą straty powyższe, wyrażone w watach 
na 1 kg żelaza, otrzymywane przy Bm =  10000 G, /  = 50 okresów 
na sek, przy temperaturze 30°G. Dla żelaza czystego ta stratność wy-

W Wnosi od 2 —4 — , dla stopów od 1 — 2 -— 
kg kg

Oba rozpatrzone zjawiska: histereza i prądy wirowe, powstają 
jednocześnie i nierozłącznie. Za pomocą pomiarów możemy określić 
całkowitą stratę mocy. Dla obliczenia, jaka część strat przypada 
na prądy wirowe, jaka zaś na histerezę, rozumujemy w sposób 
następujący: ze wzoru (3)

^ E/108
4,44/z

widzimy, że dla osiągnięcia warunku, aby 0 m lub, co na jedno wy­
chodzi, Bm miały wartość stałą przy zmianie /, musimy dla stałej 
liczby zwojów z w jednakowym stosunku zmieniać napięcie U i często­
tliwość /  prądu służącego do badań. Gdy B = const, straty na prądy
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wirowe i histerezę dla danego materiału będą zależne tylko od 
częstotliwości, a mianowicie

PH =  h f  oraz Pa = /c3/2,

gdzie kx i k2 stanowią w tym przypadku stałe współczynniki. 
Całkowita zaś strata

p = Ph +  p „ =  h f  +  hf*.
Strata przypadająca na jeden okres prądu zmiennego będzie

P
I = * i +  ^2/•

Mierząc całkowite straty w badanym materiale przy rozmaitych 
częstotliwościach, lecz przy stałej wartości indukcji magnetycznej, 
i dzieląc te straty przez liczbę okresów, możemy rezultaty przedsta­
wić na wykresie (rys. 99).

P

T \

Rys. 99

Na osi odciętych odkładamy wartości częstotliwości /  — na osi
p

rzędnych straty — = kx + k2f, otrzymamy wówczas prostą MN.

Jasne jest, że OM = kx i że prosta M P, przeprowadzona równo­
legle do osi odciętych, daje nam wartości strat na histerezę, przypada­
jące na jeden okres. Różnica rzędnych punktów leżących na prostych
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M N  i M P  daje nam straty na prądy wirowe również obliczone 
na jeden okres.

Np. A B ^ k x + k^
przedstawia stratę na jeden okres na prądy wirowe i histerezę, 
dla wartości / = O A; stanowi stratę na histerezę, zaś kx' — na prą­
dy wirowe.

Przytaczamy przykłady:
Dla blachy twornikowej przy Bm =  10000 G oraz częstotli­

wości /  =  50 okresów na sek:
straty PH =  2,25 W/kg 

Pw = 1,31 W/kg 
razem P  =  3,56 W/kg;

dla blachy stopowej przy tych samych wartościach Bm i /
P „ =  1,78 W/kg 
PM = 0,18 W/kg 
P  =1 ,96  W/kg.

§  35

OBWODY MAGNETYCZNIE SPRZĘŻONE. TRANSFORMATOR
POWIETRZNY

Przypuśćmy, że mamy dwa obwody zawierające uzwojenia 
(rys. 100), pierwotny i wtórny; przez obwód pierwotny płynie prąd ilt 
we wtórnym zaś pow­
staje prąd i2 przez in­
dukcję. Mówimy, że ta­
kie obwody są sprzężone 
magnetycznie. Obwody 
magnetycznie sprzężone u> 
dają możność zmiany 
napięcia i natężenia 
prądu za pomocą odpo­
wiedniej zmiany liczby 
zwojów. Zespół uzwojeń R ys. 100
tego rodzaju nazywamy
na ogół transformatorem, służy on do przetwarzania prądu zmien­
nego jednego napięcia na prąd o innym napięciu.
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Transformatory bywają powietrzne lub z rdzeniem żelaznym, 
zależnie od tego, czy uzwojenia znajdują się w powietrzu, czy też 
zawierają w sobie masy żelazne. Rozpatrzmy najpierw transformator 
powietrzny.

Oznaczmy oporność pierwotnego uzwojenia przez , jego induk- 
cyjność własną przez Lx, całego zaś obwodu wtórnego przez R2 oraz L2; 
indukcyjność wzajemna obu obwodów niech będzie M.

Na zasadzie znanych wzorów, oznaczając przez ux wartość chwi­
lową napięcia z zewnątrz przyłożonego do uzwojenia pierwotnego, 
możemy napisać

oraz

Wprowadzając zamiast wartości chwilowych wartości skuteczne, 
przepiszemy te wzory stosując wielkości zespolone.

t) = R1I1 + j(oL1l 1 + jcoMl2 ( 6)

oraz , „
O = R2I 2 + ¡ ojL2I2 T jcoMlx. (7)

Z ostatniego wzoru otrzymujemy
jojM l x = —  (R2 + ¡ojL2)12,

l'R 2 ih _ 2̂ ___ ^ 2_  == —^ -  +
h M jwM M  + OJ M >M

[R 2 + jajL2) —

OJ 2 • -̂ 2 
u M  + 1

Stąd znaleźć możemy od razu wartość (moduł) stosunku prądów 
Ix i I2 oraz kąt przesunięcia fazy ó pomiędzy nimi. Mianowicie

skąd  ̂ o j  M j 
3 ^ R \  +  [ojL 2Y  11

zaś
R~tg d = ------ } - )° ojL 2

przy czym 90° <  180°;
gdy

R2 =  0, tg <5 = 0 i <5 = 180°;
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czyli wektory wyobrażające prądy 7X i I2 byłyby w tym przypadku 
skierowane w kierunkach przeciwnych.

Zobaczmy teraz, jaki jest stosunek prądu 7j do napięcia U1. 
Podstawiając ze wzoru (7)

U
j O) m

B2 +  i 10 L2
do wzoru (6), otrzymujemy

0 1 = B111 +  ja>L1l 1 +

U

co2M 2
T?2 +  ja)L2

7?i + j co L1 + (T?2 -- jo>L2) CU2 M 2
7?22 +  W2 ZA

Łącząc razem liczby rzeczywiste i urojone,
n 7?2 
* 1 + "ii

(wM)2
7?22 + (wL2)2

+ / co Li
otrzymamy

M )2coLg) (ca
7?22 +  (o £2)21

Z tego wzoru widzimy, że wyraz stojący w głównych nawia­
sach stanowi oporność pozorną obwodu pierwotnego z uwzględnie­
niem indukcyjnego wpływu obwodu wtórnego. Oporność rzeczywista 
jest tu zwiększona o

B22(co M )2 
7?22 +  (toLg)2 ’

a oporność urojona zmniejszona o
(wij) (wM)2 
7?2a + (wLg)2 '

To samo zagadnienie możemy rozpatrzeć na wykresie, przedsta­
wiając najpierw wzór (7), następnie wzór (6). Wykres taki daje 
również możność obliczenia dwóch wielkości z trzech: U1, I1} I2, 
gdy jedna jest wiadoma.

Za oś podstawową obieramy kierunek prądu wtórnego I2, zu­
pełnie zresztą dowolny (rys. 101). Od punktu O odkładamy w tym 
kierunku odcinek O A = 12B2. Do tego odcinka O A dodać musimy 
geometrycznie pod kątem prostym naprzód odcinek A B  = ja>L2I2. 
Wektor zamykający będzie

OB — — j c o M .
Wektor OB1 — jcoM li będzie miał wobec tego kierunek od­

wrotny; w ten sposób otrzymujemy wartość <0 M It , a więc i war­
tość 7X. W celu wykreślenia wektora OC = 7?171 wykonujemy obrót

71w kierunku ujemnym o kąt—wstecz od OB1. Następnie od punktu
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C dodajemy do wektora OC pod kątem prostym naprzód odcinek 
CD— ¡(oL1I1. Od punktu D w kierunku równoległym do AB  odkła­
damy wektor D F  = ju>MI2. Wektor zamykający OF przedstawia 
napięcie U1 z zewnątrz przyłożone.

Jeżeli w obwodzie nie uwzględniamy rozproszenia, wtedy

M 2 =  LxL2 .

Jeżeli zaś rozproszenie uwzględniamy, wówczas

M = ^ L i = KVXI Xj ,
V ° i  °2

gdzie wielkości a1 i a2 oznaczają współczynniki rozproszenia Hop-  
k i n s o n a  dla obwodów pierwotnego i wtórnego.

Współczynnik 2
K =  ,-------

V ai a*
nazywamy wspó ł czynnik iem sprzężenia magnetycznego.

W przypadku, gdy nie ma rozproszenia, k = 1; w dobrych trans­
formatorach technicznych (z żelazem) k wynosi od 0,99 do 1, czyli 99 
do 100%. W małych transformatorach powietrznych k wynosi nie­
kiedy zaledwie 0,1 %.



TRANSFORMATOR Z RDZENIEM ŻELAZNYM 145

§  36
TRANSFORMATOR Z RDZENIEM ŻELAZNYM

Przypuśćmy, że mamy dwa uzwojenia na wspólnym rdzeniu 
żelaznym, czyli transformator z rdzeniem żelaznym; pierwsze uzwo­
jenie niech ma zx, drugie z2 zwojów. Jeżeli oznaczymy wartość chwi­
lową zmiennego strumienia magnetycznego powstającego pod wpły­
wem przechodzącego prądu zmiennego w każdym zwoju I uzwojenia 
przez <Pt i założymy najpierw, że nie ma rozproszenia magnetycznego, 
wtedy w obu uzwojeniach powstają S E M  indukcji o wartości chwi-
lowej d 0 t

ß l=  dt
oraz d<Pt

ßa *2 dt

Stosunek
(8)

nazywamy przekładnią transformatora.
Oznaczmy przez i0 prąd, który musimy przepuścić przez uzwo­

jenie pierwotne, aby otrzymać strumień magnetyczny, wywołujący 
S E M  indukcji w drugim obwodzie, z uwzględnieniem strat na prądy 
wirowe i histerezę. Prąd ten możemy nazwać prądem magnesują­
cym. Oznaczmy następnie prąd powstający we wtórnym uzwojeniu 
przez i2. Wówczas moc prądu we wtórnym uzwojeniu wyrazi się jako 
iloczyn e2i2. Aby ją otrzymać, musimy w pierwotnym uzwojeniu 
oprócz prądu i0 mieć prąd i\, którego moc = e1i'1.

Moc oddawana w pierwszym uzwojeniu powinna się równać 
mocy pobieranej we wtórnym uzwojeniu.

Wobec tego ., . ...e1i 1= —e2i2. (9)

Całkowity prąd ix, jaki będzie przepływał w pierwszym obwo­
dzie, stanowi sumę prądów i0 oraz i\, czyli

h  — l'o +  (1 0 )

Ze wzoru (9) z uwzględnieniem wzoru (8), mamy
6-t in Z-1I ł

i'l
skąd zxi\ +  z2i2 =  0 .

Teoria prądów zmiennych 10
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Podstawiając tu zamiast i\ jego wartość ze wzoru (10), otrzy-

mujemy +
lub inaczej .

Z l h  i ^2^2 — Zl lQ •

Słowami możemy to wyrazić tak. Suma amperozwojów pier­
wotnego i wtórnego uzwojenia powinna się równać amperozwojom 
prądu magnesującego przepływającego w pierwszym uzwojeniu.

Z ostatniego wzoru możemy napisać

Oznaczmy wyraz — — i2 przez i'2.
zx

Iloczyn z2i2 stanowi amperozwoje wtórnego uzwojenia; podzie­
lone są one przez liczbę zwojów pierwszego uzwojenia. Prąd i\ 
można więc określić jako prąd wtórny, zredukowany do uzwojenia 
pierwotnego i wzięty ze znakiem—.

Wobec tego możemy napisać

li = >o + lV  (11)
Rozpatrzmy teraz przypadek, gdy uwzględniamy rozproszenie 

magnetyczne. Oznaczmy wartości chwilowe strumienia magnetycz­
nego wspólnego dla obu obwodów przez &t, strumień rozproszenia 
pierwotnego obwodu przez <Pn , a strumień rozproszenia obwodu 
wtórnego przez 0 r>. Całkowity strumień objęty przez uzwojenie 
pierwotne będzie miał wartość

0 , +  ®*.
przez uzwojenie wtórne zaś

S E M  indukcji powstająca w pierwszym uzwojeniu będzie miała
wartość

d<Pt .
^  dl 1 dl

a w drugim uzwojeniu
d<Pt d0ri

Zs dl z2 dl

Rozproszenie zachodzi przeważnie w powietrzu. Strumień roz­
proszenia w tym przypadku jest proporcjonalny do prądu przepły-
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wającego w obwodzie. Oznaczmy indukcyjność od strumienia roz­
proszenia w pierwszym uzwojeniu przez Ln, w drugim zaś przez Lri, 
będziemy mieli

z ,0  =  L L:1 Ti Ti *1*
Z2(K  =  Lr,h-

Biorąc pochodne tych strumieni względem czasu i mając na 
uwadze, że w rozpatrywanym przypadku Ln oraz Lu mają wartości 
stałe, otrzymamy

di>., di1 
~di

_  r di2,
-  -TT,

___  T _____
dt r' dt

d'Pr.
u,

Lr.
dt r‘ dt'

Oznaczmy przez u1 
wartość chwilową napię­
cia z zewnątrz przyło­
żonego do pierwotnego 
uzwojenia, przez 
oporność rzeczywistą
(rys. 102) tego uzwojenia, przez Lri indukcyjność rozproszenia oraz 
przez zx ilość zwojów. Dla uzwojenia wtórnego te same wielkości 
niech mają wartości B2, Lrj, z2, następnie niech u2 oznacza napięcie 
na zaciskach odbiornika włączonego do wtórnego uzwojenia. Oba 
uzwojenia znajdują się na rdzeniu żelaznym.

Według prawa Ohma w każdej chwili musi zachodzić zależność 
następująca: d

U' - Zl- d f - L' '-d t=

d<P. T di2 . _
~ Zi~dt Lra d7 “  hB 2 + u2.

oraz

Rozwiązując te równania względem ux i u2, otrzymujemy

~ d(p‘ + i R  + L dii + l x« x + Łri

oraz u„ = — z,

1 dt
dJ>t
dt *2̂ 2

j di2
L"~d f

Przechodząc od wartości chwilowych do wartości skutecznych, 
możemy symbolicznie przepisać powyższe wzory w sposób nastę-

10*
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pujący:

wzór (11) w postaci 

gdzie

U i ------Ex +  1X[RX +  j<oLr),

&2~ A i —  A  [R2 + i  C0̂ 'r,) l 

A  = A  + A')

( 12)

(13)

A '  =

u :

l,R,

(Ui

$

''\4o>£ę

/U
Rys. 103

Z2 A

Wykreślnie wzory te mo­
żemy przedstawić jak na rys. 
103.

Za oś podstawową bierze­
my kierunek strumienia 0.

Jak wiemy, S E M  indukcji 
jest w fazie opóźniona o kąt 
prosty względem strumienia 
magnetycznego; wobec tego 
— Ex, wchodzące we wzorze 
(12), odkładamy pod kątem 
prostym naprzód (do góry), zaś 
+E 2 pod kątem prostym wstecz 
(w dół).

Niech np. prąd I2 będzie 
opóźniony w fazie względem E2.

Prąd magnesujący I0 ze 
względu na straty na histerezę 
i prądy wirowe jest przesu­
nięty w fazie względem stru­
mienia 0  o pewien kąt a. Do 
tego prądu dodajemy geome­
trycznie prąd I'2 w kierunku 
przeciwnym do prądu I2 i otrzy­
mujemy prąd Ix.

Do wektora —Ex dodaje­
my geometrycznie Rx A + 
+  /a)Lri A ; suma geometryczna 
będzie wektorem napięcia pier­
wotnego Ux. Odejmując geo­
metrycznie od wektora E2, czyli

dodając w kierunku przeciwnym wektory I2R2 oraz jwLrJ 2, otrzy­
mamy napięcie na zaciskach wtórnych U2.



PRAKTYCZNE ZNACZENIE TRANSFORMATORÓW 149

Jeżeli we wzorach (12) i (13) założymy Ex =  —E2, to możemy 
te wzory otrzymać ze schematu przedstawionego na rys. 104.

§ 37
PRAKTYCZNE ZNACZENIE TRANSFORMATORÓW

Gdy chodzi o przesyłanie energii elektrycznej na znaczne odleg­
łości, staramy się osiągnąć jak najmniejsze straty.

Jeżeli mamy do przeniesienia pewną moc P  przy napięciu U, 
to strata mocy w przewodach AP  będzie określona wzorem

A  P  =  PB.

Oporność przewodu podwójnego o długości l i przekroju s wy- 
n°si 2 i

gdzie q oznacza oporność właściwą materiału przewodu.
Wobec tego 9/

A P = P q~ .s

Z wzorów tych obliczamy potrzebny przekrój przewodu
P q21 

S A  P

Przy prądzie zmiennym moc prądu
P = U I cos cp.
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Dla stałego, zwykle z góry określonego współczynnika mocy cosę> 
moc P  zależy od dwóch zmiennych wielkości U i I.

Gdy powiększamy napięcie np. n razy, to prąd dla otrzymania

Aby otrzymać taką samą procentową w stosunku do przeno­
szonej mocy stratę mocy w przewodach, potrzebny przekrój prze­
wodu wyniesie J2

Widzimy, że w tym przypadku przekrój przewodu będzie n2 
razy mniejszy. Tyleż razy zmniejszy się również objętość materiału 
zużytego na przewody. Przy prądzie stałym, w celu zwiększenia na­
pięcia musielibyśmy wziąć prądnicę na wyższe napięcie, a dla bardzo 
wysokich napięć takich prądnic zbudować nie można. Przy prądach 
zmiennych natomiast zastosujemy do tego celu transformatory, które 
nie wymagają żadnej obsługi i można je konstruować łatwo, wobec 
braku ruchomych części, na bardzo wysokie napięcia.

Układ ten, zawierający dwa transformatory jednofazowe, daje 
możność otrzymania prądu dwufazowego z prądu trójfazowego lub

tej samej mocy P  powinien mieć wartość —  .

S n2AP

§  38
UKŁAD SCOTTA

odwrotnie.
Na rys. 105 koniec pierwot­

nego uzwojenia pierwszego trans-

A

u D‘
-n a a a a a a a a a a ^ - c D

Rys. 105

%U B 
Rys. 106

formatora połączony jest ze środkiem pierwotnego uzwojenia drugiego 
transformatora; końce 1, 2 i 3 połączone są ze źródłem prądu trój-
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fazowego. Wtedy napięcie między zaciskami C i D pierwotnego 
uzwojenia II transformatora będzie równe napięciu międzyprzewo- 
dowemu prądu trójfazowego U, napięcie zaś między zaciskami A i B

pierwotnego uzwojenia I transformatora będzie równe jak to

wynika z rys. 106, gdzie AB = \ A C 2 — ĆB2 = U*
4

To ostatnie napięcie jest przesunięte względem napięcia BC  
o 90°. Aby otrzymać jednakowe napięcie na zaciskach wtórnych 
uzwojeń obu transformatorów, trzeba odpowiednio dobrać liczbę 
zwojów; mianowicie, jeżeli dla transformatora II stosunek liczby 
zwojów wtórnego uzwojenia do liczby zwojów pierwotnego wynosi m,

to stosunek ten dla transformatora I powinien wynosić m.

Otrzymujemy w ten sposób na zaciskach A'B'i C'D' napięcia 
prądu dwufazowego. Odwrotnie, mając prąd dwufazowy na zacis­
kach A'B' i C'D', otrzymamy pomiędzy zaciskami A i C, C i D, 
A i D napięcia prądu trójfazowego.



R O Z D Z I A Ł S Z Ó S T Y
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§  39

ZJAWISKO NASKÓRKOWOŚCI

Przy prądzie stałym gęstość prądu w poprzecznym przekroju 
przewodu jest rozłożona równomiernie, to znaczy ma tę samą war­
tość we wszystkich punktach przekroju. Przy prądzie zmiennym 
wytwarza się wewnątrz przewodu zmienne pole magnetyczne, które 
powoduje nierównomierny rozkład gęstości prądu w poprzecznym 
przekroju przewodu, a mianowicie gęstość zwiększa się w kierunku 
od osi przewodu do jego powierzchni. Zjawisko to nazywamy na-

skórkowością (Skineffekt).
Zbadajmy rozkład gęstości prądu 

w prostolinijnym przewodzie o okrągłym 
przekroju, ograniczając się do niewiel­
kiej jego długości, z dala od jego koń­
ców. Dla uproszczenia zagadnienia 
wprowadzimy zamiast wartości chwilo­
wych wartości skuteczne rozważanych 
wielkości sinusoidalnie zmiennych w 
czasie.

W ten sposób będziemy mieli do czy­
nienia z funkcjami tylko jednej zmien­
nej: odległości od osi przewodu. Rozpa­

trzmy w dowolnej odległości x od tej osi (rys. 107) warstwę cylin­
dryczną o długości 1 cm i nieskończenie małej grubości dx. Gdy 
przez przewód przepływa prąd zmienny, powstaje zmienne pole



ZJAWISKO NASKÓRKOWOŚCI 153

magnetyczne i w dowolnym punkcie, na powierzchni rozpatrywanej 
warstwy, natężenie pola magnetycznego będzie miało pewną war­
tość skuteczną, którą oznaczymy przez IIX.

Wektory tego natężenia pola leżą w płaszczyznach prostopa­
dłych do osi przewodu i są styczne do kół otrzymywanych w poprzecz­
nym przekroju. Część prądu przepływającego przez przekrój o pro­
mieniu x i powodującego natężenie pola Hx oznaczmy przez Ix. Za­
równo Ix jak i Hx będą funkcjami odległości x. Działanie magne­
tyczne prądu Ix jest takie, jak gdyby cały ten prąd płynął wzdłuż 
osi przewodu; przy czym, w rozpatrywanym przypadku prostolinij­
nego przewodu,

2 l x
x

jeżeli Ix wyrażamy w jednostkach bezwzględnych, czyli

, _ r  HXX_
x ~  2 ( 1 )

Niech gęstość prądu w przekroju warstwy wynosi a. Prąd prze­
pływający przez cienką warstwę będzie d lx, a ponieważ przekrój tej 
warstwy wynosi 2 nxdx, przeto

a • 2nxdx = d lr
skąd

a = 1 d l,
2 nx dx ( 2 )

Ze wzoru (1) mamy 
d lx
dx

podstawiając tę wartość do wzoru (2), otrzymamy
dH,4 nxa — Hx +  x- dx (3)

Indukcja magnetyczna na powierzchni warstwy będzie Bx =  fiHx, 
gdzie /a oznacza przenikalność magnetyczną metalu, z którego prze­
wód jest sporządzony. Dla metali magnetycznie obojętnych, jak np. 
miedź, aluminium itp., przenikalność ma wartość stałą i praktycz­
nie może być przyjęta równą jedności.

Strumień magnetyczny w warstwie o przekroju dx • 1 cm2 wy­
niesie n ./ TJ Jd(Px =  Bxdx = [iHxdx.
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Pod wpływem tego strumienia powstaje SE M , której wartość 
skuteczna według wzoru (4) z § 33 wyniesie w jednostkach bezwzględ-

Dych d E =  2nfd$x;

ponieważ S E M  jest opóźniona w fazie względem strumienia o 90°, 
przeto, wprowadzając wielkości zespolone, napiszemy

B  D  d £ = — j 2 j i f d & x

f Y_ j 71 7 lub, podstawiając wartość d&x,

dE — —j2n f[xA xdx. (4)

Rozpatrując przekrój warstwy wzdłuż osi 
dx -i przewodu (rys. 108), możemy rozumować w spo­

sób następujący: przez jeden bok AB  płynie 
struga prądu di — ads, gdzie ds stanowi ele­
ment przekroju; przez drugi bok CD w tym 
samym kierunku płynie struga prądu di +  d[di);

oporność każdego boku wynosi " , gdzie q oznacza oporność wła-
u S

ściwą metalu. Stosując do rozpatrywanego zamkniętego obwodu II 
prawo K i r c h h o f f a ,  otrzymamy

$ >•
I » ¿ X

A  d *  C
Rys. 108

dE - di Q_
ds - [ ( ™ >  ) ]£  = — <

d(di)
ds

lub, po podstawieniu di = a ds i wprowadzając wielkości zespolone

dE — —q da. (5)

Zestawiając wzory (5) i (4), będziemy mieli 

qda = j 2n f [i A xdx, 
q daczyli

t ix =  - i 2 Ti f fi dx

Podstawiając tę wartość Hx oraz jej pochodną do wzoru (3), 
otrzymamy

4?ra:<i =  — j da
2n ¡¡u dx 1 2ji f/u dx2 ’

d2a

skąd po uproszczeniu 
dP-a 1 da . 8ti*fu
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Oznaczając w skróceniu
„ . 8л2 f/um -  — / — -LL- ( 6)

( 7)

otrzymujemy równanie różniczkowe w postaci
d2a 1 da+ — -T— +  m2o =  0 .dxi x dx

Jest to równanie drugiego rzędu, które posiada dwa rozwiąza­
nia szczególne, których suma daje rozwiązanie ogólne. Rozwiązanie 
szczególne można założyć w postaci szeregu ze wzrastającymi potę­
gami x, czyli

a = a0 + axx + a2x2 + a3a? +  а4ж4 + a5x? +  а6ж® + ...,

gdzie a z indeksami oznacza wielkości stałe; 
wtedy

= ax +  2 a2x +  За3ж2 + 4а4ж3 + 5a3â  +  6авж5 + ..., 

d̂ ó~^2 =  2a2 +  2 • За3ж + 3 • 4а4ж2 + 4 • Ъа5я? +  5 • 6a6xi +  ...;

podstawiając te wartości do naszego równania różniczkowego, otrzy­
mamy po zgrupowaniu

— + (m2a0 + 4a2) +  {m2ax +  9 a3) x +  (m2a2 +  16а4)ж2 +
X

+ (m2a3 + 25а5)ж3 + (m2a4 +  36а6)ж4 + (m2a3 +  49а7)ж5 +  ... =  0.
Ponieważ wzór powyższy jest tożsamością, to znaczy, że lewa 

strona powinna się równać zeru przy wszelkich wartościach x, przeto 
wszystkie współczynniki przy wszelkich potęgach x, jak również wy­
raz stały, powinny się równać zeru; w ten sposób

ax =  0; m2a0 + 4a3 = 0; m2ax +  9a3 = 0; 
m2a2 + 16a4 = 0; m2a3 +  25 us =  0 itd.

Ponieważ ax =  0, więc wszystkie współczynniki z nieparzystymi 
indeksami stają się również równe zeru; pozostają więc tylko współ­
czynniki z parzystymi indeksami, przy czym

m2a0 _ m2a2 mi a0 _  ̂ m6 a0
az g2- ’ °4 42  ̂ 22 42 ’ °6 ~ 22 • 42 • 62

Wobec tego rozwiązanie szczególne będzie
m2x2 t m4a:4 m6#6 , m8x?
~W~  + 22"-"42“  22 • 42 • 62 + W^A2 7 82 +
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Szereg w nawiasach stanowi funkcję Bessela albo funkcję cylin­
dryczną pierwszego rodzaju, rzędu zerowego argumentu mx; ozna­
czymy ją przez I0(mx), czyli

(mx)6 (mi)8t r \ . (mx)2 (mx)*
lo [mx) — 1 22 |2^ 4)2 , + ■ + . . . ( 9)(2 • 4 • 6)2 ' (2 • 4 • 6 • 8)2

Dalsze rozważania matematyczne doprowadzają do wniosku, że 
druga całka szczególna rozpatrywanego równania różniczkowego daje 
dla funkcji, czyli w tym przypadku dla gęstości prądu, wartość nie­
skończenie wielką, gdy x =  0, to znaczy na osi przewodu. Nie ma to 
sensu fizycznego, więc stała dowolna przy tej drugiej całce szczegól­
nej musi się równać zeru, pozostanie tylko pierwsza wyżej wyzna­
czona całka szczególna; rozpatrując a0 jako stałą dowolną i ozna­
czając ją przez A, otrzymamy ogólną całkę równania w postaci

a = A I 0[mx). (10)
Stałą dowolną A możemy wyznaczyć przez prąd 1 płynący przez 

cały przekrój przewodu o promieniu r. Wtedy bowiem

1 = J a  • 2nxdx = 2nA J I 0[mx)xdx. (11)
o o

Biorąc wartość /„ (mx) ze wzoru (9), mnożąc przez x  i całkując, 
otrzymamy

m6r«1 =  2nA  |>2

. o nA r | mr
m L 2

m2 r* i m4 r6
22 -4 + 22 • 42 • 6

m3r® + m5r®
22 • 42 • 62 • 8 

m7r7

+

22•4 r 22 • 42•6

J -
422. 42 . 62 • 8

wyraz w nawiasach stanowi funkcję Bessela rzędu pierwszego argu­
mentu mr, czyli

m5 r5 m7 r7t i  \ — mr m3r3h(mr)  = -g  22Ti  + 22-42-6
mr
~ T [>

1+  -s-
4r4m* r

22 • 42 ■ 62 -8 
1 m6r6

+ . . .  =

Mamy więc
2 22 3 (2 • 4)2 4 (2 • 4 • 6):

2nA  —  L [mr), m

; + ] ( 12)

skąd
A = L

2 n r l1 [mr) (13)
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Wobec tego wzór (10) daje
l m IQ{mx) 

2 n r l1 (mr) (14)

Dla małych częstotliwości możemy na podstawie wzorów (9) i (12) 
założyć w przybliżeniu

Io{mx) =  1,
r , \ mrIi(mr) =  — ;

wówczas dla gęstości prądu otrzymamy ze wzoru (14)
„ 1

°  n r 2 ’
co wskazuje, że gęstość jest jednakowa we wszystkich punktach 
przekroju, jak przy prądzie stałym.

Ponieważ m wchodzące do funkcyj Bessela,  jak widać ze 
wzoru (6), stanowi liczbę urojoną, przeto interesujące nas wielkości 
możemy wyrazić w postaci liczb zespolonych.

Oznaczmy w skróceniu
2 fp

czyli m2 = — / p2;
wtedy wyrazy wchodzące do szeregów funkcyj Bessela będą miały 
następujące wartości:

m2x2 =  — j p2x2, 
m 4 ® 4 =  —  p 4 # 4 , 

m6:c6 = / p6 x6, 
m8 z8 = p8scP,

m2r2 =  — / p2r2, 
m4 r4 = — p4 r4, 
m6r6 = /p 6r6, 
n f i r 8  =  p 8 r®,

itd.
Wobec tego ze wzorów (9) i (12) otrzymujemy po zgrupowaniu

- O '
. /  p 2 i c 2

' l 22

I0[mx)

+ i

- f  [(
2

pixi
(2^4?

p 6 .x6

+ p 8 x 8

1

(2
1

4 • 6)s 
p 4 r 4

(2 • 4 • 6 • 8)2

+
piO-jjlO

+

( 2 - 4 - 6  -8-10)2
1 p8r®

'(Ť. - P2r2 
+ / l TT 22_

1
3 (2-4)2 ' 5 ( 2 - 4 - 6 -8)2 

p6 r6 1 plOplO
- ■ )

+

; +4 (2 • 4 • 6)2 6 (2 • 4 • 6 • 8 • 10): +
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Lord Kelvin oznaczał część rzeczywistą stojącą w nawiasach 
przez ber, część urojoną zaś przez bei; używając tych oznaczeń, napi­
szemy

I0(mx) =  ber(px) +  jbei(px); (15)

h  {mr) =  ~  [ \berx (pr) +  / beix (pr) J ;  ̂ (16)

wtedy wzór (14) przepiszemy w postaci
- __ 1 ber (px) +  j bei (px) _

nr2 berx(pr) + j beix(pr) ' '
Jest to gęstość prądu w odległości x od osi przewodu; na po­

wierzchni przewodu, czyli dla x =  r, gęstość wyniesie
„ _  1 ber (pr) +  j bei (pr) <
r jtr2 ber^pr) +  j bei^pr) ’

wobec tego stosunek gęstości:
a __ ber(px) +  /  bei(px) 
ar ber(pr) +  j  bei(pr)

Licznik w ostatnim wzorze dla x <  r jest mniejszy od mianow­
nika, co łatwo sprawdzić ze wzoru (14); wynika stąd, że gęstość prądu 
jest największa na powierzchni i zmniejsza się w kierunku od powierz­
chni do osi przewodu.

Na samej osi, dla x — 0, gdzie gęstość prądu jest najmniejsza, 
ber(px) =  1, bei(px) — 0; I0(mx) =  1,

a  = ___________— _________= ____ Im____,
Tir2 [berx(pr) +  / bei1(pr)] 27irl1(mr)

czyli, jak widać ze wzoru (13),

gęstość prądu na osi równa jest stałej otrzymanej w calce ogólnej 
równania różniczkowego, dającego rozkład gęstości prądu w po­
przecznym przekroju przewodnika.

Widzimy więc, że przy prądzie zmiennym przewód nie jest wy­
zyskany jak przy prądzie stałym, gdzie gęstość prądu jest taka sama 
na osi jak i na powierzchni. Powoduje to, że oporność rzeczywista 
przy prądzie zmiennym jest większa niż przy prądzie stałym.

Rozpatrując, jak i poprzednio, część przewodu o długości 1 cm 
i promieniu r, będziemy mieli dla oporności Bs przy prądzie stałym
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Moc prądu wytwarzająca ciepło przy natężeniu prądu I  będzie

P  =  PR,.

W przypadku prądu zmiennego wartość skuteczną prądu prze­
pływającego przez cały przekrój przewodu określiliśmy we wzorze (11), 
mianowicie

I =  J  o2jcxdx. 
o

Oznaczmy przez Rz oporność rzeczywistą, którą określiliśmy 
jako iloraz mocy wytwarzającej ciepło, przez kwadrat wartości 
skutecznej prądu; mamy więc

PR, P

Moc P, przy uwzględnieniu nierównomiernego rozkładu gęstości, 
znajdziemy wyrażając moc dP nieskończenie cienkiej warstwy cylin­
drycznej (rys. 104), której oporność wynosi

dR 2nxdx  ’

prąd przepływający przez tę warstwę d l  wynosi a .2nxdx ,  więc

d P =  (dI)2 .dR  = <72 .4 n2x2 dx2 . Q 
2 n xd x — 2ngazx d x ;

całkując ten wyraz w granicach całego przekroju przewodu, czyli 
dla x w granicach od 0 do r, znajdujemy moc prądu zmiennego w roz­
patrywanej części przewodu

r

P = 2nq I a2xdx.

Dzieląc tę moc przez kwadrat wartości skutecznej prądu, otrzy­
mamy r



160 ZJAWISKA ZACHODZĄCE W  PRZEWODACH I W DIELEKTRYKACH

Stosunek oporności rzeczywistej przy prądzie zmiennym do 
oporności przy prądzie stałym, który oznaczymy przez k, wyrazi się 
wzorem

b z

2 n q  j *  o2xdx  
0

n  r2 r*2 j *  o2xd x  
0

B s

4  n 2

r

I ax dx
2

. Q 2
r

I axdx
J

Lo J
J

Lo

Do tego wzoru należy podstawić wartość a ze wzoru (17), przy 
czym w tym przypadku chodzi nie o wartości zespolone, lecz o same 
moduły, czyli

_  I \  [ber (px)]2 + [bei (px)]2 
nr2 Yfóerjjprj]2 + [bei1[pr)]2

Obliczenie tych całek daje w rezultacie szereg, za pomocą któ­
rego możemy wyznaczyć wartość k w każdym poszczególnym przy­
padku z żądaną dokładnością. Najczęściej posługujemy się wzorami 
przybliżonymi; w ogólnym przypadku dla niezbyt dużych częstotli­
wości istnieje wzór przybliżony

gdzie

przy tym należy zwrócić uwagę, że r wyrażone jest w centymetrach, 
a oporność właściwa metalu przewodu w jednostkach cgs układu 
elektromagnetycznego.

Dla miedzi p =  1, q =  0,017 • 105; istnieje przybliżony wzór

i - 1 +  0 - 7 K ™ > ) S - ° ’ 4 9 ( i w o ) * ’

gdzie d oznacza średnicę przewodu w cm.
W niżej podanej tablicy ułożonej przez Lorda Ke l v i na  wska­

zane są wartości k dla różnych wartości fd2 dla drutów miedzianych. 
Dla otrzymania wartości k dla drutów innych metali należy wartość
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fd2 pomnożyć przez — • 0,017 i dla otrzymanej wartości fd2 szukać k 
w tabeli. ^

fd2 k fd2 k fd2 k

0 1 720 1,3180 2880 2,3937
20 1,0000 980 1,4920 5120 3,0956
80 1,0010 1280 1,6778 8000 3,7940

180 1,0258 1620 1,8628 18000 5,5732
320 1,0805 2000 2,0430 32000 7,3250
500 1,1747 2420 2,2190 |

Widzimy stąd, że np. gdy fd2 =  320, to dla /  =  50, d2 =  6,4, 
d ^  2,5 cm, oporność jest o 8%  większa niż przy prądzie stałym.

Dla aluminium współczynniki we wzorze poprzednio podanym 
będą inne, a mianowicie

W żelaznym drucie zjawisko naskórkowości uwydatnia się bardzo 
znacznie, ponieważ wchodzą tu w grę jego własności magnetyczne. 
Używamy przewodów żelaznych tylko przy słabych prądach, gdyż 
mamy wtedy bardzo słabe pola magnetyczne.

Dla cienkich drutów żelaznych, gdy /u =  1000, ę> = 0,10 ■ 105,

o - ) 4

Przy wielkich częstotliwościach używa się wzoru następującego:

Przy większych przekrojach, w celu zmniejszenia wpływu na­
skórkowości, używamy przewodów złożonych z szeregu drutów izo­
lowanych i odpowiednio przeplatanych.

Przy bardzo wielkich częstotliwościach zjawisko naskórkowości 
występuje w takim stopniu, że można korzystać z przewodów ruro­
wych, gdyż cały prąd skupiony jest w pobliżu powierzchni przewodu.

Zjawisko naskórkowości wpływa również na indukcyjność prze­
wodu, gdyż jednocześnie zachodzi inny rozkład natężenia pola magne­
tycznego. Skutkiem tego indukcyjność przy prądzie zmiennym staje 
się mniejsza niż przy prądzie stałym. Teoretyczne rozważania, po-

Teoria prądów zmiennych U
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dobne do poprzednich, doprowadzają również do funkcyj Bessela 
i do szeregów, które w praktycznym zastosowaniu sprowadzają się 
do wzorów przybliżonych. Oznaczając przez Ls indukcyjność prze­
wodu przy prądzie zmiennym o bardzo małej częstotliwości, grani­
czącym z prądem stałym, przez Lz zaś indukcyjność przy prądzie 
zmiennym o średnich częstotliwościach, mamy wzory przybliżone

we wzorach tych r oznacza promień przewodu w cm, p jak i po­
przednio

Od dawna spostrzeżono, że dielektryk w kondensatorze ogrzewa 
się wówczas, gdy kondensator podlega zmiennemu elektryzowaniu. 
W elektrotechnice mamy do czynienia z dielektrykami, które mają 
za zadanie izolować przewody od ziemi lub od innych przewodów. 
Każdy taki układ z izolacją możemy rozpatrywać jako kondensator; 
jeżeli zaś przewód znajduje się pod napięciem prądu zmiennego, 
wówczas w dielektryku otaczającym przewód zachodzi elektryzacja 
na przemian w jednym i drugim kierunku, wydziela się ciepło, wobec 
czego w dielektryku zachodzi strata mocy. Zjawisko to posiada pewną 
analogię z histerezą magnetyczną, zachodzącą w żelazie znajdującym 
się w zmiennym polu magnetycznym, przeto niektórzy elektrotech­
nicy (pierwszy S t e i n m e t z )  nazwali to zjawisko histerezą dielek­
tryczną, chociaż nie są to zjawiska identyczne.

Oprócz powyższych strat dielektrycznych mogą zachodzić 
w dielektryku straty spowodowane tym, że każdy dielektryk posiada 
pewną przewodność, skutkiem czego pod działaniem napięcia po­
wstaje prąd płynący wskroś dielektryka, czyli tak zwany prąd 
skrośny. Wreszcie mogą zachodzić straty skutkiem wyładowań

dla pr <. 2

dla wielkich częstotliwości wzór Z enn ec ka  daje

§  40
STRATY W  DIELEKTRYKACH
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elektrycznych, czyli tak zwanego ulotu. Wszystkie te zjawiska po­
wodują pewien upływ elektryczności, przetwarzającej się w ciepło. 
Upływ ten można ująć w postaci pewnego prądu czynnego, który 
nazwiemy prądem upływu, proporcjonalnego do napięcia działa­
jącego na dielektryk. Współczynnik proporcjonalności pomiędzy prą­
dem upływu i napięciem nazywamy upływnością; upływność bę­
dziemy oznaczali literą A. W ten sposób pomiędzy prądem upływu Iu, 
napięciem U działającym na dielektryk oraz upływnością istnieje

Zależn0ŚĆ I.-AU. ( 1 8 )

Moc wytworzona przez prąd upływu, czyli moc Pu pochłonięta 
w dielektryku, będzie określona wzorem

Pu= U IU= A U \
skąd

Pu.A = U2’
możemy więc określić upływność A  jako iloraz mocy pochłoniętej 
w dielektryku przez kwadrat napięcia działającego na dielektryk.

W ten sposób, mając niedoskonały dielektryk znajdujący się 
pod napięciem, musimy uwzględnić dwa prądy: prąd upływu, jako 
prąd czynny, będący w fazie z napięciem, 
oraz prąd przesunięcia, stanowiący zwykle 
prąd ładowania kondensatora, w skład któ­
rego wchodzi rozpatrywany dielektryk. Ten 
ostatni prąd, który oznaczymy przez Ic, 
jak wiadomo, wyprzedza w fazie napięcie 
o kąt prosty. Geometryczna suma tych prą­
dów (rys. 109) stanowi prąd I, który w rzeczy­
wistości będzie płynął przez dielektryk.
Łatwo zauważyć, że kąt d odchylenia prądu
wypadkowego I od prądu Ic jest tym większy, im większy jest 
prąd upływu Iu, przy czym

t g  a  =

Rys. 109

ponieważ Ic = cjCU, Iu =  AU ,  przeto:

A = wC tg<5.t g  <5 =  - 4 ,o  C
Strata mocy w dielektryku spowodowana upływnością będzie: 

P u = A U 2 = coC U 2 tg ó =  2 n fC U 2 tg d. (19)
u*
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Kąt d nosi nazwę kąta stratności dielektrycznej, zaś tg <5 — 
nazwę współczynnika strat dielektrycznych.

Dla używanych w elektrotechnice materiałów izolacyjnych współ­
czynnik strat dielektrycznych wynosi od 0,001 do 0,3.

Upływność spowodowana tak zwaną histerezą dielektryczną za­
leży od rodzaju materiału dielektryka i w pewnej mierze od tempera­
tury. W sieciach kablowych izolacja zwykle jest tak dobra, że straty 
od prądu skrośnego można nie brać pod uwagę; nie ma również 
zjawiska ulotu, więc stratność w dielektryku spowodowana jest wy­
łącznie zjawiskiem histerezy dielektrycznej.

Dla przykładu obliczmy stratę mocy w dielektryku kabla z izo­
lacją papierową przy prądzie zmiennym o napięciu 10000 V i często­
tliwości 50 Hz, jeżeli pojemność kabla wynosi 0,5 y F  na kilometr; 
współczynnik strat dielektrycznych dla papieru impregnowanego 
tg d =  0,024. Ze wzoru (19) otrzymamy:

P„ =  6,28 • 50 • 0,5 • 10-6 • 108 • 0,024 = 375 watów; 

co w ciągu roku daje stratę energii:

Upływność przez izolację od prądu skrośnego zależy oczywiście 
od oporności materiału; jeżeli chodzi o przewody elektryczne, to 
w dobrych urządzeniach ta upływność nie przekracza zwykle 
2 . 10-7 S/km. Upływność od ulotu w przewodach napowietrznych 
zachodzi tylko wówczas, jeżeli wartość napięcia między dwoma 
przewodami lub między przewodem i ziemią przekroczy pewną 
granicę, którą nazywamy napięciem krytycznym. Dla każdej śred­
nicy przewodu i dla każdej odległości między przewodami lub prze­
wodem i ziemią istnieje napięcie krytyczne, po przekroczeniu którego 
rozpoczyna się wyładowanie elektryczne i powstaje zjawisko korony; 
na wartość tego napięcia w pewnej mierze wpływają jeszcze stan 
powierzchni przewodu oraz stan pogody.

Badania dokonane przez Towarzystwo Inżynierów Amerykań­
skich doprowadziły do empirycznego wzoru, który daje możność 
obliczania strat mocy, spowodowanych ulotem elektryczności. Wzór 
ten, nazywany wzorem Peeka,  jest następujący:

375 .365.24 
1000 = 3285 kilowatogodzin.
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gdzie P ul oznacza stratę mocy w kW  na km przewodu pojedynczego, 
a —  współczynnik zależny od temperatury i ciśnienia powietrza, 
przy czym 3,92ó

a 273 +  t ’

b — ciśnienie powietrza w cm słupa rtęci;
/ — temperatura powietrza w °C;
/ — częstotliwość prądu zmiennego;
r — promień przewodu w cm; jeżeli linka, to promień koła opi­

sanego;
a — odległość między przewodami w cm;
U — wartość skuteczna napięcia w kilowoltach względem punktu 

zerowego (ziemi); przy prądzie jednofazowym stanowi to połowę na­
pięcia w sieci; przy prądzie trójfazowym i połączeniu gwiazdowym — 
napięcie fazowe; przy uwzględnieniu spadku napięcia w przewodach 
trzeba brać średnią wartość napięcia całego przewodu;

U0 — wartość skuteczna napięcia krytycznego w kilowoltach 
względem punktu zerowego.

To ostatnie napięcie oblicza się ze wzoru

U0= óm1 m2 a r ln— , 
r

w którym <5 — napięcie przebijające powietrza; dla a =  1, czyli dla 
b =  76 cm i / = 25 °G wynosi ono 21,1 kV/cm;

m1 — spółczynnik zależny od stanu powierzchni przewodu, 
przy czym

dla powierzchni odpolerowanej m1 =  1, 
dla zwykłych drutów m1 = 0,98—0,93, 
dla linek m1 =  0,87 — 0,83;

m2 — spółczynnik zależny od stanu pogody i równy 
dla suchego powietrza m2 = 1,
dla wilgotnego powietrza (chmury, śnieg, deszcz) m2 =  0,8.

Uwzględniając wartości a i ó, poprzednie wzory można napisać 
w sposób następujący:

Pui— — (U ~  Uo)2 • 13-5 kilowatów na km,

TT 21,1 . 3,92. b , r , . ,  u .
U0 = — "oto— ---- ' ml m2 r ‘ n — kilowoltow.

CL
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Ponieważ pojemność jednego przewodu wynosi

C = 1 mikrofaradów na km,
18 In

przeto 

wobec tego

, a_ 1
r 18 C ’

TT 21,1.3,92 t r ...U0 =  — ----- gyg +  t ■ m-Linz-ę kdowoltow,

albo ostatecznie
b vU0 =  4595 m1 m2 ^  f * -gr woltów,

gdzie pojemność C określona jest w mikrofaradach na 1 km poje­
dynczego przewodu.

J



R O Z D Z I A Ł S I Ó D M Y

P R O S T O W N I K I

§  41

P R O S T O W N I K  R T Ę C I O W Y

Przyrządy, za pomocą których możemy prąd zmienny prosto­
wać, czyli otrzymywać prąd o 
wnikami. Rozpatrzmy zasady

jednym kierunku, nazywamy prosto- 
działania kilku prostowników stoso­
wanych w elektrotechnice.

Prostownik rtęciowy oparty jest 
na własności lampy rtęciowej, dają­
cej łuk świetlny tylko wówczas, gdy 
rtęć jest katodą.

Przypuśćmy, że mamy naczy­
nie (rys. 110) z rtęcią; po wypom­
powaniu powietrza zostanie w naczy-

1

niu para rtęci i jeżeli następnie obie elektrody, np. żelazną A i rtę­
ciową B, połączymy ze źródłem prądu, to przy odpowiednim na­
pięciu otrzymamy łuk, lecz tylko wtedy, gdy rtęć jest katodą.
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Gdybyśmy obie elektrody A  i B  przyłączyli do źródła prądu 
zmiennego, mielibyśmy łuk w ciągu połowy okresu, gdy prąd płynie 
przez elektrodę żelazną w kierunku rtęci; w drugiej połowie okresu 
łuku by nie było. Wykres prądu przechodzącego przez taki przyrząd

mamy na rys. 111.
Dla uniknięcia przerwy w po­

wstawaniu łuku zastosowane zo­
stały przy zwykłym prądzie zmien­
nym dwie elektrody dodatnie. 
Prąd zmienny od zacisków 1 i 2 
źródła prądu zmiennego (rys. 112) 
wchodzi do transformatora T, któ­
rego wtórne uzwojenie połączone 
jest z dwoma żelaznymi elektro­
dami I i II ; środek uzwojenia 
wtórnego łączymy z rtęcią przez 
odbiornik A, zasilany prądem sta­
łym, np. przez baterię akumula­
torów.

W chwili gdy biegun dodatni 
znajduje się na zacisku 1, prąd 
płynie tak, jak wskazują strzałki 
ciągłe, gdy zaś biegun dodatni 
przejdzie na zacisk 2, prąd popły­
nie tak, jak wskazują strzałki prze­

rywane. Widzimy zatem, że przez odbiornik A prąd przepływa zawsze 
w jednym kierunku.

Transformator T posiada indukcyjność i wywołuje wskutek tego
przesunięcie fazy prądu wzglę­
dem napięcia, mianowicie prąd 
opóźnia się względem napięcia. 
W chwili więc gdy napięcie 
spadnie do zera, wartość prądu 
będzie większa od zera. Wy­
kres dla prądu będzie w da­
nym przypadku inny niż dla 

napięcia; otrzymamy tzw. prąd tętniący (rys. 113).
Dla prostowania prądu trójfazowego korzystamy z 3 elektrod 

dodatnich (rys. 114). Każdą z tych elektrod I, II i III łączymy 
z końcami poszczególnych faz (prądnicy lub transformatora), elektrodę

Rys. 112
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rtęciową zaś łączymy z punktem zerowym przez odbiornik A. Wy­
kres otrzymamy w danym przypadku następujący (rys. 115):

Z chwilą gdy pomiędzy I 
elektrodą i rtęcią powstaje łuk — 
zaczyna płynąć prąd z pierwszej 
fazy, przedstawiony na rysunku 
sinusoidą I. W dalszym ciągu 
napięcie na pierwszej elektro­
dzie maleje, a na II wzrasta, 
i w pewnej chwili (punkt A  na 
rys. 115) łuk z elektrody I prze­
skoczy na elektrodę II. W dal­
szym ciągu napięcie na elektro­
dzie Ubędzie malało, a na elek­
trodzie III będzie wzrastało, i 
w pewnej chwili (B) łuk prze­
skoczy na elektrodę III. Otrzy­
mamy w ten sposób prąd tętnią­
cy, którego wartości nigdy do 
zera nie spadają.

Prostowniki rtęciowe zy­
skały szerokie zastosowanie, 
zwłaszcza w kolejnictwie elek­
trycznym, i odznaczają się wy­
soką sprawnością. Rys. 114

Rys. 115
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§ 42
PROSTOWNIK ELEKTROLITYCZNY

Prostownik elektrolityczny albo aluminiowy oparty jest na izo­
lacyjnych własnościach tlenków niektórych metali, np. A120 3, i składa 
się z jednego lub kilku ogniw; każde ogniwo zawiera dwie elektrody: 

aluminiową i ołowianą, zanurzone w naczyniu 
z wodnym rozczynem kwasu siarkowego lub 
jeszcze lepiej — zwyczajnej sody (rys. 116). 
Gdy połączymy następnie elektrodę Al z ano­
dą, zaś elektrodę Pb z katodą, wtedy na ano­
dzie wydziela się tlen i tworzy się warstwa 
A120 3, która posiada własności izolacyjne i 
w pewnym stopniu przy niewielkim napięciu 
nie przepuszcza prądu.

Gdy przyłączymy obie elektrody do źródła prądu zmiennego, 
powstanie zjawisko następujące: w ciągu połowy okresu, gdy elektroda 
aluminiowa połączona jest z biegunem ujemnym, prąd będzie prze­
pływał, gdy zaś w drugiej połowie okresu elektroda ta będzie połą­
czona z biegunem dodatnim — prąd będzie przerwany.

Rys. 116

Pb \Al Ą  - ----- AL] Pb

c _____ «<■ I Pb ___ 1 Pb

1 - - - - -  B ------_
AL

lIIIU '

>  T

Rys. 117

W celu wyzyskania całego okresu prądu zmiennego obmyślił 
rodak nasz Po l l a k  urządzenie, przedstawione schematycznie na ry­
sunku 117.

Mamy cztery ogniwa połączone ze sobą, jak wskazano na ry­
sunku. Możemy łatwo sprawdzić, że pomiędzy punktami A i B,
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gdzie włączony został odbiornik, np. akumulator, prąd będzie prze­
pływał w jednym tylko kierunku, mianowicie od A do B. Rzeczy­
wiście, gdy na zacisku 1 mamy biegun dodatni, prąd będzie płynął 
w kierunku wskazanym strzałkami ciągłymi do punktu C. W punk­
cie C, mając przed sobą dwie drogi, prąd popłynie, w myśl wyżej 
powiedzianego, przez elektrodę ołowianą, a zatem do punktu A. 
Z tego punktu A — mając znów dwie drogi przed sobą, popłynie on 
do punktu B, stąd zaś przez punkt D wróci do bieguna ujemnego 
na zacisku 2.

Zupełnie analogicznie wyznaczyć możemy drogę prądu w dru­
giej połowie okresu; wskazana jest ona na rysunku strzałkami prze­
rywanymi.

Widzimy zatem, że urządzenie powyższe pozwala na korzystanie 
z całego okresu prądu zmiennego.

Sprawność tego rodzaju prostowników jest mała (do 25%), za­
chodzą tu bowiem znaczne straty na ogrzewanie. Użyteczne są one 
przy niewielkich mocach, przy większych zaś stają się nieekonomiczne; 
można je stosować przy niskich napięciach; już nawet przy napięciu 
120 V część prądu będzie przepływała również przez elektrodę alu­
miniową.

§ 43
P R O S T O W N I K  E L E K T R O N O W Y

Prostownik ten składa się z bańki szklanej, w której umiesz­
czone są dwie elektrody: anoda 
z drucika wolframowego; wewnątrz 
bańki — próżnia. Katoda powinna 
być rozżarzona prądem albo z ba­
terii ogniw, albo ze źródła prądu 
zmiennego przez odpowiedni trans­
formator.

Tego rodzaju układ, nazywa­
ny lampą prostowniczą lub keno- 
tronem, może przepuszczać prąd 
tylko w jednym kierunku, miano­
wicie wewnątrz lampy od anody 
do katody; prąd zewnętrzny będzie płynął od katody do anody.

Na rys. 118 wskazany jest kierunek prądu, który powstanie, 
gdy lampa prostownicza będzie włączona do sieci prądu zmiennego.

z blaszki wolframowej i katoda
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A oznacza anodę, K  — katodę, B oznacza źródło prądu żarzenia. 
W takim obwodzie powstanie prąd jednokierunkowy, przerywany 
na przeciąg połowy okresu. Ażeby wykorzystać obie połowy okresu 
prądu zmiennego, można zastosować dwie lampy prostownicze, od­
powiednio je włączając, lub też używać lampy z dwiema anodami, 
podobnie jak w prostowniku rtęciowym.

Spadek napięcia w takiej lampie jest znaczny; używa się ich do 
wysokich napięć i słabych prądów.

Oprócz lamp prostowniczych próżniowych istnieją również lampy 
wypełnione wewnątrz argonem o małym ciśnieniu (kilka centyme- 
rów). W  takich lampach otrzymuje się mniejszy spadek napięcia; 
używa się ich do napięć niskich i prądów silniejszych, np. do ładowa­
nia akumulatorów. Wytwarza się je tak samo jak lampy próżniowe 
z jedną lub z dwiema anodami.

§  44

P R O S T O W N I K  T L E N K O W Y

Prostownik tlenkowy lub kuprytowy składa się z płytki mie­
dzianej pokrytej cienką warstwą tlenku miedzi; na tę płytkę nało­
żona jest płytka ołowiana i obie te płytki są mocno ściśnięte izolo­
waną śrubą. Działanie tego prostownika oparte jest na tym, że prąd, 
płynąc w kierunku od ołowiu do miedzi, napotyka w kontakcie opór 
znacznie mniejszy, niż prąd płynący w kierunku od miedzi do ołowiu. 
Prostownika tego używa się przeważnie do niskich napięć i niewiel­
kich prądów.
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§  45
S Z E R E G  F O U R I E R A

Prądy zmienne spotykane w praktyce — nie mają przebiegu do­
kładnie sinusoidalnego, chociaż stanowią funkcje okresowo zmienne 
w czasie, czasem odbiegają nawet znacznie od takiego przebiegu. 
Prądy tego rodzaju będziemy nazywali prądami odkształco­
nymi. Analizę ich najdogodniej oprzeć na rozkładaniu takich funkcji 
w szeregi Fouriera,  gdyż w ten sposób sprowadzamy badanie prą­
dów odkształconych do badania prądów sinusoidalnych. Przypom­
nijmy, na czym polega rozkładanie funkcyj w szeregi F o u r i e r a .

Niech będzie /(cc), gdzie x =  *, jednoznaczna funkcja czasu t,

okresowo zmienna z okresem T ; znaczy to, że wartości tej funkcji 
będą się powtarzały w odstępach czasu różniących się o okres T lub 
o całkowitą liczbę okresów. Oznaczając przez k dowolną liczbę cał­
kowitą, możemy napisać

/ ( ^ f ) =  f ] ~ ~ { t  + kT) J = f ( 3 p -  + 2 k * y

Zakładając = x, otrzymamy

/(x) =  / (x +  2 kn),

czyli że wartości funkcji będą się powtarzały dla wartości' x, róż­
niących się o całkowitą liczbę 2n\ w tym przypadku 2n, będzie 
okresem.
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Według F o u r i e r a

f(x) = A 0 +  A 1 cos x + A 2 cos 2 x + A 3 cos 3* + ... + A n cos nx 
+  B1 sin x +  B3 sin 2x  +  B3 sin 3x  +  ... + Bn sin nx =

k =  n k =  n

= A 0 +  ^  A k cos kx +  ^ B k sin kx, ( 1 )
k=i k = i

gdzie A 0, A x, ..., A n, Blt ..., Bn są wielkościami stałymi, n zaś może 
być liczbą skończoną lub nieskończoną.

Dla znalezienia stałej A 0 mnożymy obie strony wzoru (1) przez dx 
i całkujemy w granicach od 0 do 2n albo od dowolnej wartości x 
do x + 2n. W ten sposób otrzymamy

2 71 2  71 2  71 2  71

j ' f ( x ) d x =  j ' A 0dx + . . . +  J 'A kcos kxdx +  ... +J'b/i sin kxdx + ...

2 71 2 71
Wszystkie całki określone postaci j A* cos kxdx i J B k sin kx dx są

zerami, ponieważ ich całki nieokreślone sin kx  i ---- cos kx

mają tę samą wartość na początku i na końcu okresu. Zatem
2 71

I f (x) dx
2 71p 2s*

1 A 0dx
J

= Ao
0 J0

A ° = 2̂ t

2 71
f f(x)dx

2nA0 ;

( 2)

Dla znalezienia każdego ze spółczynników przy cosinusach mno­
żymy obie strony wzoru (1) przez cos kx i całkujemy jak poprzednio. 
Otrzymamy wtedy

2 71 2  71 2  71

I ' f(x) cos kxdx = A 0f  cos kxdx + ... + Atj -cos ix cos kxdx +
0 0 0 

2 j z  2  71

/  cos2 kx dx + ... + B- J '  sin ix cos kx dx + ...
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Pierwsza całka jest zerem, cośmy już wyprowadzili poprzednio 
Każda z całek typu

2 JJ 2 71

ix cos kxdxcos ix cos kxdx] (i =j= k) i ^ s in  ia 
o o

jest również zerem, bo funkcja podcałkowa daje się zamienić na 
sumę dwóch funkcji trygonometrycznych, a tych całki w rozpatry­
wanych granicach są, jakeśmy już widzieli, zerami.

Otrzymujemy zatem
2 71 2 71

J f [ x )  cos kxdx = A kJ '  cos2 kxdx .

Ale

o
skąd

2 71 2 7j  2 Ti 2

/
 f  1 +  cos 2kx , f  dx fcos2 kx dx = I -------- - ---------dx =  I ~2~+ I

2 71
cos 2 kx dx

71,

2 71

/'<f(x) cos kxdx = A kn;

2 71

- ± f * '
f(x) cos kxdx. (3)

Zupełnie tak samo, dla wyznaczenia każdego ze spółczynników 
przy sinusach, mnożymy obie strony wzoru (1) przez sin kx i całku­
jemy; wtedy

2 71

- Ť / '
f(x) sin kxdx. (4)

W szeregu Fouriera możemy połączyć sinusy i cosinusy, których 
argumenty są te same, pisząc jedną tylko funkcję sinusoidalną, za­
kładając ^  cos ¿a; ą. Bk sin /cX _  Fk sin (kx + ipk) ,

Fk = \ A k2 + Bk2; t g * - ^ -
Ok

Na tej podstawie szereg F o u r i e r a  możemy podać w postaci 
f{x) = A 0+ F 1sm(x+rp1) + F 2sin(2x + ip2) +  . . . + F ksm [kx +  y>k). (5)
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Sinusoida F x sin (x +  y>j) nazywa się główną sinusoidą albo 
główną falą, lub pierwszą harmoniczną. Inne sinusoidy noszą 
nazwę wyższgch harmonicznych rozpatrywanej funkcji i, w za­
leżności od wskaźnika wielokrotności argumentu głównej sinusoidy, 
mówimy w skróceniu druga, trzecia itd. harmoniczna.

§ 46
PRZYPADKI SZCZEGÓLNE

1) Krzywa stanowiąca wykres rozpatrywanej funkcji jest syme­
tryczna względem osi X  w ten sposób, że połowa fali znajdująca się 
pod osią X  jest zwierciadlanym odbiciem połowy fali przebiegającej 
nad osią X, przesuniętym naprzód o n (rys. 119).

W tym przypadku dla dwóch punktów krzywej, których odcięte 
różnią się o n, rzędne będą się różniły tylko znakami. To znaczy

f{x +  n) =  - / ( * ) .

Aby temu zadośćuczynić, w szeregu F o u r i e r a  nie powinno być 
stałej A 0, poza tym zginąć powinny wyrazy zawierające funkcje 
trygonometryczne od argumentów stanowiących parzyste wielokrot­
ności x. Mogą pozostać tylko wyrazy z argumentami o nieparzystych
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wielokrotnościach cc, gdyż tylko te wyrazy zmieniają znak przy za­
mianie x na [x + n). Zatem w tym przypadku

/(aj) =  A x cos x + A 3 cos 3cc + ... +  4̂2A+1 cos (2k +  l)cc +  ... +
+ B1 sin x + B3 sin 3cc + ... + B2k+1 sin (2k +  l)cc + ... =

k = n  k = n

=  ^  ^ 2*+icos (2A:+ 1)cc —f— ^  B2k+1 sin (2k +  1)cc. (6)
k = 0  k = 0

Przy wyznaczaniu spółczynników wystarczy całkowanie w gra­
nicach od 0 do n, gdzie funkcja ma ten sam znak, i pomnożenie 
rezultatów przez 2. W ten sposób

71 71

l 2 * + 1 = ~  J  /(aj) cos (2 Ar +  1) cc dcc; B2k+l = —-J f (x)sin (2k+l)xdx. ( 7)

2) Krzywa jest symetryczna względem swego początku. Jeżeli 
początek osi spółrzędnych umieścimy w punkcie krzywej, gdzie 
rzędna równa jest zeru, to symetria będzie polegała na tym, że 
dwa punkty krzywej mające odcięte + x  i —aj będą miały rzędne o tej 
samej wartości, przy tym znaki tych rzędnych mogą być różne lub 
jednakowe; rozpatrzymy więc dwie możliwości:

a) przy zamianie x na —x znak rzędnych się zmienia, czyli 
/(-a j) =  -/(aj),

jak to ma miejsce np. dla krzywej na rys. 120.
Teoria prądów zmiennych 12



178 PRĄDY ODKSZTAŁCONE

W tym przypadku w szeregu F o u r i e r a  (1) nie powinno być 
stałej A o oraz wyrazów zawierających cosinusy; otrzymamy więc 
szereg w postaci

/ (x ) = Bt sin x + B2 sin 2x + ... +  Bk sin kx + ... =
k = n

= ^  Bk sin k x ; (8)
k = i

b) przy zamianie x na —x znak rzędnych się nie zmienia, czyli

/ (—*) = /(*)»
jak to np. ma miejsce dla krzywej na rys. 121.

Łatwo jest zauważyć, że w tym przypadku w szeregu F o u r i e r a  
(1) nie powinno być wyrazów zawierających sinusy; będziemy więc 
mieli szereg

f[x) = A 0 + A 1 cos x + A 2 cos 2 x  +  ... + A k cos kx + ... =
k = n

= A 0 +  ^  A k cos kx. (9)
k=i

3) Krzywa jest symetryczna względem osi X , jak w przy­
padku (1), i względem początku krzywej, jak w przypadku 2a.

Wtedy, na zasadzie poprzednich rozumowań, w szeregu F o u ­
r i e r a  mogą pozostać tylko wyrazy zawierające sinusy argumentów 
stanowiących nieparzyste wielokrotności x, czyli
f(x) =  Bx sin x +  B3 sin 3a: +  ... +  B2k+1 sin (2k +  1)® + ... (10)

Ponieważ w tym przypadku można podzielić krzywą odpowiada­
jącą jednej fali na 4 jednakowe części o takim samym przebiegu
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więc przy obliczaniu spółczynników wystarczy całkowanie w gra-
7Lnicach od 0 do -¡j- i mnożenie rezultatu przez 4. W ten sposób

TC/2

B 2 *+l — ~~J' fix) sin [2 k + t )x d x .  
o

( U )

§ 47
PRZYKŁADY

Przykład 1. Prąd o natężeniu stałym I0 zmienia okresowo 
kierunek (rys. 122).

Zachodzi tu ostatnio rozpatrywany przypadek szczególny (3); sto­
sujemy zatem wzory (10) i (11)

/  (aj) = sin x + B3 sin 3aj +  ... +  B2k+1 sin (2k +  1 )* +  ...;
n_

= A  / 2 /(cc) sin (2k + l)xdx; f(m) = I0 =  const.
n Jo

B2*-M

B

4/„
n{2 k +  1) [*

cos (2fe + 1)«~|.

cos ( 2 k + l ) n
2  ~  U ’

B2k+1=

]
4 /„

n(2k +  1)
12*
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Ostatecznie

f [x) =  Ĵ sina; +  -i- sin 3x +  ~  sin bx  +  -i- sin l x  +  ...J .

Dana funkcja jest wypadkową nieskończonego szeregu sinusoid, 
których okresy i amplitudy maleją jak szereg naturalny liczb nie­
parzystych, a początek wszystkich jest wspólny. Główna fala ma

amplitudę 1,3 trzecia harmoniczna =  0,4 I0 itd.
7C Ó7l

Przykład 2. Funkcja zmienia się w sposób trapezoidalny 
(rys. 123) między w a r t o ś c i a m i i  + / 0. Mamy tu również przypadek 
szczególny trzeci.

Rozpatrujemy ćwierć fali.

Dla 0 ^  x  ^  a, f(x ) =  —  x \

na <:X f(x) =  /„ .

f(x) =  sin x +  B3 sin 3* + ... + B2k+1 sin (2k + l)x  + ...;
Ti
2 a

B2k + l =  ~ ~ f f (  x) sin (2k +  l)a:iia; = 4 / «  x) sin (2k +  1 )xdx +

71
2

+  — / / ( * )  sin (2k +  1 )xdx;
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a

J / (® )  Sis i n  ( 2 Ar +  l )xdx
a

= J ^  *  s i n  (( 2 k +  l )x  dx =

( 2  k +

a

^ j ^ J { 2 k +  1 )  x  s i n  ( 2 / c  +  1 )  xd [{2 k +  1 ) ® ] ;

s i n  z dz — —  z c o s  z +  /  c o s  z dz — —  z c o s  z +  s i n  z;
a

j ( 2 k +  l ) a r  s i n  ( 2 k +  l ) a r d  [ ( 2 / c  +  l ) a r ] —  ( 2 / c  +  l ) a r  c o s  ( 2 / c  +  l )x  +

+  s i n  ( 2 / c  +  l ) a r = *  s i n  ( 2 / c  +  1 )  a —  ( 2 / c  +  1 )  a c o s  ( 2 / c  +  1 )  a ;

¡1/(*) sta (2k +  1 ),  dz -  1 )a ] ;
o

71 71

2 2

f m  s i n  ( 2 k + \)x dx = I0j s i n  ( 2 k + l )x  dx =

g d y ż

B 2k+1

+

/o
>s ( 2 / c  + 1) ar 1 2 

1 o-
lo

c o s  ( 2 / c  + 1)
2 / c  +  l 2 / c  +  l

c o s  ( 2 / c  + 1 ) II o

4 h  f . s i n  ( 2 / c  + l ) a a
c o s  ( 2 / c  + 1)

n ( 2 / c  + 1 ) 2 ( 2 / c  + 1)
4 h

c o s  ( 2 / c  + l)<z = 4 /„ s i n  ( 2 / c  + 1 )  a

71 2 / c  + 1 na ( 2 / c  + 1 ) 2

4 / 0
C9Ł- -L 1Y c o s ( 2 / c  +‘ l) a - l —

4 /«
/Ot j. c o s  ( 2 / c  + 1)

4 I0 sin (2/c +  1) a 
~^~{2k+  1)2 5

,, . r4 /„  i sin a sin a: sin3asin3ar sin5asin5a:
------ P ------+ ---------3*--------+ ---------5i

__ 4 / 0 ^  sin (2/c +  l)a  sin (2/c +  l)ar
k  =  0

( 2 / c  +  1 ) 2
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Przykład 3. Prąd wzrasta i maleje proporcjonalnie do czasu 
między stałymi wartościami ±  I0 (rys. 124).

Jest to graniczny przypadek przykładu poprzedniego, gdy
7Za =  Z tego powodu, biorąc pod uwagę, że

• ■ , " o  . 3 7t ,sin a =  sin - — = 1, sin óa =  sin —r- =  — 1,iC > £

sin (4 / +  3) a = sin (4 Z + 3) = — 1,

będziemy mieli
,, , 8 Ia i sina; sin 3a; sin 5a; sin 7x

tW-̂ rj - p ---------F -  +  - B 5 ----------- 7S— +  ••• f -
k — n

8 /„  Y 1 , sin (2k + 1) x
1 ’ W T ' .

Przykład 4. Prąd zmienny sinusoidalny zmienia swój kierunek 
w drugiej połowie okresu, stając się w ten sposób prądem jednokierun­
kowym— tętniącym (rys. 125).

Mamy tu przypadek szczególny 2b, więc stosujemy wzór (9)

f[x) =  A„ +
k = n

Z a *
k = l

cos hx .
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Rozpatrywana funkcja, mając wartość największą Im, zmienia 
się od zera do Im w sposób następujący:

w granicach od 0 do n ... f(x) =  Im sina:,
„ 7i „ 2n ... f(x) =  — Im sin x.99 99

Obliczamy spółczynniki
2 71

1 Im sin x dx + / - Insin x dx 
J0 71

r i 71 1 l 7 l ~ l _  21,— COS X + + COS X
LI 0 71 J n

71 2 71

№  sin x cos k x dx + J*— Im sin x cos k x d;cjj =
0 71

71

= -^ -j j * -i- [sin (k + \) x — sin [k — 1 ) , ]  dx —
o

2 7 1

71
_ I _ A

2n\_

sin (k +  1) x — sin (k — 1) x:J dx | =

cos (k +  1)x 1 cos (k — l)x\n
F T 1  +  k - 1  o-

cos (k +- l)x  ^ cos (k — l)x

= hL[
2 ji L

k + 1 k — 1
271“!

71 J
cos (k +  1) n cos (k — 1) n i 1

k + 1 
1 1

k - l k +  1 k — 1
cos (k +  1) n , cos (k — 

F + T _ k ^ l  F + l  + k
Im\ 1 1 cos (k +  1)n , cos [k — 1)F|

~ l t [ k T T ~ k  — l F + l  + k.— l
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dla k nieparzystego

cos (k + \)n =  cos [k— l ) n =  1, 

wtedy, co łatwo zauważyć,

Ak =  0;

dla k parzystego

cos (k +  \)n =  cos n =  —1, 
cos (k— l)jz=  cos (—n) =  —1,

wtedy

l m T 2 2 1 2  Im ( k - l ) - ( k  +  l) 4 Im 1
* * [ *  + ! f c - i j  n ( k+i )  (k— i) n i

Podstawiając wartości A 0 i A k do wzoru na rozpatrywaną 
funkcję, otrzymamy

. 2Jmr i 2 0 2 . 2 A/(a) = ------ 1 —r.—  ̂ cos 2a — ^—=• cos 4*  — =—= cos o x  — ...
t t |_ 1 . 3  3 . 5  5 . 7

Jeżeli mamy prąd tętniący, którego wartości zmieniają się nie 
od 0 do Im, lecz od I0 do Im, gdzie /„  >  0 (rys. 126), wówczas dla 
znalezienia funkcji przedstawionej krzywą prądu trzeba tylko do 
poprzedniego wzoru dodać I0.
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§  48

A N A L I Z A  K R Z Y W Y C H

W rozpatrywa­
nych przykładach 
wyższe harmonicz­
ne wywierają coraz 
mniejszy wpływ na 
kształt krzywej, tak 
że uwzględniaj ąc tyl­
ko niewielką ilość 
harmonicznych, o- 
trzymamy względ­
nie znaczną dokład­
ność. W praktyce 
uwzględniamy naj­
częściej harmonicz­
ne do dziewiątej włą­
cznie.

Bardzo ważny 
ze względu na kształt 
krzywej jest znak 
trzeciej harmonicz­
nej; jeżeli jest do­
datni, to krzywa 
ma wierzchołki stę­
pione w stosunku 
do pierwszej harmo­
nicznej, jeżeli jest 
ujemny, to wierz­
chołki są zaostrzo­
ne. Zupełnie odwro­
tnie wpływa znak 
piątej harmonicz­
nej.

Na rys. 127 u- 
widoczniony jest 
wpływ tych harmo­
nicznych na kształt 
krzywej.
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Równania tych krzywych są następujące:

I y — Im sin x,

II y  = Im sin X +  -i- Im sin 3x,

III JJ — Im sin X ---- ^  Im sin 3x,

IV y  = Im sin x + Im sin 5a:,

V y  = Im sin x — rjl- Im sin 5ic.

Jest bardzo wiele sposobów analizy krzywych. Rozpatrzymy tu 
trzy metody.

Pierwsza, którą można nazwać metodą arytmetyczną, polega 
na tym, że całki, przez które wyrażone są spółczynniki w szeregu 
Four i era ,  obliczamy w przybliżeniu; w tym celu na wykresie, na osi 
odciętych, dzielimy cały okres 2n  na dowolną, zwykle parzystą liczbę n

2nrównych części; każda wyniesie więc —  =  Ax; dla punktów podziału, 

których odcięte będą

0, Aic, ’2Ax, .... mAx, ..., (n — 1) Aa:,

znajdujemy z wykresu odpowiednie rzędne

rzędne te należy brać z właściwym znakiem; jeżeli początek 
spółrzędnych weźmiemy w punkcie, gdzie krzywa przecina oś od­
ciętych, to „

J y0 = o.

Wyraz stały w szeregu Fo u r i e r a

znajdujemy jako średnią powyższych rzędnych, zastępując w ten 
sposób wzór ścisły wzorem przybliżonym

yo, yi» y% ■•■ymi •••> i/n— i >

o
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Na rozpatrywanym wykresie odcięte mAx odpowiadają w szeregu 
F o u rie ra  odciętym a:; rzędne ym odpowiadają wartości f(x ); zamie­
niając we wzorach (3) i (4) (§45), dla przybliżonych obliczeń, całki 
przez odpowiednie sumy, otrzymamy dla współczynników przy cosi- 
nusach i sinusach k-tej harmonicznej w szeregu F o u r ie ra  (1) (§45):

Ak = — ^  f[x) cos kx = — ^  Ym cos km Ax,
x = 0

x =  2ji

m = 0  

— n —1

Bk = — \ f(x) sin kx = ■— N Ym sin km A
71 Ami Tl* = 0 m = 0

albo
, 2 tt „ ,  2 tiy0 + yx cos k —  +  y2 cos Ik  —  +

2 ti 2 ti\+ ym cos m /c ^  + ••• + Un- 1 cos (n — l) /c—  ;
D 2 f  , 2ti „. 2 tiBk =  — u, sin k ------h V9 sin 2 k ------n L n n

. i 2 tc . / i , , 2 Tc I+ i/m sin mk —  +  ... +  yn_x sin (n — 1) k —  .

( 12)

(13)

Mając te wzory, obliczymy współczynniki dowolnej harmonicz­
nej; następnie znajdujemy wartość maksymalną poszukiwanej har­
monicznej ze wzoru

Fk =  V £ ?
oraz kąt przesunięcia fazy ze wzoru

. Ak
tg n  =  ~Wk '

Im większa będzie liczba n punktów podziału jednego okresu, 
tym ściślejszy otrzymamy z obliczeń rezultat.

Druga metoda analizy krzywych, którą tu rozpatrzymy, stanowi 
wykreślny sposób podany przez Ro t he g o .

Mając wykres badanej krzywej, postępujemy jak poprzednio: 
dzielimy cały okres na dowolną całkowitą liczbę, najlepiej parzystą, n 
równych części; znajdujemy z wykresu rzędne odpowiadające punk­
tom podziału:

a  2tz ~  2 Ti . ... 2 Tt0, — , 2 ----- , ..., (n — 1 —Tl n n
niech rzędne te będą:

y0) y ii ł/2i •••! y,-i-
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Robimy teraz następujący wykres: z dowolnego punktu jako 
środka przeprowadzamy promień podstawowy w dowolnym kierunku,

np. poziomym, oraz n — 1 promieni pod kątami 2 . —  ,
n n

2 n
(n — 1) — , odmierzonymi od promienia podstawowego. Na rys. 128

n =  24, —  = 15°. n
Chcąc znaleźć wartość maksymalną dowolnej, np. Ar-tej, harmo­

nicznej, odkładamy na przeprowadzonych promieniach pod kątami 0,

k — , 2 k — , ..., (n — 1) k —  znalezione poprzednio rzędne y0 ,n n
yi, y „ -1 , uwzględniając 
przy tym znaki tych rzęd­
nych w taki sposób, że 
wartościom dodatnim da­
jemy kierunek od środka 
O, wartościom ujemnym 
zaś kierunek przeciwny. 
Otrzymane w ten sposób 
wektory dodajemy do sie­
bie geometrycznie i sumę

tę dzielimy przez re-

zultat daje nam wartość 
maksymalną Ar-tej harmo­
nicznej .

Rzeczywiście, suma 
geometryczna rozpatrywa­

nych odcinków może być wyrażona symbolicznie w postaci
.  ..27t .o i2ji . . .
Śk = yo + y\d n + y^e’ n + . . .  + !/„_! e’ ” »

albo
6.71 6/71

§k =  y0 +  yi cos ^—  + y2 cos ----- 1-... +  yn- i  cos (n — 1) k 2 TI

+ /'[i/i si
. , 2  ti . 7 2  tt > , , ,  isin k —  +  y2 sin Zk —  +  ... + sm [n — 1) k 2tc1

"_T
Uwzględniając wzory (12) i (13) widzimy, że część rzeczywista
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ostatniego wyrazu stanowi Ak, część zaś urojona Bk; wobec

t e g 0  A  U
Sk = ~2 (^-a + i  -®*)*

Oznaczając przez xpk kąt, który tworzy § k z promieniem pod­
stawowym, będziemy mieli

Sk (cos y>k + j sin xpk) =  (Ak + j  Bk).

Wartość maksymalna k-tej harmonicznej w szeregu podanym 
we wzorze (5) będzie

Ft = V V + ^ = 7 i
i , ~2~

kąt przesunięcia fazy tej harmonicznej znajdujemy ze wzoru

Ak
t g ^ =  b 7

Ak stanowi rzut znalezionej sumy § k na oś odciętych (promień podsta­
wowy), Bk — rzut tejże sumy na oś rzędnych (prostopadłą do pro­
mienia podstawowego).

Trzecią metodę, którą tu podajemy, stanowi sposób Fischer-  
Hinnena.  Oparty on jest na następującym twierdzeniu: sumy

sin x + sin (x + a) +  sin [x +  2 a) + ... +  sin [x + (p — 1) a], 
cos x +  cos {x +  a) +  cos (x +  2 a) +  ... +  cos [x +  (p — 1) a],

gdzie
2 kn

przy czym k i p oznaczają liczby całkowite, są równe p sin x, wzglę- 
kdnie p cos x, jeżeli •—■ jest liczbą całkowitą, a równają się zeru, jeżeli 

k P—  jest ułamkiem. Ten ostatni przypadek był rozpatrzony w twier­

dzeniu o sumie wartości chwilowych wielkości układu wielofazowego 
symetrycznego w § 23, pozostaje więc do rozpatrzenia przypadek, 

kgdy —  jest liczbą całkowitą.

\
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kWówczas, zakładając ■— = m, gdzie m jest liczbą całkowitą,
2kn Pbędziemy mieli a = —- — = 2  mn i rozpatrywana suma sinusów 

będzie
sin x +  sin (x + 2mn) +  sin [x + 4mn) +  ... +  sin \x +

+ (p — 1 )2 mn] =  sin x +  sin x +  sin x +  ... +  sin x — p sin x\
w sposób analogiczny znajdziemy, że suma cosinusów równa się p cos x.

Sposób F i s c h e r - H i n n e n a  rozpatrzymy najpierw w przypad­
ku, gdy krzywa jest symetryczna względem osi odciętych (rys. 129); 
wtedy szereg Fo u r i e r a  posiada, jak wiadomo, tylko nieparzyste har­
moniczne; według wzoru (6)

f(x) =  cos x + B1 sin x + A 3 cos 3x + B3 sin 3x + ... =
k=k  =  tl P

4
A 2k +1 cos (2k + \)x + B2k + j sin (2k + 1) x} (14)

Ograniczymy liczbę harmonicznych do dziewiątej włącznie.

Najpierw wybieramy początek osi współrzędnych w dowolnym 
punkcie O na osi X  (osi symetrii rozpatrywanej krzywej). Przypuśćmy, 
że od dowolnego punktu M  na osi X, którego odcięta jest x, odłożymy 
na tejże osi MM' = 2n; niech rzędna krzywej odpowiadająca punk­
towi M  będzie y', wtedy

A x cos x +  Bx sin x +  A 3 cos 3x + B3 sin 3x  + ... +
+ A9 co s  9x + B9 sin 9x  = y'. (15)
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Podzielmy MM' na 3 równe części i niech y', y ", y"' oznaczają 
rzędne w punktach podziału, których odcięte stanowią x, x +  a, 

2 n
x + 2 a, gdzie a = Te same wartości rzędnych musimy otrzymać,

zakładając we wzorze (14) zamiast x kolejno x, x +  a, x +  2a. Ozna­
czając sumę

y ’ + y"  +  y” ' =  S3,
będziemy mieli

A x [cos x +  cos (x + a) +  cos (x +  2a)] +  B1 [sin x +  sin (x + a) +
+ sin (x +  2 a)] +  A 3 [cos 3x +  cos (3x +  3a) + cos (3* + 6a)] +

+  B3 [sin 3x +  sin [3x + 3a) +  sin [3x + 6a)] + ... +
+ Ag [cos 9a: +  cos (9x +  9 a) + cos (9x + 18a)] +  B9 [sin 9cc +

+ sin (9ic +  9a) +  sin (9x +  18a)] = S3.

Na podstawie poprzednio wyprowadzonego twierdzenia, dla
2 na = -g- otrzymamy

3yl3 cos 3x + 3B3 sin 3x + 3A 9 cos 9x + 3B9 sin 9® = S3. (16)

Następnie dzielimy ten sam odcinek M M ' na 5 równych części, 
odmierzamy rzędne w punktach podziału x, x + a, x +  2a, x +  3a,

2nx + 4a, gdzie a = Korzystając z wzoru (14) i biorąc sumę rzęd­

nych, którą oznaczymy przez Ss, otrzymamy jak poprzednio

hAs cos 5a: +  5B5 sin 5x  =  Ss. (17)

Dzieląc następnie MM' na 7, a wreszcie na 9 równych części, 
otrzymamy 7 ^  ^  rJx +  gin 7 x =  (18)

*3A9 cos 9® + 9 B9 sin 9a: =  S9, (19)

gdzie S7 i S9 oznaczają sumy siedmiu i dziewięciu rzędnych w odpo­
wiednich punktach podziału.

Pięć wzorów 15, 16, 17, 18 i 19 zawiera 10 niewiadomych 
spółczynników A i B, dla znalezienia których potrzeba 10 nieza­
leżnych od siebie równań. Równania te możemy z łatwością ułożyć, 
przeprowadzając obliczenia dla dwóch rozmaitych wartości x; w tym

7tprzypadku najdogodniej założyć najpierw x =  0, następnie x = —y ./w
Jeżeli dla x — 0 oznaczymy rzędną przez yx, zaś sumy S3, S5, S7, S9



192 PRĄDY ODKSZTAŁCONE

odpowiednio przez y3, y5, y7, y9; następnie dla x  =  — oznaczymy

rzędną przez i sumy odpowiednio przez y3' , ya , y7' , y9' , wtedy 
z powyższych wzorów otrzymamy dla x =  0

-di +  -d3 +  d.5 + j47 + j49 = y7,
3 A 3 + 3 4 , = y3,
5^5 = i/5i
7 d.7 = y7,
9-d# =  y9 ,

dlax = ^

B1 B3 + Ba — B7 + J59 = i/j',
— 3i?3 + 3B9 = y3' ,

~ yz' >
7 B7 =  y7 ,
97?9 = y9 ,

skąd od razu znajdujemy wartości poszukiwanych współczynników.
Sposób postępowania w przypadku krzywej symetrycznej wzglę­

dem osi odciętych będzie więc następujący: bierzemy dowolny punkt 
na osi X  jako początek współrzędnych; od tego punktu (x =  0) odkła­
damy na osi X  odcinek równy 2 tt, odpowiadający jednemu okresowi; 
odmierzamy rzędną krzywej na początku współrzędnych y1; następnie 
dzielimy odcinek kolejno na 3, 5, 7 i 9 równych części, odmierzając 
za każdym razem odpowiednie rzędne i sumując je przy uwzględnie­
niu znaków tych rzędnych; w ten sposób znajdujemy y3, y6, y7, t/9; 
następnie przesuwamy się na osi X  od początku współrzędnych o */«

okresu i postępujemy w sposób analogiczny, wyznaczając

y / ,  y3 , ya , y7', y9 . Znalezione wartości podstawiamy do układu rów­
nań i rozwiązujemy te równania; obliczone wartości współczynników 
A  i B podstawiamy do wzoru (14), który określi badaną krzywą.

W przypadku ogólnym, gdy badana krzywa nie wykazuje sy­
metrii, musimy przede wszystkim stwierdzić, czy szereg Four i era  (1), 
określający poszukiwaną funkcję, zawiera stałą A 0, którą się oblicza 
ze wzoru (2)

2n 2 71

0 0
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wyraz ten stanowi średnią rzędną wszystkich punktów krzywej, 
zawartych pomiędzy x = 0 i x = 2n, a więc w granicach całego 
okresu; ponieważ w jednej części okresu rzędne są dodatnie, w dru­
giej ujemne, przeto w rezultacie dla ogólnej średniej otrzymamy albo 
wielkość dodatnią, albo wielkość ujemną, albo zero. Praktycznie taką 
średnią możemy znaleźć dzieląc okres od dowolnego punktu na osi X  
(np. od x =  0 do «  = 2 n) na mniejszą lub większą liczbę części, w za­
leżności od stopnia odkształcenia krzywej; następnie odmierzamy 
wszystkie rzędne odpowiadające punktom podziału, obliczamy ich 
sumę z uwzględnieniem znaków, wreszcie dzielimy tę sumę przez 
liczbę rzędnych; otrzymany w ten sposób rezultat da nam A 0. Jeżeli 
A0 nie będzie równe zeru (praktycznie — bliskie zeru), wtedy, przesu­
wając oś odciętych równolegle na odległość równą A 0 w stronę do­
datnią lub ujemną, w zależności od znaku A 0 otrzymamy nowe osie 
współrzędnych, względem których odcięte krzywej pozostaną te same, 
wszystkie zaś rzędne będą zmniejszone o i 0. W  ten sposób w nowym 
układzie współrzędnych w szeregu Fo u r i e r a  pozbędziemy się wy­
razu stałego.

Na rys. 130 pokazana jest taka krzywa niesymetryczna; w jed­
nej połowie okresu, gdzie rzędne są dodatnie, mamy przebieg inny 
aniżeli w drugiej połowie, gdzie rzędne są ujemne; średnia wszystkich 
rzędnych odpowiadających jednemu okresowi wynosi 00 '  = A 0\ wy­
padła ona w tym przypadku dodatnia. Po przeniesieniu osi OX do 
położenia 0'X' otrzymujemy nowy układ współrzędnych 0 'X ' , 0'Y, 
względem którego rozpatrywana krzywa określona będzie szeregiem 
Fouriera,  zawierającym wyłącznie cosinusy i sinusy.

Znalezienie średniej rzędnej, czyli A 0, może być uskutecznione 
jeszcze lepiej za pomocą planimetru (przyrządu do określenia pola 
powierzchni). Rozpatrując bowiem wyraz

i biorąc początek spółrzędnych (x =  0) w punkcie przecięcia się 
krzywej z osią X, od którego zaczynając rzędne krzywej 'przyjmują 
wartości dodatnie, będziemy mieli

gdzie oznacza pole powierzchni zawartej pomiędzy krzywą i osią X

o

o o 71

Teoria prądów zmiennych 13
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w granicach x =  0 i x =  n, zaś S2 — pole powierzchni ograniczonej 
krzywą i osią X  w granicach x = n i x =  2n] wyraz S2 wzięty ze 
znakiem —, ponieważ w rozpatrywanych tutaj granicach wszystkie 
rzędne krzywej będą ujemne. Jeżeli więc za pomocą planimetru 
określimy pola i S2, to dla znalezienia A 0 trzeba różnicę tych 
wartości podzielić przez 2n. Jasne jest, że po przesunięciu osi X  do

położenia 0'X' pola powierzchni odpowiadające dodatnim i ujem­
nym rzędnym krzywej będą sobie równe; na rys. 130 pola te są za- 
kreskowane.

Przystępując do analizy krzywej nie zawierającej w szeregu 
F o u r i e r a  stałej A 0, musimy znaleźć współczynniki przy cosinusach 
i sinusach wszystkich harmonicznych, zarówno nieparzystych jak 
i parzystych. Ograniczymy i w tym przypadku liczbę harmonicz­
nych do dziewiątej włącznie. Ustaliwszy w dowolnym punkcie na 
osi odciętych początek osi współrzędnych, odkładamy od dowolnego 
punktu na tej osi z odciętą x odcinek równy 2n. Odcinek ten dzielimy 
kolejno na 2, 3, 4...9 równych części, odmierzamy rzędne krzywej
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w punktach podziału i obliczamy odpowiednie sumy rzędnych 
z uwzględnieniem znaków rzędnych. Oznaczając przez Sx rzędną 
krzywej dla odciętej x, zaś przez S2, S3... S4 sumy rzędnych odpo­
wiadających 2, 3...9 działkom, otrzymamy, rozumując tak samo jak 
w poprzednio rozpatrzonym przypadku, następujące wzory:

A x cos x + Bx sin x + A 2 cos 2a: +  B2 sin 2x + ... + A9 cos 9x +
+ B9 sin 9 x = Sx,

2A 2 cos 2 x  + 2B2 sin 2x  +  2 A t cos 4x  + 2 i?4 sin 4a: +
+ 2^46 cos 6x + 2Be sin 6x  +  2^48 cos 8x  + 2 B8 sin 8# = S2,

3A 3 cos 3x  + 3B3 sin 3x  +  3^46 cos 6a: +
+ 3i?6 sin 6x + 3A 9 cos 9x + 3B9 sin 9x  = S3,

4At cos 4x +  4 Bt sin 4x + 4A a cos8 x + 4 Ba sin 8x  = S4, 

5^45 cos 5x  + 5Bs sin 5x  = Ss,

6^46 cos 6x  + 6Be sin 6x = Se,

7 A7 cos 1 x +  7 B7 sin 7 x =  S7,

8^48 cos 8x + 8Ba sin 8a: = Sa,

9^49 cos 9x  + 9Bg sin 9a: = S9.

Dla znalezienia współczynników A i B musimy ułożyć 18 rów­
nań niezależnych. Najpierw bierzemy x = 0, to znaczy wybieramy 
pierwszy punkt podziału w początku współrzędnych; oznaczając 
rzędną krzywej w tym punkcie przez yx, sumy rzędnych zaś przy 
kolejnych dzieleniach w tym przypadku przez y2, y3, ..., y9, otrzy­
mamy z powyższych wzorów:

Ai + A 2 + A 3 + ... + A 9 = yx,

A 2 + -A4 +  A a +  A a =  —-i

A 3 + A 6 +  A g = i ♦

A4 + A a = -̂ A-i

1 '

13*
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skąd określamy wszystkie współczynniki A.
Dla znalezienia współczynników B musimy dać x jakąkolwiek 

inną wartość, ale taką, aby te współczynniki pozostały we wzorach,
71czyli aby żaden z sinusów nie stał się równym zeru (dla x = jak

to czyniliśmy w poprzednim przypadku, zginęłyby we wzorach współ­
czynniki B z parzystymi indeksami). Oczywiście, dogodniej jest dać 
dla x wartość taką, aby ona stanowiła n podzielone przez liczbę całko­

witą większą niż 9, np. ~  lub Odmierzając od nowego punktuA i. u/
odciętej odcinek równy 2n i postępując jak poprzednio, otrzymamy 
jeszcze 9 równań dla znalezienia współczynników B.

§ «
NAKŁADANIE SIĘ PRĄDÓW ODKSZTAŁCONYCH

Wiadomo, że suma dwóch prądów sinusoidalnych o jednakowej 
częstotliwości jest również prądem sinusoidalnym o tej samej często­
tliwości. Oznaczmy wartości chwilowe dwóch prądów przez ix i i2, 
ich amplitudy przez / lm i I2m, kąty przesunięcia faz tych prądów 
względem wspólnego napięcia przez cpx i <p2. Prąd wypadkowy stano­
wiący ich sumę niech ma wartość chwilową i oraz amplitudę Im; kąt 
przesunięcia fazy tego prądu wypadkowego względem napięcia 
oznaczmy przez ip, zaś pulsację prądów — przez co. Wtedy mamy

h  =  h m s i n  {mt +  n ),  h = h m s i n  {ml +  <p2);
i = Im sin (mt + y); i =  + i2.

Następnie
h m sin {mt +  ę>i) +  I2m sin {mt + <p2) =  Im sin {mt +  y>);

hm  C0S <P\ Sm 0)1 +  I 2m C0S 9>2 sin 0)1 +  I lm sin (fx COS 0)1 +

+  hm S ^  <Pz COS 0)1 — I m Sin 0)t COS %p +  I m COS 0)t siny.
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Stąd {Ilm COS (py + I2m cos q>2 — Im cos y) sin 0)t +
+ (Ilm sin cpy +  I2m sin q>2 — Im sin y) cos coł =  0.

Ponieważ równość ta zachodzi dla wszystkich wartości t, więc
powinno być T T T r.

hm  cos cpy + I 2m cos cp2 -  I m cos y = 0;

Ilm sin <Py + I2m sin ę>2 —  1m sin V =  0,
skąd
I m cos y = I lm cos <py + I 2m cos <p2; I m sin y = I lm sin <Py + 1 ^  sin y2.

Podnosząc oba ostatnie równania do kwadratu i dodając stro­
nami, znajdziemy

1 2 m =  h 2m +  2 / im I 2m COS {(fy -  y a) +  / 22

skąd
L  = y jh j  +  2 / lm I2m cos (9oy -  y2) +  / 22m ;

dzieląc zaś drugie równanie przez pierwsze, otrzymamy
h m  sin <Py + I 2m sin <p2

tg V = Ilm COS <py +  COS <p2 '

W ten sposób znaleźliśmy amplitudę i kąt przesunięcia fazy 
prądu wypadkowego.

Jeżeli amplitudy prądów składowych są jednakowe 

h m =  hm, wtedy

l m =  V2Vm +  2/^ COS {(fy —  <p2) => Iym V  2 [1 +  COS [<Py —  <p2) ]=

= 2 I lm cos ( <Pi — V* \ .

\  2 ) '

2 sin — cos 9,1- ^ 2
2 = tg ?’i +  9,B.t 7lw (sin + sin y,)

Am (cos 9-i + cos <p2) 2 cog <py + y 2 cog g>y — cp2 ~6 2
2 2

Ponieważ kąty 9?! i y2 zawarte są w granicach ±90°, przeto 
kąt y nie może przekroczyć ±90°, wobec czego

V> = <Pi+ <Pt

Zanim rozpatrzymy nakładanie się dwóch jednakowych prądów 
odkształconych, wyjaśnimy następujące zagadnienie. Mając dwie
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jednakowe krzywe odkształcone, dające wykresy dwóch funkcji okre­
sowo zmiennych, przesuniętych względem siebie w fazie o kąt a, 
i biorąc na pierwszej krzywej dowolny punkt z odciętą x, będziemy 
mieli na drugiej krzywej odpowiedni punkt z odciętą x — a; wówczas 
dla rzędnych tych punktów, czyli dla f(x) i f[x — a), które ozna­
czymy przez yx i y2, stosując szereg Fo ur i er a  w postaci wzoru (5) 
z § 45, otrzymamy

yt =  A 0 +  F x sin (x +  f-,) +  ... + F k sin (kx + f k) 
y2 = A 0 + F x sin (x — a + y>x) + ... + F ksin [k(x — a) + f k] =

= A 0 + F x sin (x +  f i  — a) +  ... + F k sin (kx + f k — ka). 

Zakładając x =  o u t , będziemy mieli
j/i = A 0 +  F x sin (wt + fi) + ... + Fk sin (kcot + f k) (20) 

y2 ~ A q -f- F x sin (cof + f t — a) ... + Fk sin (kwt + f k — lta). (21)

Z tych wzorów wynika, że dowolna k-ta harmoniczna drugiej 
funkcji jest przesunięta w fazie względem takiejże harmonicznej 
pierwszej funkcji o kąt ka. We wzorach powyższych Fk stanowi 
wartość maksymalną k-tej harmonicznej. Łatwo można zauważyć, 
że gdy ka stanowi całkowitą wielokrotność 2n, wówczas k-te harmo­
niczne w obu funkcjach będą ze sobą w fazie.

Rozpatrzmy teraz dwa jednakowe prądy odkształcone, przesu­
nięte względem siebie w fazie o kąt a; rozumiemy pod tym, że o kąt 
a są przesunięte względem siebie w fazie pierwsze harmoniczne; 
inne harmoniczne będą wówczas przesunięte w fazie o kąty 2 a, 3a, ka. 
Wartości maksymalne, względnie wartości skuteczne odpowiednich 
harmonicznych będą sobie równe.

Oznaczając przez ilk oraz i2k wartości chwilowe k-tej harmo­
nicznej natężenia obu prądów, zaś przez Ikm ich wartości maksymalne, 
będziemy mieli na podstawie poprzednich rozumowań

hk=  4m sin ikwt +  P*); Ikm sin (kwf + n  — k a),
gdzie cpk oznacza kąt przesunięcia fazy względem tej samej harmo­
nicznej napięcia.

Suma tych dwóch harmonicznych da nam sinusoidę o tej samej 
częstotliwości; wartość maksymalna I'km i kąt przesunięcia fazy f k 
tej sinusoidy będą na podstawie wyżej wyprowadzonych wzorów

ka
y>k =  <Pk -  ~2
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będzie to więc harmoniczna prądu wypadkowego
ka

h  =  h k  +  h k  =  2  h m  c o s - y  s i n ^kwt —

W szczególnym przypadku harmoniczne prądów składowych 
mogą się znosić i prąd wypadkowy będzie wówczas pozbawiony od­
powiedniej harmonicznej. Mianowicie, gdy

hm =  2 I km C0S - y  =  0> CZY11 C0S - y  =  °> =  ( 2™ “  1

gdzie m oznacza liczbę całkowitą.
Odpowiednia harmoniczna prądu wypadkowego osiągnie naj­

większą wartość maksymalną, gdy
ka , ka 2mncos—  = ±1; —  = mn; a =  —r—

§  50
WSPÓŁCZYNNIK KSZTAŁTU I WSPÓŁCZYNNIK SZCZYTU

Współczynnikiem kształtu krzywej, przedstawiającej przebieg 
w czasie funkcji okresowo zmiennej nazywamy stosunek wartości 
skutecznej do wartości, średniej rozpatrywanej funkcji:

Y
Sk = v  'x S

Wartość skuteczna jest określona wzorem

o
wartość średnia zaś 2 n

o
w przypadkach szczególnych, gdy mamy przebiegi symetryczne, roz­
patrujemy tylko część krzywej, odpowiadającą x/2 lub 1/i okresu.

Współczynnikiem szczytu krzywej, przedstawiającej przebieg 
w czasie funkcji okresowo zmiennej, nazywamy stosunek wartości 
największej do wartości skutecznej tej funkcji:
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Określimy te współczynniki dla niektórych przebiegów: 
a) Sinusoida (rozpatrujemy x/4 okresu).

71 71

V2
b) Przebieg prostokątny, to jest funkcja zmieniająca się 

w ten sposób, że w ciągu każdego półokresu wartość funkcji jest 
stała, po czym zmienia znak, zachowując tę samą wartość bezwzglę­
dną (rys. 131).

Y
1
y.
ł. X4

-y.*
.----- n ----•

Rys. 131

Łatwo zauważyć, że zarówno wartość skuteczna jak i wartość 
średnia są równe sobie i równe wartości największej rozpatrywanej 
funkcji:

J Y =  Y . =  F ,
wobec tego
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c) Przebieg trójkątny. Jest to funkcja zmieniająca się li­
niowo między dwiema wartościami. Przeprowadzamy oś X  jako oś 
symetrii, wobec czego bezwzględne wartości największe będą sobie 
równe (rys. 132).

Rozpatrujemy 1/i okresu.

V  xy = Ym ■ —71 V  • •1 rn iTC

- i
2 « 0

4x2
71“

dx —
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zestawiając, otrzymamy

Kształt funkcji Sk

n r u i ; 1 1

sinusoida . * ~ i , n
2V2 \/2=l,41

\ / \ / \ / \ / \ t \ / 3 S 1 '15 \ /3= l,73

Zwracamy uwagę, że krzywa płaska ma współczynniki mniejsze, 
krzywa ostra większe niż sinusoida.

§  51

WARTOŚĆ SKUTECZNA PRĄDU ODKSZTAŁCONEGO

Jak wiadomo, wartością skuteczną funkcji okresowo zmiennej 
nazywamy wyrażenie

■ - r y
71

y2 dx.

Dla prądu zmiennego odkształconego bez składowej stałej mamy

y = ^  (Ak cos kx + Bk sin hx).
k=i

Jeżeli tę sumę podniesiemy do kwadratu, otrzymamy sumę wy­
razów następujących postaci: ^

A k2 cosa kx; 2 A k Bk cos kx  sin kx\ Bk2 sin kx;
A kAjCos kx cos lx; A k B cos kx sin lx; Bk B, sin kx sin lx.
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Całka sumy równa się sumie całek, więc pod pierwiastkiem 
otrzymamy sumę całek wyrazów tych postaci, wziętych w granicach 
od 0 do 2 jt. Ale

2 71 2 j i

1 sin kx cos kx d x =  0; j 'cos kx cos lx dx = 0;Z0
2 71

h
2 31231

1 sin kx sin lx dx — 0; j 'cos kx sin lx dx =  0; 
o o

pozostaną zatem jedynie wyrażenia postaci
2 71 2 7 1

f ; .Z
0

A t2 cos2 kx dx =  n A h2: I Bh2 sin2 kx dx =  tiB.2.

Wobec tego

Y = (A k cos kx + Bk sin kx) dxI/* '“ dx ~  Z ± f  [ Ż "
0 0 * = 1

- I  ; ' : -  -  V  rl- - y  -

k = \

[Ak2 +  B*2)-

Szereg
k  =  tl

y =  ^  (Ak cos kx + Bk sin kx)
k = i

możemy też przedstawić w postaci

y = Fk sin (kx + <pk).
k  =  l

gdzie
F*2 = A*2 + £*2; tg <pk = 4 r

W ten sposób dla wartości skutecznej otrzymujemy

Z i - £ ( A *2 + B*2) = l / - ^ - E F*2-
k  — tl

k = l k = l
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Ale wartość skuteczna funkcji sinusoidalnej, a więc każdej har­
monicznej funkcji odkształconej, równa się wartości maksymalnej 
tej harmonicznej podzielonej przez \j2, czyli

F* 2Yh  = Y\m-
V2

więc ostatecznie

. r**" - / r 2 2  S y,‘-
Wartość  skuteczna funkc j i  odkształconej ,  okresowo 

zmiennej  w czasie,  równa się pierwiastkowi  kwadrato­
wemu z sumy kwadratów wartośc i  skutecznych wszyst ­
kich harmonicznych tej funkcj i .

Tak np. dla napięcia

Uh = y t /2i +  Uh + Uh +  ... +  Uh; (22)
dla prądu

/  =  | /  £  7*2 = V/*1 + / S + /•, +  ... +  /•« • (23)
Stosunek wartości skutecznej funkcji odkształconej do wartości 

skutecznej głównej fali stanowi współczynnik odkształcenia tej funkcji; 
oznaczając go przez s, mamy

Y y  Y \ +  Yh +  ... +  Yh 
S ~ Y 1 ~ Y,

§  52

OBWÓD PRĄDU ODKSZTAŁCONEGO

Rozpatrując część obwodu, w którym mamy napięcie u =  Umsina)t 
oraz w szereg połączone oporności: rzeczywistą, indukcyjną 
i pojemnościową, wiemy, że powstanie prąd ustalony o natężeniu

i - Im sin {(oł — (p);
przy czym
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W przypadku, gdy w takim obwodzie mamy napięcie o prze­
biegu odkształconym, rozumujemy w sposób następujący. Napięcie 
takie składa się z szeregu harmonicznych o przebiegu sinusoidal­
nym, o różnych amplitudach i częstotliwościach. Wobec niezależ­
ności prądów płynących w jednym obwodzie każda harmoniczna 
napięcia daje niezależnie od innych prąd o przebiegu sinusoidalnym 
o częstotliwości tej samej co powodujące go napięcie. Wszystkie te 
prądy, dodając się, tworzą prąd wypadkowy, odkształcony, przy 
czym poszczególne prądy będą harmonicznymi. Ponieważ częstotli­
wość harmonicznej rzędu k jest k razy większa od częstotliwości 
prądu pierwszej harmonicznej, więc

Zbadajmy, jakie warunki muszą być spełnione, aby wpływy 
samoindukcji i pojemności znosiły się wzajemnie dla danej harmo­
nicznej, czyli żeby dana harmoniczna dawała rezonans napięć. Bę­
dzie to wtedy, gdy

ka>L 1
ka> C =  0 ; ktoL 1

ktoĆ'

albo jeszcze

lub

k2a>2LC =  1; LC =  -yJ-s-;k2 w2

LC

1
2 n f ^ L c '

Widzimy, że rezonans może zachodzić wyłącznie dla jednej har­
monicznej na raz, i to tylko wtedy, kiedy spełniony jest warunek

LC  — -y«—ót • k2 to2
Jeżeli dla danej harmonicznej zachodzi rezonans napięć, to dla 

tej harmonicznej oporność pozorna staje się najmniejszą i równą 
oporności rzeczywistej, a więc natężenie prądu tej harmonicznej



206 PRĄDY ODKSZTAŁCONE

będzie największe; inaczej, wpływ danej harmonicznej napięcia na 
prąd wypadkowy potęguje się. To zjawisko pozwala nam wyodręb­
niać w badaniu poszczególne harmoniczne napięcia.

Ze wzoru (24) możemy zbadać, jaki wpływ na kształt krzywej 
prądu odkształconego wywierają indukcyjność i pojemność. Miano­
wicie, jeżeli w obwodzie, w którym działa napięcie o przebiegu od­
kształconym, mamy oporność R i indukcyjność L w szeregowym 
połączeniu, wówczas natężenie prądu będzie miało również przebieg 
odkształcony, przy czym natężenie prądu harmonicznej rzędu k 
będzie na podstawie wzoru (24) równe

wynika stąd, że im większy wskaźnik k harmonicznej, tym mniejszy 
będzie prąd, to znaczy, że wpływ wyższych harmonicznych maleje, 
a więc natężenie prądu będzie miało przebieg mniej odkształcony niż 
napięcie, które ten prąd spowodowało. Indukcyjność tłumi wyższe 
harmoniczne prądu, zbliża więc krzywą prądu do sinusoidy.

Jeżeli zaś w obwodzie z napięciem odkształconym mamy opor­
ność R i pojemność C w szeregowym połączeniu, wówczas natężenie 
prądu harmonicznej rzędu k wyrazi się wzorem

Im większy wskaźnik k, tym mniejszy będzie mianownik w ostat­
nim wzorze, czyli tym większe będzie natężenie prądu harmonicznej, 
czyli wpływ wyższych harmonicznych staje się coraz większy; prze­
bieg natężenia prądu będzie więcej odkształcony niż przebieg na­
pięcia. Pojemność potęguje wyższe harmoniczne, oddala więc krzywą 
prądu od sinusoidy.

Każda harmoniczna prądu odkształconego jako prąd sinuso­
idalny daje średnią moc za jeden okres, czyli tak zwaną moc czynną, 
równą iloczynowi napięcia przez natężenie prądu i przez współczynnik 
mocy, zależny od przesunięcia fazy prądu względem napięcia. Dla 
otrzymania mocy czynnej prądu odkształconego musimy wziąć sumę

/* =
V /?2 + (kwL)2

Uk

§  53
MOC PRĄDU ODKSZTAŁCONEGO
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mocy czynnych wszystkich harmonicznych tego prądu. W ten sposób 
możemy napisać dla mocy czynnej P  prądu odkształconego wzór 
następujący:

P = U1I1 COS (f1 + U2 COS Cp2 + • • • + Un In COS (pn.
Rozpatrzmy prąd sinusoidalny, którego napięcie i natężenie 

mają wartości skuteczne U i I, zupełnie takie same jak wartości 
skuteczne napięcia i natężenia prądu odkształconego; na podstawie 
wzorów (22) i (23) znaczy to, że

U = V*721+  U\ +  ••• +  U\, (25)
1 = V/ !2 + / /  +  .•• + / „ 2- (26)

Niech natężenie prądu I  będzie przesunięte względem napięcia U 
o kątę>, dobrany w ten sposób, aby moc tego prądu sinusoidalnego wy­
padła taka sama jak dla prądu odkształconego; wtedy będziemy mieli

P =  U  I  CO S <P =  U 1 I 1 C O S ( f 1 +  U  2 1 2 C 0 S  9?2 +  +  U „ I n c ° s  <pn . (27)
Taki umyślony prąd sinusoidalny, którego napięcie i natężenie 

mają te same wartości skuteczne co i prąd odkształcony i którego moc 
czynna równa się mocy czynnej prądu odkształconego, nazywamy 
prądem sinusoidalnym równoważnym prądowi odkształconemu.

Cos cp można nazwać współczynnikiem mocy równoważnego prądu; 
współczynnik ten zawsze może być odpowiednio dobrany, wynika to 
z tego, że na podstawie wzorów (27) oraz (25) i (26)

Uih  cos (fi +  U2I2 C O S CP2 + ... + u „ l n cos <r„ f9o)
COb'/' y  (£A2 + tfaa + -  +  W )  (A2 + + 1\) '

Mianownik w ostatnim wzorze nie może być mniejszy od licznika, 
czyli że wyraz ten jest na ogół mniejszy od jedności; inaczej mó­
wiąc, zawsze można dobrać kąt q> dla otrzymania potrzebnego współ­
czynnika mocy.

W przypadku, gdy w obwodzie prądu odkształconego z opor­
nością rzeczywistą B założymy, że dla wszystkich częstotliwości (har­
monicznych) R ma wartość stałą, to znaczy, nie weźmiemy pod uwagę 
działania naskórkowości, będziemy mieli

UI  cos q> =  I2B (29)
U1I1 cos <p1 =  Ix2R,

(30)

U„l„ C O S cpn =  1 2B.
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Wzór (29) daje

cos <p I I! bV 4
2 +  h 2 + + v

U y  Ul2 +  U 2 
określając zaś ze wzorów (30) wartości I lt 
otrzymamy

2“ + ••• + U„2' (31)

I„ i podstawiając do (31),

COS (p vm2 cos2 <pt +  U22 cos2 <p2 + ... +  U„2 COS2 cpn
Ux2 + U 22 + ■... + U 2

, w przypadku szczególnym, gdy w obwodzie uwzględniamy tylko 
oporność rzeczywistą, wszystkie harmoniczne prądu będą w fazie 
ze swymi napięciami, a więc dowolny cos <pk — 1 , wtedy cos <p = 1 .

Iloczyn wartości skutecznych napięcia i prądu odkształconego 
stanowi moc pozorną tego prądu; stosunek mocy czynnej do mocy 
pozornej nazywamy współczynnikiem mocy prądu odkształconego. 
Oznaczając ten współczynnik przez K, będziemy mieli

U1I1 cos (p1 +  ... +  Uk h  cos <pk +  ... +  U„I„ cos cp„K  =
Y ( u 12 + ... + u k2 +

(32)
h U„2) ( I 12 + ... +  Ik2 +  ... + I 2)

Porównując wzory (28) i (32), widzimy, że współczynnik mocy prądu 
odkształconego może być ujęty w postaci

K  -- cos q>.
Należy tylko mieć na uwadze, że kąt <p jest tylko pewnym umyślo­
nym kątem, którego cosinus stanowi współczynnik mocy na podstawie 
wyżej podanego określenia, albo też kątem przesunięcia fazy natężenia 
prądu względem napięcia w równoważnym prądzie sinusoidalnym.

Oznaczając dla prądu odkształconego moc pozorną przez Pz, 
moc czynną przez P, będziemy mieli

Pz =  UI; P =  K U I = U I  cos <p =  Pz cos <p.

Moc czynną możemy rozpatrywać jako składową mocy pozornej; 
wówczas drugą składową, analogicznie jak dla mocy prądu sinusoi­
dalnego, będzie pewna moc, której wartość możemy wyrazić w po­
staci U I  sin ę>; nazwijmy tę składową mocy pozornej mocą bierną; 
oznaczając ją przez Px, będziemy mieli

Px = U I  sin ę>;
P z2= P 2 + P 2] Px = sj P 2 -  P 2.

Należy zwrócić uwagę, że w przeciwieństwie do mocy czynnej prądu 
odkształconego, która jest równa sumie mocy czynnych poszczegól­
nych harmonicznych, moc bierna, określona w sposób wyżej podany,
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nie jest na ogół równa sumie mocy biernych tych harmonicznych. 
Ta ostatnia suma

UxIi sin cPl + ... + UkIk sin (pk +  ... + UnI„ sin cpn =
k — n

Z  u ‘ ‘ k s i n  <pk

ma największą wartość wówczas, gdy wszystkie sinusy będą równe 1, 
czyli gdy kąty przesunięcia wszystkich harmonicznych prądu wzglę­
dem swych napięć wynoszą 90°, ale wówczas współczynnik mocy, jak 
wynika z wzoru (32), staje się równy zeru, więc cos q> =  0, sin cp =  1; 
obwód zawiera tylko oporność bierną.

Porównajmy w tym teoretycznym przypadku wartość mocy 
biernej prądu odkształconego, która staje się wówczas równą mocy 
pozornej, z sumą mocy biernych poszczególnych harmonicznych; 
biorąc różnicę kwadratów tych wielkości będziemy mieli

2

ale

k — fl 2 k =  n

p  2 —X Y i U k h ^ f k
k = i

=  U2 I2 —
¿=1

U2 = U f  + ... +  U ?  + + u.
/ » =  / ! *  +  . . .  + V  +  . . .  +  / „ * =  Z / * * ,

U*P = Z i/,2/ , 2 + Z Uk*I? +  Z U? V ,
[Z  UkIk]> =  (U .h  +  ... Un InY =  Z  Uk2Ik2 +  2Z Uk Ik u , 

Odejmując stronami ostatnie dwa wzory, otrzymujemy

P J -
h=n

Z
k — \

u k i k [Uk I u Iky  > 0 .

Wyraz z prawej strony w rozpa­
trywanym przypadku nie może się rów­
nać zeru, gdyż wówczas mielibyśmy

Uk U, _ .=  -y - =  Const., 
ik ii

a to byłoby możliwe tylko w obecności 
w obwodzie wyłącznie oporności czyn­
nej; tymczasem rozpatrywaliśmy przy­
padek, gdy w obwodzie mamy tylko oporność bjerną.

Analogicznie do mocy prądu sinusoidalnego można moce przy 
prądzie odkształconym ująć wykreślnie w trójkąt, jak na rys. 133.

Teoria prądów zmiennych 14
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§  54
WPŁYW PRĄDU ODKSZTAŁCONEGO PRZY POMIARACH 

INDUKCYJNOŚCI I POJEMNOŚCI

Załóżmy, że do napięcia U prądu zmiennego o przebiegu sinu­
soidalnym włączyliśmy tylko oporność indukcyjną, np. cewkę o bar­
dzo małej oporności rzeczywistej w porównaniu z indukcyjnością 
własną L tej cewki. Wówczas, oznaczając przez I natężenie prądu 
płynącego w takim obwodzie przy pulsacji ca, będziemy mieli

U = IcoL,
skąd dla mdukcyjności otrzymujemy

1  <JJ

Jeżeli zaś taką samą cewkę włączymy do napięcia o takiej samej 
wartości skutecznej U, lecz o przebiegu odkształconym, wówczas, 
oznaczając przez Ukwartość skuteczną fc— tej harmonicznej, będziemy 
mieli dla wartości skutecznej I k tej samej harmonicznej natężenia
Pr^du . Uk

/* = k w L

wobec tego dla wartości skutecznych tych odkształconych prądów 
będziemy mieli

[ /  =  V t / 12 +  -- -  +  U* 

1 = /
Ua2 Uk2

(ca L ) a +  /c2 (ca L ) 2 “ ¿ j / u '
+ ... + *->k

k2
UOznaczając wyraz —— przy prądzie odkształconym przez L', 

1(0
otrzymamy

U f  +  . . .+- k2
Ponieważ licznik pod pierwiastkiem jest większy od mianownika, 

przeto U > L

to znaczy, że przy mierzeniu indukcyjności prądem odkształconym 
otrzymujemy rezultat większy niż przy prądzie sinusoidalnym.

Do analogicznego rezultatu dojdziemy również przy mierzeniu 
pojemności. Jeżeli mianowicie do napięcia U prądu sinusoidalnego



WIELOFAZOWE PRĄDY ODKSZTAŁCONE 211

włączymy kondensator o pojemności C ze znikomo małą opornością 
rzeczywistą, wtedy przy takim prądzie

skąd

U = I ~ c

C =  -rj— ■

Jeżeli ten sam kondensator włączymy do napięcia o takiej samej 
wartości skutecznej, lecz o przebiegu odkształconym, wówczas 
dla k - tej harmonicznej z napięciem U\ otrzymamy dla natężenia

Prądu l „ - I m C U h,

wobec tego dla wartości skutecznych napięcia i natężenia prądu od­
kształconego otrzymamy

u  = V^i2 + ••• 1 k i
/  = V(u»C)*t/1, +  ... {kwC)i Uk2= (o C ^ U 12 + ... (k(oĆ)*Uk2.

Oznaczając przy prądzie odkształconym -y— przez C' , będziemy

mieli

skąd wynika, że
c ' =  c l / w f e

+ k2 Uk2 
+ Uk2 ’

C' > c.

§  55
WIELOFAZOWE PRĄDY ODKSZTAŁCONE

Rozpatrzmy układ wielofazowy symetryczny źródła prądu od­
kształconego. S E M  powstające w sąsiednich uzwojeniach takiego 
układu będą przesunięte względem siebie w fazie o jednakowe kąty. 
Założymy, że wartości maksymalne S E M  we wszystkich uzwoje- 
niach-fazach będą sobie równe, jak to zresztą zwykle ma miejsce. 
Przy jednakowym obciążeniu wszystkich faz będą także równe war­
tości maksymalne napięć na poszczególnych fazach. Oznaczmy 
przez p ilość faz rozpatrywanego układu,, gdzie p >  2; przez eJ, en , 
eUi, ..., ep wartości chwilowe S E M  odpowiednich faz; kąt przesunię-

14»
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cia fazy między dwiema sąsiednimi S E M  (pierwszymi harmonicz­

nymi) przez a, przy czym a =  ; następnie oznaczmy wartości

maksymalne S E M  poszczególnych harmonicznych w każdej fazie 
przez Elm, E2m, ..., Ekm. Na podstawie wzorów (20) i (21) z §49, biorąc 
pod uwagę, że przy prądzie zmiennym bez domieszki prądu stałego 
nie powinno być w szeregu F o u r i e r a  składowej stałej, będziemy 
mieli

ł

ei =  Elm sin M  + y>i) + ... + Ekm sin (kwt +  v>i),
en =  Elm sin (cot +  y>x — a) +  ... +  Ekm sin (kwt + ipk — ka),
enj= Elm sin [col +  — 2 a) +  ... +  E ^  sin (kot + ipk — k . 2 a),

eP = Elmsm[cot +  ip1 — [p — 1) a ]+ sin [kcot +  y>k—k { p - 1) a].
2 TT IcPonieważ a = — , przeto ka = — 2n.
P P

kŁatwo zauważyć, że w przypadku, gdy -— jest liczbą całkowitą,

czyli gdy ka, k .  2 a, ..., k(p — 1) a będą całkowitymi wielokrot­
nościami 2n, harmoniczne we wszystkich fazach będą miały tę 
samą wartość co /c-ta harmoniczna pierwszej fazy, czyli

Ekm sin iko)t +  %)•
Suma wartości chwilowych sił elektromotorycznych wszystkich

kfaz nie będzie zawierała tych harmonicznych, dla których — nie jest
P

liczbą całkowitą, gdyż sumy takich harmonicznych dają zero; nato-
kmiast pozostaną harmoniczne, dla których — jest liczbą całkowitą.

Zastosujemy powyższe rozumowania do trójfazowych prądów
2 n

odkształconych, gdzie a — — . Wartości chwilowe S E M  w poszczę-O
gólnych fazach będą

« /  =  E l m  s i n  M  +  W l )  +  ••• +  E km s i n  +  V * ) ,

2
en = Elm sin I co f + y>i

(«

em

+  +  Ekm sin (kwl +  —

= Elm sin (a)t + y)1 — 2 - ^ Sj  + ... + Ekmsm^kwt + y)k — k , 2 . ^ j ;
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k
¥ będzie liczbą całkowitą, gdy k jest wielokrotnością trzech, a więc

dla harmonicznych trzeciej, szóstej, dziewiątej itd.
Te harmoniczne stają się sobie równe we wszystkich trzech fa­

zach. Przy połączeniu faz w gwiazdę (rys. 134), oprócz S E M  fazo­
wych, rozpatrujemy S E M  skojarzone, które będą miały wartości 
chwilowe równe różnicy takichże wartości S E M  fazowych. Do tych 
różnic nie wejdą harmoniczne, których wskaźnik jest liczbą po- 
dzielną przez 3. Przy jednakowym obciążeniu wszystkich trzech faz 
napięcia na poszczególnych fazach źródła prądu będą miały te same

Rys. 135

wartości maksymalne; napięcia skojarzone nie będą zawierały har­
monicznych, których wskaźnik jest podzielny przez 3; prądy powsta­
jące pod wpływem tych harmonicznych napięcia również nie będą 
zawierały tych samych harmonicznych. Jeżeli w układzie gwiazdo­
wym mamy czwarty przewód, tak zwany zerowy, wówczas, według 
pierwszego prawa K i r ch ho f fa ,  algebraiczna suma wartości chwilo­
wych wszystkich prądów schodzących się w punkcie zerowym równa 
się zeru, czyli prąd płynący w przewodzie zerowym będzie równy 
algebraicznej sumie prądów płynących w trzech przewodach fazo­
wych. Dla przebiegów sinusoidalnych suma ta równa się zeru, więc 
przy jednakowym obciążeniu wszystkich faz prąd w przewodzie ze­
rowym nie będzie płynął; natomiast przy przebiegach odkształconych 
suma ta będzie zawierała prądy tych harmonicznych, których wskaź­
nik jest podzielny przez 3, a więc nawet przy jednakowym obcią­
żeniu wszystkich faz w przewodzie zerowym będzie płynął prąd 
zawierający te harmoniczne, których brak między przewodami fa­
zowymi.
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Przy połączeniu trójkątnym (rys, 135), gdy dla prądu sinusoidal­
nego suma wszystkich trzech S E M  równa jest zeru, w razie prze­
biegów odkształconych suma ta będzie zawierała harmoniczne, któ­
rych wskaźnik podzielny jest przez 3.

Pod wpływem tych S E M  w trójkącie stanowiącym zamknięty 
obwód będzie płynął prąd zawierający te same harmoniczne. Z tego 
powodu w prądnicach nie stosuje się połączenia trójkątnego, aby 
uniknąć przy odkształconym napięciu strat na ciepło, które powstaje 
nawet wówczas, gdy prąd na zewnątrz nie byłby pobierany.



R O Z D Z I A Ł D Z I E W I Ą T Y

CZWORNIKI, r ó w n a n ia  i w y k r e s y  o b w o d o w
PRĄDU ZMIENNEGO OPARTE NA BADANIACH 

W STANIE JAŁOWYM I W STANIE ZWARCIA

§  56
POJĘCIA OGÓLNE O CZWÓRNIKACH

W większości przypadków w elektrotechnice mamy do czynie­
nia z obwodami, które można sprowadzić do układów równoważnych 
zawierających w ten czy inny sposób połączone oporności czynne, 
indukcyjności i pojemności, inaczej mówiąc, układów złożonych 
z kilku oporności pozornych. Taki układ, znajdujący się między 
źródłem energii elektrycznej i odbiornikiem, zawierający 2 zaciski 
wejściowe oraz 2 zaciski wyjściowe, został nazwany czwórnikiem 
(rys. 136). Na rysunku M  oznacza czwórnik, la i lb zaciski wejściowe,

—  J , la 2a _* .J 2
---------- ---------------- r n

u, | M !u* N
2 b t

Rys. 136

czyli zaciski na początku czwórnika, 2a i 2b zaciski wyjściowe, czyli 
zaciski w końcu czwórnika. Napięcie i natężenie prądu na początku 
oznaczymy wskaźnikiem 1, zaś w końcu wskaźnikiem 2. N  oznacza 
odbiornik włączony do zacisków końcowych.

Jeżeli układ czwórnika jest tego rodzaju, że do poszczególnych 
obwodów można zastosować prawa K i r c h h o f f a  i zasadę super­
pozycji, czwórnik taki nazywamy liniowym.
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Przypuśćmy, że mamy w czwórniku n obwodów, do których 
można zastosować prawa K i r c h h o f f a ;  otrzymamy wtedy n równań 
liniowych, do których wejdą również napięcia i prądy na początku 
i w końcu czwórnika; z równań tych możemy wyrugować wszystkie 
napięcia i prądy, pozostawiając równania zawierające tylko napięcia 
i prądy na początku i w końcu czwórnika. Ponieważ wszystkie rów­
nania są liniowe, więc i równania zawierające napięcia i prądy na 
początku i w końcu czwórnika będą liniowe; można je ująć w nastę- 

wzory: 0 l „ A 0 t  +  B h , (,)

¡i  = C 0 2 + DI 2, ( 2 )

gdzie współczynniki A, B, C i D są na ogół liczbami zespolo­
nymi, zależnymi od R, L i C oraz częstotliwości (pulsacji) prądu 
zmiennego.

W przypadku, gdy wewnątrz czwórnika znajduje się również 
źródło energii elektrycznej, czwórnik taki nazywamy czynnym; jeżeli 
zaś tego źródła nie ma, czwórnik nazywamy biernym. Dalej będziemy 
rozpatrywali czwórniki liniowe bierne.

W dalszych rozważaniach przyjmiemy, ze B, L i C mają wartości 
stałe, wobec czego dla określonej częstotliwości prądu zmiennego 
współczynniki wchodzące do wzorów (1) i (2) będą miały wartości 
stałe, można więc nazwać te współczynniki stałymi czwórnika.

W szczególności, gdy czwórnik ma układ tego rodzaju, że prze­
niesienie źródła prądu na zaciski wyjściowe, zaś odbiornika na za­
ciski wejściowe nie powoduje ani zmiany natężenia prądu pobiera­
nego ze źródła, ani zmiany napięcia prądu płynącego do odbior­
nika, czwórnik taki nazywamy symetrycznym.

We wzorze (1) każdy z wyrazów z prawej strony stanowi pewne 
napięcie, z czego wynika, że A nie ma wymiaru, zaś B ma wymiar 
oporności; tak samo we wzorze (2) wyrazy z prawej strony odpowia­
dają pewnym natężeniom prądu, wobec czego C musi mieć wymiar 
odwrotności oporności, czyli przewodności, natomiast D nie ma wy­
miaru.

Między, czterema stałymi wchodzącymi do wzorów (1) i (2) 
istnieje zależność, którą możemy ustalić, rozumując w sposób nastę­
pujący: zamieniamy miejsca źródła prądu i odbiornika; oznaczmy 
napięcie w końcu czwórnika przez U2 , zaś na początku przez Ux' , oraz 
odpowiednie natężenia prądu przez I\ i I'1. Prądy te będą miały 
kierunki przeciwne do poprzednich (rys. 137) i we wzorach (1) i (2)
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należy pisać je ze znakami ujemnymi. Otrzymamy wówczas

0\~ A 0 \ - B V 2 
-1\= C0'2-Dl'2.

Z tych dwóch równań otrzymujemy

0 V =
D

0 'i+
B r (3)A D - B C A D - B C 1 1 »

K -
C

u \ +
A P (4)A D - B C A D - B C 1 1 *

ł ----------
N

u >
M u '2

h z
1

___»  c

Rys. 137
l

Przypuśćmy, że na początku czwórnika przyłożymy napięcie 
Ux = U i zewrzemy zaciski w końcu, wtedy U2=  0; następnie przy­
kładamy to samo napięcie w końcu czwórnika, czyli we wzorze (3) 
U'2 = U, i zewrzemy zaciski na początku, wtedy U\ =  0. Prądy 
płynące przez zwarte zaciski czwórnika będą wynosiły: w pierw­
szym przypadku

z (1) I 2z = ^ - , zaś w drugim przypadku z (3) I lz = ~~ &>

ale prądy te przy tym samym napięciu muszą być sobie równe, więc
0  A D - B C  T~T
B B U’

skąd wynika, że
(5)1.

Biorąc pod uwagę ostatni wzór otrzymamy zamiast wzorów
(3) i (4)

0 ',  = DO' i + Bl\, (6)
V2 = CO\ + A l\ .  (7)

Pokażemy na przykładzie, że prądy płynące przez zwarte zaciski 
czwórnika będą jednakowe, gdy umieścimy źródło prądu raz na po-
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czątku, a drugi raz w końcu czwórnika (to samo napięcie). Ze sche­
matu (rys. 138) widzimy, że

u = ;1z1 + /2z3

/ , = —
Z, 4-

z 2 + z 3
Z tych równań znajdujemy natężenie prądu płynącego przez zwarte

w końcu zaciski

u
O ż ,

Rys. 138

Rys. 139

T z xz 2 + z xz 3 + Z 2Z3

Przenosimy źródło prądu na 
końcowe zaciski, na których 
będziemy mieli to samo napię­
cie U. Oznaczmy w tym przy­
padku natężenie prądu wycho­
dzącego z końca czwórnika 
przez / '2, zaś natężenie prądu, 
płynącego przez zwarte zaciski 
na początku, przez I\  (rys. 139), 
wtedy, jak widać na schemacie,

^  = P 2Ź 3 + 1\Ź1,
O

U

Ż 3 +

z tych równań znajdujemy 

czyli

Ż i Z 2 
Ż\ + Z 2

tfZ ,
z xz 2 + z xz 3 + Z 2Z 3

V -  11 1~  12
W przypadku czwórnika symetrycznego zamiana miejsca przy­

łączenia źródła prądu nie zmienia natężenia prądu płynącego do od­
biornika ani natężenia prądu pobieranego ze źródła prądu, więc we wzo­
rach (6) i (7) będziemy mieli 0 '1 =  t?2; / ' 2 = 7X; 1\ = / 2; wzory te
prsyjm, posta6 0 l - D C i + Bh(8)

i , - c o , + y t (9)
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Jeżeli porównamy te ostatnie wzory z wzorami (1) i (2), doj­
dziemy do wniosku, że w czwórniku symetrycznym

A =  D, (10)
wobec czego wzór (5) daje nam

A 2 = D2 =  1 + BC. (11)

/ §  57
WYZNACZENIE STAŁYCH CZWÓRNIKA DROGĄ POMIARÓW

Oporność pozorna czwórnika, mierzona na początku, wyrazi się 
wzorem

¿1  = A
A

( 12)

a oporność pozorna, mierzona w końcu, będzie równa

Ż -  — •¿'2— f 
*2

Na podstawie wzorów (1) i (2) otrzymamy

£  _  ^2 ^ 2̂ 
1 -  c t f2 + d /2 ’

Dla znalezienia stałych czwórnika przeprowadzamy następujące 
pomiary:

1) mierzymy na początku czwórnika przyłożone napięcie (do­
wolne), prąd przy tym pobierany oraz kąt przesunięcia fazy prądu 
względem napięcia w dwóch przypadkach: raz, gdy w końcu czwór­
nika prąd nie jest pobierany, czyli mamy tak zwany stan jałowy, 
drugi raz, gdy w końcu czwórnika zaciski są zwarte, czyli mamy stan 
zwarcia. Oznaczmy dla obu tych stanów oporności pozorne mierzone 
na początku odpowiednio przez z 10 i A »- Biorąc pod uwagę, że we 
wzorze (12) trzeba założyć: w pierwszym przypadku /2 = 0, w drugim 
zaś U2 = 0, otrzymamy

Z10 — ~

ż  - J L  ^ 1* !

(13)

(14)

2) dajemy dowolne napięcie na zaciskach w końcu czwórnika, 
mierzymy to napięcie, pobierany przy tym prąd i kąt przesunięcia
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fazy prądu względem tego napięcia: raz, gdy prąd na początku nie 
jest pobierany (stan jałowy), drugi raz, gdy zaciski na początku są 
zwarte (stan zwarcia). Oznaczmy dla tego przypadku oporności po­
zorne mierzone w końcu czwórnika odpowiednio przez Z20 i Z2z. 
Na podstawie wzorów (6) i (7), zakładając kolejno l\  =  0 i U\ =  0, 
otrzymamy

Z,'20
D_
C

¿%z —
B

Z równań (13), (14), (15) i (16) możemy stwierdzić, że

'10

(15)

(16)

(17)_20 
Z\z Z 2z

Do tego dochodzi jeszcze zależność (5)

A D  — BC  =  1.

Rozwiązując równania (13) do (16) z uwzględnieniem ostatniej 
zależności, otrzymujemy wartości stałych czwórnika w dwóch po­
staciach: _______

¿10
¿20 ¿;

B

i Y .

- h / 3  

¥ .

2 z V ^ 2 o ( ^ 1 0  ^  I z )

lz Vi '10
20 '2 *

D =

¿20 [Ż 10 ¿1 )̂ 

¿20

V.
^¿10 (¿20 ¿2z)

¿ 10 [Z20 ¿2Z)

_ 1  /  ¿20 
V  ż 10- z

(18)

(19)

(20 ) 

( 21)

l z

Dla czwórnika symetrycznego, gdy A = D, jak widać z wzorów (13) 
do (16), ¿ 10 = ¿ 20 = ¿,
(21) dają nam

o ,  ¿ i s = ¿ 2Z = ¿ z >  wobec tego wzory (18) do

l /  ¿o
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c  =  i /  1 . .  ,V  z 0(z0- z z) (24)

D = 1 /  Z ° • 
V Z o - Z z

(25)

Do tego ostatniego dochodzi zależność (11)

A 2 = D2 =  1 + B C .

Z ostatnich wzorów wynika, że dla znalezienia stałych czwórnika 
symetrycznego wystarczy dokonać pomiarów tylko na początku, gdy 
w końcu mamy stan jałowy i stan zwarcia.

Wzory (1) i (2) dają nam wartości napięcia i natężenia prądu 
na początku czwórnika, gdy mamy w końcu napięcie U2 i pobieramy 
prąd I2. W stanie jałowym (/2 =  0) napięcie źródła U1 dałoby nam 
w końcu inne napięcie niż U2, które mamy przy pobieranym prą­
dzie / 2; dla zachowania w stanie jałowym napięcia U2 musielibyśmy 
dać na początku inne napięcie, które nazwiemy napięciem na po­
czątku czwórnika w stanie jałowym i oznaczymy przez U10, również 
i natężenie prądu pobieranego na początku ulegnie wtedy zmianie, 
nazwiemy go prądem w stanie jałowym i oznaczymy przez 710. 
Analogicznie rozumując, gdy mamy stan zwarcia (U2 =  0), musimy 
dać na początku napięcie Ulz i prąd I lz, by natężenie prądu płynącego 
przez zwarte w końcu zaciski czwórnika wynosiło I2, tak jak przy 
normalnym obciążeniu.

Z wzorów (1) i (2) otrzymujemy

tyi0= A t i 2;
Widzimy, że

&iz~ B I 2; 110

= ?io  + 0 i ,
K = Ko +  Kz

Ctt2; l lz = D l 2

(26)

Z wzorów tych wynika, że dla otrzymania wartości napięcia 
i natężenia prądu na początku obciążonego czwórnika należy dodać 
do siebie odpowiednie wartości tych wielkości w stanie jałowym 
i w stanie zwarcia.

Przejdziemy teraz do rozpatrzenia najbardziej rozpowszechnio­
nych typów czwórnika.
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§  58
CZWÓRNIK TYPU T

Układ czwórnika nazwanego typem T posiada trzy oporności 
pozorne, z których dwie, Zx i Z 3, są połączone szeregowo, trzecia zaś, 
Z2, włączona jest równolegle między tamtymi (rys. 140).

Rozpatrując ten układ możemy napisać następujące równania:
0 1 - 0 , -  h ż 1 + h ż 3, (27) 

/ i - / 2 =  - l ( t 7 1 - / i Ż i ) .  (28)
u 2

Z drugiego równania

’ H H ^
U,

i
Rys. 140 / i -

0 i +  / 2Z 2 .
Źi + z  2

podstawiamy tę wartość do pierwszego równania, wtedy

0 ! - 0 a -  (0 ! +  / 2Ż 2)
Z i +  Ż 2

T- + / 2Ż 3,

skąd

(29)

¿7 A  — A — \ = cj2 +  /  ,
V ż 1 +  ż 2 )  zx + z2

jj _  Zi +  Ż 2 £j- Ż 1Ź t +  Ź 1Ź a +  Ż tŻ tĄ

1 -  z 2 2 z 2
Analogicznie określając z równania (28)

0 X =  11Ż 2- 1 2Ż2 + 1 1Ż1

i podstawiając tę wartość do równania (27), znajdziemy

Ą = 4 - 0 2 + + Żs■/,.
z 2 “ z 2

Zestawiając wzory (29) i (30) z podstawowymi wzorami czwórnika (1) 
i (2) stwierdzimy, że dla czwórnika typu T
A Zi + Z2 . D Ż1Ż2 +  Ż1ŹS + Ż2 ż 3 _ z1 _   ̂ . n _ Ź2 "t Z3

i  ’ ż t ' ź ,

Dla stanu jałowego (/2 =  0) będziemy mieli z (29) i (30)

(30)

0 io —
Zi + Z 2

0 , (31)

ho = 0 2 (32)



CZWÓRNIK TYPU T 223

skąd oporność pozorna czwórnika w stanie jałowym będzie

Ź * ~ ^ f - = Ź X +  Ż2. (33>

Dla stanu zwarcia (U2 = 0) z tychże równań (29) i (30) otrzymamy
ty ŻxŻ 2 + Ż i Ż3 + Ż2Ż3 f
U  -tz  — , *■ 2

Z2
(34)

f Z 2 + Z3 f
1 l z —  * 2

z 2
(35)

skąd oporność pozorna czwórnika w stanie zwarcia będzie
2 &i* _ż1ż 2 + ż iż 3 + Z2Ż3 

A . z  2 + z 3
(36)

Wzory uzależniające napięcie i natężenie prądu na początku 
czwórnika od tychże wielkości na końcu — mogą być wyrażone 
prościej, jeżeli wprowadzimy do nich oporności stanu jałowego i stanu
zwarcia Z0 i Zz oraz dwie nowe wielkości zespolone, mianowicie

'37>

=  (38)
-*2

Na podstawie wzorów (31) i (35) dla naszego czwórnika
6 _  Zx +  Z 2¿>o--------^ ’ (39)

9 _  Ź2 +  Z3 /•<rns z = ---- - ------  (40)
■ ¿2

Biorąc pod uwagę wartości Z0 i Zz ze wzorów (33) i (36), znaj­
dziemy stałe czwórnika w postaci

A = S0; B =  ŚZŻZ; C = D = Ś  ;
Zq

wtedy zamiast wzorów (29) i (30) otrzymujemy
t)1 = Ś 0 V2 + Sz Ż2 I2, (41)

A = |^ C2 + ś J 2.
Z o

(42)

Ponieważ dla każdego czwórnika
A D  — BC =  1,
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przeto

skąd

Q, Sq Sz Z z    1
^0̂ 2 A A’

§0§z =
Zp

Z0 Zz
(43)

Często zamiast —  wprowadza się przewodność pozorną stanu 
•¿o

jałowego Y0, wówczas wzory (41), (42), (43) będą miały postać:
#!= s0a2 + śMźzi2, (41')
h  = S0? oO2 +  Śz!2, (42')

S0s z = -------\------ >
1 - r nz„

(43')

Każda z wielkości S0 i Sz określonych wzorami (37) i (38) stanowi 
pewną liczbę zespoloną, zależną od oporności pozornych czwórnika. 
Oznaczmy kąt przesunięcia fazy f?10 względem U2 przez a0, a Ilz 
względem 12 przez az \ kąty te będą argumentami Ś0 Si z, czyli

Śo = Ś0 (cos <x0 +  / sin o0) = S0eJ°o,
Sz =  sz (cos az + / sin az) =  Szei**.

Dla czwórnika symetrycznego typu T wyżej wyprowadzone 
wzory znacznie się upraszczają, wtedy bowiem Ż3 = Żx i z wzorów (39) 
i (40) wynika, że

£0 =  = $  =  A ± h  , (44)
z2

również a0 = az = a, czyli Ś = S (cos a + j sin a) = §ei,J.
Z wzorów (33) i (44) znajdujemy

Żi
Ś - l

Š
ż 0;

Wzory (41), (42) i (43) przyjmują postać
L\ = Ś 0 2 + S ź M 12 = S (Ů2 + Żz I2),

h  = y o ú 2 +  s i 2 =  š ( ± ú 2 + i 2y

(45)

(46)

(47)

(48)

(49)



CZWÓRNIK TYPU /7 225

lub też z wzorów (41'), (42') i (43')
u ,  = ś ( C 2 + ż z l 2),
h =  s ( P ,  0, + !,),
s - V

Poza tym będziemy mieli
Ż12 + 2Ż1Ż2. ę ,_A = D = S =  -1 -t Z g ; B =  ś gż ,  

Z2 ż 0 ż 2

(47')
(48')

(49')

(50)

§  59
CZWÓRNIK TYPU n

Czwórnik typu n zawiera trzy oporności pozorne, połączone jak 
na schemacie (rys. 141). Rozpatrując ten układ, znajdziemy:

ź ,
z,

u,
■ i

u 2
ż s

„ 3 *
1 ?

Z j  i Ui

Rys. 141

Dla stanu jałowego (/2 = 0)

/  -  ^10 I ^2-
10 ż ,  + r , '

z tych dwu równań rugujemy f 10, wtedy

^ 10- ^ 2= ! - 0 a, 

ź 1+ ż a T~7
U io = t7,

(51)

(52)

(53)

(54)

(55)

Teoria prądów zmiennych 1S
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po podstawieniu tej wartości V10 do wzoru (54), otrzymamy

A„ = h ± * Ł  c2 + 4 - 0 2 =  A + / »  +  * 8 c  . (56)
Z 2Z 3 Z 8 Z 2Z 3

Dzieląc stronami wzór (55) przez (56) znajdziemy oporność pozorną 
czwórnika w stanie jałowym:

z  = A ?  = (Z1+ Ż 8)Ż2Ź3 = Ż ^ a  + Ząźą 
/10 Ż3 (Ż1 + Z 2 + Z3) Ż i + Ż 2 + Z 3

Dla stanu zwarcia (U2=  0), z wzorów (51) i (52)

0 « =  A . -

[ la / , =

A *
z 2

(57)

(58)

(59)

Z równań tych rugujemy t?la, określając jego wartość z (59) 
i podstawiając do (58), otrzymujemy

Ż 2  ( A  A) = A* ̂ 2  — {¿i  +  Z 2) A

A ,=
Z i + Z2

A - (60)

(61)
Następnie z równań (58) i (59)

O u - i L - l u + l J Ź r - Ź J ,

Dzieląc stronami wzór (61) przez (60) otrzymamy oporność po­
zorną czwórnika w stanie zwarcia

fr ?  7
u  l z  ^ 1 * ^ 2 (62)
A  z Z x  +  Z 2

Sumując wartości napięć i prądów w stanie jałowym i w stanie 
zwarcia, otrzymamy na podstawie wzorów (26), (55), (56), (58) i (62):

0 i  =  0 1 .  +  0 i ,  =  0 a +  Ź1l t ,

A  — Ao + A , —
Żi + Ż 2 + Ż 3 jj   ̂ Żj +  Ż2 j

(63)

(64)
2d2ż  3 ż 2

Z tych wzorów określimy stałe, wchodzące do podstawowych 
wzorów (1) i (2) dla czwórnika typu n:

Żx + Ż2A =  Ż1 + Ż3 B = % .  Q== Ź1+ Ź i + 2 a D 
Z 3 Z 2Z3

(65)
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Wielkości Ś0 i Śz, na podstawie (37) i (38) oraz (54) i (57) będą:
^  Ż l + Ż 3 . a L

<5 i ^ 10
40 + o .

; S i ­ li* _  ¿i  +  z 2 .
h

( 66)

zamiast (65), biorąc pod uwagę ostatnie wzory oraz (57) i (62), otrzy­
mamy:

A = S0; B = S ZŻZ\ C = — ; D - S . I
Zo

wtedy z podstawowych wzorów (1) i (2), będziemy mieli:
# i =  S0Ů2 + Š J Z12, (67)

l i = -ijr U2 + Ś zl 2. (68 )

¿o
Tak samo jak dla czwórnika typu T, otrzymamy dla czwórnika 

typu n zależność (43)

Ż °z  - ż  (69)
Dla czwórnika symetrycznego typu /7 Ż 3= Ź 2, wówczas ze 

wzorów (65) będziemy mieli

A = D =  fí =  Z x; C ^ - 1+^ 2*

wzory (57) i (62) dadzą nam

¿o =
Następnie z (66)

(Źj +  Z 2) Ź 2 
Ż x + 2Z 2

; Z* =  —ż i ż 2

ś » =  S . =  ś  =

Żi + ż 2 

Zi + Z 2

Z tych ostatnich wzorów znajdujemy

7  _  Z ,S
^  2 ---------7 7  *

S - l
Wzory (67), (68) i (69) dadzą:

0 1 =  S Ú i  +  S ž x l 2 =  S ( O t  +  ź Ml t ),

I l ~ f . 0 ' + S 1 ‘ ~ S ( T . 0 ,  +  1’ ) -

ś = V -
A _

Żq Żz

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)
15*
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albo Ü1= S(Ü 2 + É J 2)
h  = S(Y0Ü2 + /.),

1*-V\
Wreszcie, jak widać z tych wzorów, 

A = D = §; B =  SŻZ; C f  s r . .

(75')
(76')

(77')

§ 60

CZWÓRNIKI RÓWNOWAŻNE

Czwórniki różnych typów nazwiemy równoważnymi, gdy od­
powiednie stałe tych czwórników są sobie równe, chociażby czwórniki 
były złożone z różnych elementów. W takich czwórnikach otrzymamy 
te same zależności między napięciami i prądami na początku i w końcu. 
Porównamy czwórniki poprzednio rozpatrzonych typów T i /7.

Z wzorów (29) i (30) dla czwórnika typu T (rys. 140)

A — Ż^A Ż 3 . g  __ Ż iŻ a + Ż iŻ 3 +  Ź 2Ź s . q _  _j_ . jj _  Ż2 + Ż3
¿2 Ż 2 Z 2 ¿2

zaś ze wzorów (65) otrzymamy stałe dla czwórnika typu /7 (rys. 141); 
we wzorach tych, dla odróżnienia od elementów czwórnika typu T, 
oznaczmy dla typu ii  Ż 1 =  Ża; Ż 2 =  Żb; Ż3 = Żc, wtedy

Ż a +  Ż b  +  Ż c n  Ż  a +  Ż bA = Z a + Z ‘  ; B = Ża ', c  =
żb Żc

D
Ż b Z c

Ażeby oba czwórniki były równoważne, powinna być spełniona 
równość

Ż\ Ż2   Ża + Żc _ ŻiŻ2 + Ż1 Ż3 + Ż2Ż3

Ż 2

Żc
Ża +  żb + Ż c

Z 2
Ż2 + Ż3

= Za,

Ż a +  Ż b

Ż b Ż c Ż 3 Ż b

Rozwiązując te równania względem Żx, Ż 2 i Ż3, znajdujemy: 
Ż a  Ż b  ry Ż b Ż c a  Ż a  Ż c

^1 =
Ż a +  Ż b  +  Żc

Z ,=
Ż a +  Ż b  A  Ż c

Z3
żb + Żc
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rozwiązując je zaś względem Źa, Żb i Żc, otrzymamy:
v ^1 ^2 t  Z \ Z $ ~\~ Z 3Z 3  ̂ ¿7 Ź iŻj +  Ż1Ż3 + Z 3 Ż 3 '

z c = ż i ż 2 + ż xż 3 + ż 2ż 3

Wzory te dają nam oporności elementów składowych przy 
przejściu od typu T do typu /7 lub odwrotnie.

§ 61
CZWÓRNIK KRZYŻOWY

Gzwórnik krzyżowy zawiera 4 oporności pozorne, połączone 
z sobą, jak wskazuje rys. 142. Rozpatrzymy tylko czwórnik krzyżowy 
symetryczny, w którym po dwie odpowiednie oporności są sobie 
równe. Ze schematu, na którym oznaczone są napięcia i prądy w róż­

nych częściach układu, otrzymamy stosując prawa Ki r c h h o f f a :

skąd
A  — A  + A ; A  = 7 —  7

; A  + A  . / I — ti l  i 2
3 2 ’ M 2

h  Z 3 +  =  lx / g  Z3 +  7 l - ~  / a  Ź x

0 i - 0 2= i 3Z1 + l 3Z1 = 2 l 3Z1

następnie
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albo
17 _ Zl + Ż 2 f  , Zy — Ż 2 t  

Ul “ 7> + — ~

0 . - 0 , ( / ,  +  /,).
Z wzoru (78) określamy

f 2 Cr1 Ź  ̂+  Z 2 j>_  _  ; ; - ¿i,

więc
T T t  , Z x +  Z 2 f  
' 1  —  7 2 —  7 i  +  ~  1i

Z 1 — Z 2 Z 1 — Z  2

z x- z 2 z r - z 2 z x- z 2

Dla stanu jałowego (J2 = 0), z (78)

iY _ Ż̂ l +  Ż̂ 2 f 10 — ;  ̂ 710 >
skąd oporność pozorna w stanie jałowym

v 0io Zi +  Ż 2 .
“  2 ’■•io

z (79) C10- C 2 =  Ż 1I 10-,
podstawiając do tego wzoru wartość /10 z (82) otrzymamy:

(78)

(79)

(80) 

(81)

(82)

(83)

(84)

wobec tego z (82) i (85)

z (80)

t) ú  — 2^1 /7 1̂0 U2 ~  ^ y  U10>
¿1 ~T ¿2

Ü -  ^ 1 + ̂ 2 f¡U1Q~ ^ ^ U2iZ 2 Z i
(85)

i (85)

/  -  2710- ^ ^2-z 2 —Zi
(86)

([/2= 0) z (79)

01. = t u ź t + l 2ź v (87)

• 2 f .  Z x + Ź2 <» 
Z x - Z 2 Zx — Z 2
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Podstawiamy do tego wzoru wartość Vu  z (87)

/  _  2 ( /  7 + /  z  ) — Ź i ż J a  1l 2~ A A A $ Ź1Z’
Z l Z 2 ¿ 1  ^2

f  ---- Ż 2 _  9 Z \  +  Ż 2

1Z Ż1- Ż 2 Ż 2- Ż 1 ’

/ i- - | L±| Ł / 2. (88)
z 2

podstawiając ostatnią wartość / u do (87), otrzymamy:
(£i + Ż 2)Ź i f , t +  Ż1Ż2 + Ż XŻ2 Z!2 «

^ 1 *-------- *  -  V2 +  Z l i 2 -------------------a  ^ -l2 7
Z 2 Z* ¿2  Zj

CZyli n ł  i  l
O u ~ 4 ^ ! (89)

z 2 z x
z (88) i (89) znajdujemy

7 : =  %ŻlŻ2 /QQ\
* /i*  z 1 +  ż a ( *

Na podstawie (26) oraz (85), (86), (88) i (89)

tfi =  #io +  #1* =  ^2 +  (91)
Z 2 Zis Z 2 Zi

+  (92)
Z 2 Z i Z 2 Zi

Z wzorów tych wynika, że stałe z podstawionych wzorów (1) i (2) 
wynoszą

A = D =  ^1 +  ^3 ; J5 = — -^ 2- ; C = -----------  (93)
Ż2- Ż l Ż2- Ż x Ż2- Ż x

Wprowadzając, jak i w poprzednio rozpatrzonych typach czwórnika, 
wielkość §  (czwórnik symetryczny), będziemy mieli 

&io _  A*   a Źi +  Ż2= S =
^2 h  “  ¿ 2 -^ 1

Z wzorów (83), (90) i (94) otrzymamy
-  ,  S - i

(94)
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Biorąc pod uwagę (94), (95) i (96), możemy wyrazić stałe czwórnika 
z (93) w postaci

A = D = §', B = ŚŻZ; C = -§-■
Z0

Wzory (91) i (92) możemy napisać w postaci
0,  =  §V2 + s ż j 2 =  $ (02 +  ŻJ2), (97)

A - 4 - u 2 + § i 2
Zo

S (Y 0U2 + h).

Do tych wzorów dochodzi jeszcze zależność

(98)

_ 1____
- ? 0Ż

(99)

§ 62

OKREŚLENIE WIELKOŚCI Ś0 i Śz ZA POMOCĄ POMIARÓW

Rozpatrując wzory dla czwórników typu T, /7 i krzyżowego, 
wprowadziliśmy wielkości S0 i S„  przy czym, jak widać z wzorów 
(41). (42), (67 " (68), (97) ¡"(98),*

5 «  -  4 ; S . - D - ,

a dla czwórników symetrycznych
§0 =  Sz -  S =  A  =  D.

W § 57 podana była metoda doświadczalna, za pomocą której 
możemy znaleźć wartości stałych A ,B ,C i D ,  oparta na pomiarze 
oporności pozornych czwórnika w stanie jałowym i w stanie zwarcia, 
przy czym w ogólnym przypadku przeprowadza się pomiary z obu 
stron czwórnika; na początku znajdujemy oporności pozorne Ż10 i Żlz, 
w końcu znajdujemy oporności pozorne Ż 20 i Ż2z. Dla czwórników 
symetrycznych wystarczą pomiary tylko na początku.

Korzystamy z gotowych wzorów (18) i (21); każdy z nich daje 
nam A i D, czyli -S0 i Sz w dwóch postaciach. Mnożąc A przez D, 
biorąc pod uwagę drugie postacie, otrzymamy

• ( 100)
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Biorąc zaś wartości A i D w pierwszej postaci, otrzymamy, dzieląc A 
przez D,  ̂ ___ _____  __________-__

■̂0 _  1 /  ¿10 I 10(̂ 20 %2z) Z 10 (101)
" Z 20 Z 2 z 2̂0 Z 20

Ten ostatni wzór można na podstawie (17) napisać również w postaci

45- =  — • (102)
£>Z ¿2 Z

Wielkości ć$0 i 4  mają argumenty, które oznaczyliśmy przez <r0i az. 
Kąty przesunięcia faz między prądami znalezionymi z pomiaru i na­
pięciem na początku czwór- y
nika oznaczmy odpowiednio 0  
przez ę?10, 9ou , <P20i(p2Z■ Wów­
czas argumenty rozpatrywa­
nych oporności pozornych 
będą (p10, tplz, —(Pwi — nz- 

Wynika to z tego, że jeśli

= I e ~ja,f O T . oI  =  — ; le,v = ------
Z Ze’ «

to a = — 9?.
Bla znalezienia modułów 

i argumentów i Sz służy
Rys. 143

wykres dla wzoru (100). Bierzemy dowolny kierunek O U jako pod­
stawowy (rys. 143), odpowiadający napięciu, i odkładamy pod ką­
tami— cp10 i — (plz O A = Z 10, OB =  Zlz, wtedy BA  = Ż10 — Żlz.
Biorąc pod uwagę, że A O B = 
otrzymamy z A AOB

Viz ( l̂o) — VlO Viz’

czyli
BA = y O T 2 + OB2 — 2 OA • OB cos (ę>10 — tplz) 

BA =  VZ2X0 + Z V  2Z 10Z li cos (9̂x0 Ví*)-

(103)

W ten sposób, na podstawie wzoru (100), będziemy mieli
g g  _  O A ________________Z y________________

BA VZ2io + Z2iz 2Z10 Zlz cos (9̂x0 — Vu) 
Opuszczamy z punktu B prostopadłą BM  na O A. Z A M A B  mamy: 

MB MB OB sin AOBtg 3 ; O AB  = MA
czyli

tg ¿£OAB =

O A - O M  O A -  OB cos ąc AOB ’ 

z  u sin [<p10 — <plz)
'10 Zlz cos (9?10 — cplz (104)
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Jak widać z wzoru (100), argument Ś0Śz z jednej strony równy 
jest sumie argumentów 6'0 i Śz, czyli cr0 +  az, z drugiej strony zaś 
równy jest różnicy argumentów Ż10 i (Ż10 — Żlz), czyli kątowi O AB, 
którego tangens mamy w wzorze (104), więc a0 + az = -¿Z.OAB.

tg(g0 +  g.) =  > ..ZUyÍn {<Pl0~ <ru)£j 1A Z/<10 z COS [cpw

Następnie ze wzoru (101) mamy:
<Plz

(105)

• S0e^o Zio e -J'
Szei Z „ e - f  -  '

skąd ^Aej  = 
Sz

7= - l0-gj
7  ’ ^ 20

So A  .
.<? 7.. * 0 — az = <p2o ę̂ ioJ (106)

* 20

albo na podstawie wzoru (102)

-<y- = ao —  a* =  <Piz — <Piz- (107)
O z  Z /  2z

Ostatnie wzory (106) i (107) łącznie z wzorami (103) i (105) dają 
możność znalezienia modułów i argumentów wielkości §0 i § z.

Ze wzorów (106) i (107) wynikałoby, że jeden pomiar, czy to 
w stanie jałowym, czy to w stanie zwarcia, jest zbyteczny; lepiej 
jednak przeprowadzić wszystkie cztery pomiary, czwarty służy 
wtenczas dla kontroli.

W przypadku czwórnika symetrycznego oczywiście wystarczą 
tylko dwa pomiary, na początku czwórnika, wtedy bowiem S0= Sz= S; 
<x0 = az = a, i wzory (103) i (105) dają nam

S = /
'10

A o  4“ A *  4" 2 Z 10 Z lz cos (<p10 <pu)
A  Sin ((Pio (fiz)tg2cr

'10 Z lz COS (<Pio <Piz)

§  63

ŁĄCZENIE CZWÓRNIKÓW

Rozpatrzmy dwa różne czwórniki połączone z sobą w szereg, 
wtedy w miejscu połączenia tych czwórników będziemy mieli wspólne 
napięcie i wspólny prąd; dla pierwszego czwórnika będą to wielkości 
wyjściowe, dla drugiego —  wejściowe. Oznaczmy je przez U' i / '
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(rys. 144). Stałe pierwszego czwórnika niech będą A lt By, Cy i Dy, 
drugiego A 2, B2, C2, D2. Na podstawie wzorów (1) i (2) możemy na-

P1SaC' 0 t = A yC  +  B j ' -  1\ =  Cyt!' +  Dyl'-,
U' = A 2V2 + B j .2; V =  C2 0 2 + D j 2.

Podstawiamy wartości U' i I' do pierwszych dwóch równań, wówczas 
Cy =  Ay [A2C2 + B212) + By (c 2C2 + D212), 
ly = Cy (A20 2 + B212) +  Dy (C20 2 +  D212),

t 3 . A ,  B . 3 ’ A ,  B o

r n s u ‘ j
C i  U| C z D i

Rys. 144

skąd znajdujemy zależności między napięciami i prądami na początku 
i w końcu rozpatrywanego układu

Oy = (AyA2 + ByC2) t)2 + {AyB2 +  ByD2) I2, 
ly =  (A2Cy + C2Dy) 0 2 +  (B2Cy + DyD2) 12.

Gdy czwórniki są jednakowe i symetryczne, w powyższych 
wzorach A y =  A 2 = Dy =  Da = A

By — B2 — B] Cy = C2 — C;
poza tym A 2 — B C =  1.
Wtedy ostatnie wzory przyjmą postać:

Cy =  (A* + BC ) C2 + 2 A B l 2, 
ly =  2 A C C 2 + {A* +  BC) 12; 

zakładając w tych wzorach BC = A 2 — 1, 
otrzymamy ^  = (2A2 _  j ) C2 + 2A B  12,

ly = 2 A C C 2 + {2 A 2-  1) 12.

§  64
WARUNKI OSIĄGNIĘCIA NAJWIĘKSZEJ MOCY NA ODBIORNIKU

Rozpatrzmy zagadnienie następujące: na początku napięcie 
obwodu u źródła Uy ma wartość stałą, na odbiorniku spółczynnik 
mocy cos cp2 również pozostaje bez zmiany. W jakich warunkach 
moc oddawana odbiornikowi będzie miała wartość największą? 
Oznaczając tę moc przez P 2, mamy

P 2 = U2I2 cos (p2.
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Wartość P 2 oczywiście będzie największą wtedy, gdy iloczyn 
U2I2 będzie największy.

Wszystko, co się znajduje między źródłem prądu i odbiorni­
kiem, jak przewody, transformatory itp., możemy zastąpić czwór- 
nikiem. Wtedy, na podstawie określenia wielkości S0 i Sz, będziemy 
mieli

Tl — U10 • f — — Ulz
2 §0 ’ 2 S. S,Ź, ’

• gdzie Zz oznacza oporność pozorną w stanie zwarcia, stąd
ty t U10 Ul Z .

2 2 —  ~ A  a  -  >S0SzZ2
ponieważ Ś0ŚZŻZ jest wielkością stałą dla danego obwodu, więc 
maximum t)2I2 będzie odpowiadało maximum iloczynu

OwGlz,
czyli maximum iloczynu modułów tych wektorów

u 10u lz.
Z drugiej strony,

^10 +  U  lz  ~~ ^1»

ponieważ z założenia ma wartość stałą, więc suma geometryczna 
wektorów Oi0 i Uiz jest wielkością stałą. Oznaczmy kąt przesunięcia 
fazy Uio względem tJlg przez a, tj.

<  ( ¿ U  Qu) =  «;
dla określenia wartości tego kąta mamy

Gio = u 2§ 0, Ov  = I tSMź .  =  f - 2 ,
Z2

gdzie Z2 oznacza oporność pozorną odbiornika.
Oznaczmy

<  (U 10, Ol) =  n , <  (Ou , Ul) = y>z, <  (U2, Ul) = 
Zważywszy, że
< [ U 0 2) =  ę>2, arg. 4  =  ff0) arg. arg. Żz = — <pz ,

arg. Ż2 =  — ę>*,'
będziemy mieli

y>0= y2 +  o0,
Vz= V2 + <P2 + az — <Pz,

« =  V>0 — V z =  Wi +  — V>2 — 9̂ 2 — +  <Pz
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i ostatecznie
a =  <Pz — 9>a +  <V

dla obwodu symetrycznego, gdy <r0 = az,

a — V z ę̂ a-

ilOS)

(109)
Ponieważ wartości kątów określających kąt a są stałe dla da­

nego obwodu, przeto i kąt a pomiędzy wektorami £f10 i 0 lz jest 
wielkością stałą.

Mamy więc do rozwiązania następujące zadanie: dwa wektory 
(rys. 145) y

A B  =  0 10 = x y
BC — 0 lz = y

mają stałą sumę geometrycz­
ną A C = t)1= c i tworzą stały 
kąt a; trzeba znaleźć

max U10 Ulz =  max xy.
Oznaczając

U = xy,

będziemy szukali max U; z A A B C
A B 2 + BC2 + 2A B  • BC  ■ cos a = c2,

x2 + y2 +  2xy  cos a = c2.

Rozpatrując y jako funkcję x, określoną ostatnim równaniem, 
i różniczkując, otrzymamy

2a: + 2yy' + 2x  cos ay' +  2y cos a =  0,
skąd

, _  y cos a +  x 
y y + x cos a

Różniczkując U będziemy mieli
U' =  xy' +  y

i, podstawiając znalezioną wartość y', otrzymamy

czyli
( 110)

U’ = — x y cos a — x2
y + x  cos a 

przyrównując U’ =  0, znajdujemy

+ i/ = r
y + x cos a

y = x



238 CZWÓRNIKI, RÓWNANIA I WYKRESY OBWODÓW PRĄDU ZMIENNEGO

czyli po podstawieniu do (110)

x =  y
Y'2 (1 + cos a) o « 2 cos -£

ponieważ dla takiej wartości x i y U"  <  0, przeto warunek y = x 
daje nam max U, a więc

max £710 Cu , czyli max P 2

nastąpi wtedy, gdy

ale

więc

U10 =  Uu  = U1
r, a2 cos g-

U9 u 10 __
S° 2 S 0co s|

2 s* Z
f/l

'* * 2 SzZz cos -g-

max P 2 =  max U2 I2 cos V* = tĄ2 cos <p2 

4cos2| s oS ,Zz

Ponieważ

2 cos2 -g- =  1 + cos a =  1 +  cos (<pz — <p2 + o0 — az),

możemy napisać
^ Uta cos <f 2

m axP 2 = 2 S 0SzZz [l +  cos (?>* —?>2 + ^o-CT*)]
Rozpatrując teraz największą wartość max P 2 w zależności 

od <p2l możemy znaleźć największą z największych wartości mocy, 
którą możemy osiągnąć na odbiorniku, dobierając odpowiednio 
U2, I2 oraz <p2. W tym celu bierzemy pochodną ostatniego wzoru 
względem <p2 i przyrównywamy ją do zera; po odpowiednich skróce­
niach otrzymamy

— [1 +COS {(pg — <p2 + <J0 — az)] sin 9̂2 — sin {(P z~ (P2 +  °o — °z) cos ^  = 0 
lub

(1 + cos a) sin (p2 + sin a cos <p2 =  0;
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tg <P2 =
sin a 

1 + cos a

o • a a 2 sin cos

2cos2^-

9’2 = — a _  (y *  —  9°2 +  g o —  g *)

skąd
9̂ 2 =  —  W  z  +  a 0 —  a z h

dla obwodu symetrycznego będziemy mieli
9>2 =  — <Pz

i w tym przypadku największa możliwa moc będzie
Ux2 cos (pzmax P„ =  „ „  „  „ -rj— -— jr— r = 2S0S2Z2 1 + cos 2cpz)

Ui2 cos cpz Ui2
AS0SzZz cos2ę>2 4S0.S2Z2 cos ę>2

§  65
WYKRES PRACY OBWODU PRĄDU ZMIENNEGO

Wykresem pracy obwodu prądu zmiennego nazywamy wykres, 
za pomocą którego możemy określać napięcia i prądy powstające 
na pocr^jjiu i w końcu obwodu, jak również moc pobieraną i od­
dawaną, przy zachowaniu pewnych warunków. Podstawą do takich 
wykresów są pomiary przeprowadzone w stanie jałowym i w stanie 
zwarcia. W tym celu cały układ znajdujący się między źródłem 
prądu i odbiornikiem zamienimy na czwórnik.

Wychodzimy znowu z założenia, że napięcie na początku 
obwodu pozostaje bez zmiany i że spółczynnik mocy na odbiorniku 
cos ę>2 ma wartość stałą. Mamy trzy zasadnicze równania (41), (42) 
i (43) lub (67), (68) i (69)

=  0 i o  +  0 i *  =  0  A  + l 2Szż z, (111)

A  -  A .  +  A . - 0 . 1 ®- + A S . , (112)

& & Ź0C>oOz — A A * (113)

pierwszego równania określamy
02^ o =  0 i  - h $ aź z.
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Podstawiając do drugiego, znajdziemy
0i T z Ś z Ż z  , f  A _ t j j  f  A

1  2°2 ~ ~ ~ Z r  ¿2*3.A -

na mocy zaś trzeciego równania
¿o K'-f>

S o S z Z ,

ź 0 Ś0
Oznaczmy przez I0 prąd na początku obwodu przy napięciu 

Ulf gdy w końcu mamy stan jałowy; wtedy

f  _

¿o
ma wartość stałą, przy tym kąt prze­
sunięcia fazy I0 względem U1 ozna­
czymy przez ę90; możemy więc na­
pisać t

f  — f  _i_ _±2_ .1 1 _  1 0 + A
¿>0

Przyjmując dowolny kierunek, 
np. pionowy, jako kierunek napięcia 
Ult odłóżmy pod kątem <p0 O A = 70 
(rys. 146). Gdybyśmy wiedzieli, jaka

/
—  i jaki jest jego kierunek, wtedj^ ^dodając 
So

geometrycznie ten wektor do wektora otrzymalibyśmy wek-
/ 2

tor Iv Przypuśćmy, że AB  stanowi wektor ~a~, wtedy OB wy-
*->0

raża wektor l v
Dzieląc obie strony równania '(111) przez Ś0SzŻz, otrzymamy

Rys. 146

jest wartość wektora

O\o _j_ Ou
So s zż 7 S0SzZz

h+ -T-'
SzŻz S0

(114)
SoSz^z

Kąt pomiędzy wektorami O10 i 0 lz, oznaczony poprzednio 
przez a, został określony na podstawie wzorów (108), względnie (109).

Jeżeli te dwa wektory U10 i Clz podzielimy przez jeden i ten 
sam iloczyn symboli S0ŚZŹZ, to, oczywiście, otrzymane w ten sposób 
nowe wektory będą tworzyły ze sobą ten sam kąt a, czyli

* ( - £ - .  4 0  = «.
\ S ZŻ  z S  o /
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Kąt a będziemy odmierzali w kierunku od wektora
0 Z _________ O t

do

wektora i na rys. 146 a <  O; wektor ^ ^  =  BC  jest przesu­

nięty wstecz względem wektora .

Przechodząc do naszego wykresu, przeprowadzamy od punktu 
B pod kątem a, np. wstecz (a <  O) od AB, odcinek

BC =  - ~ - f  
Ś,Zz

wtedy, na zasadzie (114), geometryczna suma A B  i BC  będzie
OtAC =

Sn SzZz
Wyraz ten stanowi wielkość stałą, więc jeżeli do tego stałego

wektora dodamy również stały wektor O A — 10 — , wtedy
Z o

otrzymamy również jako wektor stały geometryczną sumę

0 C , » ł + _ | 1_ . | l / A +  1 •\
Z o Ś0 ŚzZz Zz \ Z o §o Sz )

Wyraz w nawiasach, na zasadzie wzoru (113), równy jest 1
t) ’

zaś = l z stanowi prąd płynący na początku obwodu, gdy

koniec obwodu jest zwarty; kąt przesunięcia fazy tego prądu wzglę­
dem napięcia i /x oznaczmy przez q>M; będzie to argument prądu, 
gdy kierunek wektora C/x przyjmiemy jako oś podstawową.

W ten sposób OC =  Iz‘, więc jeżeli będziemy mieli wartości 
/„, Ix, <p0, <pz, wtedy punkty A i C będą na wykresie końcami wia­
domych wektorów 10 i l z; łącząc te punkty, otrzymamy odcinek A C. 

Wektory
AB i BC =

SzZ z

mają zatem stałą i wiadomą sumę geometryczną A C  oraz tworzą 
ze sobą stały i wiadomy kąt a.

Jeżeli na danym odcinku A C  — a zbudujemy trójkąt tak, aby 
dwa pozostałe boki tworzyły kąt zewnętrzny a (rys. 147), wtedy 
geometrycznym miejscem wierzchołków B  takich trójkątów będzie 
koło, którego środek O' ma spółrzędne

X c  =
a

Y ’ yc = 2 t g a ’ (115)

Teoria prądów zmiennych 18
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zaś promień a
r =  -JJ—r---- .2 Sin a

czyli że dany odcinek A C  stanowi cięciwę odpowiadającą kątowi 
środkowemu 2 a, środek zaś znajduje się na prostopadłej przeprowadzo­
nej przez środek tego odcinka.

Aby tego dowieść, wybieramy osie współrzędnych, biorąc w A 
początek: oś A  w kierunku AC, zaś oś Y w kierunku prostopadłym. 
Oznaczmy współrzędne zmiennego punktu i? przez a;0iy 0; współrzędne 
punktu A  będą 0,0, zaś punktu C —  będą a, 0. Stosując wzór na 
równanie prostej przechodzącej przez dwa punkty, otrzymamy 
równanie B C

y x — a
y0 x0 — a

równanie AB y

, czyli y y o
Xn Cl

ay0
o.

= -zr> CZYU y ^ ~ r x -y0 Xo
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Kąt pomiędzy prostą BC  i prostą Ą B  oznaczyliśmy przez a; 
z równań prostych wynika, że

i/o y o
tg a = xn — a xn ay o

Vo*

skąd

albo

1 + —  . x0 (x0—a)

x02 +  y02 — axo

Xn

tg a

ax o +  i/o

y0 = o,

a2

4 sin2 a 
aJest to równanie koła, którego środek ma spółrzędne

apromień zaś równy jest  ̂^  q .

Na rys. 147 O' stanowi środek takiego koła.
Z trójkąta AO'D  lub DO'C mamy

a

tg <  AO D =  -Qijy =  —-  =  tg a,

2 2 tg a’

skąd
2 tg a

< A O 'D  = a.
Z rysunku widzimy, że dla znalezienia środka koła O' musimy 

ze środka odcinka A C  przeprowadzić prostopadłą, następnie 
z punktu A pod kątem 90° — a do A C przeprowadzić prostą aż 
do przecięcia z prostopadłą w poszukiwanym punkcie O'.

Kąt a określiliśmy jako kąt przesunięcia fazy U10 względem 0 lz] 
następnie stwierdziliśmy, że ten sam kąt stanowi kąt przesunięcia 

lJ /
fazy a- względem 7—. Na rys. 147 jest to kąt, jaki tworzy 

o 2Z ;s o 0
BC  względem AB.  Łatwo zauważyć, że dla punktów B , mających 
rzędne dodatnie, kąt a <  0, czyli wektor BC, jest przesunięty 
wstecz względem wektora A B ; gdy zaś rzędne punktów B będą 
ujemne, wtedy a >  0. Z tego wynika, że przy a >  0 zadaniu będzie 
odpowiadać część koła leżąca pod odcinkiem A C  (osią X), zaś przy 
a < 0 — część koła leżąca nad odcinkiem AC. Kąt a, posiadający 
ważne znaczenie w rozpatrywanym zagadnieniu, może się zmieniać 
w granicach od — 180° do + 180°.
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Pozostawiając do szczególnego omówienia przypadki, gdy

o '
A

i
I
i

7Ca =  0, ±  — , ±  jc, rozpatrzymy, w jaki sposób zmienia się położenie 
&

środka interesującego nas koła przy zmianie wartości kąta a. Na
podstawie wzorów (115) znak 
rzędnej środka koła jest taki 
sam jak i znak tg a; przy 
tym będziemy mogli spraw­
dzić, że we wszystkich przy­
padkach dla znalezienia tego 
środka wystarczy z punktu 
A przeprowadzić prostą pod 
kątem 90° — a do A C  z u- 
wzgłędnieniem znaku tego 
kąta. Możemy ustalić cztery 
następujące przypadki:

I. (rys. 148). a >  0, lecz < 90°, 
tg a >  0,
90° — a >  0, lecz < 90c

AO' tworzy z A C  kąt dodatni i ostry; geometryczne miejsce 
punktów B znajduje się pod odcinkiem AC.

II. (rys. 149).
a >  90 , lecz < 180°, tg a <  0,
90° —■ a >  — 90°, lecz <  0.
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AO' tworzy z A C  kąt ujemny i ostry; miejsce geometryczne 
punktów B znajduje się pod odcinkiem AC.

III. (rys. 150).

Rys. 150

a <  0, lecz > — 90°, 
tg a <  0,
90° — a > 90°, lecz < 180°.

AO' tworzy z A C  kąt dodatni i rozwarty; miejsce geometryczne 
punktów B znajduje się nad odcinkiem AC.

IY. (rys. 151).

a <  — 90°, lecz > — 180°, 
tg a >  0,
90° — a >  180°, lecz <270°.



246 CZWÓRNIKI, RÓWNANIA I WYKRESY OBWODÓW PRĄDU ZMIENNEGO

AO' tworzy z A C  kąt dodatni, zawarty pomiędzy 180° i 270°; 
miejsce geometryczne punktów B znajduje się nad odcinkiem AC.

W przypadkach szczególnych, gdy a =  0, +  180°, — 180°, miej­
scem geometrycznym punktów B będzie linia A C, przy tym

a
I B

+ iso•

¿ - A

L .

Rys. 152 Rys. 153

:<6oa i
f  v IB

Rys. 154

dla
dla
dla

a =  0 punkty B leżą pomiędzy A  i C 
a = +  180° punkty B leżą po stronie 

180° punkty B leżą po stroniea =

(rys. 152);
A  (rys. 153);
C (rys. 154); 
gdy a = ± 9 0 ° ,  otrzy­
mujemy środek koła w 
środku odcinka A C, przy 
tym dla a = +  90° geo­
metrycznym miejscem 
punktów B będzie dolne 
półkole, zaś dla a = — 90° 
— górne półkole (rys. 
155). '

Powracając do rys. 
146 i opierając się na 
powyższych rozumowa­
niach, możemy wykonać 
wykres pracy obwodu 
prądu zmiennego w spo­
sób następujący:

Wybieramy począ- 
Rys. 155 tek wektorów O (rys.

156) i podstawowy kierunek O Ut jako kierunek wektora stałego 
napięcia Ł/x. Od początku O pod kątami cp0 i <pz odkładamy w usta­
lonej skali prądów wiadome wartości 70 = O A oraz Iz =  OC. Łączymy
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A i C linią prostą i ze środka D odcinka A C  przeprowadzamy 
prostopadłą. Z punktu A pod kątem 90° — a do A C  prowadzimy 
prostą A O' do przecięcia owej prostopadłej w punkcie O', który 
będzie środkiem koła o promieniu O'A. W zależności od znaku 
kąta a wykreślamy część koła: przy a >  0 pod odcinkiem A C  (jak na 
rysunku), przy a < 0  nad odcinkiem AC.

Otrzymany w ten sposób łuk koła stanowi poszukiwany wykres 
pracy. Na podstawie tego wykresu możemy znaleźć wartości Ix i U2 
dla rozmaitych wartości I2. W tym celu dla danej wartości l 2 obli-

czamy , lub dla obwodu symetrycznego — ; w przyjętej skali 
S0 i  S

z punktu A odcinkiem równym —  przecinamy nasz wykres, znaj­
do

dując w ten sposób punkt B\ wtedy OB daje nam bezpośrednio 

wektor / lt zaś BC  wektor  ̂  ̂ lub ■* - skąd obliczamy 0 2.
ŚzZz S Z z

Potrzebne do wykresu pracy wartości <p0, Iz , cpz powinny 
być wiadome lub znalezione przez pomiary prądów i ich kątów 
przesunięcia fazy.
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W przypadku obwodu symetrycznego moduł spółczynnika <§ 
i jego argument a możemy znaleźć z wykresu pracy: wychodząc ze 
wzorów (49), (77) i (99).

£* = , , ,
Ż 0 Z z

gdzie w naszym zagadnieniu

będziemy mieli

czyli

i mając na wykresie l z — l 0 =  A C  (rys. 156), otrzymamy S2 dzie­
ląc Iz przez wartość AC, wreszcie znajdziemy S. Różnica kątów 
wektorów l z oraz l z — 10 równa się argumentowi 2 a wektora S2; 
czyli

2a =  (pg- >  CLU1, skąd a =  <Px~ <  CLUl-

■%.CLUX trzeba odmierzyć np. kątomierzem i wziąć oczywiście 
z właściwym znakiem, mierząc go w kierunku od osi podstawo­
wej OUt .

Za pomocą wykresu pracy możemy również znajdować moc 
P x na początku obwodu oraz moc P 2 w końcu dla określonej wartości 
prądu I2.

Wektor OB =  l x tworzy z kierunkiem wektora napięcia 0 1 
kąt cpv Jeżeli kierunek O Ux przyjmiemy za oś odciętych, a oś rzęd­
nych przeprowadzimy prostopadle do tego kierunku, wtedy otrzy­
mamy dla odciętej punktu B

B F  — Ix cos <pv

Ponieważ moc prądu na początku obwodu ma wartość 

P x = Ux Ix cos cpx,
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zaś Ux ma wartość stałą, przeto odcinek

B F = ^ -
Ux

jest proporcjonalny do tej mocy i w odpowiedniej skali daje nam 
wartość P v W trójkącie A B C

AB =  A .  BC = S y -

Pole tego trójkąta ma wartość

A = • AB  • BC • sin a =  -i- • sin «  I

ponieważ moc odbiornika ma wartość
P i  ~  U 2 I i  COS Cp2,

więc

A = -2
sin a p

S0 Sz Zz COS Cp2 2 ’

Z drugiej strony możemy pole trójkąta A B C  określić jako 
połowę iloczynu podstawy A C  przez wysokość BH.

Podstawa
Ui

zatem

AC

U l
S0SzZz . B H ;

przez porównanie obydwóch wzorów dla A znajdziemy
P 9 sin aBH = 

BH
U1 cos ę>2

_____ Pt .
sin a U1 cos ę>2 ’

wartość BH
sina znajdziemy przeprowadzając prostopadłą BG z punk­

tu B na promień O'A; ta prostopadła przetnie odcinek AC  w punk­
cie K ; ponieważ

< A K G  =  a = < B K H ,
przeto

BK BH
sin a U1 cos (p2 ’
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iloczyn U1 cos cp2 ma wartość stałą, więc odcinek B K  w odpowiedniej 
skali daje nam wartość mocy oddawanej w końcu obwodu przy 
prądzie / 2.

Największa moc na odbiorniku odpowiada największej war­
tości BH; wartość tę otrzymamy przeprowadzając ze środka AC

prostopadłą do przecięcia się z kołem wykresu, wówczas A B  — —
U,oraz BC =  „

SzZ.
oddawana będzie największą.

dają nam wartości Ia i Ua, dla których moc



R O Z D Z I A Ł D Z I E S I Ą T Y

OBLICZANIE POJEMNOŚCI I INDUKCYJNOSCI 
W LINIACH ELEKTRYCZNYCH

§ 66
ROZKŁAD POTENCJAŁU W  POLU ELEKTRYCZNYM

Będziemy rozpatrywali przewody składające się z drutów lub 
linek okrągłych, gołych oraz izolowanych, czyli przewodów cylin­
drycznych z równomiernie rozłożonymi ładunkami. Ładunki znajdu­
jące się na takich przewodach dają pole elektryczne, którego natę­
żenie będzie skierowane prostopadle do powierzchni przewodów, czyli 
prostopadle do ich osi. Aby móc określać pojemność dla rozmaitych 
układów takich przewodów, musimy przede wszystkim umieć okreś­
lać wartość potencjału w dowolnym punkcie pola elektrycznego 
powstającego pod wpływem ładunku przewodów. Najogólniejszy 
wzór dla potencjału V w dowolnym punkcie (x , y, z) pola jest to wzór 
Laplace'a

d2 V d2 V d2V 
dx2 ^ d y2 ^ d Z2 ( 1 )

Można wyprowadzić ten wzór w sposób następujący. W polu 
elektrycznym strumień indukcji dtp przez powierzchnię ds, gdzie 
indukcja ma wartość D i kierunek jej tworzy z normalną do po­
wierzchni kąt a, wyrazi się wzorem :j

|d rp =  D cos a ds.

Rozpatrując dowolny punkt pola, gdzie indukcja ma wartość D, 
natężenie pola K  i potencjał V, i oznaczając przez promień r kie­
runek działania natężenia pola oraz indukcji, przez e przenikał-



252 OBLICZANIE POJEMNOŚCI I INDUKCYJNOŚCI

ność dielektryczną ośrodka, będziemy mieli na podstawie znanych 
wzorów

d V
dr D = eK = — d V

dr

Weźmy w polu elektrycznym dwa nieskończenie bliskie punkty 
M  i Q (rys. 157); współrzędne tych punktów będą się różniły odpo­
wiednio o dx, dy, dz.

Oznaczmy przez D indukcję elektryczną w punkcie M  z kie­
runkiem r, a jej składowe w kierunku osi spółrzędnych przez Dx,

Dy, Dz. Strumień induk­
cji elektrycznej wchodzą­
cy przez powierzchnię 
MN  =  dydz będzie równy 
— Dxdydz (a =  180°, cos 
a = — 1), strumień wycho­
dzący przez powierzchnię 
PQ =  dydz będzie równy

(Dx +  ~y >-  dxj dydz. Su­

ma tych dwóch strumieni

równa jest - ^ x-  dx dy dz. 
9x

Analogicznie znajdziemy 
sumy strumieni wchodzą­
cych i wychodzących przez 

pozostałe dwie pary powierzchni prostopadłych do osi Y i do osi 
Z, w postaci

9 Dy
dy

dxdydz 9 Dz 
9 z dxdydz.

Całkowity strumień, pozostający wewnątrz równoległościanu 
MNPQ, równy sumie tych strumieni, w przypadku, gdy w rozpa­
trywanym punkcie nie ma ładunku elektrycznego, powinien równać 
się zeru; wobec tego

3DX
9x

9 Dy
dy

+ -9DZ
9z 0, (*)

D = — e dV_
dr

ale
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wi§c dV 9DX 92VDx — — £ —;— , ■■ ■ = — e ——r-;dx dx 9 x 2
9Dy 92V . 9DZ 92V ,
9y e 9y2 ’ 9z £ 9z2 '

więc po podstawieniu tych wartości do wzoru (*), otrzymamy po 
skróceniu przez — e wzór L a p la c e 'a  (1).

Dla naszych celów wzór ten możemy znacznie uprościć. Mia­
nowicie będziemy rozpatrywali przewody, których kształt, wymiary 
i całe otoczenie są jednakowe na całej rozpatrywanej ich długości. 
Jeżeli przeprowadzimy płaszczyznę prostopadłą do osi takiego 
przewodu, to zmiana1 potencjału w rozmaitych punktach tej płasz­
czyzny będzie niezależna 
od tego, w jakim miejscu 
przewodu taka płaszczy­
zna została przeprowadzo­
na. Biorąc oś przewodu 
za oś Z, wyrazimy waru­
nek powyższy w ten spo­
sób, że zmiana potencjału 
nie zależy od z, czyli

92V
~ (2)9 z2 0.

\

Rys. 158

Następnie, ponieważ, 
jak założyliśmy, przewód 
jest okrągły,przeto w pła­
szczyźnie prostopadłej do 
osi przewodu (rys. 158) 
wszystkie punkty znajdu­
jące się w jednakowej odległości od osi przewodu O będą miały 
potencjał o tej samej wartości; można więc zamiast dwóch zmien­
nych x i y wprowadzić tylko jedną zmienną g, stanowiącą odległość 
rozpatrywanego punktu od osi przewodu. Wtedy będziemy mieli 
dla dowolnego punktu

dee‘ = x *  +  y2; ■—  =  — ; ^ - - - 2-

9V_
9x

dV
dg

9q_
9x g ’ 9y 

9g dV
9x dg

x
e
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dV dV 9g dV y
dy dg ¿y dg e

92V d2V X 2 + dV y2
dx2 d g2 e2 dg ' e3
d2v d2V r/2 + ■dV X 2

dy2 " dg2 e 2 dg ’ 93
Wprowadzając te wartości do równania (1) i uwzględniając 

, równanie (2), otrzymamy po uproszczeniu
d2Ve 1 dVt
dg2 g dg = o, (3)

gdzie Vg oznacza potencjał w punkcie odległym o g od osi przewodu. 
Zakładając w równaniu (3)

dVe
Z ,dg

będziemy mieli
dZ Z

=  0dg g
skąd

dZ dg
Z e :

InZ =  — Ing + lnAv

(4)

gdzie A 1 — stała dowolna; wtedy
Z = ¿ i

i na podstawie (4) 

czyli

dVe A x 
dg g ’

Ve = A x ln g + A2, (5)
gdzie A 2 — druga stała dowolna.

Oznaczając przez Fx potencjał własny (gdy nie ma wpływu 
otoczenia) na samym przewodzie, którego promień wynosi r, to 
znaczy dla g = r, otrzymamy z (5)

Vx = A x In r +  A 2;
odejmując stronami ostatni wzór od wzoru (5), otrzymamy

Fff= y .  +  A ^ n j - - ( 6 )
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Dla określenia stałej A x musimy znać wartość potencjału 
jeszcze w jakiejkolwiek odległości, np. gdy dla g =  R potencjał 
ma wartość V2; wtedy ze wzoru (6) będziemy mieli

F2= Vl + A 1ln — ,

Ai-

V , -  Vx-

V i - V 2

In

Vx-

_R
r
V„

In R I n ± . (7)

Natężenie pola elektrycznego K,  wywołanego przez ładunek 
równomiernie rozłożony na powierzchni walca (przewodu cylin­
drycznego), wyraża się wzorem

2  Q
E Q

gdzie £) — ładunek przypadający na 1 cm długości walca, s — prze- 
nikalność dielektryczna względna środowiska, w którym się walec 
znajduje; q — odległość rozpatrywanego punktu pola od osi walca.

Zwykle wzór na natężenie pola elektrycznego powstającego od 
ładunku równomiernie rozłożonego na powierzchni walca podaje się 
w postaci ^  q

K  =
2 n  Q S  ’

gdzie Q jest wyrażone w kulombach, e stanowi przenikalność dielek­
tryczną bezwzględną. Przy zamianie kulombów na jednostki cgs 
elektrostatyczne i wprowadzeniu przenikalności dielektrycznej względ­
nej musimy w ostatnim wzorze pomnożyć prawrą stronę przez 4 n, 
wówczas otrzymamy wyżej podany wzór na i i  w układzie cgs elektro­
statycznym.

Ponieważ

wobec czego dVe
dq

dVB
dg

2  Q
E Q

(8)

Ze wzoru (7) znajdujemy
d v ; _
dg

Vx- v 2

In R
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więc ze wzoru (8) otrzymamy
V i - V 2 2 Q

In R (9)

Uwzględniając ostatnie równanie oraz wzór (7), możemy po­
tencjał w punkcie znajdującym się w odległości q od osi przewodu 
określić w sposób następujący:

V , - V i - ( 10)

gdzie stanowi potencjał własny przewodu, Q — ładunek przypa­
dający na 1 cm długości, r — promień przewodu, e — przenikalność 
dielektryczną środowiska otaczającego przewód.

Wzory (9) i (10) dadzą możność określania pojemności dla 
rozmaitych układów przewodów.

W elektrotechnice potencjał ziemi przyjęty jest jako równy 
zeru; wobec tego potencjał w dowolnym punkcie przy takim ujęciu 
traktowany jest jako różnica potencjałów danego punktu i ziemi, 
czyli jako napięcie pomiędzy punktem i ziemią.

§  67

POJEMNOŚĆ KABLA JEDNOŻYŁOWEGO OBOŁOWIONEGO

Taki kabel można rozpatrywać jako kondensator cylindryczny, 
którego jedną okładzinę stanowi sam przewód, drugą zaś płaszcz 
ołowiany. Oznaczając promień przewodu przez r lub jego średnicę 
przez d, promień kabla pod płaszczem przez R lub jego średnicę 
przez D, odpowiednie potencjały przez V1 i Vs, otrzymamy wprost 
ze wzoru (9) dla pojemności takiego kabla na 1 cm długości

r  Q _  6 _  e
Vf 2 In R

2/nJTd
wzór ten daje nam wartość pojemności w jednostkach układu elektro­
statycznego, czyli w centymetrach; dla przejścia do układu elektro­
magnetycznego musimy uwzględnić, że

1F  =  9 • 1011 cm lub 1 p F  =  9 • 105 cm;
następnie zwykle obliczamy pojemność przewodów nie na 1 cm 
długości, lecz na 1 km =  105 cm i podajemy w pF\ wobec tego bę-
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dziemy mieli
C =

18 In—  l 8 l n Dr d
lub, wprowadzając logarytmy dziesiętne, otrzymamy

0,0241 s 0,0241 s [xFC =
ig

R , D
lg~d

km ( U )

Przykład.
Kabel jednożyłowy obołowdony ma przewód o przekroju 16 mm2; 

średnica przewodu wynosi d =  5,1 mm, grubość izolacji papierowej 
2 mm, wobec czego średnica kabla pod płaszczem wynosi 9,1 mm.
Mamy .D 91 , 9 1

d 51 ig -51  = 0,251.

Przenikalność dielektryczna dla papieru impregnowanego £ = 4,3. 
„  0,0241.4,3

0,251 = 0,413 uF
km

§ 68

POJEMNOŚĆ KABLA JEDNOŻYŁOWEGO 
OPANCERZONEGO

+

Kabel opancerzony posiada trzy me­
talowe powierzchnie cylindryczne: sam 
przewód, następnie płaszcz ołowiany, 
wreszcie opancerzenie żelazne (rys. 159).

Taki układ można rozpatrywać jako 
dwa kondensatory połączone w szereg.
Oznaczając przez Ci pojemność I kon­
densatora (przewód i płaszcz ołowiany), 
przez C2 pojemność II kondensatora
(płaszcz ołowiany i pancerz), będziemy mieli dla pojemności kabla

C1C2 1c  = c 1 + c 2
C1 + c 2

Oznaczając przez r, R, R', Rt promienie przewodu pod płaszczem, 
nad płaszczem i pod pancerzem, otrzymamy na podstawie wzoru (11)

Teoria prądów zmiennych 17
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Cl

c 9 =

0,0241 £l (x F
, £
'»  T

km ’

0,0241 £3 ,xF
. -R,

‘¡’ W
km

gdzie £j — przenikalność dielektryczna izolacji przewodu, zaś e2 — prze- 
, nikalność dielektryczna materiału znajdującego się pomiędzy płasz­
czem ołowianym i pancerzem (zwykle impregnowana taśma papie­
rowa i warstwa materiału włóknistego).

Wobec tego 0,0241
1 , R .  ,

—  l9—  + — l9
1

R'

E_
km

I c2
Jeżeli ^  =  £2 =  £ (np. papier impregnowany i juta mają prawie 

równe przenikalności dielektryczne 4,3), wtedy
0,0241 £ ¡uFC =
ig

R R t km
~rW~

( 12)

t )

Porównując wzór (12) ze wzorem (11), możemy stwierdzić, 
że obecność drugiej okładziny metalowej zmniejsza pojemność
, , ,  ( b r 1 rkabla (-r i j ,> >

Przykład.
Ten sam kabel co w przykładzie poprzednim (§67) posiada 

jeszcze pancerz żelazny; grubość płaszcza ołowianego wynosi 2 mm, 
grubość warstwy pomiędzy ołowiem i żelazem wynosi również 2 mm. 

Wobec tego
r =  2,55 mm, R =  2,55 + 2 = 4,55 mm,
R' = 4,55 + 2 = 6,55 mm,
Rx =  6,55 + 2 =  8,55 mm,

— £2 — 4,3,
0,0241.4,3

455.855 
255.655

0,279 km

gdy tymczasem przy jednym płaszczu ołowianym pojemność wy­
niosła p

0,413 km
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§  69
ROZKŁAD NAPIĘĆ NA OKŁADZINACH METALOWYCH KABLA

OPANCERZONEGO

Na rozpatrzonym kablu z dwiema okładzinami metalowymi 
zbadajmy, jak się rozkłada napięcie pomiędzy przewodem i po­
szczególnymi okładzinami. Oznaczmy potencjały (względem ziemi), 
czyli napięcia na przewodzie, na płaszczu ołowianym i na pancerzu 
odpowiednio przez U, Ux, t/2, zaś pojemności, jak i poprzednio — 
przewodu względem płaszcza ołowianego przez Cx oraz płaszcza 
ołowianego względem pancerza przez C2. Oznaczmy dalej ładunek 
elektryczny, który mamy na przewodzie i tak samo na każdej z okła­
dzin, przez Q.

Wtedy

skąd

Q = c x [ u  -  u , ) ,  

Q  = c 2 (U1 — u 2 ) ,

u  - u x  c %

Ux- U \  Cx ■

Z tego wzoru widzimy, że spadki napięcia w rozpatrywanych 
częściach kabla są odwrotnie proporcjonalne do pojemności tych 
części.

Jeżeli, co bywa przeważnie, pancerz jest połączony z ziemią 
i ma napięcie = 0, wtedy, zakładając w powyższym wzorze U2 = 0, 
otrzymamy U - U x C,

U x
4 2 

Cx
skąd

U i = Cx
c  i +  c 2 u .

Przykład.

Ten sam kabel co i poprzednio, o przekroju 16 mm2, jest pod 
napięciem U = 100 woltów, pancerz uziemiony; mieliśmy

Cx =  0,413 km

c ,  _  -  0,895
ig

853
655

km

17*
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wobec tego napięcie na ołowiu będzie
0,413

U1 = 0,413 + 0,895 100 = 31,6 wolta.

To znaczy, że spadek napięcia od przewodu do płaszcza oło­
wianego wynosi 68,4 wolta, od płaszcza do pancerza — 31,6 wolta.

§ 70
POJEMNOŚĆ KABLA DWUŻYŁOWEGO KONCENTRYCZNEGO

Przekrój takiego 
kabla z oznaczeniem 
promieni pokazany 
jest na rys. 160.

Dwa przewody, 
zewnętrzny i wewnę­
trzny, służą do pro­
wadzenia tego same­
go prądu w dwóch 
przeciwnych kierun­
kach. Wobec tego 
potencjały na tych 
przewodach mają te 
same wartości i róż­
nią się tylko zna­
kiem.

Niech na jed­
nym przewodzie potencjał będzie +V,  na drugim zaś —V.

Ładunek przypadający na 1 cm długości przewodu wewnętrznego 
określimy ze wzoru (9)

Q « [ v - { - v ) ] __
2 In — In-Ł In-^-r

Wobec tego pojemność przewodu wewnętrznego będzie w cen­
tymetrach n-_ y  _ eC. — -Ł _ —G-  v ~ In
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albo, po przejściu do zwykłych logarytmów i do jednostek prak­
tycznych,

C1 = 0,0483 s ¡iF 
km

ig —y r
Pojemność przewodu zewnętrznego stanowi sumę dwóch pojem­

ności: jednej w stosunku do przewodu wewnętrznego — i ta pojem­
ność ma tę samą wartość C1; drugiej w stosunku do płaszcza 
ołowianego; ta druga pojemność według wzoru (11) będzie

0,0241 e fi F
Co =

l9-
km

a w razie istnienia jeszcze pancerza żelaznego będzie według wzoru (12)

C' 0,0241 e f/F

ig H
km

r, r.
Wobec tego pojemność przewodu zewnętrznego będzie przy

jednym płaszczu ołowianym

C2 = C1 +  C0 = 0,0483 £

a przy płaszczu i uziemieniu pancerza 

C2= C 1 + C'o =  0,0483 £

1 + ■
1

i g - y 2lg~ rr2

1 1

ig 2 Ig r3r5
r2 r4

Niejednostajna pojemność obu przewodów w takim kablu po­
woduje to, że prądy ładowania będą w nich różne; oprócz tego straty 
w izolacji otaczającej przewody na histerezę dielektryczną, zależne 
od pojemności, również będą się różniły. Te okoliczności mogą wy­
woływać niepożądane zjawiska.

§ 71
POJEMNOŚĆ KABLA DWUŻYŁOWEGO SKRĘCONEGO

W przekroju (rys. 161) mamy dwa przewody (żyły), i A 2, 
okrągłe, o jednakowym promieniu r, symetrycznie położone z obu 
stron środka kabla O. Odległość osi tych przewodów od osi kabla 
oznaczmy przez a. Płaszcz ołowiany ma średnicę wewnętrzną jR. 
Przez oba przewody płynie prąd o tej samej wartości, lecz o kie-
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runkach przeciwnych. Ładunki na 1 cm długości i potencjały obu 
przewodów oznaczmy odpowiednio przez ±  Q, ±  V.

Lord K elvin  wykazał, że układ zawierający szereg nałado­
wanych przewodów znajdujących się wewnątrz cylindrycznej po­
włoki metalowej można zastąpić układem równoważnym, w którym 
zamiast powłoki będziemy mieli tzw. elektryczne odbicia tych

przewodów. Elektrycznym odbiciem jest przewód umyślony, znaj­
dujący się poza powierzchnią przewodzącą; oś takiego przewodu 
leży w płaszczyźnie przechodzącej przez oś układu (kabla) i oś od­
powiedniego przewodu w takiej odległości, że promień przekroju 
powłoki R stanowi średnią geometryczną pomiędzy odległościami 
od osi układu rzeczywistego przewodu a i elektrycznego odbicia b..

Dla ścisłości trzeba zaznaczyć, że odległości powinny być mie­
rzone nie od geometrycznych osi przewodów, lecz od ich osi elektrycz­
nych, czyli od linij, w których możemy skupić ładunki rozłożone na 
powierzchni przewodów, aby otrzymać takie same działanie ze­
wnętrzne. Osie elektryczne przy niewielkich przekrojach przewodów 
znajdują się bardzo blisko od osi geometrycznych, wobec czego tej 
różnicy przy wyprowadzeniu wzorów praktycznych nie uwzględniamy.

Na tych elektrycznych odbiciach musimy mieć ładunki i po­
tencjały te same co i na odpowiednich przewodach, lecz o znakach 
przeciwnych.
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Na rys. 161 B1 stanowi elektryczne odbicie przewodu A±, na 
nim mamy —Q i — V; B2 stanowi odbicie przewodu A 2, na nim 
mamy +Q i + V. Poza tym musi być spełniony warunek

R2 =  ab.
Pojemność każdej żyły znajdziemy dzieląc ładunek przez 

potencjał tej żyły. Każdy z przewodów posiada potencjał wypad­
kowy, stanowiący sumę potencjału własnego, powstającego od 
własnego ładunku (w przypuszczeniu, że wszystkie inne przewody 
są połączone z ziemią), oraz potencjałów powstających od ładun­
ków znajdujących się na przewodach otaczających rozpatrywany 
przewód. Oznaczając potencjał własny każdego z dwóch przewo­
dów przez ± V v będziemy mogli określić wartość potencjału na 
rozpatrywanym przewodzie, powstającego od innych ładunków, 
stosując wzór (10): 9 n

Ve = In — ■g e r
Rozpatrzmy przewód A v 

Jego potencjał własny wynosi

potencjał od ładunku na odbiciu Bx

Vx,
j. 2Q . b — aV, -\----— Ine r

j  . . T/ 2 0  2 a„ przewodzie A 2 — V1 H---- —In----->

T/ 2 0  , b + a+ V , ----- — 1-----------
e r

przewodu

albo

„ „ „ „ odbiciu B2

Biorąc sumę tych potencjałów, otrzymamy faktyczny potencjał

2 Qv  =

V ~ ^ S - l n

r r

[ 2a (b — a) 1
L r{b +a )  J

5]
B 2 .Na -podstawie zależności R2 = ab mamy b =  ----  i wobec tego

s [ r[R2 + a2)
stąd otrzymujemy pojemność jednej żyły w centymetrach na 1 cm 
długości

c  -  Q ~
L ~ v ~ r  2a (R2 — a2) ~| 

l r(B2 +a2) J2 In
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lub q _  0,0241 e fj F

y \_ r (i?2 + a2) J
Pojemność pary żył, czyli pojemność robocza w tym przypadku 

wypadnie 2 razy mniejsza, gdyż różnica potencjałów między żyłami 
wynosi V — (—V) = 2 7 , więc pojemność pary żył będzie 

ę, Q 0,01205 e ¡u F
~ 2 V ~ i" 2 a (R2 — a2) 1 ’

iSrL r(i?2 + a2) J
Można wykazać, że w rozpatrywanym kablu, gdy potencjały 

na obu przewodach różnią się tylko znakami, na płaszczu ołowianym 
potencjał będzie równy 0.

W tym celu rozpatrzymy dowolny punkt P  na płaszczu (rys. 162). 
Oznaczmy odległości tego punktu od osi A x, A 2 i Bv B2 odpowiednio 
przez glt q2, g3 i g4.

Dla obliczenia potencjału Vp w punkcie P  mamy:

potencjał od ładunku przewodu A 1 wynosi Vl - M ZniL,
e r

9> 99 A-z 99 -  Vi + 2Q i n 62,s r

99 99 B1 99 - V 1 + 2Q In - 3 , e r

>> 99 99 B2 99 VX~ 2 Q In 74 . 
e r
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Suma tych potencjałów daje nam

Vp = ~ Q- l n ^ ° 1.
s gi g4

Oznaczając kąt POA2 przez 0  i spostrzegając, że OP 
0 A X = 0 A 2 =  a, 0 Bx =  0 B2 =  6, będziemy mieli

Q-f = R2 + a2 + 2aR  cos 0, 
e22 = i ł2 + a2 — 2aR cos 0, 
g32 = R2 + b2 + 2bR cos 0, 
g42 = R2 +  b2 — 2bR cos 0.

R ,

Ponieważ b =

ea2 = i?2 + -2- +a2

/ i2 
a ’

2 i?3 
a

więc

cos 0  = ^2 (ii2 + a2 a2 2ai? cos 0) = o,2a2

e42 = i?2 +

albo

Wobec tego

R4 2 fi3
a2 a cos 0  = i?2

■Pa“

g2 Qs
6 l6 4

R
Qs — a git

R
g4 -  —  ga- 

R
g2 — gi

R
gi Q g2

= 1.

2 [n g2 gą 
e glg4

2£> Zn 1 = 0.

Więc w dowolnym punkcie płaszcza ołowianego potencjał 
równy jest 0, czyli na płaszczu nie ma napięcia. Jasne jest, że wobec 
tego następne metalowe powłoki znajdujące się nad płaszczem, 
jak np. pancerz, nie mają już żadnego wpływu na pojemności 
kabla.
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§  72

POJEMNOŚĆ KABLA TRÓJŻYŁOWEGO SKRĘCONEGO 
PRĄDU TRÓJFAZOWEGO

W przekroju poprzecznym (rys. 163) trzy żyły A lt A 2 i A 3 są 
ułożone symetrycznie względem osi O.

Promień każdej żyły = r, odległość osi żyły od osi kabla = a. 
Promień kabla pod płaszczem ołowianym = R.

. Elektryczne odbicia tych przewodów będą Bly B2 i B3, których 
osie od osi kabla są w odległości b. Przy tym

ab — R2.

Oznaczmy ładunki (w pewnej chwili) na przewodach oraz 
potencjały odpowiednio przez Qly Q2 i Q3l Vly V2 i V3; te wielkości

mogą mieć znaki dodatnie 
lub ujemne; wtedy na od­
biciach będziemy mieli od­
powiednio —Qlt —Q2, —Q3l 
- V ly - V 2, - V 3.

Układ zawierający 3 
przewody i płaszcz ołowia­
ny zastępujemy więc ukła­
dem zawierającym 3 prze­
wody i 3 elektryczne ich 
odbicia. Określimy poten­
cjał każdego z przewodów. 
Potencjał żyły A t stano­
wi sumę potencjałów pow­
stających od własnego ła- 

Rys. 163 dunku (równy F /)  oraz od
ładunków innych przewo­

dów. Oznaczmy dalej potencjały, które powstałyby na A 2 i A3 od 
własnych ładunków przez V2 i F3'; na odbiciach będziemy mieli 
własne potencjały —F /,  — V2 i —F3'.

Określamy poszczególne potencjały ze wzoru

V. =  F — In — ■ r e r

Mamy następujące geometryczne zależności (rys. 164)

A^A2 — 4 — dgdg = ^ 3 — a ^3,
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A 1B1 = 0 B 1 — 0 A 1 =  b — a,
B2A 12 = (Mi2 + 05 2 — 20A1 • 0 B 2 • cos 120° = a2 + b2 + ab, 

B2A x = V a2 + 62 + ab =  B2A 3;
tak samo

5 3A! = 5 3A 2 = 5 i A2 = BXA 3 = V a2 + b2 + aZ>.
5x

Dla przew odu A x 
potencjał własny wynosi Vx ,

potencjał od przewodu Bx wynosi FY + 2i>1Zn 8

9? 99 99 ^2 99 F2' — — In 2 s

99 99 99 ^2 99 V2' + 2Q2lne

99 99 99 ^3 55 V3' In 3 e

99 99 99 5 3 55 V3' +  2Qsln

Biorąc sumę, otrzymamy rzeczywisty potencjał przewodu A x 

- In -Vi =  201 In b ~ a + W a In V q2 + ft2 + ab
e r __e________ a Y3

, 2Q3ln^ a 2 + b2 + ab 
e a Y 3

2 _ , b — a _ . , V a2 + 62 + a b 1
t ,n a V 3 - J •
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Analogicznie

v. - ■§■ [e, in ''7" ¡o,+e.) in 'i±' +â rab j . 

y . Ą  [ e ,  + ( Q l + q .) in ] ,

V a2 + b2 + ab\
skąd

• V i + V 2 + V 3 ^ ^ { Q 1 + Q2 + Q3)\ln + 2 In
ay  3 J '

Dla prądu trójfazowego przy jednakowym obciążeniu faz
v x + v 2 + v3 = o,

więc w tym przypadku również

01 + 02 + 03 = o
02 + 03 = ~0i-

Wobec tego
2 0 i , ( b — a _ a\ 3 \

1 e \ r V a2 + ó2 + ab /  ’

albo

y  a2 + b2 +  ab
, , R2 . , i?2 — a2ale o =  — , więc b — a = A!___ __ ;

\J a2 + b2 + ab = \J a* + a2R2 + R*; 

y  =  1 0 i  ln {R2 ~  ci2) a ŷ > _
r \/ a4 + a2 i?2 + i?4 

Qx {R2 -  a2)2 .3  a2 
e r2 (a4 + a2R2 +  i?4)

0 i 3a2(i?2- a 2)3 
e r2 (R6 — a6) 1

Stąd znajdujemy pojemność jednej żyły (fazy) jako iloraz ła­
dunku Q1 przez potencjał V1 (napięcie fazowe) w centymetrach

C = 3 a2 {R2 -  a2)3 ’ln (.R« -  a6)
albo

C = 0,0483 e__________________ ü !
3 a2 (/i2 — a2)3 km

‘ /?« — a«
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Wobec symetrii trzech przewodów, pojemności żył są oczy­
wiście jednakowe.

Przy prądzie trójfazowym, gdy spełniony jest warunek

*Y +  ^ 2+  ^3 = 0,
na płaszczu ołowianym napięcia nie będzie, to znaczy, że w dowol­
nym punkcie P 
płaszcza potencjał 
^ = 0 -

Rzeczywiście 
potencjał Vp znaj­
dziemy jako sumę 
potencjałów pow­
stających od ła­
dunku przewodów 
^ii fii> A 2, A 3 
i B3. Oznaczmy 
(rys. 165)

ei,
A 2P  = i?2)
A 3P  = i?3>
B ,P  = Pi'
B2P  = Q2
B3P  = e3 Rys. 165

Potencjał od ład. Ai wynosi V i - e r

ii ii ii i) v t' + 2 S u „<*'e r

a a a A 2 V2' ~ 2 In
e r

ii ii ii f i2 ii v 2' + ~ Qz in 62
£ r

a ii ii ^3 ii V3' ~ 2 0 3 In 63£ r

a ii ii f i3 ii V3' + 2 £ 3 In e*- e r
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Suma daje nam

V e - ± [ Q l ln<± +  Q * l n ^  + Q * ln ^
c 2  (¿ 3;]

Znajdziemy wartości — , —  i —
61 e2  Qs

Z AOA1P: 

czyli

z AOB1P: 

czyli

A XP 2 =  OP2 + CMX2 - 2 • O P • CMX cos A xOP, 

px2 = P 2 + a2 — 2aP cos A xOP;

P XP 2 = OP2 + O # !2 -  2 0 P  • OB1 cos ^ O P ;

e/* = P 2 + 62 -  2bP  cos A xOP;
P 2ale wobec 6 = — •, a

/9 P 4 2P3 , _ _gx 2 = P 2 H— 2----- —  cos A xOP =ar a

= | ( f f  + « 8- 2 f l P  cos A xOP)  -  £  ■ 6l*t

więc

analogicznie znajdziemy

ę i _ R _ .
82 a ’

62 _  63̂  _  B 
Q2 83 a

więc

- * ( e > * e . + s . ) i n %

Dla prądu trójfazowego przy jednakowym obciążeniu faz

Q l  +  (? 2  +  )t?3 =
więc VP = 0.

Na tej podstawie możemy stwierdzić, że przy takim prądzie 
trójfazowym pojemność kabla trójżyłowego nie zależy od żadnych 
powierzchni metalowych, znajdujących się nad płaszczem ołowianym.
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§  73
POJEMNOŚĆ PRZEWODU NAPOWIETRZNEGO POJEDYNCZEGO 

(DRUGI PRZEWÓD ZIEMIA)

Układ zawierający przewód cylindryczny i przewód w postaci 
powierzchni płaskiej, według teorii lorda Kelv ina ,  możemy za­
stąpić układem zawierającym dwa przewody 
cylindryczne, z których drugi będzie odbiciem 
elektrycznym, znajdującym się po drugiej 
stronie płaszczyzny w takiej samej od niej 
odległości co i dany przewód, czyli stano­
wiący jakby zwierciadlane odbicie pierw­
szego. Oznaczając przez h odległość osi prze­
wodu od ziemi (rys. 166), przez r jego pro­
mień, przez ±  V i ±  Q potencjały i ładunki 
(na 1 cm długości) przewodów, rzeczywistego 
i jego odbicia, oraz przez ±  V' potencjały 
własne tych przewodów, będziemy mieli 
na zasadzie wzoru (10)
dla danego przewodu:  
potencjał własny U',

2 Q

-v

Rys. 166

od elek. odbicia (q =  2h) — V  +  — In

a więc suma
K - M , n 2A

stąd znajdujemy pojemność przewodu na 1 cm długości, uwzględ­
niając, że dla powietrza e — 1, w centymetrach

1c - J Ł -  C -  V ~ 2 In 2 h

albo
0,0241 /iF 

, 2 h km
¡9 —

Jest to pojemność przewodu względem ziemi; mamy z nią do czy­
nienia wówczas, gdy źródło prądu włączone jest między przewód 
a ziemię.
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§  74

POJEMNOŚĆ DWÓCH RÓWNOLEGŁYCH DO SIEBIE PRZEWODÓW
NAPOWIETRZNYCH

Tutaj możemy rozpatrzyć dwa przypadki:
I — gdy osie obu przewodów leżą w płaszczyźnie poziomej,

i II — gdy osie te leżą w pła­
szczyźnie pionowej.

W obu przypadkach ma­
my na myśli dwa przewody 
należące do wspólnego ob­
wodu i zamiast powierzchni 
ziemi wprowadzimy elektry­
czne odbicia rozpatrywanych 
przewodów.

W przypadku I (rys. 167) 
oba przewody A i B są w od­
ległości a od siebie oraz na 
jednakowej wysokości h nad 
ziemią. Takie same odległości 
mamy dla odbić A' i B'.

\
; . \

\

- vj 1  
- f i '

Rys. 167

Potencjał na każdym z przewodów, np. A, znajdziemy, mając
potencjał własny przewodu A V’,

„ od ładunku B — V' + 2Q In

„ „ A' - V '  + 2 Qln

B' V‘ - 2  Qln

a
T ’

2h_
r

V a2 + 4 h2.

biorąc sumę, otrzymamy 

V =  2 Q In 2 ah

•\J a
= 2 Q In

* + 4ft*

skąd pojemność każdego przewodu w cm
^  Q _  i
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Ponieważ odległość między przewodami a jest zwykle znacznie 
mniejsza od podwójnej wysokości zawieszenia 2 h, więc najczęściej

odrzuca się wyraz i używa się wzoru uproszczonego
1C =

2 In —  r
lub

C = 0,0241 p F  
. a km
i s -

Pojemność linii dwuprzewodowej, 
gdzie między przewodami różnica po­
tencjałów wynosi 2 V, wypadnie dwa 
razy mniejsza.

W przypadku II (rys. 168) oba 
przewody A i B są zawieszone na 
rozmaitych wysokościach a +  h i h. 
Dla obliczenia potencjałóww A i B 
mamy

na przewodzie  A 
potencjał własny

potencjał od ładunku B

» » » B'

4'» » a .

na przewodzie  B 
potencjał własny

„ od ładunku A 

A ’ii ii a

V'

V' +  2 Q l n ~ ,

Rys. 168

V' — 2Qln  

V' +  2 Qln

V ,

V ' - 2  Q l n - y ,

a +  2h

2 a + 2 h

V —2 Qln 

-  V  +  2 Q In

2 h 
r 1

a -f 2h

Teoria prądów zmiennych 18
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Wobec tego
VA = + V = 2Q In —“ =*  r(a  + 2/i)

=  2Q In
lah ^1 +

2r*(1 +w)
VB =  — V = — 2 Q In 

=  - 2  Qln

~  2 Q In-

2ah

2rh

r[a + 2 h)
2 ah 0 a

V  +  2 ł )

skąd pojemność każdego przewodu w cm
1c - Q - -  

L ~ v ~ 2 In

lub n _  0,0241 ¡xF 
. a km ł
'» T

czyli pojemność jest taka sama jak w przypadku 1.

§  75

POJEMNOŚĆ TRZECH RÓWNOLEGŁYCH PRZEWODÓW  
NAPOWIETRZNYCH PRĄDU TRÓJFAZOWEGO

Rozpatrujemy najpierw układ z trzech przewodów I, II i III 
(rys. 169), symetrycznie ułożonych, przeznaczonych do przenoszenia 
prądu trójfazowego.

Dla wyprowadzenia wzoru przybliżonego, mając na względzie, 
że odległość między przewodami a jest nieznaczna w stosunku do 
wysokości zawieszenia h (liczonej od środka koła przechodzącego 
przez środki przekroju przewodów), będziemy przyjmowali odległość 
między każdym przewodem i każdym odbiciem za równą 2/i. 
Oznaczając przez F / ,  V2 , V2 własne potencjały przewodów oraz 
przez Qv Q2 i £?3 ładunki ich na 1 cm długości, będziemy mieli dla 
przewodu I
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potencjał własny
r - V 1' +  2 Qx In^

II V2' - 2  Q2 l n ± ,

II' - F 2' +  2 Q3l n ^

III V3’ - 2 Q z ln

III' - V 3' +  2Q3 l n ~

8kąd V, = 2 [Q± + Q2 + Qz) In 2rh - 2 (Q2 + Qa) l n a

Ale dla prądu trójfazowego przy jed­
nakowym obciążeniu faz

Qi + Qi + Qz = 0, Qz + Q3 = — Qi,
więc

r
ViQi

a a

V1^ 2 Q 1l n ~

i analogicznie V,Q,

n = 2  Qzl n - j ,

^ 3 = 2  Q3l n y ,

YiCt,

Wobec tego pojemność każdego prze­
wodu (fazy) .na 1 cm długości w cm 
będzie

C = 1

lub

2 In —

0,0241 jtF_
, a km '
'O T

-V;Q, 
f f rr ■

-VrQ,

*0'
a więc taka sama jak i w przypadku dwóch 
równoległych przewodów.

W przypadku, gdy trzy przewody 
prądu trójfazowego są ułożone na jednej 
prostej poziomej w równych odstępach; po­
jemność środkowego przewodu wypada większa od pojemności prze­
wodów skrajnych. W praktyce stosuje się w tym przypadku tak

A/V*
ii’

Rys. 169

18*
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zwane przeplatanie przewodów, polegające na tym, że linię lub 
jej część dzieli się na trzy równe odcinki i w końcu pierwszego 
i drugiego odcinka zmienia się położenie każdego z przewodów 
(faz); kolejność faz jest następująca:

1, 2, 3; 2, 3, 1; 3, 1, 2

i każda faza w równych odstępach otrzymuje wszystkie trzy poło­
żenia. W ten sposób układ niesymetryczny zbliża się do układu 
symetrycznego i będzie tym bliższy, im krótsze są odcinki przepla­
tane. Często dla odległości między fazami bierze się średnią geome­
tryczną z odpowiednich wartości, czyli w rozpatrywanym przypadku

air = \/a • a • 2 a = a \j~2,

gdzie a stanowi odległość między dwoma najbliższymi przewodami.

§  76
POJEMNOŚĆ CZĄSTKOWA I POJEMNOŚĆ ROBOCZA W  LINIACH

ELEKTRYCZNYCH

W układach wieloprzewodowych znajdujących się pod prądem 
poszczególne przewody posiadają na ogół różne ładunki elektryczne. 
Każdy z tych ładunków wpływa na wszystkie przewody w ten 
sposób, że na tych przewodach powstaną potencjały, których war­
tości są proporcjonalne do poszczególnych ładunków.

Rozpatrzmy układ zawierający n przewodów z ładunkami 
Qu Qn • • • >  Qn- Załóżmy na chwilę, że wszystkie przewody, z wyjątkiem 
pierwszego, nie posiadają ładunków, że zatem mamy do czynienia 
tylko z ładunkiem ; wówczas potencjały (względem ziemi), które 
powstaną na wszystkich przewodach, proporcjonalne do Qv możemy 
wyrazić w sposób następujący:

w pierwszym przewodzie an Q1,
w drugim „ a21Qlt

w ostatnim „ anl Qx,

gdzie au , a21, ..., anl oznaczają współczynniki niezależne od ładunków.
Zakładając następnie, że mamy tylko ładunek Q2 na drugim 

przewodzie, otrzymamy dla potencjałów powstających na przewo-
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dach wartości a12Q2, a33Q2, ..., a„202 itd.; dla ostatniego ładunku 
Q n  « 1 h 0 m  ® 2nQ n  ••• a nnQn-

Gdy wszystkie ładunki działają jednocześnie, otrzymamy w re­
zultacie na przewodach potencjały, które stanowią sumę potencjałów 
powstających od poszczególnych ładunków; oznaczając te potencjały 
przez Wj, v2, ..., vn będziemy mieli

=  « 1 1 0 1  +  « 1 2 0 2  +  +  « i B 0 „ >

«2  =  « 2 1 0 1  +  «2 2  0 2  +  •■• +  «2n  0 « !

Vn =  « n l  0 1  +  «n 2  0 2  +  ••• +  « uh Q n  *

Z tych n równań liniowych można wyznaczyć Qv Q2, ..., Qn 
w zależności od potencjałów vv v2, ..., vn, przy czym otrzymamy 
również funkcje liniowe o postaci

0 1  =  & U »1  +  ^12 «2  +  ••• +  K n Vm

02 = &2i»i + b22v2 + ... +  b2nvn,

0 « =  bnlvi + bn2v2 + ... +  bnnvn.

Ostatnie wzory można przepisać inaczej, mianowicie

01 = C11v1+ C12{v1 — v2) +  Cufoi — v3) + ... + Cln [vx — vn),
02 = C22v2 + C21 (v2 — ax) +  C23 (v2 — v3) + ... +  C2n (v2 — vn),

0» = Cmvn+ C ttl(vn -  v1) +  C„2[ v „ - v 2)+.. .  +  Cn(n_1){vn- v n_ 1),

gdzie, jak łatwo zauważyć,

&11 = ^11 +  C12 + Cis + ••• + Cu , 
b23 = C22 + C21 +  C23 +  ... + C2n,

b„n -  Cnn +  CBl + Cn2 +  ... +  C„(„_1), 
b  12 ' ^ 1 2 )  ^21 =  ^ 2 1 »
k̂i — Cki ; blk------Clk.

Pomiędzy każdą parą przewodów powstaje strumień indukcji 
elektrycznej, przy czym strumień idący np. z przewodu I do prze­
wodu II jest równy co do wartości, lecz przeciwnie skierowany do
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strumienia idącego z przewodu II do przewodu I itd.; z tego wynika, że

i ogólnie 

czyli 

i ogólnie

1̂2 {V1 Vi) ~  ^2

Cki (v k ~  v i) — ~  С ц

C12 — ^21

k̂i — £/*•

"1)

Wielkość Ckl nazywamy pojemnością cząstkową między prze­
wodami к i l, przy czym jednym z przewodów może być ziemia.

Łatwo zauważyć ze wzorów (13), 
że Cn , C22, Cm stanowią wartości 
ładunków na poszczególnych prze­
wodach w przypadku, gdy potencjały 
vlt v2, ..., vn na wszystkich przewo­
dach równe są 1.

Pojemność wypadkową układu 
zawierającego pojemności cząstkowe 
nazywamy pojemnością roboczą tego 
układu.

Tak np. dla linii dwuprzewodo­
wej napowietrznej otrzymamy 3 po­
jemności cząstkowe (rys. 170): dwie, 
Сц i C22, między każdym z przewo­

dów i ziemią, i jedną, C12, między przewodami. Pierwsze dwie są 
połączone w szereg, zaś C12 równolegle do poprzednich; wypadkowa 
pojemność takiego układu będzie

C =  C12 +

V44\\\\\\\\\\\4\\\\44V
Rys. 170

C„ C9
Cu + c,22

Gdy oba przewody są zawieszone na tej samej wysokości, 
wtedy Cu = C22 = C0 i wypadkowa pojemność staje się równą

C = C 12 +  ^ - ;

będzie to pojemność robocza rozpatrywanej linii dwuprzewodowej. 
Gdy przewody są zawieszone wysoko nad ziemią, pojemność C0 
ma wartość nieznaczną w porównaniu do pojemności C12; wówczas
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pojemność robocza sprowadza się do pojemności między przewo­
dami.

Na rys. 171 mamy układ trzech przewodów P v P 2 i P 3 otoczonych 
uziemionym płaszczem metalowym; spostrzegamy 6 pojemności 
cząstkowych: C10, C20 i C30 między poszczególnymi przewodami 
i płaszczem oraz C12, C13 i C23 między przewodami. Przy symetrycz­
nym układzie — U2q == U2q -3 U© oraz — C23 — C2.

Układ poprzedni można schematycznie przedstawić jak na 
rys. 172, gdzie punkt O odpowiada uziemieniu.

Oznaczając napięcia fazowe (między przewodem i uziemieniem) 
dla poszczególnych przewodów przez Ult U2 i U3, otrzymamy dla 
prądu ładowania kondensatorów, pobieranego z pierwszego przewodu,

l c — 0 1j coC0 +  (£?! t)2) jwCi + (&! — ii 3) j (o C1 — +
+ (201 - C 2- 0 3) jcoC1}

ale dla symetrycznego układu, przy jednakowym obciążeniu wszyst- 
kich trzech taz, 0 , +  O, +  O, -  O,

- 0 , - 0 , -  0 „
wobec tego ,  _  ^  (c  + 3C J.

Analogiczne wzory otrzymalibyśmy dla pozostałych przewodów. 
Wyraz C = C'0 +  3 Ci stanowi w tym przypadku pojemność roboczą 
każdego przewodu.
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§  77
INDUKCYJNOŚĆ

Rozpatrzmy dowolny obwód, przez który przepływa prąd. 
Pod wpływem tego prądu powstaje pole magnetyczne i przez obwód 
przeniknie strumień magnetyczny. Iloraz tego strumienia magne­
tycznego przez prąd przepływający w obwodzie nazywamy indukcyj- 
nością własną tego obwodu. Jeżeli w obwodzie płynie prąd I i całko­
wity strumień magnetyczny, objęty przez ten obwód i powstający 
pod wpływem tego prądu, będzie <P, wówczas indukcyjność własna 
obwodu wypadnie ^

Liczbowo indukcyjność własna równa się wartości strumienia 
wywołanego prądem o natężeniu równym jednostce. W układzie 
elektromagnetycznym indukcyjność ma wymiar długości i wobec 
tego może być mierzona w cm. Praktyczną jednostką jest henr, 
oznaczany przez H, przy czym

1 H =  109 cm.

Będziemy rozpatrywali obwody zawierające długie przewody 
z materiałów magnetycznie obojętnych, jak miedź lub aluminium, 
dla których przenikalność magnetyczna względna równa jest 1. 
W tym przypadku L stanowi wielkość stałą, zależną tylko od geome­
trycznego układu i wymiarów przewodów.

§  78
INDUKCYJNOŚĆ LINII DWUPRZEWODOWEJ

Dwa długie i jednakowe przewody I i II (rys. 173) o długości Z 
i średnicy d znajdują się w odległości a (między osiami). Prostoliniowy 
przewód, po którym przepływa prąd I, daje pole magnetyczne,

2 /którego natężenie w odległości x będzie Hx =  -----. Takie natężenie
x

pola będziemy mieli we wszystkich punktach znajdujących się poza 

przewodem, czyli dla x ^  Dla określenia natężenia pola ma­

gnetycznego wewnątrz przewodu, czyli dla x ^  musimy brać pod 

uwagę nie cały prąd I rozłożony w przekroju poprzecznym przewodu,
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lecz tylko tę jego część, która odpowiada polu poprzecznego prze­
kroju o promieniu x\ oznaczając wartość tego prądu wewnątrz 
przekroju przez Ix, będziemy mieli

skąd

h 71 X 2 4 x2
I d2

n ~4
d2

/ , =
4 a;2 
~ d ^ L

Wobec tego natężenie pola wewnątrz przewodu w odległości x

będzie 8x2 I 8x  T . . . .I. (14)d2 d2

Obliczmy strumień magnetyczny przenikający przez rozpa­
trywany obwód pod wpływem prądu przewodu I. Przeprowadźmy 
płaszczyznę przez osie przewodów i rozpatrzmy na tej płaszczyźnie 
w odległości x  od przewodu I nieskończenie wąski pasek szero­
kości dx i długości /; natężenie pola w tym pasku będzie równe Hx.

Każdy z przewodów można rozpatrywać jako jeden zwój, przez 
który przepływa prąd I; natężenie prądu Ix stanowi część tego

prądu odpowiadającą jakby zwojom.

Rys. 173

Wobec tego strumień magnetyczny odpowiadający prądowi I, 
który oznaczamy przez &lt otrzymamy w postaci

A <2*2
d&1= Hx ldx = d2

4x2 8x  
~d2~'~d2~Ildx,



82 OBLICZANIE POJEMNOŚCI I INDUKCYJNOSCI

czyli ostatecznie 

skąd

¿ 0 !  = 323?
d1 Ildx,

32II p
d4 Jo

x3dx = 32II 
d4

d‘ II
4 .1 6  ~ 2 (15)

• Druga część strumienia, znajdująca się zewnątrz przewodu, będzie
a

, r  211 , o t , ,  2a 0 2 = / ----- dx = 2 I l l n ~ r -
J x dd
2

Cały strumień od przewodu I będzie

0 x + 0 2= //^0,5  + 2 / n ^ -

Rozpatrując teraz przewód II z takim samym prądem /,  lecz o znaku 
przeciwnym, otrzymamy zupełnie taki sam strumień, okrążający 
przewód II w kierunku przeciwnym, a więc mający kierunek jedna­
kowy z kierunkiem strumienia przewodu I w polu objętym przez 
rozpatrywany obwód. W ten sposób całkowity strumień działający 
na obwód będzie

0  = 211 ^0,5 + 2 In

skąd znajdujemy indukcyjność całej linii w jednostkach cgs, czyli w cm

L = + 4 l n ~ y .  (16)

Zakładając w tym wzorze l =  1 km = 10® cm i wyrażając L w mli = 
= 10® cm, otrzymamy

L - ( ° , 1 + O'4 ' » ¥ ) " " •  <17>

albo po wprowadzeniu zwykłych logarytmów

L- (0 . 1 + 0 , 9 2 / 5 ^ ) ^  (18)

Wzór ten może być zastosowany również do linii kablowej, 
zawierającej dwa jednożyłowe kable obołowione, lecz nie opancerzone.
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Wzór nadaje się też do kabla dwużyłowego, skręconego, opancerzo­
nego, żelazo pancerza bowiem bardzo nieznacznie mogłoby wpływać 
na indukcyjność takiej linii, gdyż prądy w obydwóch przewodach 
w każdej chwili mają wartości jednakowe, kierunki zaś przeciwne, 
więc nie powinno zachodzić większe magnesowanie się żelaza pan­
cerza.

§  79
INDUKCYJNOŚĆ LINII 
JEDNOPRZEWODOWEJ 

(DRUGI PRZEWÓD ZIEMIA)

Układ taki można zastąpić za pomocą 
metody Lorda Ke Ivina przez linię dwu­
przewodową (rys. 174), przy tym drugi __ 
umyślony przewód stanowi elektryczne 
odbicie danego przewodu. Oznaczając 
przez h wysokość zawieszenia przewodu 
nad ziemią, zaś przez d jego średnicę, 
otrzymamy odległość między przewodami 
a = 2h. Ponieważ w rzeczywistości mamy 
jeden przewód, który daje połowę stru­
mienia całkowitego linii dwuprzewodowej, 
przeto we wzorze (18) musimy założyć a =  2h

przez -Í -; wobec tego dla rozpatrywanej linii

h

\ ' 

Rys. 174

i wszystko pomnożyć

r / „  , 4h\ mHL -  (0,05 +  0,46

§  80
INDUKCYJNOŚĆ LINII TRÓJPRZEWODOWEJ*

PRĄDU TRÓJFAZOWEGO

Jeżeli mamy układ zawierający trzy przewody prądu trójfa­
zowego, symetrycznie ułożone, wtedy we wszystkich trzech prze­
wodach w każdej chwili będą płynęły prądy, których suma alge­
braiczna równa jest zeru. Z tego wynika, że w każdej chwili prąd 
w jednym z przewodów co do wartości swej równy jest sumie prądów
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płynących w dwóch pozostałych przewodach. Wobec tego w każdej 
chwili strumień magnetyczny wywołany przez dwa przewody równy 
jest strumieniowi wywołanemu przez trzeci przewód. Można więc 
uważać dwa przewody pod względem działania zewnętrznego za 
równoznaczne z trzecim i zamienić dwa przewody na jeden równo­
ważny (rys. 175); linię dwuprzewodową otrzymamy wtedy, gdy na

każdy przewód przypada połowa cał­
kowitego strumienia magnetycznego. 
Możemy więc zastosować dla induk- 
cyjności ten sam wzór (18), biorąc dla 
każdego przewodu połowę wartości, tj.

( 0 ,05  +  0 ,46  / ^ ) ^ . -

Taki wzór możemy stosować za­
równo dla linii napowietrznej jak 
i do kabla trój żyłowego skręconego.

Gdy trzy przewody prądu trój­
fazowego nie stanowią układu sy­

metrycznego i, jak to obecnie często się praktykuje, są ułożone 
na jednej prostej poziomej w równych odstępach, wówczas — tak 
jak to zostało już omówione w § 75 — stosuje się przeplatanie prze­
wodów (faz). Wtedy oblicza się indukcyjność jak dla układu sy­
metrycznego według wyżej podanego wzoru, przy czym dla odległości 
między przewodami bierze się często średnią geometryczną z odleg­
łości rzeczywistych; w tym przypadku

§  81

INDUKCYJNOŚĆ KABLA DWUŻYŁOWEGO KONCENTRYCZNEGO

Oznaczmy przez d średnicę wewnętrznego przewodu, zaś przez 
dx i d2 średnicę wewnętrzną i zewnętrzną drugiego przewodu kon­
centrycznego (rys. 176).

W dowolnym punkcie znajdującym się w odległości x ^ di
2

od osi kabla, natężenie pola magnetycznego będzie zależało wyłącznie 
od prądu wewnętrznego przewodu, ponieważ prąd zewnętrzny pola
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magnetycznego wewnątrz nie daje. Dla punktów zaś znajdujących 

się poza zewnętrznym przewodem, dla których x natężenie
w

pola magnetycznego będzie równe zeru; rzeczywiście, natężenie to 
będzie wypadkową dwóch natężeń pól, powstających od prądów +1 
oraz — I płynących w obu przewodach; pierwsze będzie równe 

21 21
H-----■, drugie------- , bo odległość mierzy się od osi przewodu,

X X
a w tym przypadku osie są wspólne.

w trzecim zaś, to znaczy w masie zewnętrznego 
przewodu koncentrycznego, działa prąd we­
wnętrznego przewodu + 1 oraz część prądu 
własnego (rys. 177), mianowicie

2— 4x2
-¿i2 1

- I
nd22 n

___. n ( X2̂ ^L\ — I - 1
d ^  \ 4 )  Ł

4 4
wypadkowy prąd będzie

/  dj2 — 4a;2\ d22 — 4x2

2 / ^  _ 2 l (d 2* - 4x*)
*  x x (d2 2 —  d-,2)
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Dla obliczenia całkowitego strumienia magnetycznego, objętego 
dwoma przewodami kabla o długości /, obliczymy strumienie w od­

dzielnych częściach kabla. Dla wartości x od 0 do według wzoru (15)

II
0 1  ~  2 ’

dla wartości x  od -|j- do

- /
Hx" dx — 211

d,
r  2 dx _

J
¿i

211 In d

Stosując rozumowanie przeprowadzone dla wzoru (15), określamy 
strumień magnetyczny w zewnętrznym przewodzie, gdy wartość x

zmienia się od ~  do w postaci

d 0  _  d\ - 4 x* „  f J _  Ą » - 4x* 2 II (d22- 4x2)

czyli

skąd

2 / Z (d22— 4 cc2)2 .
d<p^ W - d 1* v ' ^ r  dx’x

0 a = 2 /Z
3~ (d,2- d

d,
_  f 2^ -  
12)2J

— 8d22x2 +  16 x* dx =

2

W - « / :
2/Z

(d22

i d  4 Zn q d  2 1 ^ 22 ^ i2 i 1 fi 1 ^ 24 d x4 1
T P L 2 ln~ d l~Sdi ' Y — 4—  + 16- T ^ 6 “ J “

'dj)2[ d* lnir1 - d*2 =

^ 2 1 
:<Zi4)J= 2 /zj 

= 2 /z|

r <z24 /„ d2 dł
l№2
r

-dł)2'" d, 
dł d2

dł-dł 
3 cZ22 — ci]

L(d22-d2)2 di 4 (d22 — d]

= 2 /z|[ dł f„ d2 dł-dł-
L (d22-dr2)2 dx 4 (dł-

= 2/Z r d24 In di 1
L(d22— d,2)2ln d, 4 2 (cZ2!

d.ł +  >

+ 2 cZ22T _
di2) J

d ł ______~I

2- d i 2) J '
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Dodając do siebie strumienie &lt 0 2 i d>3, otrzymamy całkowity 
strumień magnetyczny, powstający w rozpatrywanym kablu

0 2 + 2 I l ln  j  + 2 Il\^d i l d *y ln d] 4 2 {d22- d 12) ]

T i. + In ii-j___-Ł__In^l_i_____ -Ł__ 1 =
L 4 + in  d +  (d22 -  d . Y  dx 4 2 (d22 -  d^) J

T in ś l  j___________in i ? ._____________ 1
L d +  (d22 -  d )̂21 dx 2 (d22 -  di2) J ’

=  2 /Z 

= 2 / /
skąd

r _  JL  — 2 Z T Zn - 1 4- d24 / „ i i . ______ d22 1J L « W -'d i,)ł dj 2(dia-d 1a)J ’
zaś dla / = 1 km i L wyrażonego w mH, po wprowadzeniu zwykłych 
logarytmów,

L = + d2*
W - d l 2)2ty

0,1 d22 1 mH 
d22 — dx2 J km

§ 8 2

ROZSZERZENIE DZIAŁU O PRĄDACH WIELOFAZOWYCH

Rozkład układów niesymetrycznych prądu trójfazowego był 
rozpatrzony w § 27, str. 105 i n. Przytoczymy tu zasadnicze wzory. 
Ustaliliśmy, że niesymetryczny układ 
trzech wektorów R, 8 i f  (rys. 178) 
można rozłożyć na trzy grupy wek­
torów składowych układu symetrycz­
nego.

gdzie

R = Ko + * i + R% (1)
8 = 80 + d2Ą + aR2 (2)
t  = +o a Ą + d2l?2, (3)

. In l
a — ~2

. 4ji

a2 = e; 3 = 1
2 "

i

a3 = 1; 1 +  a +  a2 =  0.
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W powyższych wzorach (1), (2) i (3) możemy wyróżnić trzy 
grupy wektorów, a mianowicie:

flo, Ą ,
i?i, a2/?!, dĄ ,
Ą , dfi2!

Każda z tych grup przedstawia układ symetryczny, przy czym 
pierwsza stanowi jeden wektor, druga odpowiada normalnemu sy­
metrycznemu układowi prądu trójfazowego, trzecia zaś grupa różni 
się od poprzedniej tylko zmienioną kolejnością wektorów.

Często nazywają pierwszą grupę układem zerowym, drugą — 
układem współbieżnym, trzecią —  układem przeciwbieżnym.
% Wektory składowe Rv R2 i R0 wyrażamy przy pomocy wektorów 
danych w sposób następujący:

R0 =  ± { R  +  Ś +  T) (4)

# !  =  -* (R +  &Ś +  d*T) (5)

R2 =  ± { R  +  d*Ś +  &T). (6)

W obwodach prądów zmiennych mamy przeważnie do czynienia 
z siłami elektromotorycznymi, napięciami i prądami. Będziemy 
oznaczali te wielkości przy pomocy odpowiednich wskaźników; a więc 
dla wektorów układu niesymetrycznego, które oznaczyliśmy ogólnie 
przez R, i Ś, t  będziemy pisali 0 R, Os, B T, 0 R, Us, UT, 1R, l s, 1T, 
zaś składowe symetryczne R0, Ru R2 będziemy odpowiednio oznaczali 
przez E0, £ 2, 0 0. Ov 0 2, I0, 11: 12. W ten sposób otrzymamy na­
stępujące wzory np. dla napięcia.

0R = O 0 +  Oi + 02,
Os = 0Q+ a * 0i + a 02,
Ot = 0 0 + Ati1 +  A*Oa.
00 — -^{O r + O s +  Ot))

01 — ( 0R +  a Os +  a2 Ot) ,

0 2 — -g- { O r +  a 2 O s '+ & O t )-

i analogiczne wzory dla siły elektromotorycznej i natężenia prądu.
Obecnie zastosujemy metodę składowych symetrycznych w ob­

wodach prądu trójfazowego.
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§  83

ZASILANIE NIESYMETRYCZNE

Mając dany niesymetryczny układ sił elektromotorycznych lub 
napięć źródła, należy wyznaczyć prądy przewodowe, znając wszystkie 
oporności obwodu. W tym celu rozpatrzmy układ gwiazdowy z prze­
wodem zerowym. Dla układu trójkątnego stosujemy znaną metodę 
Kęnne l y ' ego  przekształcania trójkąta w równoważną gwiazdę (rys. 
179). S E M  fazowe ER, Es, E T stanowią układ niesymetryczny. 
Należy wyznaczyć prądy przewodowe IR, Is, I T, I0.

Składowe symetryczne rozpatrywanego układu SEM będą 
[wzory (4), (5), (6)]:

B0 = "g" {Br + Bs + BT) »
Bi +  g- (BR + a Es + a2 ET) ,

E% = -g- {BR + a2Es + aET) ;

każdą z danych S E M  można wyrazić przy pomocy składowych 
symetrycznych w sposób następujący [wzory (1), (2), (3)]:

B r  = B0 + E1 + E2,
Bs = B0 + a2E1 + aE2,
ET = E0 + aEi + a2E2 ■

Jak wiemy z poprzedniego, grupa składowych E0, E0, E0, sta­
nowiących właściwie jeden wektor, nazywana jest układem zerowym,

Teoria prądów zmiennych 19
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grupy i?!, a2£i, af?2 układem współbieżnym, zaś grupa j£2, d £ 2, 
a2E2 układem przeciwbieżnym.

Zacznijmy od rozpatrzenia działania układu współbieżnego
2£x, d2Ex, aEx.

W §29 str. 112, 113 dla układu gwiazdowego z przewodem 
zerowym (prądu trójfazowego) był wyprowadzony wzór (10), dający 
napięcie między punktami zerowymi źródła i odbiornika w postaci

f ,
u °0' ~  Y  i  +  F a  +  f 3 +  F „  ’

gdzie Fx, F2, i ?o oznaczają przewodności pozorne odpowiednich 
części układu, czyli

Y i =  *  :  i  : a - Y R,

y 2 =

?o =

1 ___
Ż  M + Żp +  Ż $

' 1 ___
Zw +  ¿p  + Żp 

1

=  ? s ,  

— Yp,

- Y ,00
'  00

W naszym przypadku zamiast mamy a2 2^, zamiast 2?3 mamy 
d £ x, wobec tego spadek napięcia na przewodzie zerowym wynosi

jj EiYr + P & iYs + d E xYT _  @i (Yr +  a2 Ys +' a Yt) 
F . R + F s + F : r + b 00» Yr +  F s  +  Y t +  F 00'

Przewodności, które wprowadziliśmy do ostatnich wzorów, można 
rozłożyć na składowe, odpowiadające składowym symetrycznym 
niesymetrycznego układu, mianowicie

F 0 =  y  ( F k  +  Ys + Y 7) ,

Yx = -^ (F p  + a F s  + a 2F  7) ,

F 2 =  4 ( ? p +  a 2 F s  +  aYT)
wtedy

Yr +  &2YS +  dYT =  3 F 2 ; Yr +Y s +  Yt =  3 F 0 ;

wówczas dla napięcia między punktami zerowymi otrzymamy wzór

U0o —
3 f 2 e x

3F0 +  F00'
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Znak (—) w ostatnim wzorze wskazuje na to, że kierunek napięcia, 
licząc od punktu zerowego odbiornika, jest przeciwny do kierunku 
prądu założonego pierwotnie (rys. 179); jeżeli punkt zerowy odbior­
nika ma potencjał wyższy od potencjału punktu zerowego źródła, 
wówczas napięcie zgodne z kierunkiem prądu wyrazi się wzorem

t )  '  _  3F82?i

00 3 F0 + F 00'
Prądy przewodowe, które dla składowych współbieżnego układu 

oznaczymy przez IR', I ’s , I'T oraz / ' 00', będą

ls ‘ Om‘ ) Y s = f s  (d2 -  -3 ^3 )  £,

V  = ( d £ ! -  V'n- ) 3 y o3+ 2} V  )

1' 3y 2 Foo' 
00 — ^00, ~ 3yo +  Foo'  ̂x ’

Rozpatrzmy teraz działanie układu przeciwbieżnego: £ 2, a £ 2, d2£ 2. 
Analogicznie do poprzednich rozumowań znajdziemy dla napięcia 
między punktami zerowymi

? R£2 +  ? s d £ 2+ ? Td2£2 _  3 Fx
£  2 •O' 00 F« + Fs + Fr+ Fi00 3F0+ F,00

Prądy przewodowe

? R(£ t - O 00') =  ? R( l -  ś -̂ + V  ) Ą ,

; 5 » =  f s (« e 2 - v ) =  ^  ( « -  ^ ,

- . v r  u
3^0+ Foo'/ ai

/ r " =  f T(d*E2- 0 "  oo')= ?r(a  

= Foo' #  "no' =
3i>l f 00 '_£

3F0+ 00

Działanie układu zerowego J?0, j£0, 2?0 rozpatrzymy w sposób nastę­
pujący. Z schematu (rys. 180) napięcie między punktami zerowymi

O’
3 F„

00
Ą (  + ^ r ) _________

Fr + Fs + Fr + Foo' = 3F0 + F,
19*
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Prądy przewodowe

I r " =  Y r (E0 - U ' " 0o Y A  1

I s ' " - ? s ( £ 0-  0"'  «o') = Ps (1 -  ' 3 f o3+ V OQ-' )  ’

i t '" = y t (£  0- t j " ' w' ) =  ^ ( i - - - 3 ^ V ~~; ) £ o,
QV V /

/  _  / 7  > y  /  _  — -------- 5— —  p1 00 — ftn — o t> T> . •'00  1 00 3F0 + n

Rzeczywiste prądy przewodowe otrzymamy jako sumę prądów od 
poszczególnych składowych

I r

4
4  =

I r +  I r"  +  I r "  
l s  +  I s "  +  I s
1T' +  I T"  +  l Tr" .

§  84

ZASTOSOW ANIE PRAW KIRCHHOFFA DO SKŁADOWYCH 
SYMETRYCZNYCH

Rozpatrzmy schemat (rys. 181), gdzie IR, Is , I T stanowią prądy 
dopływające, zaś IR', Is\ I T IR", Is", IT"  prądy odpływające, 
przy czym wszystkie prądy stanowią układy niesymetryczne prądu 
trójfazowego.

Stosując do węzłów I prawo K i r c h h o f f a ,  będziemy mieli

* « - * * ' — V  = o,
l s -  l s' -  l s"  = 0.
l T -  1T’ -  V  = o,
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Niech składowe symetryczne będą 

dla i R : / 0, A> / 2> 
dla V  : 1’0, V ,  V , 
dla 4 " :  / 0", V ',  / 2".

Podstawiając te składowe do układu równań na I prawo Kirch-  
ho f fa  i biorąc pod uwagę podstawowe wzory (1), (2) i (3) otrzymamy

(A + A  + A ) ~ ( A '  + A '  + A ' ) - ( A "  
(Jo + <*2A + “ A) ~  (A' + a2 A' + a A') — (10 
(Jo + &Ji + d2h) -  (V  + « V  + d2A') -  (/0

+ A "  + /,") = 0,
" + d2A” + d/2") = 0,
"  + a / j "  + d2/ 2") =  0;

lub po przegrupowaniu

( V -  V  -  V') + (A -  A' -  A") + (A -  A' -  A") = o,
(A -  A' -  A") + «2 (A -  A' -  A") + d (A -  A' -  A") = o, 
(A -  A' -  A") + d (A -  A' -  A") + a2 (A -A ' -  A") = o.

Dodając stronami te równania i bio­
rąc pod uwagę, że 1 + & + a2 = 0, 
otrzymamy

*0 ¿o *0 u- 
Mnożąc drugie równanie przez a, 
trzecie przez i dodając stronami, 
będziemy mieli

* A -A ' — A"=0;
wreszcie, mnożąc drugie równanie 
przez a2, trzecie przez a i dodając, 
otrzymamy

2̂ J2

J«'

Jk —

. .

—  J i

■ yj — —  ^

Rys. 181

= 0.

W ten sposób stwierdziliśmy, że I prawo K i r c h h o f f a  można 
zastosować do składowych symetrycznych.

Aby dowieść, że i II prawo K i r c h h o f f a  można stosować do skła­
dowych symetrycznych, rozpatrzmy schemat (rys. 182). Działają trzy 
S E M  Ejj, Es , E TMf układzie niesymetrycznym; napięcia na odbior­
nikach oznaczymy odpowiednio przez UR, Us', UT’ , zaś napięcie 
między punktami zerowymi źródła i odbiornika niech będzie U00’ . 
Stosując do poszczególnych obwodów zawierających jedną S E M
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oraz przewód zerowy II prawo .Ki rchho f fa ,  otrzymamy

= Cr' +  Coo',
Es = 0S' +  0OQ',
Ej. =  0 j. + UQ0.

Składowe symetryczne S E M  niech będą E0l Ej, E2\ napięć 
0 0', O i, 0 2 . Podstawiając składowe symetryczne do powyższych

równań i porządkując wyrazy, analogicznie do poprzednich wzorów 
na I prawo K i r c h h o f f a ,  otrzymamy

(E0 + Ej + E2) ~(00' + Oj' + 02f) -  U'00' = 0,

(E0 +  a*Ej +  dE2) -  {0 o '+ a2Oj + d 0 2') -  0'K =  0 ,

(.E0 +  dEj + a2E) ~ ( 0 0' + dOj' + d20 2’) -  0 00' =  0 .

Po przegrupowaniu wyrazów można napisać

(E0 -  0 Q' -  O00') + (Ej -  Oj') + (E2 -  02') -  0,

(E0 -  O0' -  O00') + d2 (Ej -  Oj') + d2 (E2 -  02') = 0,

(E0 -  0 0' -  0 00') +  d(Ej  -  IV) +  d 2 ( £ ,  -  02) =  0.

Postępując tak jak poprzednio, otrzymamy

£ 0 = Oo' + O00’,
Ej = Oj',
E2 = £V;

co odpowiada II prawu K i r c h h o f f a  w zastosowaniu do składowych 
symetrycznych?
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§  85
WYZNACZENIE SKŁADOWYCH SYMETRYCZNYCH NAPIĘCIA NA  

OLBIOANIKU NIESYMETRYCZNYM

Dla danych prądów przewodowych określamy składowe sy 
metryczne, według podstawowych wzorów (4), (5) i (6).

= -3 ( / r +  -Ts + I t ) >

h  =  -g ( I r  +  a l s  +  a 2 1 T) ,

h  =  3  ( I r  +  d 2 I s  +  d l j - ) -

Poza tym, na podstawie II prawa K i r c h h o f f a ,  
h o  =  I r  +  h  +  =  3 /„ .

Wprowadzamy składowe symetryczne oporności pozornych

¿ o '  —  'jjr ( Ż r '  +  Ż s '  +  Ż t ’ )  ,

Ż t!  =  ~ { Ż r ’ +  d ż s ’ +  d 2Ż T’) ,

¿ 2  =  -3-  { Ż R  +  d 2 Ż s ' +  d ż r ')  •

Niech poszukiwane napięcia na odbiorniku mają składowe U0', 
Ui, U2’ , wówczas będziemy mieli

G 0' =* "g- (G r' +  G s' +  G T') =  -g- ( I r Ż r ' +  I s Ż s  +  I t Ż t ) ,

^r =  h  +  h  +  h i  

l s =  / 0 + azl 1 +  a l2,
1 T =  h  +  d l i  +  d z l 2 \

ale
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00' — 3 [(A+A+A) Żr + (A+®2A+®A) Żs'+{t0+dI1+d2I2)Ź 7-'] —
= -g [ (Ż r + Ż s ’+ Z t ) I ^ ( Ż r ^ u2Z s' - t& Ż t ) 1 1+ (Z r '+a Ż s '+ ó -2Z t ' ) A] =

-^ (S Ż ^ I o  +  S Ż ^ h  + SŻ ^I,) ;

czyli ostatecznie i70' = ż0'/0 + ź2'/1 + ż1'/2 (7)
Analogicznie otrzymamy
0± =  -g- (O r ' + a  U s ‘ +  a 2 U t  ) =  -g [ ! r Ż r 4- a l s Ż s  +  d 2I t Z t ) =

=  3 [(Ż.R,+dŻls'+d2.ZV) I 0+ {Ż r  +Ż s '+ Ż t ) I i+ {ŻR + a,2Ż s + d Ż T ) \  A  =

= A (3 z 1 A + 3ż0’ A + 3ż2' A)
1 ostatecznie ^  = + + ż 2' / 3; (8)
następnie

0  2 — -g- {Or’ +  a2 Os' + a 0  t ) — -g- (IrŻr' +  a2l sŻs +  d ljZ r )
i postępując jak dla ¿A', znajdziemy

= A'A + A'A + A 'A  (9)
Biorąc pod uwagę, że napięcie między punktami zerowymi

tf'00'= l0oŹ'00' = 3l0Ż'00' (10)
oraz oznaczając oporność pozorną każdego z przewodów fazowych 
przez Zp, otrzymamy, stosując II prawo Kirchhoffa, dla napięć 
u źródła t A =  C„' +  1RŻP + O 00',

0„
' R
A
A# , =  $

o ,  =  Os' +  A A  
AA>
S P ' u 00 ł

A żP  + t̂ oo •
Przy uwzględnieniu wzoru (10), składowe symetryczne napięć 

na zaciskach źródła wynoszą

U o — 3 (Ur+Os+ 0 t )= -g- [(OR'+ 0  s '+ 0T') + { A + A + A ) ^ p+ 9 A ^ oo] =

= T  A /  + 3 A ^ e + 9 AŻ'oo') = A /  +  (Zp + S Ź ^ ')  A 1

tA = y  ( +  d As + d2 0T) = * [(t V  + dOs' + d2 0T') +

+  { 7r  +  a  I s  +  a 2 I r )  ¿ 0  +  [ U 0 0 '  +  a U 0 0 '  +  a 2 A00')] =

= "g- [3 C 7 + 3 1-yŻp) +  A00'(1 + a + a2)] = A /  + A Ż , ,
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02= l - ( 0R + d*Cs + d t)T) = ± [ ( 0R' + d*Ds ' + d t ) T')] +

+ (IR+ a2Is +  a IT) Żp + t/oô  (1 ==

= g" (3 tj% + 3 I 2Żp ) = t)2 +  12ŻP •

Ostatnie wzory można napisać inaczej, uwzględniając wartości 
Oy i O2 z wzorów (7), (8) i (9).

U0 = ż 0' i 0 +  ŻJU  +  Żi’ h  + ( Ż p  + 3 ż '00') i 0 =
= (3Ż'00' + Ż0' + Żp) i 0 + Ż2' h  + Ż\ 12, (11)

O, = 2\ 10 +  ż y  i ,  + ż y  12 + IJtp =,
=  Ź1'l0 + {Ź0' + Żp) l 1 + Ź2'lt, ( 12 )

ty 2 = ż 2 10 + ż 1 11 +  Ż0' i 2 + ż  p i  2 =
= ż t' l 0 +  'żi' l 1 +  ( ż 0' +  ż P) l a (13)

Gdyby w układzie gwiazdowym nie było przewodu zerowego, 
czyli 700' = 0, wówczas

IR +  1 ę + 1 f  — 0,
wobec czego ,

/0= i( / *  + /s + /r) = 0

i w wyżej rozpatrzonych wzorach nastąpią odpowiednie uproszczenia.

§ 86

WYZNACZENIE SKŁADOWYCH SYMETRYCZNYCH PRĄDÓW /„, /„  / 2 
DLA OL BIORNIKA TRÓJFAZOWEGO NIESYMETRYCZNEGO

Napięcia na odbiorniku niesymetrycznym 0 R', Us', tJT' wy­
rażamy przy pomocy składowych symetrycznych £70', Cy, t)2 .

0R’ = O o + tjy  +  Oy 1
Os' = Oy + d*Gy + dCy  (14)
tyT' =  00' +  dtyy + d*tjy. )

Oznaczając przewodności pozorne poszczególnych faz odbior­
nika przez ŻR', Ys', YT', otrzymamy dla prądów przewodowych

/  =  Tj ' Y '1r u s 1 r >
i =  fj ' Y '
1T = tyT' t T'.

(15)
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Dodając stronami Ostatnie wzory i biorąc pod uwagę (14), otrzy­
mamy

! r +  fs  +  ^t — 0 R YR + 0 S' Ys' +  0 T' Yt' =
=  ( # „ '  +  Ol' +  0 *') Yr' +  ( 0 0' +  d*Oi' + a 0 t') Ys'  +

+ (0 0' + d 0 + d* 0 2) ?T =  {Yr' +  Ys' +  YT') O0' +
+ (Yr' +  d2Ys' +  &Yt ) Oi +  (Yr +  aYs' +  d2Yt ) 02 . (16)

Oznaczając składowe symetryczne przewodności pozornych po­
szczególnych faz odbiornika przez ?„'> Yx , Y2 , mamy

Yr' +  Ys' +  YT' =  3 Y0',
Yr + d f s' + d*?T' =  3 ?i',
Yr' +  a?Ys' +  d f T' =  3 Y2'.

Następnie
?r +  t s +  1T =  3 /„■

Podstawiając te wartości do wzoru (16), otrzymamy 

3 /„  =  3 Y 0' 0 0' + 3 Y2' Oi' +  3 Yi' 0 2 ,

8k,d h -  £V + ¡V  + 0,'. (ni
Jeżeli porównamy ten wzór z wzorem (7), zobaczymy pewną 

analogię: jeżeli we wzorze (7) zamienimy lx, 12 przez 0 0', 0 X, 0 2, 
oraz Ź0’ , ¿ i ,  Ż2 przez i '0', Yx , Y2 , to otrzymamy wzór (17). 
Stosując dla znalezienia i 12 lę samą metodę co dla znalezienia 
poprzednio 0 0', Oi i 0 2 , otrzymamy analogicznie do wzorów (8) (9)

h  = Y i '0 0’ +  Y0'O i '+  Y2' 0 2', (18)
/ 2 =  Y2' 0 0' +  Y i '0 i '+  Y0'O 2'. (19)

§  87
MOC W  NIESYMETRYCZNYCH UKŁADACH PRĄDU TRÓJFAZOWEGO  

W YRAŻONA PRZY POMOCY SKŁADOWYCH SYMETRYCZNYCH

Jak rozpatrzono w przykładach zastosowania metody symbo­
licznej w § 14, str. 65 i n., moc pozorną można przedstawić w ten 
sposób, że jeden z wektorów napięcia lub natężenia prądu należy 
podstawić w postaci liczby zespolonej sprzężonej; np. gdy napięcie 
wyrazimy wzorem

O =• Ue70 = U (cosa +  / sina),
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gdzie a stanowi kąt, który wektor O tworzy z osią podstawową, 
wtedy liczbą sprzężoną będzie

U (cos a — j sin a);
nazwijmy ten wektor wektorem sprzężonym z wektorem O i dla 
odróżnienia oznaczmy wektor sprzężony stawiając nad U daszek 
odwrócony, a więc -

O =  U (cos a — /  sin a) — Ue~Ja.
Wtedy moc pozorna prądu w ujęciu symbolicznym wyrazi się 

WZOrem O l  lub Ol.

W razie rozkładania niesymetrycznych układów prądu trójfazowego 
na składowe symetryczne, przy stosowaniu wektorów sprzężonych, 
zmieni się porządek wektorów w układach współbieżnych i przeciw­
bieżnych, wobec czego

oR= o0 + o1 + 02,
Os =  00 + a01 + a202,
0 T = 0 0 + d2Ox + d0 2.

Moc pozorną całego układu niesymetrycznego otrzymamy jako 
sumę mocy pozornych poszczególnych faz. Oznaczając przez P z moc 
pozorną całego układu, zaś przez PZR, Pzs, PZT, moce pozorne fazowe,

Pz — Pzr d" Pzs + Pzs ZT»
będziemy mieli

a ^e  P  _  /7  f  . ń  _  n  f  .  p  _  n  /
r  ZR ~  U R 1 R > *■ ZS ~  U S MS i r  ZT U T i T .

Po podstawieniu zamiast napięć i prądów fazowych — ich wartości, 
wyrażonych przy pomocy składowych symetrycznych, otrzymamy
pz  =  ( t f o + ^ i + c y  (U +h+U )  + {O0+dOx+d*ót) ( i0+d*i1+ d i 2) +

+ [00 + a201 + a02) (U + a l 1 +  a2U) =
=  3 O0l 0 + UoU (1 +  d2 +  d )  +  O o U (1 + d  + d2) +
+  i 71 / 0 ( l  + d +  d 2 ) + 3  O J x + 0 1l 2 (l +  d2 + d) +

+  0 2U (1 +  d2 +  a) +  0 2U  (1 +  a  +  a2) +  3 0 2l 2i
i ostatecznie a o / r*? ? $ ,*4 $ ,

Pz =  3 {u 0l 0 +  0111 +  02U)-
Moc pozorną można wyrazić symbolicznie w postaci

Pz =* P  + iP x ,
gdzie P — moc czynna, zaś P x  — moc bierna.

Ponieważ moc czynna wyraża się iloczynem wartości skutecz­
nych napięcia i natężenia prądu przez cosinus przesunięcia kąta
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fazowego prądu względem napięcia, zaś moc bierna tym iloczy­
nem przez sinus kąta przesunięcia fazowego, więc oznaczając 
przez cp0,ę?i, ę>2kąty przesunięcia fazowego prądów A , At A  względem 
odpowiednich napięć, otrzymamy

P  =  3 {U0I0 cos <p0 +  U1I1 cos + U2I2 cos <p2),
Px =  3 (U0I0 sin <p0 +  U1I1 sin ę\ +  U2I2 sin ę>2).

§ 88

ZASTOSOW ANIE METODY SKŁADOWYCH SYMETRYCZNYCH  
DO OBLICZANIA PRĄDÓW ZWARCIA

Ograniczymy się do rozpatrzenia zjawisk zwarcia w ukła­
dach prądu trójfazowego tylko dla symetrycznych układów gwiazdo­
wych, przy czym punkt zerowy źródła połączony jest z ziemią przez 
pewną oporność.

a) Zwarcie z ziemią j ednego  z przewodów (np. prze­
wodu R w punkcie A, rys. 184).

Oznaczmy składowe symetryczne oporności pozornych, licząc 
do miejsca zwarcia przez Ż0, Ż x, Ż2; S E M  fazowe prądnicy, działa­
jące w takim układzie symetrycznym, mają równe wartości skuteczne,
czyli

= E.

Składowe symetryczne S E M  będą
E0 =  0 ; Ex =  E; E2 =  0 ,

gdyż przy symetrii nie mogą wystąpić składowe układu zerowego 
i przeciwbieżnego.
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Wskutek zwarcia fazy R z ziemią w punkcie A, napięcia fazowe 
w tym punkcie tworzą układ niesymetryczny; napięcia te 0R, 0 5i U j- 
wyrazimy przy pomocy ich składowych symetrycznych C0, Vx, 02; 
składowe symetryczne prądów przewodowych IR, l s , / r będą I0, l v I2. 
Biorąc pod uwagę, że w  miejscu zwarcia UR =  0, następnie w po­
równaniu z prądem zwarcia IR prądy Is i 1T są nieznaczne i w tym 
przypadku można założyć, że Is = 0 oraz I T =  0, wtedy, stosując 
II prawo K i r c h h o f f a  do składowych symetrycznych, będziemy

mieli o -  1,2, + 0„
£  -  / ,7 ,  +  C „
0 = 12Z 2 + U2 

Dodając stronami ostatnie równania, otrzymamy
£  =  I 0ż 0 +  l i ż 1 +  I 2Ż  2 +  O  0 +  0\  +  U 2 ,

u 0 + o x +  # 2 = a R = o,
E =  I0Ż0 + 11Ż1 + I2Ż 2.

( 20 )

ale

więc

Z wzorów
(21)

Ir — h  + ¡ 1 + h- 
í s =  I o + 0,
1T = I0 + a l 1 + a2I2 =  0,

otrzymamy dodając stronami
3 /0 = 1R.

Z pierwszego z powyższych równań wynika
/i  + / 2 = 2 / 0,

zaś z drugiego i trzeciego z tych równań
/„ + a2I 1 + a / 2 = 10 +  d lx +  a2/ 2,

A  (a2 - « )  =  M a 2 - a ) ,
/ =  / )

3  W i ę °  / 1 +  / 2 =  2 / a =  2 / 2 =  2 / nl0)
czyli

f -  t i 0 — D f — ^R
2 _  3 '

Na tej podstawie wzór (21) daje nam

£  = - f  (Ż0 +  ŻX +  Ż 2) ,

3Ě
/*  =

skąd
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W ten sposób, przy wiadomych wartościach Ż0, Żu Ż2 oraz 
SE M  E, został określony prąd zwarcia w rozpatrywanym przypadku.

Możemy również łatwo znaleźć składowe symetryczne napięć 
w miejscu zwarcia. Z wzorów (20)

JrŻoU o ----- TqŻ0 —

0 1= E - l l ż 1^ E -  

tu ż0 2= — /¡¡ż 2

________________ E Ż 0
Ż 0 + Zi  + Ż 2 

! rŻ1 E { ż 0 + ż t)
3 Żq + Ż i + Z 2

3 _ E Ż 2
Ż0 +  ¿ i  +  ż 2

b) Zwarcie z ziemią dwóch przewodów.

Załóżmy, że zwarcie z ziemią nastąpiło równocześnie w dwóch 
fazach, np. Si T (rys. 185). Należy wyznaczyć prądy zwarcia Is i 1T, 
przy czym zakładamy, jak poprzednio, że w stosunku do wartości 
prądów zwarcia inne prądy można pominąć, czyli

Ir =  0.
W punktach uziemionych napięcia

Os =  0 i 0T =  0.
Wobec tego składowe symetryczne napięć będą

# ° =  3 [Or +  Os + 0T) =  — ,

= y  (# *  + ć +  ć2 #r) =  % ,

O2 =  -3 ( 0r + &2 Os + a Ot) =  —7̂ -;
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czyli wszystkie składowe symetryczne napięć są sobie równe. 
Stosując II prawo K i r c h h o f f a ,  otrzymamy również układ równań

(20), a uwzględniając, że 00 =  01 = 02 =  otrzymamy

h Ż 0 +

hŻ x  +  ~ O,

skąd

a ponieważ 

przeto

skąd

czyli

+  0;

A  =

3

0*

A -

3 ż 0 

Z x 3 Ż i
? ___OR .
8 3 Ż 2 ’

I0 + + 12 =  Ir =  0 [z założenia),

f̂ R | ^R | Or ^
3 Z 0 3 Z X 3 Ź 2 Ż 1 ’

O r  . É

* - ż l ( ± + - £ + ± Y
\Zo Zt z j

o 0 = ot = ř>2 =

Składowe symetryczne prądów są
Or

A -

A -

Zl (z0+z1+ż2)
ĚŽ*

3 ż 0

Zi 3 ZX Z0Z 1 + Z 1Ż2 + Ż0Z 2

Ż0Ż i +  Ż XZ 2 + Ż0Ż2 
0 (ż0 +  ż 2)

Or O ż 0
3 Ż 2 ŻuŻi + Ż iŻ 2 +  Ż0Ż 2
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Mając składowe symetryczne prądów, możemy obliczyć prądy
Is i gdyż

Is = h  + a2I1 + a / 2,
1T = I0 + a 1, + d2l t.

c) Zwarcie między  dwoma przewodami .
Przypuśćmy, że zwarcie nastąpiło między przewodami S i T 

(rys. 186). Zakładamy, jak poprzednio, IR =  0
E* —— J*

Napięcia fazy S i fazy T są sobie równe
Us = 0 T.

Rozpatrując zamknięty, z powodu połączenia punktów S i T, obwód 
i stosując I prawo K i r c h h o f f a ,  otrzymamy

l s +  1T =  0.
Wreszcie

Os = CT = 00 + d201 +  dC2 =  C0 +  a € ,  + d2 02.

Z ostatniego równania wynika
(a2 — a) 01 =  (a2 — a) 02,

O, =  tf2.
Wiemy, że

lo +  h  + h  =  0
oraz

As =
czyli

/„  + a2l , + a l 2 =  — ( /0 + a Al + d2i 2),
skąd

2 l 0 +  (a2 + a) I, +  (a + a2) 12 = 0,
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ale
a = — 1,

więc ostatni wzór przybiera postać

2/n — / 2 — 0
albo

370 — (A> + A  + 2̂) —

wyrażenie w nawiasach równe jest zeru, więc otrzymamy

/ 0= 0
h  = ~  h

Na podstawie wzorów (20), dla symetrycznego układu źródła, bę­
dziemy mieli

0 = I0Ż0 +  0 0,
£  =  1^ + 0»
0 = / 2Z 2 + ^2)

z pierwszego z tych równań znajdziemy

^ o = 0

Następnie, biorąc pod uwagę, że U1 — tJ2 oraz że / x =  — 12, z ostat­
nich dwóch równań otrzymamy

E
a = - / 2= 

ü 1= = -

Ż1 + ž 2 
£ ż 2

¿1 + .z2
Znając składowe symetryczne prądów i napięć, możemy obliczyć 
prądy l s i 1T oraz napięcia t)s = UT.

Uwaga.  Przy obliczaniu prądów zwarcia w przypadkach b) i c) 
natkniemy się na następujące wyrażenia:

1 — a2; a — a2; a — 1.

Wyrażenia te obliczymy, pamiętając, że
1 . 1

a -  2  2  V 3 -

Teoria prądów zmiennych 20
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czyli



R O Z D Z I A Ł J E D E N A S T Y

P R Z E W O D Y  D Ł U G I E

§  89
WIELKOŚCI CHARAKTERYSTYCZNE

Dotychczas w obwodach prądu zmiennego zakładaliśmy, że 
oporność czynna, pojemność i indukcyjność są skupione w poszcze­
gólnych miejscach obwodu. W urządzeniach elektrycznych mamy 
często do czynienia z tymi wielkościami rozłożonymi w przewodach 
wzdłuż obwodu. W przewodach krótkich, łączących źródła z odbior­
nikiem, wpływ pojemności i indukcyjności samych przewodów jest 
zwykle nieznaczny, nalomiast w przewodach dłuższych musimy te 
wielkości uwzględniać w obliczeniach.

Zajmiemy się tylko przypadkiem, gdy rozłożenie pojemności 
i indukcyjności wzdłuż całej linii jest równomierne.

Przy znacznej długości przewodów należy się liczyć jeszcze 
ze stratami spowodowanymi przez niedoskonałość izolacji, przez 
tak zwaną histerezę dielektryczną, wreszcie przez wyładowanie 
elektryczności, czyli tak zwany ulot, w rozmaitych postaciach aż 
do powstania korony świetlnej. Straty te, o których była mowa w §40, 
powodują upływ prądu i ten prąd upływowy Iu, spowodowany na­
pięciem U, określa się wzorem

/ .  = A U,

gdzie współczynnik proporcjonalności A nazywa się upływnością linii.
Oporność rzeczywistą, indukcyjność, pojemność i upływność 

przewodu podajemy w odniesieniu do jednostki długości linii (w prak­
tyce na 1 km) i oznaczamy przez R, L, C i A. Linia zatem o długości l 
posiada oporność rzeczywistą Rl, indukcyjność LI, pojemność Cl 
i upływność Al.

20*
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§  90
RÓWNANIA ZASADNICZE

Rozpatrzmy linię dwuprzewodową, na początku której (u źródła) 
wartości chwilowe napięcia i prądu wypływającego na linię są u1 i ilt 
zaś wartości skuteczne 01 i 11; na końcu (u odbiornika) oznaczmy 
te wielkości odpowiednio przez u2, i2, t)2 i I2 (rys. 187). Rozpatrzmy 
odcinek tej linii nieskończenie małej długości dx, odległy o a: od jej 
początku. Niech wartości chwilowe napięcia i prądu w tym miejscu 
będą u i i, skuteczne O i /. Oporność, indukcyjność, pojemność 
i upływność odcinka dx będą miały wartości Rdx, Ldx, Cdx i Adx.

/ ,  R . L . C . A

U. u. o,\Ut

dx r*-

Rys. 187

Napięcie u i prąd i są funkcjami dwóch zmiennych: czasu ł 
oraz odległości x. Na rozpatrywanym odcinku dx zachodzi zmiana 
wartości zarówno napięcia jak i natężenia prądu. Idąc w kierunku 
dodatnim, tj. od strony źródła do odbiornika, będziemy mieli na 
początku tego odcinka napięcie u i prąd i, w końcu odcinka zaś

napięcie u +  ~  dx oraz prąd i + ~~dx.  Zmiana tych wielkości wy­

niesie wobec tego dla napięcia

dla prądu

Zmiana napięcia spowodowana jest napięciami powstającymi na 
oporności rzeczywistej i oporności, indukcyjnej badanego odcinka 
i równa się sumie tych napięć.

Możemy więc napisać
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Zmiana wartości natężenia prądu równa się sumie prądu upływu 
i prądu pojemnościowego odcinka dx. Pierwszy równy jest A d x -u ,

drugi Cdx ■ • Wobec tego będziemy mieli

— ~  dx = Adx ■ u + Cdx-}lf ■ dx dl

Z tych równań, po skróceniu przez dx, otrzymamy

du
dx Hi + L d  i  

~ 9 t

di , du

( 1 )

(2 )

§ 91
ROZWIĄZANIE M ETODĄ SYMBOLICZNĄ

Równania powyższe będziemy rozwiązywali ogólnie przy ba­
daniu prądów nieustalonych. Dla prądów ustalonych możemy za­
gadnienie znacznie uprościć. Rozpatrując mianowicie prąd sinu­
soidalny, możemy zamiast wartości chwilowych wprowadzić wartości 
skuteczne, stosując metodę symboliczną. Wartości skuteczne, jako 
niezależne od czasu, będą funkcjami tylko odległości x, więc zamiast 
równań o pochodnych cząstkowych otrzymamy równania o po­
chodnych zwykłych.

W tym celu do równań (1) i (2) stosujemy metodę symboliczną, 
wprowadzając wartości skuteczne napięcia tJ i natężenia prądu 1 
w odległości x od początku linii; zakładając, że prądy ustalone są 
sinusoidalne (w przeciwnym razie wzory stosujemy do każdej harmo­
nicznej), będziemy mieli

. u = V yj2 ejat, i =  i / 2 e JU';

wtedy z równań (1) i (2) otrzymamy

_  i ^ V 2  eJ“ ‘ =  RJ y  2 ejmt + j w L / V 2 ejM\

j w t■ y  2 ejwt -  A U Y 2 eJwt +  jw C ł?V 2 «r
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skąd po skróceniu

~ ~ d x ~  (i? + / ft,L) 7- 

-  {A +  j » C )  O.

(3)

(4)

W celu otrzymania równań zawierających tylko jedną nie­
wiadomą funkcję bierzemy pochodne względem x, co nam da

d20 _  . r , d l
dx2 -  (i? +  / ft,L) dx > 
d*I . .  . n . d V
dx2 (^ + / wC) diC ’
d /  . dtr

(5)

(6)

i podstawiamy wartości i , otrzymane ze wzorów (3) i (4).

Wtedy będziemy mieli 
d*tJ
dx2
d2/
dxi

= (fl + /fl)L)(A +/(aC) O; 

= (ii +  jcoL) [A + j co C) 1.

(7)

(8)

W tych wzorach C i i  czynią zadość temu samemu równaniu 
różniczkowemu w postaci

d*y
dx2 = k2y,

gdzie
k = Y (ii -f- jutL) (A + jw C ) ;

(9)

( 10)

jego równanie charakterystyczne
z2 = k2

ma dwa pierwiastki
zx =  + k, z2 = — k

i daje całkę ogólną
y = + C2e~kx,

gdzie C x i C2 są to stałe dowolne, e  — podstawa logarytmów na­
turalnych.

W ten sposób całka ogólna równania będzie
V  =  C2e~kx. (11)

Z równania (8) moglibyśmy napisać również dla I analogiczne 
rozwiązanie, w którym mielibyśmy dwie inne stałe dowolne. Do-
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godniej będzie uniknąć wprowadzenia nowych stałych dowolnych, 
otrzymując 1 bezpośrednio ze wzoru (3)

dO

/  = dx

Ale ze wzoru (11)
dO
dx

(R +  jcoL) 

kC1 ekx- k C 2e~kx,

więc

R j u> L

Podstawiając wartość k ze wzoru (10), otrzymamy

(iC1ekx- C 2e~kx) =/  = ■ ̂  (H -j- / ( j L) (A. +  j (o C)
jR -f j co L

!i / r a i - (- c ‘ e te + c *e“ ')'
(12)

Wzory (11) i (12) można przekształcić jeszcze inaczej, biorąc 
pod uwagę, że wykładnik potęgi k jest na ogół liczbą zespoloną; 
możemy założyć

k =  Y (R -ł- j u> L) (A j w C) — cl j  b.

Dla odnalezienia spółczynników a i b podnosimy obie strony 
do kwadratu:

AR  — co2LC  + jco [AL  +  RC) =  a2 — b2 +  j  2 ab,
skąd /1“ / I *« - — Al n _ /li* I ■ .

(13)a2 — ó2 = a R — co2LC, 
2ab = co (AL + RC).

Następnie w ostatnich równaniach podnosimy obie strony do 
kwadratu i dodajemy

a4- 2  a2 b2 +  b* = A 2 R2 -  2 cd2 A R L C  +  co* L2 C2;
+ 4 a2b2 =  c .M 2L2 + 2r>2Ai?LC + m2fi2C2;

(a2 + ó2)2 = A 2 (R2 +  u.2 L2) +  w2 C2 (i?2 + cd2L 2) =
=  (A2 + co2C2) (R2 +  cd2L 2).

Wyciągając pierwiastek z obu stron powyższego równania 
otrzymamy

a2 +  b2 = Y (A2 + co2C2) (R2 +  w2L2). (14)
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Dodając i odejmując stronami równania (13) i (14), dzieląc 
następnie przez 2 i wyciągając pierwiastek, otrzymamy

* - \ /  ł | v c A 2 + w2C2) (R2 +  w2 L2) +  A R - c o 2 LC

ó = V A 2 +  co2C2) {R2 +  oj2L2) - A R  + uj2LC

Na zasadzie wzoru E u l e r a  możemy napisać
e** = eax+jbx = eax (cos bx + j sin bx),

- k x —  e - a x - j b x  _

Oznaczmy
e ax (cos bx — /  sin bx).

/  R +  j oj L ^
|/ A +  jw C

(15)

(16)

(17)

Symbol Ż nazywamy opornością falową.
Podstawiając powyższe wzory do równań (11) i (12), otrzymamy 

U =  Ct eax (cos bx + j sin bx) +  C2 e~ax (cos bx—j sin bx), (18)
I Ż  — — Cx eax (cos bx + / sin bx) +  C.Ł e~ax (cos bx — j sin bx). (19)

§  92

STAŁE CAŁKOWANIA

Załóżmy, że mamy dane napięcie i prąd na początku linii, mia­
nowicie dla a : = 0  ij — O 1 — 1

Wtedy wzory (18) i (19) dają
Qi = c x + c2,

1\Ż =  — Cj  + c „
skąd 0 1 + 11Ż

Cj = Oi -  h ż
2 ’  2

więc ostatecznie

t) =  -i-1 (ŁĄ — liŻ ) eax (cos bx + / sin bx) +

+ (Oi + li Ż) e ax (cos bx — j  sin bx) | ; 

IŻ  =  -i-1 — ( Oi—liŻ) e x (cos bx + j sin bx) 

+ (Ol A-l i ż )  e-°x (cos bx — j sin bx) |.

(20 )

(21)
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Często przy projektowaniu linii elektrycznej zadane są napięcie 
i prąd w miejscu zużycia energii, czyli tJ2 i I2. W tym przypadku 
dogodniej jest obliczać odległość x nie od początku linii, lecz od jej 
końca. Również stale C1 i C2 należy wtedy określić przez U2 i L- 
W takim razie we wzorach (18) i (19) trzeba x zmienić na — x, gdyż 
sposób rozumowania przy wyprowadzaniu tych wzorów pozostanie 
ten sam, tylko odległość odmierza się w kierunku przeciwnym. Wa­
runki dla określenia stałych Cx i C2 będą następujące: dla x = 0,
0  — U2; I — L- Zmieniając we wzorach (18) i (19) znak przy x
1 zakładając x = 0  i odpowiednie wartości O i / ,  będziemy mieli

C2 =  Cx + C2,

I2Ż = C2 — Cj,
skąd

C2 = 02 + L Ż
Cl -  L ż

2  ’  1 2

i po podstawieniu tych wartości do wzorów (18) i (19)

0 — -y  ! (02 + L Ż )  eax (cos bx + j sin bx) + 

+ (02 I— 2 Ż) e~ax (cos bx — / sin bx) [, ( 22 )

IŻ  = 4--! (02 + I 2Ż) <żx (cos bx +  / sin bx)

— (02 — 12 Ż) e ax (cos bx — / sin bx) |. (23)

W dalszych zagadnieniach będziemy przeważnie korzystali 
z tych ostatnich wzorów.

Wzory (20) (21) (22) i (23) można napisać w innej postaci wpro­
wadzając funkcje hiperboliczne

Ponieważ
e± ax (cos bx ±  / sin bx) = e ± kx,

następnie
ekx + e~kx

ł*  — e~kx

cosh kx,

= sinh kx ,
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otrzymamy z (20) i (21)
Ü = Üx cosh kx — 1XŻ  sinh kx, (24)

1 Ż =  — Üx sinh kx + 1XŻ  cosh kx, (25)
oraz z (22) i (23)

Ü = Ü2 cosh kx + 12Ź sinh kx, (26)
1Ż = Ü2 sinh kx +  I2Ż  cosh kx. (27)

§  93
FALE NAPIĘCIA I PRĄDU

W równaniach powyższych Ü2 oraz 12 Ż są wektorami; ich sumy 
i różnice są zatem też wektorami. Oznaczmy

\ { C 2 +  l 2Ż) = Px, (28)

± - [ C 2- I 2ż )  = P 2. (29)

Wartości chwilowe wielkości P x i P 2 mają przebieg sinusoidalny, 
gdyż taki przebieg mają wartości chwilowe wielkości składowych. 

Możemy więc napisać dla wartości chwilowych P x i P 2

Pl = P lm sin M  + Vl)> Pi =  Pim sin M  + y>2).
Równania (22) i (23) po uwzględnieniu (28) i (29) przyjmą 

postać C = Px eax . e,hx + P 2 e~ax e~ibx,
I Ż  = Px eax eibx — P 2 e~ax c~’lx;

przechodząc od wartości skutecznych do wartości chwilowych i bio­
rąc pod uwagę, że mnożenie wektorów i P 2 przez e±;i* powoduje 
przesunięcie tych wektorów o kąt ± b x ,  otrzymamy
u =  P lm eax sin (cot +  ifx +  bx) +  P 2m e~ax sin [ml +  xp2 — bx), (30) 
iZ =  P lm eax sin [ml + y>x + bx) — P 2m e~ax sin [ml + xp2 — bx). (31)

Wartość chwilowa napięcia prądu oraz iloczyn wartości chwilowej 
jego natężenia przez oporność falową linii są sumą względnie różnicą 
dwóch wyrazów postaci

Pme±°* sin [ml +  rp ±  bx).
W każdym z nich jeden czynnik Pm ma wartość stałą (nie­

zależną od czasu ani od przestrzeni); drugi e ± fl* zależy jedynie od
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odległości. Wobec tego wartość największa (amplituda) napięcia 
oraz natężenia prądu jest funkcją tylko odległości. Argument 
[ml +  y) ±  bx) zależy zarówno od odległości jak od czasu i zmienia 
się okresowo; to samo wobec tego można powiedzieć o wartościach 
napięcia oraz natężenia prądu, inaczej mówiąc, napięcie i natężenie 
prądu wzdłuż linii rozchodzą się falowo.

Przystąpimy do obliczenia długości i szybkości tych fal. Dla 
znalezienia długości zbadamy, w jakiej odległości znajdują się naj­
bliższe punkty, w których składniki napięcia lub prądu w dowolnej 
chwili mają tę samą fazę. Na to trzeba, żeby argumenty funkcji 
sinusoidalnych różniły się o 2 ji. Przypuśćmy, że argument 
ml A xp A bx wzrośnie o 2n, kiedy x wzrośnie o X\ wtedy 

ml A ip A b [x A X) =  ml + y> ±  bx ±  2n,
A b X ~  A 2 7z,

* =  (32)

To znaczy, że wartości składników napięcia oraz natężenia 
prądu są w jednakowej fazie w punktach, których najbliższa odległość 

2nwynosi X = —j—, czyli taka jest długość fali napięcia lub prądu;

b nazywamy współczynnikiem długości fali.
Dla znalezienia prędkości rozchodzenia się fal załóżmy, że 

w danym punkcie x  w pewnej chwili t mamy określoną fazę skład­
ników napięcia lub prądu i że tę samą fazę mamy po czasie dt 
w punkcie odległym o dx, czyli w czasie t A dt i w punkcie x A dx. 
Przyrównując argumenty w obu przypadkach, otrzymamy

skąd

ml A y> A bx =  w  [ t  A d t )  A ip A b [x A dx), 

mt +  ip ±  bx =  w t  +  w d t  + ip ±  bx ±  bdx,

mdt — A bdx.
Prędkość rozchodzenia się fali

dx m
dl =  ±  T '

Pomijając znak,
v = m

T
2 n f 2 n _  X _  . ,

~ TT ~ = Á'' (33)b bT T
gdzie /  oznacza" częstotliwość, T — okres prądu zmiennego. Wynika 
stąd, że prędkość rozchodzenia się fali równa się iloczynowi dłu-
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gości fali przez częstotliwość prądu zmiennego; inaczej, w ciągu 
jednego okresu prąd przebiega długość jednej fali. Znak przy pręd­
kości v wskazuje na kierunek rozchodzenia się fali: w kierunku do­
datnich x, czy też ujemnych.

Rozpatrując wzór (22) widzimy, że dla napięcia 0  otrzymu­
jemy sumę dwóch fal, przebiegających w rozmaitych kierunkach 
z jednakową prędkością; jedna fala przebiega od początku linii 
do jej końca, druga odwrotnie. Pierwsza nazywa się falą główną, 
druga — falą odbitą. Czynnik e±ax wskazuje, że amplituda, 
czyli wartość największa, zmienia się w zależności od odległości; 
a jest to współczynnik tłumienia. Dla prądu 1, jak widać ze 
wzoru (23), otrzymujemy różnicę dwóch fal, przebiegających tak 
samo jak fale napięcia w dwóch przeciwnych kierunkach, lecz ich 
amplitudy są zmniejszone w stosunku oporności charakterystycznejŻ. 
Współczynnik k = a +  jb nazywamy słałą rozchodzenia się fal.

W literaturze elektrotechnicznej spotykamy oznaczenia y dla 
stałej rozchodzenia się fal, (l dla stałej tłumienia i a dla współczynnika 
długości fali; ten ostatni nazywają również współczynnikiem fazowym. 
Wtedy mamy wzór  ̂ - /? + /

Współczynnik tłumienia wielkości fizycznych przyjęto określać 
przez logarytm ilorazu dwóch wartości rozpatrywanej wielkości, 
np. logarytm ilorazu dwóch napięć, dwóch prądów itp. Gdy sto­
sujemy logarytmy naturalne, otrzymujemy rezultat w „neperach“ ; 
w ten sposób

i uia — lgn — neperow a%
stanowi współczynnik tłumienia napięcia; z tego wynika, że

Oprócz tego została wprowadzona inna jednostka tłumienia 
z zastosowaniem logarytmów dziesiętnych z określenia współczyn­
nika tłumienia mocy; jednostkę tę nazwano „bel“ , przy czym w uży­
ciu dogodniejszym okazał się „decybel“ , czyli 0,1 bela; mamy więc

p

a =101g10-^l decybelów.
*2

Ponieważ moc jest proporcjonalna do kwadratu napięcia lub 
prądu, przeto współczynnik tłumienia napięcia wyrażopy w decy-
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belach będzie 

czyli
a'v= 20 /010—2 decybelów, 

U 2

- 1- = 1020; 
«2

przez porównanie tego samego ilorazu, wyrażonego przez a i przez a', 
znajdziemy a.

• 1020 =  ea,
« ’ .

—  =alg10ę

ski*d a' = 20 alg10e =  8,686 a;
z tego wynika, że j neper = 8,686 decybelów.

§ 94
LINIA BEZ STRAT

Dla bliższego zbadania otrzymanych wzorów rozpatrzymy naj­
pierw rozchodzenie się prądu w linii bez strat, to jest takiej, w której 
nie ma oporności rzeczywistej ani upływności, a jedynie indukcyjność 
i pojemność. A więc

R =  0, A =  0. (34)
Oporność falowa takiej linii będzie

7 -  1 /  R + i wL =  -« / ! 0>L =  /  L _  z  .
X A + j w C  [/ jojC X  C ’ (35)

w tym przypadku jest ona liczbą rzeczywistą. Znajdźmy spółczyn- 
niki a i b

' « . =  j y  [A2 - f  co2C 2) (ii2 +  w2L2) • +  A ii — a>2LC j  =

- i / I F AC2 • w2L2- w 2LC - v 1 A LC  — co2 LC } - 0 , (36)

ó =  - i j v  ( A 2 +  o A Ć 2) ( i i 2 +  cu2L2) - A R  +  e A L c J

lo>2C2-tu2L2 +  w2LC W l^<0J2LC + w2LC } -

= j / i - 2 c o 2 oALC = L C .

}
(37)
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Wobec tego
1.

czyli nie ma tłumienia. Prędkość rozchodzenia się fal
_  f«> _  1

b &>^ L C  }/LC (38)

nie zależy od częstotliwości prądu.
W liniach napowietrznych indukcyjność jest większa, pojemność 

zaś mniejsza niż w liniach kablowych.
Prędkość rozchodzenia się fal w liniach napowietrznych jest 

bliska prędkości światła, czyli ok. 3.105 km/sek; w liniach kablowych 
jest ona mniejsza i wynosi (1,2 do 1,6). 10® km/sek.

Przy częstotliwości f — 50, przeważnie spotykanej w urządze­
niach prądu silnego, długość fali dla linii napowietrznej

A = vT r* 300 000 • ~  6000 km

dorównywa długości promienia ziemskiego. Przy częstotliwości 
/ =  3000, którą mamy np. w liniach telefonicznych,

X =  V T ~  300 000 • 2̂ -0- ^  100 km.

Równania (22) i (23) w przypadku linii bez strat przekształcą
się wobec eax =  e~“* = 1; Z = Z na

0= ^ ^ C 2+ I 2Z^(cosbx  + / sin bxj-]-{̂ CJ2—/ 2Z ^ cos bx—/sinóa;^|=

=  ~ 12 1?2 cosbx + 2j 12Z sin bx j = Ů2 cos bx + j I 2Z sin bx,

IZ =  ~ ^ 0 2 +  I 2Z^(cosbx + js inbxj-~ (ú 2—Ą Z ^ c o s  bx—/sin óa;^|=

2 /Z c o s  bx +  2 / C2 sin ¿>a:j =  12Z cos bx + j Ú2 sin bx,

czyli ostatecznie
O =  G2 cos bx +  j I 2Z sin bx, (39)

IZ  = I2Z cos bx +  /  U2 sin bx. (40)

-Wartości V i 1 z wyprowadzonych wzorów możemy znaleźć 
albo sposobem analitycznym, stosując metodę symboliczną, albo 
też sposobem wykreślnym.
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Stosując metodę symboliczną, musimy najpierw na podstawie 
wiadomych L i C obliczyć oporność falową Z  według wzoru (35) 
oraz spółczynnik długości fali b ze wzoru (37); następnie dla wia­
domej odległości x obliczamy bx i znajdujemy cos bx i sin bx. Na­
pięcie t?2, prąd 12 i współczynnik mocy cos ę>2 na odbiorniku zakła­
damy jako wiadome. Za podstawowy kierunek wektorów najdo­
godniej jest wziąć kierunek wektora V2, argumentem symbolu / 2 
będzie więc kąt <p2 mierzony od podstawowego kierunku wektora t)2. 
Oznaczając przez y> niewiadomy kąt pomiędzy U i U2 oraz przez y>' 
kąt pomiędzy I i 0 2, otrzymamy na podstawie wzorów (39 )i (40)

U =  U2 cos bx +  / I2Z sin bx (cos Cp2 +  i sin q>2) —

= (U2 cos bx — I2Z sin bx sin (p2) +  j I 2Z sin bx cos g?2,

I z  = I2Z cos bx (cos <p2 +  j sin <p2) + j U2 sin bx —

= I2Z cos bx cos <p2 +  j (I2Z cos bx sin cp2 + U2 sin bx),

skąd

U — V (U2 cos bx — I 2Z sin bx sin ę>2)2 +  (I2Z sin bx cos <p2)2,

, InZ sin bx cos w«
tgy> =  —fj------- r------T~v^~u— •U2c o s b x — 12 Z smbx sm <p2

I Z = V (7^- cos bx cos <p2)2 + (I2Z cos bx sin <p2 -(- U2 sin bx)2,

, I Z  cos bx sin cp2 +  U2 sin bx 
° ^ I2Z cos bx cos q>2

Kąt q> pomiędzy 1 i O znajdziemy mając kąty ip i y)', mianowicie
q> =  ip' — y>.

Bardzo łatwo możemy znaleźć napięcie t) i prąd 1 sposobem 
wykreślnym. W tym celu z dowolnego punktu O (rys. 188) prze­
prowadzamy dowolną linię prostą jako kierunek C2 i na niej od­
mierzamy w odpowiedniej skali odcinek OU2 = U2. Pod kątem ę>2 
do tego wektora przeprowadzamy kierunek 12 i w tym kierunku 
odmierzamy odcinek 0 / 2 = 12Z\ oczywiście mnożenie wektora 
przez oporność charakterystyczną Z, która w tym przypadku jest 
wielkością rzeczywistą, daje nam wektor 12Z , którego kierunek jest 
taki sam co i kierunek wektora 12. Następnie z punktu O pod ką­
tem bx do 02 przeprowadzamy prostą, na której odmierzamy 
O A =  U2 i OC = I2Z, zataczając w tym celu luki koła o promieniu
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OU2 i OI2 aż do przecięcia tej prostej. Z punktów A i C opuszczamy 
prostopadłe A B  i CD na OU2. Oczywiście

OB = IJ2 cos bx, OD = I2Z cos bx,

AB = U2 sin bx, CD — I2Z sin bx;

znaleźliśmy więc wartości (moduły) wektorów wchodzących do 
wzorów (39) i (40), teraz musimy wykonać wskazane w tych wzo-

rach działania geometryczne, uwzględniając również kierunki wek­
torów.

Na podstawie wzoru (39) dla otrzymania 0  musimy do 0 2 cos bx 
dodać geometrycznie j I 2Z sin bx; pierwszy z tych wektorów ma 
kierunek Uz, więc odcinek OB odpowiada wektorowi U2 cosbx  
i co do wartości, i co do kierunku.

Drugi wektor ma wartość I2Z sin bx, odmierzoną odcinkiem 
CD, ale kierunek wektora 12Z sin bx musi być zgodny z kierun­
kiem OI2, zaś kierunek wektora j l 2Z sin bx musi być wzięty pod 
kątem prostym naprzód do kierunku 0 / 2; z tego wynika, że od 
punktu B, końca wektora ll2 cos bx, przęprowadzamy wektor 
BU  = j I2Z sin bx prostopadle do OI2 i równy co do wartości od­
cinkowi CD; łącząc O z U, otrzymujemy wektor OU. = 0.

Analogicznie, na podstawie wzoru (40), do 12Z cos bx musimy 
dodać geometrycznie j 0 2smbx. Wektor I2Z cos bx ma kierunek
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0 I 2, przerzucając odcinek OD = I2Z cos ¿a: na ten kierunek, 
otrzymamy OF  = 12Z cos bx, do tego wektora dodajemy geome­
trycznie F I  = j 0 2 sin bx, mianowicie odcinek F I  =  A B  = U2ainbx; 
wektor zaś j 02 sinbx powinien być przeprowadzony pod kątem 
prostym naprzód względem wektora V2, więc kierunek BA  i takiż 
sam kierunek F I  od­
powiada kierunkowi v U
j 02 sin bx\ łącząc wre­
szcie punkt I z O, 
otrzymamy wektor 
O l =  IZ. Za pomocą 
kątomierza możemy 
łatwo zmierzyć kąt 
ę> = -¿Z U OI przesunię- 
cia fazy 1 względem t).

Miejscem geome­
trycznym końców wek­
tora O na powyższym 
wykresie przy zmianie 
kąta bx od 0 do 2 n 
jest elipsa. Dla prze­
konania się o tym wprowadźmy do rys. 188 prostokątny układ 
współrzędnych (u, v), umieszczając jego początek w punkcie O (rys. 189). 
i kierując oś u wzdłuż OU2.

Rys. 189

Wtedy n< U B U 2 =  £  —

Oznaczając współrzędne zmiennego punktu U przez (u, v) bę­
dziemy mieli

u = OB + BU  cos = ^ 2 C° S ^x ^  sin ^x s*n ^2’ (I)

sin 0^- — cp̂ j =  I 2Z sin bx cos <p2. (II)v = BU  sin

Z tych równań rugujemy zmienną niezależną x. Z równania (II)

sin bx =

/
cos bx

I2Z cos ę̂ 2 

■Ĵ Z-l — sin2óa; =  1 - I2 Z2 cos2 cp2
Teoria prądów zmiennych 21
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Podstawiamy znalezione wartości do równania (I)

■Vu9

u =  U.

I ł  Z2 cos2q>2

V
+ Z sin

v tg y2

I ł  Z cos2 <p2

= uą/ 1  — 2 °* ,\ I22 Z  cos2 cp2
Podnosimy obie strony do kwadratu:

u2— 2 u a tg <p2 + a2 tg2 ę>2 = U22

I2 Z cos (p2 

+  W tg <p2,

U22 u2
I22Z2 cos2g?2

Przenosimy wszystkie wyrazy na lewą stronę:

u2—2uv tg <p2 +  v2 ( tg2cp2 +v2 ( t U ł U ł  = 0.I22Z2 cos2 <p2)
Otrzymaliśmy równanie drugiego stopnia, nie zawierające zmien­

nych w stopniu pierwszym, czyli równanie typu 
A u 2 +  Buv + Cv2 +  F  =  0.

Takie równanie przedstawia elipsę, jeżeli 
B2 — 4̂ 4 C <  0 oraz F <  0.

W naszym przypadku
4 U22B2 — 4A C  =  4tg29?2 — 4 tg2ę>2 -

F =

4 U22
I22 COS2 (p2 < 0 ,I22Z 2 cos2 cp2 

-  U22 <  0;
wobec czego wnioskujemy, że równanie nasze przedstawia elipsę..

W szczególnym przypadku odbiornika bezindukcyjnego i bez- 
pojemnościowego, względnie odbiornika dającego rezonans napięć,.

mamy' (p2 =  0, tg cp2 =  0, cos <p2 =  1.
Wtedy równanie nasze przyjmie postać

albo
« a + »aj U/ z~2= V ł

,2  v iU* + I ł  Z2= 1,

to znaczy, że półosiami otrzymanej elipsy są U2 i 12Z.
Gdy przy tym wyjątkowo 12Z =  U2, zamiast elipsy otrzymu­

jemy koło. Napięcie i prąd mają wtedy wzdłuż całej linii wartość 
stałą.
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§  95

LINIA BEZ STRAT W  STANIE JAŁOWYM I W  STANIE ZWARCIA

Stan, w którym linia nie jest obciążona, to znaczy odbiornik 
nie jest włączony do końca linii, nazywamy stanem jałowym. 
W tym przypadku / 2 = 0. Napięcie w końcu linii zależne jest od 
napięcia na jej początku, więc w stanie jałowym moglibyśmy, 
zmieniając napięcie na początku, osiągnąć dowolną wartość na­
pięcia na końcu; dobierzmy taką wartość napięcia na początku, 
aby, w stanie jałowym, w końcu napięcie stało się równe f /2, które 
mamy przy obciążeniu; oznaczmy wtedy napięcie na początku 
przez U10 i nazwijmy je napięciem na początku w stanie jałowym. 
Przy takim napięciu na początku linii popłynie prąd, którego natę­
żenie oznaczymy przez I10; będzie to prąd na początku w stanie 
jałowym. Dla dowolnego punktu linii w odległości x od jej końca 
napięcie i natężenie prądu w stanie jałowym niech wynoszą U0 i 
wtedy, zakładając we wzorach (39) i (40) / 2 = 0, otrzymamy

O 0 = C2 cos b x, (41)
10Z = jU2 sin bx (42)

Największa wartość napięcia zachodzi dla cosbx =  ±  1, bx =  0,
kn 
~b'

n, kn, gdzie k — liczba całkowita, czyli dla x =0,
b b

2 nPonieważ długość fali na podstawie wzoru (33) wynosi A =  —-

przeto napięcie będzie miało największe wartości na końcu linii 
oraz w odległościach od końca linii, wynoszących całkowity iloraz 
połowy długości fali. W liniach prądu silnego, których długość jest 
zwykle mniejsza od połowy długości fali, napięcie wzrasta od początku 
linii ku końcowi, gdzie jest największe. Zjawisko to po raz pierwszy 
było spostrzeżone w kablu koncentrycznym przez inżyniera Ferranti 
na wystawie w Londynie i dlatego nazywa się zjawiskiem Ferrantiego.

Widzimy następnie, że prąd w stanie jałowym wyprzedza na­
pięcie o kąt prosty, czyli o ł/4 okresu, otrzymując największą war­
tość tam, gdzie wartość napięcia przechodzi przez 0, i odwrotnie, 
wartość 0 tam, gdzie napięcie przechodzi przez swoją największą 
wartość.

Stan, w którym końce linii są ze sobą połączone bezpośre­
dnio, czyli bez oporności, nazywamy stanem zwarcia. W tym przy­
padku napięcie U2 =  0. Natężenie prądu w końcu linii będzie za-

22*
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leżne od napięcia, które przyłożymy na początku. Dobierzmy taką 
wartość napięcia na początku, aby w stanie zwarcia natężenie prądu 
płynącego w końcu linii stało się równe / 2, które byśmy mieli przy 
obciążeniu. Oznaczmy to napięcie na początku przez Ulz; nazwiemy 
je napięciem na początku w stanie zwarcia. Przy tym napięciu na 
początku linii popłynie prąd, którego natężenie oznaczymy przez Iz; 
nazwiemy go prądem na początku w stanie zwarcia. Dla dowolnego 
punktu linii w odległości x od jej końca napięcie i natężenie prądu 
w stanie zwarcia oznaczymy przez Uz i Iz ; wtedy, zakładając we 
wzorach (39) i (40) C2 = 0, otrzymamy

Oz = j l 2Z sin bx, (43)

IzZ =  12Z cos bx. (44)

Największa wartość prądu zachodzi dla cos bx =  1, czyli na 
końcu linii oraz w odległościach wynoszących całkowity iloraz 
połowy długości fali.

Widzimy, że prąd w stanie zwarcia opóźnia się względem na­
pięcia o kąt prosty, czyli o x/4 okresu, otrzymuje, podobnie jak po­
przednio, największą wartość tam, gdzie wartość napięcia przechodzi 
przez 0, i odwrotnie, otrzymuje wartość 0 tam, gdzie napięcie prze­
chodzi przez swoją największą wartość.

W obydwu rozpatrzonych przypadkach wektory napięć i prą­
dów nie zmieniają swoich kierunków, inaczej mówiąc, napięcie 
oraz prąd mają wzdłuż całej linii tę samą fazę; zamiast elipsy otrzy­
mujemy na wykresie linię prostą. Napięcie i prąd zmieniają tylko 
swoje wartości w zależności od odległości x, tworząc w ten sposób 
fale stojące.

Takie samo zjawisko otrzymamy również w przypadku, gdy 
pomiędzy napięciem i prądem w końcu linii istnieje różnica faz 
równa 90°, to znaczy cos q>2 =  0, wtedy bowiem we wzorach (39) 
i (40) wektory j l 2Z będą miały kierunek wektora napięcia 0 2, a wek­
tory j  C2 kierunek wektora prądu I2; zarówno więc dla napięcia jak 
i dla prądu otrzymamy jako wykres linię prostą.

Zestawiając przypadki, gdy w linii bez strat otrzymuje się 
fale stojące dla napięcia i prądu, możemy wyprowadzić wniosek, 
że takie zjawisko ma miejsce, gdy 1) 12 =  0, 2) 0 2 =  0 i 3) cosę?2 = 0, 
to znaczy, gdy

U2I2 cos ę>2 = 0,

czyli wtedy, gdy w końcu linii nie jest oddawana energia.
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Z porównania wzorów (39), (41) i (43) oraz (40), (42) i (44) 
wynika, że

0 = o 0 + c „ ,

I z  = I0Z + lZ z,

1 - h  + h
To znaczy, że napięcie, względnie prąd, w stanie obciążenia 

są równe sumie napięć, względnie prądów, w stanie jałowym i w stanie 
zwarcia.

§  96
LINIA NIEODKSZTAŁCAJĄCA

Zbadajmy teraz jako szczególny przypadek linię, której opor­
ność rzeczywista, indukcyjność, uplywność i pojemność tworzą 
proporcję

skąd

R_ A 
L C ’

A L  = R C ;

(45)

oporność falowa takiej liniii będzie

/  R + jcoL i /  L ( ř  + / " )
1/  A +  j  o j  C V  c 4 +/»)

jest ona wielkością rzeczywistą i równa się oporności falowej linii 
bez strat o takiejże indukcyjności i pojemności.

Obliczmy ze wzorów (14) i (15) spółczynniki a i b 

~ i / * {  AR  — co2 L C + ^  (A2 +  w2 C2) (R2 +  w2L 2)j =

— V - Í 1 + S ^ 5 i J  + s i p l } ;
z proporcji (45) mamy

R2 A 2 i R2 i A2 
co2 L2~ (o2 C2’ 1 + w2 L2 ~  1 + w2 C2 ’
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więc
a =  y  \  J A R - c o 2LC + <o2L C l /  (1 

= 1/1

+ i?2 ]
o.2 L2?

A R  — oALC +  co2 LC[ 1 4-

-VI j A R  +  w2LC (
R2

■ 1 + 1 H----2 J 2w2 L2

0 ^ ) } -
MA Ai? + -Ci?2

Z proporcji (45) 

wobec czego
A i?C A R  = CR2

a A 1 CR2 l CR2
2 { L L

C

Ponieważ

więc a = i?

(46)

(47)

Spółczynnik tłumienia linii równy jest stosunkowi jej opor­
ności rzeczywistej do oporności falowej i niezależny od co.

iA ^ \ w 2L C - A R  + ^ { A 2 +  aAC2) (i?2 + co2L2) 1 =

- i A

Vł
A L C - A R V A‘ l 1 + 4 ? ! i?2(l + o2L2

i?2

A L C - A R  + A R l/( 1 + co2C co2L2\
) ( 1 + - R 2- )

Z proporcji (45) mamy
co2L2 co2C2 
i?2 ~ A 2

■iA[-A L C - A R  + A R v V = i m -
2LC — A R  + A R l  1 +  -(  , co2 L2\l

( ,  +  T ł « - ) r

więc
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Z proporcji (45) mamy

Współczynnik długości fali linii czyniącej zadość proporcji (45) 
równy jest temu współczynnikowi linii bez strat o takiej samej in- 
dukcyjności i pojemności. Równe zatem będą również długości 
oraz prędkości fali w obu przypadkach.

Równania (22) i (23) przy uwzględnieniu, że Z jest liczbą rze­
czywistą, przybierają postać

tS =  1 (O2 +  12Z) eax (cos bx +  / sin bx) +

+ [ 0 2 — h%) e~ax (cos bx — / sin bx) | (49)

/Z = -g |  {V2+ 1SZ) eax (cos bx + j sin bx) —

— (f?2 — 12 Z) e~ax (cos bx — /  sin bx) | • (50)
Rozpatrzmy linię w stanie jałowym. Oznaczmy, jak i poprzednio, 

napięcie i natężenie prądu w odległości x od końca przez 00 i 
Podstawiając do powyższych wzorów / 2 = 0, znajdziemy

O0 =  -i- f)2| eax (cos bx +  /  sin bx) +  e~ax (cos bx — /  sin bx) J, (51) 

10Z =b= O21 eax (cos bx + j sin bx) — e~ax (cos bx — j sin bx) |. (52)

Rozpatrzmy następnie linię w stanie zwarcia, oznaczając analo­
gicznie napięcie i prąd przez Ox i l z. Podstawiając 0 2 =  0, otrzy­
mamy

Ú, | eax (cos bx + j sin bx) — e~ax (cos bx —/  sin bx) |, (53)

1%Z 4 ^ 1 e“x (cos bx + j sin bx) +  e~ax (cos bx —/ sin bx) |. (54)

Bezpośrednio z porównania wzorów (49), (51) i (53) oraz (50)
(52) i (54) wynika, że t ) =  o 0 + t y  z (55)
oraz I z  =  I0Z + l zZ ,

V«+oII (56)
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Napięcie oraz prąd w danym punkcie linii w stanie obciążenia 
są równe sumie napięć, względnie prądów, w tym punkcie w stanie 
jałowym i w stanie zwarcia.

Zależność wyrażona we wzorach (55) i (56) pozwala nam zasto­
sować metodę wykreślną znajdowania napięcia i prądu w dowolnym 
miejscu linii.

Opieramy się na spostrzeżeniu, że w każdym ze wzorów (51), 
(52), (53) i (54) na V0, I0, Uz i l z występuje tylko jeden z wektorów

02 lub 12, poza tym 
tylko funkcje wykła­
dnicze i zespolone 
trygonometryczne.

Przede wszyst­
kim obliczamy anali­
tycznie wartości a i b 
współczynników tłu­
mienia i długości fali, 
następnie dla danej 
odległości x wartości 
funkcji wykładniczej 
eaxi e~ax oraz kąta bx. 

Odmierzamy te- 
Rys. 190 raz w odpowiedniej

skali, w kierunku,
który bierzemy jako kierunek podstawowy, napięcie końca linii 02 
(rys. 190). Niech to będzie odcinek OU2. Z punktu O zataczamy 
koło promieniem O U2 i odmierzamy od O U2 w obie strony przy 
punkcie O kąty bx.

Ramiona tych kątów przetną koło w punktach A \ A'\

■$HJ2OA = bx,

< U 2OA' = — bx.

OA i OA' stanowią wektory, określone w sposób następujący: 

OA =  U2 (cos bx +  /  sin bx),

OA' =  U2 (cos bx — / sin bx).

Mnożymy teraz U2 przez 2
. 1 i — i odmierzamy otrzy-
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manę iloczyny na liniach OA i OA' jako OB i OB'. Będzie więc 

OB =  -i- U2e?x (cos bx + /  sin bx),

OB' =  ~  U2 e~ax (cos bx — /  sin bx).

Budujemy sumę tych wektorów OF  i ich różnicę OF', czyli 

OF = Ô'B +  OB'.

0 F '=  O B -Ô 'B '.
Więc

*

OF = -i- t/2ea* (cos óa: +  / sin óa:) + U2e~ax (cos bx — j sin bx).

0 F '=  U2eax (cos bx + / sin bx) — U2e~ax (cos bx — j sin bx).

Porównując otrzymane wzory ze wzorami (51) i (52) widzimy, że

OF  =  Û0,

0 >  = /„  Z.

W ten sposób znaleźliśmy napięcie i prąd w dowolnym miejscu 
linii w stanie jałowym. Przystąpimy teraz do znalezienia tych samych 
wielkości w stanie zwarcia.

Porównując wzory (54) i (53) na prąd i napięcie w stanie zwarcia 
ze wzorami (51) i (52) na napięcie i prąd w stanie jałowym, widzimy, 
że prąd i napięcie w stanie zwarcia zupełnie tak samo zależą od prądu 
końca linii, jak napięcie i prąd w stanie jałowym od napięcia końca 
linii. Dla ich znalezienia powinniśmy wykonać wykres zupełnie po­
dobny do porzedniego, odmierzając wektor 12Z zamiast wektora t)2. 
Korzystając z tego samego wykresu, powinniśmy skalę zmienić

w stosunku U 2
h Z następnie kierunek każdego z wektorów powinien

być przesunięty o kąt ę>2, ponieważ wektor 12 Z tworzy taki kąt 
z wektorem £?».

& A A

W ten sposób wektory OF  i OF' w nowej skali i przesunięte 
o kąt <p2 dadzą nam prąd i napięcie w danym punkcie w stanie zwarcia.
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Aby przy pomocy rozważanego wykresu znaleźć napięcie i prąd 
w danym punkcie linii w stanie zwykłego obciążenia, postępujemy 
w następujący sposób (rys. 191).

Mnożymy długość wektorów OF  i OF' przez stosunek IpZ
U,

i odmierzamy w tych samych kierunkach jako OF"  i OF'” . Wek­
tory O F"  i OF"' przedstawiają co do wielkości (ale nie kierunku) 
w skali pierwotnego wykresu prąd i napięcie w stanie zwarcia.

' Obracamy je teraz około punktu O we właściwym kierunku o kąt 
ę?2 do położenia OFt o OF2. Wektory OFt i OF2 stanowią wektory

prądu i napięcia w stanie zwarcia. Budujemy sumę wektorów OF
/N  ✓ S / \  / S  / S

i OF2 równą O U oraz sumę wektorów OF' i OFt równą OL  Wtedy 
O U =  OF + OF2 =  C0 +  Cz =  ti,

O l  =  OF' + OFx = 10 Z +  l z Z = IZ.
Znaleźliśmy- zatem wykreślnie napięcie i prąd w dowolnym 

miejscu linii.
Zauważymy jeszcze, że dla różnych odległości x  punkty B i B' 

w wykresie (rys. 190) leżą na spirali logarytmicznej.
Rzeczywiście

O B = ^ - U 2e°*, OB' = - 1  [ /2 e- ‘ *.

W współrzędnych biegunowych bx =  a dla OB, zaś — bx =  a 
dla OB' stanowią kąty biegunowe. U2, a i b mają wartości stałe;
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oznaczając promień wodzący OB, względnie OB', przez r, — U2 =  k,
&

— = m, będziemy mieli dla OB 
b

r = keax = k e b =  kema ;
dla OB’

r = ke ax = keb =  ke”

Są to równania spirali logarytmicznej.
W liniach kablowych, zwłaszcza telefonicznych i telegraficznych, 

indukcyjność L oraz upływność A są na ogół nieznaczne i można te 
wielkości założyć równe zeru, co czynił W. T h o m s o n  przy rozpa­
trywaniu przenoszenia prądów telegraficznych w kablach. Wówczas 
ze wzorów (15), (16) i (17) otrzymamy

Jak widzimy, oporność falowa w tym przypadku jest odwrotnie 
proporcjonalna do pierwiastka kwadratowego pulsacji co, a więc 
i częstotliwości, z czego wynika, że im większa częstotliwość, tym 
mniejsze jest napięcie potrzebne dla otrzymania tego samego prądu. 
Natomiast spółczynnik tłumienia wzrasta ze wzrostem częstotli­
wości. Argument oporności wynosi —45°, z czego wynika że prąd 
wyprzedza napięcie o kąt 45°. Okoliczność, że tłumienie zależne 
jest od częstotliwości, wpływa niekorzystnie przy rozmowach tele­
fonicznych i w ogóle przy przesyłaniu dźwięków po liniach ka­
blowych.

Dla wielkich częstotliwości spółczynnik tłumienia w przybli­
żeniu będzie uzależniony tylko od stałych linii, mianowicie ze 
wzoru (15) będziemy mieli

“  -  i / t  [ m c  ( ‘  +  P Z ? ) '1  ( ‘  +  1 + AR -  c ]  •

Rozwijając w szereg dwumiany w nawiasach i podniesione do 

potęgi y ,  otrzymamy
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przy założeniu, że w ma wartość wielką, możemy odrzucić te człony 
szeregu, które zawierają wyższe potęgi co2, i przyjąć, że

i i2 A 2 U  1 R2 1 A 2
1 +  oj2C 2)  1 + '2 co2L2 + 2 co2C2

Wtedy
/  1 C 1 ,0 L 1 , „

a ~ ] /  4 R L + 4 A C + 2 A R ~

- Z R Y W ?
Jak widać z ostatniego wzoru, tłumienie zależy od stosunku 

i można znaleźć taką zależność między stałymi liniami, aby spół- 

czynnik tłumienia był najmniejszy. Zakładając w ostatnim wzorze
~L

napiszemy

skąd

ł / l

‘■ - - Y + i r ) ’ 

i i .  L i 4_£V
da: 2 \ x2)  ’

przyrównując tę pochodną do zera i biorąc pod uwagę, że x >  0, 
znajdziemy

ponieważ druga pochodna  ̂ a staje się większa od zera, przeto
dx2

znaleziona wartość x odpowiada minimum funkcji a, tłumienie więc 
będzie najmniejsze, gdy

L_
C

J l  
A ’

wtedy
V B A .

Ponieważ w liniach kablowych L i A są małe, przeto w znacznym 
stopniu

L R
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dla zmniejszenia więc tłumienia należy zwiększyć indukcyjność L. 
Pupin  zaproponował w tym celu włączanie cewek indukcyjnych 
w kablach telefonicznych w odległości lx/2 — 2 km. K r a r u p zaleca 
pokrywanie kabla cienkim drutem ze stopu żelaza z niklem, posia­
dającego znaczną przenikalność magnetyczną.

Zbadajmy teraz linię w przypadku ogólnym, kiedy oporność, 
upływność, indukcyjność i pojemność nie są powiązane żadnymi 
zależnościami. Jak wiadomo, oporność falowa linii jest wtedy liczbą 
zespoloną. Znajdźmy jej moduł Z i argument a:

§  97
PRZYPADEK OGÓLNY

R -(- jmL
~ATJmC = Z2 (cos 2« + / sin 2 a),

= Z2 (cos 2 a + / sin 2 a)

= Z2 (cos 2 a + / sin 2 a);

stąd otrzymujemy

Z* = {AR + a>2LC )2 + co2 (AL — RC)2 
{A2 +  w2C2)2

skąd ostatecznie

(57)

« =  y  arctg w - j -A L - R C (58)A R  + w2LC
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Argument a oporności falowej ma znak taki sam jak licznik 
we wzorze (58), ponieważ mianownik jest zawsze dodatni; wobec tego

a >  0 przy A L  > RC,
[a < 0 przy A L  < RC.

W szczególnym przypadku, gdy A L  =  RC  lub gdy R =  0 
i A =  0, argument jest zerem i wtedy oporność falowa jest liczbą 
rzeczywistą.

Napięcie i prąd w dowolnym miejscu linii wyznacza się z ogól­
nych wzorów (22) i (23)

O =  -i | (£7a + 12Ż) eaz (cos bx + j sin bx) +

4- (t)2 — I2Ż) e~ax (cos bx — j sin bx) |, (59)

IŻ  =  ~  | (t) 2 + l^Ż) eax (cos bx +  /  sin bx) —

— O2 — 12Ż) e~ax (cos bx — j  sin bx) 1. (60)

Rozpatrzmy, podobnie jak w § 96, linie w stanie jałowym. 
Stosując te same oznaczenia co tam, znajdziemy (12 = 0)

O, eax (cos bx + j  sin bx) + 6 ax (cos bx — j  sin bx) |, (61)

10Ż = O2 j eax (cos bx + j  sin bx) — e~ax (cos bx — /  sin bx j . (62)

Tak samo dla stanu zwarcia (f?2 = 0)

Ox =  12Ż | eax (cos bx + / sin bx) — e~ax (cos bx— / sin b x |, (63)

t zŻ =  / 2Ż  | eax (cos bx +  / sin bx) +  e~ax (cos bx — j sin bx) J. 64)

Bezpośrednio z porównania wzorów (59), (61) i (63) oraz (60), 
(62) i (64) wynika, że i w tym przypadku słuszne są wzory

t r =  O0+ G z, 
l = h  + K

Prąd / 2 końca linii jest odchylony od takiegoż napięcia 
o kąt cp2, iloczyn 12Ż  będzie więc przesunięty względem 02 o kąt 
<P2 +  a.
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Z rozważań tych wynika, że sposób wykreślnego wyznaczania 
napięcia i prądu w dowolnym miejscu linii jest zupełnie taki sam 
jak w przypadku podanym w § 96. Należy tylko uwzględnić, że kąt 
między kierunkami napięcia końca linii i iloczynem prądu końca 
linii przez jej oporność falową jest nie (p2, lecz (ę>2 + a), więc na rys. 191 
wektory OF"  i OF"' powinny być przesunięte o kąt [cp2 +  a).

§  98
OBLICZENIE STAŁYCH LINII NA PODSTAWIE POMIARÓW DOKO­

NANYCH W  STANIE JAŁOWYM I W  STANIE ZWARCIA

Wszystkie stałe linii: oporność, upływność, indukcyjność i po­
jemność, mogą być obliczone, jeżeli wiadome są oporności pozorne 
linii, odpowiadające stanowi jałowemu i stanowi zwarcia. Wielkości te 
mogą być podane przez fabrykę (np. dla kabli) lub też określone za- 
pomocą pomiarów; w tym celu wystarczy zmierzyć na początku 
linii moc, napięcie i natężenie prądu przy dowolnym napięciu oraz 
kąt przesunięcia fazy prądu względem napięcia, najpierw w przy­
padku, gdy linia jest w stanie jałowym, następnie, gdy linia jest 
w stanie zwarcia; na podstawie tych pomiarów znajdujemy odpo­
wiednie oporności pozorne. Oznaczając przez Ż0 i Żz wartości opor­
ności pozornych linii w stanie jałowym i w stanie zwarcia, zaś przez ę>0 
i cpz kąty przesunięcia fazy odpowiednich prądów względem napięć, 
mierzone w kierunku od napięć, będziemy mieli dla argumentów 
symboli Ż0 i Żz kąty — <p0 i — (pz.

Ż0 =  Z0 (cos <p0 — j sin <p0) =  Z0e - ]'*‘ , (65)
Żz = Zz (cos cpz — j  sin <pz) =  Zze~i9z. (66)

Na podstawie wzorów (26) i (27) mamy na początku linii, czyli 
na odległości x — l, mierzonej od końca, następujące wartości na­
pięcia t) 1 i prądu 12, gdy w końcu wartości te wynoszą V2 i 12,

V1 =  0 2 cosh kl + 12Ź sinh kl, (67)
1XŹ =  02 sinh kl + 12Ż cosh kl. (68)

Oznaczając dla stanu jałowego, gdy w końcu linii napięcie 
ma wartość 02, zaś natężenie prądu równe jest zeru, napięcie i prąd 
na początku przez 010 i / 10, następnie dla stanu zwarcia, gdy na­
pięcie w końcu równe jest zeru, zaś natężenie ma wartość 12, napięcie
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i prąd na początku przez 0 lz i l lz, otrzymamy ze wzorów (67) i (68), 
zakładając kolejno I 2 =  0 oraz C2 =  0,

O10 =  cosh kl, (69)
I10Ż =  sinh kl, (70)

{?lz =  12Ź  sinh kl, (71)
l lzŹ = I2Ż  cosh kl. (72)

Dzieląc stronami (69) przez (70) oraz (71) przez (72) otrzymamy

- F 10 =  cotgh kl,

Ou

ale
t u ż

tgh k l ; 

Qio _  ?  ^/ ' ¿*0 > fin i110 x lz

wobec czego Ż0 =  Ż cotgh kl,
Ż — Ż  tgh kl.

skąd przez pomnożenie i dzielenie otrzymujemy
Ż 2 — Ż0ŻZ,

(tgh ki)2 =

wreszcie ź  = }/ ż J ~z7

Ponieważ
tgh kl =

tgh kl
ekl — e kl 
ekl +  e~'w

„2« _
e-kl +  1

więc

1 +  tgh kl 
1 — tgh kl

1 + 1/
1 V

ż 0 =  Vżp + i ż ,  
tJz 0 - V ż ,

(73)
(74)

(75)

(76)

(77)

Biorąc wartości Ż 0 i ze wzorów (65) i (66), będziemy mieli 

e2u  =  VZoe~J'2 +  er-i 2 <
9»« , _-

^Z0e ~>2 — yJZz e->2
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mnożąc licznik i mianownik przez
---  f. I---- vz

V Z0e> 2 — \Zz e> i  .

,_____ f (rz — To)
Vz 0Zz W

otrzymamy

e2«  =
Z o Z z

(7>z— 9V
OJ 2

Z0 +  Zz — y z 0z2 [
( ? z — fg )  ( V — ;

( ii 2 +  e~ i 2

Zważywszy, że k =  a + jb, i zamieniając funkcje wykładnicze 
na funkcje trygonometryczne według wzorów E u l e r a ,  napiszemy

e2a/ (cos 2bl +  /  sin 2 bl) =

skąd

Z0 -  Zz -  i 2 VZ0Z , sin 

Z0 +  Zz — 2 VZoZ7cos

e*al= = M,
[Z0 -  Zz }* +  4 Z 0Z2 sin2 (

[ ¿ o  + Zz -  2 yZ oz7  cos ( g ~2— ) ]

2 yZ^Z7 sin = N;
tg 2 Z>Z = Z 0 Z 2

przez odpowiednie działania otrzymujemy

a = -¡-z InM, b =  arctg JV;4 Z 21 °

w ten sposób obliczamy spółczynnik tłumienia a oraz spółczynnik 
długości fali b.

Następnie dla znalezienia oporności falowej Ź  wprowadzamy 
do wzoru (75) wartości Z0 i Żz z (65) i (66), wtedy

(n +  fż )
Z = y  Z0 Z2e—J ~ 2 = yz0z2 [cos (iV +y-.) _ /  sm (^L ±-^ -)].(78 )

Ale na podstawie wzorów (10) i (17)
y  (i? +  jcoL) (A +  jo)C)= a + jb,

V R + ja> L _ ^
= z  >

więc
A -i- ja) C

R + j(aL= (a + jb) Z , 
a +  jb

A + ¡w C + =  a ;

Teoria prądów zmiennych 22
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biorąc wartość Z ze wzoru (78), otrzymamy

R  +  ;«,L  -  (a +  jb ) V A Z 7 [c o s  )  -  i sin

.  + c  =  (a +  _ A _ [  cos ( * + * )  + /  sin ( * £ * ) ] ;

przyrównując w tych wzorach części rzeczywiste i części urojone, 
znajdujemy

7̂o>

B — \Z0Zz £a cos <Po +
2

<Pz + b sin <Po +
2

L \Z0Zz b cos <Po + <Pz — a sin n + <Pzl
w L 2 2 J
1 1 <Po + <Pz n + <Pz~\

A \Z0Zz \
Lt vvO 2 — b sin 2 J

i 1 1 <To+ <Pz n + <Pz~]
Yjj z  ¡¡z z \ 2 2 J

W ten sposób możemy obliczyć stałe linii, mając wartości
ZM, ?o i 9Y

§  99

WZORY DLA NAPIĘĆ I PRĄDÓW, OPARTE NA WŁASNOŚCIACH LINII 
W  STANIE JAŁOWYM I W  STANIE ZWARCIA. 

WSPÓŁCZYNNIK LINIOWY

Rozpatrując wzory (69) i (72) spostrzegamy, że
f) 7

= - » - =  cosh kl ;
u 2 ■'2

ponieważ k =  a +  jb jest na ogół liczbą zespoloną, więc i cosh kl 
musi być również liczbą zespoloną; oznaczmy

cosh kl =  S;
wprowadzając do naszych wzorów ten współczynnik, musimy go trak­
tować jako liczbę zespoloną; nazywamy go współczynnikiem liniowym. 

Możemy więc powyższe wzory przepisać w postaci

#io
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Niech a będzie kątem przesunięcia fazy t)w względem lub, 
co jest jednoznaczne, l u względem / 2; kąt ten będzie więc argu­
mentem współczynnika liniowego w ujęciu symbolicznym; wówczas

5 = Se'° = S (cos a + j  sin a).
Moduł S i argument a możemy określić przez spółczynniki 

a i b oraz długość linii / w sposób następujący. Z założenia wynika, że
a ekl +  e~kl eka +  er- (a+yw/S = cosh kl = ------g----- = ------------- -̂-----------

albo
gfl/ _|_ g—— al

S (cosa + j sincr) <=-------------cos bl +  / ------- ~-------sin bl =

= cosh al . cosh bl + j  sinh al . sin bl,
skąd __________________________________

S =  V cosh2 al • cos2 bl +  sinh2 al • sin2 bl =

= 2 (cosh 2 al +  cos 2 bl),

tg a =  tgh al . tg bl.

Chcąc określić S przez oporności pozorne linii w stanie jałowym 
i w stanie zwarcia, napiszemy

§  — cosh U =   ̂ •
V 1 -  tgh2 kl ’

biorąc wartość tgh kl ze wzoru (76), będziemy mieli

stąd
7  7  p~ ’  9'  7A2 _  ^0 _______Z'Q e •

6  ~  Ż 0 —  Ż z z o e ~ i,p° —  Z  Z e ~ ’ rz Z  0 —  Z  z e--» « ’— «’•> ’

mnożąc licznik i mianownik przez Z0— Z2e,(f*-,,,) otrzymamy
Z0 [ Z „ - Z ,e / » — ■>]

Z02 + Zz2 — Z0Zx[ei <-*’ -'l,’> +  «-■»>--*>] ’

zamieniając funkcje wykładnicze funkcjami trygonometrycznymi 
i biorąc pod uwagę, że

Ś2 = S2 (cos a +  / sin o-)2 = S2 (cos 2 er + / sin 2 a),
22*
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będziemy mieli

ó'2 (cos 2<r + /  sin 2 a) =  ^-LZo~  sin (<p -  ę>„)]
Z o d* Zz 2 Z0Zz cos (<pz <p0),

skąd
ci = Z o2 <[^o-  Z-z cos (<pz — y0)]2 + Zz2 sin2 (y, — y0)} =

[Z02 +  Zz2 — 2Z0Zz cos (ęp, — ę>0)]2

V

S =

Z 02 — Z 2 — 2 Z 0Z cos (ę?z — ę>0) ’

\/ z 02 + Zz2 — 2Z0Zz cos (<pz — <p0) 
z  z sin {<pz — <p0)tg 2 <7

(81)

(82)Z0 — Zz cos (<pz — (p0)

Ten sam rezultat można otrzymać geometrycznie. Wychodząc
ze wzoru

£ 2=  Ż °
zo z  z

przeprowadzamy dowolny kierunek O X  (rys. 192), odkładamy 
z punktu O pod kątami (— 9?0) oraz (— <pz) O A = Z0, OB = Zz;

wówczas
x b a  =  ż 0- ż 2,

MO A =  — ę>0,
MOB =  — <pz\

oznaczając przez ip kąt BMX, 
który tworzy B A  z OX, bę­
dziemy mieli

Ż0 =  O A. e~i9*,
Z 0 —Żx = BA . e*Rys. 192

wobec czego 

skąd

Ś2 = -r- ż °
Z0 — Zz BA  

S2= 0A

_ tiA j (7t + v)

BA ’
2 a = — (ę>0 + y>).

Wprowadzenie współczynnika liniowego 5 pozwala na uprosz­
czenie wzorów uzależniających napięcia i prądy na początku linii od
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napięć i prądów w jej końcu; ze wzoru (79) mamy ,

#10 = # .$ , tu  =  t 2S,

= Żz , czyli t)lz =  1XZŻZ =  I2ŻZ §,

#10 _  #2 5

następnie
#•

#•10
‘ 10

= Z 0, czyli Ao =
Zo

Ponieważ # l =  #10 + #:
A  -  A» + 1

1«»
I2 j

więc po podstawieniu odpowiednich wartości otrzymamy

albo

# !  -  & (#2 + t 2Źz), (83)

(84)

- ^ =  # 2 + / 2Ż*, (85)

A  f , #2 
5 Z 0

(86)

Wzory te są identyczne ze wzorami (47) i (48); (75) i (76); (97) 
i (98) z §§ 58, 59 i 61, wyprowadzonymi dla czwórników symetrycz­
nych. Z tego wynika, że długa linia elektryczna z równomiernie 
rozłożonymi stałymi stanowi symetryczny czwórnik.

Przy rozwiązywaniu powyższych równań metodą symboliczną, 
gdy chodzi o znalezienie wartości napięcia Vx, prądu l x oraz współ­
czynnika mocy cos <px, gdzie <px stanowi kąt przesunięcia fazy prądu l x 
względem napięcia Cf1, musimy oprócz danych V2, t 2 i cp2 mieć 
wartości Z0, Ż z oraz kąty (p0 i ę>2; z tych danych obliczamy S według 
wzoru (81); określenie argumentu a jest w tym przypadku zby­
teczne, gdyż kąt <px pomiędzy l x i Ox jest taki sam co i pomiędzy
11 . # i T\ . T̂r~Ę- i -g-; wystarczy więc obliczenie kątów pomiędzy -g~ i U2 oraz 

pomiędzy-gr i # 2 , wtedy różnica tych kątów da nam wartość cpx.

W poprzednich wzorach oporności Ż 0 i Żz odpowiadały całej 
długości linii l. Czasami zachodzi potrzeba przerachowania tych 
wielkości, podanych dla określonej długości l, na inną długość l' 
takiej samej linii. Oznaczmy poszukiwane oporności pozorne, odpo-
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wiadające długości V, przez Ż 0' i Żz \ na podstawie wzorów (73) i (74) 
będziemy mieli 7 / _  7 ł.,/ ^

( 88)

gdzie według wzoru (75)

Z 0' =  Ž cotgh ki',
ż ;  =  ż  tgh ku. 

ż  = \lż 0ŻZ

jest wielkością niezależną od długości linii, lecz tylko od stałych 
B, L, A, C oraz co. Dla określenia funkcji liiperbolicznych we wzo­
rach (87) i (88) mamy

óiw_i
t g h k r -  e, w, +  1 ,

e2 w  4. 1
cotgh kl' =  -¿ w _ x ; 

z drugiej strony ze wzoru (77)

p%kv __ sfż0 + \! Ż„ m

(89)

(90)

Vž 0
oznaczając w skróceniu

mamy

n  1 + \l ż z
yJŻ0 \j Ż a

= <L

e2W = q,

e2k = q

• _ X )e2W _  q

Podstawiając tę wartość do (89), (90), a następnie do (87) i (88), 
otrzymamy

Żo — q, + 1
<f 1

ż :  =  ^ ż aź z^
7 - 1

+ 1

(91)

(92)

Rozwiązując te wzory metodą symboliczną, znajdziemy moduły 
Ź0' i ZJ oraz ich argumenty.
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SZTUCZNE LINIE ELEKTRYCZNE

§ 100
UKŁADY ZASTĘPUJĄCE DŁUGĄ LINIĘ

Wzory dla napięć i prądów w długich liniach jednorodnych 
(z równomiernie rozłożonymi stałymi), jak to już stwierdziliśmy, 
są identyczne ze wzorami, które otrzymaliśmy dla obwodu syme­
trycznego; z tego wynika, że gdy chodzi nam wyłącznie o ustalenie 
zależności napięć i prądów w dwóch dowolnych punktach linii, 
np. na początku i na końcu, możemy zastąpić taką linię lub jej 
odcinek przez odpowiedni układ zawierający trzy oporności po­
zorne, z których dwie są sobie równe.

Dla znalezienia elementów czwórnika, który ma zastąpić długą 
linię, musimy znać oporności pozorne stanu jałowego i stanu zwarcia 
Ż0 i Żx oraz spółczynnik liniowy S rozpatrywanej linii (wzory 81 i 82 
z § 92). Mając te dane obliczamy elementy czwórników według 
wzorów wyprowadzonych w §§ 58, 59 i 61:

dla czwórnika typu T (wzory 45 i 46)

( 1 )

(2)

dla czwórnika typu n  (wzory 73 i 74)
Ź 1 = Żz S, ( 3 )

( 4 )
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dla czwórnika krzyżowego (wzory 95 i 96)
,  §  —  1 

7  — 7  °A1 — ¿‘Z ~ ł (5)

z  - ż  ś  ■ 
2 ~  z ś - l

(6 )

Gdy chodzi o zrealizowanie sztucznego układu, zastępującego 
długą linię, za pomocą oporników, cewek indukcyjnych i konden­
satorów, należy wziąć pod uwagę, że B, A, L i C w powyższych 
wzorach nie mogą mieć znaków ujemnych. Wówczas trzeba zbadać, 
czy zawsze jest możliwość zastąpienia takiej linii czwórnikiem typu T, 
n  lub krzyżowym. W tym celu rozpatrzmy wzory w § 97.

Ż = Z (cos a + j sin a),
n 1 A B +  w2L C cos ¿a  =  ,z 2 A 2 +  (o2C2

. _ 1 A L - B C
sm 2a Z 2 “  A* +  oj2C2'

W rozpatrywanym przypadku cos 2 a ma zawsze wartość dodatnią, 
argument a może się zmieniać tylko w granicach

71 71
----- T  <  a  < ~ T i4 4

przy czym znak a zależy od znaku wyrażenia A L  — RC. Biorąc 
pod uwagę wzory (73) i (74) z § 91

Ż0 = Ż cotgh kl,
Żz =  Ż tgh kl,

otrzymamy dla układu T, na podstawie wzorów (1) i (2)),

Ż j=  2Ż

Z

S - 1

5
cotgh k l

cotgh kl

gdzie *§ =  cosh kl.

Dla układu n , na podstawie wzorów (3) i (4), 
Ż 1 =  ŻS tgh kl,
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Dla czwórnika krzyżowego, na podstawie wzorów (5) i (6), 

Ż1 = Ż0 =  Ż cotgh kl (jak dla typu T)

Z9 =  Z,

S
s = z

s
§ tgh kl (jak dla typu n)

Ś - l  S - l
Po odpowiednim przekształceniu ostatnie wzory przyjmą postać 
dla układu T , ,

Ż1=2Żtghę,
dla układu II

^ 2 sinh kl ’
Żx — Ź  sinh kl,

sinh kl

Dla czwórnika krzyżowego

± ź .2 cosh kl— 1

kl
Z  i — Z tgh  ̂ }

Ż 2 = Z cotgh ~  *

Każda z oporności pozornych i Ż 2 składa się na ogół z oporności 
rzeczywistej R i oporności biernej X, czyli

Ż\ =  Ri + jX  i; z  2 =  R2 + j x  2,
przy czym Rx i i?2 > 0.
Podstawiając do powyższych wzorów

Ż= Z (cos a + j sin a) oraz k = a +  jb
i oddzielając części rzeczywiste od części urojonych, otrzymamy war­
tości oporności rzeczywistych w układzie T

R 7 cos a sinh a l— sin a sin bl 
1 cosh al +  cos bl

R _  „  cos a cos b l sinh a l +  sin a sin b l cosh a l 
2 co2 bl sinh2 al +  sin2 bl cosh2 al

Mianowniki w obu ostatnich wzorach są większe od zera, więc, aby 
Rx i i?2 miały wartości dodatnie, wystarczy, aby były spełnione na­
stępujące warunki:

cos a sinh al — sin a sin bl > 0 , 
cos a cos bl sin hal +  sin a sin bl cosh al >  0;
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ale cos a >  0, jak to na początku było stwierdzone, przeto powyższe 
warunki możemy przepisać w postaci

f1 (Z) =  sinh al — tg a sin bl >  0
/2 (0 =  cos bl sinh al +  tg a sin bl cos hal > 0

Dla układu n  znajdziemy analogiczne warunki, które muszą być 
spełnione, w postaci:

/3 (0 =  sinh al +  tg a sin bl >  0
/4 (Z) =  cos bl sinh al — tg a sin bl cosh al >  0.

Dla czwórnika krzyżowego warunki, które muszą być spełnione, 
otrzymujemy w postaci

/1 (0 =  /3 (0 =  sinh al — tg a sin bl > 0
/2 (0 =  fi (0 =  cos bl sinh al — tg a sin bl cosh al >  0

Te wyniki, dające możność określenia granic dla Z, gdy wiadome 
są a, Z) i a, mają szczególne znaczenie w liniach, przy stosunkowo 
niewielkich długościach fali, jak na przykład w kablowych liniach 
telefonicznych, pupinizowanych, gdzie są stawiane w pewnych od­
stępach wzmacniaki, zawierające sztuczne układy, zastępujące od­
powiednie odcinki linii rzeczywistej. Jako przykład rozpatrzmy linię 
telefoniczną kablową pupinizowaną. Dane dla tej linii są następujące:

B (łącznie z opornością cewek) = 28 QJkm;
L =  70 mH/km; C =  0,0355 (i F/km',
A =  0,8 pS/km; co =  5000 S-1 

Znajdujemy z obliczenia
a =  0,01; b =  0,25; a =  0.

Z powyższych wzorów otrzymujemy
/1 (0 =  /5 (0 =  sinh al >  0,

1 /2 (0 =  / «(0 = cos bl sinh al >  0.
/3 (Z) =  sinh al >  0,
/4 (Z) =  cos bl sinh al >  0.

Widzimy, że fx (Z) =  /3 (Z) =  fs (Z) oraz /2 (Z) =  f4 (Z) =  /6 (Z), to znaczy, 
że warunki zastąpienia rozpatrywanej linii sztucznym układem są 
jednakowe dla wszystkich trzech typów czwórników.
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/1 (0 . /3 (0 i /5 (0  są zawsze większe od zera, zaś /2 (Z), /4 (Z) i /„ (Z) będą 
większe od zera w przypadku, gdy cos Z) Z > 0 , czyli gdy

oraz

2 nn <  bl <  -¿j- +  2 nn ,

3
-^-n + 2nn <  bl <  (n + 1 )2 jt;

albo 2 nn 
~ b ~

< / < i L  + lZIZL
2Z> b

3 jt 2 « 7 r  . .

+  —g— <  ' < ( " + ! )
2 tz:

T '
Po podstawieniu b = 0,25, będziemy mieli

25,12« < Z < 6,28 + 25,12 n, 
18,84 +  25,12 n < l <  (n +  1) 25,12,

gdzie n oznacza dowolną liczbę całkowitą lub zero.
Podstawiając za n różne wartości, znajdziemy granice Z, dla których 
można zastosować sztuczny układ:
dla n = 0

0 <  Z< 6,28,
18,84 < Z < 25,12;

dla n = 1
25,12 < Z < 31,40,
43,96 < Z < 50,24;

więc np. dla Z, zawartych w granicach 6,28 km i 18,84 km lub w gra­
nicach 31,40 km i 43,96 km, nie można sporządzić układu ani T, 
ani fi, ani krzyżowego.

§ 101
LINIE ŁAŃCUCHOWE

Łącząc w szereg dowolną ilość czwórników otrzymamy układ 
zwany linią łańcuchową. Rozpatrzymy linie łańcuchowe, składające 
się z jednakowych, symetrycznych czwórników, czyli ogniw. Każde 
ogniwo zestawione jest według schematów poprzednio rozpatrzonych, 
a więc typu T (rys. 140), typu fi (rys. 141) albo typu krzyżowego 
(rys. 142).
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Będziemy oznaczali przez n liczbę ogniw w łańcuchu, przez 
U i I, z odpowiednimi wskaźnikami, napięcie i natężenie prądu 
w końcu każdego ogniwa. U0 i I0 oznaczać będą napięcie i natężenie 
prądu na początku łańcucha, zaś U„ i I„ te same wielkości w końcu 
łańcucha, Ux i Ix oznaczać będą te wielkości dla ogniwa oznaczo­
nego liczbą x.

W celu wyprowadzenia wzorów, dających wartości napięć 
i prądów w dowolnym ogniwie, rozpatrzmy dwa dowolne, sąsiednie 

'ogniwa, oznaczone liczbami x i aH-l. Oznaczmy stałe każdego czwór- 
nika-ogniwa przez A =  D; B i C. (rys. 193).

Rys. 193

Na podstawie podstawowych wzorów dla czwórnika symetrycz­
nego możemy napisać:

Üx—i= A Ü X +  B l x , (7)
K-\ =  CÜX + A Ix , (8)

Üx = A Üx+1 + B lx+i , (9)
/ x =  C Üx+1 +  A l x+1, (10)

z (7)
t Üx—L A y) 
lx B B * ’ (U )

z (9)
t Üx A y'th+l g  g '-'x — l »

wstawiamy te wartości l x i l x+1 do (10) i otrzymamy: 

Ux—! yy _  fi fy \ ^  f) f!— g -------- - g -  u x — ^  u x + l  ,+  - g -  '~>x g  U x +1 ,

skąd po uporządkowaniu:
- 2 A Ü X + (A * -B C )Ü X+1 =  0 ;
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ale dla czwórnika symetrycznego (wzór 11 z § 56) A 2— BC  =  1, 
więc ostatecznie

&x—i —  2-4 0 X+ t)x_ x =  0. (12)

Stała A dla poprzednio rozpatrzonych typów czwórników ma na­
stępujące wartości:

Żdla czwórnika typu T (wzór 50, § 58) A =  1 + -y- ,
Z 2
Żidla czwórnika typu n  (wzór 70, § 58) A  =  1 + 

dla czwórnika krzyżowego (wzór 94, § 58) A — Z \ + z 2 
Z 2 Zx

Równanie (12) jest równaniem różniczkowym; z powodu pewnej 
analogii z długą linią, będziemy szukali rozwiązania tego równania 
w postaci, =  Kie*„ +  K%c-k^ (13)

gdzie K t i K 2 — stałe dowolne, k od x nie zależy; podstawiając w tym 
wzorze zamiast x najpierw a:—1, następnie a + l, otrzymamy:

t)x_1 =  K 1e~kekx + K 2eke~kx, (14)

#*+i =  Kxekekx +  K 2e~ke~kx; (15)
podstawiamy wartości Ox_ 1, Ox i Cx+1 do (12), wtedy:

e~k ekx + K % ek e~kx — 2 A K 1ekx—2 A K 2 e~kx + K 1ekekx+ K 2 e~k e~kx— 0

alb° {Kxekx + K 2e~kx) (ek + e~k -  2 A) =  0. (16)

Z tego wzoru wynika, że wartość Ux z wzoru (13) będzie rozwią­
zaniem równania (12), gdy spełniony będzie warunek ujęty we wzo­
rze (16); w tym wzorze pierwszy nawias może mieć dowolne wartości, 
wobec tego warunek będzie spełniony, gdy

czyli
ek+ e k = 2A, 

cos hk =  A. (17)
A dla rozpatrywanych czwórników jest na ogół liczbą zespoloną, 
wobec tego k będzie również liczbą zespoloną; oznaczymy

k =  a + ]'b,

gdzie a i b — liczby rzeczywiste, wtedy:

cosh k =  cos (a + jb) =  cosh a cos b +  j  sinh a sin b; (18)
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oznaczmy w tym wzorze część rzeczywistą przez p, część urojoną 
przez q, to jest p -  cosh a cos (19)

q =  sinh a sin b, (20)
cosh k =  p + ¡q. (21)

Dla znalezienia wartości a i b podnosimy do kwadratu każdy 
z wyrazów we wzorach (19) i (20), otrzymamy

p2 = cosh2 a cos2 b = (1 + sinh2 a) (1 — sin2 b), 
q2 =  sinh2 a sin2 b.

Rozwiązując dwa ostatnie równania względem sinh2 a i sin2 b, znaj­
dujemy

sinh2 a = ----- ^ ( l  — P2- 92) +  q2 +  ~  (1 -  p2 -  q2),

sin2 b - 4 ( i - ? > - ? ■ ) + ] / Vq* +  ± ( l i2 — a2q2).

(22)

(23)

Przy rozwiązywaniu tych równań pod pierwiastkiem kwadratowym 
wzięliśmy tylko znak +, ponieważ niewiadome sinh2 a i sin2 b jako 
kwadraty liczb rzeczywistych muszą być liczbami dodatnimi, 
wartość zaś pierwiastka jest większa od bezwzględnej wartości 
wyrazu przed pierwiastkiem. Przez analogię do długiej linii jedno­
rodnej współczynnik a nazwiemy współczynnikiem tłumienia, a współ­
czynnik b, który wpływa na przesunięcie fazy, może być nazwany 
współczynnikiem przesunięcia fazy.

Dla znalezienia wzoru na natężenie prądu w dowolnym ogniwie, 
musimy rozpatrzeć oddzielnie każdy z typów ogniw, z których składa 
się linia łańcuchowa. Wychodząc z wzoru (11) i podstawiając wartości 
Ox_i i Ox, znalezione ze wzorów (13) i (14), będziemy mieli:

l x =  ^  K x e~k ek' +  K 2 ek ekx — A K L ek* — A K 2 e~k' J , 

L  =  ¿ [ t f i  e~k —A ĵ +  K 2 e- ** (  e* -  ̂ l ) ]  ; (24)

ale (wzór 17) 

obliczamy

A  =  e ~ k

ek —  A  =  ek

cosh k =

ek +  e ~ k
2

ek +  e~ k

ek +  e~

■■ — sinh/c,

2 2 = sinh k,
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wobec czego ze wzoru (24) otrzymamy
sinh k
~ ~ B ~

^ K 2 e~kx — K 1 ek*̂ j .

Rozpatrzmy teraz kolejno 3 typy linii łańcuchowych: 
Typ  t
Według wzoru (50) 

zaś na podstawie (17)
B = Żx (cosh k +  1).

Podstawiając tę wartość do (25) otrzymamy 
sinh k

L  =

ale

sinh k

Żi (cosh k +  1)

(

(K 2 e~kx — K 1 ehx),

k k \ / k k

ek — e -k \ e2 + e 2 ) ’ e2 — e 2

cosh k +  1 =
efc +  e~k +  2

2 2

(25)

sinh A: e2 e 2 sinh ,

— - -  ~ k ~  tgh 2' ’cosh/c +  1 e ' 1 +  e 2 cosh-^-

wobec czego

Oznaczmy
A  .

k ’
tgh-2

na podstawie wzoru
cosh k — 2 sinh2 + 1

(26)

(27)

7
cosh k = 1 + --.T ,

z uwzględnieniem, że
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będziemy mieli

sinh

cosh — =
2

skąd

, = l /  A .  
r  2 V

l /  1 +sinh2| - = | / -

tgh — = 1 /
2 r Z L + 2 Z S

Ź t + 2 Z 2

wobec tego wzór (27) możemy napisać również w postaci:
Ż l —.•7 17 1 o 7 \ (28)

l / ;
: — \ ¿1 [Zx +  2 Z 2).

Zx +  2 Z 2
Zestawiając wzory (13) i (26), otrzymamy w najogólniejszej 

postaci wyrażenia dla napięcia i prądu w dowolnym ogniwie:
0 X =  K 1ekx + K 2e~kx, (29)

1XŻ =  -  K iekx +  K 2e~kx; (30)
wielkość Z, odgrywającą rolę oporności, określoną wzorem (27) 
lub (28), przez analogię do długiej linii jednorodnej, nazwiemy 
opornością falową linii łańcuchowej.

Wchodzące do wzorów (29) i (30) stale K x i K 2 możemy określić 
na podstawie wiadomych wartości napięcia i prądu w określonym 
miejscu; najczęściej wchodzą tu w grę te wielkości na początku 
i na końcu linii łańcuchowej. Ponieważ dla początku x = 0, przeto 
ze wzorów (29) i (30) dla napięcia i prądu na początku otrzymamy

#0 =  K 1 +  K 2,
10Ź = - K 1 + K 2,

skąd
K x =

K 2 =

C0- l 0ż
2

00 +  h ż

Wobec tego z tychże wzorów (29) i (30) otrzymamy

0X~ ^ h ?  ekx +  0 0  +  h *  e_ kx (31)

U  = 0o -  h ż
2

okx +  0 0 +  h ż  e_ kx (32)
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lub .  p kx  _1_ p —hx  „  p k x ___p — kx
fj -  fj ^  t 7
u x  —  u o  2 1 q Zj 2  ’ (33)

p k x  1 o —kx  „  p k x  ___ p — kx
1 7  /  7 f  TJ
l x * j  — 2 u ° 2 ’ (34)

w funkcjach hiperbolicznych

Üx  =  Ü0 cosh kx — 10Ż sinh kx, (35)
IXŻ =  I0Ż cosh kx — Ü0 sinh kx. (36)

Jak widać z tych wzorów, napięcie i prąd w dowolnym ogni­
wie jest wynikiem nakładania się dwóch fal idących naprzeciw 
siebie, z których jedna jest falą postępującą od początku do końca 
linii, druga falą odbitą od końca (rozumowania te same, jakie były 
przeprowadzone dla długiej linii jednorodnej). Gdy linia łańcuchowa 
ma bardzo dużo ogniw (teoretycznie nieskończenie dużo), wówczas 
fali odbitej nie ma, gdyż napięcie i prąd w końcu w tym przypadku 
muszą się równać zeru; wzory (29) i (30) wskazują, że powinno być

kx

wtedy Üx = K 2e~‘ 
l xŻ= K2e~

skąd
ż  = - ~

h
a także

ż  = A
h

(37)

ponieważ ostatni wyraz stanowi oporność pozorną łańcucha, więc 
w rozpatrywanym przypadku oporność pozorna łańcucha równa 
się oporności falowej.

Uwzględniając wzór (37) otrzymamy w danym przypadku, 
ponieważ fale ulegają jedynie tłumieniu, ze wzorów (31) i (32)

# , =  Ooe-*, 1
4  =  he~kx; J

dla końca łańcucha, gdy x = n,

Ü„ =  O0e- kn

l 0e -k”.

(38)

(39)

W wyżej wyprowadzonych wzorach ogólnych (31) do (36) nie 
wprowadzaliśmy oporności odbiornika włączonego w końcu osta-

Teoria prądów zmiennych 23
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tniego ogniwa. Rozpatrzmy teraz, jak się zmienią te wzory, gdy 
przyjmiemy pod uwagę warunki istniejące na końcu łańcucha.

Jeżeli lima łańcuchowa na końcu nie ma obciążenia, to znaczy 
jest w stanie jałowym, wtedy l n = 0; ze wzoru (36), zakładając 
x — n, otrzymamy

I0Ź  cosh kn = O0 sinh kn,
lub 10Ż  = £?0 tgh krv, (40)
po podstawieniu tej wartości 10Ż do wzoru (35) dla x = n, będziemy 

V„ = O0 (cosh kn — sinh kn • tgh kn) 

lub po uproszczeniu ^
= eÓBiikń' (41)

Z ostatniego wzoru można w rozpatrywanym przypadku zna­
leźć napięcie w końcu łańcucha, gdy wiadome jest ono na początku, 
lub odwrotnie. Prąd w dowolnym ogniwie da się obliczyć wówczas 
z wzoru, który otrzymamy podstawiając (40) do (36), wtedy

sinh kx.lx =  K  (cosh kx — tgh kn
_  ̂ sinh k ( n — x) 

0 sinh kn (42)

W przypadku, gdy linia łańcuchowa jest w stanie zwarcia, to 
znaczy końce ostatniego ogniwa są zwarte, wtedy On =  0 ; z wzoru 
(35) otrzymujemy dla x = n

lub
Ü0 cosh kn + IQŻ sinh kn, 

Ü0 = I0Z tgh kn ; (43)

podstawiając tę wartość 0 0 do (36) i zakładając x = n, otrzymamy.
l n =  I0 (cosh kn — sinh kn . tgh kn), 

lub po uproszczeniu t* 4 H/» = cosh kn ’ (44)

wzór ten daje zależność pomiędzy prądami na początku i w końcu 
łańcucha, gdy ostatnie ogniwo jest zwarte. Podstawiając wartość 
I0Ż ze wzoru (43) do wzoru (35), otrzymamy wzór dla napięcia 
w dowolnym ogniwie

sinh kx sinh kin  — x)
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Z wzorów (40) i (43) możemy otrzymać oporności pozorne 
linii łańcuchowej, gdy ostatnie jej ogniwo jest w stanie jałowym 
lub w stanie zwarcia; oznaczając te oporności pozorne odpowiednio 
przez Ż0 i Żt, otrzymamy znane z teorii długich linii jednorodnych

Wzory Ź0 = Ź  cotgh kn,
Żz = 2 tgh kn.

Wzory (31) do (36) uzależniają napięcia i prądy w dowolnym 
ogniwie od napięcia i prądu na początku łańcucha; oczywiście można 
uzależnić rozpatrywane wielkości od napięcia i prądu w końcu: 
wtedy, zakładając we wzorach (29) i (30) x = n, otrzymamy

skąd

K iekn + K ae~k" = Ü„, 
- K 1ekn + K 2e~kn = InŹ,

kn K , . o . _ + i . ź _ e'kn

wobec czego wzory dla napięcia i prądu po odpowiednich uprosz­
czeniach przybiorą postać:

ü* = A « ± J nA  ek(n-X) +  A . ¡ » z  e_k(n_x) =
«w &

= Ů„ cosh k [n — x) +  InŻ sinh k (n — x),

ixż  = eH»-x) _  Q « - J n ż

(46)

= On sinh k (n — x) + l nŻ cosh k (n — x ) ; (47)

z tych wzorów moglibyśmy otrzymać również wzory w przypad­
kach, gdy ostatnie ogniwo jest w stanie jałowym lub w stanie zwar­
cia, zakładając kolejno l n = 0 i On — 0.

Rozpatrzmy teraz przypadek, gdy w końcu ostatniego ogniwa 
włączony jest odbiornik, którego oporność pozorna wynosi Żn. 
Wtedy będziemy mieli dodatkowy warunek tJ„ =  I„Ż n.

Uwzględniając ten warunek we wzorach (46) i (47), otrzymamy
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dla x = O, tj. na początku łańcucha

O0 = Un ^cosh kn + sinh knj ,

h =  tn ( cosh kn +  —  sinh k 
Z " )

(48)

(49)

Wzory te dają możność w najogólniejszym przypadku obliczenia 
stosunku napięć względnie prądów na początku i na końcu linii 
łańcuchowej o wiadomej liczbie ogniw i wiadomych opornościach 
Żx i Ż 2 oraz Żn.

W przypadku szczególnym, gdy oporność odbiornika Żn równa 
jest oporności falowej łańcucha Ż, czyli

Ż = Ż ,
z równań (48) i (49) otrzymamy

albo

U0 =  Un (cosh kn +  sinh kn) = On 
I0 = In (cosh kn +  sinh kn) = /„  e‘

1.

,kn

kn

Ü n =  C'o e~ kn: /  p~kn.

wzory te są identyczne ze wzorami (39) dla linii łańcuchowej o nie­
skończenie dużej ilości ogniw; a więc gdy odbiornik posiada oporność 
równą oporności falowej łańcucha, linia o skończonej liczbie ogniw 
zachowuje się tak jak linia o nieskończenie dużej ilości ogniw.

T yp  n
Wychodząc z ogólnego wzoru (12) dla linii łańcuchowych, zło­

żonych z czwórników symetrycznych, otrzymamy dla napięcia 
w dowolnym ogniwie, oznaczonym liczbą x, ten sam wzór (13), który 
mieliśmy dla typu T, przy czym stała A ma tę samą wartość, czyli

cosh k = cosh (a + jb) = A.
Wzory (19) do (23) pozostają w tym przypadku bez zmiany.

Inaczej będzie z wzorem na natężenie prądu w dowolnym ogni­
wie, ponieważ we wzorze (25)

2 e~kx— K x ek •

Stała B ma dla typu n  inną wartość, mianowicie (wzór 70) B = Żv 
wobec czego

« sinh k/
żi V

sinh k 
B (
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Przez analogię do (30) opornością falową w tym przypadku będzie
Źi .Z = (50)sinh li

Otrzymujemy więc dla linii łańcuchowej typu ii te same wzory 
(29) i (30) q  = A'xe*‘  1 ^  kxK 2e~

IXŹ = - K xekx + K 2e- k x

Ponieważ warunki na początku i na końcu linii są dla obu typów 
te same, to znaczy, że napięcie i natężenie prądu dla x =  0 wynoszą 
UQ i 10, a dla x = n wynoszą On i przeto dla napięć i prądów otrzy­
mamy zupełnie takie same wzory (31) do (49), jakie mieliśmy dla linii 
typu T. Różnica polega tylko na tym, że oporność falowa dla linii 
typu T określona jest wzorem (27), dla linii zaś typu FI wzorem (50). 
Ten ostatni wzór można przedstawić w innej postaci, mianowicie:

sinh k = V cosh2 k — 1 , 
ale

cosh k — A = Z i + Z2

więc

wtedy

sinh k l / f t r ' ? m ) ¿ i

¿ i Ż XŻ 2

i /( I :) ,+8t: V ż' +*ź'ź'
(51)

Typ k rzyżow y
Dla czwórnika krzyżowego (wzór 93 

Ži + Ż2 _
Z2 — Zx

A

¡61)-
B =

'2 Z i
Rozpatrując wzory (13) i (17) z § 94 widzimy, że pozostaną one bez 
zmiany, z tym, że

cosh k = A =  ^  ^2 >
Z g Z i

natomiast wzór na lx (25) przyjmie postać
f _  sinh k{Ź 2—Ź1)/  l „  u \
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Ponieważ

przeto
sinh k {Ż 2~ Ż x) V4ŻxŻ 2 1

2 Ż xŻ2 2 ŻxŻ2 V Ž XŽ2 ’

odwrotność tego wyrazu stanowi, jak widać, oporność falową:

W ten sposób dla linii łańcuchowej typu krzyżowego otrzymu­
jemy wzory ogólne

Wzory te są takie same jak wzory ogólne dla poprzednio roz­
patrzonych typów linii łańcuchowych: również warunki dla określenia 
stałych dowolnych są takie same, więc wzory od (31) do (49) mają 
zastosowanie do linii łańcuchowych typu krzyżowego, z tym, że 
oporność falowa Z ma wartość podaną we wzorze (51).

Rozpatrzmy obwody liniowe, w których działają jednocześnie 
prądy o różnych częstotliwościach, fazach i wartościach maksy­
malnych. W zastosowaniach elektrotechniki, szczególnie w teleko­
munikacji, zachodzi potrzeba przepuszczenia do działania tylko 
części tych prądów. Układy, które pozwalają to uczynić, nazywamy 
filtrami elektrycznymi. Możemy tu odróżnić kilka rodzajów filtrów:

1) filtry, które przepuszczają prądy o częstotliwościach ^poniżej 
pewnej granicy; nazwiemy je dolnoprzepuslowymi;

2) filtry, które przepuszczają prądy o częstotliwościach powyżej 
pewnej granicy; nazwiemy je górnoprzepuslowymi;

3) filtry, które przepuszczają prądy o częstotliwościach zawar­
tych w pewnych granicach, czyli przepuszczające pewną wstęgę 
częstotliwości; nazwiemy je filtrami wstęgowymi;

ż  = i ż xż 2, (52)

Üx = K xek* +  K^e-^  

/ , Ż =  — K xekx + K 2e~kx

(53) ,

(54)

§ 102
FILTRY ELEKTRYCZNE
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4) filtry, które zatrzymują pewną wstęgę częstotliwości, czyli 
pochłaniają pewne fale, przepuszczając inne; nazwiemy pochłania­
czami fal.

Wszystkie tego rodzaju filtry można otrzymać stosując linie 
łańcuchowe o odpowiednio dobranych ogniwach.

F iltr  d o ln op rzep u stow y
Rozpatrzmy linię łańcuchową typu FI, której dowolne ogniwo 

przedstawione jest na rys. 194. Stosując oznaczenia przyjęte dla
czwórnika typu FI, będziemy 
mieli

Żx =  R + jw L ,

Z  = _ 2 _
jw C ■

Stosując wzory (17) i (21) z § 94 
oraz (70) z § 58, otrzymamy

p/irL-i— \AAAAAAAA—p  j

łl 4= * f 4= °L i.____i J
Rys. 194

P + /7 

skąd

1 + Z 1 , r n  . T \ / O) C ,. =  1 + (R +  ](oL) —jj— = 1

1 -

2

w2 L C
2

o>2L C , . RwC
o +  / o :

7 =
Ił to C

(55)

(56)

Aby zbadać zachowanie się rozpatrzonej linii łańcuchowej przy 
rozmaitych częstotliwościach, dogodniej będzie wprowadzić tzw. 
częstotliwość, względnie pulsację, drgań swobodnych ogniwa. Gdy

mamy obwód zamknięty, zawierający L i

przy czym zachodzi wyładowanie kondensatora, wówczas w takim 
obwodzie, który nazywamy obwodem oscylacyjnym, powstaje prąd 
drgający, czyli oscylacyjny; mówimy, że w obwodzie powstają 
drgania własne, które przy braku R byłyby swobodne o stałej 
amplitudzie, przy czym pulsacja takich drgań swobodnych wynosi

<e0 = 1
y i c ' (57)

Jeżeli w naszym przykładzie rozpatrzymy jedno ogniwo jako 
obwód zamknięty i spostrzeżemy, że oba kondensantory, posia-



360 SZTUCZNE LINIE ELEKTRYCZNE

dające każdy pojemność równą są połączone szeregowo, więc

pojemność wypadkowa w tym obwodzie ogniwa wynosi na
podstawie wzoru (57) znajdziemy, że pulsacja drgań swobodnych 
ogniwa wynosi

Oznaczmy

2to0 = .__ .
}JLC

(58)

OJ (59)

2 (6Q)
^  V L C ^ .
i do wzorów (55) i (56) i oznaczając dla

V t  = ' '
(61)

p = 1 - 2  rj\ (62)

II ro CŚ (63)

wtedy

skrócenia

znajdziemy

Dla ogniwa fi, L i C muszą być dane, przy czym dla niezbyt 
wielkich częstotliwości wielkości te możemy uważać za stałe; 
wtedy p i q będą funkcjami tylko r\\ podstawiając te wartości p i q 
do wzorów (22) i (33), otrzymamy spółczynniki a i b jako funkcje r j .

Szczególnie ważne jest rozpatrzenie zmiany spółczynnika tłu­
mienia a przy zmianie częstotliwości, względnie r j . Ponieważ zależ­
ność a od r j stanowi funkcję bardzo skomplikowaną, przeto uprościmy

nasze rozważanie w ten sposób, że wyraz B l / ?  , który oznaczy­
liśmy przez q, przyjmiemy jako bardzo mały, co zresztą w praktyce 
jest przeważnie bliskie rzeczywistości; wtedy dla niezbyt dużych war­
tości r j możemy na podstawie wzoru (63) założyć, że q, będąc zawsze 
wielkością dodatnią, jest bliskie zeru; wówczas wzory (19) i (20) (§ 94) 
dadzą nam w przybliżeniu

cosh a cos b = p, (64)
sinh a sin b — 0. (65)

Ponieważ p = 1 — 2 »72, gdzie r j  — — , przeto łatwo zauważyć,
«-'o

że największa wartość dla p wynosi 1, gdy r j  =  0, czyli c o  =  0;
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następnie dla r) — —— , p = 0; dla v =  1, p = — 1, zaś dla wszel-
V2

kich wartości r] > 1 , p < — 1. Zauważmy oprócz tego, że cosh a ma 
najmniejszą wartość równą 1 dla a =  0, poza tym zawsze jest 
większy od 1, natomiast sinh a ma najmniejszą wartość 0 dla a = 0 
poza tym zawsze jest większy od 0 dla a >  0;

wtedy
gdy rj <  1, czyli m <  co0,

- 1  < 1 ,
— 1 <  cosh a cos b <  1. (66)

Wzór (65) wskazuje, że albo a = 0, albo b = 0 lub n, lecz wa­
runkowi (66) wartość a = 0 zawsze czyni zadość przy wszelkich 
możliwych wartościach cos b (dla 6 = 0 lub n, również a =  0), 
przeto w rozpatrywanym przypadku a =  0, zaś b zmienia się od 
0 do 180°; gdy rj > 1, czyli co > w0; wtedy p < — 1.

Niech będzie p =  — k =  — (21?2— 1), czyli k = 21?2 — 1 > 1; 
wzory (64) i (65) dają wówczas

cosh a cos b = — k,
sinh a sin 6 = 0;

a nie może się równać 0, bo wtedy z pierwszego równania wypadłoby, 
że cos b = — k ma wartość bezwzględną większą od 1; wobec tego 
b =  0 lub n; z pierwszego równania wynika, że ponieważ cosh a >  1, 
więc cos b powinno być ujemne, czyli b = tc\ wtedy cos b = — 1, zaś

cosh a = k = 2 ?72 — 1,

skąd widać, że a rośnie, i to szybko, ze wzrostem rj.
Z tych rozważań wynika, że w rozpatrzonej linii łańcucho­

wej współczynnik tłumienia a =  0 (w rzeczywistości bardzo mały) 
dla wszystkich częstotliwości nie przekraczających częstotliwości 
drgań swobodnych ogniwa i że tłumienie szybko rośnie dla czę­
stotliwości większych; natomiast współczynnik przesunięcia fazy b 
wzrasta od zera do 180°, gdy częstotliwość zmienia się od zera do 
częstotliwości drgań swobodnych, i następnie przy dalszym wzroście 
częstotliwości ten współczynnik b pozostaje bez zmiany i stale jest 
równy 180°.

Na rys. 195 podany jest przebieg tych współczynników w za­
leżności od t].

Za pomocą rozpatrzonego układu cewek i kondensatorów 
możemy więc oddzielić prądy, których częstotliwość przekracza
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częstotliwość drgań własnych ogniwa. Urządzenie tego rodzaju 
nazywamy filtrem elektrycznym. Filtr elektryczny, w którym, jak 
w naszym przypadku, cewki są połączone szeregowo, a konden­

satory równolegle, nazywamy filtrem dolnoprzepustowym; taki 
filtr przepuszcza bowiem prawie bez tłumienia prądy o częstotliwości 
mniejszej od częstotliwości drgań swobodnych, zatrzymując, czyli 
znacznie tłumiąc, prądy o większej częstotliwości.
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Filtry elektryczne mają szerokie zastosowanie w elektrotechnice, 
gdy zachodzi potrzeba tłumienia prądów określonych częstotliwości, 
a więc w radiotechnice, w telefonii, w miernictwie, dla otrzymania 
możliwie sinusoidalnego prądu zmiennego itd.

Obszar częstotliwości, które filtr elektryczny przepuszcza, na­
zywamy widmem filtru. W rozpatrzonym przykładzie widmo obej­
muje częstotliwości od 0 do częstotliwości drgań swobodnych ogniwa; 
oczywiście widmo będzie tym większe, im większa będzie ta często­
tliwość drgań swobodnych, tę zaś ostatnią częstotliwość możemy 
dowolnie ustalić, dobierając we wzorze (71) odpowiednio L i C.

F iltr  górnoprzepustow y. Innego rodzaju filtr stanowi linia 
łańcuchowa również typu n , ułożona w ten sposób, że konden­
satory są połączone ze sobą szeregowo, natomiast cewki włączone 
równolegle. Każde ogniwo złożone jest z kondensatora o pojem­
ności C oraz dwóch cewek, których oporność i indukcyjność ozna­
czymy odpowiednio przez 21? i 2L, a to z tego względu, że przy

łączeniu dwóch ogniw otrzymamy wspólną oporność R i induk­
cyjność L (rys. 1S6).

W tym przypadku
Ż i = f

1

Następnie

jcoC ’
Ż2 = 2 (R 4- ju>L).

, z x , 1p + /</ — 1 H—:-----1 + TT-— —•— ftZ,  2/a>C[R +  ] mL)

= 1 L . R
2 C (I?2 + w2L2) 1 2 <o C {R2 +  co*L2)
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skąd

P  1 2 C ( R 2 +  co2L 2) ' (67 )

q = ~  2 (oC[Ra +  w*L2j ' (68)
Rozpatrując pojedyncze ogniwo i nie uwzględniając oporności 

rzeczywistej, ustalimy pulsację drgań swobodnych ogniwa, gdy 
zważymy, że indukcyjność ogniwa, jako zamkniętego obwodu, wy­
nosi 4L, a pojemność C ; na podstawie wzoru (57) ta pulsacja wyniesie

Jeżeli oznaczymy

1
COn — / .—

2yj LC

V
»o ’ 2Y LC

(69)

CO V?'
wtedy wzory (67) i (68) przybiorą postać następującą:

L , 1
P =  1 2C (R 2 +  co2L2) = 1

•(/?2-^ + co2LC^

’ ( « ■ + * ) '

9 =
R R

2co C (i?2 + co2 L2)

R

> ?| / ~  (R2 + co2 L2) 

czyli ostatecznie

P =  1

- 4 =  C (i?2 + w2 L2

V? — 2

^ r 2£  + «>2l c )  p (e 2 + ^ )

(70)

1 — /(2  I 3 (714 £T *7 + rr
Dla zbadania własności rozpatrywanego filtru, jak i w po-

4 q2 + rf ’
4 g

przednim przykładzie, załóżmy, że p = R jest bardzo małe ;
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wtedy, jak to wynika z wzorów (83) i (84), będziemy mieli przy-

przy czym należy zwrócić uwagę, że q będąc bliskie zeru ma jed­
nakże wartość ujemną. Przy takich wartościach p i q wzory (19) i (20) 
przybiorą postać

skąd wynika, że a nie może się równać zeru; więc sin b =  0, ale 
cos b powinno być ujemne, więc cos b = — 1 ; ponieważ jednakże, 
jak wyżej zaznaczyliśmy, q dąży do 0 pozostając liczbą ujemną 
i ponieważ w rozpatrywanym przypadku sinh a >  0, przeto sin b 
powinien dążyć do zera pozostając ujemnym.

Z tych względów wypada, że b =  — 180°, natomiast

czyli że współczynnik a, znaczny przy małych wartościach r] (małych 
częstotliwościach), stopniowo maleje i staje się równy 0 (cosh a =  1). 
gdy rj =  1, to znaczy dla częstotliwości równej częstotliwości drgań 
swobodnych ogniwa.

Gdy r] >  1, czyli co > co0, wtedy, jak widać z wzoru (72), p zmie­
nia się w granicach — 1(T)==1) i + 1(71 = 00), czyli

równania (74) i ((75) wskazują, że sin b nie może się równać zeru, 
gdyż wtedy cos b =  ±  1, a ponieważ cosh a co najmniej może się 
równać 1, więc nie uczynilibyśmy zadość warunkowi dla p; pozostaje 
więc jedyna możliwość:

sinh a = 0, a =  0;' 
wtedy cosh a =  1 i z równania (87)

bliżone wzory (72)

(73)

(74)

(75)sinh a sin b =  0.

gdy
Zbadajmy wartości a i b dla rozmaitych wartości rj 

t] <  1 , czyli co < w0, 
p < — 1 , czyli p = — k, gdzie k >  1;

wtedy cosh a cos b = — k, 
sinh a sin 6 =  0,

cosh a = k = —5- — 1 ,

— 1 si p ^  +  1 ;
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czyli (po uwzględnieniu, że b powinno być ujemne) wnioskujemy, 
że b zmienia się w granicach od — 180° do 0°.

Z tych rozważań wynika, że rozpatrywany filtr, który nazwiemy 
filtrem górnoprzepuslowym, tłumi prądy o częstotliwości mniejszej

ł
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od częstotliwości drgań swobodnych ogniwa, natomiast przepuszcza 
prawie bez tłumienia prądy o częstotliwości wyższej. Na rys. 197 
wskazany jest przebieg współczynników a i b w zależności od tj 
w filtrze kondensatorowym.

F iltr  w stęgow y. Przez odpowiednie połączenie cewek i kon­
densatorów można otrzymać również filtry, które będą prawie bez 
tłumienia przepuszczały prądy o częstotliwościach zawartych w okre­
ślonych granicach lub będą tłumiły prądy określonej częstotliwości, 
przepuszczając swobodnie prądy inne. Osiągnąć można takie wyniki 
za pomocą bardzo wielu rozmaitych kombinacji; ograniczymy się do 
rozpatrywania kilku najbardziej charakterystycznych przykładów. 
W celu badania własności filtrów poprzednio rozpatrzonych zakła­
daliśmy, że oporność rzeczywista równa jest zeru; to samo uczy­
nimy przy rozpatrywaniu następnych typów filtrów, od razu upra­
szczając wzory w założeniu, że B =  0.

Rozpatrzmy najpierw filtr, którego ogniwo przedstawione jest 
na rys. 198. Jest to łańcuch typu FI, przy czym

Ž\ ~  / C) hj

¿ i  —
4/VLa ~J^C 

2 / (co L* - ^ c )



368 SZTUCZNE LINIE ELEKTRYCZNE

p + iq l + A  = i u>LlC{ a)Lz~ ^ c )  =
2 L2

c o ^ C  Lx 
2 + 2La’

, , , cdzL1C L,p = cosh a cos o = l  — ---- -------- (- ,
w /  -L/2

q = sinh a sin b =  0.

Tłumienia nie będzie, gdy a =  0, a więc gdy cosh a =  1, wtedy 
, , a>2L1C L,

....‘  1 • •/!, •
wyraz ten może się zmieniać tylko w granicach + 1  i — 1; staje 
się on równy + 1, gdy

co2L1C L1
2 L2 ’

czyli dla

V C L 2’
staje się on równy — 1, gdy

ufiLxC Lx 
2 +  2L« - 2 ,

1 + 44 L2 + Lj +
L ^ C CL,

czyli
1 + 4  + 2

Li .
V c l 2

wynika więc, że a = 0, gdy pulsacja prądu zawarta jest w granicach

1 V 1 + 4 ^
L i .■----- . <  CO <  -Ł ------  ,

V  c l 2  y  c l 2

przez odpowiedni dobór ilorazu y— możemy więc zwęzić lub roz-Li
szerzyć granice częstotliwości prądów swobodnie przechodzących 
przez filtr.



FILTRY ELEKTRYCZNE 369

Wykres, charakteryzujący zmianę współczynnika tłumienia dla 
takiego filtru, pokazany jest na rys. 199. Obszar częstotliwości AB, 
dla których tłumienia nie ma, nazywamy wstęgą częstotliwości, 
a filtr tego typu — filtrem wstęgowym.

Otrzymamy również filtr wstęgowy biorąc ogniwa, jak na
Teoria prądów zmiennych 24
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rys. 200; w tym przypadku

ź ,  -  ,/cuC2’
wtedy

p  =  1 +  A  -  1
Z 2

CU C,
2~2

tu2 L ^ C,

L C,

^ m rm rsv -— ||—r - —0 więc

L_\ = 1______ r
C j  2 í r- 2 Cj ’

7 = 0;

Cj
2

, l i w2 LC2 c 2c cosh a cos o = l ---------— +

sinh a sin 6 = 0.

Rys. 200
Tłumienia nie będzie, gdy 

cosh a = 1 (a = 0), wtedy

cos 6 = 1 LC, + 2 Cx ’
wyraz ten staje się równy + 1, gdy 

cu2 LC»
2 2CX 

staje się równy — 1, gdy

C2 1, czyli cu =
Y LC ,

cu2 LC.»_ -  —  2-  4 . 9
2CX

czyli

CU = -1/1 + 4—+ C2
V L C X

Nie będzie więc tłumienia dla częstotliwości zawartych w gra­
nicach

1
VLCX

:SÍ CU Si V '+i%.
V L C\ ’

granice te dają wstęgę częstotliwości przepuszczających prądy.
Rozpatrzmy teraz filtr, którego ogniwo utworzone jest jak na 

rys. 201.
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Tutaj • , 11 wL1 • -j
Żi = j “ 'Cl Li

Wtedy

Ż2 =  2 / ^ co L2 -  ■

¿ i

.  2 Ci( w L i ~ ~ ^ ) ( m L2~ ^ c ; )
9 = 0 ;

wobec tego
cosh a cos 6 = 1 Li

2 ^ “)L 1- ^ - ) ( ( o L2- ^ - )

sinh a sin 6 = 0.
Tłumienia nie będzie, gdy cosh a = 1 (a =  0), czyli

Licos 6 = 1

= 1

O)
L1 C2co2

2 (m2L1 C1~- 1)(i»2 L2 C2~  1)
Ze względu na możliwe wartości cos 6 ostatni ułamek może się 

zmieniać tylko w granicach od 0 do 2 lub po odrzuceniu 2 w mia­
nowniku, w granicach od 0 do 4.

24*
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Powinno więc być
0 < C2 w2 4.(w2 Lx Cx — 1) (a>2 L2 C2 — 1) (76)

Licznik rozpatrywanego wyrazu jest dodatni, więc i mia­
nownik powinien być dodatni, to znaczy, że oba czynniki w mia­
nowniku powinny mieć znaki jednakowe.

Dla znalezienia takich wartości ca, które by czyniły zadość 
powyższej nierówności, rozpatrzmy najpierw warunek

_____ L1C2oj2_______ a
(co2L 1C'1 —  1) (ca2L 2 Ca —  1)

skąd, przy uwzględnieniu, że mianownik jest dodatni, otrzymujemy 
4 {(o2L1C1 -  1) (ca2L2C2 -  1) -  LxC2ta2>  0 

albo ' /  1 1 1 \ „ 1
( l i C1 + L2C2 + 4 L 2C1)4 L 2C1/ a2+  ><J- (77)

Przyrównując lewą część tej nierówności do zera i rozwiązując 
równanie dwukwadratowe, znajdujemy cztery pierwiastki:

/ 1 / 1  , 1 , T ~ \  1 / 1 1  1 Y* —
■<1>1 \ ~ 2 \ L 1 Ć 1 + L z C *  4 L 2 C j  4 U  1Ć1 + L ,Ć , +  4 L sĆ;>I L jL .C jC i

/ I 7 ~I , 1 | 1 \ 1 < 1 1 1 \ł
" 2 \ 2 V/.,C, ' /.2C2 + 4 LgC! ) + 4 UjCi + L2C2 + 4L2C2/

1
¿1 ¿2 ć*!

Wo =  — w,

w4 = — “ 2;
z tych pierwiastków pierwsze dwa są dodatnie, przy czym ca2 > cox, 
zaś ostatnie dwa są ujemne i wobec tego nie odpowiadają warun­
kom zadania.

Uwzględniając znalezione pierwiastki możemy nierówność (77) 
przepisać w postaci

(ca — 1iH3 ca2) (ca + cax) (ca + ca2 ^  0,
skąd wynika, że

(ca —- cax) (ca —  ca2) ^  0 ,
czyli ca Js co1 lub ca ^  w1

' i co (5= OJ 2 lub ca ca2 ;
a ponieważ

ca2 > co1,
więc powinno być ca ^  caa
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Biorąc teraz pod uwagę drugi warunek
L ^ c o 2

(co2 Lx Cx -  1) (co2 L2 C2 -  1)
widzimy, że warunek ten będzie spełniony przy wszelkich war­

tościach co.
Zestawiając oba warunki wnioskujemy, że a =  0, to znaczy 

nie będzie tłumienia dla takich, częstotliwości, gdy pulsacja zmie­
nia się

od 0 do co1
i od co2 do w —*■ oo,

natomiast zachodzi tłumienie dla pulsacji zawartych w granicach
co1 < co < co2 ;

przy tym łatwo zauważyć z wzoru na cosh a cos b, że cosh a, a przez 
to i współczynnik tłumienia a staje się równy nieskończoności, gdy

co L,--- =̂- = 0, czylio  Gj
°raz ł

w L2 ~  °> czy11CD C<2
a więc w rozpatrywanych granicach współczynnik tłumienia wzrasta 
od 0 do oo i następnie maleje od oo do 0; gdy przez odpowiedni 
dobór indukcyjności cewek i pojemności kondensatorów zbliżymy 
do siebie wartości pulsacji co1 i w2, wtedy tłumieniu będą podlegały 
prądy o określonej częstotliwości, czyli określonej długości fali; 
dlatego też tego rodzaju filtr może być nazwany pochłaniaczem 
fali i ma za zadanie usunięcie wpływu prądu wiadomej częstotli­
wości. Wykres dla tego rodzaju filtru podany jest na rys. 202.

1
W A

1
y z ^ c , ’

§  103
ŁAŃCUCH IZOLATORÓW WISZĄCYCH

Jako przykład zastosowania teorii linii łańcuchowej w sie­
ciach prądów wysokiego napięcia, rozpatrzymy rozkład napięć 
w łańcuchu izolatorów wiszących. Takie izolatory stanowią układ 
zawierający pewną liczbę n umieszczonych jeden nad drugim izo­
latorów; pierwszy z tych izolatorów jest przytwierdzony do słupa, do 
ostatniego izolatora przymocowany jest przewód o wysokim na-
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Rys. 202
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pięciu. W takim układzie mamy do czynienia tylko z pojemnościami, 
które rozpatrujemy albo pomiędzy każdym izolatorem i ziemią, 
albo pomiędzy poszczególnymi izolatorami. Oznaczając pierwszą po­
jemność przez C2, drugą przez Cy, otrzymamy następujący schemat 
(rys. 203 albo rys. 204),

Rys. 203
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Oznaczając

będziemy mieli

C C,

1

Z 2 =  -V
/ «  <V 

1
' 2 / « j C , ’

ü x
¿2

Ü, — iX+i = *̂+1 .

C. . x
II || II

1 1 /
- Ł  II, H i _ i uIr

- c x -

II

=  C, =

I I

C ' ,

- c ‘ H

U-,
____________ f _____

i1! i i

c,
=  C X  =

l r

c ,

=  C k—  Q  — —  ct 1 —

i
___________ I _____

Rys. 204

Określając z drugiego i trzeciego równania i l x+l i podsta­
wiając te wartości do pierwszego, otrzymamy:

Q, _ 0 ;
Z x Ź ,

Ü*-i — ^2 + +  ^*+i =  0 ;

jest to równanie różniczkowe; podobne były rozwiązywane poprzednio, 
szukamy rozwiązania w postaci

{?*= ,4e** + Be'**,
Z t

(78)
gdzie cosh k — 1 +

2Ź,

Podstawiając wartości Ż1 i Ż2, będziemy mieli

cosh k = 1 + ,
2 C X

skąd znajdziemy fc.
Możemy uważać, że miejsce na początku łańcucha (x =  o), gdzie 

izolator jest przytwierdzony do słupa, jest uziemione, a więc
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napięcie względem ziemi wynosi 0; w końcu łańcucha mamy przewód 
pod napięciem U (względem ziemi).

Wobec tego, zakładając we wzorze (78) kolejno x = 0 i x = n. 
otrzymamy

A + B =  0,

skąd

czyli

Aekn + Be *" =  U , 

B = -  A,

A (ekn -  e -kn) =  0 ,

A = 

B =

U
2sinh/cn

c
'2sinh kn '

Podstawiając te wartości do (78), znajdujemy
U (ekx — e~kx) U sinh kx 

sinh kn 2 sinh knUx =

Z tego wzoru możemy znaleźć napięcie na dowolnym izola­
torze, którego numer, liczony od miejsca przytwierdzenia do słupa, 
wynosi x. Wykres rozkładu napięcia uwidoczniony jest na rys. 208.



R O Z D Z I A Ł T R Z Y N A S T Y

STANY NIEUSTALONE W OBWODACH 
ZE SKUPIONYMI: OPORNOŚCIĄ RZECZYWISTĄ, 

INDUKCYJNOSCIĄ I POJEMNOŚCIĄ

§  104

STANY USTALONE I NIEUSTALONE

Przy rozpatrywaniu obwodów elektrycznych, zarówno przy 
prądzie stałym jak i przy prądzie zmiennym, przeważnie mamy 
do czynienia z napięciami i natężeniami prądów, których wartości 
są ustalone, to znaczy, że albo wartości te pozostają bez zmiany, 
jak to ma miejsce przy prądzie stałym, albo stają się Okresowo 
zmiennymi funkcjami czasu ze stałą wartością skuteczną — przy 
prądzie zmiennym. Każda zmiana warunków, w których się obwód 
znajduje, zmiana napięcia u źródła, zmiana oporności lub innej 
wielkości wchodzącej w skład obwodu — powoduje zmianę wartości, 
napięć i prądów. Przejście od jednej wartości do drugiej wymaga 
pewnego czasu, często bardzo małego, ale w ciągu tego czasu mogą 
zachodzić bardzo poważne zmiany w obwodzie, wywołujące skoki 
napięć, czyli tak zwane przepięcia, lub znaczny wzrost natężenia 
prądu — tak zwane przetężenia: mogą też powstawać przy tym 
drgania napięć i prądów, czyli tak zwane fale elektromagnetyczne.

Musimy więc w obwodach elektrycznych odróżniać wartości 
napięć i prądów w stanie ustalonym oraz w stanie nieustalonym. 
Przy wszelkich zmianach zachodzących w obwodzie będziemy 
mieli stan nieustalony, zanim napięcia i natężenia prądów nie 
osiągną swych granicznych wartości, odpowiadających stanowi 
ustalonemu. Możemy sobie wyobrazić, że w okresie przejściowym 
do wartości chwilowych napięć i prądów, odpowiadających stanowi 
ustalonemu, dodają się pewne przejściowe napięcia i prądy; w ten 
sposób wartości chwilowe tych wielkości w stanie nieustalonym
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możemy rozpatrywać jako sumę dwóch wartości chwilowych, które 
będziemy nazywali odpowiednio wartością ustaloną i wartością 
przejściową, odróżniając je wskaźnikami „u“ i „p“ , wobec czego 
będziemy pisali u = mu+ up,

1 =  lu +  ip, ‘
gdzie u i i oznaczają wartości chwilowe napięcia oraz natężenia 
prądu w stanie nieustalonym. Po upływie pewnego czasu wartości 
przejściowe stają się praktycznie równe zeru, wtedy wartości u i i 
otrzymują wartości uu i iu. Na rys. 205 podany jest przykład takiego

ujęcia zjawiska w stanie nieustalonym dla natężenia prądu, którego 
wartość i zmienia się od zera dę> iu. W tym okresie, w dowolnej 
chwili, wartość i stanowi sumę wartości iu oraz ip, przy czym war­
tości ip w tym przykładzie są ujemne, zmieniając się od — iu do zera.

§  105

POWSTAWANIE I ZANIKANIE PRĄDU'STAŁEGO W  OBWODZIE 
Z OPORNOŚCIĄ I INDUKCYJNOŚCIĄ

Mamy obwód (rys. 206), w którym między zaciskami źródła 
istnieje napięcie prądu stałego o wartości U, oporność rzeczywista 
R i indukcyjność własna L.

W chwili zamknięcia takiego obwodu prądu jeszcze nie ma; 
licząc czas od tej chwili i oznaczając przez i wartość prądu w do-
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wolnej chwili, będziemy mieli

Ri +  L T l ~  v - ( 1 )

Całkujemy najpierw równanie uproszczone 

R L T. . T di „ 
Rl + L ~dt =  0’
di
i

B dt,

BIn i =  — -j- t + In K, 

gdzie i i  — stała dowolna, skąd
R

i =  K e  ^ ‘ ,
gdzie e  jest podstawą loga- 
rytmów naturalnych.

Całka szczególna równania (1) oczywiście równa się wobec 
tego całka ogólna tego równania będzie

■ u  rs - r *  i =  -^ -+  K e L .

Dla określenia stałej K  wiemy, że przy / = 0, i = 0, więc

i + f 0'

K  = u_
B ’

wobec tego
U U

l = T T - i r e
R
Ll (2 )

Łatwo zauważyć, że w rozpatrywanym obwodzie dla stanu 
ustalonego natężenie prądu

U

a ponieważ 

więc z wzoru (2)

«« = J7
B

l„ =
B

i = L +  ć

R
=  _

R

( 3 )
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" Ostatni wzór nazywa się wzorem H elm holtza ; —  nazywamy
L Lstalą tłumienia zaś odwrotność, czyli —  = r nazywamy stałą
I \

czasu; im większe jest L i im mniejsze R, tym większa jest stała 
czasu r, to znaczy, że więcej czasu potrzeba, aby prąd osiągnął prak­
tycznie swą wartość graniczną.

Przebieg i oraz ip podany jest na rys. 205. Jak widać ze wzoru 
(3) prąd przejściowy dąży do zera przy t dążącym do nieskończo­
ności.

Przy ż = -^ - = t, ip*= ~  T  =  _  0,37 iu ’

przy
"t = 2 t , ip rs — 0,13 iu; przy t = 3 r , ip ^  — 0,05 iu .

Gdy e L =  0,01, czyli e T = 0,01, t = tln? 100 ^  4,6 r,
Lwtedy ip = 0,01 iu. Ma przykład, gdy — = 0,1, wtedy po upływie

prądu
R

przejściowego wyniesie zaledwie 

R L

czasu 0,46 sek natężenie 
0,01 natężenia prądu u- 
stalonego. W cewkach 
elektromagnesów t mo­
że dochodzić do 1 sek, 
np. przy L = 11H,
R — 11£?, t = l ,  wtedy 
po upływie 1 s prąd 
przejściowy wyniesie 
0,37, po upływie 2 s 
0,13; po upływie 3 s 
0,05, a po upływie 4,6 s 
0,01 natężenia prądu 
ustalonego.

S E M  indukcji własnej, powstająca w stanie nieustalonym 
wyrazi się wzorem

R ys. 207

r di T .es L j j - - — L iu
R r> R

' Ll • _  =  _  Ue L 1, L ue

widać z tego, że nie może ona w swej wartości bezwzględnej prze­
kroczyć wartości napięcia U.
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Rozpatrzmy ten sam obwód co poprzednio. Wyobraźmy sobie, 
że raptownie następuje zwarcie w ten sposób, że tworzy się zamknięty 
obwód z B i L bez napięcia U, np. przełącznik (rys. 207) przesta­
wiamy z położenia 1 na 2. Niech takie zwarcie nastąpi w chwili, 
gdy natężenie prądu w obwodzie wynosiło I, i od tej chwili roz­
poczniemy rachubę czasu; wtedy dla takiego obwodu będziemy 
mieli

n • T di „
Rl + L ~dł =  0’

czyli * R

i = K e L

a ponieważ dla l = 0, i =  I, przeto

K  =  / ;
więc

i = it = le  L (4)

Widzimy więc, że w takim obwodzie powstanie tylko prąd

przejściowy, zanikający, przy czym czas zanikania zależy od stałej
R Ltłumienia —  względnie od stałej czasu i  =L Ti .

Na rys. 208 podany jest przebieg takiego prądu.
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Przy zanikaniu prądu S E M  indukcji własnej będzie
i • _R _ R

e, =  — L = Ri =  BI e =  Ue L‘ , at

czyli nie przekracza wartości U napięcia źródła prądu stałego.

§ X06

ZMIANA OPORNOŚCI W  OBWODZIE PRĄDU STAŁEGO

Jeżeli w poprzednio rozpatrywanym obwodzie (rys. 206) przy 
stałym napięciu prądu stałego U oporność zmieni swą wartość 
od B do B', wtedy prąd ustalony zmieni swą wartość od

iu I do iu I jrj, ,

dla nowego stanu obwodu będziemy mieli

R i  +  L ^ - y ,

* R r

i = r  +  K e~T ‘ .

Licząc czas od chwili zmiany oporności B na oporność B\ bę­
dziemy mieli przy t =  0, i =  I,

w ięc K = I - I ' ,

skąd

- E
i = / '  +  ( / - / ' )  e L ‘

ip =  { I ~ r )  e
Podczas zmiany prądu od wartości I  do wartości I', powstaje 

S E M  indukcji własnej
T di r (I - I ' ) B '  

e, = — L -¡r =  L --------- ------e l =di
R '

e l  * =
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Oznaczając zmianę oporności R ' — R =  AR, będziemy mieli

Jak widać z tego wzoru, na wartość S E M  indukcji własnej

na czas tłumienia.
. Zrozumiałe jest wobec tego, że w opornikach musimy przecho­
dzić od jednej oporności do drugiej nie od razu, lecz stopniowo, 
aby A R było < R , gdyż wtedy unikniemy raptownego skoku na­
pięcia, spowodowanego S E M  indukcji własnej.

POWSTAWANIE I ZANIKANIE PRĄDU ZMIENNEGO W  OBWODZIE 
Z OPORNOŚCIĄ RZECZYW ISTĄ I INDUKCYJNOŚCIĄ

Przypuśćmy, że obwód z R i L zamknęliśmy w chwili, gdy 
faza napięcia prądu zmiennego równa jest y>, to znaczy przy war­
tości chwilowej napięcia u =  Um sin (co t + y>) równej dla l — 0 
u = Um sin %p. Wtedy dla takiego obwodu

§  107

dla prądu przejściowego otrzymamy, jak i poprzednio,
R

ip =  K e

zaś prąd ustalony będzie, jak wiadomo,

iu =  Jmsin M  + y~<P) ,
gdzie

Wobec tego w stanie nieustalonym -
R

i =  iu +■ ip =  Im sin [cot + y> — <p) + K e L ‘ .

Ponieważ dla t =  0, i =  0,
więc

! m sin (W — <P) +  K  =  0 ,  
K  = -  Im sin ty -  <p)
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i w  ten sposób
_  R_

i = Im sin [cot +  rp — <p) — Im sin (rp — <p) e  l ‘ , (5)
_ R

ip =  — Im sin [v>-<p)e ~l ‘ .

Z ostatniego wzoru widzimy, że prąd przejściowy jest funkcją 
malejącą z biegiem czasu; nie ma go wcale, czyli ma on war­
tość zero, gdy rp = <p, to znaczy wtedy, gdy w chwili zamykania 
obwodu prąd ustalony przechodzi przez wartość zero, ponieważ 
przy t = 0, iu =  Im sin (rp — <p) =  0, natomiast największą wartość

71będzie miał prąd przejściowy, gdy y  — q> =  ±  -g - ; wtedy przy t =  0

bezwzględna wartość największa prądu przejściowego będzie max 
ip — Im; będzie to miało miejsce wówczas, gdy również iu =  Im, to 
znaczy, gdy w chwili zamykania obwodu prąd ustalony przechodzi 
przez swą największą wartość.

W stanie nieustalonym wartość prądu i, jak to widać ze wzoru (5), 
zależy nie tylko od czasu, lecz również od fazy ip, którą ma napięcie 
w chwili zamknięcia obwodu. Największą wartość tego prądu otrzy­
mamy dla tych wartości rp =  y0, oraz t =  ł0, przy których pierwsze 
pochodne cząstkowe i  względem tych zmiennych stają się równe 
zeru. Dla określenia tych wartości mamy

di L ____
■#=* Im u>cos (cuf +  rp — cp) +  Im - p -  sin (y>— <p) e L > (6)

R---t- »

di R—r<= Im cos (0)i +  rp — (p) — Im cos (rp — cp) e L ■ (7)

Przyrównując te pochodne do zera i dzieląc obie strony równań 
przez l m, otrzymamy

B _ R t
co cos (to t0 +  rp0 — cp) +  -^-sin [rp0— <p) e L *= 0,

R
cos(u>t0 +  rp0 — q>) — cos(rp0 — q))e L ", 

skąd przez porównanie

(8)

(9)

R R■ -r-u-j-  s i n ( y > 0 — ę))e L =  — cos [rp0—(p)e L 

w L

R~7~ *•

t g i n  — r) R = — tg ę»;

Teoria prądów zmiennych 25
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to ostatnie równanie w granicach jednego okresu daje dwie war­
tości dla rp0:

1) V o ~  <P = — 9>> czyli ¥>0 = 0,
2) y)0 — <p =  7i —  <p, „  rp0 =  n.

Dla znalezienia ł0 podstawiamy do jednego z .równań (8) lub (9) 
znalezione wartości y0. Zarówno dla y>0 =  0 jak i dla y> = n otrzymamy
, f{ __ R_ t

cos (cot0 — w) = — p-sinroe L ' coL
CO x jlub, zamieniając — przez tg <p,

R_
cos (co t„ — cp) =  cos cp e l '" ■ (10)

Ponieważ kąt cp, stanowiący wartość bezwzględną przesunięcia 
fazy prądu względem napięcia w stanie ustalonym, jest mniejszy, 

n
względnie równy , przeto prawa strona ostatniego wzoru jest 

większa od zera, względnie równa zeru; wobec tego powinno być

cos (cot0 — cp) ^  0,

co w granicach jednego okresu daje

albo

71o <  CO t0 — cp g- ,

3
-ę ?  71  ^  CO tQ —  cp ^  2 71 .

(11)

( 12)

(13)

Dla przekonania się, czy określone w ten sposób wartości xp0 i fa 
dają maksimum lub minimum funkcji i, musimy obliczyć dla tych 
wartości drugie pochodne cząstkowe tej funkcji; oznaczając

d*J 
di2

d2 i
d cp2

d2 i 
d t dtp ł  = ł. = B ’

l =  k
będziemy mieli następujące warunki

gdy A C  — 5 2 > 0, A i C < 0 — maximum,
gdy A C  — B2 > 0, A i C >  0 — miminum.
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Na podstawie wzorów (6) i (7) znajdujemy
, R2A =  — 7m I co2 sin (co t0 +  y>0 — 95) +  -jrj sin (v>0 —  <p) e L
[■

[
]•

C = — l m\ sin (co. t0 + y>0 — 93) — sin [tpo — cp) e

B

* ]•
l m £eo sin (co /0 + ę>) — cos (v>0 — ?>) c i  ° J

coL
Przy uwzględnieniu wzoru (10) oraz zamieniając —n—przez tg 9?,

otrzymamy dla wartości y>0 = 0 oraz y>0 = n
. Im CO2 ,A  =  ±  —:---- COS CO r0 ,Sin 9? "

C = sin  co 1q ,
COS 93

2? =  ±  i ^ - C O S C O  i 0 ) Sin 93
gdzie pierwszy znak odpowiada y>Q = 0, drugiy>0 =  71 ■ 

Dla obu wartości y>0:

AC B2 - *m r° 2 C0S a t° ' C0S ~ <p'>
Sin “5 93 COS 93

Ponieważ (wzór 9) cos (cof0 — 93) ^  0, więc aby było możliwe 
AC — B2 > 0, powinno być cos coż0 <  0, to znaczy w granicach 
jednego okresu ^ ^

~2 <  co t0 <  n lub 71 <  w t0 <  -^ 71 .

Ale w pierwszym przypadku
dla 930 = 0, A < 0 i C <  0 istnieje maximum, 
dla y)0 = tz, A >  0 i C >  0 istnieje minimum, 

w drugim przypadku
dla y>0 =  0, A <  0, C > 0 1 nie istnieje ani maximum,
dla y>0 =  71, A >  0, C <  0 j ani minimum.

Wartość prądu i otrzymamy na podstawie wzoru (5):
_  R_

dla rp =  0, i =  Im sin (cot — 93) +  Im sin <p e l ‘ ,
_ Adla y> =  71, i =  — Im sin (cot — 93) —  Im sin 93 e l ' ,

25»



388 STANY NIEUSTALONE W OBWODACH

czyli dla obu wartości y>

i = 9?) +  sin <p • e

największa wartość bezwzględna, która, jak poprzednio stwierdzi­

liśmy, zachodzi dla wartości wł, zawartej pomiędzy-^- i n, w każ­

dym razie jest mniejsza od 2 Im, gdyż wyraz w nawiasach jest w tym 
•wypadku mniejszy od 2.

Ostatecznie więc możemy stwierdzić, że w rozpatrywanym 
obwodzie, przy zamykaniu, może nastąpić wzrost prądu, czyli zja­
wisko przetężenia, gdy zamykanie następuje w chwili przejścia 
napięcia przez wartość 0 (faza 0 lub sr); jednakże największa war­
tość tego prądu nie może przekroczyć podwójnej wartości prądu 
ustalonego w danym obwodzie.

Na rys. 209 podany jest przebieg prądu przejściowego ip, prądu 
ustalonego iu oraz prądu i w stanie nieustalonym dla cos <p =  0,19,

napięcie przechodzi przez wartość 0 [ip =  0).
Różnica pomiędzy zjawiskiem zanikania prądu stałego, roz­

patrzonym w § 105, a zanikaniem prądu zmiennego polega tylko 
na tym, że w chwili zwarcia wartość prądu będzie zależna od fazy 
napięcia w tej samej chwili. Jeśli bowiem napięcie w chwili zwar-
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cia przechodzi przez fazę y>, to znaczy przy f =  0, u =  Um sin ip, 
wtedy prąd będzie miał wartość i =  Im sin (̂ >— q>). Wobec tego 
wzór (4) przyjmie postać

R£ *
ip =  l m sin  (V —  9») e ;

z tego widać, że prąd zanika stopniowo, przy czym w przypadku 
rp =  9?, to znaczy, gdy prąd w chwili zwarcia przechodzi przez war­
tość zero, nie ma wcale prądu przejściowego.

§ 108
PRZERYWANIE OBWODU Z UWZGLĘDNIENIEM ZMIANY  

OPORNOŚCI NA WYŁĄCZNIKU

Przy przerywaniu obwodu oporność jego w krótkim zwykle 
okresie wyłączania wzrasta od pierwotnej wartości R do wartości 
bardzo wysokiej, którą praktycznie przyjmujemy jako nieskończe­
nie wielką. Załóżmy, że zmiana oporności w zależności od czasu 
zachodzi na zasadzie wzoru Aronsa. Według tego wzoru, jeżeli 
oznaczymy przez ł0 czas użyty na wyłączenie, wartość chwilowa 
oporności Rt w chwili t, czyli po upływie i sekund od chwili rozpo­
częcia wyłączania, wynosi

/?, =  — V '  (14)

‘o
Wzór ten daje dla t =  0, Rt =  jR, zaś dla t = /„, R, =  o o . 

Przy takiej zmianie oporności w okresie wyłączania otrzymamy 
następujące równanie dla obwodu zawierającego R i L przy na­
pięciu prądu stałego równym U:

■ - 3 3 7  + <i5>
to

albo di R t0 . U
d ł + L{l0- t ) 1 L '

Dla scałkowania tego równania zakładamy

i  =  xy (16)
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gdzie x  i y są funkcjami t; wtedy
dx R t,du t dx R la U

X~di + U~dł + L i t~ -r )Xy- T '
dx U_

L ’
r dy t R L dx

x [ d i  + L\ę^T) y \ + y l t ~ (17)

funkcję y wybieramy w ten sposób, aby

*y. + ..Ri o „ = 0
d t + L{t0- t ) y

czyli

jedno z rozwiązań daje

dy
y

R

R t
L t0- t dt;

lny =  - j - t 0ln(t0 — t) =  In (t0 — t)L ‘

skąd
(18)

Wprowadzając taką wartość y do wzoru (17), otrzymamy

d x = U_ 
d t ~  L ’[to ~  f l í í0 dX U

skąd

i x - T 7
dl

( t o - t ) * “

Dla określenia x przez całkowanie musimy rozpatrzyć 2 przy­
padki:

l ) ^ * «  * i ;  2) x i o = L

W przypadku  I będziemy mieli

x = U (t0- t )  Lta+ 
L R , .

~ T l° +  1

+ K,

gdzie K  — stała dowolna, albo po uproszczeniu

U
Rt0 — L {to- t j ' - L ^ + K .X  = (19)
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Zakładając wartości dla x i y ze wzorów (19) i (18), otrzymamy 
ze wzoru (16)

i =  K ( t0- t ) £ ‘' + m [J-z (t0- t ) .  (20)

Stałą K  określimy z warunku, że w chwili rozpoczęcia wyłą­
czania prąd miał pewną wartość / ,  to znaczy dla t =  0, i =  I, wtedy 
ze wzoru (20) otrzymamy

R

Kt0L‘° + U
B tn L l° I,

skąd

Wobec tego ze wzoru (20) będziemy mieli 

l =  Rt0- l )  (to~ V L * L +  Bt0- L {t° ~ ł) =

W przypadku  II otrzymujemy przez całkowanie

(21)

x — % l n  (t0- t )  +  K;

wobec tego

K {t0- ł ) ~ ~ [ t 0- t )  In [t0 — t) = (t0- t ) ^ K - ^ - l n  ( i o - i ) j -

Określamy stałą K, zakładając t =  0, i =  I, 
wtedy

l° ( K ~ l 7 ^  *»)

K  = - j -  +  -7- lnt0,

I ,

i = (t0 — t) ln(t0- t )  \ =]
(22)

Prąd / ,  który mamy we wzorach (21) i (22), stanowi prąd 
w chwili rozpoczęcia wyłączania, to znaczy dla t =  0. Prąd ten
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może być prądem ustalonym lub też nieustalonym. Dla prądu
U Rustalonego I  =  wówczas z wzoru (21) otrzymamy dla 4= 1
R L

R

W )I __ (R to -L )
0 R

(23)

zaś z wzoru (22) dla —  ř0 = 1L

i - i f c - o ( £ + 4  , n T̂

Oporność na wyłączniku w czasie wyłączania będzie

(24)

Rt - R R R Rł
t0~ t  ’

zaś napięcie na wyłączniku w chwili t wyniesie
Rł

U— =  i
to - t  ’

R_
L

otrzymamy

Udla — ^  1, biorąc wartość i ze wzoru (21) i zamieniając i  przez — , T ti

L t/ t 0- t \ T
R to\ to )

-«.-i

u .=  17- (25)

*° R

RDla — t0 =  1, na podstawie wzoru (22), 
Lj

U'  ^ G o  + £  ln t0- t )
(26)

Zbadajmy teraz wzory (25) i (26), określając z nich wartość 
napięcia na wyłączniku w końcu wyłączania, to znaczy dla ł =  t0.
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\

Oznaczając to napięcie przez Ua, otrzymamy
u

w przypadku, gdy —  ł0 — 1 >  0, z wzoru (25)

u m =  u
łn

U —  ł U L 0
i b  
0 R L

= U + U

1 BL (27)

czyli Ua ^  U ; lecz Un ma pewną wartość skończoną.
JCJ

W przypadku, gdy —  t0 — 1 <  0, z tegoż wzoru (25), biorąc
"  /?

pod uwagę, że mianownik staje się ujemny, gdyż t0 < — ,L

u .

i ——  to R
oo .

R
W przypadku, gdy —  f0 — 1 = 0, ze wzoru (26) otrzymamy

Lj

1 7 . -  +  =  C7 +  00-  o o .

Napięcie zatem na wyłączniku będzie zawsze większe niż na­
pięcie z zewnątrz przyłożone. Teoretycznie — w dwóch ostatnich 
przypadkach wartość napięcia otrzymuje się nieskończenie wielką; 
w rzeczywistości — w tych przypadkach tworzy się iskra, trwająca 

Htak długo, aż —  t0 — 1 staje się większe od 0. Praktycznie zatem 
H **zawsze — 10 >  1 i najmniejszy okres czasu, po upływie którego
T' L

następuje zupełne otwarcie obwodu, zależny jest od stosunku
B

powinno być

to> B ’

np. gdy L =  1 mH =  0,001 H, B =  0,1 Q, 
t0 >  0,01 sek.

Jeżeli wyłączymy obwód np. w ciągu f0 = wtedy na80
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podstawie wzoru (27) otrzymamy na wyłączniku napięcie

OA
t/w = U 1 -r  =  5 E7,

80 100
czyli 5 razy większe od napięcia źródła.

§  109

ŁADOWANIE KONDENSATORA PRĄDEM STAŁYM PRZEZ 
OPORNOŚĆ RZECZYWISTĄ

Rozpatrzmy obwód (rys. 210), w którym pomiędzy zaciskami 
źródła mamy napięcie prądu stałego o wartości U, oporność rzeczy­
wistą R oraz kondensator o pojemności C. Licząc czas od chwili 
zamknięcia takiego obwodu i oznaczając wartość chwilową napięcia 
na kondensatorze przez uc oraz przez i natężenie prądu w stanie 
nieustalonym, będziemy mieli na zasadzie znanych wzorów:

n i m n n n p

Ri + uc = U,

w tym przypadku dla 
t =  0, uc =  0.

Z ostatnich równań 
otrzymujemy

R C 4 r  +  U c =  U'
duc _  dt

ln(uc - U )  = - 4 ř  + ln K ,

gdzie K  — stała dowolna; wreszcie

uc — U = K e  RC,
t

uc = U +  K e  RC.



ŁADOWANIE KONDENSATORA PRĄDEM STAŁYM 395

Zakładając w tym wzorze t =  0, uc = 0, znajdujemy

K  =  -  U,
wobec czego

u, =  U — Ue R C

du u; dl R '
ponieważ w stanie ustalonym napięcie na kondensatorze będzie

równe U, prądu zaś wcale nie będzie, przeto dla wartości przejścio­
wych otrzymujemy

ucp Ue R C

i
lp R

Widzimy, że obie te wielkości maleją stopniowo z biegiem 
czasu; RC  stanowi w tym przypadku stałą czasu t, od wartości 
której zależy okres czasu potrzebny, aby napięcie i prąd osiągnęły
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praktycznie swe wartości graniczne, to znaczy, aby nastąpił stan 
ustalony obwodu.

Na rys. 211 pokazany jest przebieg napięcia i prądu po za­
mknięciu obwodu, czyli w czasie ładowania kondensatora prądem 
stałym.

Ponieważ wzory wyprowadzone dla wartości przejściowych 
napięcia na kondensatorze oraz prądu ładującego kondensator są 
analogiczne do wzoru wyprowadzonego dla prądu przejściowego 
•w obwodzie zawierającym oporność rzeczywistą i indukcyjność 
(wzór 3), przeto możemy wyprowadzić tutaj takie same wnioski 
co do zanikania napięć i prądów, a mianowicie, po upływie czasu 
t =  RC  wartości przejściowe spadną do 0,37, po upływie 2r do 
0,13, a po upływie 3 t do 0,05 swej pierwotnej wartości itd.

§  110
POWSTAWANIE PRĄDU ZMIENNEGO W  OBWODZIE Z OPORNOŚCIĄ 

RZECZYWISTĄ I POJEMNOŚCIĄ

Rozpatrujemy obwód jak na rys. 210, z tą różnicą, że zamiast 
napięcia prądu stałego mamy na zaciskach napięcie prądu zmien­
nego. Rozpoczniemy liczenie czasu w chwili zamknięcia obwodu 
i niech wartość chwilowa napięcia przechodzi wówczas przez fazę ip. 
to znaczy, że wartość napięcia w chwili t będzie określona wzorem

u =  Um sin (cot +  y>).

Dla takiego obwodu będziemy mieli
Ri + uc = Um sin (<ot + y>),

a ponieważ
i =  C duc 

dl ’
przeto

duc 1 Um . .
S T  + TtC “. “ 7 f c sm (“ ' + »’>•

Rozwiązujemy najpierw równanie uproszczone
duc 1 _
~dT +  IdC Ue ~  ° ’

due
uc

dl
~RC'

(28)
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skąd
In u. RC + ln K,

gdzie K  — stała dowolna, i ostatecznie

uc =  K e RC.

Łatwo zauważyć, iż otrzymana wartość uc stanowi wartość 
przejściową, więc możemy napisać

ucp= Ke RC. (29)

Całkę szczególną równania (28), która daje nam napięcie usta­
lone, moglibyśmy znaleźć na podstawie znanych metod matematycz­
nych; prędzej ją znajdziemy rozumując w sposób następujący: 
jak wiadomo, w rozpatrywanym obwodzie powstaje prąd ustalony
o wartości ■ j ■ , i \lu =  J*sin {(O i +  Y> + <p), (30)

przyśpieszony w fazie względem napięcia na zaciskach źródła o kąt <p, 
przy czym

tgę> =

1
w C = 1 
R ~ R w C  ’

zas
/ „  = • 8dzieZ" ' | / i!’ + ( v c )  ;

następnie wiadomo, że napięcie na pojemności (kondensatorze) 
równe jest iloczynowi prądu przez oporność pojemnościową i że 
to napięcie względem prądu jest opóźnione o kąt prosty. W ten 
sposób dla stanu ustalonego mamy

= ^m-^T sin t̂y ł +  f  + (p —-Tjrj =  ~ Y ~ C C0S («wf + y> + (p).

Dodając do siebie wartości przejściową i ustaloną napięcia 
na kondensatorze, otrzymamy napięcie w stanie nieustalonym

U,Uc =  Ucp + ucu = K e  RC — -~^7=r cos (cot +  y> + (p).

Zakładając w tym wzorze ł =  0, uc =  0 , otrzymamy

K  =  - u i
ZujU C0S {xp + (p) (31)
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wobec czego

uc =  £ cos ( f  + <p) e RC — cos (wt + y> + <p ) J . (32)

Łatwo jest zauważyć, że wyraz w nawiasach nie może być 
większy od dwóch, gdyż

I cos (y> + <p) I <  1,
I cos [cot +  f  +  <p) \ <  1,

t
e~ r c  < 1 ,

wobec tego
2 U„max ur = Za)C

a ponieważ U_ stanowi wartość maksymalną napięcia na

kondensatorze w stanie ustalonym, przeto przyszliśmy do wniosku, 
że w stanie nieustalonym napięcie na kondensatorze nie może prze­
kroczyć podwójnej wartości napięcia, które mamy w stanie ustalonym. 

Na podstawie wzoru (29) po uwzględnieniu (31) mamy

UcP =  cos [rp + <p) e RC i

stąd znajdujemy prąd przejściowy

ponieważ Um T 1
Z ~ Im' R u > C ~ ig(p'

więc t
ip = — Im tg (p cos {rp + cp) e~ Rć. (33)

Dodając do siebie wartości prądów ze wzorów (30) i (33), otrzy­
mamy prąd w stanie nieustalonym

t
i =  iu+ ip = Im sin [<ot + rp + Cp) — Im tg ?  cos {rp + cp) e Rc. (34)

Łatwo stwierdzić z wzorów (32) i (33), że nie będziemy mieli 
ani napięcia przejściowego, ani prądu przejściowego, gdy

n
2 'rp + <p =  ±
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Dla ł =  0 wzór (34) daje

i =  Im [sin [rp + <p) — tg cp • cos (rp +  9?)] =
COS (p

sin rp-,

największą wartość prądu w tym przypadku otrzymamy wtedy,

gdy rp = to znaczy, gdy w chwili zamknięcia obwodu napięcie 

przechodzi przez wartość maksymalną; wtedy

max i cos cp R
A ,x rr

Przy małym cos cp, czyli przy małej oporności rzeczywistej w po­
równaniu do oporności pojemnościowej, prąd i może w znacznym 
stopniu przewyższać prąd, który pozostaje w stanie ustalonym, 
a chociaż tego rodzaju przetężenie trwa nadzwyczaj krótko, tym 
niemniej w wielu przypadkach wskazane jest włączanie dodat­
kowych oporników do czasu ustalenia się prądu lub stopniowe 
zwiększanie napięcia działającego w obwodzie.

Dla przykładu weźmiemy

R =  1 Q, C = 1 ¡xF, f =  50 Hz

Wtedy

z ~ V 1 + ( r i J T C R - ) ’  - 3185c'
D 1

COS (p = - ^ =  3 1 8 5  ; s n̂ W =  1; tg <P =  3185.

Dla rp — oraz l — 0, max i =  3185 Im .
/C

Prąd przejściowy w tej chwili ma wartość 3184/m. Stała czasu 
x — RC =  10-6s. Wartość prądu przejściowego spadnie do war­
tości Im po upływie czasu t0, gdy

czemu odpowiada ł0 =  8 • 10 6 s.
Do wartości 0,001 Im prąd przejściowy spadnie już po upływie 

15 • 10-6 s.
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§ Ul
W YŁADOWANIE KONDENSATORA PRZEZ OPORNOŚĆ RZECZYWISTĄ

Jeżeli rozpatrzymy obwód zawierający oporność rzeczywistą 
i kondensator, który w pewnej chwili zostaje zwarty w ten spo­
sób, że ładunek znajdujący się na kondensatorze stanowi jedyne 
źródło energii elektrycznej, wówczas następuje wyładowanie kon­
densatora. Oznaczmy wartość napięcia na kondensatorze w chwili 
takiego zwarcia przez Uc, niezależnie od tego, czy to napięcie po­
wstało od prądu stałego lub zmiennego, zaś wartość chwilową na­
pięcia po zwarciu przez uc oraz prądu powstającego przy wyłado­
waniu kondensatora przez i. Będziemy mieli dla takiego obwodu

Ri  =  uc;

ponieważ prąd wyładowania ma kierunek odwrotny do kierunku 
prądu ładowania, więc

; ___ r  du‘ •
L d t  ’

R C ^  +  ut =  0,

skąd, jak poprzednio,
t

u c  =  K e r c .

Zakładając l =  0, uc =  Uc, będziemy mieli

K =  Uc,
t

uc =  Uce RC .

Prąd wyładowania
duc _  Uc - 4i =  -  C - 7 -dl R

R C

Widzimy więc, że w rozpatrywanym obwodzie zarówno na­
pięcie na kondensatorze jak też i prąd wyładowania maleją sto­
pniowo z biegiem czasu. Prędkość zanikania napięcia i prądu zależy 
od wartości stałej czasu r =  RC.
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§ 112
OBWÓD Z OPORNOŚCIĄ RZECZYWISTĄ, INDUKCYJNOŚCIĄ

I POJEMNOŚCIĄ

Rozpatrując obwód jak na rys. 212, będziemy, mieli w każdej
chwili n , T diFU +  L -jj +  u c  =  u, (35)

— - n j l i l f L P - -'nmnnnrN—

Rys. 212

. _  r due . 
L d l ' (36)

podstawiamy i z (36) do (35), wtedy

n/^ ^ , r /~i d Uc |
i? c_ dT +  LC dpT+ u ‘ = u

albo
d*uc R duc 1 1
di* + L dt LC Uc~ LC u; (37)

u może być napięciem o wartości stałej lub zmiennej.
Przy rozwiązywaniu równania (37) przede wszystkim musimy 

znaleźć całkę ogólną równania uproszczonego
d2uc R duc 1
- W  + T H r  + L c “ - - * - ' (38)

następnie musimy wyszukać całkę szczególną równania (37) i obie 
te znalezione całki dodać do siebie, wówczas otrzymamy całkę 
ogólną równania (37).

Przypomnijmy, że równanie różniczkowe liniowe rzędu dru­
giego o stałych współczynnikach typu

y "  +  PiV' +  p2y =  o

Teoria prądów zmiennych 26
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rozwiązać możemy w ten sposób, że piszemy algebraiczne równanie
charakterystyczne , „ .J J k2 +  pj/c +  p2 = 0,

które po rozwiązaniu może dać pierwiastki
1) Aą i k2— rzeczywiste i różne,
2) Aą = k2 = k0 — rzeczywiste i równe,
3) Aą = m + nj, k2 = m — n j, gdzie j = 

zespolonych sprzężonych.
1, w postaci liczb

Całki takiego równania będą w tych przypadkach
1) y  = A xehxX + A 2eh,x ,
2) y =  ek°x {A1 +  A 2x),
3) y  = emx [Ai sin nx +  A 2 cos nx), 

gdzie A 1 i A 2 —- stałe dowolne.

(39)
(40)
(41)

Na tej podstawie, rozwiązując równanie (38), napiszemy rów­
nanie charakterystyczne w postaci

skąd

kx =

.„ R . 1
k + ~ L k +  ~LC = o,

R /  R2 1 (42)2 L 1 \  AL2 LC ’

2L y  AL2
1 (43)LC

Oczywiście, w zależności od tego, czy podpierwiastkowa jest 
większa od zera, równa zeru lub mniejsza od zera, otrzymamy każdy 
z trzech rozpatrzonych przypadków, a więc przy

R > 2 pierwiastki będą rzeczywiste i różne,

/? =  2 l / l  pierwiastki będą rzeczywiste i równe,

R <  2 V *  pierwiastki będą liczbami zespolonymi sprzężonymi.

Przypadek  I.

R >  2
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Łatwo zauważyć, że oba pierwiastki kt i k2 ze wzorów (42) 
i (43) mają wartości ujemne, przy czym wartość bezwzględna pier­
wiastka k2 jest większa od wartości bezwzględnej pierwiastka 
oznaczając te wartości bezwzględne przez ax i a2, czyli zakładając

h  =  —  aj, 
k2 — cl2 ,

gdzie ax i aa stanowią liczby dodatnie, przy czym a2 > av możemy 
na podstawie wzoru (39) napisać

uc =  Aie~ait + A 2e~a,t. (44)

Przypadek II.

Jak widać ze wzorów (42) i (43),
, RKi — fi 2 — 2L  “

gdzie a = —— jest liczbą dodatnią.
/Ć Ł j

Na podstawie wzoru (40) będziemy mieli

uc = e~°‘ [Ai +  A 2l). (45)

Przypadek III.

Pierwiastki ze wzorów (42) i (43) możemy wówczas przepisać 
w postaci

oznaczając

V
2 L = a ' 

R2
LC 4 L2

1

26*
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b ę d z ie m y  m ieli ,* k ^ - a  +  iP,
k2 = — a — jp,

wobec tego na podstawie wzoru (41) otrzymamy
— at

uc — e (Ax sin pt +  A 2 cos pt). (46)

§  113
WYŁADOWANIE KONDENSATORA APERIODYCZNE

Rozpatrzmy przypadek, gdy rozpatrywany obwód zawierający 
(rys. 212) R, L i C w pewnej chwili został zwarty. Wtedy nastąpi 
wyładowanie kondensatora posiadającego w początkowej chwili 
napięcie o określonej wartości, np. U0, zaś prąd płynący będzie 
prądem wyładowania kondensatora, którego kierunek jest prze­
ciwny do kierunku prądu płynącego przedtem od zewnętrznego 
źródła. Dla takiego obwodu będziemy mieli

dla t =  0, uc = U0, i =  0, 

du,i = - C dl

(47)

(48)

Wobec tego, że u = 0, zamiast równania (37) będziemy mieli 
równanie (38), dla którego mamy już znalezione całki ogólne, a więc

skąd

w przypadku I, według wzoru (44),
— cii t — axt

uc = A x e +  A 2e ,

du. ~a,‘ ~a,<
i = — C-^~- = A 1Ca1e + A zCa2e ;

zakładając w obu tych wzorach wartości ze wzorów (47), otrzymamy:

A-l + A 2 = U0,
A lOl +  A 2a2 =  0,

skąd:
A l- -

a„

A2 —

a2 — ax 
a.

«2 — «1

U0,

U0.
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Wobec tego:

a, — a. U „

albo U /  —ait -«.«\
uc = — —^— v  — ax e I .

«2 — «1 \ /
Biorąc pochodną uc względem i, otrzymamy:

(49)

du,
dl «2 Oj 02

(50)

ponieważ, jak to przedtem stwierdziliśmy, a2 >  ax, przeto:
— dit —a\t

e < e

i wyraz w nawiasach wzoru (50) jest liczbą ujemną, zaś wyraz przed 
tym nawiasem jest liczbą dodatnią, więc

duc
dl < 0 ;

na tej podstawie stwierdzamy, że uc jest funkcją malejącą z biegiem 
czasu i ma wartość zawsze dodatnią, gdyż

— a ,t —a ,: — a,r — a ,l
a2 > ax, e > e , aze > axe , 

więc najmniejsza jej wartość = 0, teoretycznie dla l =  oo (rys. 213);
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wartość prądu i znajdziemy na podstawie wzorów (48) i (50):

i ,  -  c 4 “- --------- a- ^ - C  u j e " ” -  «,"■") -
dt a2 — cą V /

- i ^ c u ° ( r ' < 5 »

Dla zbadania tej funkcji bierzemy pochodną względem Z: 

di cą cr2 /  ~“,t ~ait\
d? — p  <52>

wyraz w nawiasach może być większy lub mniejszy od zera lub 

może się równać zeru, mianowicie ~  =  0, jeżeli

skąd

— axt —
cąe = a2e , (53)

Biorąc jeszcze raz pochodną we wzorze (52), otrzymamy

Dla wartości t, przy której pierwsza pochodna staje się równą 
zeru, czyli gdy ma miejsce równanie (53), druga pochodna i ze 
wzoru (55) będzie ujemna, gdyż wyraz w nawiasach staje się mniejszy 
od zera; rzeczywiście, na podstawie wzoru (53)

— axt —a*r —aj t —aii
ax2e — a22e =  a 2e — cąc^e =

- 0 ,1

= cąe (cą —  ct2) < 0,
gdyż « i < a2.

Wobec tego przy znalezionej we wzorze (54) wartości t rozpa­
trywana funkcja i ze wzoru (51) otrzymuje wartość największą,
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— di t —aa r
ponieważ zaś e' > e , przeto i zawsze jest większe od zera; 
tylko przy t = oo, i =  0 oraz przy t =  0, i =  0 (rys. 214).

W przypadku II

kĵ  =  ka =  — 2 X = — « ;

stosujemy wzór (45)

skąd

- u»
= e (^ ! + A 2f), 

du- ~at(  \

(56)

i =  - C ^ - = - C e  ( A z  — a — A2 ał J ; (57)

zakładając ł =  0, uc = f/0, i = 0, 

będziemy mieli

A 2 — = 0,
czyli

^1 =
4̂2 = aU0.

Podstawiając te wartości do wzorów (56) i (57) otrzymamy 

uc = £70 (1 + a t )e -at, (58)
i = Ca2tU0e~at;
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wobec tego, że 

zaś

możemy napisać

C a2 = C 

R2 = 4

J ? 2
4 L2 ’

L

Ca2

C ’
C 4 L 1

_  4 L2 ' C ~  L ’

i = U?te-at; (59)

uc ze wzoru (58) jest funkcją malejącą, gdyż jej pochodna

= - a 2te~at<  0, dl
więc napięcie na kondensatorze stopniowo zanika, natomiast prąd 
ze wzoru (59), tak samo jak w przypadku I, najpierw wzrasta, do­

chodzi do swej największej wartości, po czym stopniowo zanika; 
łatwo to stwierdzić z następujących działań:

di
dl ^ e ~ at{\ — ał).

Z równania e -at[l — at) =  0

a
znajdujemy
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przy tej wartości t druga pochodna 

i = e~at (a 2 1 — 2 a)
d2i 
~dt2

_i_ = a < 0,

wobec czego stwierdzamy, że max i będzie przy

f = J_ = J L  = 2 — •
a R R '  

2 L
wartość tego prądu największego będzie

^oo Lmax i =  ^  z ^  e 0 74 — ■ Re =  ’ /?
Rys. 215 podaje przebieg uc oraz i. W obu rozpatrzonych przy­

padkach wyładowanie zachodzi w sposób równomierny bez wahań 
i z tego powodu takie wyładowania możemy nazwać aperiodycznymi.

gdzie

§ 114
WYŁADOWANIE KONDENSATORA OSCYLACYJNE 

W ZÓR THOMSONA

Rozpatrzmy przypadek III:

Na podstawie wzoru (46)

uc = e~a‘ sin pt +  A 2 cos pi),

a =  7yr~» P =  i / "  =  l / j l - a 2
t /  LC \ 2L /  |/ LC

Znajdujemy

I = _ C — “„ f
^  j a ^  sin pt +

+ aA2 cos pt + P A 2 sin pt — pAi cos pt J.

(60)

(61)

Zakładając we wzorach (60) i (61) l = 0, uc =  U0, i = 0, otrzymamy 

A2 = U 0, aA2 — p A1 =  0,
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skąd

wobec tego

Ponieważ

Ay = j U 0,

A-2 — U0l

uc = ~~e~at (a sin pt + P cos pi), 

i = CU0e - a‘ - sin pt.

gdzie

zas

przeto

a sin pt + P cos pt = \l a2 + P2 sin (pt + d),

t * a - 4 ’

a2 + P2 = a2 + LC — a“ 2
LC '

ut. = — °e— sin (pt + d), 
p\LC

. U0e~a‘
l = ~pirsmPł-

tg 6 =  — 5 sin d = P Y L Ć , cos d =  a Y L Č .

(62)

(63)

(64)

Łatwo jest zauważyć, że stosunek pomiędzy amplitudami uc 

oraz i wynosi

a «. Po =  arc tg — • a

V ; prąd i jest opóźniony względem uc o kąt O

Stwierdzamy, że napięcie na kondensatorze uc oraz prąd i, 
płynący w obwodzie, mają przebieg nieco odmienny od przebiegu 
sinusoidalnego; różnica polega na tym, że na zmianę wartości tych 
wielkości ma wpływ funkcja wykładnicza e~at; ta ostatnia, jako 
funkcja malejąca, tłumi zjawisko, doprowadzając wreszcie wartości 
do zera. Tego rodzaju przebieg można nazwać przebiegiem sinu­
soidalnym tłumionym. W naszym przypadku pulsację stanowi p

częstotliwość zaś fw = ±
2n

W obwodzie zachodzą więc drgania
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napięcia i prądu, czyli oscylacje; drgania te nazywamy własnymi, 
dla odróżnienia od drgań wymuszonych, wywołanych napięciem 
prądu zmiennego, przyłożonym od zewnątrz źródła. Taki obwód 
nazywamy obwodem oscylacyjnym. Częstotliwość drgań własnych wy­
raża się wzorem

f - ¿ - J - i /  1 ( R V
la 2 »  2n [/  T Q ^ \ ~ 2 l )  '

Amplitudy napięcia na kondensatorze i prądu wynoszą

(65)

rj = J Ł *  - 
cm pyJ~LCe

V l L e -
(SLe '

Iloraz tych amplitud, równy l / l - możemy nazwać opornością

pozorną drgań własnych.
Jak widzimy, amplitudy te stanowią funkcje malejące z biegiem 

czasu, i szybkość, z jaką one maleją, zależy od współczynnika tłumienia
R

2 L
Ponieważ

duc
dł

i

sin /5/;

więc na podstawie wzoru (63)
du. U0e~at
dł pLC

pochodna ta staje się równą zeru dla wartości
pi =  0, n,..., kn ;

/ _  o — k —1 0 ł * • • ł n p ł

gdzie k — dowolna liczba całkowita; zaś druga pochodna

d2uc U0e~at ■ oi o ».i
~dW = ~~PLC~ ^  Sm C0S №

dla powyższych wartości będzie mniejsza od zera, gdy k jest równe 
zeru lub jest liczbą parzystą; natomiast druga pochodna będzie
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większa od zera, gdy k jest liczbą nieparzystą: będziemy mieli więc 
szereg największych i najmniejszych (największych dodatnich i ujem­
nych) wartości napięcia uc, idących w równych odstępach czasu; 
wartości te maleją z biegiem czasu według prawa funkcji wykładni­
czej e~at. Największą wartość będziemy mieli dla t =  0, wtedy ze 
wzoru (62)

m a x U c  =  7 Vi/f e s i n ó )

a ponieważ (wzór 64) sin d =  p \J L C , więc

max u„ U,o-
Napięcie więc na kondensatorze zmienia się według prawa 

sinusoidy tłumionej i posiada największą swą wartość w pierwszej 
chwili po rozpoczęciu się wyładowania kondensatora.

Dla prądu i ze wzoru (63)

di TI p~at
= ~°p£— [P cos Pt — a sin pt) =

TT — ct t
= - — —  (cos (tt tg d — sin pt) =PŁ

TJ p~at
= -  sin (Pt -  <5) =tg o ■ L cos o '

U0e~at sin (pi — d)
sin ó • L

Pochodna ta staje się równą zeru, gdy 

sin (pt — 6) =  0 ; 

pt — 6 = kn [k =  0, 1, 2, ...),

I S n 6
J ’ J  + J ’

2n d
T +J ’

druga pochodna 
d2i
dt2 ~~ ~ ■ —T \P cos [pi — d) — a sin (pt ■sin d . L L v ' 6)}

dla powyższych wartości (pt — 6) będzie ujemną, gdy k =  0 oraz 
gdy k jest liczbą parzystą, natomiast będzie dodatnią, gdy k jest 
liczbą nieparzystą. W ten sposób stwierdzamy, że również prąd 
wyładowania będzie przechodził przez szereg największych i naj-
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mniejszych wartości, zmieniając się oscylacyjnie według wzoru (63) 
Oczywiście, największą ze wszystkich wartości tego prądu otrzyma 
się dla najmniejszej wartości l, dającej maximum funkcji i, to 
znaczy dla pt — d =  0,

d_
P '

t

Wtedy ze wzoru (63)

max i U0e e . sin 6
~ J L

a ponieważ sin d = /3 \j LC, więc 

max i =  U0 ' e V . ( 66)

Przebieg napięcia uc oraz prądu i w obwodzie oscylacyjnym 
podany jest na rys. 216 i rys. 217.

Zarówno dla napięcia jak i dla prądu miarą tłumienia jest 
funkcja

stosunek amplitud, odpowiadających zmianie czasu o cały okres T, 
wynosi g_at

______________ _ — p a  T  •
e - a ( t  +  T )
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logarytm naturalny tego stosunku, równy

‘ ■ ■ r 4 r -

nazywamy logarytmicznym dekrementem tłumienia.
Na szczególne uwzględnienie zasługuje przypadek, gdy B jest

fi
bardzo małe w porównaniu do L, tak iż praktycznie można

założyć równe zeru; powstające w tym przypadku drgania w ob­
wodzie nazywamy drganiami swobodnymi; mamy więc

tg ó =

ze wzorów (62), (63) i (65) otrzymamy
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i =  U0~^/-^- sin fit,

f = 1 - = — U
2*  2 LC  ’

Ts = j - =  2 * Y L C .
(67)

Jeżeli weźmiemy pod uwagę, że rezonans napięć w obwodzie 
zachodzi, gdy ,

oj L

czyli

to znaczy przy

1
ojC  '

1
w = L C  ’

f ”
Cj / r ?

/ =
1

2jtVLC

T = 2 jĉ LĆ,

wtedy dojdziemy do wniosku, że często tliw ość  drgań swo­
bodnych  odpow iada w arunkow i rezonansu napięć.

Wzór (67) na okres drgań swobodnych obwodu oscylacyjnego 
znany jest jako wzór Thom sona, ponieważ był po raz pierwszy 
wyprowadzony przez Williama Thom sona, późniejszego lorda 
K eIvina; oczywiście że w rozpatrywanym przypadku tłumienia nie 
ma i drgania trwają, teoretycznie, czas nieograniczony.

Dla obwodów oscylacyjnych wprowadzony został termin współ­
czynnik tłumienia w postaci

Oznaczając pulsację drgań swobodnych takiego obwodu przez ojs, 
przy czym

1
V  L C ’

cc, =
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otrzymamy dla poprzednio rozpatrywanych współczynników a i /3 
następujące zależności:

R d d cos d
~~ T y iT C  = 2

a =
2 L 2L]/

11 (4) = -  i / x -  (4)

§ 115
ŁADOWANIE KONDENSATORA PRĄDEM STAŁYM PRZEZ OPORNOŚĆ 

RZECZYWISTĄ I INDUKCYJNOŚĆ

Jeżeli przyłączymy obwód (rys. 212) do źródła prądu stałego 
o napięciu U, wówczas dla określenia napięcia na kondensatorze 
będziemy mieli na podstawie wzoru (37) równanie różniczkowe

1 1 U, (63)d2uc R duc 
dl2 + 4  dt ~ L C Uc LC

zaś prąd płynący w obwodzie będzie określony wzorem (36)

Całka szczególna równania (68) będzie uc =  U, co łatwo spraw­
dzić; wobec tego całkę ogólną tegoż równania otrzymamy dodając 
U do całek ogólnych równania uproszczonego (38), które znaleź­
liśmy już dla trzech rozmaitych przypadków.

Dla określenia stałych wchodzących do tych całek ogólnych 
będziemy mieli warunek graniczny

t =  0, uc =  0, i =  0.
W ten sposób otrzymamy w przypadku  I, gdy

według wzoru (44)

i

i =  C

skąd przy / =  0

1V ‘R> 2 l / - £ - >

— ctít —aat
A 1e +  A 2e 4- U,

duc
dt = — ai CAX e —

A 1 + A 2 = — U , 
a^Ax + ci2A 2 =  0.

■ a2 CA2e2

(69)

(70)
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Rozwiązując te równania, znajdziemy

At = «2
Q% fli U;

417

aa — <ii U.

Wobec tego

u, = U - a , t  - a , t  l+ a2e — a1e \ +  U ., . m . , (71)a2 — ai I !
Jeżeli porównamy pierwszy wyraz prawej strony tego wzoru 

ze wzorem (49), to spostrzegamy, że różni się on od tego ostat- 
tniego tylko znakiem; poprzednio już zbadaliśmy, że taka funkcja 
jest malejącą z biegiem czasu; wyraz ten stanowi napięcie przej­
ściowe na kondensatorze, gdy wyraz drugi U stanowi napięcie 
ustalone __ ^

U — axt ~ a tta2e — axed2 a±
Przebieg napięć uwidoczniony jest na rys. 218.

(72

Teoria prądów zmiennych 27
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Prąd i znajdziemy podstawiając wartości stałych A1 i A2 do 
wzoru (70), wtedy

= CU— e a‘‘ _
a2 [

— a%t \
e «;i

(73)

dibadając funkcję w nawiasach, znajdziemy, że pochodna staje się 
równą zeru, gdy

dlt OL tt r\c^e + a2e = U,

(di—o,)« ae = — a,
s

ł = -----------In-^A > 0 ;
a2 — ax

(74)

(75)

d2iponieważ druga pochodna —  przy znalezionej wartości i jest

mniejszą od zera, więc ta wartość t daje nam max i.

Uwzględniając (73), (74) i (75), otrzymamy

max i =  CU  ai° 2 — a,» a ,  — a i t6 ------— 6
a2 —- cti I a

= CUa1e~a" 

=  C U axe
aj —aj aj

(76)

Rys. 219 podaje przebieg ładowania kondensatora.
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W przypadku II, gdy

R =  21 / ~

według wzoru (56)

419

■  < ] / c  • '

uc = e at (Aj + A 2t) +  U,
R

gdzie a = ;

duc
i  =  C = Ce““1 (Aa —aAj-aA,*);

zakładając w tych wzorach i =  0, uc =  0, i = 0, otrzymamy

¿ i  =  -  u,
A2 — aA1 - 0,

(77)

(78)

skąd

Wobec tego

ponieważ

więc

Aj = — Í7,
A 2 = — aU.

uc =  _  1/(1 +  af) e-<"  + Í7, 

i =  UCaHe~at;
(79)

7 2 —.

4L
I?2 ~~Ć~

4 L 2 4L2 LC

• i /  .
l =  - L te (80)

We wzorze (77) pierwszy wyraz z prawej strony, stanowi na­
pięcie przejściowe u(f; jest to funkcja malejąca z biegiem czasu. 
Przebieg napięć podaje rys. 220.

~ ' i i
"Dla funkcji prądu znajdujemy, jak w analogicznym przypadku 

wyładowania (§106), m axi przy

J.____2L_
1 ~ a R ’

czyli
U 2L 2 U Umax i =  —  • e = ^  0,74 „iiL R v Re =  v,#’  o  

Przebieg prądu ładowania przedstawiony jest na rys. 221.
27*
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W p rzypadk u  III, gdy

na podstawie wzoru (60)

uc =  e~at (Ax sin fit + A 2 cos  /¡i) + U.,

Zakładając w tych wzorach

ł 0, uc = 0, i = 0,
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otrzymamy

skąd

wobec tego
Ai

A z =  — U, 
aA2 +  PAX = 0,

■ j U ;  A 2 = — U;

Mamy

uc = ~ ~ jfe a‘ ( a  sin № + P c o s  Pt) + U,

a2 + d2i =  CUe~a‘ +a P - sinpl.

a2 + /S2 = LC ’

a.sin Pł + p cos /9f = ^ a2 + /32 sin (/3/ + <5) = 
1

gdzie

przeto

V"LC

tg <5

sin (pł +  <5),

P

■ Ue~“  ■ a,
l =  — p r ~ smP

Napięcie przejściowe na kondensatorze wynosi
U

fi\LC
e at-sin (/3i+ <5).

(82)

(83)

Jest to funkcja zupełnie ta sama jak i we wzorze (62), dla której 
znaleźliśmy, że maleje ona zmniejszając się sinusoidalnie, przecho­
dząc przez szereg wartości największych dodatnich i ujemnych dla

t =  0, n 2 n
P ' P ' "

Najbliższą największą wartość dodatnią dla napięcia przej-
71ściowego otrzymamy, gdy t =  wtedy bowiem 

sin (/Sf + d) =  sin (n +  <5) = — sin <5;
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ponieważ 

więc dla t

sin <5 = fi \] LC, 

otrzymamy

max uc =  ^ 6— pyjLC + U = 
[l\LC

= U ^1 + e_at̂  =  u ( l  +  e“ f * y

Funkcja wykładnicza w nawiasie nie może być większa od 1, 
wobec tego możemy napisać

max uc <  2U.

Co się tyczy prądu i, to ponieważ wzór (83) jest zupełnie taki 
sam jak i wzór (63), otrzymamy więc największą jego wartość dla

t =
P

i-vV-C ——dmax i = U i  /  - j -  e fi .
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Na rys. 222 mamy przebieg napięcia na kondensatorze w przy-

padku, gdy a jest małe

Przebieg prądu ładowania jest zupełnie taki sam jak przy wy­
ładowaniu (rys. 217).

§ H6
POWSTAWANIE PRĄDU ZMIENNEGO W  OBWODZIE Z OPORNOŚCIĄ  

RZECZYWISTĄ, INDUKCYJNOŚCIĄ I POJEMNOŚCIĄ

Niech w chwili t = 0, gdy zamykamy obwód z prądem zmien­
nym, napięcie na naciskach przechodzi przez fazę y>; wartość chwi­
lowa tego napięcia będzie określona wzorem

u = Um sin [wł + y>).
Na podstawie wzoru (37) równanie dla takiego obwodu będzie

d2uc R duc 1 
dl2 + L dt +  LC c

Um
LC sin (wt + y>). (84)

Oczywiście, przy rozwiązywaniu tego równania, tak samo jak 
poprzednio, będziemy mieli do rozpatrzenia trzy przypadki; jednakże 
w pierwszych dwóch przypadkach w porównaniu z tym, co mieliśmy 
przy prądzie stałym, nic szczególnego nie spostrzegamy, przejdziemy 
więc od razu do przypadku III, gdy

a2 + p2 = LC
Całką ogólną równania uproszczonego będzie (wzór 46) 

uc = e~at (Ąx sin pi + A 2 cos p1),
gdzie A 1 i A 2 — stałe dowolne; daje ona nam wartość napięcia 
przejściowego na kondensatorze; możemy napisać w postaci jednej • 
funkcji sinusoidalnej

ucp =  e~at M  sin (j6t + ó), (85)
gdzie M  i d stanowią stałe dowolne.

Całkę szczególną równania (84) znajdziemy na podstawie takiego 
samego rozumowania, jakie stosowaliśmy w § 110, mianowicie okre­
ślamy najpierw dla naszego obwodu prąd ustalony

Umsin (cot + xp — <p), (86)
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gdzie

z - Y * + { w l - ^ Y • i s 'r ~
co C

R

mając wartość tego prądu, znajdujemy wartość napięcia ustalonego 
na kondensatorze

albo

Um 1 /  71 \
u‘ “ = “ z ^ sin y ) ’

u ,ucu =  — „  ”  cos (wt + w —- cp). Z coL (87)

Ze wzoru (85) znajdujemy przejściowy prąd

ip =  = Ce~at [pM  cos ((it +  d) — a M  sin (/Si + <5)]. (88)

Ze wzorów (85) i (86) oraz (87) i (88) otrzymujemy wartości 
napięcia na kondensatorze i prądu w stanie nieustalonym

uc = ucu + ucp =  — „  ”  cos [co ł +  y> — <p) + e M  sin (/Si + 6), (89)
£  CO (-j

i =  /« + ip = — sin (ft)í + — ?>) +

+ Ce~at [/? M  cos (pt +  d) — a M  sin (/Si +  <5)]. (90)

Zakładając w obu tych wzorach t =  0, uc =  0, i = 0, otrzy­
mamy jj

M  sin <5 = cos (m — a>),Z co C

aC M  sin <5 — p C M  cos <5 = —~  sin (y> — cp)\

podstawiając wartość M  sin 6 z pierwszego wzoru do drugiego, znaj­
dujemy

co . .—-0- sin (v> —

Na tej podstawie obliczamy
M  sin [pi +  <5) =  M  cos <5 sin pt + M  sin <5 cos pt =

M  cos <5 = Um
Z co C [ j cos (y> — <p)
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um I\(  a sin fi t
Zwć\L\
Um IrV«2 + |82f

Zw C  IL fi

e tg y

sin fit +  fi cos /Si \ . . c o  . . . . .----- p ------ —  J cos [y>—(p)—-p- Sin (rp — cp) sm fitj =

(v> — <p) sinjSij,(O
J

Następnie
M  cos (fit + 6) = M  cos <5 cos fit — M  sin <3 sin fit =

[ j  C0S ^  — ̂  C0S ( f ~ ,P)cos fi t—cos (rp—cp) sin fi fJ :

[
 //5 sin fit — a cos fit\ co . ,— cos (rp — <p) 11 ------ - —p------- — I ~ - J  sin (V — <P) cos i | =

Z a> i
Urn

Zu)C
u,

Z u) c
+ fi2 c o

gdzie

p  cos (rp—<p) sin [fit — y') +  - p  sin (rp —i f ) cos fit

t g /  =  r

* ] ■

Podstawiając znalezione wartości M  sin (fit + ó) oraz M  cos (fit + d) 
do wzorów (85) oraz (88), znajdujemy, uwzględniając, że

V “s + ^ “ v r c ’
u.

i t  — __p  — a t

cp fiZC ^sin (rp — cp) sin fit — C0S ( sin (fit +  y) |, (91)>}
gdzie

i s r - j r .

oraz
i* = e- a ,  U,Urn T

Zto[ - ( 0Sy L C ^  s‘n (/^— y’) — w sin (tp—cp) cos fit —

fi^ L C
cos (rp — cp) sin (fit +  y) +  -g- ca sin (rp — cp) sin fit =

= e

fi

sin (rp — cp) (a sin fit — fi cos fit) —
Zfi (

COS (rp — (p) 
c o LC

[a  Sisin (fit +  y) — fi sin (fit — y
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gdzie tg /  =
a

T :

ponieważ tg /  = cotg y =

przeto , n
y —  y .

więc sin [pt — y') = —  COS (pt + y)
następnie

asin /31—P cos pt =Y a2 + /32 sin (pt — y) = sin (/3/ — y),
Y l c

i
a sin (j8/ +  y) — /3 cos {pt + y) =  V«2 + P2 sin {Pt + y — y) =  ^ L Č sin 
więc ostatecznie
• -n i  Uff,

Zp^L C [sin (y> — <p) sin [pt — y) — C0S ^ ■ sin |S t
CUV"LC

]  (92).

Porównując wzory (91) i (92) na ucp i ip widzimy, że każda 
z tych wielkości określona jest przez dwie sinusoidy (dwie fale)

Ftz amplitudami malejącymi, zależnymi od stałej tłumienia a =  = -̂j- ■ 

Pulsacja tych sinusoid wynosi /5, czyli ich częstotliwość ^  ; obie

sinusoidy są przesunięte względem siebie o kąt y, przy czym tg y =  —.

Sinusoidy prądu są przesunięte względem odpowiednich sinusoid 
napięcia o kąt y wstecz (prądy są opóźnione w fazie o kąt y). Stosunek

amplitudy napięcia do amplitudy prądu wynosi l / ?

Wzór (91) można przepisać w postaci:
, Um i f  . . cos (ip—q>) cos y~\ .
' p z c l l ^ - * ) ------- j  sin pt —ucp=  — e~«-

cos (ip — <p) sin y
COS pt [

W  ÝLC i

skąd widać, że amplituda tego napięcia równa jest

[J =  p—af—
£pm /SZCV cos 2( f — <p) 2sin(^)—(p)cos(y>—<p)cosy.sin2 [y>—<p) +

CU2 LC V LC
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ponieważ

cos y =

więc

1 _ «  RyjLC_ R ,  /  c_
yi + tg2y y ^  + Z32 2 L  2 V  L ’

e ~ at U,
Ucpm Sin 2 =

e ~ a‘ U m
p z c

C O S 2 ( y >— 95) B

1 j / i  - C08,( v - ? ’) ( l  r c )  - ¿ sin 2 -  & • (93)

W analogiczny sposób przepiszemy wzór (92)

e^U m
Zp^LC ir-sin [ip — y) — cos y cos ( y>— <p) 

co y  LC ] "
sin P t-

— sin (ip — q>) sin y COS pt j , 

skąd znajdujemy amplitudę prądu przejściowego

Ipm— e ~ a ,U,
Zp\LCV 1

cos2 (y—y) 2 sin(y —ę>)cos(y—qj) cos ysin2 {y—(p) +
j2L C (OyL C

i na podstawie takich samych działań, co i poprzednio

i- 4 ^ / i- c°8> - 4 - ^ ) - ^ sin2(v 7W94)
Porównując wzory (93) i (94) spostrzegamy, że amplituda na­

pięcia na kondensatorze i amplituda prądu w jednakowy sposób 
są uzależnione od fazy y>, którą ma napięcie źródła prądu zmien­
nego w chwili zamknięcia obwodu. Aby znaleść taką wartość y>, 
dla której obie wymienione amplitudy otrzymują największe war­
tości, musimy zbadać funkcję znajdującą się pod pierwiastkiem 
w obu wzorach (93) i (94), mianowicie

~  z i c ) s i ” 2  -  f )  -  ¡ r r c o s  2  ( » - « ’ )■

Gdy przyrównamy tę pochodną do 0, otrzymamy

tg 2 {rp -  <p) = - —   — —̂

mL \l ~ w 2L C

B

<oL-
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ale

więc

1
(O C

R tg <p,

tg 2 [v> — <p)= cotg 95.
W granicach jednego okresu daje to dwa rozwiązania:

(95)

skąd

1) 2 (V-ę>) = ! - 9 > ,

w n
v - 2 + 4 '

skąd 93 3
V - 2  + 4 n -

Biorąc drugą pochodną X, otrzymamy

^  = 2 ( 1 “ - ^ i č ) cos2(v ' " - 95)+l r sin2(v' - ?’):=

2R  01 \j -  cos 2 (y) — (p)co
U ------7ojL
L + tg 2 [rp — cp) \

2 R= COS 2 (y — 93) [cotg 93 + tg 2 (v> — 93) ] ;

cos 2 (v—93) cotg 93

przy uwzględnieniu (95)
d*X 4 R
dy2 tw L

Dla wartości y>, odpowiadającej pierwszemu rozwiązaniu, tj.
93 n

y - - 2 + T ’

dyi2
4  i ?  ( n  \  4  i ?=  — T-  cotg 93 cos I —  93 I =  — =r- cos 93;a) L ° \ Z )  a> L

przy wszelkich wartościach 93 w granicach

n
0 <  93 < 1 j • d*X _ 

będzie d ^ > 0 ;
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3dla drugiej wartości y> = n będzie

d2X  AR . / 3  \ AR
= COig(pCOS{-2 n ~ <P /  = coZT C0S

czyli
d*X .
dtp* < 0 ‘

Otrzymujemy więc dla funkcyj TI i /

minimum, gdy y> =

3maximum, gdy y> =  —  + n.

n

Zbadajmy jeszcze te wartości dla y> — ę> = 0 oraz y> — q> =  

w pierwszym przypadku wzory (93) i (94) dają 
rr _  e~ atUm 1

JT

/pm —

pZC LC  
e~at Um 1 e~a‘ U„

PZ\~LC coy LC P Z oj LC

Porównując te wartości z maksymalną wartością napięcia na 
kondensatorze i prądu w stanie ustalonym (wzory 87 i 86), miano­
wicie

TIcum Um
ZojC 1 I um " Um

znajdujemy
Jjępm
uu cum P^l c ’

l Pm _  g—at . 1
<w /3 LC

TTW przypadku, gdy f —<p =  , będziemy mieli

rr _  e-«C7m r = r i ,U” - 
cpm pZC ’ tm p Z ^ L C ’

P !*". =  g—«  = e~01. — } — - .
t/£um /? Tum P\LC

Na szczególne uwzględnienie zasługuje przypadek, gdy tłu­
mienie jest bardzo małe, czyli R bardzo małe w porównaniu do L.
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Wtedy możemy założyć

a T “ 0 ' e_"  "  1 ’

W tym przypadku będziemy mieli: 

dla — <p =  0,

sidla xp — ę> = y  ,

a ,
Lpm

u,pm _  co
uci

Lpm

Z tych wzorów wnioskujemy, że gdy co >  /5, można oczekiwać 
przepięcia na kondensatorze, zaś gdy /3 > co — przetężenia w obwodzie. 

Stwierdziliśmy, że stosunek wartości maksymalnej napięcia na

kondensatorze do wartości maksymalnej prądu wynosi

stąd
_Ł C TJ2 — — T I 22 ^  cm g

Pierwszy wyraz stanowi maksymalną energię elektryczną kon­
densatora, drugi maksymalną energię magnetyczną cewki induk­
cyjnej. Zachodzi więc w obwodzie oscylacyjnym przemiana energii 
elektrycznej na energię magnetyczną i na odwrót; gdyby nie było 
tłumienia (B =  0), taka przemiana energii miałaby miejsce bez 
końca. Obecność B wywołuje straty cieplne energii, zachodzi 
tłumienie i zjawisko oscylacyjne stopniowo zanika.
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§ 117
PRZERYWANIE OBWODU, W  KTÓRYM INDUKCYJNOŚĆ I POJEMNOŚĆ 

SĄ POŁĄCZONE RÓWNOLEGLE

Zastosujemy powyższe wyniki do obwodu prądu zmiennego, 
w którym C i L są połączone równoległe, B — 0 (rys. 223).

Przypuśćmy, że 
przerwa w obwodzie 
nastąpiła w chwili, gdy  
napięcie na kondensato­
rze przechodziło przez 
swoją wartość najwięk­
szą, równą wartości 
maksymalnej napięcia Rys. 223
na zaciskach prądu 
zmiennego, tj. • ' a c =  Um;

wtedy prąd w obwodzie i =  0,

gdyż prąd wyprzedza napięcie uc o kąt prosty. Cała energia znaj­

duje się wówczas na kondensatorze i wynosi ~ C  U^. Zaczyna się

oscylacyjne wyładowanie kondensatora i po upływie 1/i  okresu cała 
energia kondensatora przechodzi w energię magnetyczną na cewkę; 
prąd przechodzi przez cewkę i osiąga wartość I ,  przy czym

Y  L / 2 = \ c u l

skąd

/ = £ / „ ] / ! •  (96)

Jeżeli zaś wyłączenie nastąpiło w chwili, gdy uc = 0, to znaczy, 
gdy prąd i = Im przechodził przez obwód, wtedy cała energia znaj­

duje się w cewce i wynosi - i -  L I * . Po upływie x/4 okresu energia 

ta przejdzie na kondensator, który uzyska napięcie Uc, przy czym

skąd

(97)
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W stanie ustalonym mamy
u m - i mz ,

gdzie Z — oporność pozorna naszego układu, którą możemy łatwo 
znaleźć jako oporność wypadkową dwóch oporności Zx = /  co L

oraz Ż 2 — — / — ; mamy
coC

(Ol (O C
JL
C

Żi + Ż2 ■ fajL 1 \I (oC) coL

skąd

Z =

_L
C

■ o j  Lw i
Podstawiając do wzoru (96) zamiast Um------- ImZ oraz do wzoru

(97) zamiast Im -------- otrzymamy
Zj

r ~ ’----- c o L  r
W tych wzorach można łatwo porównać prąd i napięcie powsta­

jące przy wyładowaniu kondensatora z wartościami tychże wiel­
kości w stanie ustalonym.



R O Z D Z I A Ł C Z T E R N A S T Y

OBWODY SPRZĘŻONE MAGNETYCZNIE

§ H8
WYŁADOWANIE KONDENSATORA W  JEDNYM Z DWÓCH OBWODÓW  

SPRZĘŻONYCH MAGNETYCZNIE

Rozpatrzymy dwa obwody znajdujące się jeden obok drugiego 
(rys. 224); w każdym mamy kondensator o pojemności Clt względ­
nie C2> oraz cewkę o indukcyjności własnej Lx, względnie L2. Opor­
ności rzeczywiste w obu obwodach przyjmujemy równe zeru.

Kondensator pierwszego obwodu C\ przyłączony jest do źródła 
prądu stałego lub zmiennego i w pewnej chwili l = 0 zostaje odłą­
czony od tego źródła, gdy napięcie na kondensatorze wynosi U0 ; 
jednocześnie zostaje zamknięty obwód drugi. Oznaczając wartości

Teoria prądów zmiennych 28
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chwilowe napięć na kondensatorach przez ux i u2, zaś wartości chwi­
lowe prądów, które przy wyładowania kondensatorów powstają, 
przez ij oraz i2, wreszcie współczynnik indukcji wzajemnej cewek 
przez M, będziemy mieli na podstawie znanych wzorów dla obwodu 
pierwszego

fiilj , r dle)

dla obwodu drugiego
L l~dt+ M ~dt =

T di« _ _ di-1
L* i i + M i t =

oraz warunki graniczne 
l =  0, ux = f /0, 

Ponieważ

- C i

ii =  0, u2 = 0,

du1 ^ du2 
° 2 di ’1_di ’ 2

przeto wzory (1) i (2) możemy przepisać w postaci

- L i  Ci
d2 u, 
ai* -MC,

■l 2c 2^ — m c x

d2u2 
2 dt2 

d2ux

= «i

dt2 dt2

albo ux"  + LiCx

«2 + 1

«1 +

U2 +

M C ,
Lr^Cl 2 
MC\

L2C2 “ 2 '

0,

ux"  =  0.

Oznaczmy
M C 2 
Li Cx 

1

— î>
M Ci =
i r* 2̂» -̂ 2 ^2

1

wtedy

z równania (6)

LiCi 0 , l 2c2

Ui" + a2ux = — kxu2",
u2" + b2u2 =  — k2ux",

KU2 = b■- 1̂ 2̂ 2̂

( 1 )

(2)

i2 =  0. (3)

(4)

(5)
(6)

“  Ua"  = ~kx Ul"  +  k¡ Uv

zaś z równania (5)
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więc
ó2 U2 kił}2 “ l +  kib2 “ l.

1
U2 -  ¿2 “ l"  +  ^ 2 Ux"  + /i, ó2

Ul" +kxb2 ' /C^2 Ul*
Biorąc pochodną względem Z dwa razy, otrzymamy

(7)

1 — Aj k, <IV> a2 
U ," =  ----- i—T„— Ux +  -i—T S -  ukxb2 kxb2 i >

ki u2" 1 - k xk2 ^  a2
b2

Ponieważ
M C 2 M c\u k — 2 ^

1 2 L1C1 ' L

Ul +

M 2
2 ^ 2  ■T'l T-<2

Z>2

= /c2, (8)

gdzie k < 1 stanowi spółczynnik sprzężenia magnetycznego, więc 
podstawiając te wartości do równania (5) otrzymamy

1 -  k2 <IV> u2
u / '  +  a2 Ui + ó3 U l + ~ b 2 U l "  =  0

albo
(1 — k2) u(!IV) + (a2 + b2) ux"  + a2ó2Ui = 0. (9)

Jest to równanie liniowe czwartego stopnia, którego równanie 
charakterystyczne

(1 — k2) a4 + (a2 +  b2) x2 +  a2b2 =  0, 
jako równanie dwukwadratowe, daje pierwiastki

9 - { a 2 + b2)± }J [a2 +  b2)2- 4 ( l - k 2)a2b2 ,
X 2 (1 — k2) ;

podpierwiastkowa
[a2 +  ó2)2 — 4a2ó2 + 4k2a2b2 — (a2 — b2)2 +  4k2a2b2 >  0, 

następnie
| a2 + ó2 1 (a2 + b2)2 - 4 ( 1 -  k2) a2b2, k <  1,

więc a:2 zawsze < 0. Oznaczając
a2 + b2 +  Y (a2 + b2)2 — 4 (1 — k2) a2b2 

2(1 — k2)

a2 +  b2 — Y (a2 + ó2)2 — 4(1 — k2) a2b2 2
2 ( 1 -  F )  “  ’

( 10)

28*
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otrzymamy 4 pierwiastki dla x :

* i “ + / 0 i .  x2= —jp 1}
*3 = + / & ! ,  * « “ —./02-

Wobec tego. całka ogólna równania będzie
ux =  A x sin 4- A 2 cos pt t +  4l3 sin p2t + A t cos /32f, (11)

gdzie żtx, A 2, 4̂3, A 4 stanowią stałe dowolne.
Biorąc dwa razy pochodną tz1 względem t, znajdujemy

« j"  = —i?x2 sin Pil — P1i A 2 cos P it~ p 22A 3 sin /?ai — Pi' Ai cos /ł2i. 

Wstawiając tę wartość do (7) i uwzględniając (8), znajdujemy 
( 1 - k 2) I

M >"22 j ^ i 2 (A i s in Pit +  A 2 cos  Px*) +U, = —

+ p22 (As sin p2t + A i cos p2t) | +

_̂_ [ A x sin pxt + A 2 cos pxt + A 3 sin p2ł + A t cos p2t j =
/cj b̂  i '

=  Jć b̂* i [ a* ~  (1 ~  **)] • [¿1  sin Pi. t + zi2 cos Pi t J +

+
albo

gdzie

Ĵ a2 — p22 (1 — k2) J ■ J^43 sin p2t + A t cos p2tJ j

u2 = Bi  sin pxt + B2 cos Pil +  B3 sin p2t + Bi  cos p2l, (12)

B i = a2- P f [ \ ~ k^ A

B ,

kxb2 -tŁlł 
a2 — /9X2 (1 — k2)

kib2 A 31

o a* - P ł { l ~ k 2) A 
* * ------------k j 2 ^ 3’

kxb2
lub oznaczając w skróceniu

P = 

9 =

a2- p 2{ \ - k 2)
kxb2

a2- P 2{\ - k 2) 
kib2

(13)
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Bx — pAx, 
=  pA2, 

B3 — qA3, 
b 4 = qA 4-

Ze wzoru (11) znajdujemy

¿1 = — = ~  cos fixt +  Ci piA 2 sin f}xt —

— Cxfi2A3 cos p2t +  Cl f)2Ai sin p2ł .

Ze wzoru (12) otrzymujemy

(14)

(15)

;   r  du
h ~ L 2 dt 2 = — C2piB1 cos f}xt +  C2pxB2 sin fixt ■ 

C2p2B3 cos /?2ż + C2p2BA sin p2t. (16)
Zakładając do wzorów (11), (12), (15) i (16) warunki graniczne (3), 

znajdujemy
Uo = A 2 + A x,
0 = B2 + Bt ,

0 = PXA\ + ^2^31 
0 = PXBX + PzB3, 

albo, po uwzględnieniu (14),

A 2 + A t — U0, 
pA2 + qAx =  0,

PXA X + P2 A 3 = 0, 
pxp A x + P2qA3 = 0.

Z ostatnich dwóch równań otrzymujemy

¿ 1  = 0,
0,

zaś z pierwszych dwóch

A 2 —
q — p

U,0)

A a = U0.
q ~ p



438 OBWODY SPRZĘŻONE MAGNETYCZNIE

Wobec tego na podstawie wzorów (14)

B1= 0 ,

B3 = 0 ,  B 4 =

pq
q p 

pq
q p

u 0,

Uo,

B 2 — ■*“  Bi .

Podstawiając określone wartości stałych do wzorów (11), (12), 
(15) i (16), znajdujemy

u i  — q ^  p U o  cos iM ~~ q  ^  p U o  cos /Mi 

U2 = - U0 COS t ----- — -  U o COS P 21 ^  - U o (cos /3xż — cos p2ł),
q — p q— p q — p

l'i = Cj_ Pt g p Uo sin i Ci P2 ^l p Uo sin Po

h ~ U2 Px U o sin p! t C2 p2 U o sin P2 l =

=  C* Y ~ p  U o (/?! Sin p . t - p ,  Sin P2 ł).

Z powyższych wzorów widać, że mamy tu różnicę dwóch drgań 
sinuso.dalnych o pulsacjach px i p2.

§ 119
WYŁADOWANIE KONDENSATORA W  PRZYPADKU, GDY OBA 

OBWODY SĄ ZE SOBĄ W  REZONANSIE

Na szczególne uwzględnienie zasługuje przypadek, gdy każdy 
z obwodów, rozpatrywany samodzielnie, posiada drgania swobodne 
o tej samej częstotliwości; mówimy wtedy, że obwód drugi jest w re­
zonansie z pierwszym obwodem.

Oznaczając częstotliwości drgań swobodnych obwodów odpo­
wiednio przez fSi i /  , będziemy mieli na podstawie wzoru (67) z § 102

fs ,2n ^ L Cj ,  ’ 2n}/L2C2
skąd otrzymujemy warunek rezonansu obu obwodów

L 1 C1 — L 2 C2
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Wobec tego na podstawie (4) i (10)
a2 = b2,

2a2 + y4a4 — 4a4 + 4/c2a4 a2(l + k) a2
Pl =  2 (1 — Ar2) l - / c 2
_ 2 2a2 — y 4 a 4 — 4a4 + 4/c2a4 a2 (1 — A) a2
^2 2(1 — A:2) l - / c 2 = r T f c ’

Pi = ±

zaś na podstawie (13)
y 1 —/c ’

P =

9 =

a2 -  a2 (1 + k) 
kx a2

a2 — a2 (1 — k) 
~ k1a2

y  1 + k  ’

Jl  
" V

V
_____ /,. Q

albo, uwzględniając (8), że k = \]k1k2 oraz (4) że —̂  = — (dlartj Lt2
Lx ^  = L2 C2), będziemy mieli

9 - P  = 21 / 5 ‘

Wobec tego wzory dla napięć i prądów otrzymamy ostateczriie 
w postaci

«i =  y  U o cos /3i t +  i  U0 cos /S21 =  U0 [cos i +  cos P2 f],

«9. = - 2^2 1/0 [cos ^ i - c o s  /S2f],

»1 =  Cl C0y  [/?! sin PJ + P2 sin Pi i],

i2 =  -  C2-| /A| i. ^  u 0 [p, sin p1t - 0 2 sin Pi t].

Z tych wzorów wnioskujemy, że prądy są przesunięte w fazie 
o kąt prosty względem odpowiednich napięć, przy czym prądy są

7topóźnione w fazie o —  względem napięć. Gdy napięcia przechodzą
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przez wartość maksymalną, prądy przechodzą przez wartość zero 
i na odwrót. Gdybyśmy uwzględnili obecność oporności rzeczywistej 
B, otrzymalibyśmy jeszcze zjawisko tłumienia i wzory na napięcia 
i prądy dałyby nam sinusoidy tłumione, jak na rys. 225.

Kształt funkcji napięcia i natężenia prądu jest zależny od pul- 
sacji (częstotliwości) /3Ł i /52; funkcje te można przedstawić w innej 
postaci: dla napięcia

cos 1 +  cos /?21 =  2 cos -̂ ł * cos ^  g ̂  * ’

dla napięcia u2:

cos /Jjt — cos /S21 =  — 2 sin * s*n 2 ^   ̂ ’
dla prądu
/9, sin + /S2 sin /S2f = (/?! + /S2) Jjsin ^  * cos ^  *

+ ( & -& ) [sin ^ - / y  f cos

2
(̂ i + /y *

]+

+ ( A + w [ sinM i cosi & + « ' ] .

Na rys. 225 mamy wykres tej funkcji w przypadku ogólnym, 
tj. gdy drgania są tłumione, czyli we wzory na prąd i napięcie
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wchodzą jeszcze funkcje wykładnicze; z rysunku widać, że powstają 
dudnienia.

Częstotliwość dudnień drgań swobodnych zależy od spółczynnika 
sprzężenia k:

Gdy k jest małe, obwody nieznacznie wpływają na siebie, dudnie­
nia będą bardzo powolne, otrzymamy wykres dla prądu i2, jak na 
rys. 226.



R O Z D Z I A Ł P I Ę T N A S T Y

STANY NIEUSTALONE W LINIACH DŁUGICH

§ 120
RÓWNANIA RÓŻNICZKOWE DLA WARTOŚCI CHWILOWYCH NAPIĘĆ 

I PRĄDÓW. CAŁKI OGÓLNE TYCH RÓWNAN

W rozdziale X I rozpatrywaliśmy przewody z równomiernie 
rozłożonymi stałymi R, L, A i C, ale tylko w stanie ustalonym, 
wprowadzając wartości skuteczne napięć i prądów; obecnie dla stanu

a . nieustalonego musimy wy­
prowadzić wzory dla war­
tości chwilowych tych wiel­
kości. Rozpatrzmy nie­
skończenie mały odcinek 
dx linii dwuprzewodowej 
(rys. 227) w odległości x od 
źródła prądu. Oznaczając 
wartości chwilowe napięcia 
i prądu w rozpatrywanym

u+i i d*

---d\
Rys. 227

punkcie odpowiednio przez u i i, otrzymamy na podstawie znanych 
już rozumowań (§ 90)

-  ~  =  Ri + L — , dx dt ’ (l)

di du 
~  dx Au + c di ’ (2)

d i
biorąc pochodną (1) względem x i podstawiając zamiast ^  

wartość z (2), otrzymujemy

- f 2± . =  - R A u ~  R C ~ - [ L A ^ ~  L C ^ -  dx2 dt dl dt2

jego
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alb0 ? ~ = bau + (bc + la) ^  + l c tt>- (3)

Po znalezieniu wartości u z tego równania, możemy określić 
wartość i z równania (2).

Równanie (3) jest równaniem różniczkowym o pochodnych 
cząstkowych i może być rozwiązane rozmaitymi sposobami; odpo­
wiedź otrzymamy w postaci rozmaitych szeregów, sumy tych szere­
gów muszą dawać te same rezultaty. Zastosujemy metodę E ulera .

Załóżmy, że niewiadoma funkcja u jest iloczynem dwóch funkcji, 
z których każda jest funkcją jednej tylko zmiennej ł lub x, więc

u = TX, (4)
gdzie

T =  h  (*),

Wtedy fu  T dX_ 3*u_ j ,d ?X '
dx dx ’ dx2 dx2 ’

du dT d2u d2T 
d t ~  X d t  ’ dt* X dl2 '

Podstawiając te wartości do (3) otrzymamy

T ^ = RATX + (RC  +  L A X̂ -JT  +  LCX %

lub, po podzieleniu przez TX,

1 d2X  n . BC + L A d T  LC d2T 
I W  + T dl ^ T dt2 • (5)

Lewa strona tego równania zależy tylko od x, prawa zaś tylko 
od t; ponieważ równość musi mieć miejsce przy dowolnych wartoś­
ciach x i t, więc jest to możliwe tylko wówczas, gdy każdy z tych 
wyrazów ma jedną i tę samą stałą i rzeczywistą wartość liczbową.

Ta stała nie może mieć wartości dodatniej, np. + a2, gdzie a 
może mieć jakąkolwiek wartość liczbową; oczywiście mielibyśmy 
wówczas 1 d2 Y

----------= a2
X  dx2 ’

skąd X  = K t eax + K 2 e~ax.
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gdzie K x i A'2 — stałe dowolne, ale z tego wynikałoby, że przy wzroś­
cie x do °o funkcja X  również wzrastałaby do nieskończoności; do 
takich samych rezultatów doszlibyśmy badając funkcję T, gdybyśmy 
przyrównali do + a2 prawą stronę równania (5); czyli że w takim 
przypadku napięcie u = T X  wzrastałoby do nieskończoności ze 
wzrostem x, co oczywiście nie odpowiada naszemu zagadnieniu. 
Wobec tego musimy przyjąć tę stałą w postaci liczby ujemnej, 
a więc — a2, gdzie a może na ogół mieć wartość dowolną.

Z równania (5) wobec tego otrzymujemy

RA +

1 d2X  _ 
X  dx2 ~

RC + LA dT 
T dl

— a2,

LC d2T _  
+  T dl2

albo
7 §  + ‘ ‘ x - ° '

d2T
dl2 +

(R_ A \ dT 
\ L + c )  dl + RA

LC T -  0.

( 6)

(7)

(8

Rozwiązując równanie (6), znajdujemy

X  =  A0 cos ax + B0 sin ax,

gdzie A0 i B0 — stałe dowolne.
Dla rozwiązania równania (7) piszemy równanie charaktery- 

styczne: ^
íř> +

które daje pierwiastki

k + RATt , ° 2 =  0,LC

K (j l +4ü)+V {y l +̂ ) 

= ~ { ? l + 4 č ) +  V li
2 RA + a2 

L C ~

( R A V a2
\2L 2 C j LC ’

k2 — ( L +é )~ V {(  R -
A \2 a2

\2 L 2 C ) LC  -
W zależności od tego, czy pierwiastki i k2 są rzeczywiste — 

różne lub równe, lub są liczbami zespolonymi, otrzymamy trzy po-
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stacie rozwiązań; w pierwszych dwóch przypadkach

1) T =  Cx + C2 ek'\
2) T =  ekt [C1 + C2t),

gdzie C1i C2 — stałe dowolne; ponieważ kx i k2 są liczbami ujemnymi, 
więc otrzymujemy funkcje malejące i to nic osobliwego nie przed­
stawia; rozpatrujemy więc przypadek, gdy pierwiastki są liczbami

zespolonymi, czyli —~ <  y ^  ;

wtedy kt =  — a +  i ß i

k2 =  — a - i ß ,

gdzie B
“  2 L

A
+  2 C ’ (9)

' V r a : y2, (10)

II A
2 C ' (U)

Zwróćmy uwagę, że a i y zależą tylko od stałych linii, więc dla
rozpatrywanej linii mają wartości określone, gdy tymczasem /9 za­
leży od stałej a.

Całka ogólna w tym przypadku będzie
T =  e~at (C1 cos /91 -)- C2 sin /91).

Podstawiając tę wartość T, a także wartość X  z (8), do (4) 
i zamieniając iloczyny stałych dowolnych pojedynczymi literami, 
otrzymamy
u = e~at{{A 1 cos /Sf + A 2 sin /51) cos ax + [Bx cos /91 + B2 sin /91) sin ax}-

W zależności od wartości a możemy otrzymać nieskończoną 
ilość takich rozwiązań, całka ogólna będzie więc sumą wszystkich 
takich całek szczególnych; oznaczając dla dowolnej całki szczególnej 
wartości a przez an, odpowiednią wartość /9 przez fin, zaś stałe dowolne 
dla tej całki przez A ln, A 2n, Bln, B2n, możemy napisać całkę ogólną 
w postaci

u = e~at 2 ]  { [Aln cos pjt + A 2n sin pj)  cos a„ x +
n= 1 1

+ [Bln cos /9B1 + B2n sin /9„1) sin a„ x) J .
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Wzór ten można przepisać inaczej, zakładając
Ai„ cos pJ + A 2„ sin pJ =  M„ sin (PJ +  6„), 

Bln cos PJ + B2n sin pJ = N„ sin (pJ + y>„),

gdzie M, N, d i y> — stałe dowolne; w ten sposób
n=oo |

u =  e~at ^  Mn sin (PJ + 6„) cos anx +  N„ sin (PJ+y>„) sin anx j . (12)
n =  1

Teraz określimy prąd ze wzoru (2) 
di du

+ c ~ďi'

biorąc wartość u ze wzoru (12), będziemy mieli

- -dl- =  e - »  \AMasm (PJ +  <5J cosa„x +AWnsin (PJ + y>„) sinajc-

— aC Mn sin (PJ + <5J cos anx — a C Nn sin (PJ + y>n) sin an x +

+ Pn c  Mn cos (PJ +  <5„) cos anx +  p „C N n cos (PJ +  y>„) sin an x J, 

albo
. n= oodl v-i— -5-  =  e-° }  dx Lu

n = 2

[ M J ( A -  « C) sin (PJ + <5„)+ PnCcos (PJ + Ó„)J cos a„x +

+ ^V„r(A -  a C) sin(pJ +  y>„) +  p„ C cos (pJ + y>,' ■ ) J s i n  a „ x j .

Wyrazy w nawiasach prostokątnych możemy zastąpić sinusoi­
dami, których amplitudy będą jednakowe i równe

\ ( A - a  Cy +  (P„ C)*;
podpierwiastkowa przy uwzględnieniu (9), (10) i (11) będzie równa 

(A -  aC)2 + (pn C)2 = A 2 — 2A C a  +C2a2 + C2/?„2 =
= A 2 -  2ACa  +  C2 (a2 + /?„2) =

/ b \ 2 b a  [  a \ 2\ r a c  r a c  , , c
\2L/ + 2LC \2C/  ( L + L +a" L ’
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wobec tego amplituda sinusoidy będzie

kąt przesunięcia fazy tej sinusoidy ůn określimy ze wzoru 

P n C  Pn Pn K
t  g # n  = A —a C A ___R__ Â

C 2 L 2 C
Wobec tego

di _  i
dx e “  1/  L I j  a "  \ M n  :r  n=ł 1

sin (/?„ t + dn + £„) cos an x +

+ Nn sin [pnt + wn + #n) sin a nx  j •
Dla znalezienia i całkujemy ten wzór względem x, wtedy

— p— ati = e | — M n sin (P„ t + d„ + ůn ) sin a„ x +
n=i *•

+ ^„sin [pnt + + &„) cos anx\. (13)

Stałej dowolnej nie piszemy, gdyż oczywiście jest ona równa 
zeru, albowiem dla t =  o o , i — 0, bo u = 0. Ponieważ

— sin a„x =  cos

cos a„x — sin

( a„x + -r ) ’ 

( a*x + i r ) '

przeto, porównując (13) z (12), możemy sformułować otrzymany 
wynik w ten sposób:

amplitudę prądu otrzymujemy z amplitudy napięcia mnożąc tę

ostatnią przez l / ? ' W czasie prąd jest przesunięty o kąt

\  =  arctg
( - * ) ■

Y >  0, czyli ~y~ >jeżeli
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wtedy < 0, Pn zawsze >0, bo to wartość bezwzględna pierwiastka, 
czyli prąd jest opóźniony w czasie względem napięcia;

R Agdy - j -  <  - ę  , y <  0, wtedy dn > 0,

prąd jest przyśpieszony w czasie względem napięcia; wreszcie

gdy ~L= ~C' y = 0, \  =  arctg (— oo) = ----- ,

prąd jest opóźniony w czasie o kąt prosty względem napięcia.
W przestrzeni prąd wyprzedza napięcie o kąt prosty.
Wzory (12) i (13) dają nam wartości chwilowe napięcia i prądu 

w dowolnym punkcie obwodu, odległym o x o d  początku w najogól­
niejszym przypadku; w tych wzorach mamy stałe dowolne

M n > , N n, y>„, o„,
stałe i d„ zależą od a ,.

Wartość tych stałych dowolnych może być znaleziona tylko 
wtedy, gdy będziemy mieli dostateczną ilość dodatkowych danych 
dotyczących wartości napięć i prądów w wdadomych chwilach i w okre­
ślonych miejscach.

Mówiliśmy już poprzednio, że wartości chwilowe napięć i prą­
dów w stanie nieustalonym można rozpatrywać jako sumę dwóch 
wartości chwilowych, odpowiadających stanowi ustalonemu i sta­
nowi przejściowemu

u = uu + up ,

i = ^ + ip ■
Wyżej wyprowadzone równania różniczkowe mogą być zastoso­

wane zarówno do wartości u i i jako też do poszczególnych wartości 
uu , iu lub up , ip . Oczywiście w zależności od tego, jaki stan obwodu 
rozpatrujemy, stałe dowolne, wchodzące do całek ogólnych równań 
różniczkowych, będą miały inne wartości.

Zajmiemy się obecnie określeniem napięć i prądów przejściowych 
w okresie nieustalonego stanu obwodu.

Będziemy więc mieli ze wzorów (12) i (13)
Tl ~ oo I

up =  e at | M„ sin (f}„ ł + dn) cos a„ x +
n= 1 |

+  N„ sin (0n t +  xpn) sin a„ x |, (14)
Teoria prądów zmiennych 29
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gdzie

.---tl — oo (

i / i i UM = 1 \
, sin (/?„ t + d„ + ■&„) sin a„ x +

+ Nn sin (/?„ t + y>„ + £„) cos a„ a: |, (15)

1 / R A\ (16)
t ( L + c ) '

« J a*2
~ ' LC

O ^o - o
y ' L C > y ’ (17)

1 / R A\ (18)
y = ^ ( L C / ’

tg^„ = II
■ 

1 
•«

¡y
*

(19)

§ 121
PRZYŁĄCZANIE LINII W  KOŃCU OTWARTEJ DO ŹRÓDŁA 

PRĄDU STAŁEGO

Na początku linii wartość napięcia prądu stałego, do którego 
przyłączana jest linia w końcu otwarta, wynosi U. Będziemy mieli 
następujące warunki graniczne:

przy w szelk ich  w artościach  l
1) dla x = 0 (na początku przy zaciskach) u = U,

U,

2) dla x = l (w końcu linii)

przy w szelk ich  w artościach  x > 0
3) dla 1 = 0,

up =  0 ;

i = 0, 
iu =  0. 
ip = 0;

u =  0,
u,

up = - u ;

i =  0,
*« = °> 
ip =  0.

4) dla t =  0,
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Uwzględniając we wzorze (14) pierwszy warunek graniczny, 
otrzymamy n —OO

0 = e ~ a t ^  Mn sin (/3nl + <5„).
n=I

Ponieważ równość ta powinna mieć miejsce dla dowolnej war­
tości t, więc at _  n

W ten sposób, zamiast wzorów (14) i (15) będziemy mieli
n = TO
^  N„ sin (/?„ t + y>„) sin an X ,
n= 1

Nn sin (/?„ż + y)„+ ■&„) cos anx.

(20)

(21)

Zakładając w ostatnim wzorze, na podstawie warunku (2), 
x = l, ip =  0 i zaznaczając, że N n nie może być równe zeru, gdyż 
wtedy up=  0 przy wszelkich wartościach x, co przeczy warunkowi (3), 
otrzymujemy po uproszczeniu

cos anl =  0,
czyli że wszelkie wartości an l muszą być nieparzystymi wielokrot-

nościami 71
T  ’

a więc

axl = 71
"2 ’ a»l =  3 -J ; « 6 Í = 5 | * ,. . ., a2,_ 1f = ( 2 k - l ) - |

stąd wynika, że stała dowolna an może mieć w tym przypadku tylko 
następujące wartości:

n  ̂ (2k— \)n
a i =  27 ’ a 3 — 27 — ó a i ’ a2*-i = 2 i =

- ( 2 / c - l ) a 1. (22)
Rozpatrując falę napięcia i prądu wzdłuż linii w określonej 

chwili, spostrzegamy ze wzorów (20) i (21), że długość fali A„ otrzy­
mamy, gdy

skąd
a«(x  +  K)  =  anX +

2 n
K = a„

gdy an— a1 — , będziemy mieli Aj = 4 Z,

29*
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to znaczy, że cała długość linii zawiera tylko y4 fali tej sinusoidy, 
którą nazwiemy sinusoidą główną albo pierwszą harmoniczną.

Dla a„ = a3 =■= ^  (trzecia harmoniczna) A3= 4 r ,
/ć L O

5 TT 41dla a„ = a5 = 2J (P^ta harmoniczna) ż5 = -g - ;

widzimy więc, że cała fala układa się na długości linii tylko dla 
harmonicznych wyższych, zaczynając od piątej, przy czym będziemy 
mieli tylko nieparzyste harmoniczne.

Uwzględnijmy teraz warunek (3) i załóżmy we wzorze (20) t =  0, 
up = — U, wtedy

n=2p
y  N„ sin y>n sin anx =  — U, (23)
n= 1

przy czym, jak stwierdziliśmy wyżej, an może mieć tylko wartości 
podane w (22).

Wzór (23) daje nam nieskończony szereg Fouriera 
Ni sin y>! sin axx  + N 3 sin y>3 sin 3 a±x +

+ ... + N 2k_1 sin ip2k-i sin (2k — 1) a1x + U.

Do tego szeregu wchodzą tylko nieparzyste sinusoidy, więc krzywa 
przedstawiająca naszą funkcję jest symetryczna i względem osi x, 
i względem swego początku. Oznaczając dla dogodności

UiX=z, iV2A_ i  sin = A 3k_ t ,
będziemy mieli szereg

A x sin z + A 3 sin 3z + ... + A2A_ j sin (2k — 1) z = — U] 
spółczynnik dowolnej sinusoidy określimy ze znanego wzoru

n
2

1" - 1 ■  4 . /

f (z) sin (2k — 1) z dz\

u nas /(z) = — U, więc

A3k—i = N2k—i sin y>2k—\ =  — 
czyli ostatecznie

Ntk—i sin y>2k±—\ =

4 U — cos (2 k — 1) z
2 / c - l

4 U.
[ 2 k - l ) n (24)
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Wreszcie, po uwzględnieniu ostatniego warunku granicznego: 

= 0, ip = 0, ze wzoru (21) otrzymamy, po skróceniu przez
n=oo

N„ sin {yjn 4- 0„) cos anx = 0.
«=i

Ponieważ ta równość powinna mieć miejsce przy wszelkich 
wartościach x, przeto każdy współczynnik przy wszystkich cos anx 
oddzielnie powinien się równać zeru. Uwzględniając, że n =  2/c — 1. 
otrzymamy

•̂ 2*—1 Sin Wik—l + 2̂*—l) =  (25)
Ale N 2k_ 1 nie może być rówme 0, jak widać ze wzoru (24), więc 

powinno być
s i n  { y > 2 k - i  +  d a k - i )  =  0 ,

skąd
V)2k—1 + &2k— i = 0>

lub w ogóle
W 2 k - 1  +  0"2 k — 1 =  k n ,  

gdzie k — liczba całkowita; wtedy

tg V2k— i  = tg ;
ponieważ, ze wzoru (19),

i?2A—i

przeto
tg “&2k—1 = ” 

tg Wh- 1 =

y

2̂k—l

Z tego wzoru znajdujemy 
_tg_V
y i  + tg V -i  YpV - i + y2 ’

sin y2j_i = —̂ LĘ2* 1 P 2*—1

ponieważ ze wzoru (17) 

przeto ostatecznie

( } ^ 1 + y * = ± « = L ,

sin V L C -a2̂—1
Ze wzorów (24) i (26) znajdujemy

4 U
N 2k—1 —

(2 fc — 1) n/32k—i ^ L C

(26)
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Zamieniając w tym wzorze a2k__x na jego wartość ze wzoru (22), 
a mianowicie

71
a 2k—  1 ~  ( 2 &  1 ) 2 / ’

otrzymamy po skróceniu ostatecznie

^2k—1 —
2U

l^LC ■ Pzk—i
(27)

Podstawiając do wzorów (20) i (21) znalezione wartości stałych 
dowolnych, otrzymamy

k = o o2Ue~at
l y T c  ć i  ^

U » - -------T ^==r y  -J —  sin (/?2 *-l ł — $ 2k—l) sinI P i k -  '

. (2k— l)n

2Ue
k =  oo

Je v-i 1 .
T f —  >  -  S i n  f o f c - l  t cos'T  f—I Pik— 1

A5=  1
albo inaczej

21

{2k— l)n
21

71X

(28)

(29)

2U  _  i 1 
Up = -  YyjTČ e \ sm (&* -  $i) sin 2T +

1 . „ . . 3 71X  1 . , n , . . § 7 1 X+ - p r  sm (/J3f — ů 3) sm 2/ + sm (/35f — £5) sm —̂, +21 (30)

2 U - 
lp =  ~ ! L e '• { - I s m f t , 71X

l  C O S  - g y  +

3 Tía: 1+ sin p3t cos —9/ + sin /35 ř 5 tu a:c°s 2/ +  ...,

gdzie

= arctg I

(31)

(32)

(33)

Z tych wzorów możemy zbadać amplitudy wszystkich harmo­
nicznych, np. dla pierwszej harmonicznej
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• 2 U —01 1 . p . 7tX
l ip  ^ ------ 1£~  6  - ^ - S in  P j /  COS ,

2 U e~at
lfm lyj LCPL ’

2Ue~at
lltm ILp, ’

a = + “c ) ; ^  = " | /  4 B L C ~  (2 ^  _  F c )  '

W zależności od wartości mianownika we wzorach na U lub 1 
możemy otrzymać przepięcie lub przetężenie.

§ 122
PRZYŁĄCZANIE LINII W  KOŃCU ZWARTEJ DO ŹRÓDŁA 

PRĄDU STAŁEGO

Warunki graniczne będą

przy w szelkich  w artościach  t:
1) dla x = 0, up — 0; (u =  U, uu = U),
2) dla x = l, up =  0; (u =  0,- uu =  0),

przy w szelkich  w artościach  x w gran icach  0 < x < l:
3) dla t = 0; up =  — Uu (u =  0);
4) dla ł =  0; ip =  — iu [ i  =  0);

jeżeli nie weźmiemy pod uwagę upływności, która przy prądzie 
stałym nie ma praktycznego znaczenia, możemy założyć, że w stanie

ustalonym prąd wzdłuż całej linii ma jednakową wartość iu =
U . .gdzie B stanowi oporność całej linii, wobec czego ip =  — — ; napięcie

zaś w dowolnym punkcie w odległości x od początku, w stanie usta­
lonym, wyrazi się wzorem

uu =  U — U -j- =  U , wobec czego up = — U ( l  — y  ̂  .
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§  123
PRZYŁĄCZANIE LINII W  KOŃCU OTWARTEJ DO ŹRÓDŁA 

PRĄDU ZMIENNEGO

Niech wartość napięcia prądu zmiennego sinusoidalnego w chwili 
zamknięcia obwodu przechodzi przez fazę ip, czyli że wartość chwilowa 
będzie określona wzorem

Uu =  u m sin M  + V0-
Będziemy mieli następujące warunki graniczne przy wszel­

kich w artościach  t:
1) dla x =  0, napięcie u będzie od razu takie jak po usta­

leniu się, a ponieważ u = uu + up, przeto up =  0;
2) dla x  =  l, i =  0, iu =  0, ip =  0; 

przy w szelk ich  w artościach  x >  0:
3) dla ł =  0, u = 0, uu + up = 0, up = — uu;
4) dla t = 0, i =  0, iu + ip =  0, ip =  — iu.
Wartości ustalone napięcia uu oraz prądu iu jako funkcje zmiennej 

odległości x mogą być znalezione ze wzorów dotyczących stanu 
ustalonego.

Stosując te same ogólne wzory (14) i (15) dla przejściowych 
wartości napięcia i prądu i spostrzegając, że pierwsze dwa warunki 
graniczne są te same co i przy prądzie stałym, znajdziemy, jak 
w § 114,

Mn =  0; cos an l =  0.
Warunek trzeci da nam

Nn sin v>„ sin a„x =  - u „ ,
tl— 1

skąd, jak dla szeregu F ou riera ,
71

4 r 2
sin v>2i - i  = — — / sin (2/c— 1) a1xd (a1x ) ; (34)

o
w tym przypadku uu jest funkcją x, która może być określona przez 
stałe obwodu i przez wartości napięć na początku lub w końcu, 
w stanie ustalonym. Wreszcie ostatni warunek daje

l / T iw n= 1
T - }  Nn sin (tp„ + &„) cos a „ x =  — iu
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co znowu nam daje szereg F o u r i e r a ,  dla którego
71

J '  l“ cos(2k — l )a 1xd(a1x)N-ik—l sin (y)2k—1 + fok— l) 

albo
W2fc_i cos &2k—i sin y 2k ! + sin COS =

__ 71

4 / L i 2= ------1 /  / ¿„cos (2/c— 1) ax;rd (e â:).

Ze wzorów (19) i (17) znajdujemy

1  _  Ycos f o k- i  =
’ \LC

J l +Éň=L Vr2+ ^ i
\ v2

(35)

sin = _ h ^ LC = ' h £ t
y (¡2k—i &2k—1

zaś ze wzorów (34) i (35) możemy znaleźć N 2k_ 1 oraz y>2k_ x.

§  124

PRZYŁĄCZANIE LINII W  KOŃCU ZWARTEJ DO ŹRÓDŁA 
PRĄDU ZMIENNEGO

Będziemy mieli warunki graniczne analogiczne do tych, które 
ustaliliśmy dla prądu stałego, mianowicie:

przy wszelkich wartośc iach l :
1) dla x =  0, up =  0 (u = u),
2) dla x = l, up =  0 (u = 0, uu =  0);

przy wszelkich wartośc iach x >  0:
3) dla t — 0, up =  — uu {u =  0),
4) dla t = 0, ip = — iu (i = 0),

gdzie uu i iu są funkcjami x, które mogą być określone na podstawie 
znanych wzorów dla stanu ustalonego. Sposób rozwiązywania za­
gadnienia jest taki sam jak w § 123.
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§  125
LINIA NIEODKSZTAŁCA JĄCA. WYRAŻENIE WARTOŚCI CHWILOWYCH 

NAPIĘĆ I PRĄDÓW W  POSTACI DWÓCH FAL

Znaczne uproszczenie we wzorach dla napięć i prądów otrzy­
mamy rozpatrując linię, w której stałe tworzą znaną proporcję:

R _ A _
L C ’ (36)

czyli tzw. linię nieodkształcającą. W tym przypadku wzory (16) 
i (18) dają R A

C ’ (37)

y =  0.
Weźmy ogólne równanie różniczkowe (3)

załóżmy

92u n , .. 9 u 92u
~dx* ~ U + (R C + L A ) gj +  LC JJ2

u =  Ye~a

(38)

(39)

gdzie^F jest na razie niewiadomą funkcją dwóch zmiennych x i t :
Y = f [x, t) ;

wtedy
9 u 
9x

U 9Y 92u
dx ’ 9x2 = e- a ,  9 * Y  .

dx2 ’
d

~9t
U _  —at ( d Y  v \ 92U _  - atÍ 9 2Y 9Y \
t e \ d t aY) ’ 9t2 e \ 9 t2 2(1 91 + a  Y) ■
Podstawiając te wartości do (38) i dzieląc obie strony przez 

e ~ ' otrzymamy
92Y 
9 x2 RAY +  (RC + LA) ( ? Y — aŶ j + LC (? * Y-- 2a dY + a 2 Y^ =

= Y [ R A - a ( R C  + LA) Y a 2LC] +

+ - Y [RC + LA — 2 a LC] +  ^ Y LC.

Uwzględniając wartości a ze wzoru (37), obliczamy
R2C

(40)

R A - a [ R C  + LA) + a 2LC = 

RC + LA — 2 a LC

RA + 0,

RC + R C - 2 R C  = 0.
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Wobec tego równanie (40) otrzymuje postać
d2Y d2Y 
dx2 LL dt2

Oznaczmy
a =

V l c ’

czyli LC =  —r-, wówczas J a2 ’
d2Y 2— = a42dt2

32F
ć>a:2

(41)

(42)

Jest to znane równanie różniczkowe d 'A l e m b e r t a ,  wyprowa­
dzone dla drgającej struny. Gałka ogólna tego równania ma postać:

Y =  /x [x — af) +  /2 (aj + ai), (43)

gdzie /x i /2 stanowią na ogół dowolne funkcje odległości a: i czasu i. 
Można łatwo sprawdzić słuszność tego rozwiązania, gdyż

-  - = — j-^I1— r  (— a) +  -  */■
dt ------- ł' ' ;d (x — a/) 
£>2F d2ft
dl d( x — at)‘‘ a2 +

d[x + al)

3 (® + ai)2

„2 d*f i -4- ■
1[_ d (x — al)2 d(x + al)2

dY 9fi 1 9f,
dx d (x — al) 1 d (x +  al)
d2Y d2u 1
dx2 d (x — ai)2 1 d (x + al)2

]•

skąd widać, że warunek (42) spełniony.
Podstawiając wartość F ze wzoru (43) do (39), otrzymamy

u = e~at {f1 (x — al) + / 2 [x + aż)}.

Stosując nasze rozumowanie do stanu przejściowego będziemy
mieli up = e  a,{f1{x — al) +  f2 (x + al)}. 

Dla znalezienia i bierzemy wzór (2)

— = Aup + C d "p- ; dx dt

(44)
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podstawiając tutaj znalezioną wartość up, otrzymamy

Ca 9 h-  4 t +«■-  “c (/. + « — - a (x _
T ^ a r } - . - - { ( ^ - .  C) (/, + / , ) -

_  r «  i  ^  */» V  •
\ d (x -ra t)  d(x + ał)Jf

+

+ Ca

Wobec (37)
d (x —r at) d (x +  c 

A — aC = A — A = 0,
więc

— = _ c o « — L s / ‘ ( * - » ' )
dcc I

albo, podstawiając a =
5 (a; — aZ) 
i zmieniając znaki,

3 /2 (a: + «Z) I 
5 (a: +  aZ) I

(p 1  Ą g  d f i  ( x - a i )  df2 {x +  aZ) (
a: [ /  L l 3 (a; — aZ) 9(x + ał) I■ aZ) d (x + at)

Całkując względem a:, otrzymamy

V = | // x - e “ a,{ /1 { x - a t ) - f 2 {x + aZ)>.

Stała dowolna powinna równać się zeru, gdyż dla Z = 00, up = 0

(45)

oraz ip =  0.
Stosunek amplitud napięcia i natężenia prądu stanowi opor­

ność falową Z; w rozpatrywanym przypadku

/ i -
Wzory (44) i (45) dają nam wartości chwilowe napięcia i prądu 

przejściowego w dowolnym punkcie przewodu.
Rozpatrzmy dwa punkty znajdujące się w odległości dx; w tym 

drugim punkcie wartość napięcia i prądu będzie taka sama jak 
w punkcie pierwszym po upływie czasu dt. Wobec tego

1) x + dx — a (Z + dt) =  x — at,
2) x + dx + a [t +  dt) =  x + at;

1 pierwszego równania otrzymujemy
dx

z drugiego równania

dx — adt =  0 ; a = -jj ,

dx
dtdx + adt = 0; a =
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Widzimy stąd, że spółczynnik a stanowi prędkość, z jaką się 
rozchodzą z jednego dowolnego punktu do drugiego te same wartości 
prądu i napięcia; inaczej mówiąc, jest to prędkość rozchodzenia się 
fal napięcia i prądu wzdłuż przewodu.

Ze wzorów (44) i (45) stwierdzamy, że napięcie stanowi sumę 
dwóch fal, prąd zaś różnicę dwóch fal, które rozchodzą się z jedną 
i tą samą prędkością, ale w kierunkach przeciwnych (prędkości 
mają znaki przeciwne); fale są tłumione odpowiednio do funkcji 
wykładniczej e~at, która jest funkcją malejącą.

Fale prądu są podobne do odpowiednich fal napięcia; amplitudy

fal prądu otrzymujemy z amplitud napięcia, mnożąc je przez co

stanowi odwrotność oporności falowej linii w rozpatrywanym przy­
padku.

Obie fale, które mamy w powyższych wzorach, nazywamy fa­
lami wędrownymi. Pierwsza z tych fal, wychodząca ze źródła, sta­
nowi falę główną; druga, biegnąca z tą samą prędkością, ale w kie­
runku przeciwnym, stanowi falę wpadającą do źródła lub falę odbitą 
na końcu linii.

§ 126
PRZYŁĄCZANIE LINII NIEODKSZTAŁCAJĄCEJ DO OPORNOŚCI

RZECZYWISTEJ

Fale wędrujące, natrafiając na przeszkody w postaci skupio­
nych oporności, bądź rzeczywistych, bądź urojonych, podlegają 
częściowo odbiciu, częściowo załamaniu.

Rozpatrzmy najpierw przypadek, gdy fala z linii nieodksztal-

cającej o oporności falowej Z

natrafia w odległości l od początku linii 
na oporność rzeczywistą R (rys. 228).

Wartość chwilowa napięcia przej­
ściowego na tej oporności wyrazi się we­
dług wzoru (44) w sposób następujący:

i_ _____________
Rys. 228

T

i

u, = e [fi i1 — at) + fz i1 + at)]• (47)

a wartość chwilowa natężenia prądu przepływającego przez opor-
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ność R według wzoru (45) z uwzględnieniem wzoru (46) przybierze 
postać

h  = ~ z ~  [  /i (l ~  at) -  U (Z + at) J . (48)

Oznaczając w skróceniu pierwszą falę jako falę główną przez / , 
drugą zaś jako falę odbitą przez /0, czyli zakładając

e «  / x [l — ał) =  fg , 
e~at /2 {l + at) = /0 , 

będziemy mieli ze wzorów (47) i (48)

u2 = tg +  /O ! (49)
1

h ~ ~ z (h-fo)- (50)
Ale

“ 2 = i2R ,
więc

R
“ 2 _  ~Ź(h-fo)- (51)

Przez zestawienie ostatniego wzoru ze wzorem (49), otrzymujemy

skąd

Wyraz
r

to =
i i - Z  
R + Z U-

R - Z  
S° _  R + Z

(52)

(53)

stanowi współczynnik odbicia fali głównej.
Podstawiając wartość /„ ze wzoru (52) do wzoru (51), będziemy 

mieli ,

u2

Wyraz

R - Z  
R + Z

«r 2 R 
R - Z

2 R 
R + Z U- (54)

(55)

stanowi współczynnik przejścia fali głównej.
Ze wzoru (50), przy uwzględnieniu wzoru (52), otrzymamy

Z \ ls R + Z ,g)  R +  Z h (56)
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Z powyższych wzorów na u2 oraz j2 możemy otrzymać wartości 
napięcia i natężenia prądu, gdy linia jest w stanie jałowym lub gdy 
jest w stanie zwarcia. W pierwszym przypadku R =  oo, wtedy

“ 2 =  2/f ,
i2 = 0.

Ze wzoru (52) wynika, że w tym przypadku

/0 = fg >
wskazuje to, że fala odbita ma ten sam znak co i fala główna, wo­
bec czego napięcie na oporności wzrasta do podwójnej wartości na­
pięcia u, które mamy u źródła. Dla prądu zaś fala odbita otrzymuje 
znak przeciwny, skutkiem czego prąd zanika.

Na rys. 229 pokazany jest przebieg fal napięcia i prądu w przy­
padku, gdy nie uwzględniamy tłumienia (a = 0). Położenie 1 odpo-

u

Rys. 229

wiada chwili, gdy pierwotna fala główna nie doszła jeszcze do końca 
linii; w końcu zostaje odbita, przy czym dla napięcia z tym samym 
znakiem, dla prądu ze znakiem przeciwnym. Położenie 2 wskazuje 
stan po tym odbiciu; napięcie się podwaja, prąd zaś zanika; stan
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taki będzie trwał, zanim fale nie dojdą do początku linii; tu napięcie 
powinno się zrównać z napięciem źródła, wobec czego zachodzi 
odbicie fali ze zmianą znaku zarówno dla napięcia jak i dla prądu. 
Położenie 3 daje nam obraz, gdy w pewnej odległości od źródła ujemne 
napięcie zniwelowało do wartości u1 poprzednie napięcie równe 2u1 
oraz ujemny prąd osiągnął swoją wartość. Po dojściu takiego stanu 
do końca linii zachodzi odbicie fali napięcia z tym samym znakiem, 
czyli ujemnym, wobec czego napięcie spada do zera, fala zaś prądu 
odbija się ze znakiem przeciwnym, czyli dodatnim, co powoduje za­
nikanie prądu, otrzymujemy położenie 4. Taki stan trwa, aż fale dojdą 
do początku, wtedy rozpoczyna się wszystko na nowo w takim sa­
mym porządku.

Najkrótszy czas, czyli okres T, po upływie którego następuje 
powtórzenie zjawiska, znajdziemy biorąc pod uwagę, że powtórzenie 
zjawiska zachodzi po czterokrotnym przebiegu fali wzdłuż całej 
długości linii Z i że prędkość przebiegu fali wynosi a; oczywiście

41 
a '

znaczy to, że na długości linii mamy JL całkowitej fali.

Gdy linia jest w stanie zwarcia R =  0, wówczas ze wzoru (54) 
wynika, że u2 = 0,

fala napięcia odbija się w końcu ze znakiem przeciwnym.
Na podstawie wzoru (56), w tym przypadku,

T =

i _  2 f 2 z  tg.
a ponieważ fg =  . U1.
a UjL- i z  11
przeto

i 2 = 2 l"j,

znaczy to, że fala napięcia zostaje w miejscu zwarcia linii odbita 
z tym samym znakiem.

Ciekawy przypadek zachodzi, gdy R = Z; wówczas, jak to wy­
nika ze wzoru (52). , ,

/o ~
to znaczy, że nie zachodzi odbicie; cała fala główna przechodzi przez 
oporność R.
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§  127

PRZYŁĄCZANIE LINII NIEODKSZTAŁCAJĄCEJ DO INNEJ 
OPORNOŚCI FALOWEJ

Rozpatrzymy obecnie przypadek, gdy do linii nieodkształca- 
jącej z opornością falową Zl . przyłączamy oporność falową Z2 dru­
giej podobnej linii (rys. 230).

Zamieniając we wzorach poprzedniego paragrafu Z na Z x i R 
na Z2 otrzymamy wzory odpowiadające nowym warunkom. Ze 
wzoru (53) otrzymujemy dla rozpatry­
wanego przypadku współczynnik odbicia p —;---------------- ^ —-r----- j
fali w miejscu przyłączenia oporno- „ z, z, >  ui
ści Z 2:
' 7  Zs _  ^2 *J1

Z 2 +  z x R y s .  2 3 0

ze wzoru (55) zaś współczynnik przejścia fali:
o 7

s =  - 2* Z x + Z 2 ’
Fala odbita w pierwszej linii w miejscu przyłączenia Z2 wyrazi

się wzorem , t
fo =  so ft,

napięcie zaś na oporności będzie
2 Z 2

U2 Sp l g  £  _j_ %  *

Tak samo znajdziemy prąd i2, wchodzący do oporności Z 2; 
ze wzoru (56)

2 , 2
¿ i

ale

więc l> —

Z 2 fs Z1 +  z 2

ui ~ Ziii,
2Z X

z x +  z 2 1 1  •

O !

W przypadku, gdy Z x = Z 2, współczynnik odbicia staje się 
równy zeru, czyli cała fala główna przechodzi przez oporność Z 2.

T e o r i a  p r ą d ó w  z m i e n n y c h  3
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