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PRZEDMOWA

DO DRUGIEGO WYDANIA

W zniszczonej przez wojne Polsce dawat sie odczuwac brak wszelkich
podrecznikdw, a w szczegélnosci podrecznikow dla szkét akademickich;
nalezato wiec jak najpredzej przystapi¢ do przygotowania odpowiednich
dziel, pomimo trudnosci uzyskania potrzebnych do tego zrodet.

Autor niniejszej ksiazki, prof.dr Leon Staniewicz, prace wstepne
do drugiego wydania rozpoczat zaraz po zakonczeniu wojny, w r. 1945,
poczgtkowe jednak powojenne trudnosci wydawnicze uniemozliwity
weczesniejsze jej wydanie.

Doceniajac potrzeby miodziezy akademickiej studiujgcej elektro-
technike teoretyczng na Politechnice Gdanskiej, prof. dr Leon Stanie-
wicz, niezaleznie od prac zwigzanych z przygotowaniem drugiego wyda-
nia ksigzkowego, wydat tymczasem dwukrotnie swojg ksiazke w postaci
skryptu.

Obecne wydanie wykazuje znaczne réznice w poréwnaniu z pierw-
szym, ktore trzeba byto opracowac i uzupetnié, dostosowujac je do obec-
nego sianu nauki, z zachowaniem jednakze pewnych ram, zakre$lonych
programami szkot akademickich. Szczeg6lnie ulegta zmianie teoria
czwornikdow, linii tancuchowych oraz zastosowania metody sktadowych
symetrycznych do obliczania pradéw zwarcia; poza tym usunieto szereg
bledéw, ktore sie wkradly do pierwszego wydania.

Drugiego wydania ksigzki autor niestety juz nie doczekat, zmart
bowiem nagle przy pracy nad pierwszg korekta niniejszej ksiazki.

Korekte ksigzki po $mierci autora przeprowadzili pracownicy nau-
kowi Katedry Elektrotechniki Teoretycznej Politechniki Gdanskiej:
adiunkt mgr inz. Piotr Ciechanowicz i st. asyst, mgr inz. Jerzy Dziedzic.
Rysunki wykonat st. asyst, mgr inz. J. Dziedzic. Poza wymienionymi
w koncowej korekcie wzieli udziat pracownicy naukowi Katedry: st. asyst,
mgr inz. T. Mazurkiewicz i st. asyst, mgr inz. J. Cimoszko.
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KIEROWNIK ZESPOLU KATEDR ELEKTROTECHNIKI
TEORETYCZNEJ | MIERNICTWA ELEKTRYCZNEGO
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Daszek nad literg np. £, O, 1, Z oznacza symboliczne ujecie
rozpatrywanych wielkosci.
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PRAD ZMIENNY SINUSOIDALNY

8§ i
OKRESLENIE PRADU ZMIENNEGO. PRAD SINUSOIDALNY

Pradem zmiennym nazywamy prad elektryczny, ktérego wiel-
kosci charakterystyczne: napiecie, natezenie itp., zmieniajg z biegiem
czasu swe wartosci oraz kierunki. W elektrotechnice mamy do czy-
nienia przewaznie z prgdami zmieniajagcymi sie okresowo, czyli
z takimi pradami, ktore po uptywie okreslonego czasu przybierajg
te same wartosci i te same kierunki. Najprawidtowszg postacig pradu
zmiennego jest prad o przebiegu sinusoidalnym, ktéry bedziemy
w skroceniu nazywali pradem sinusoidalnym.

Przebieg sinusoidalny okreslamy funkcjag

y = A sinx.
Dla tej funkcji na wykresie (rys. 1) otrzymujemy krzywa,

zwang sinusoida.
Dla x =0 y —0;

n A
"oX=2 y = A-
A stanowi warto$¢ szczytowag lub maksymalng sinusoidy, za$ x
jej argument.
Dla x = n y —0,

Xx—2n y=0.

Catkowity przebieg sinusoidy dla wartosci a od 0 do 2n bedziemy
nazywali falg sinusoidy.
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Prad sinusoidalny moze powsta¢, gdy istnieje sita elektromo-
toryczna o przebiegu sinusoidalnym. Site elektromotoryczna bedziemy
nadal oznaczali przez SE M.

Gdy przewodnik porusza sie w polu magnetycznym, przeci-
najgc strumien magnetyczny, powstaje w tym przewodniku S E M
indukcji, ktorej wartos¢ e w chwili t otrzymujemy ze wzoru

lub ,
Y — -jjj- 10—8woltow,

gdzie  oznacza wyrazong w makswelach warto$¢ strumienia magne-
tycznego przez powierzchnie ograniczong przewodnikiem, | czas
w sekundach.

Najprostszy przypadek mamy, gdy przewodnik obraca sie
z jednakowg szybkoscia w jednostajnym polu magnetycznym, gdzie
natezenie pola ma wartos¢ stala. Przypusémy, ze mamy takie pole
miedzy dwoma biegunami N i S magnesu lub elektromagnesu (rys. 2);
rozpatrzmy przewodnik np. w postaci prostokatnej ramki z drutu,
ktéra moze sie obraca¢ naokoto osi a—a. Gdy ramka znajduje sie
w potozeniu x —x, strumien magnetyczny przez powierzchnie ogra-
niczong ramkg bedzie mial najwieksza wartos¢ i kierunek prosto-
padty do powierzchni. Jezeli oznaczymy przez B indukcje magne-
tyczng w rozpatrywanym polu, zas$ przez s pole powierzchni ograni-
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czonej ramka, wowczas strumiern Om, objety ramka w potozeniu

X —X, bedzie réwny B
= S-

Rys. 2
Gdy ramka obrdci sie o kat ™ i zajmie potozenie y —y, wtedy
objety przez nig strumieri magnetyczny bedzie réwny 0. W potozeniu
posrednim, gdy ramka tworzy z osiga—x X

kat a (rys. 2 lub rys. 3), strumienn objety J
przez ramke bedzie réwny

Bscosa= cos a

Zatozmy, ze ramka, obracajgc sie ze
stalg predkoscig katowa to, obrocita sie
0 kat a po uptywie czasu t, tak iz a= tot,
wowczas powyzszy wzOr mozemy napisac
w sposOb nastepujacy:

Bscosa—0, cosot.

Widzimy stad, ze strumien magne- Rys. 3
tyczny objety przez ramke jest funkcja
czasu okresowo zmienna. Rozpoczynajgc liczenie czasu od chwili,
gdy strumien ma swojg najwiekszg wartos¢, bedziemy mieli dla
wartosci strumienia w chwili + wzor

04= Oppcos to . (1)

Teoria pradéw zmiennych 2



18 PRAD ZMIENNY SINUSOIDALNY

Badajgc ten wzér widzimy, ze:
dla wt=0 0, = ¢tm

st " 0, = 0.
2)
wt=n Ot= —O0m,
3
0)1 = ryJdl ot= 0.

Przechodzac nastepnie od strumienia do S E M, otrzymamy
dla rozpatrywanego przyktadu

e= dd?t ——0me(—o) sinwl) = Omuy) sin mt.

Jak wida¢ z tego wzoru, S E M okreslona jest funkcja sinu-
soidalna. Oznaczajac iloczyn <omtu przez Em otrzymamy

e = Emsin o t. (©)]

Otrzymalismy w ten sposob w obwodzie S E M sinusoidalna.
Widzimy, ze jest ona wynikiem obracania sie przewodnika z pred-
koscia statg w jednostajnym polu magnetycznym. Emma warto$¢
statg i nazywa sie wartoscig szczytowg albo maksymalng S E M;
e jest funkcjg czasu i nazywa sie wartoscig chwilowg S E M.

Badajgc wzér (3) widzimy, ze

dla wZ=0 e= 0.
o B 71 e =
t = 2 - Em,
4
J o= 1n e —0, (}
_ 3 e=mE
0)1 = 57 =m Em

)

Poréownywajac ze sobg wyniki (2) i (4) widzimy, ze strumien
magnetyczny i S E M zmieniajg sie w ten spos6b, ze gdy strumien
przechodzi przez swg warto$¢ najwieksza, S E M przechodzi przez
wartos¢ O i na odwrot.

Analogicznie do przebiegu sinusoidalnego S E M mozemy roz-
patrywac¢ sinusoidalny przebieg natezenia pradu wedlug wzoru

i = Imsinwf, (5)

gdzie i oznacza warto$¢ chwilowag, za$ Imwarto$¢ szczytowg lub
maksymalng natezenia pradu.
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Tak samo otrzymamy wzdr dla napiecia sinusoidalnego
u= Umsin ot 6)
Wzory (3), (5) i (6) wyrazajg przebiegi rozpatrywanych wiel-
kosci w obwodzie elektrycznym, w ktérym pewien kierunek zostat
przyjety jako kierunek dodatni.

Prady zmienne, ktére nie majg przebiegu sinusoidalnego, na-
zywamy pragdami odksztatconymi, jak wskazuje to np. rys. 4.

W dalszych rozwazaniach bedziemy rozpatrywali najpierw
prady sinusoidalne.

§2
OKRES. CZESTOTLIWOSC. PULSACJA

W rozpatrywanych przebiegach sinusoidalnych wartosci funkcji
czasu powtarzajg sie dla argumentéw roznigcych sie o 2kn, gdzie
k jest liczbag catkowitg. Oznaczajgc przez T najkrdtszy czas, po
uplywie ktérego nastepuje powtdrzenie wartosci funkcji, bedziemy
mieli

oT = "2,

skad T= (7)

Czas T nazywamy czasem okresu lub w skroceniu okresem
pradu zmiennego. W ciggu jednego okresu T funkcjg przybiera
wszelkie wartosci fali. Przebieg zmian wartosci rozpatrywanej
wielkosci okresowej w ciggu jednego jej okresu nazywa sie réwniez
cyklem. Po uptywie czasu T rozpoczyna sie druga fala itd.

x



20 PRAD ZMIENNY SINUSOIDALNY

Liczba okreséw na sekunde stanowi wielkos¢ zwang czesto-
tliwoscig pradu zmiennego; oznaczamy ja literg /; mamy wiec
, 1 ©

t= T =2n" @

Czestotliwosci nie nalezy miesza¢ z liczbg zmian Kkierunku
pradu na sekunde; ta liczba zmian jest dwa razy wieksza od czesto-
tliwosci.

Czestotliwos¢ ma wymiar odwrotnosci czasu; wyrazamy ja
w okresach na sekundg; na terenie miedzynarodowym jest tendencja
do nadania jednostce czestotliwosci, czyli jednemu okresowi na
sekunde, nazwy ,herc“ [Hz).

Ze wzoréw (7) i (8) mozemy napisaé

9

lub
o—2n/. 10y

Wielkos$¢ oo, ktdra w poprzednich wzorach stanowita predkos¢
katowg podczas obrotu ramki w polu magnetycznym, nazywamy
pulsacjg pradu zmiennego.

W zaleznosci od tego, ktdrg z trzech wielkosci: pulsacje, okres
lub czestotliwos¢ chcemy wprowadzi¢ do wzordw na wartosci chwi-
lowe funkcji sinusoidalnych czasu, mozemy wzory te napisaé
w trzech réwnoznacznych postaciach, korzystajagc z zaleznosci (9)
i (10), np. wzdér (3)

e = Emsin cof;
I-EF’msr.n let"S

e = Emsin 2 n ft.

)
1

W urzadzeniach pradu silnego dla sity i Swiatla czestotliwosé
wynosi najczesciej 50 Hz: f = 50, T = w trakcji elektrycz-

nej spotykamy czestotliwos¢ 1623Hz] w urzadzeniach telekomuni-
k cji np. w urzadzeniach telefonicznych, czestotliwos¢ dochodzi
do kilkunastu tysiecy Hz, w radiotechnice zas mamy nawet miliony Hz.
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§3
FAZA. PRZESUNIECIE FAZY

Argument funkcji sinusoidalnej wzrasta w miare wzrostu zmiennej
niezaleznej. Warto$¢ argumentu, zawartg w granicach jednego okresu,
czyli pomiedzy O i 2n lub —n i + n, nazywamy faza tej funkcji.
Rozpatrujac funkcje sinusoidalng czasu powiemy, ze faza jej w pew-
nej chwili wynosi a, gdy w chwili tej 4= a, przy czym 0 < a <2n
lub —n ™ a < + n. Gdyby warto$¢ argumentu ot przekraczata
podane granice, nalezy dla otrzymania fazy odjg¢ lub dodac¢ wielo-
krotnos¢ okresu 2n, tak aby rezultat byt zawarty w wyzej przyto-
czonych granicach.

Gdy piszemy wzor na wartosé chwilowa, np. natezenia pradu
W postact i= 7 sinot,
widzimy, ze w tym przypadku, w chwili gdy rozpoczynamy liczenie
czasu, prad przechodzi przez faze 0. Jezeli rozpoczynamy liczenie
czasu w chwili, gdy sinusoida posiada inng faze, wtedy do argu-
mentu ot musimy doda¢ lub odja¢ odpowiedni kat fazowy.

Sinusoide, ktéra w chwili | —0 przechodzi przez faze 0, bedziemy
nazywali sinusoidg normalna.

Zestawmy 3 sinusoidy (rys. 5): |, normalng, ktorej réwnanie
jest i= Imsint, oraz Il i Ill, o tej samej wartosci maksymalnej,
lecz przesuniete wzgledem sinusoidy normalnej w lewo i w prawo
0 kat a. Rozpatrujac sinusoide Il widzimy, ze w chwili t= 0 prze-
chodzi ona przez faze + a; jej rownanie bedzie

i—Imsin [wt+ a).
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Rozumujgc analogicznie, napiszemy dla sinusoidy Ill réwnanie
i = Imsin (mt—a) .

Porownywajac obie te sinusoidy z normalnag, widzimy, ze
sinusoida Il wyprzedza jg ze swojg faza, a wiec wczesniej przechodzi
przez wartos¢ maksymalng i zero. Z tego samego wzgledu sinusoida
I1l1 jest opozniona pod wzgledem fazy w stosunku do sinusoidy
I —normalnej. Mozemy dla tych sinusoid napisa¢ ogo6lne réwnanie

i = Imsin (mt + a),

jezeli katowi a bedziemy nadawali znaki + lub — w zaleznosci od
tego czy rozpatrywana sinusoida bedzie wyprzedzona, czy tez opdz-
niona w fazie wzgledem sinusoidy normalnej.

Dla a= 0 otrzymamy sinusoide normalng. Kat a nazywamy
kalem przesuniecia fazy.

§ 4
WARTOSC SREDNIA | WARTOSC SKUTECZNA

Wartoscig Srednig funkcji sinusoidalnej nazywamy $rednig
arytmetyczng wszystkich wartosci bezwzglednych tej funkcji w ciggu
jednego jej okresu. Rozpatrujgc funkcje sinusoidalng czasu

Y= Ymsinwt = Ymsin-pl (11)

bedziemy mieli, na podstawie powyzszego okreslenia, dla wartosci
Sredniej tej funkcji wzor
T
Yir=-} -J \Y\dt,
0
gdzie |K] stanowi warto$¢ bezwzgledng rozpatrywanej funkgciji.
Poniewaz wartosci bezwzgledne funkcji sinusoidalnej w drugiej
potowie okresu sg zupeilnie takie same jak w pierwszej potowie,
przeto dla takiej funkcji mozemy dla obliczenia $redniej wartosci
ograniczy¢ sie do potowy okresu i napisa¢
772

Yir=~fyd|. (12)
0
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Podstawiajgc warto$¢ y z (11) i wykonujac catkowanie, otrzy-

mamy
TI2

TI2
&« rfvsin-jldl 2m—cos-ljnrt' = lme (13)

Wyraz — w przyblizeniu réwna sie 0,64, mozemy wiec napisac
71
przyblizony wz6r
—0,64 Ym
Rozpatrujgc na przykitad przebieg natezenia pradu przedsta-
wiony na rys. 6, okreslony wzorem
i = hsinot,

otrzymamy dla wartosci $redniej tego pradu
7ir=1_/w"r0,64/
i m

wartos¢ ta na rysunku odpowiada rzednej OA.

Obliczmy tadunek elektryczny Q, ktéry przeptywa przez obwod
z rozpatrywanym pradem w ciggu potowy okresu. W pewnej chwili
natezenie pradu ma wartos¢ i; w ciggu nieskonczenie matego czasu dt
tadunek elektryczny przeptywajacy w obwodzie bedzie

dg=idl.
tadunek elektryczny, jaki przeptynie przez obwdd w ciggu

potowy okresu, wyrazi sie wzorem
TI,

Q=J idim
0



24 PRAD ZMIENNY SINUSOIDALNY

Catka ta stanowi pole ograniczone potowg fali sinusoidy i osig
odcietych, z drugiej strony pole to jest réwne polu prostokgta OABC,
ktorego jeden bok stanowi potowe okresu, drugi za$ bok réwny jest
wartosci Sredniej natezenia pradu, czyli

-
Q=hA.

Mozemy wiec okresli¢ srednig wartos¢ natezenia pradu zmien-
nego jako natezenie takiego pradu stalego, przy ktorym tadunek
elektryczny przeptywajacy w ciggu potowy okresu bedzie ten sam co
i przy rozpatrywanym pradzie zmiennym. Na rysunku pole OABC
odpowiada wartosci O.

Wartoscig skuteczng funkcji sinusoidalnej nazywamy pier-
wiastek kwadratowy ze Sredniej arytmetycznej kwadratdéw jej war-
tosci, obliczonej dla catego okresu. Dla funkcji przedstawionej
wzorem (11) warto$¢ skuteczna Y bedzie okreslona wzorem

(14)

lub, po podstawieniu wartosci v,

. . 2
y=V | | ym2sin 2 "t =

= Y,Y i f sin2 tdt.

Catka pod pierwiastkiem, ktérg mozemy tatwo rozwigzac, zakta-

2n l-cos-Nf

dajac sin2~i t= £ , rbwna sie E; wobec tego otrzymu-

jemy .
Y (15)
v2!
1
Wyraz y== w przyblizeniu réwna sie 0,707, wiec dla wartosci
skutecznej mozemy napisa¢ przyblizony wzor:

Y~ 0,707 Yq.
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Wartosci skutecznej natezenia prgdu mozemy nadac¢ pewne zna-
czenie fizyczne, rozumujac w sposob nastepujgcy. Rozpatrujac
obwdd elektryczny, przez ktéry przeptywa prad staly o natezeniu I,
wyrazimy energie Ws przetwarzajgca sie na ciepto w ciggu czasu T

WZOrem Ws= PRT, (16)

gdzie R oznacza oporno$¢ obwodu. Gdy przez ten sam obwdd prze-
ptywa¢ bedzie prad zmienny, energie Wz w ciggu okresu T obli-
czymy rozpatrujgc nieskonczenie maty przecigg czasu dt po chwili t,
gdy natezenie pradu ma wartos¢ i; w tym czasie energia d Wz wyrazi
sie wzorem

dWz= i2Rdt;

catkujgc w granicach od 0 do T, znajdziemy warto$¢ energii Wz\
wiec

W, iZRd#t. 17
ml )

Dobierzmy teraz takg wartos¢ natezenia pradu statego /, ktory
by w okresie T dat energie takg samg co i rozpatrywany prad zmienny;
w tym celu przyréwnamy do siebie wzory (16) i (17), wtedy

.
PR T _/.2Rd+

W przypadku, gdy oporno$¢ R obwodu pozostaje taka sama jak
przy pradzie statym, obie strony ostatniej réwnosci mozemy podzieli¢
przez R, wtedy

V~J > -

Wyraz z prawej strony stanowi warto$¢ skuteczng natezenia
pradu zmiennego, mozemy wiec da¢ nastepujace okreslenie: wartosé
skuteczna natezenia pradu zmiennego jest to taki umyslony prad
staty, ktéry, ptynac w obwodzie ze stalg opornoscig, wytworzytby
w ciagu okresu T takg sama energie, jaka w rzeczywistosci wytwarza
w tym samym czasie prad zmienny.

Wartosci skuteczne majg wielkie znaczenie przy rozwazaniu
pradéw zmiennych. Gdy podajemy wartosci natezenia lub napiecia
pradu zmiennego, zwykle mamy na mysli wartosci skuteczne tych
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wielkosci. Przyrzady pomiarowe uzywane w technice do mierzenia
napie¢ i natezen pradu zmiennego wskazujg najczesciej wartosci
skuteczne.

Wartosci skuteczne przyjeto oznacza¢ duzymi literami bez
wskaznikdw, piszemy wiec, uwzgledniajagc wzér (15),

1 E

Wprowadzajac do wzoréw na wartosci chwilowe — zamiast war-
tosci szczytowych, czyli maksymalnych — wartosci skuteczne, mo-
zemy napisaé

IV2 sinot; u= UV2sinat, e= EV2sinmt itd.

§5
MOC PRADU ZMIENNEGO. WSPOLCZYNNIK MOCY

Rozpatrzmy cze$¢ obwodu elektrycznego (rys. 7), na koncow-
kach ktdérego dziata napiecie o wartosci chwilowej

u= Umsinol (18)

i przeptywa prad o wartosci chwilowej i. W obwodach pragdu zmien-
nego, jak o tym niejednokrotnie sie przekonamy, natezenie pradu
i na ogot nie jest w fazie z napieciem; pomiedzy

tymi wielkosciami zachodzi przesuniecie fazy;

oznaczajac kat przesuniecia fazy pomiedzy nate-

zeniem i napieciem pradu przez @@ przy czym <

moze mie¢ znak zaréwno dodatni jak i ujemny,

otrzymamy dla wartosci chwilowej natezenia

czv pradu wzor
i = Imsin (0t + D) (19)
7 Przy pradzie statym moc pobierana w roz-
Rys. 7 patrywanej czesci obwodu bytaby okreslona ilo-

czynem napiecia przez .natezenie pradu i mia-
taby wartos¢ stalg w ciggu czasu, w ktérym napiecie i natezenie
pradu pozostajg bez zmiany. Przy pradzie zmiennym iloczyn war-
tosci chwilowych napiecia i natezenia pradu daje nam wartosé
mocy w okreslonej chwili; oznaczajgc warto$¢ chwilowg mocy przez p,
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mozemy napisac Ui

podstawiajgc na miejsce u oraz i wartosci ich ze wzoréw (18) i (19),
otrzymamy p=£/,/, sin,isin(,!'+,).

lloczyn sinuséw mozemy przeksztatci¢ na zasadzie wzoru trygo-
nometrycznego:

sinmsinn ——[cos (m n) —cos (M4-n)],
wtedy
p = Umlm[cos p—cos Cwt+ P]. (20

Jak wida¢ z tego wzoru, warto$¢ chwilowa mocy sklada sie
z dwoch czesci, z ktorych pierwsza

Y Umlmcos @
jest wielkoscig statg w czasie, natomiast czes¢ druga

—~ U mlImcos 2wt + @ = UmImsin "2 wt + @- )

stanowi funkcje sinusoidalng czasu z pulsacjg, a wiec i z czestotli-
woscig dwa razy wiekszg od tej, jaka majg napiecie i natezenie pradu.
Okres tej funkcji jest dwa razy mniejszy od okresu napiecia lub
natezenia pradu, czyli wynosi T/2. Znak wartosci chwilowej mocy
moze by¢ na ogét dodatni lub ujemny, co oznacza, ze w pierwszym
przypadku moc jest pobierana, w drugim za$ oddawana przez roz-
patrywang czes¢ obwodu. W szczegolnym przypadku, gdy cos = 1,
(= O, tzn. gdy prad jest w fazie z napieciem, wartos¢ chwilowa mocy
stale jest dodatnia, czyli stale jest pobierana.

W praktyce chodzi nam zwykle o wartos¢ srednig mocy, obliczonag
dla catego okresu przebiegu mocy, czyli dla czasu l; te Srednig
moc nazywamy mocg czynng, pospolicie czesto sie méwi wprost
moc pradu zmiennego, rozumiejac pod tym moc czynna.

Oznaczajgc moc czynng przez P, napiszemy na podstawie po-
wyzszego okreslenia nastepujgcy wzor
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podstawiajgc wartos¢ p ze wzoru (20), otrzymamy

1 2 <j I _
P = 5 Unma grcosy—cos(2c0t+q@ dl =

1, ¢ 21 1 f A
~2UmJ(m-']' J-I-cosy —2~ Sin (coT + yj —smy)
a poniewaz o T — 2 n,

P =Y UnimCG=P

wprowadzajgc wartosci skuteczne napiecia i pradu, czyli zaktadajac
um= uV25/, =iV 2; otrzymamy ostatecznie
P~ Ulcosy# (21)

Cos y nazywamy wspoétczynnikiem mocy prgdu zmiennego.
Gdy @= 0, cos @= 1, czyli gdy prad jest w fazie z napieciem,
moc czynna pradu zmiennego jest taka, jak gdybysmy mieli prad
staly o napieciu U i natezeniu |. Gdy natezenie pradu jest prze-
suniete w fazie wzgledem napiecia o kat prosty, czyli qo—z, spot-

czynnik mocy staje sie rdwnym zeru i moc czynna bedzie réwna
zeru.

lloczyn napiecia przez natezenie pradu zmiennego nazywamy
mocg pozorng; oznaczajac ja przez Pz, mamy

Pz= UL (22)

Wspdtczynnik mocy cos @ mozemy okresli¢ jako stosunek mocy
czynnej do mocy pozornej

Oprocz tego wprowadzamy pojecie mocy biernej okreslaja
ja jako pierwiastek kwadratowy z réznicy kwadratéw mocy pozornej
i mocy czynnej. Oznaczajgc moc bierng przez Px napiszemy:

P*=j/liVv -P2=P *1/ (29)
Uwzgledniajac (23) bedziemy mieli:
Px= PzAl1l—cos2(= Pzsin c¢p= Ul siny. (25)
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Dla odréznienia rozpatrywanych mocy przyjeto wyraza¢ moc
czynng w watach, moc pozorng w wolloamperach, za$ moc
bierng w warach (voll-amper-reactif), oznaczajgc odpowiednie jed-
nostki przez W, VA i VAr. Tak np., gdy w czesci obwodu dziata
napiecie pradu zmiennego o wartosci skutecznej 220 woltow i ptynie
prad o natezeniu 10 amperdéw, zas wspotczynnik mocy cos o= 0,8
(sin = 0,6), bedziemy mieli:

moc czynng P = 220.10.0,8 = 1760 W,
moc pozorng Pz= 220.10 = 2200 VA,
moc bierng Px= 220.10.0,6 = 1320 VAr.

§6
DODAWANIE FUNKCJI SINUSOIDALNYCH

Przy badaniu pragdéw zmiennych czesto bedziemy sie powotywali
na nastepujgce twierdzenie: jezeli mamy szereg funkcji sinuso-
idalnych czasu o jednakowej czestotliwosci, np.

yt = Axsin (wt + o),
y2= A2sin (wt + a2,

yn= A, sin (wt + aj,
wtedy algebraiczna suma tych funkcji bedzie réwniez funkcjg sinu-
soidalng o tej samej czestotliwosci; wiec
yl+y2+ ... +y, = A sin (wt + a).
Aby tego dowiesé, przepisujemy dane funkcje w sposob naste-
pujacy:

A Xcos axsin wt + AXsin axcos wt +

+A2cos a2sin wt + A2sin a2cos wt + . .
= A cos asinwt+ A sin acos wt

+Ancos ansin wt + Ansin ancos wt

Wyrazenia te muszg stanowi¢ tozsamos¢, wobec czego wspotczyn-
niki przy sin« f i przy cos wt z lewej i z prawej strony muszg by¢
sobie rowne.

Mamy wiec:

Alcos ax+ A2cos a2+ ... + Ancos an= A cos a \
Ai sin ax+ A2sin a2+ ... + A, sin an= A sin a '
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Podnoszac oba rdéwnania do kwadratu i dodajgc, otrzymamy
A = V(Micos ai + mm+ Ancos a,,)2+ [A1sin ax+ ... + A, sina,)2 (26)
dzielgc za$ drugie réwnanie przez pierwsze, bedziemy mieli:

AXxsin a, + A2sina, + ... + Ansin a,
AXCoS ax+ A2cos a2+ ... + A, cos a,

CcL —

(27)

W ten spos6b zagadnienie nasze zostato rozwigzane.

W szczego6lnosci, gdy mamy dwie funkcje sinusoidalne przesu-
niete o kat prosty, czyli
yx = Axsin cot,

y2= A2sin (ot + = A2cos cof,

woéwczas suma tych funkcji moze by¢é przedstawiona w postaci

yx+ y2= A sin (cot + a),
to znaczy
Axsin wt + A2cos cot = A sin (cot + a). (28)

W mysl rozumowan powyzszych winno by¢
A cos a = AX,

Asin a= A2,
skad wyznaczamy
A=.VAX+A2, (29)
{g a- TP (30)

Co do znakéw A" i A2 to moga one by¢ jednakowe lub rozne;
w pierwszym przypadku kat a jest dodatni, czyli wypadkowa sinu-
soida wyprzedza sinusoide normalng o kat a; jezeli za$ znaki Axi A2
sg rdézne, wéwczas a ma wartos¢ ujemng, co wskazuje, ze sinusoida
wypadkowa opdznia sie o kat a wzgledem sinusoidy normalne;j.



OBWODY PRADU ZMIENNEGO ZE SKUPIONYMI
OPORNOSCIAMI

§7
OBWOD Z OPORNOSCIA RZECZYWISTA

Kazde ciato posiada wiasnos¢ przeciwstawiania sie przeptywowi
elektrycznosci w wiekszym tub mniejszym stopniu, przy czym w ciele
zachodzi przemiana energii elektrycznej w ciepto. Whasnos¢ te na-
zywamy oporem elektrycznym. Wielkos¢ fizyczng charakteryzujaca
te wlasno$¢ bedziemy nazywali opornoscia; jest ona zalezna od
opornosci wiasciwej rozpatrywanego ciata oraz od jego ksztattu
i rozmiarow.

Przy pradzie statym opornos¢ stanowi iloraz réznicy potencja-
6w pomiedzy koncami przewodnika przez natezenie pradu, gdy w tym
przewodniku nie wystepuje sita elektromotoryczna; wynika to bez-
posrednio z prawa Ohma.

Moc P pradu |, wydzielana w postaci ciepta w czesci obwodu
z opornoscig R, wyraza sie wzorem

P = PR;

wobec tego opornos¢ mozna okresli¢ jako iloraz mocy wydzielonej
w postaci ciepta przez kwadrat natezenia pradu przeptywajgcego
przez rozpatrywang czes¢ obwodu.

Przy pradzie zmiennym, w samym przewodniku, 0 czym poézniej
bedzie mowa, zachodzi zjawisko naskérkowosci, powodujace pozorne
zwigkszenie opornosci. Wobec tego iloraz mocy wydzielonej w po-
staci ciepta w samym przewodniku przez kwadrat natezenia pradu
jest na ogdt wiekszy przy pradzie zmiennym niz przy pradzie statym.
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Nazwijmy tego rodzaju opornos¢ przy pradzie zmiennym opornoscig
rzeczywista.
Poza tym przy pradzie zmiennym zachodzag jeszcze zjawiska
w otoczeniu przewodnika (w izolacji, w masach zelaznych), o ktérych
rowniez podzniej bedzie mowa, a ktore powodujg wytwarzanie sie
ciepla w tym otoczeniu; w tych warunkach ogélna ilos¢ wytworzo-
nego przez prad ciepta jest wieksza niz ilo$¢ ciepta wytworzonego
¢ w samym przewodniku. Nazwijmy iloraz mocy
wydzielonej w postaci ciepta z uwzglednieniem
wszystkich zjawisk, przez kwadrat natezenia
pradu, opornoscig czynna,
W przypadku, gdy w przewodniku zjawi-
u ~ sko naskorkowosci wptywa bardzo mato na
zwiekszenie opornosci, mozemy opornos¢ rze-
czywistg zalozy¢ réwnag opornosci, jaka mieli-
bysmy przy pradzie statym; woéwczas opornos¢
rzeczywistg nazywa sie jeszcze opornoscig omowa.
Rys. 8 Rozpatrzmy cze$¢ obwodu z opornoscig rze-
czywistg o statej wartosci R (rys. 8). Niech na-
piecie dziatajgce na te opornos$é bedzie

u = Umsin ct.

Warto$¢ natezenia pradu w kazdej chwili na zasadzie prawa

Ohma bedzie t

| = R R sin @,

a wiec w danym przypadku prad i ma réwniez przebieg sinusoidalny
i jest w fazie z napieciem. Jak wida¢ z ostatniego wzoru,

U »j
R m
czyli i = Imsinatj

wartos¢ skuteczna natezenia pradu bedzie

| = Jt
1 R’

taka sama, jak gdybysmy mieli prad staty.
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§8

OBWOD Z OPORNOSCIA RZECZYWISTA | INDUKCYJNOSCIA
W POLACZENIU SZEREGOWYM

Prad ptynacy w obwodzie powoduje powstanie pola magnetycz-
nego, a wiec i strumienia magnetycznego. Strumien ten zalezy od
natezenia pradu ptynacego w obwodzie i zmienia sie jednocze$nie
ze zmiang pradu.

Gdy strumiern magnetyczny objety przez obwdd podlega zmia-
nom, powstaje w obwodzie S E M indukcji, ktdrg mozemy okresli¢
z og6lnego wzoru

nr'

gdzie e. oznacza wartos¢ S E M w chwili t, ®— wartos$¢ strumienia
magnetycznego w tejze chwili; gdy obwdd zawiera wiele zwojow,
tworzac cewke o z zwojach, nalezy we wzorze powyzszym pomnozy¢
strumien magnetyczny przez liczbe zwojow.

Stosunek strumienia magnetycznego 0, objetego przez obwdd,
do natezenia pradu i, ptynacego w obwodzie i wytwarzajgcego ten
strumien, stanowi indukcyjnos¢é wilasng danego obwodu. W ten
sposob indukcyjnosé whasna L okreslona jest wzorem

L=o

skad 0 = Li.
Wartos¢ indukcyjnosci zalezy od ksztattu i rozmiaréw geome-
trycznych obwodu; dla prozni oraz praktycznie dla srodowiska
magnetycznie obojetnego ma ona warto$¢ stata, w przypadku zas,
gdy S$rodowisko ma zmienng przenikalnos¢ magnetyczng, indukcyj-
nos¢ bedzie funkcja pradu i.

Podstawiajgc wartos¢ O do wzoru na S E M indukcji, otrzymamy

= _d (e
. dt

w przypadku szczegélnym, gdy mamy sSrodowisko o statej przeni-
kalnosci magnetycznej, a wiec praktycznie i dla powietrza,
di
&= dt’
Rozpatrzmy obwdd, w ktérym oprocz S E M o wartosci chwi-
lowej e powstaje S E M indukcji o wartosci chwilowej e-. Oznaczajac

Teoria pradéw zmiennych 3
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przez R opornos$¢ tego obwodu, otrzymamy, wedtug prawa Ohma,
dla wartosci chwilowej pradu i ptyngcego w obwodzie

e+ ¢f
R

lub na podstawie poprzedniego wzoru
t di
=€~ L

R
skad di

= i+
e Ri Ldi

lloczyn Ri stanowi napiecie na opornosci rzeczywistej. Drugi
di : o : L :
wyraz L-jj stanowi warto$¢ SE M indukcji, wzietg ze znakiem prze-

ciwnym, mozna go wiec traktowac jako napiecie idace na przeciw-
dziatanie, czyli pokonanie SE M indukcji; nazywamy ten wyraz
napieciem indukcyjnym. Oznaczajgc to ostatnie napiecie przez u.
i rozpatrujagc prad o przebiegu sinusoidalnym
i=1I,sin Ot
otrzymamy
di

u=1~L OL Imcos cot = oL Imsin

’ U (Wi+i)"

Z tego wzoru wida¢, ze napiecie indukcyjne wyprzedza w fazie
natezenie pradu o kat 2; odwrotnie, mozemy powiedzie¢, ze prad
op6znia sie w fazie wzgledem napiecia indukcyjnego o kqt-g?"- Wartosc
skuteczna tego napiecia bedzie

U, = wLlI.

Jak tatwo zauwazy¢, colL, stanowigce stosunek napiecia do
natezenia pradu, ma wymiar opornosci, a wiec moze by¢ wyrazone
w omach; wyraz ten nazywamy opornoscig indukcyjng.

Oporno$¢ indukcyjna coL = 2nfL zalezy, jak widzimy, od
czestotliwosci pragdu zmiennego i jest proporcjonalna do czestotliwosci.

Rozpatrzmy teraz obwdd zawierajgcy oprdcz opornosci rze-
czywistej jeszcze indukcyjnos¢, np. w postaci cewki w szeregowym
potaczeniu.
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Schemat takiego obwodu mamy na rys. 9. Dziata napiecie
u = £/psin wot.

W kazdej chwili powinno by¢

. di
Bi + L dl
czyli di
Ri + = Umsin wi.

(1)

Jest to réwnanie rézniczkowe liniowe o wspotczynnikach statych.
Rozwigzujemy najpierw réwna-
me uproszczone:

H U 1 n »!

rozdzielamy zmienne

di R
1 T dI'
Rys. 9 po scatkowaniu, oznaczajgc przez A

stalg dowolng, ktérg mozemy napi-
sa¢ rowniez w postaci InA, otrzymamy

i N1+ A lub In- +E t
skad R
i=Ae" b . )
Aby otrzymac¢ catke o0g6lng rozpatrywanego rownania (1),
musimy do znalezionej wartosci i doda¢ catke szczeg6lng réwnania.

Szukamy jej w postaci ogélnej i = M sinwt+ N cos at lub, za-
stepujac sume tych dwoch funkceji jedna funkcjg na podstawie
wzoru (28) z 36, i = B sih [ml + a), &

gdzie P i a sg stale do znalezienia. Wtedy

= +
dt Pcocos (cot + a),

Po podstawieniu tych wartosci do réwnania (1) otrzymujemy
PR sin (wt + a) + PwL cos (wt + a) ~ Umsin wt.

Rozktadajac sin (wt + a) i cos (wt + a), otrzymujemy po zgru-
powaniu i przyréwnaniu wspotczynnikdw przy sin wt i cos wt
s*
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z lewej i z prawej strony
PR cos a—Pod sina= £/y
PR sina+ Po)L cos a= 0.

Podnoszac oba rownania do kwadratu i dodajgc otrzymujemy

P=—_..Un-—--- ,
V R* + (wL)*
z drugiego réwnania mamy zas
, o1 L
tg a --—----- j, "

Wyraz . zawsze jest wiekszy od 0, tg a jest mniejszy od O,
wobec tego a< 0. Zaldzmy = —a, tak iz >0
ojL
tg v -R

Podstawiajgc wartos¢ P do réwnania (3) oraz zamieniajgc
a na — potrzymujemy

= V« 2t (a>|_)2

za$ catka ogdlna rdwnania naszego bedzie miata postaé

sin loot — @),

Um .
sin (cot — + Ac L . 4
Viza+ (wWL)2 ( ® “
Zbadajmy wyraz
_ R
*
Ae +*. /

W miare wzrastania czasu funkcja ta maleje dazac do O.
Teoretycznie staje sie ona réwng 0 przy -]IAi-t—oo; moze to by¢:

1) przy R = oo (przerwa w obwodzie), lecz wtedy znika prad i,

2) przy L = 0 —przypadek ten juz rozpatrywaliSmy w § 7, wreszcie

3) przy t= oo. W rzeczywistosci, po uptywie bardzo krétkiego czasu
R

wyraz Ae L otrzymuje zwykle warto$¢ bardzo matg, czyli prak-
tycznie rowng zeru. Mamy wtedy tak zwany stan ustalony pradu.
Obecnie bedziemy rozpatrywali wytacznie stany ustalone. W tym
przypadku wzor (4) upraszcza sie, mianowicie

...... sin (Wt — <p). 5)
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Poréwnywajgc ten wzér ze wzorem na napiecie i majac na
wzgledzie, ze > 0, widzimy, ze natezenie prgdu jest opo6znione
w fazie wzgledem napiecia, przy czym

tg?="- (6)
Wartos¢ maksymalna tego natezenia pragdu wynosi

r um
\R2+ (coL)2

Wobec tego wartos¢ skuteczna bedzie

= U
\R* + (wL)2 0

Przy pradzie statym mielibySmy wedtug prawa Ohma

= w
1 R’
gdyz nie wystepowatoby zjawisko indukcji wiasnej.
Chcac zastosowa¢ prawo Ohma do pradu zmiennego, musimy
zamiast opornosci R wprowadzi¢ wyraz

Vi?2+ (sel)2> R.
Wyraz ten nazywamy opornoscig pozorng i o0znaczamy
PFZeZ 7’ Z = Vi?2+ (W)2 8)

W ten spos6b mozemy napisaé

-1 LZ 9
Opornos¢ pozorng mierzymy w omach.
Ze wzoru . ;e
1= ImSm (<0t~<p)
mam . . .
y i = Imcos psin wt— Imsin y cos mt.
Poniewaz .
cos cot = sin , . \
(i-»")-

— cos Ot = - sin 0”- —cotj —sin Yot — ~

mozemy napisaé

i = Imcos (psin wt + Imsin Psin
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otrzymalismy warto$¢ chwilowg pradu w postaci dwu funkcji sinu-

soidalnych. Zatézmy ITmcos psin ot = ix

Imsin Psin

czyli i gt

nastepnie, oznaczajac

/mcose>=/Im, /msinp = /2m
otrzymamy T . .
ii = hmsmal,

22— i“(»i-i).

Pierwszy z tych pradéw jest w fazie z napieciem, drugi za$
o I i
opo6zniony wzgledem napiecia o kat — <
Wartos¢ skuteczna pradu pierwszego wynosi
h = 1cos<q
za$ Prqdu drugiego 'II'2= -Irs'in @

Moc czynna rozpatrywanego pradu zmiennego réwna jest
P = Ul cos ¢

Te wihasnie moc daje prad pierwszy, gdyz jest on w fazie z na-
pieciem i moc jego réwna sie

Uli = Ul cos
Moc pradu drugiego, wobec przesuniecia jego fazy wzledem

1)
fazy napiecia o kat ~p bedzie
UI%cos 5 0.

Z tego powodu nazywamy pierwszy prad o wartosci skutecznej
/ cos & pradem czynnym, prad za$ drugi o wartosci skutecznej
I sin @ pradem biernym. Dawniej byly w uzyciu jeszcze terminy:
prad watowy i prad bezwatowy.
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§9
OBWOD Z fiiC W POLACZENIU SZEREGOWYM

Kazdy przewodnik posiada pewng pojemnos¢ elektryczng,
okreslong stosunkiem tadunku elektrycznego, znajdujgcego sie na
przewodniku, do potencjatlu tego przewodnika. Oznaczajgc pojem-
nos¢ przez C, tadunek przez Q i potencjat przez V, mamy

C— 0O
L=

Wiegksze skupienie tadunkow elektrycznych otrzymujemy w kon-
densatorach elektrycznych, ktérych pojemnos$¢ okreslamy jako sto-
sunek tadunku do napiecia istniejacego miedzy oktadzinami konden-

satora, czyli
C —-3t-
” Ue *

gdzie przez Uc oznaczyliSmy to napiecie.
Gdy kondensator w pewnej chwili t wigczymy do napiecia
pradu zmiennego .
u = Umsin oty
otrzyma on w ciggu nieskonczenie matego czasu dt tadunek
dg = idl,

gdzie i oznacza warto$¢ natezenia pradu w rozpatrywanej chwili,
idgcego na tadowanie kondensatora; ten tadunek dq spowoduje
powstanie napiecia duc pomiedzy okfadzinami kondensatora, przy

czym A dg  idt

duc duc
skad
d;tc N (I: (10
lub
N duc
I~ L dt -

Napiecie na kondensatorze, spowodowane napieciem z zewnagtrz
przytozonym, ma przebieg réwniez sinusoidalny, czyli

uc = Uanmsin “ .
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wobec czego
i = CcoUamcos wt = toC Uamsin [ad +

Z wzoru tego wida¢, ze prad tadujacy kondensator wyprzedza
71
napiecie na kondensatorze w fazie 0 kat — «Wartos¢ skuteczna tego

pradu wynosi / = (oCUC,

skad
? Ue__J_
I 0iC
Ostatni wyraz, jako stosunek napiecia do natezenia pradu-
ma wymiar opornosci, nhazywamy g0 o0pornoscia pojemnosciowa,

Opornos$¢ pojemnosciowa jest odwrotnie propor-

1
wC 2jifC
cjonalna do czestotliwosci prgdu zmiennego, a wiec maleje przy
wzroscie czestotliwosci.

Rozpatrzmy teraz obwo6d zawierajgcy opornosc rzeczywistg i po-
jemnos$¢ w postaci kondensatora w szeregowym potgczeniu.

Schemat takiego obwodu mamy na rys. 10, gdzie C oznacza
pojemnos$¢ wigczonego kondensatora.

p Przy pradzie statym prad pty-
- natby w obwodzie tylko do chwili,
r -aru u u I r gdy kondensator zostanie natadowa-

ny, co zwykle nastepuje bardzo

predko po zamknieciu obwodu.
Przy pradzie zmiennym kon-
densator podlega ciggtym tadowa-
i niom i wyladowaniom, powstaje
Rys. 10 prad przesuniecia, wobec czego prad
stale bedzie ptynat w takim obwo-
dzie. W kazdej chwili napiecie przylozone z zewnagtrz réwnaé sie
musi sumie napie¢ powstatych w rozpatrywanym obwodzie. Napieé
tych mamy w danym przypadku dwa: jedno na opornosci B réwne
Bi, napiecie za$ drugie —na kondensatorze, zmienne w czasie; ozna-

czamy to napiecie przez uc.

Wiedy Bi + uc= u. v

Biorac w réwnaniu (11) pochodne wzgledem czasu i uwzgled-
niajac wzor (10), otrzymujemy
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> di duc du
* ~dt + ~dT ~ 1t -

oniewaz .
b u= Upysin mt

otrzymamy .
R gri_l_ll_ ~ Il'm (Ocos (O1 (12

Stosujac przy catkowaniu tego réwnania te samg metode co
w § 8, znajdujemy najpierw catke ogdlng réwnania uproszczonego
w postaci
i = Ae~~RC1
gdzie A jest stalg dowolng.
Catki szczegdlnej szukamy w postaci
i = P sin (wt + a),
gdzie P i a sg state, ktore nalezy znalez¢.
Ro6zniczkujgc ostatnig funkcje, bedziemy mieli
di
di

po podstawieniu tych wartosci do (12) bedziemy mieli

— p o; COS (eDi + a);

gRP cos [ml + a) + 27 sin [wt + @ = Umw cos ml.

Rozktadajac cos [ml + a) i sin [ml + a) i przyrdwnujac nastepnie
wspotczynniki przy coseofi sinwt z lewej i z prawej strony, otrzy-
mujemy dwa nastepujace réwnania:

P
wRP cos a + sin a = Umw,

P
—mRP sina+ cos a = 0.
Podnoszac oba réwnania do kwadratu i dodajgc, otrzymujemy

P 2
R2P 2 + —
[WC)* und

stad
a b - U,

A\l + (»V)"
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nastepnie z drugiego réwnania
t =
ga R~
Zamieniajac a na < gdzie > 0, otrzymamy dla catki ogdlnej
rownania (12)

i= Ae iCN--- , ...m. . msin (cot + w).
. VUHUnD*
Funkcja Ae RC maleje ze wzrostem czasu i zwykle po uptywie

bardzo krotkiego czasu staje sie praktycznie réwnag zeru. Dla stanu
ustalonego natezenie prgdu ma wartos¢

Um . .
Y=f= sin (i + o), (13)

R+ B

i
przy czym

tzv = -ir* (14)
Widzimy, ze natezenie prgdu wyprzedza napiecie w fazie.
Ze wzoru (13) wynika, ze

Um
Im=

wiec wartos¢ skuteczna natezenia pradu wynosi

| = U (15)

Mianownik "R 2+ i stanowi opornos$¢ pozorng rozpatrywa-
nego obwodu.
Ze wzoru (13) mamy
i - Imsin (cot + @),
skad otrzymujemy
i = Imcos @sin cot + Imsin gcos G =

= Imcos @sin cot + Imsin sin
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W ten sposob prad i roztozyliSmy na dwa prady sinusoidalne
o amplitudach Imcos (p oraz Imsin @ Pierwszy, o wartosci sku-
tecznej | cos < jest w fazie z napieciem, a wiec jest to prad czynny;

n
drugi jest przyspieszony wzgledem napiecia w fazie o kat—, jest

to wiec prad, ktéry czynnej mocy nie daje, czyli prad bierny.

§ 10

OBWOD Z OPORNOSCIA RZECZYWISTA, INDUKCYJINOSCIA
I POJEMNOSCIA W POLACZENIU SZEREGOWYM

Na rys. 11 podany jest schemat obwodu zawierajgcego w sze-
regowym potgczeniu opornos$¢ rzeczywistg B, indukcyjno$¢ L oraz
pojemnos¢ C. Oznaczajgc przez u napiecie przylozone z zewnatrz
do rozpatrywanej czesci obwodu, przez uc za$ napiecie na pojem-
nosci C powstajgce przy pradzie i, bedziemy mieli w kazdej chwili

Bi+ L z/a\t + uc=u = Umsin oot (16)
Biorgc pochodng wzgledem t i zamieniajagc na podstawie
wzoru (10) na -gr, otrzymamy
T d2i i i Y
L-(}pI + B (Jj} + = coUmcos Wj. a7)

Catka ogolna tego réwnania stanowi sume catki ogélnej réwnania
uproszczonego

oraz catki szczeg6lnej rozpatrywa-

nego réwnania (17). Pierwsza catka

zawiera funkcje wyktadnicze zmie-

nnej niezaleznej t z ujemnym wy-

ktadnikiem potegi, a wiec funkcje

malejgce z biegiem czasu. Rozpa- Rys. 11

trujac stan ustalony pradu, ktory

nastepuje zwykle po uptywie bardzo krétkiego czasu, odrzucimy te
funkcje, czyli catke ogblng réwnania uproszczonego. Pozostaje wiec
do znalezienia catka szczegdlna danego réwnania; szukamy jej, jak
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i w poprzednich przypadkach, w postaci

i = P sin (mt + a), (18)

gdzie P i a sg state do znalezienia.
Wtedy di
di

da = — ;2P sin (cot + a).

—o P cos (m t + a),

Podstawiajgc te wartosci do réwnania (17), bedziemy mieli
— 2L P sin (ml +a) + mRP cos (cot + a) + P sin (ml -f a) =

= wUmcos mt.

Dzielagc obie strony przez m i grupujac odpowiednie wyrazy,
otrzymamy

P(— —wL\sin(ml+ a) + PR cos (ml + a) = Untos mt;
\wC )
P cos a 1 —mL"j sin ml + P sin a —“>L ™ cos mt

P sinaRsinmt+ P cos aR cos mt = Unpos m
skad \l i m|_\
IXmC /)

u Vv rrL?sina+ RcosaJ = Um.
Podnoszgc oba réwnania do kwadratu i dodajgc, znajdziemy

P2
skad

Z pierwszego z powyzszych réwnan po skrdceniu przez P bez-
posrednio otrzymujemy 2

—_ o'L
taa = mC !
g R
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Zatozmy (p = —a, wtedy

W ten sposéb dla wartosci chwilowej natezenia pradu w stanie
ustalonym otrzymujemy

i= Um - mmsin Iwt - a), (20)
Vil + h -i:)”
skad wartos¢ skuteczna | natezenia pradu bedzie okreslona wzorem

I - r u =T=r- (21)

Wyraz w mianowniku we wzorze (21) stanowi opornos¢
pozorng obwodu, ktéra przyjeto oznacza¢ przez Z, wiec

(22)

Ro6znice opornosci indukcyjnej i pojemnosciowej nazywamy

opornoscig bierng i oznaczamy literg X. W skrdceniu przyjeto ozna-

cza¢ opornos$¢ indukcyjng przez XL oraz oporno$¢ pojemnosciowg
przez Xc; w ten sposdb

= Wl - N
X =wL oL (23)
lub
X = XL-X C. (24)

Czasami spotykamy w literaturze polskiej jeszcze nastepujgce
terminy miedzynarodowe odpowiadajace terminom polskim:

impcédancja — oporno$¢ pozorna,
rezystancja — » rzeczywista,
reaktancja — » bierna,
induktancja lub reaktancja

indukcyjna — > indukcyjna,
kapacitancja lub reaktancja

pojemnosciowa — J pojemnosciowa.

Rozpatrujgc opornos$é bierng: X = coL----V\lh/Jvidzifhy', ze gdy

coL > oL tgp>0, @>0;
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poniewaz we wzorze (20) przed ppozostanie wtedy znak —, bedziemy
mieli op6znienie natezenia prgdu wzgledem napiecia; gdy
coL < od w< 0,
otrzymamy we wzorze na natezenie pradu przed < znak +, czyli
przyspieszenie natezenia pragdu wzgledem napiecia.
Wreszcie, gdy

I = g— tgp=o0, = 0.
W tym przypadku natezenie pradu jest w fazie z napieciem,
a wartos¢ skuteczna natezenia pradu bedzie taka sama jak i przy
pradzie statym.
Ze wzorow (19) i (21) mozemy wyprowadzi¢ wszystkie juz po-
przednio otrzymane wzory, dotyczace poszczegdlnych obwodow.
Wiec gdy obwdd zawiera tylko opornos¢ rzeczywistg, wtedy

L=0 ocuL=0
oraz

C*= 00 -~=0

cuL

Podstawiajgc powyzsze wartosci L i C do wzoru (21) otrzymamy

| = U
= R
Jezeli obwod zawiera tylko indukcyjnos¢, wtedy
R =0,
_ 1
€= wc O

* UWAGA. Brak pojemnosci w obwodzie zamknietym w szeregowym
potaczeniu odpowiada C = oc; prad nie napotyka przeszkéd ze strony kon-
densatora, oporno$¢ pojemnosciowa staje sie réwng zeru. Mozemy to tatwo
udowodni¢ matematycznie, rozpatrujac np. kondensator ptaski, dla ktérego

1S

d i)

gdzie S — pole powierzchni kazdej oktadziny, e— przenikalno$¢ dielek-
tryczna, d — odlegto$¢ pomiedzy okiadzinami. Jezeli bedziemy zblizali okta-
dziny do siebie, wtedy d bedzie malato, C bedzie wzrastato i dla d =0, tj.
wtedy gdy kondensator przestaje odgrywaé swoja role, stajac sie wprost
przewodnikiem, C réwna sie oc.

C =
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wzér powyzszy daje

wreszcie, gdy obwod zawiera tylko pojemnosc,
R=0,
. L=0, toL=0,
otrzymujemy /= ieoC.

Co sie tyczy kata przesuniecia fazy e to ze wzoru (19) otrzy-
mujemy

Poniewaz kat < wziety jest we wzorze (20) ze znakiem ujem-
nym, wiec w pierwszym przypadku prad jest w fazie z napieciem,
w drugim — prad jest op6zniony o kat 90°, w trzecim przypadku
za$ przyspieszony o kat 90° wzgledem napiecia.

Na odwrét, jezeli okreslamy napiecie majac wartos¢ natezenia
pradu oraz odpowiednie opornosci, bedziemy mieli dla wyzej roz-
patrzonych przypadkdéw: napiecie na opornosci rzeczywistej

ur = IR; (25)
jest ono w fazie z natezeniem pradu; napiecie indukcyjne
ur = I(oL; (26)

jest ono przyspieszone w fazie o kat 90° wzgledem natezenia pradu;
napiecie na kondensatorze

jest ono opo6znione w fazie o kat 90° wzgledem natezenia pradu.
Jak widzimy, dla otrzymania napiecia musimy natezenie pradu
pomnozy¢ przez odpowiednig oporno$¢ badz czynnag, badz bierna.
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§ 11
REZONANS NAPIEC

Rozpatrujgc obwod z opornoscig rzeczywista R, indukcyjnoscia L
i pojemnoscig C, potaczonych w szereg, wyprowadziliSmy wzory
(21) i (19), ktore nam dajg wartos¢ skuteczng natezenia pradu oraz
kat przesuniecia fazy natezenia pradu wzgledem napiecia. Z wzoréw
tych widzimy, ze w przypadku szczegélnym, gdy opornos¢ indukcyjna
ma takg samg wartos¢ co i opornos¢ pojemnosciowa, czyli gdy

b= g (28)
otrzymujemy w obwodzie prad
U
F— (29)

przy czym (p—0.
W tym przypadku, jak to mozna zauwazy¢ ze wzorow (26) i (27),

UL = Uc,

czyli napiecie indukcyjne staje sie réwne napieciu na kondensatorze.
Zjawisko takie nazywamy rezonansem napiec.

Kazde z tych napie¢ moze w znacznym stopniu przekroczyé
z zewnatrz przytozone napiecie U.

Rzeczywiscie, wedtug tychze wzoréw, z uwzglednieniem (29),

otrzymamy
1

UL= Uc- lac>L=U ~=*

w przypadku wiec rezonansu napie¢ napiecie indukcyjne oraz réwne
mu napiecie na kondensatorze bedzie tyle razy wieksze od napiecia
z zewngtrz przytozonego, ile razy opornos¢ indukcyjna lub opornosé¢
pojemnosciowa wieksza jest od opornosci czynnej.

Warunek, przy ktorym powstaje rezonans napie¢ ujety we
wzorze (28), mozemy wyrazi¢ jeszcze w sposOb nastepujacy:

© e (30)
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2n
Poniewaz = 2nf = -jr, wiec przy rezonansie napiec

1
/| = , (31)
27y LC
T =2nALC. (32)

Przyktad. Obwdéd zawierajacy cewke o opornosci R = 20 oméw
oraz indukcyjnosci L = 0,7 henra jest przylgczony do sieci pradu
zmiennego o0 napieciu U = 120 woltéw oraz czestotliwosci / = 50
hercow.

Wowezas o= 2nf= 314

oL = 314 «0,7 ~ 220 omow.
Podstawiajac wartosci te do wzoru (7) otrzymujemy
| = 120 120
Y400 + 48400 ~ 220 ~ amPera-

Jezeli w obwdd ten wlaczymy jeszcze w szereg kondensator
0 pojemnosci C, czynigcej zadcs¢ warunkowi rezonansu napieé, czyli
1

Qi C

coL,

bedziemy mieli

— = coL = 220 omoéw,
coc

skad

C-= 314 <220 14 mikrofaraddw.

Po podstawieniu tych wartosci do wzoru (29) otrzymujemy

r =120 = f amperow.

Napiecie na kondensatorze lub na cewce bedzie w tym przy-

padku Uc = UL= 6220 = 1320 woltéw.

§ 12
ZALEZNOSC OPORNOSCI POZORNEJ OD CZESTOTLIWOSCI]

W poprzednich paragrafach wprowadziliSmy okreslenia nowych
poje¢, dotyczacych rdznego rodzaju opornosci. Mamy wiec oprocz
opornosci rzeczywistej, wzglednie czynnej, oporno$¢ pozorng i opor-
nos¢ bierng; ta ostatnia sktada sie na ogét z opornosci indukcyjnej

Teoria pradéw zmiennych 4
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i opornosci pojemnosciowej, stanowigc ich roznice. Rozpatrujgc
poszczeg6lne opornosci widzimy, ze z wyjatkiem opornosci rzeczy-
wistej, ktora zaktadaliSmy w poprzednich rozwazaniach jako wiel-
kos¢ stala, wszystkie inne opornosci sg zalezne od czestotliwosci
pradu zmiennego; we wzory na te opornosci wchodzi pulsacja o,

ktora, jak wiadomo, jest proporcjonalna do czestotliwosci, gdyz

Q = 27t
W urzadzeniach pradu silnego dla sity i swiatta pobieranego
z elektrowni — czestotliwo$¢ pradu zmiennego stanowi wielkos¢

statg, wobec czego i omawiane wyzej opornosci nie podlegajg zmia-
nom, natomiast w urzgdzeniach telekomunikacyjnych, a wiec tele-
fonicznych lub radiowych, czestotliwos¢ podlega znacznym waha-
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niom, o czym juz wspominalismy w § 2; w tych urzadzeniach opor-
nosci bierne i pozorne zmieniajg sie bardzo znacznie w zaleznosci od
czestotliwosci. Nalezy tu zaznaczy¢, ze przy wielkich czestotliwosciach,
czyli przy pradach szybkozmiennych. wystepuja jeszcze inne zja-
wiska, ktdre powodujg zmiane wartosci indukcyjnosci i pojemnosci,

a takze wplywajga na wartos¢ opornosci rzeczywistej i czynnej
O tych zjawiskach bedzie mowa poézniej; na razie ograniczamy sie
do rozpatrzenia takich urzadzen, w ktérych B, L i C mozemy zatozy¢
jako wielkosci state, niezalezne od czestotliwosci.

Na rys. 12 podane sg wykresy opornosci indukcyjnej XL = toL,

opornosci pojemnosciowej Xc = ~ oraz opornosci pozornej Z =

= JR2 + X 2w zaleznosci od czestotliwosci; liczby sg wziete z przy-
ktadu rozpatrzonego w §11.

Na rys. 13 podany jest wykres natezenia pradu w zaleznosci
od czestotliwosci. Punkt M na tych wykresach odpowiada zjawisku
rezonansu napiec.
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Przebieg kazdej funkcji

METODA WYKRESLNA

sinusoidalnej czasu mozemy przed-

stawi¢ na rysunku w postaci sinusoidy wykreslonej we wilasciwej
skali w ukladzie spotrzednych prostokatnych. Majgac taki wykres,
znajdujemy wartosci chwilowe tej funkcji, odktadajgc na osi od-
cietych warto$¢ czasu i odmierzajgc odpowiednia rzedng. Te same

Rys. 14

wartosci chwilowe mozemy
otrzymac tatwiej, przeprowa-
dzajac z poczatku osi spot-
rzednych O (rys. 14), jako ze
Srodka, koto o promieniu OA,
rownym wartosci maksymal-
nej rozpatrywanej funkcji si-
nusoidalnej, np. napiecia Um
Wyobrazmy sobie, ze pro-
mienn OA od kierunku osi X
obraca sie w'ptaszczyznie XY
rownomiernie naokoto punk-
tu O w kierunku odwrotnym
do ruchu wskazéwki zegara
z predkoscig katowag . Po
uptywie czasu tx, t2.. pro-
mien bedzie w potozeniach

OAx, OA2.. Latwo zauwazy¢, ze rzuty promienia w tych potozeniach
nao$ Y:OBIt OB2... beda odpowiednio réwne:

OBx = OAXxsin (otlt
OB2= OAZ2sin wt,. itd.
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Poniewaz OAx= OA2= OA = Um, wiec rzuty te wyrazac beda
wartosci chwilowe funkcji
- u= U, sin oot.

Innego rodzaju jest nastepujacy wykres: kreslimy koto o pro-
mieniu rownym amplitudzie (rys. 15) danej sinusoidy, np. OA = Um,
i przez Srodek tego kota pro-
wadzimy dwa kota o Sredni-
cach réwnych jego promienio-
wi. Prowadzac promien OAX
pod danym katem eo”, otrzy-
mujemy punkt B1 przeciecia
sie OAi z kotem gérnym.

Wielko$¢ OB1= OB sin otx =
= Umsino)tl. W ten spos6b
mozemy znalez¢ wartosci chwi-
lowe funkcji U = Umsin cot
dla dowolnej wartosci t. Gérne
koto stuzy dla wartosci cot za-
wartych w pierwszej potowie
okresu, czyli od O do n, drugie
koto dla wartosci co/od ndo 2n. Rys. 15

Majgc dane funkcje si-
nusoidalne przesuniete wzgledem siebie w fazie o kat u np.
napiecie u = Uwsin ot
i prad i = Imsin (cof —95),

musieliby$my, stosujac powyzsze wykresy, przeprowadzi¢ dla kaz-
dej z tych funkcji koto o promieniu réwnym odpowiednio Umi Im.
Poniewaz w chwili 1 = 0, gdy napiecie przechodzi przez wartos¢ 0,
prad przechodzi przez faze o wiec na wykresie musimy promien
pradu przesung¢ wzgledem promienia napiecia o odpowiedni kat tp
Na rys. 16 mamy przypadek, gdy prad opdéznia sie wzgledem na-
piecia OA = Um, OB = Im

Obracajgc oba promienie z ta samag predkoscia katowg o
w plaszczyznie X Y i rozpatrujac rzuty tych promieni na o$ Y,
okreslimy odpowiednie wartosci chwilowe napiecia i pradu, np.
OC = Umsinc o OD = Imsin (cofx— ).

W praktyce elektrotechnicznej rzadko kiedy potrzebujemy
rozpatrywac¢ wartosci chwilowe napie¢ i pradéw, przewaznie mamy
do czynienia z wartosciami skutecznymi. W tym przypadku mozemy
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sie ograniczy¢ do przeprowadzenia na wykresie samych tylko pro-
mieni o dhugosci odpowiadajgcej wartosciom skutecznym rozpatry-
wanych wielkosci, np. napiecia i pradu, z uwzglednieniem jednakze
katoéw przesuniegcia fazy,
1Y wiec zamiast rys. 16 be-
dziemy mieli rys. 17,
gdzie w odpowiednich
skalach napiecia i nate-
zenia pradu 0 A = U,

OB = 1.

W ten sam sposéb
moglibySmy rozpatry-
wac¢ jednoczes$nie dowol-
ng ilos¢ wielkosci sta-
nowigcych sinusoidalne
funkcje czasu o tej sa-
mej pulsacji, czyli o tej
samej czestotliwosci.
Kazdg takg wielkos¢
oznaczylibySmy na wy-

Rys. 16 kresie odcinkiem prostej

przeprowadzonej z okre-

Slonego punktu jako poczatku; ditugosé odcinka w przyjetej skali
odpowiadataby wartosci, np. skutecznej, rozpatrywanej wielkosci;
kierunek odcinka bylby zalezny od kata przesuniecia fazy oma-

Rys. 17

wianej wielkosci wzgledem innej, dla ktorej obieramy dowolny
kierunek, najczesciej poziomy lub pionowy, jako podstawowy.
W wykresie na rys. 17 za podstawowy kierunek wziety jest kierunek
napiecia; moglibySmy réwniez wzigé¢ za podstawowy, kierunek na-
tezenia pradu, jak np. na rys. 18.

Jezeli jeden z dwdch krancéw odcinka obieramy jako jego pocza-
tek, drugi zas jako jego koniec, to otrzymamy twoér, ktdry w geometrii
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nazywajg wektorem, a kierunek prowadzgcy od obranego poczatku do
obranego konca — kierunkiem wektora. Takie odcinki na plaszczyznie
stanowig wektory plaszczyznowe w odréznieniu od wektoréw prze-
strzennych. W elektrotechnice znalazty szerokie zastosowanie wektory
ptaszczyznowe, ktdre dla uproszczenia nazywane sg wprost wektorami.

Z tego powodu przyjeto w elektrotechnice nazywac¢ wektorami
wielkosci, ktére na wykresie przedstawiamy odcinkiem prostej okres-
lonej dtugosci i okreSlonego kierunku; mowimy wiec: wektor napiecia,
wektor natezenia pradu itd., wykres zas, na ktdrym mamy takie wektory,
nazywamy wykresem wektorowym.

Na wykresie wektorowym katy dodatnie odkiladamy w kierunku
przeciwnym do ruchu wskazowki zegara; w tym lez kierunku wyobra-
zamy sobie ruch wektorow; jezeli wiec jakis wektor jest przeprowa-
dzony na wykresie pod katem dodatnim wzgledem wektora podsta-
wowego, oznacza to, ze ten pierwszy wektor wyprzedza wektor
podstawowy w fazie, i odwrotnie, gdy jaki$ wektor jest odtozony
pod katem ujemnym (w kierunku ruchu wskazowki zegara), wowczas
wektor ten opdznia sie w fazie wzgledem wektora podstawowego.

Na rys. 17 i 18 wida¢, ze wektor OB = | jest cofniety wzgle-
dem wektora OA = U, czyli ze natezenie pragdu jest opo6znione
w fazie wzgledem napiecia. Nie jest jednakze rzeczg obojetna, od
jakiego z dwoch wektoréw odmierza¢ kat przesuniecia fazy y, od
tego bowiem zalezy znak tego kata. Jezeli w rozpatrywanym przy-
padku (rys. 17 lub 18) bedziemy odmierzali kat y od wektora na-
piecia, wowczas powiemy, ze kat jest ujemny; natomiast jezeli
tenze sam kat bedziemy odmierzali od
wektora natezenia pradu, wéwczas kat y
wypadnie dodatni.

Jezeli mamy kilka pradéw do roz-
patrzenia i bierzemy pod uwage przesu-
niecia fazowe tych pradéw wzgledem okre-

Slonego napiecia, wowczas wektor napie-

cia bierzemy jako wektor podstawowy,

wektory za$ natezeh poszczeg6lnych pra-

déw przeprowadzamy pod wilasciwymi

katami. Tak np. na rys. 19 widzimy, ze

prad 10 jest w fazie z napieciem U, prad Ix wyprzedza napiecie,
wreszcie prad /2 opéznia sie w fazie wzgledem napiecia.

Wykresy wektorowe sg bardzo dogodne i znacznie ulatwiajg
orientowanie sie w zawitych czesto zjawiskach zachodzgcych w obwo-
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dach pradéw zmiennych. Za pomocag takich wykreséw mozemy
rowniez czesto znacznie predzej uskutecznia¢ obliczenia, zwlaszcza
gdy nie chodzi nam o wieksza Scistos¢ rachunkéw.

Pokazemy to na przykiadach.

Rozpatrzmy wykresy znanych juz nam obwodéw. Jezeli dany
obwod posiada opornos¢ rzeczywistg B i indukcyjno$¢ L, woéwczas
napiecie na opornosci E U —IE

jest w fazie z pradem |I; napiecie za$ indukcyjne
UL= 1 coL
jest przyspieszone o kat " wzgledem pradu. Zrébmy wykres wek-

torowy. Jako podstawowy wektor wezmiemy wektor pradu | (rys. 20);
na tym wektorze odmierzamy odcinek OA jako wektor IE. Od

T
punktu A odkiadamy pod katem dodatnim odcinek AB jako

wektor la>L. Napiecie U z zewnatrz przytozone jest sumg wektoréw
UR i UL, otrzymamy je dodajgc geometrycznie te wektory jako
odcinek OB. Z tréjkata OAB otrzymujemy

U2= I12E2+ 12[col)2,

stad 12 = U2
. E2+ (coL)2
wreszcie
U
VR2+ (WL)2
oraz 0
O T?

Widzimy, ze w sposob znacznie prostszy doszliSmy do otrzy-
manych juz inng drogg wynikow. Tréjkat OAB nazywamy troj-
katem napie¢. Dzielagc kazdy bok tego trojkata przez /, otrzy-
mamy tak zwany trojkat opornosci (rys. 21).
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Jezeli obwod zawiera opornos$¢ rzeczywistg R i pojemnos$¢ C,
wtedy, postepujac analogicznie, mozemy roéwniez zbudowac tréjkat
napie¢; odcinek AB (rys. 22), oznaczajgcy napiecie na kondensa-

torze Iag) nalezy odtozy¢ na dot, poniewaz w danym przypadku

mamy napiecie opozmone B
wzgledem pradu o kat pro-

sty. Wektor zamykajacy OB

wyraza napiecie U, przytozo-

ne z zewnatrz.

IX
As CA

o

W przypadku, gdy obwdd zawiera opornos$é¢ B, indukcyjnos¢ L
i pojemnos¢ C, postepujemy tak: na linii OA odkladamy wektor réowny
napieciu na opornosci rzeczywistej IR (rys. 23). Nastepnie od
punktu A odktadamy w gdére wektor AB = IcoL i od punktu B na

dot wektor BC wyobrazajacy napiecie 1 — na kondensatorze.

Tu, zaleznie od wartosci napiecia pojemnosciowego, mozemy otrzy-
ma¢ punkty Clt C2 lub C3:

Ci w przypadku gdy < wL;

1 _ -
C2 » i 0wl coL;
C, oC > oL .

Biorgc np. przypadek pierwszy, gdy przewage ma opornos¢
indukcyjna nad opornoscig pojemnosciowa, taczymy punkt O z punk-
tem Cv Wektor OC1= U wyobraza napiecie przylozone z zewngtrz
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Odcinek A Cl1l= IX, gdzie

stanowi opornos¢ bierna.

Dzielagc bok trojkata przez | otrzymamy w odpowiedniej skali
trojkat opornosci danego obwodu (rys. 24) z bokami R, X i Z; z tego
trojkata otrzymujemy znane juz wzory:

Z=Vfi2+x2 tg>=A.

Z trojkata OA Ct (rys. 23) otrzymujemy
Ucos @=//?,
Usin = /X.

Kazde zatem napiecie w ob-
wodzie pradu zmiennego mozna
roztozy¢ na 2 sktadowe. Przez ana-
logie do sktadowych pradu mozemy
nazwac napiecie U cos @ napieciem
czynnym, napiecie zas U sin @ na-
pieciem biernym.
Rozpatrujagc moc pozorng pra-
du zmiennego Ul jako wektor,
mozemy zbudowac trdjkat mocy
ABC (rys.25), w ktorym AB= Ul
bedzie mocg pozorng, AC = Ul
cos ¢ stanowi moc czynng, za$ Rys. 26
BC = Ul sin @ moc bierna.
Jezeli oprocz wielkosci R i X wiadome jest napiecie U i trzeba
znalez¢ prad |, wéwczas zadanie takie mozna rozwigzaé¢ wykresinie
w sposob nastepujacy: na dowolnej linii prostej odktadamy odcinek
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O A = U (rys. 26); na tym odcinku, jako na S$rednicy, przeprowa-
dzamy koto. Z punktu 0 odmierzamy wzgledem odcinka OA kat {9
X

obliczony ze wzoru tg = = i przeprowadzamy pod tym katem

prostg do przeciecia z kotem w punkcie B.

Wtedy OB = IB, BA = IX; mierzac wiec odcinek OB w skali
napie¢ i dzielagc przez B, otrzymamy |I.

Odcinek OB zostat przeprowadzony pod katem < naprzod,
czyli w przypuszczeniu, ze X < O (przewaga pojemnosci); gdyby
przewazata indukcyjnos¢, otrzymalibysmy tréjkat OAC.

§ 14
METODA SYMBOLICZNA

Potozenie dowolnego punktu M (rys.27) na ptaszczyznie mo-
zemy okresli¢ w ukladzie wspotrzednych za pomoca promienia wo-
dzacego OM = r i kata biegunowego a, odmierzonego od osi bie-
gunowej OX z poczatkiem O.

Oznaczajagc wspotrzedne punktu M w uktadzie prostokgtnym
osi X i Y, czyli rzuty promienia wodzacego r na te osi przez a i b,
bedziemy mieli

a = rcos a, (1)
b= rsina (2)
r=YaM-~P, 3)
tga-A. 4)

Rozpatrujac na ptaszczyznie odci-
nek prostej, ktéremu nadajemy pewien
kierunek, np. OM, mozemy go w zupet-
nosci okreslic w sposob dwojaki: albo
podajgc diugos¢ tego odcinka ri kat a
pomiedzy tym odcinkiem i obrang osig, Rys. 27
przechodzaca przez jego poczatek, albo
za pomoca rzutdw tego odcinka aibna dwie prostopadte do siebie osie,
przechodzace przez jego poczatek. Odcinek OM stanowi geometryczna
sume rzutéw a i b. Z matematyki wiadomo, ze takg geometryczna
sume mozna przedstawi¢ w postaci liczby zespolonej a + jb, gdzie
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/=y — i, ajest rzutem na o$ rzeczywista, za$ b rzutem na o$ urojong.
Moglibysmy wiec napisa¢ OM = a + jb, ale wtedy nie widzieli-
bysmy réznicy pomiedzy odcinkiem majacym okreslony kierunek
a dhugoscig tego odcinka. Aby zaznaczyé¢, ze w rozpatrywanym od-
cinku uwzgledniamy nie tylko jego dtugos¢, lecz réwniez i jego kie-
runek, bedziemy dawali u goéry daszek; wiec pisa¢ bedziemy
OM = a+ jb lub _ .
e=a + jb. 5
Wprowadzajac zamiast rzutéw a i b ich wartosci ze wzoréw

(1) i (2), mozemy napisac

r=r(cos a+ / sin a); (6)

r nazywamy modutem, za$ a argumentem liczby zespolonej wyrazonej
symbolem r.

Gdy argument a= 0, to znaczy, gdy rozpatrywany odcinek
znajduje sie na obranej osi, wowczas

r=r,

czyli zamiast liczby zespolonej otrzymujemy dla naszego odcinka
liczbe rzeczywista.

Przy rozwazaniu pradéw zmiennych, jak to juz widzieliSmy,
mamy do czynienia z wielkosciami, ktére na wykresie przedsta-
wiamy jako odcinki prostej z uwzglednieniem ich kierunkéw. Kazdag
wiec takg wielko$¢ mozemy wyrazi¢ symbolicznie jako liczbe zespo-
long za pomocg modutu i argumentu lub tez za pomocag rzutéw na
osie rzeczywistg i urojong. Wprowadzenie takich symboli i dzia-
tania nad nimi nazwano metoda symboliczna.

Metoda ta znalazta szerokie zastosowanie w elektrotechnice
pradéw zmiennych, gdyz w znacznym stopniu upraszcza matema-
tyczne dziatania nad rozpatrywanymi wielkosciami; daje ona moz-
nos¢ przeprowadzania scistych obliczen, czesto w bardzo zawitych
zagadnieniach.

Przy stosowaniu metody symbolicznej bedziemy sie spotykali
z zagadnieniem obracania wektorow naprzod lub wstecz o kat
prosty; dziatanie takie sprowadza sie do mnozenia lub dzielenia
przez j. Rzeczywiscie, niech OMx (rys. 28) oznacza wektor rx z rzu-

tami a i b, czyli fx= a + Ib; ©)

gdy obrécimy ten wektor w kierunku dodatnim, o otrzy-
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mamy nowy wektor OM 2= r2, przy czym
= — b+ ja; 8)

n
obracajgc nastepnie ten wektor naprzdd o kat -g-, otrzymamy

wektor OM3= r3 przy czym
=.—a—jb, 9)

. . , n
wreszcie obracajgc ostatni wektor o kat — , otrzymamy wektor

OM4= r4, dla ktorego 4= b— ja. (10

tatwo jest sprawdzi¢, ze mnozac wzor (7) przez / otrzymamy
wzér (8), mnozac wzor (8) przez / otrzymamy wzdr (9), wreszcie
mnozac wzor (9) przez /

wektora przez / daje w

rezultacie wektor obrécony naprzéd o kat prosty, natomiast po-
dzielenie przez / lub, co jest jedno i to samo, pomnozenie przez—/,
daje nam wektor obrocony o kat prosty wstecz.

Na zasadzie znanego wzoru Eulera
efi* = cos a+ /sina,
gdzie e jest podstawa logarytméw naturalnych, mozemy wzér (6)

przepisa¢ w postaci "~ rea
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Argument a stanowi pewien kat, ktory nalezy odtozy¢ od
obranej osi podstawowej, by na wykresie otrzymac¢ Kkierunek od-
cinka wyobrazajgcego symbol r. Katy dodatnie odkladamy w kie-
runku przeciwnym do ruchu wskazéwki zegara; mogg sie one na
0got zmienia¢ w granicach od 0° do 360°, czyli od 0 do 2 t; jednakze
w elektrotechnice pradéw zmiennych dogodniej jest odmierza¢ katy
w dwdch kierunkach: jako dodatnie i jako ujemne; wéwczas katy
te bedg mialy wartosci w granicach od —180° do +180°, kazdy
kat ponad +180° moze by¢ rozpatrywany jako kat ujemny, stano-
wigcy dopetnienie do 360°, jak rowniez kazdy kat ujemny mniejszy
od — 180° bedzie stanowit kat dodatni, stanowigcy dopetnienie war-
tosci bezwzglednej tego kata do 360°.

Jak widzieliSmy (wzor 4), argument a w zaleznosci od liczby

zespolonej okresla sie wzorem tg a= —, jezeli symbol f = a + jb;

ale znaki przy liczbach a i b moga by¢ zaréwno dodatnie jak i ujemne,
wobec tego i znak tg a moze wypas¢ dwojaki. Rozpatrzmy mozliwe

Gdybysmy okreslali argumenty a2 a3, a4 tylko na podstawie
wartosci ich tangensoéw, mielibysmy dwoisto$¢, gdyz, jak tatwo

zauwazye¢,
tgai = tga3 = —; tg2=tgdd= —— =

Dla okreslenia wiec kata a musimy wiedzie¢, w jakiej ¢wiartce
powinien sie on znajdowa¢, a to mozemy stwierdzi¢ tylko na pod-
stawie znakoéw stojgcych przed a i przed b, przy czym, stosownie do
umowy, katy w pierwszej i drugiej ¢wiartce ax i a2 beda dodatnie,
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za$ katy w trzeciej i czwartej ¢wiartce a3 i a4 beda ujemne i ich
bezwzgledne wartosci nie przekraczajg 180°.

Dziatania nad symbolami sprowadza sie do dziatan nad licz-

bami zespolonymi; tak np. majgc dwa symbole

fi = ai + jbi = ii (cos ax+ / sin ax)

r2= a2+ jb2 = r2(cos a2+ j sin a2

rxe3“],
r2eiad’

i dodajac je, czyli okreslajgc ich sume geometryczng r, otrzymamy
r= +r2= ax+ a2+ j (6 + 62 = r(cos a+ / sin a),
gdzie

f=3J («<i+ a22+ (¢i+ ¢332 t?2a=4LZV"

W celu otrzymania iloczynu symboli napiszemy
r2= rxga>. r2eXd = rlr2e'(@+0 =
= rir2[cos (ax+ a2 + / sin (ax+ a2)],
skad wida¢, ze modut iloczynu symboli réwna sie iloczynowi mo-
dutdw, argument za$ roéwna sie sumie argumentdw mnozonych
symboli.
Przy dzieleniu symboli bedziemy mieli

=-28it= “a)=T9 [C0Smi" a2 + isin (@i — “2)],>

czyli moduty sie dzieli, argumenty sie odejmuje.
Przy podnoszeniu do potegi symbolu
r= r(cos a+ /sina) = reia
bedziemy mieli
P’ = me-"" = rn(cos na + j sin na),

modut jest podniesiony do potegi, argument za$ jest pomnozony
przez wykiadnik potegi; przy wycigganiu pierwiastka

\JF= re ~cos ~"N+ | sin

nalezy wyciggna¢ pierwiastek z modutu, argument za$ podzielié
przez wykiadnik pierwiastka.

tatwo tez jest zauwazy¢, ze mnozenie wektora przedstawionego
liczbg zespolong przez ei? powoduje obrot tego wektora o kat q
Np. gdy rozpatrujemy wektor r = r (cos a + j sin a) = reJai pomno-
zymy go przez e39, czyli przez cos @+ /sinq@ otrzymamy nowy
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wektor rv= reiaeir = = rfcos (@a+ 9P + jsin (a + 9], ktérego
modut jest ten sam, lecz argument jest zwiekszony o kat qo inaczej
mowigc, nowy wektor jest obrécony wzgledem poprzedniego o kat q
Mnozenie wektora przez e)U* przy zmianie czasu t daje obrot
z predkoscig katowg .
Na tej podstawie mozemy symbolicznie uja¢ réwniez wartosci
chwilowe funkcji sinusoidalnej czasu; rozpatrzmy np. funkcje

y = Ymsin ojt.

W § 13 widzielismy, ze wartosci chwilowe rozpatrywanej funkgcji
mozemy otrzymac obracajac z predkoscig kgtowag o promienn odpo-
wiadajacy najwiekszej wartosci Ym tej funkcji i biorgc rzuty na
0§ OY. Gdybysmy brali rzuty na o$ OX, otrzymalibySmy réwniez
wartosci chwilowe w postaci

IJ= Ymcos

z tg tylko roznicg, ze moment, od ktdrego rozpoczynamy liczenie
czasu (t= 0), w tym drugim przypadku odpowiadatby przejsciu
danej funkcji przez warto$¢ najwiekszg, nie za$ przez wartos¢ O,
jak to ma miejsce w pierwszym przypadku. Oczywiscie wartosci
chwilowe mozna otrzymywac biorac rzuty na dowolnie przeprowa-
dzong 0$; nazwijmy te oS — osig czasu. Tak np., gdy o$ czasu jest
przeprowadzona pod katem a do
osi OX (rys. 30) i obrot Ym roz-
poczniemy od tej osi czasu, woOw-
czas wartosci *chwilowe mozemy
otrzymac¢ jako rzuty na te oS w
postaci Ymcos cot albo tez jako
rzuty na osi OX lub OY w po-
staci Y, cos (cot + a) lub Y, sin
[cot + a). Czesto dogodniej jest brac
za 0§ czasu jedng z osi wspot-
rzednych.
W zatozeniu, ze wartosci chwi-
lowe bedziemy traktowali jako
rzuty na okreslong stalg 0$ promienia obracajacego sie z predkoscig
katowg o i odpowiadajacego najwiekszej wartosci rozpatrywanej
funkcji sinusoidalnej czasu, mozemy pisa¢ symbolicznie réwnanie
wirujacego promienia

$ = Ymeiwt = Ym(cos wt + j sin cot)
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lub ogodlniej
y = Yme (“t+a) = Ym/[cos (cot + &) + j sin (oot + a)].
Czasami zachodzi potrzeba rozpatrywania pochodnej lub catki
wektora wzgledem czasu. W ogélnym przypadku bedziemy mieli

= jeo Ynei(* ' +%>= jwy;

widzimy wiec, ze pochodna wektora wzgledem czasu stanowi nowy
wektor, ktorego modut jest zwiekszony @ razy i ktdéry jest obré-
cony o kat prosty naprzdd wzgledem poprzedniego.

Nastepnie

gdzie C stata dowolna, czyli
JydIl-3Jn + G,

znaczy to, ze pomijajac statg dowolna, ktéra w zaleznosci od wa-

runkéw granicznych moze mie¢ taka lub inng wartos¢, otrzymujemy

po scatkowaniu nowy wektor z modulem zmniejszonym @ razy,

obrécony o kat prosty wstecz wzgledem poprzedniego.
Rozpatrzymy teraz kilka przy-

ktadow zastosowania metody symbo-

licznej do rozpatrzonych juz poprzed-

nio obwodéw pradu. lcoL
Jezeli mamy opornos$¢ rzeczy-

wistg i indukcyjnos¢ (rys. 31), wow-

czas, biorac wektor natezenia pradu

jako podstawowy, bedziemy mieli

V=1IR + jlcoL = I (R + jcoL),
przy dowolnej zas osi podstawowej zamiast 1 musimy wprowadzi¢ 1
O = 1{R + jcoL);

IR = Ucosqm IlcoL = Usingg O = U (cos e+ j sin 9.

Jezeli zamiast trdjkata napie¢ wezmiemy tréjkat opornosci
(rys. 3?"), wowczas Z = R + jeoL]

R = Zcosq coL = Zsing\
Z = Z (cos P+ } sin q).

Teoria pradéw zmiennych 5
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Jezeli w obwodzie mamy oprécz opornosci rzeczywistej kon-
densator (rys. 33), wowczas

O-IR-jI-TU-I1(«7i"u)'

1
IR = Ucosgqg I mg = Using L = U (cosp—j sintp);

W przypadku zas najogolniejszym, gdy obwdéd zawiera R, L i C
w szeregowym potgczeniu, bedziemy mieli przy dowolnej osi pod-

stawowej O- 1(R +.12,

1
toC

gdzie X =XL-X C= a¥
moze mie¢ znak dodatni lub ujemny.
Y
Poniewaz znak tg 9= — zalezny jest wylgcznie od znaku X,
gdyz R zawsze jest > O, przeto kat pmoze sie zmienia¢ tylko w gra-
mcach - 90° < p< + 90°,

przy czym skrajne wartosci $potrzymujemy teoretycznie dla R = 0,
praktycznie dla bardzo matych wartosci opornosci rzeczywistej.
Nastepnie mamy

Z =R+ jX, . (13)
R = Z cos 9 (14)
X —Zsintp (15)
0 = Iz. (16)

Mocy pradu zmiennego w symbolicznym ujeciu na ogot nie
otrzymamy przez pomnozenie wektor6w napiecia i natezenia pradu.
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Jezeli bowiem napiecie jest przesuniete w fazie wzgledem dowolnie
wybranego kierunku podstawowego o kat a, prad zas wzgledem
napiecia o kat < bedziemy mieli:

V = Ueia, 1= +
VI = t//le;2“+?) = Ulcos a+ B+ /[//sin (2a+ )

Dla otrzymania wikasciwego wzoru mocy musimy wzig¢ albo
jeden z dwu wektoréw napiecia lub pragdu za podstawowy, wtedy
bowiem a = 0 lub a= — (p, albo tez jeden z tych wektoréw w postaci
liczby zespolonej sprzezonej, czyli

Vs= Ue~h
[ = le~Ja+tr\
W pierwszym przypadku
VI —Ulcos + jUI sinel
w drugim przypadku
0,1 = i//cos e+ jUI sin &5
Vis= Ul cos p—jU I sin &

Czes$¢ rzeczywista odpowiada mocy czynnej, cze$¢ za$ urojona
mocy biernej; ta ostatnia moze mie¢ dwa znaki w zaleznosci od
znaku kata 9 Z powyzszych wzorow wynika, ze moc pozorna réwna
sie sumie geometrycznej mocy czynnej i mocy biernej.

Zamiast opornosci dogodniej jest czasami postugiwac sie prze-
wodnoscig. Jezeli Z oznacza opornos$¢ pozorng, wowczas

nazywamy przewodnoscig pozorna.

Zobaczymy, jakie bedg jej skiadowe. Stosujgc metode symbo-
liczng otrzymujemy

Z,B +ix. i

1 _ R—jX R—jX R .X
R+jX R2+X2 72 72 172

? = (Z=\R2X",

5%
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U
Biorgc pod uwage, ze Z | a takze wzory (14) i (15), mo-

zerny napisac: B 1 B I oos(D
z2 z 2 U
X 1 X I sin @
z2 z 2 U

Z prawej strony ostatnich wzoréw mamy ilorazy pradu przez
napiecie, czyli pewne przewodnosci. Pierwsza z tych odpowiada pra-
dowi czynnemu, nazywamy ja przewodnoscig rzeczywista lub
czynng i oznaczamy literg G. Druga przewodnos¢ odpowiada
pradowi biernemu i nazywa¢ jg bedziemy przewodnoscig bierng
oznaczajac literg B; w terminologii miedzynarodowej, rzadko spo-
tykanej w literaturze polskiej, przewodnos$¢ rzeczywista nosi nazwe
konduktancji, przewodnos$¢ bierna — susceptancji, zas przewodnosé
pozorna — admitancji. W ten sposob:

r =-
G 722’
B= 22
= G- [B,
skad
Y =VG2+ B2,
. B
tg*u _GL

Znak B we wzorze symbolicznym na przewodno$¢ pozorna,
jak widzimy, jest przeciwny do znaku X, jaki wystepuje w opor-
nosci pozornej, wiec gdy przewaza opornos¢ indukcyjna X > 0,
B < 0; gdy przewaza opornos¢ pojemnosciowa X < 0, B > 0.

Zestawienie rozpatrzonych wielkosci i najwazniejszych wzoréw

Moc Napiecie U
czynna P = Ul cos 9 czynne Ucose= IB
bierna Px= Ul sin ¢ bierne Usin p—1X
pozorna Pz= Ul

O=1z
Prad |1
czynny | cos p— UG
bierny I sing= UB
- ¥ 5y
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Opornos¢
. . . U cos
czynna (rzeczywista, omowa, rezistancja) R = ®

bierna (reaktancja) X = Usmep

indukcyjna (reaktancja indukcyjna, induktancja) XL —coL

pojemnosciowa (reaktancja pojemnosciowa, kapacitancja) Xc = ;}

ir = - * _
jre ALt g—al
pozorna (impedancja) Z —YR2+ X2

Z=R+jX; ’ x
cos R_m sin
q) Z 1 m
Przewodnos¢
czynna (rzeczywista, konduktancja) G= -2 = U n
. . _ X I sin @
bierna (susceptancja) R = 2= U
pozorna (admitancja) Y = 1
Y = G—jR
tg R cosgs = G ; Singp—
g i
§ 15

WYKRESY ZMIENNOSCI WEKTOROW

Przy rozpatrywaniu wzajemnych zaleznosci wielkosci charak-
terystycznych w obwodach prgdu zmiennego, moze zaj$¢ potrzeba
sporzadzenia wykresow, gdy jednej lub kilku z tych wielkosci chcemy
nadawa¢ dowolne wartosci zmienne. Jako przykiad moga stuzyé
zmiany napie¢ lub pradéw przy zmiennych R, L, C lub czestotli-
wosci /. Na takich wykresach otrzymujemy wiec zmienne wektory,
ktérych konce stanowig r6zne geometryczne miejsca w postaci albo
linii prostej, albo linii krzywych. Wykres tego rodzaju mozna nazwaé
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wykresem zmiennosci wektorow. Najczesciej w obwodach pradu
zmiennego mamy do czynienia z wykresami w postaci linii prostej
albo kota.

Poprzednio (rys. 26) podany byt juz przykiad takiego wykresu,
gdzie dla okreslonego napiecia przy dowolnych wartosciach kata
przesuniecia fazy @ miedzy napieciem i natezeniem pradu, czyli przy

zmiennym tg @= poszukiwane

jest natezenie pradu |. Geometrycz-
ne miejsce koncéw wektora /, czyli
wykres zmiennosci wektora /, sta-
nowi koto o S$rednicy U.
Rozpatrzmy wzér (12)

Rys. 34 € = 1R+ jlx
Niech 1 i R majg state wartosci, zas§ X = coL — jest zmienne.

Biorac za podstawowy wektor —natezenie pradu (rys. 34), odktadamy
na nim w odpowiedniej skali IR = OA, nastepnie przeprowadzamy
w punkcie A prostopadia BC do

Ol. taczac O z dowolnym punk- ~

tem prostej BC, otrzymamy wek-

tor napiecia U, przy czym dla

X > 0, gdy jest przewaga opor-

nosci indukcyjnej nad opornoscig q

pojemnosciowa, odktadamy dla od-

powiedniej wartosci X = X Lwartos¢ j

I XLw gore, natomiast dla X< 0

odktadamy dla wartosci X = Xc¢ D

wartos¢ I XC w dot. Wykresem Rys. 35

zmiennosci wektora U jest w tym

przypadku prosta RC. Gdy R jest zmienne, X stale, bierzemy
rowniez za wektor podstawowy natezenie pradu | (rys. 35), odkila-
damy od punktu O statg wartos¢ 1X, w razie przewagi opornosci
indukcyjnej IXL= OA w gore, za$ przy przewadze opornosci po-
jemnosciowej I XC= OR w dot, i przeprowadzamy z punktéw A i R
rownolegte AA' i BR' do osi Ol. tatwo zauwazy¢, ze obie te proste
stanowig wykres zmiennosci wektora U, np. dla IR = AM

U= OM w przypadku X > 0; dla IR = BN
U= ON w przypadku X < O.
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Czasami zachodzi potrzeba przejscia od wykresu pewnej wiel-
kosci do wykresu innej, ktéra jest odwrotnie proporcjonalna do
pierwszej, np. oporno$¢ pozorna i przewodnos$¢ pozorna, opornosé
pozorna i natezenie pradu przy statej wartosci napiecia itp. Tego
rodzaju przeksztatcenia dokonaé mozna
za pomocag tak zwanej inwersji.

Rozpatrzmy na plaszczyznie dwie
krzywe AB i A'B' (rys. 36), ktére maja
nastepujace wiasnosci: iloczyn promieni
wodzgcych, przeprowadzonych do tych
krzywych z poczatku O w tym samym
kierunku, jest wielkoscig stata, a wiec

OA «OA’= OB-OB' = ... = k
lub
.k
OA' = OA

Znajdowanie jednej z tych krzywych, gdy druga jest dana,
nazywamy inwersjg lub przeksztatceniem przez promienie odwrotne.
Punkt O nazywamy S$rodkiem inwersji zas k stopniem inwersji lub
wspotczynnikiem przeksztatcenia przez promienie odwrotne. Kazdemu
punktowi jednej krzywej np. punktowi A odpowiada punkt A' na
drugiej krzywej lub odwrotnie.

Najczesciej spotykamy sie z wykresami kotowymi, gdy jedng
krzywg stanowi koto i trzeba dla kota znalezé krzywa przeksztat-
cong przez promienie odwrotne. Tu nalezy rozpatrzy¢ 2 przypadki,
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w zaleznosci od tego, gdzie sie znajduje Srodek inwersji: 1) poza
danym kotem; 2) na danym Kkole.

W pierwszym przypadku, gdy srodek inwersji 0 (rys. 37) znaj-
duje sie poza danym kotem ze Srodkiem CIt przeprowadzamy i prze-
dtuzamy prostg 0C Xoraz styczng OA\ nastepnie budujemy drugie
koto, podobne do danego, ze srodkiem C2 na przedtuzeniu OCx, ze

wspolng styczng OA A', tak aby OA' = K gdzie k stanowi sto-
pien inwersji, czyli HA .DA’'- b
Z podobienstwa tréjkatow
A OABcoA OA'D’

mamy OB OA,
oD" OA"

z podobienstwa zas OAD co A OA'B'

oD OA

oB' " OA'’
z tych proporcji wynika, ze

oB oD

'OW = ~OW'
skad OB «OB’ = OD =0OD’.
Ale OB «OD = OA2

OD' «OB' = OA'2
mnozac stronami, otrzymamy
OB «OB' «OD «OD' = OA2<0A'2= k2
i ostatecznie QB .0QB,= QD .QD, =k

Przeprowadzajgc dowolny promien OMNN'M', znajdziemy

w sposob analogiczny, ze
OM mOM' = ON «ON' = fc

W ten sposob dochodzimy do wniosku, ze koto ze Srodkiem C2
stanowi dla danego kota krzywg przeksztatcong przez promienie
odwrotne, czyli krzywa otrzymana za pomocg inwersji. Przy kon-
strukcji tego kota prosciej jest znalez¢ na przedtuzeniu prostej 0C X
punkty D' i B’ ze wzoréw OD' = K , OB' = q|§~, a nastepnie zna-

lez¢ Srodek kota C2 dzielgc odcinek D'B' na potowe.
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tatwo zauwazy¢, ze gdy na danym kole przechodzimy od je-
dnego punktu do drugiego, idac wedtug ruchu wskazowki zegara,
np. od B do M, na kole przeksztatconym odpowiednie punkty otrzy-
mamy idac w kierunku przeciwnym:

od B' do M".
Gdy S$rodek inwersji znajduje
sie na samym kole (rys. 38), wtedy A

w poréwnaniu do poprzedniego przy-
padku (rys. 37) OB = 0, wobec czego

k
OB' = = oo0:
OB D'

OoD' = oD QD= oD
Srednica drugiego kota OB' —OD'
staje sie nieskonczenie wielka; ina-
czej mowiac, zamiast kota otrzymu-
jemy prostag przechodzacg przez

k
punkt D' w odlegtosci od Srodka inwersji O, skierowang pro-

stopadle do S$rednicy danego kota OD. Z podobienstwa trojkatéw
n OND i ON'D" mamy

A R M
ON oD .
X oD ON" Czyi
O, KON-ON'~*OD-OD'=Kk.
Y%
/A y

Oczywiscie, od-

! \ \\ M wrotnie, przez inwer-

sje Unii prostej otrzy-

mamy koto przecho-

1 dzace przez S$rodek
inwers;ji.

Jako  przyktad

rozpatrzmy obwod,

Rys. 39 w  ktérym- opornosé

bierna X jest staia,

zmienia sie natomiast oporno$¢ czynna B. Biorgc dowolng 0§ OK

jako podstawowag (rys. 39) i odkladajgc statg wartos¢ X = XL—XC

w gore lub w dot w zaleznosci od znaku X (na rys. X > 0), otrzy-

mamy dla zmiennej opornosci pozornej OM wykres w postaci linii
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prostej AB rdwnolegltej do osi odcietych, przeprowadzonej w od-
legtosci X od tej osi.

Dla otrzymania wykresu przewodnosci pozornej Y = ~  sto-

sujemy metode inwersji. Srodkiem inwersji bedzie punkt 0, stopien
inwersji w tym przypadku bedzie 1. Otrzymujemy dla Y [OM') koto

przechodzace przez Srodek inwersji, $rednica tego kota wynosi -

8 16

NAPIECIA ORAZ OPORNOSCI POZORNE W SZEREGOWYM
POLACZENIU

Rozpatrzmy czes¢ obwodu, w ktérej mamy dwie opornosci
pozorne Z1i Z2 potgczone w szereg (rys. 40).
Gdy wiaczymy taki uktad do napiecia o chwilowej wartosci u,
poptynie prad o chwilowej wartosci i.
Na opornosciach Zx i Z2 powstang napiecia o chwilowych war-
tosciach uxi u2 przy czym

2
rAAAAATF A/VW V ux+ u2

Przechodzac od war-
Y, Lk tosci chwilowych napieé

U do wartosci skutecznych,
positkujgc  sie  metodg
symboliczng i majac na

Rys. 40 wzgledzie,
ze u= UnmePeeit ux= gtot; u2= U2Xwelr' me’ wt,

gdzie @ tali €2 oznaczajg katy przesuniecia faz pradu i, wzgledem
napie¢, otrzymamy po skréceniu przez e,wt

U, e 9= Ulnei9" + Upm1
lub wprowadzajac wartosci skuteczne

Ue39= Uxe3l+ U2el,

albo symbolicznie 0= Ui+ a2 (17f

Czyli napiecie przytozone z zewngtrz réwna sie sumie geometrycznej
napie¢ w rozpatrywanej czesci obwodu.
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Na rys. (41) OA = Ult AB = £/, OB = U

tatwo zauwazy¢, ze na ogo6t suma geometryczna napieé¢ po-
szczegOlnych czesci obwodu jest wieksza od napiecia z zewnatrz
przytozonego (O A+AB>0B). Wyjatek bedziemy mieli w przy-
padku, gdy w obwodzie mamy do czynienia tylko z opornoscig
rzeczywistg oraz gdy zachodzg rezo-
nansy napie¢, to znaczy gdy B

P- A- P
w szczeg6lnosci, gdy ®= 0.

Dzielgc obie strony wzoru (17) przez
warto$¢ skuteczng 1 natezenia pradu
ptyngcego w rozpatrywanym obwodzie,
bedziemy mieli

ale

ﬁ':ﬁ 11 j —z2

zas iloraz -y- stanowi opornos¢ pozorng calej rozpatrywanej czesci

obwodu, czyli oporno$¢ wypadkowa, zastepujaca dwie opornosci
pozorne Zxi Z2potaczone szeregowo; oznaczajac te opornos$¢ pozorng
przez Z, otrzymamy 7= 7x+ 722
a wiec przy szeregowym tgczeniu opornosci pozornych nalezy je do-
dawa¢ geometrycznie, aby otrzymac opornos¢ pozorng wypadkowa.
Oczywiscie, rozumowanie, ktére zastosowalismy do dwdéch opornosci
pozornych i do dwdch napie¢, mozemy zastosowa¢ do dowolnej
liczby tych wielkosci, czyli ogélnie mozemy napisaé

0 = + (]’2+
Z =Z7Zi +722+ o o=
f_ v t)n
z Zx zn
Stosujac do opornosci pozornych metode symboliczng, bedziemy
mieli Zi= 2+ jXx

Z2” B2+ jX2
¢2= (T?i+ B+ /(™1 X
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i?j + /?, stanowi opornos$¢ czynna, + X 2 opornos¢ bierng wy-
padkowej opornosci pozornej Z.
Na rys. 42 podane jest geometryczne zestawienie rozpatrywa-
nych opornosci, przy czym opornosci
Xxi X2na tym wykresie majg war-
tosci dodatnie, to znaczy, ze zatozo-
na jest tutaj przewaga opornosci in-
dukcyjnej nad opornosciag pojemno-
sciowa.

§ 17

SPADEK NAPIECIA | STRATA
NAPIECIA W OBWODACH PRADU
ZMIENNEGO

W poprzednim paragrafie wyja-
Rvs 42 $niliSmy, ze przy pradzie zmiennym
napiecie z zewnatrz przytozone na
0g6t jest réwne sumie geometrycznej napie¢ w poszczegdlnych cze-
sciach obwodu. Rozpatrzmy obwdd skiadajgcy sie ze zrddia pradu,
na zaciskach ktérego mamy napiecie U, z odbiornika i przewodéw
taczgcych (rys. 43). Oznaczmy opor-
nos¢ pozorng odbiornika przez Z0,
a opornos¢ pozorng obu przewodow
taczacych przez Zp; natezenie pradu
ptynacego ze zrodka przez odbiornik
niech bedzie /; wowczas
C=1I(zo+ zt)=lza+ lzp,
ale tZ0=0,
wiec O= 00+ 1Zp.
Na wykresie (rys. 44), gdzie za podstawowg 0$ wziety jest kie-
runek wektora natezenia pradu,
O A=1z20= U0, AB = 1Zp, OB = U, OC = OB.
Bdznice geometryczng napiecia u zrodia i napiecia na odbiorniku
nazywamy spadkiem napiecia w przewodach, natomiast roznice alge-
braicznatych napie¢ nazywamy stratg napiecia. Tak wiec spadek napiecia
A O=0-
za$ strata napiecia AU=U u.

Rys. 43



PRAWA KIRCHHOFFA W ZASTOSOWANIU DO PRADOW ZMIENNYCH 77

Na wykresie strata napiecia stanowi odcinek AC, spadek za$
napiecia odpowiada odcinkowi AB. Jak wida¢ z wykresu OA +
+ AB > OB, OA + AC = OB, czyli AB > AC, zatem spadek na-

piecia na ogo6t jest wiekszy od straty napiecia.
B

Rys 44

Jezeli opornosci czynne i bierne oznaczymy dla odbiornika
przez BOi X0, dla przewodéw zas przez Bpi Xp, wéwczas bedziemy

mieli

0. = I(Re+jX.),
O =i [(B.+Bp+i(xa+t Xp)],

u0= Iy B0+ X*,

u = JV{R,+ Rp)2+ (X. + x Py,

AU=U—U0=1[\P, + Rp)2+ (Xo+ Xpy -Vii2+ X,*],
AO=0-0o0=1 Ro+jXp)

mod. A 0 =1 VA>2+ ~ p2-

§ 18
PRAWA KIRCHHOFFA W ZASTOSOWANIU DO PRADOW ZMIENNYCH

Jak wiadomo, przy pradzie statym stosujemy prawa Kirchhoffa,
gdy zachodzi rozgatezienie pradéw. Przy pradzie zmiennym mozemy
rowniez stosowac prawa Kirchhoffa, wyrazone takimi samymi wzo-
rami, gdy chodzi o wartosci chwilowe; przy tym nalezy zaznaczy¢
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z gory, jakie kierunki na przewodach przyjmujemy za dodatnie.
Wiec w dowolnej chwili algebraiczna suma pradéw powinna sie
rowna¢ zeru, jak rowniez algebraiczna suma S E M, dzialajgcych
w zamknietym obwodzie, powinna sie réwna¢ algebraicznej sumie
iloczyndw natezen pradéw przez odpowiednie opornosci; czyli

2~ =0,

- S ikE k.

W obwodach rozgalezionych kazda gatgz posiada na ogét inng
opornos$¢ pozorng, wobec czego przesuniecia fazy pradu wzgledem
wspdlnego wektora podstawowego bedg w kazdej gatezi inne. Ozna-
czajgc te katy przesuniecia fazy odpowiednio przez 4, 42 ..., 4K
bedziemy mieli

h=hmsinM + ?i)

h = INM + &

h=nrmdl + ?*)'
Przechodzac do wartosci skutecznych tych pradéw i biorgc
za podstawowag 0$ kierunek wspdlnego napiecia, bedziemy mieli
h = heiry h = -h= V >*
Jezeli wiec zechcemy stosowac prawa Kirchhoffa do wartosci
skutecznych, musimy rozpatrywaé¢ omawiane wielkosci symbolicznie

jako wektory. Wtedy warunkiem istnienia zaleznosci wyzej podanych
dla wartosci chwilowych beda nastepujace wzory dla wartosci sku-

tecznych 2/* =0, (18)

(19)
czyli zamiast algebraicznych sum mamy sumy geometryczne.
Przy stosowaniu tych wzoréw nalezy ustali¢, jakie Kierunki
nadajemy chwilowym wartosciom dodatnim S E M oraz pradow,
od tego bowiem zaleze¢ bedzie, zjakim znakiem, dodatnim czy ujem-
nym, wejdzie kazda z omawianych wielkosci do réwnan uktadanych
na podstawie rozszerzonych praw Kirchhoffa. Przy pradzie statym
dziatanie S E M w obwodzie zewnetrznym przyjeto oznacza¢ w kie-
runku od bieguna dodatniego do bieguna ujemnego, czyli w kierunku
ruchu dodatniej elektrycznosci; takiz sam kierunek dajemy pradowi.
Przy rozwazaniu wartosci chwilowych pradéw zmiennych mozemy
rowniez zastosowa¢ te same oznaczenia kierunkéw odpowiadajg-
cych biegunowosci SE M w pewnej okreslonej chwili.
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W ten spos6b przy pradzie zmiennym strzatki beda odpowiadaty
dodatnim wartosciom chwilowym®*.

Tak np. na rys. (45) strzatki wskazujg kierunek pradéw ir oraz
i2w chwili, gdy prady te majg wartosci dodatnie; wedtug pierw-

szego prawa Kirchhoffa .
| d 72

Rys. 45 Rys. 46
przechodzgc za$ do wartosci skutecznych, bedziemy mieli (rys. 46)

l-h + u*

przy czym znaki przy wektorach I, Ixi /2bierzemy wedlug dodat-
nich kierunkéw, zatozonych dla wartosci chwilowych.

Rozpatrzmy dwie gatezie (rys. 47) miedzy weztami A i B.
Strzatki odpowiadajg
kierunkowi dodat-
nich wielkosci chwi-
lowych; oznaczajac
przez U napiecie mie-
dzy tymi weztami,
bedziemy mieli

/-W .
i —I<tz2= o e
lub 1XZX= 1222= 0. ye:

Na wykresie (rys. 48), gdzie ¢, gx i 42 oznaczajg katy przesu-
niecia faz wzgledem napiecia U pradow I, Ixi /2,
OA=1Jit OB=AC=12 0OC-=1.

<Prof. S. Fryze wprowadza obok strzatek kierunkowych, wskazujgcych
kierunek wartosci chwilowych, strzatki kierunkowosci. Dla zrozumienia tego
terminu zwréémy uwage, ze dla funkcji okresowo zmiennej w czasie wartosci
chwilowe maja znak dodatni w ciggu czesci okresu, w szczegélnosci dla funkcji
sinusoidalnej znak pozostaje bez zmiany w ciggu potowy okresu. Strzatki
kierunkowosci, niezalezne od czasu, wskazujg kierunek dziatania lub przebiegu

w obwodzie rozpatrywanych wielkosci dla dodatnich wartosci chwilowych
tych wielkosci.
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Biorgc rzuty pradow na podstawowag 0§ OU oraz na o$ do niej
prostopadig, otrzymamy
I cos (p= I\cos i+ /2cCo0s ¢j2,
I sin p= sin ex+ J2sin 42,

co oznacza, ze sktadowe czynne i sktadowe bierne pradéw dodajg sie do
siebie algebraicznie. Podnoszagc ostatnie wzory stronami do kwa-

U
Rys. 48
dratu i dodajgc do siebie, otrzymamy
12 i2+ /| 2+ 27/2 (cos™ cos qz + sin qtsin g2),
skad
| = VAi2+ h2+ %lih cos (A—e?); 20,

nastepnie, dzielgc stronami drugi wzoOr przez pierwszy, bedziemy

mien _ /[lsin @ + /2sin ®
tg w= I1cos @ + 12cos 2 @b
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§ 19
OPORNOSCI POZORNE POtLACZONE ROWNOLEGLE

Rozpatrzmy najpierw dwie opornosci pozorne Zxi Z 2, potaczone
rownolegle, jak na rys. 47. Jak wida¢ z tego rysunku,

“:—O—> ) ,
z
poniewaz
t- A+,
przeto
0;
+4 A, -
Ui 22 / Zi+22

7 +75

t . Lz . .
Stosunek -y- stanowi pewng oporno$¢ pozorng, ktdérag mozemy

rozpatrywac jako opornos¢ réwnowazng dwom danym opornosciom;
oznaczajac te réwnowazng opornos¢ przez Z, bedziemy mieli

7 _ .Z_x Z.2 22)
zi+12z22
11 1
Iub co (23)
z zx Z2
Przy dowolnej ilosci rdwnolegle potgczonych opornosci pozor-
nych 2X Z2, ..., Zk otrzymaliby$my dla opornoéci Z, réwnowaznej
danym, wzor h 1 1 1
3—-h~+ . H~.
Z X 7' 2k

Odwrotnosci opornosci pozornych stanowig przewodnosci po-
zorne; oznaczajac przewodnosci pozorne poszczegélnych gatezi przez
Yx, F2, ..., Yk a réwnowazng przewodnos$¢ pozorna przez Y, otrzy-

mamy f-21+tt+ ..+ Tk

Widzimy stad, ze przy rownolegtym potaczeniu opornosci po-
zornych réwnowazna przewodno$¢ pozorna réwna sie geometrycznej
sumie przewodnosci pozornych poszczeg6lnych gatezi.

Zbadajmy bardziej szczegétowo dwie rdwnolegle potgaczone opor-
nosci pozorne; kazda z nich sktada sie z opornosci czynnej i opornosci
biernej; réwnowazna opornos$¢ pozorna bedzie tez zawierata obie te
opornosci: czynng i bierng. Podstawiajgc do wzoru (22) zamiast

Teoria pradéw zmiennych 6
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Z, Zxi Z2ich wartosci R + jX, Rx+ jX 1, R2+ jX 2, bedziemy mieli

d , 1Y g2+ jXj) (R2+ jX2 _
1 (Rl+ B2 +j (X1+ X2
[BiB, - *iX 2+ / (#1*2 + B2XX)] [(i2i + A) ~ j (*i + X,)]
(20 + 1122+ (*1 + * 22
i712R2+ /2 172-/71X 1X 217 2X 1Z 2+i?1X 1Z 2+i?2Z i+ RIZ 2H ii2X 12
(Rx+ R)* + (*x+ X,)»
JI12X 2+ B 2X 1+R B 2X x+ R IRYX2R]i?72X x ROR2X 2+ X 12X 2+ X 22X x
+1 (R, + ii)* + (X, + X,)*

RXZ? + R2ZX  , . XI1Ztr+ XazZl*
(Ri + 7)2+ [xx X22+ \Rx+ R22+{X x+ X 22
skad . BX 2+ R2ZX o
" (Rx+ R22+ (Xx+ X22 (24)
XXZ2+ X 2252
(25)

(i72x+ ii,)» + (X, + X22

Réwnowazng oporno$¢ pozorng Z znajdziemy ze wzoru
Z = \RANJIZ co, po podstawieniu wartosci R i X i odpowiednich
skrotach, daje
s = . 2+ XX (R2+ X 2 ZxZ22

V\‘( + R22+ (Xx+ X22 V(™1 + B22+ (Xx+ X2)2
argument réwnowaznej opornosci pozornej, czyli kat < przesuniecia
fazy pradu | wzgledem napiecia U, znajdujemy dzielgc wzory (25)
przez (24):

(26)

te’ = k= it i) @)

W wyrazeniu tym mianownik zawsze jest wigkszy od zera,
w liczniku za$§ mamy opornosci bierne, ktére moga mie¢ znaki do-
datnie lub ujemne, w szczeg6lnosci réwnac sie zeru.

Réwnowazng opornos$¢ pozorng Z dla dwoch réwnolegle pota-
czonych opornosci pozornych Zx i Z2 mozna rdwniez znalez¢ wy-
kreslnie. W tym celu, biorgc dowolng 0§ OX jako podstawowag,
przeprowadzamy odcinki wyrazajgce opornosci pozorne Zx= OA
i Z2= OB (rys. 49). Dodajac je geometrycznie, otrzymamy OC = Z'.

Wz6r (22) mozemy przepisa¢ w sposéb nastepujacy:

z
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Oznaczajac katy, ktore tworza z osig OX opornosci pozorne
Z, ZIf Z2i Z' odpowiednio przez a, at, a2i a', mozemy ostatni wzér

ZxX'a> Z'eid

napisa¢ w postaci Ze,a
lub z

z2e
skad zZ _

X2~ Z7
a—d2= ax—a'.

Widzimy stad, ze Z musi tworzy¢ z Z2 taki sam kat, jak Zj
tworzy z Z'. Wobec tego odktadamy od OB wstecz (poniewaz Zi
przesuniete jest wstecz wzgledem Z') kat BOD rowny katowi COA ;

szukana oporno$¢ Z powinna
leze¢ na prostej OD, znamy
wiec jej argument. W celu
znalezienia jej modutu bu-
dujemy A OAA' podobny
A OBC, np. z punktu O lu-
kiem kota o promieniu OC
odcinamy na przedtuzeniu
prostej OA odcinek OC; w
podobny sposéb lukiem OB
odcinamy na prostej OD od-
cinek OB’, mamy zatem:

OoCcC =0C=2",
OB'= 0B =12722;

taczymy nastepnie punkty

f

B'i C iz punktu A prowadzimy prosta réwnolegta do prostej B'C
az do przeciecia sie z prosta OD w punkcie A'. Z podobienstwa

trojkgtow widzimy, ze

OA'
OB’

Podstawiajac tu wartosci powyzsze, otrzymujemy

OA'
Z2

Por_éwnujqc proporcje te z poprzednig, widzimy, Zze odcinek

OA' = Z.
6
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§ 20
REZONANS PRADOW

Rozpatrujac dwie opornosci réwnolegle potaczone, stwierdzi-
lismy (wzor 27), ze kat przesuniecia fazy pradu /, doptywajacego do
wezta, wzgledem napiecia U miedzy weztami moze sie réwnac zeru,
czyli ze prad | bedzie w fazie z tym napieciem.

Jak widac¢ z tego wzoru, ten szczeg6lny przypadek bedzie miat

miejsce wolwczas, gdy Xxz? + X2Z* = o

czyli inaczej, gdy X X
, b2

zZ\~ zK (28)

Wyrazy stojgce po obu stronach ostatniego wzoru stanowig
przewodnosci bierne; oznaczajac je dla pierwszej galezi przez Bx
dla drugiej za$ przez 172, bedziemy mieli warunek

Bx = B2m

Znaki przeciwne tych przewodnosci biernych wskazuja, ze
w jednej galezi powinna przewaza¢ opornos$¢ indukcyjna, w drugiej
za$ opornos¢ pojemnosciowa.

Mnozac obie strony ostatniej réwnosci przez wspolne obu ga-
teziom napiecie U, otrzymamy

UBl=-UBZ2
wyrazy te stanowig bierne prady, ptynace w rozpatrywanych gate-
ziach, czyli
Ixsin (x = 12sinev  (29)

A wiec prad doptywajacy do
rozgatezi nia bedzie w fazie z na-
pieciem istniejgcym miedzy weztami
rozgatezienia, gdy prady bierne,

I sinty Ptynclce w obu gateziach, beda sobie
rowne, tecz bedg miaty znaki prze-
ciwne; zjawisko to nazywamy rezo-

Rys. 50 nansem pradow.

Na rys. 50 przedstawiony jest przypadek rezonansu pradow.
Prady bierne Ixsin 9x i i”sine”™ sg sobie réwne, lecz majg znaki
przeciwne.
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Rozpatrzmy bardziej szczeg6towo warunki mozliwosci powsta-
wania rezonansu pradow. Przypusémy, ze w pierwszej gatezi mamy

przewage opornosci indukcyjnej: coL1> e w drugiej za$ a>L2<CO—é_2-
mamy przewage opornosci pojemnosciowej, czyli ze w pierwszej
gatezi opornos¢ bierna jest dodatnia, a w drugiej ujemna; wtedy,
oznaczajgc

X1 = (I)I/'—WCTX, ,

1
Xn —&la -~ x G

mozemy warunek rezonansu pradéw na podstawie wzoru (28)
przepisa¢ w sposdb nastepujacy:
X1 Xec
i?712+ X\ B2+ X%
stad XL(B2+XC)- Zc (Rj2+ X\) = 0;
XL2- X1 +B12= 0;

rozwigzujgc rownanie wzgledem XL, otrzymamy

B2+ Xh ty B2+2 B2XC2+ 4BjXN" (30)
2Xc

Jak wida¢ z tego wzoru, nie zawsze mozna dobra¢ opornos¢ X

zaleznie od Xc lub odwrotnie; mozliwe to bedzie w przypadku

(B2+ Xc22> 4i?,2* c2,

XL =

Czyh B2+ Xc272B IXC.

Jako przypadek szczeg6lny rozpatrzmy dwie gatezie, w ktorych
opornosci rzeczywiste sg jednakowe, a wiec w jednej mamy dane
wielkosci B i L, w drugiej zas BiC; wtedy ze wzoru (30) bedziemy

mieli v (B2+ Xc2 t (B2
X1 2Xc, =m
skad
1) L=
B2
XL= lub B
2) Ac

Pierwsza rownos$¢ odpowiada warunkowi, gdy opornos$¢ induk-
cyjna i opornos¢ pojemnosciowa sg sobie réwne, podobnie jak przy
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rezonansie napie¢. Druga rownos¢ wskazuje, ze opornos¢ rzeczywista
stanowi Srednig geometryczng opornosci indukcyjnej i pojemnoscio-
wej. W pierwszym przypadku na podstawie wzoru (26), gdzie
X1= XL Xt=~Xc¢

z = ""R+ XIHeR2+ X1*)_B2+ XI\
4R2

R,

wobec czego

l= —— — 'u
R2+ XL* U-
W drugim przypadku
R2+ (R2+Xc2 | (R*XC* R¥)(R*+ Xc2)
Z= Y Mm = y — fl’,
4R2+ (’\WC (R2+ X*¢)
| = U
R

czyli prad jest taki, jak gdybysmy mieli prad staly z opornoscig R.

8§21
PRZYKLADY NA ROWNOLEGLE POLACZENIE OPORNOSCI

POZORNYCH
I. R i L potaczone réwnolegle.
Mamy Zx=Zx= R,
Z2= jwL.
Réwnowazna opornos$¢ pozorna bedzie
~ ZXZ2 jRwL  jRa>L(R —jcol)
= Zj+Z2= R+jmL R2+ (0 L)2
R (oL)2+ jR2wL
R2+ (coL)2

skad 7 = R<o L
YyPTFrp

, R
tg <t:)=©

Il. ii i C polgczone réwnolegle.
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Mamy Zx—Zx—R,
) 1
Z2= -1
i R
5 = ~ oC -jiR | R{RoC + i)
1 RcoC-j {RaojC)2+ 1
R-j
oC
R—j R2oC
{RWC)*+1"
skad 7 R

CV(7720>C)2+ 1
tge= —/1700C.
I11. L i C polgczone réwnolegte.

MamJ' Zr~io>L,
. .11
2 70)C jcoC'
L
C
Z = = - / X " 1] I Z
®C coc @k
L
L Z c
> =
gdy ®-7 oL T 1
oL —
@oC
tg9 = —oo0, p= —-)
2~
L
L 1 Z = <
9%y ) <C ) coL
C

n
tg @= + 00, 9= -2

V. Dwie opornosci pozorne Zx i Z2 sg potaczone réwnolegle,
trzecia opornos¢ pozorna ZO0 jest potaczona w szereg do pierwszych
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dwdch (rys. 51). Jaka powinna by¢ zalezno$¢ pomiedzy tymi opor-

nosciami przy spehlieniu nastepujacego warunku: prad przeply-

wajacy przez taki uktad powinien zachowa¢ swojg wartos¢, gdy

jedna z dwoch réwnolegtych galezi, np. z opornoscia ZIt zostanie

przerwana? Tego rodzaju przypadek mamy np. wtedy, gdy przy

pradzie zmiennym tgczymy szeregowo zardwki i gdy w razie prze-

palenia sie jednej z zaréwek chcemy, aby inne zaréwki nie zgasty

i aby natezenie pradu przy tym nie ulegto zmianie. W tym zagadnieniu

7 chodzi o to, by wartosé

' oporno$ci pozornej ukta-

du zawierajacego Zx, Z2

i ZO pozostata bez zmia-

ny, gdy zostang tylko

opornosci Z2i Z0. W pier-

wszym przypadku catko-

wita oporno$¢ wynosi

Z0+ Z gdzie Z stanowi

opornosé rownowazng

opornosciom Z1i Z2 po-

taczonym rownolegle; w

drugim przypadku catko-

wita oporno$¢ wyniesie Z0 + Z2. Aby natezenie pradu w obu przy-

padkach pozostato bez zmiany (napiecie z zewnatrz przylozone

przyjmujemy jako stafe), trzeba, zeby moduty tych catkowitych

opornosci pozornych byty réwne .sobie; argumenty w tym zagad-
nieniu roli nie odgrywaja.

Wobec tego otrzymujemy warunek
mod (Z0+ Z) = mod (Z0 -f Z2). (31)

Niech .
Zo= A>+ /%0,

Zx= F+ jXly
Z2=i2 + jX2i

wtedy na podstawie wzoréw (24) i (25) réwnowazna oporno$é Z
bedzie sie réwnat

N A
romz romz . Al1Z22+ A 27212

(R, +1i?22+ (X + A22+ 1(A + Rtf + (X, + X22
gdzie 22=VRi2+ 22=VR}{ +*2
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Podstawiajac symboliczne wartosci 20, Z i Z2 do wyzej podanego
warunku (31), bedziemy mieli

BX2+ B2ZX X¥XZ 2+ Z222Z2,2

mod i BO+ +/(’\O+Pi+BZ)2+ (X1+X 22
—mod [BO+ B2+ j (X0+ X2)],
skad
BO+ BX2+ BZX NO XXZ2+
[ (B, + B22+ (Xx+ Xt)IN= (Bx+ B22+ (XX+ X %

= (BO+ B22+ (X0+ X 22 (32)

Taka wiec powinna by¢ zalezno$¢ pomiedzy trzema rozpa-
trywanymi opornosciami. Jezeli wiadome sg dwie opornosci pozorne,
dla znalezienia trzeciej bedziemy mieli réwnanie nieokreslone,
gdyz kazda opornos$¢ pozorna ma dwie sktadowe. Otrzymamy wiec
w rezultacie réwnanie z dwiema niewiadomymi, czyli nieskonczong
ilos¢ rozwigzan. Zwykle sie zakilada z goéry, jaki ma by¢ stosunek
opornosci biernej do opornosci czynnej w poszukiwanej opornosci
pozornej, i wtedy otrzymuje sie réwnanie z jedna niewiadoma.
Najtatwiej rozwigzuje sie takie zagadnienie, gdy wiadome sg opor-
nosci Zxi Z2, szukamy za$ opornosci Z0 z jej sktadowymi BOi X0

zaktadajac z gory = ki oznaczajgc we wzorze (32) w skroceniu

BXZ2+ B2ZX oM
@1+ By + (xa+X =™
XXZ* + X%E_
(Ul + By + (Xx4+ X2¢

*

przy czym M i N oblicza sie na podstawie danych wielkosci; otrzy-
mamy z tego wzoru

(BO+ M)2+ (kBO+ N)2= (BO+ B22+ (kBO+ X 22,

skad po odpowiednich skrétach pozostanie réwnanie pierwszego
stopnia, z ktorego ostatecznie znajdujemy

B2+ X2-M 2-N 2
0 2(M+ kN—B2—kX2 '

Poniewaz sens majg tylko dodatnie wartosci BO, przeto w razie
otrzymania BO< 0 nalezy zmieni¢ zatozong z gory wartos¢ ki dobraé
ja tak, aby BO wypadio dodatnie.
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Ostatnie zagadnienie tatwo mozna rozwigzaé¢ wykreslnie. W tym
celu najpierw znajdujemy wykreslnie rownowazng oporno$¢ pozorng Z
sposobem wskazanym w § 19 i podanym na rys. 49. Po znalezieniu Z
wykreslamy wzgledem dowolnej osi OX (rys. 52) opornosci pozorne Z
i Z2, na rysunku OA = Z, OB = Z2

taczymy A zBize $rodka odcinka A B przeprowadzamy prostopa-
dig do tego odcinka. Rozpatrzmy dowolny punkt M na tej prosto-

padtej i potaczmy go z poczatkiem O. tatwo jest zauwazy¢ dodajac
geometrycznie, ze
MO + OA = MA,
MO + OB = MB
albo
MO + Z = MA,
MO AZ —MB
ale wartosci MA i MB sa rowne sobie, wiec
mod (MO +Z) = mod (MO + Z2);
porownujgc otrzymamy rezultat ze wzorem (31) stwierdzamy, ze
MO = ZO.
A A
Sktadowe MO, czyli, tym samym skiadowe OM' bedg BO= OC
i X0= CM’. Otrzymujemy wiec nieskonczong ilos¢ punktéw M, czyli
rozwigzan, ale te tylko beda mialy sens, ktére dajg dodatnig

sktadowg BO.
V. Otrzymywanie przesuniecia fazy o kat prosty pomiedzy
pradem i napieciem.
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Nieraz zachodzi potrzeba otrzymania w pewnej czesci obwodu
pradu, ktéry wzgledem napiecia z zewnatrz przylozonego przesu-
niety jest w fazie o kat prosty. Mozna to osiaggna¢ wiaczajagc réwno-
legle do tej czesci obwodu pewng opornosé czynng. Na rys. 53 mamy
dwie opornosci pozorne i Z2 szeregowo potaczone; rdwnolegle
do opornosci Zx przylagczona jest oporno$¢ rzeczywista RO. Po-
staramy sie okresli¢ RO tak, aby prad Ix ptynacy przez czes¢ obwodu

z opornoscig Zx byt przesuniety w fazie o kat prosty wzgledem
napiecia U z zewnatrz przytozonego. Oznaczajac przez /2 prad
ptynacy przez Z2 oraz przez 10 prad ptynacy przez RO, bedziemy
mieli

2~ A+ A>

N2\ — I 0Roi

0 = W2+

z drugiego wzoru okreslamy

T =

RO

i podstawiamy do pierwszego, wtedy

Podstawiajgc to do wartosci 11, otrzymujemy

(iP0ZAlZlZa) + 11 1=

i ( ROZ1+ R@2+ 2172}
| i’
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Kazdg Z opornosci Zx i Z2 mozemy wyrazié¢ tak:
Zx= Rx+ jXX,
(2 ~ B2HiX2m

Podstawiajac wartosci te do wzoru poprzedniego, otrzymamy

0

| HoM + jB OXx + + /BX 2+ B>xR2—"172 +

+iBix 2+ jB2Xx|.
Grupujac w tym wzorze czesci rzeczywiste i urojone, otrzymamy

y i (BBX+ BB2+ BXB2 XxX2,

u ~nh \ W, +
BxX2+ B2X x+ BgX 2+ BOX x|
1 (m

Jezeli wzér ten napiszemy pod postacig
O = IX(R + jX),

wtedy przesuniecie fazy pomiedzy pragdem Ix i napieciem U otrzy-
mamy ze wzoru

tg9 = R’
gdzie goznacza kat przesuniecia fazy pradu Ixwzgledem napiecia U.

—— dlaR= 0.

Warunek zagadnienia bedzie wiec spetniony, jezeli

BMABl+ BB2+ BIB2—XxX2 A
Bo

y
ey BB+ BAB2+ BIB2— X xX 2—0,

kad
sa R_ XX2 BIB2

0 Je+AT

Oczywiscie, ze tylko wtedy mozna znalezé realng warto$¢ na
Bo, gdy XxX2> BXB2.
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PRADY WIELOFAZOWE

§ 22
OKRESLENIE | POWSTAWANIE PRADU WIELOFAZOWEGO

W 8§ 1 rozpatrzyliSmy powstawanie sity elektromotorycznej
0 przebiega sinusoidalnym w czasie; ma to miejsce, gdy przewo-
dnik, np. w postaci ramki z drutu, obraca sie ze stalg pred-
koscig w jednostajnym polu magnetycznym, przecinajgc przy tym
strumien magnetyczny. Jezeli zamiast jednego przewodnika be-
dziemy w taki sam spos6b obracali dowolng ich ilos¢, powstanie
wowczas szereg SE M o przebiegach sinusoidalnych w czasie,
ktdore, w zaleznosci od rozmieszczenia przewodnikow, bedg sie roznity
miedzy sobg w fazie. Uklad, w ktorym dziatajg S E M przesuniete
w fazie, nazywamy uktadem wielofazowym.

Jezeli przewodniki tworzg uktad taki, ze sg rozmieszczone
symetrycznie naokoto osi i uklad ten obraca sie w polu magnetycz-
nym, wolwczas taki uklad wielofazowy nazywamy symetrycznym.

Na rys. 54 mamy symetryczny uklad n przewodnikéw, np.
w postaci ramek rozmieszczonych naokoto osi w jednakowych od-
stepach. Kat pomiedzy dwiema sgsiednimi ramkami bedzie miat
wartosé 2n

- n

Zatézmy, ze caty ten uklad obraca sie ze stalg predkoscig
katowg w jednostajnym polu magnetycznym w kierunku wskaza-
nym przez strzatke i ze rozpoczynamy liczenie czasu, gdy ukiad
znajduje sie w potozeniu podanym na rysunku. W chwili 1 =0
SEM w pierwszej ramce bedzie = 0, jej wartos¢ chwilowa el
w chwili t bedzie wyrazona wzorem

eq= Emsin otk
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tatwo zauwazy¢, ze S E M powstajgce w nastepnych kolejnych
ramkach beda opéznione w fazie wzgledem pierwszej odpowiednio
o katy a, 2a, (n—1) a; zakladajac, ze wszystkie przewodniki
(ramki) sg jednakowe i ze wobec tego najwieksze wartosci powsta-

jacych w nich SE M beda rowniez jednakowe, otrzymamy dla
wartosci chwilowych nastepujgce wzory:

ex = Emsin cot,
e2= Emsin (cot — a),
€3= Emsin (cot — 2 a), (1

e, = Ems™ [®f — (n— 1) a].

Gdybysmy obracali nasz uktad w przeciwnym Kierunku, mie-
libySmy nie opoéznienia, lecz przyspieszenia w fazie wszystkich
nastepnych SE M iw naszych wzorach musielibySmy postawié
przed a, 2a itd. znak +.

Taki sam rezultat otrzymalibySmy niezaleznie od rodzaju prze-
wodnikéw, np. gdyby to byly cate uzwojenia. Poszczegolne prze-
wodniki lub uzwojenia w takim ukladzie przyjeto nazywa¢ w skro-
ceniu fazami. Méwimy wiec: S E M, napiecie, natezenie pradu pier-
wszej, drugiej itd. fazy, odnoszac te terminy nie tylko do zrodia
pradu, lecz réwniez i do odbiornikéw potgczonych z poszczegolnymi
uzwojeniami pradnicy dajgcej prady wielofazowe.
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8§23

TWIERDZENIE MATEMATYCZNE O SUMIE WARTOSCI CHWILOWYCH
WIELKOSCI UKLADU WIELOFAZOWEGO SYMETRYCZNEGO

W dalszych rozwazaniach powolywac sie bedziemy czesto na

twierdzenie nastepujagce: jezeli a = @ gdzie n jest liczbg catko-

witg wiekszg od 1, wtedy
sinx + sin (Xt a) +sin (xx 2a + ... +sin[x+ (n—21) a] = 0.
Opierajac sie na wzorach Eulera, mozemy napisac
eiz_ e-jz
2/

sinz =
oraz

el* + e~>
COos z -

gdzie
/| =V—4-

Powyzsza sume mozemy wobec tego napisa¢ tak:

gix g-jx g/(*ta) g—j(xia) gi [xt(n—1)a] g -j[xt(n—Dal
2i i+ 5 L T 2/
Po uporzadkowaniu wyrazéw otrzymamy
gi* _| g/(*ta) g/[*+(«-1)al
27
jx  g—¥C*a) g-'[*£(n-Na]
W

Widzimy, ze wyrazy w licznikach tworza postepy geome-
tryczne. Suma w liczniku w pierwszym nawiasie

gi(*tna) gj X
exla—1
suma za$ w liczniku w drugim nawiasie

g-j(:xtna) — g->*

s2= gtja— 1
Wobec tego rozpatrywany wzér po sprowadzeniu do wspolnego
mianownika przyjmie postac

gi [xx(n—la]__g—j(.xtna)__g:;(*+*a) gix — g—y[xz(»i—hal_|_g—y(xtna)-)_g—y(x+a)__g~J*

(2—ezxja—exJa) 2/
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Grupujac wyrazy w liczniku, otrzymamy
sin[x £+ (n—1) a] —sin (X £ na) —sin [Xx £ a) + sin X
2—2cos a

2n
Biorgc pod uwage, 22 a= —,(h—1) a= na—a—2n—a i ze

wobec tego pierwszy wyraz licznika skraca sie z trzecim, drugi skraca
sie z czwartym, otrzymujemy w rezultacie, ze licznik = 0. Mianow-
nik nie jest réwny zeru dla n > 1, wobec tego rozpatrywana suma
sinuséw zawsze bedzie réwna zeru dla catkowitego n > 1
Zupetnie tak samo mozna dowies¢, ze
COS X + coS (X + a) -ycos (x £ 2a) + ... + cos \Xx+ (n—1) a] = O,

gdzie

5

a==—¥n>1
n

Rozpatrujac wartosci chwilowe SEM w symetrycznym ukladzie
wielofazowym, podane we wzorze (1), widzimy, ze na podstawie
dowiedzionego twierdzenia suma ich réwna sie zeru.

§ 24
UKELADY WIELOFAZOWE

Rozpatrujgc ogoélny wzor (1) dla waitosci chwilowych SEM
wielofazowego uktadu symetrycznego, widzimy, ze dla n = 1 otrzy-
mujemy zwykly prad sinusoidalny jednofazowy; dla n = 2 otrzy-
mamy dwie SEM roéwne sobie, lecz znakéw przeciwnych, czyli prze-

ciwnie skierowane, gdyz .
ex = Emsin cot,

e2= Emsin [cot—n) = —ev
Schematycznie ukiad taki mamy na rys. 55 w postaci dwoch
uzwojen — faz.

Dla n = 3 otrzymamy uktad tréjfazowy. Bedziemy mieli w tym
przypadku nastepujgce wartosci SEM :
ex — Emsin oot,

e9= Emsin {dt— g n\,

e3= Emsin (cot — = Emsin”cuf + — © .
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Schematycznie uktad trdjfazowy przedstawiony jest na rys. 56.
Dla n = 4 otrzymujemy ukifad czterofazowy. Dla SEM w poszcze-
gélnych fazach wartosci chwilowe beda nastepujgce (rys. 57):

Emsin oot,
e2= Emsin
e3= Emsin (cot—n) = —ejj
ed= sin~oof — g- = —e2

Uktad, w ktdrym fazy dziatajg samodzielnie, nazywamy uktadem
nieskojarzonym. W przeciwnym razie otrzymujemy ukiad skoja-
rzony. Skojarzenia, czyli potaczenia faz, bywajg nastepujace:

1) w gwiazde, czyli gwiazdowe, kiedy poczatki wszystkich faz

tagczymy w  jednym

punkcie (rys. 58); 2) wie-

lobokowe (rys.59), kiedy

poczatek pierwszej fazy

taczymy z koncem dru-

giej, poczatek drugiej

z koncem trzeciej itd.,

wreszcie poczatek ostat-

Rys 58 niej z koricem pierwszej. Rys 59

Drugie potgczenie sta-
nowi uktad zamkniety, pierwsze — uklad otwarty. Polgczen gwiaz-
dowych i wielobokowych mozemy dokonaé¢ nie tylko na uzwoje-
niach zrédta pradu, np. pradnicy, lecz réwniez na odbiornikach,
do ktoérych doprowadzamy prady idgce od poszczegdlnych faz prad-
nicy i ktére odpowiednio ze sobg tgczy my.

Teoria pradéw zmiennych 7



98 PRADY WIELOFAZOWE

Rozpatrujac napiecia i pragdy w uktadach wielofazowych, mu-
simy odroznia¢ te wielkosci w poszczeg6lnych fazach oraz miedzy
fazami i w przewodach taczacych fazy zrodta pradu z odbiornikami.
Pierwsze nazywamy fazowymi, mowimy wiec o napieciu fazowym
i 0 pradzie fazowym; w drugim przypadku mowimy o napieciu
miedzyprzewodowym. Tak samo odrdzniamy prady fazowe i prady
przewodowe.

Napiecia na poszczegélnych fazach uktadu wielofazowego za-
lezne sg z jednej strony od SE M, dziatajgcej w rozpatrywanej fazie,
z drugiej za$ strony od pradu ptyngcego w tej fazie i od jej opornosci.
Jezeli prad nie jest pobierany, napiecie jest rowne S E M, w przeciw-
nym przypadku jest ono zmniejszone o iloczyn natezenia pradu
przez opornos¢ fazy. W pradnicach wielofazowych zwykle uzwojenia
stanowigce poszczegdlne fazy sg jednakowe, wobec czego i SEM
powstajgce we wszystkich fazach roznig sie tylko katami przesuniecia
faz; natomiast napiecia na poszczegélnych fazach bedg miaty jedna-
kowe wartosci i bedg réznity sie tylko katami przesuniecia faz w dwéch
przypadkach: albo gdy prad w zadnej fazie nie jest pobierany, albo
gdy we wszystkich fazach beda pobierane jednakowe prady, czyli,

jak moéwimy, gdy wszystkie fazy
bedg jednakowo obcigzone i gdy
uzwojenia majg jednakowe opor-
nosci pozorne.

W  nastepnych rozumowa-
niach bedziemy mieli na wzgledzie
najpierw te przypadki, gdy napie-
cia na poszczegolnych fazach maja
te same wartosci najwieksze lub
skuteczne, réznig sie za$ tylko
katami przesuniecia faz.

Rozpatrzmy ukiad gwiazdowy
np. pradu trdjfazowego (rys. 60).
Wartosci chwilowe napie¢ w trzech

fazach wynosza ut, u2, u3. Miedzy koncami faz pierwszej i drugiej
istnieje napiecie miedzyfazowe

3

/\12: /\1 /\2*
Przez odbiornik, wigczony pomiedzy tymi fazami, poptynie
prad i12. W chwili gdy ul> u2, prad ptynie tak, jak wskazuje ry-
sunek, zas w chwili gdy u2> ulf prad ptynie w kierunku przeciwnym.
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Natezenie pradu w obu fazach w tym przypadku bedzie takie same
jak i w odbiorniku:
I2=1i =12

Widzimy stad, ze w ukladzie gwiazdowym réznia sie pomiedzy
sobg tylko napiecia miedzyfazowe i fazowe. Napiecie miedzyfazowe
nazywamy w tym przypadku sko-
jarzonym.

Gdy mamy ukiad wielobokowy,
w tym przypadku trdjkatowy (rys.
61), wowczas, jak to tatwo zauwa-
zy¢, napiecie miedzyfazowe rowne
jest napieciu fazowemu; natomiast
prad przewodowy rowny jest roz-
nicy odpowiednich pradéw fazo-
wych, np.

M e
Rozpatrzmy wielofazowy uktad
symetryczny z napieciami na fa-
zach roéznigcymi sie tylko katami przesuniecia faz, a wiec
ui — Umsin oot,

Rys 61

u9 = Umsin

u, = Umsin lgt—(n—1)

[- t]
Wyprowadzmy ogélny wzor na napiecie skojarzone. Wezmy
w tym celu dowolne dwie sasiednie fazy ki k + 1
uk= Umsin[cot-(k -1)“ }

Wk+i = Umsin

Odejmujgc stronami drugi wzdr od pierwszego, otrzymamy dla
napiecia skojarzonego, ktére oznaczymy przez up:

up= uk—uk+1 Cmlsm [.1-(*-1,£] —sin jjuf—

™



100 PRADY WIELOFAZOWE

Przeksztatcajgc roznice sinuséw na zasadzie wzoru

U

- . X — u X o+
smx—siny = 2sm>— = cos—
otrzymamy

up=2UnsinMcos[»i-(2*-1)=1]-

= 2Umsin”sin Ja>f + ~ — (2fc — 1, 2
Widzimy stad, Zze napiecie up jest przesuniete w fazie wzgledem
napie¢ fazowych; wartos¢ maksymalna tego napiecia wynosi
Ugn= 2Umsin” ,
warto$¢ skuteczna zas
Up= 2Uf sin™ (©)]

gdzie Uy stanowi napiecie fazowe.

Analogicznie mozemy wyprowadzi¢ wzor dla natezenia pradu
skojarzonego w przypadku uktadu wielobokowego, gdy obcigzenie
faz jest jednakowe; otrzymamy wtedy

IP= %If sin 4

gdzie If stanowi natezenie pradu ptynacego w dowolnej fazie.

§ 25
MOC PRADOW WIELOFAZOWYCH

Rozpatrzmy ukfad symetryczny n fazowy z jednakowym ob-
cigzeniem wszystkich faz.
Wartosci chwilowe napie¢ bedg
«i = Umsin wi,

u2= Umsin | cot —
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Kazdy prad fazowy wzgledem swego napiecia bedzie przesu-
niety w fazie, np. o kat (p wstecz; wtedy wartosci chwilowe odpo-
wiednich pradow beda

il= Imsin (cot — (p),

I, = Imsin

Im sin [a)t —(k—1) s =D

=
1

i, = Imsin jf —(n—1)~ —9.

Oznaczmy warto$¢ chwilowg mocy pradu w fazie k przez pk
Woéwczas mozemy napisaé

Pk = uk ik= Umin 9N @4. ) SII’HW—QIC%)A—%]
Na podstawie wzoru

sinx siny = ~ j~cos (X —y) —cos (X + y)]

bedziemy mieli
Pk = | cos p—cos M2att —2 (k—1)

W uktadzie mamy n faz, a wiec k zmienia sie od 1 do n. Ponie-
waz dla n > 2, na podstawie twierdzenia z 8§ 23,

N

w - O] 4
£cos 2«f-2(k-1)"-«p =0,

wiec wartos¢ chwilowa mocy pradu w catym uktadzie bedzie
p=n ’\"é’\mcos<p: n Ul cos @

Widzimy stad, ze wartos¢ chwilowa mocy uktadu nie zmienia
sie z biegiem czasu, czyli ma wartos¢ stata. Ukiady, w ktdrych to
ma miejsce, nazywamy ukladami wyréwnanymi. Oczywiscie, ze
w tym przypadku moc $rednia P bedzie miata takg samag wartosé
co i moc chwilowa. Kazdy ukiad wielofazowy symetryczny jest
uktadem wyréwnanym.
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§ 26
PRAD TROJFAZOWY

Rozpatrzmy bardziej szczegoétowo najwiecej rozpowszechniony
w praktyce prad trojfazowy.

Jezeli mamy potaczenie gwiazdowe, to ze wzoréw (2), (3) i (4)
wynika:
dla k = 1, czyli miedzy pierwszg i drugg faza,

ul = 2Umsinsinyojt +]r— V3 sinawi +
dla k = 2, czyli miedzy druga i trzecig faza,
«3 = UmV3sin (@>t— ;
dla k = 3, czyli miedzy trzecig i pierwszg faza,
«31 = umts "oot—~nNj = £/mv3 sin

Up= C7/V3; [, = If.
Dla potaczenia w trdjkat bedziemy mieli miedzy fazami napiecie
rowne napieciu fazowemu, prad przewodowy za$ bedzie skojarzony
i przy jednakowym obcigzeniu
trzech faz
ip= ifV3.

W ukiadzie gwiazdowym
wprowadzamy czasami oprocz
trzech przewodoéw idacych od
koricow trzech faz, czyli prze-
wodow fazowych, jeszcze czwar-
ty przewod, idacy od punktu ta-
czgcego poczatki wszystkich faz,
czyli tak zwanego punktu zero-
wego, ktdry czesto bywa uzie-

Rys. 62 miony; przewdd ten nazywamy

przewodem zerowym (rys. 62).

Wiaczajac odbiornik miedzy dowolnym przewodem fazowym i prze-

wodem zerowym, otrzymamy na nim napiecie fazowe, wigczajac

za$ odbiornik miedzy dwa przewody fazowe, bedziemy mieli na nim
napiecie miedzyprzewodowe — skojarzone.
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Oznaczajgc przez IIf /2, 13 wartosci skuteczne pradow plyna-
cych w poszczegolnych fazach, a przez 10 wartos¢ skuteczng pradu
ptynacego w przewodzie zerowym, bedziemy mieli na zasadzie |
prawa Kirchhoffa

+ 12+ 13+ 10= 0O,
czyli
i0o — 11 i3-

W przypadku szczegdlnym, gdy wszystkie fazy sg jednakowo
obcigzone i prady bedg sie réznity tylko przesunieciem faz o = 120°,
bedziemy mieli dla wartosci chwilowych

i\ = Imsin (ot; (2= Imsin (cot— 120°); i3= Imsin (<ot + 120°).

Na podstawie twierdzenia z § 23

h+ *2+ h =0
a wiec réwniez
/i +/2+ /3= 0;
w tym przypadku przez przewdéd zerowy zaden prad nie bedzie
przeptywat.
Jezeli za$ obcigzenie trzech faz nie jest jednakowe, woéwczas
ii + K + ja4=0; 10 4=0
i przez przewdd zerowy bedzie
przeptywat pragd o mniejszym na
ogo6t natezeniu niz natezenia pra-
dow fazowych.
Gdy mamy potaczenie troj-
katowe (rys. 63)

Wobec tego
il2+ i31+ /23= 0.
Zaleznosci pomiedzy napiecia- Rys 63
mi fazowymi i miedzyfazowymi,

a takze pomiedzy napieciami i pradami, mozemy przedstawi¢ wy-
kreslnie. Dla ukladu gwiazdowego z jednakowym obcigzeniem faz
odktadamy od dowolnego poczatku O (rys. 64) trzy promienie, wy-
razajgce napiecia OA = Ult OB = U2 i OC = US3; taczac miedzy
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sobg punkty A, B i C, otrzymamy rdwnoboczny trdjkat, ktérego
kazdy bok stanowi odpowiednie napiecie miedzyfazowe, a wiec
miedzy fazg pierwszg i drugg mamy napiecie BA, stanowigce geome-
tryczna roznice napie¢ Ux i U2, widzimy, ze to napiecie jest przesu-

niete w fazie naprzod wzgledem napiecia Uxo kat 30° = Z_’t nastepnie

CB stanowi napiecie miedzy fazami drugg i trzecig, jako geometryczna
roznica napie¢ U2 i U3; jak wida¢ z wykresu, to napiecie miedzy-

ut

fazowe jest przesuniete wstecz wzgledem napiecia Ux o kat prosty;

wreszcie AC stanowi napiecie miedzy fazami trzecig i pierwszg, jako

geometryczna rdznica napie¢ U8 i Ux, to miedzyfazowe napiecie
jest przesuniete naprzod wzgledem napiecia Ux
0 kat 150°. Z réwnoramiennych trdjkgtéw
OAB, OBC lub OAC otrzymujemy wiadoma
zaleznos¢ pomiedzy napieciami miedzyfazo-
wymi — skojarzonymi, i napieciami fazowy-
mi Up= Uf \[3.

Na rys. 65 mamy zestawienie napiec i prag-
dow w uktadzie gwiazdowym roéwniez w przy-
padku jednakowego obcigzenia wszystkich
faz. Wszystkie prady sg przesuniete wzgledem
swych napie¢ fazowych o ten sam kat g (na ry-

sunku mamy opo6znienie pradéw wzgledem napiec).
W uktadzie trojkatowym napiecia fazowe i réwne im napiecia
miedzyfazowe tworza tréjkat zamkniety (rys. 66), natomiast prady



ROZKELAD UKELADOW NIESYMETRYCZNYCH NA SYMETRYCZNE 105

przewodowe bedg skojarzone. Wykres dla pradéw w przypadku
jednakowego obcigzenia faz otrzymamy taki sam jak dla napiec
w ukiadzie gwiazdowym (rys. 64).

§ 27

ROZKELAD UKLADOW NIESYMETRYCZNYCH NA UKLADY
SYMETRYCZNE PRADU TROJFAZOWEGO

W symetrycznym ukladzie trojfazowym mamy trzy réwne co
do wartosci wektory, przesuniete wzgledem siebie o kat 120°.
Moga to by¢ SEM lub przy jednakowym obcigzeniu wszystkich
faz — prady albo napiecia. Oznaczmy te wektory przez R, S'i T
(rys. 67), ich wspélny modut przez
W. Niech wektor R tworzy z pod-
stawowg osig OX kat a, wowczas

R = WedXs

S = We,(0~120,

f = WV@ERrzoO

albo

R = Wel*

S = Re-Jno°,

f = Reil20°

Poniewaz Rys. o7

eyidf = cos 120° + /sin 120° = — ~ + /[y V 3,
e-T20° _ COS 120° —/ sin 120° = — j-J-Y3,

wiec oznaczajac w skrdceniu

1 <1 /6
a—— N2V

skad
d2= —y —/-]-V3,
bedziemy mogli rozpatrywaé trzy omawiane wektory w postaci

R,S=dR, T-=aR



106

PRADY WIELOFAZOWE

Wektor T jest przesuniety wzgledem wektora R naprzod
o kat 120°, wektor S wzgledem wektora T — réwniez naprzod o kat
120°. tatwo zauwazy¢, ze &stanowi w rozpatrywanym zagadnieniu
pewien czynnik, przez ktéry mnozac dowolny wektor przesuwamy

przy czym dobieramy

8§0= RO, Si
To=no, A

Otrzymujemy trzy
grupy wektoréw

0 Ro, Ro, Ro>
1 RIf d22?, d-Rj,
2 Rz, aR2, aR?2.

Kazda z tych grup
0, I i 2 przedstawia
symetryczny uktad,;
przy czym grupa O sta-
nowi jeden wektor,
grupa lodpowiada nor-

S =

0. go naprzéd o kat 120°, natomiast
/ mnozac dowolny wektor przez a2
przesuwamy go wstecz o kat 120°.
Zwroémy réwniez uwage, ze
1+a+ d2=0,
d3= 1

Rozpatrzmy teraz niesymetry-
czny uktad R, S, T (rys. 68). Kazdy
z tych wektoréw mozemy zastgpic
trzema skiadowymi, tak aby

R —RO+ R\ + R2

SO+§,+§2 (5)

t =TO+ tx+ f,

da?x, S2= dR2

t2= dR2.

ani,

Rys. 69

malnemu symetrycznemu uktadowi tréjfazowemu, grupa 2 za$ rézni
sie od normalnego uktfadu tylko tym, ze wektory S i T majg zmieniong

kolejnosc.

Czesto nazywajg grupe O ukladem zerowym, grupe 1

uktadem wspétbieznym i grupe 2 ukladem przeciwbieznym.
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W ten sposob kazdy niesymetryczny uktad tréjfazowy mozemy
przedstawi¢ przez trzy symetryczne uktady skiladowe.
Podstawiajgc wartosci poszczegolnych wektoréow skiadowych
do ukladu réwnan (5), bedziemy mieli
R = 720+ Ri + R%
S = RO+ d&¥?! + &R2 6
f RH- o R\ + g2?2

Dodajgc stronami i biorgc pod uwage, ze 1+ a + a2= 0, znajdu-
jemy

ES=4 -7 + 3+ ( 7 )

mnozac drugie réwnanie przez a, trzecie przez a* i dodajac stronami
wszystkie réwnania, otrzymamy

R+ &8+ &t = 3RIt



108 PRADY WIELOFAZOWE

Skad fx =-J- {B + dS + azT);
wreszcie, mnozac drugie réwnanie przez a2, trzecie przez a i dodajac

stronami wszystkie réwnania, otrzymamy

B+ dXS+ df = 3B2,

B2= (i? + azs + df).

skad

Wielkosci BO, i?! i B2 mozna znalez¢ réwniez wykreslnie w spo-
sob nastepujacy:

BO réwna sie /3 geometrycznej sumy danych wektoréw (rys. 69).

Dla znalezienia Bx przeprowadzamy najpierw wektory aS
i aZl (rys. 70), nastepnie bierzemy X8 geometrycznej sumy B, aS
i aZT.

Wreszcie analogicznie znajdujemy (rys. 71) B2 jako % geome-
trycznej sumy B, aXs i aT.

8§ 28
MOC PRADU TROJFAZOWEGO

Rozpatrzymy, jak sie wyraza moc pradu trojfazowego w naj-
ogolniejszym przypadku, gdy obcigzenie poszczeg6lnych faz jest
rozne, to znaczy, ze i prady ptynace w przewodach, i napiecia miedzy-
przewodowe nie sg jednakowe.
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Gdy odbiorniki potaczone sg w gwiazde z trzema przewodami
(rys. 72), wartos¢ chwilowa mocy pobieranej przez odbiorniki wy-

n°sl P = «1*1 + «2*2 + “3*3>

gdzie ux, u2, u3, oznaczajg wartosci chwilowe napie¢ w poszczegol-
nych fazach odbiornikéw, zas ix, i2, i3 wartosci chwilowe pradow
ptynacych w przewodach oraz, w tym t

przypadku —przez poszczegdlne fazy

odbiornikéw. Poniewaz

I+ 12+ 0,
czyli i3= —ix i
mozemy napisac
p=(d—«ix+ W «3¢2
ar u, —fio= up Rys. 72
stanowi napiecie miedzy pierwszg i trzecig faza odbiornikéw, liczone
w kierunku od konca trzeciej do konca pierwszej fazy; tak samo
«2 «3 = uR

stanowi napiecie miedzy drugg i trzecig faza, liczone w kierunku od
konca trzeciej do korica dru-
giej fazy; w ten sposob

= «13ii + «23 ;2

Przechodzac od wartosci
chwilowej mocy do wartosci
Sredniej, czyli do mocy czyn-
nej P, wprowadzajac wartosci
skuteczne napie¢ i pradow i
oznaczajac przez ¢ rdznice
faz pradu ixi napiecia uX3oraz

1

. przez {2 — réznice faz pradu
b i2 i napiecia uZ (rys. 73),
Rys. 73 otrzymamy

p = t/lisAcose»! + t/23/2C0OS 9V (8)

Gdy odbiorniki potagczone sa w trédjkat (rys. 74), bedziemy mieli
dla wartosci chwilowej mocy ukiadu

P~ «2* + «232 + «31h >
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gdzie ul2, u23, u3l oznaczajg wartosci chwilowe napie¢ miedzyfazo-

wych, ktére w tym przypadku réwne sg napieciom fazowym. Kie-

runki tych napie¢, zgodne z kierunkami pradoéw, ktdére przyjelismy
jako dodatnie, wskazane sg na
rys. 74.

ii. Poniewaz w kazdej chwili
«l2 + «23 + «31 = 0,
Czyli «l2 = «31 «23i
Zaé «31 = «131
przeto mozemy napisac
P= «13 (*| — *3) + «23(*« - (,1),
ale L—i-=lip. 2 ii —izi

gdzie ilp oraz i oznaczajg pra-
dy ptynace w pierwszym i drugim przewodzie.
W ten spos6b

Rys. 74

P —u1siip + u23i2p

Jezeli przez ex i 42 oznaczymy roznice faz odpowiednio pomie-
dzy ul3 i ilp oraz uB i ip
i przejdziemy do wartosci
skutecznych napieé i pradéw
(rys. 75), otrzymamy dla mo-
cy czynnej rozpatrywanego
uktadu trdjkatowego 9)
P —/i3Aipcos yy-j- U231 200642
wzor analogiczny do wzo-
ru (8).
Widzimy wiec, ze zar6w-
no w ukladzie gwiazdowym
jak i w uktadzie tréjkatowym
moc pobierana przez odbior-
niki wyraza sie sumg dwoth
sktadnikoéw, z ktdrych kazdy
O0znacza pewng moc czynna. Rys. 75
Mierzenia mocy pradu
dokonywamy za pomocg przyrzadoéw, ktére nazywamy watomie-
rzami; zawierajg one dwie cewki: pradowg i napieciowg. W ogélnym
przypadku, dla zmierzenia catkowitej mocy ukiadu pradu trojfazo-



MOC PRADU TROJFAZOWEGO 111

wego musimy zmierzy¢ obie wyzej wyprowadzone moce sktadowe,
czyli zastosowa¢ dwa watomierze.

W tym celu watomierze W1i W2 (rys. 76) wigczamy przed od-
biornikami O, potgczonymi w gwiazde lub tréjkat, w ten sposéb, ze
przez cewki pradowe ptyng prady przewodéw 1i 2, zas cewki napie-
ciowe mierzg napiecia: pierwsza miedzy 1i 3 fazg — U13, druga miedzy
2 i 3 fazg — UZBm

Moce wskazywane przez te watomierze odpowiadajg sktadowym
mocy we wzorach (8) lub (9), przy czym przy odchyleniu wskazéwek
watomierzy w tym samym Kkie-
runku nalezy te moce do siebie
dodaé, a przy odchyleniu w roz-
ne strony — odjac.

Przy jednakowym obcigze-
niu trzech faz moc pradu trdj-
fazowego wyrazi sie wzorem

P = 3f7/cos 9,

gdzie U i | oznaczajg fazowe
napiecia i prady. Jezeli wpro-
wadzimy do powyzszego wzoru
wielkosci miedzyprzewodowe, to

dla ukiadu gwiazdowego U = 1
I d
I—-\ié:; wobec tego, po po}astawieniu tych wartosci do wzoru

Ip, dla trojkgtowego zas U=Up,

na moc, otrzymamy w obu przypadkach jeden i ten sam wzor
P = V3 Uplpcos <p.

Watomierze W 1iW 2w przypadku jednakowego obcigzenia trzech
faz wskaza na og6t rozne moce, poniewaz katy przesuniecia faz i
i e2we wzorach (8) i (9) na ogdl beda rézne; tylko w przypadku, gdy
prady Jj, 12, 13sg w fazie ze swymi napieciami fazowymi, czyli gdy
odbiorniki posiadajg tylko opornos¢ rzeczywistg, wskazywane przez
oba watomierze moce bedg sobie réwne. Wtedy bowiem, jak latwo
sprawdzi¢ na rys. 71 i na rys. 73,

<Pi= 2= 30°,
wobec czego ze wzoréw (8) lub (9) otrzymamy

P = 2UPIpcos 30° = V3 Uplp,

przy czym
= 0°.
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Przy dowolnym kacie @ pomiedzy fazowym napieciem i fazo-
wym pradem zaréwno w ukladzie gwiazdowym jak i w ukladzie
trojkatnym

H= 30—+
§2= 30 + @
Wobec tego moce, ktore mierzg watomierze Wx i VK2, bedg
okreslone nastepujgcymi wzorami:
Px= Ul cos {30°-cp),
P2= Ul cos (30° + 9.
Stad otrzymujemy
Px+ P2= Ul (cos 30° cos g+ sin 30° sin @+ cos 30° cos p—
—sin 30° sing) = V3 U1 cos cp,
Px—P2= Ulsin @

Dzielgc stronami ostatni wzdr przez poprzedni, bedziemy mieli

Iq'Pi—P2
18 ~V3P7TK"®

W zaleznosci od wartosci i od znaku @ poszczeg6lne moce moga

wypas¢ dodatnie lub ujemne, wiec gdy 3)’—cp> n Px< 0, gdy

>+ cp>~, P2<a

W ten spos6b moc réwna jest sumie algebraicznej mocy wskazy-
wanych przez oba watomierze.

§ 29
WYZNACZANIE PRADOW W UKLADACH PRADU TROJFAZOWEGO

Rozpatrzmy nastepujgce zagadnienie. Mamy pradnice pradu
trojfazowego w potaczeniu gwiazdowym (rys. 77), w kazdej fazie
dziata SE M o wartosci skutecznej E\ od Zrddta sa przeprowadzone 3
przewody fazowe i przewdd zerowy do odbiornikdéw, ktére sa réwniez
potaczone w gwiazde. Dane sa poza tym wszystkie opornosci uzwojen
pradnicy, przewoddéw i odbiornikdw; trzeba wyznaczy¢ prady 11t /2,
/31 JO, ktére beda ptynety w odpowiednich przewodach fazowych
i w przewodzie zerowym, w przypuszczeniu, ze odbiorniki w poszcze-
gblnych fazach roznig sie miedzy soba, czyli ze obcigzenie faz nie jest
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jednakowe, a wiec i w przewodzie zerowym bedzie ptynat pewien
prad. Oznaczmy oporno$¢ pozorng pomiedzy punktami 0 i 0', za-
wierajacg opornosé uzwojenia jednej fazy, opornos¢ przewodu i opor-
nos¢ odbiornikow wigczonych do tej fazy odpowiednio przez Z1, Z2
i Z3, a opornos$¢ przewodu zerowego miedzy tymiz punktami Oi O'
przez Z0; nastepnie oznaczmy SE M dziatajagce w poszczegélnych fa-

zach, rdznigce sie tylko katami przesuniecia faz, odpowiednio przez
Ei, E2i E3.

Na podstawie praw Kirchhoffa bedziemy mieli przy zatozeniu
dodatnich kierunkéw pradéw chwilowych, jak na rysunku,

A+ 2+ B+ o—
£i= lizi-iQ.
F2= 192 (0,
£3= /&3 ;,z0.

Wyrazajac z ostatnich trzech réwnan prady Ix, 12i 13i podsta-
wiajac ich wartosci do plerwszego rébwnania, otrzymamy

B +1020 E2+IOZO E3+]DZD f

Sk@d e2 e§
A -mm* A .
oro- 7 Y B?i+ E2Y2+ E3v3 16,
1 1 1 1 + + +
IS S Y1l+Y2 Y3+ YO

Zi 72 " 73 Zq

gdzie Yx, Y2, Y3i FO oznaczaja przewodnosci pozorne odpowied-
nich czesci uktadu; stad znajdujemy 10; podstawiajgc za$ otrzymane
wartosci 1020 do powyzszych réwnan, znajdziemy prady 1+ 12i 13.
Nalezy zauwazyé, ze iloczyn 1020 stanowi napiecie miedzy punktami

Teoria pradéw zmiennych 8
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0 i 0'. Przy rozwigzywaniu zadania nalezy jedng z SEM, np.Elt
przyja¢ jako wektor z kierunkiem podstawowym, wowczas

E.,= E,

E2= U (cos 120°—/sin 120°) = £ ~ - i -/~ =_ "™ (i+/V3Y

£3= £(008 120° + /sin 120°) = £ (~ +/ ~ -y ~1-/V 3V

Przyktad (rys. 78).

Dane Ex= i?2= E3— 120 woltéw
oraz opornosci poszczegdlnych czesci uktadu, wskazane na rysunku;
trzeba znalez¢ prady Ix, /2, 131 I0.

Mamy
Zx= 1,05+ /0,2, stad fx=0,919-/0,175,
Z2= 1,38 + /0,2, f2=0,710-/0,103,
Z3= 2,05+ /0,2, f3=0,483-/0,047,
Zf= i?0= 0,08, Yo=Go 125.

Biorac kierunek za podstawowy i oznaczajac przez T2 T3i To
katy przesuniecia faz poszukiwanych pradéw wzgledem E 1. bedziemy

Ex= 220 woltéw;

A --110(1+/V3);
£3=-no(i —/V3).
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Na zasadzie wzoru (10) otrzymujemy

» S 2(0,919-/0,175)-(1+/\'3)-(0,710-/0,103)-(1-/W )-(0,483-/0,047)
00 (0,919+0,710+0,483+12,5)-/(0,175+0,103+0,047)

Po wykonaniu wskazanych dziatan i uczynieniu mianownika
liczbg rzeczywistg, znajdujemy
1020= (—4,53 + /4,38) woltéw;
10Z20= 6,2 woltdw;
skad /, = (—56,7 + /54,8) amperéw
10= 78,6 amperdow
tgyo= —1,014, f0= 135° (bo w Il Céwiartce).
Nastepnie obliczamy
Ix= (Ex+ loZ,)?! = (198,9 —/33,7) amperéw
Ix= 201,7 amperdéw
tg W = —0,168, y=>i= —9°30" (bo w IV ¢wiartce).
12= (—99,4 —j120,4) amperow
12= 156,1 amperow
tg 2= 1,11, x2= —129°30' (bo w IlI ¢wiartce).
13= (—45,3 + /99,3) amperéw
J3= 109,1 amperow
tg Ya= —2,15, y8= 115° (bo w Il ¢wiartce).
Mozemy teraz jeszcze znalez¢
napiecia na poszczeg6lnych fazach

odbiornika.
Cx= 1IXBX = 203 woltow,
u2= 727?2' = 207,6 woltoéw,
t)s— 13B3' = 219 woltéw.

Katy przesuniecia faz tych na-
pie¢ wzgledem bedg takie same
jak dla odpowiednich pradow, czyli
Wii Tai 8, poniewaz w rozpatrywa-
nym przykiadzie odbiorniki posiadajg
tylko opornosé rzeczywista.

Znalezione wielkosci przedsta-
wione sg na wykresie (rys. 79),
OEx= Ex, OE2= E, OE3= E3, OlIx= Ix, 012—12, /3= /3,
Ol0= lo, OUX= UX, OU2= U2 0U3= u3.

&

Rys.
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Gdy odbiorniki sg potgczone w trdjkat, stosujemy metode po-
dang przez Kenelly’'ego, polegajaca na przeksztatceniu trojkata
w rownowazng gwiazde. Nazywac¢ bedziemy gwiazde (rys. 80) row-
nowazng tréjkatowi, jezeli opornosci pozorne miedzy trzema punk-
tami A, B i C gwiazdy bedg takie same jak pomiedzy odpowiednimi
punktami trdjkata, ktére powinny by¢ znane.

Rys. 80 a Rys. 80b

Opornos¢ pozorna pomiedzy punktami A i B trdjkata skilada
sie z opornosci pozornych Zs oraz Zx+ Z2, rownolegle potaczonych.
Oznaczajac te opornos¢ pozorng przez ZAB, bedziemy mieli

Z3¢i + 722
Z\+22+273

Opornos¢ pozorna pomiedzy punktami A i B gwiazdy wynosi
ZAB — ZA + ZB.

Warunek réwnowaznosci bedzie spetniony, jezeli

analogicznie

oraz ..
_ ZXx(Z2+ Z5s)
Z.+Z2+ 27
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Z tych réwnan znajdujemy

ZA= z 223
Z21+22+2723
. Z\Z a
« =
+ZZ+Z3
Z\Z?2
Zc= .
I\N+7Z2+ 73

Bardzo tatwo mozna znalezé opornosci pozorne réwnowaznej
gwiazdy sposobem wykresinym. n

Na rys. 81.
OA = Zj,
OoB= Z2,
OC= Z3,
0= 27 = + 722+ Zg.

W celu znalezienia np. ZApi-
szemy na podstawie wyzej wypro-
wadzonego wzoru proporcje na-
stepujaca:

ZA _ z2

Z2*~ 2z

Musimy wiec zbudowaé¢ AOCM
podobny AODB, w ktdrym
<COM = -ZzDOB, -KOCM= Rys. 8i
= ODB; wtedy powyzsza pro-
porcja bedzie miata miejsce i oczywiscie OM —ZA

§ 30
PRAD DWUFAZOWY

Uktad dwufazowy symetryczny, jak o tym bylka mowa (§24),
nie bywa stosowany, natomiast spotykamy w praktyce prad dwu-
fazowy w ukladzie niesymetrycznym.

Jezeli w dwdch uzwojeniach potaczonych jak na rys. (82),
tworzacych w przestrzeni kat prosty, powstajg SEM przesuniete

n
w fazie 0 2'>otrzymamy uktad dwufazowy niesymetryczny.
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W uzwojeniach powstajg SEM: et i e2, przesunigte w fazie
71 . ..
0 kgt —, a mianowicie
e; = Ep,sin tot
oraz
e2= Emsin ot— ~ = —Emcos cot.

W uktadzie tym korzystamy z trzech przewodéw: dwoch fazo-

/ wych, idacych od koncéw faz,

' i zerowego, idacego od punktu

potaczenia poczatkéw faz, tak zwa-
nego punktu zerowego.

Napiecie miedzyfazowe bedzie
napieciem skojarzonym; przy jed-
nakowym obcigzeniu obu faz war-
tosci chwilowe napiecia fazowego
wynoszg odpowiednio

ux= Umsin cot,

u2= Umsin (W 2) -Unrcos (»4;
wartos¢ chwilowa napiecia miedzyfazowego bedzie
U= U—«@= ~m(sin Cot + 00s Cot) = UnmV2su (tot +
Przechodzac do wartosci skutecznych napiecia, bedziemy mieli
O .
#12= #1—#2= Ué' -U e 2=U+ ju = 171 + /1),
gdzie U stanowi modut napiecia fazowego.

Skad
ti2= 1/v2,
tg<(#i, #12=1,
<(01, 0= ZL.
7
To samo otrzymalibysmy z wykresu <4
(rys. 83), gdzie OUx = Ul, OU2= U2,
u2u ,= U12

Oznaczmy prad wychodzacy z fazy pierwszej przez Ix, z drugiej
zas przez 12. Przez przewdd zerowy niech plynie prad 10. Wéwczas
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na podstawie | prawa Kirchhoffa

A+A+A=o0

lub
io= —(A + A).

Widzimy stad, ze przez przewod zerowy odpltywa prad o war-
tosci réwnej sumie geometrycznej pradéw obu faz; wobec tego prze-
kroj przewodu zerowego powinien by¢ wiekszy od przekrojéw prze-
wodow fazowych. Przy jednakowym obcigzeniu faz, gdy Ix= 12= 1,
wartos¢ skuteczna pragdu w przewodzie zerowym wyrazi sie tak:

A="V2.

Dla wyrazenia mocy rozpatrzonego uktadu dwufazowego przy
jednakowym obcigzeniu obu faz mamy

ul= Umsin wt,
u2= — uUmcos .; t

oraz wartosci chwilowe pradéw pobieranych z obu faz, np. przy
obcigzeniu indukcyjnym,

= AsinM —¥Fp

i2= —1,, cos (Ql— (.

/ z,

T™H

0s.

£
Of-wwww1 * Z,
N 2
Rys. 84

W kazdej chwili moc p takiego uktadu bedzie
p = ulix+ u2i2.
Podstawiajgc do tego wzoru powyzsze wartosci, otrzymamy
P= Umn{sin cot sin (Qt—<) + cos out cos [oot—P)} = Umimcos (p.
Wprowadzajgc zas wartosci skuteczne napiecia i pradu,

p=2UIl cos q
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Wartos¢ chwilowa mocy jest, jak widzimy, stata, nie zalezy od
czasu, czyli uktad jest wyréwnany. Srednia moc P wyrazi sie tym
samgm wzorem p = 2L-|;r|Tcos ©

lub, wprowadzajac napiecie miedzyfazowe Up= U V2 i prad prze-
wodowy Ip= /,
P=UpIp cos £

Obliczanie pragdéw w uktadzie dwufazowym uskuteczniamy tak
samo jak dla pradu trdjfazowego (829). Wprowadzajgc oznaczenia,
jak na rys. 84, bedziemy mieli:

f,_ @1+ loZo L M2+ A0tV MM A2
Zj 73 F1+ Yi+ Yo

§ 31

WPLYW WZGLEDOW EKONOMICZNYCH NA ROZWOJ PRADOW
ZMIENNYCH WIELOFAZOWYCH

Rozpatrzmy nastepujace zagadnienie: mamy przenies¢ moc
PkW na odlegtos¢ I km przy napieciu U. Poréwnajmy ilos¢ metalu
w przewodach, jaka nalezy zuzy¢ przy przenoszeniu takiej samej
mocy, przy tym samym napieciu, w rozmaitych ukiadach pradu
zmiennego, jednofazowego, trojfazowego i dwufazowego, tak aby
strata mocy w przewodach byta ta sama. Przy zwyklym jednofazo-
wym pradzie zmiennym

P = UI COS<p, (1)

gdzie | oznacza natezenie przenoszonego pradu, zas < — kat prze-
suniecia fazy tego pradu wzgledem napiecia U.
Dla przeniesienia tej mocy potrzebujemy dwoch przewodéw

Oznaczmy opornos¢ kazdego przewodu przez B1, przekrdj jego
przez Sjj wéwczas strata mocy w przewodach wyniesie

AP=2RRXx 2

W tym przypadku objetos¢ metalu uzytego na przewody wy-

nosi¢ bedzie vx= 2]’ &)
Dla pradu trdjfazowego obliczamy moc ze wzoru

P = ~2>Up Ip cos (p.
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Przy potaczeniu w trojkat Up= U i wtedy
P = £(w* V3) cos cp.
Zestawiajgc ten wzdr z wzorem (1), otrzymamy
Ul cos p— UlpY3cos @,
skad i I

P V3

Widzimy stad, ze przy przenoszeniu jednej i tej samej mocy
w postaci pradu tréjfazowego przez kazdy przewdd plynie prad Y3
razy mniejszy od pradu, ktory jest potrzebny przy zwyklym pradzie
jednofazowym.

Dla rozpatrywanego pradu tréjfazowego potrzebujemy trzech
przewodow; oznaczmy opornos¢ kazdego z tych przewodéw przez B3,
przekroj zas przez s3.

Strata mocy w przewodach wyniesie

AP =3 = 1B3.
| Zestawiajac ten wzor z wzorem (2), otrzymamy
PB3= 2/371; B3=2B 1.

Widzimy stad, ze opornos$¢ przewodow dla otrzymania tej sa-
mej straty mocy w przypadku pradu trojfazowego musi by¢é dwa
razy wigeksza od poprzedniej, czyli

Objetos¢ metalu uzytego na przewody bedzie w tym przypadku
v3= 3s3=— -

Biorac stosunek tej objetosci do vx z wzoru (3), otrzymamy &4,
czyli 75%.

To oznacza, ze przy uktadzie tréjkagtowym na przewody zuzy-
wamy 75% materiatu potrzebnego w przypadku pradu jednofazo-
wego, czyli uzyskujemy 25% oszczednosci.

Rozpatrzmy teraz z kolei uktad gwiazdowy pradu tréjfazowego;
zaktadamy, ze wszystkie fazy sg jednakowo obcigzone. Moc pradu
bedzie —
P = \3Uplp cos @= 3Ulp cos cp.

Po zestawieniu tego wzoru z wzorem (1) otrzymamy
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Oznaczmy opornos¢ kazdego z trzech przewodéw przez R'3,
przekrdj za$ przez s'3. Strata mocy bedzie

AP=3vag'=-~/?7'3.

Aby ta strata mocy byla ta sama co w przypadku, gdy stosu-
jemy prad jednofazowy, musi by¢ przez poréwnanie z wzorem (2)

4r/?'3= 2IRL skad R'3=6R1.

Przekroj przewodu w danym przypadku stanowié¢ bedzie

Objetos¢ metalu uzytego

Poréwnujac ten wzor z wzorem (3) widzimy, ze ilos¢ mate-
rialu zuzytego na przewody w przypadku ukiadu gwiazdowego
z trzema przewodami stanowi 1, czyli 25% tego, co jest potrzebne
przy pradzie jednofazowym; oszczedno$¢ wynosi 75%.

Rozpatrzmy teraz ukladi gwiazdowy z czwartym przewodem
zerowym; zalézmy, jak to zwykle bywa, ze przekr6j tego przewodu
bedzie dwa razy mniejszy od przekroju przewodow pozostatych.
Woéweczas objetosé zuzytego na przewody materiatu wyniesie

W poréwnaniu do objetosci metalu przy zwyklym pradzie jedno-
fazowym (wzoér 3) wynosi to okoto 29%.

Przy uktadzie dwufazowym niesymetrycznym z trzema prze-

wodami: dwoma fazowymi i jednym zerowym, moc pradu wynosi
P = 2Ulpcos &

Poréwnujac ten wzér z wzorem (1) mamy

Poniewaz prad ptynacy w przewoddzie zerowym
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Oznaczmy oporno$¢ przewoddw fazowych przez P2, opornosé
przewodu zerowego przez P'2, przekroje za$ odpowiednio przez
S, IS

Strata mocy w przewodach wyniesie

AP = 2IpB2+ 10B'2.

Podstawiajgc tu na t i 10 ich wartosci, otrzymujemy
AP = — (B2+ B'2.

Przez przewdd zerowy ptynie prad Ip\R; aby spadek napiecia
w tym przewodzie byt ten sam co w innych przewodach, opornos¢
jego musi by¢ proporcjonalnie mniejsza, czyli
B, J27
V2

a przekrdj
s2—

Wobec tego strata mocy wynosi

AP 85PB2.

P

2R*(1+w H
Przyrownujac te strate do straty mocy przy pradzie jednofazo-

wym (wzor 1), otrzymamy

0,85PB2= 2PBL

skad
P2= 2,3Bx.

Z tego wynika, ze przekroj przewodéw powinien by¢ w danym
przypadku tylez razy mniejszy, czyli

= |
82 23 0,435!.

Wobec tego
§'2- s23/2- 0,43Y7Sj= 0,605!.

Objetos¢ materiatu zuzytego wyniesie
a2= (2s2+s'21= (0,85+0 ,6 0 ) I,45s!/.

W stosunku do objetosci vx (wzér 3) otrzymamy

*H=T73% .



124 PRADY WIELOFAZOWE

§ 32
POLA WIRUJACE

Osobliwoscig pradéw zmiennych wielofazowych jest powstawa-
nie tak zwanego wirujacego pola magnetycznego.
Przypusémy, ze mamy cewke, przez ktorg ptynie prad zmienny
o wartosci chwilowej
H i — Imsin (wt — Q).
W dowolnym punkcie A przestrzeni

prad ten (rys. 85) wytwarza pole magne-
tyczne, ktorego natezenie H zmienia sie
sinusoidalnie w czasie, zaleznie od zmiany

H pradu w cewce.
Jezeli mamy dwie potgczone ze sobg
Rys. 85 cewki tworzace kat prosty, przez ktore
przeptywa jeden i ten sam prad sinusoi-
dalny, wowczas kazda cewka w dowolnym punkcie otoczenia wy-
wotywac bedzie w sposéb analogiczny natezenie pola o wartosciach
H1li H2. H1i H2 zmieniajgc sie sinusoidalnie w czasie w sposob

jednakowy, dajg w kazdej chwili wypadkowa H, ktéra bedzie sie
rowniez zmienia¢ sinusoidalnie, przy czym Kkierunek jej pozostawaé
bedzie statly (rys. 86).

Zupeinie odmienne zjawisko otrzymamy przy pradach wielo-
fazowych. Jezeli na przyktad mamy ukiad dwufazowy, wtedy przez
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uzwojenia beda ptynaé prady (przy jednakowym obcigzeniu faz)

h = 4 sin {(ot — tp)

oraz

w dowolnym punkcie wytworzonego pola magnetycznego natezenie
pola bedzie wypadkowsg sktadowych Hx i f/2, wywotanych pradami
ixi i2. Wartosci tych sktadowych bedg na ogot rézne (rys. 87). Roz-
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patrzmy chwile, gdy H1 przybrato warto$¢ najwiekszg, wowczas
H2= 0. Wypadkowe natezenie pola w takiej chwili bedzie

H1.

W chwili nastepnej warto$¢ Hx sie zmieni, a mianowicie zmniej-
szy sie, za$ wartos¢ H2wzros$nie; wskutek tego wypadkowa H zmieni
swoj kierunek itd., obracajgc sie o pewien kat od potozenia pierwot-
nego. tatwo zauwazy¢, ze wektor natezenia pola obraca sie z szyb-
koscig katowag réwng pulsacji pragdu zmiennego.

Pole, w ktérym natezenie zmienia w ten sposéb swoj kierunek,
nazywamy polem wirujgcym.

Analogicznie otrzymalibySmy pole wirujgce, rozpatrujgc trzy
przesuniete wzgledem siebie w przestrzeni uzwojenia pradu trdj-
fazowego. Jak widzimy, warunkiem koniecznym do powstania pola
wirujgcego jest obecno$¢ co najmniej dwoéch sktadowych natezenia
pola, przesunietych wzgledem siebie i w czasie, i w przestrzeni.

Wiasnosci wirujgcych pél magnetycznych sg wyzyskane w elek-
trotechnice w silnikach, licznikach indukcyjnych itd.

Rozpatrzmy teraz, jakie linie krzywe opisuje koniec wektora
natezenia pola w dowolnym punkcie wirujacego pola magnetycz-

nego w niektdrych szczegélnych
przypadkach. Przy pradzie dwu-
fazowym z jednakowym obcigze-
i niem faz bedziemy mieli (rys. 88)

= SInM —9,
/\2 (2_ I'm GB (CD @
Rys. 88 Oznaczajgc wartosci chwilowe
natezenia pola wywotanego tymi
pradami, w dowolnym punkcie M pola przez hxi h2, ich wypadkowag
za$ przez h, bedziemy mieli
K = Hmsin M —?),
h2= —HmMcos (wt — <.
Sktadowe te sg prostopadte do siebie. Biorgc osie wspétrzednych
w ten sposdb, aby w punkcie M byt poczatek, 0§ X byta skierowana
w prawo w kierunku sktadowej h2, za$ o$ Y prostopadle do goéry
w kierunku sktadowej hx, bedziemy mieli dla korica wektora nate-
zenia pola h nastepujace wspotrzedne
X = —Hmcos (coi —9,
U~ HmSIn {<°t— (p).
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Z tych réwnan otrzymujemy
X2+ y2—Hn2
Jest to rownanie kota ze Srodkiem w poczatku wspotrzednych
i z promieniem réwnym Hm To znaczy, ze koniec wektora, ktérego
modut wynosi Hm opisuje koto z predkoscig katowg ca
Jezeli przy pradzie dwufazowym obcigzenia obu faz sa rézne,

ale prady ptyngce w fazach sg jednakowo przesuniete w fazie wzgle-
dem swych S E M, wdwczas

h = Amsin M ~ <P,

{2 17=—hm cos (caf — 9,

y = K = HImsin (caf — 9,
h2= —H2mcos (caf —),

X
skad
y2 i

Jest to réwnanie elipsy. Koniec wektora /A opisuje wiec z pred-
koscig katowa a elipse, ktérej potosie rowne sg Himi Ham.

Przy pradzie trdjfazowym
w ukiadzie gwiazdowym z jed-
nakowym obcigzeniem wszyst-
kich faz mamy

h = Imsin (caf— @),

i2= Imsin

3 = -m Sin
o= fimSin (caf — 9),
fi2= Hmsin

fig= sin

Biorgc kierunek htza o$ X, a prostopadle do tej osi 0s Y (rys. 89)
1 oznaczajgc rzuty wypadkowego wektora h na osie wsp6trzednych



128 PRADY WIELOFAZOWE
przez x iy, bedziemy mieli

x — lij 4 h2cos 2 n + h3cos -é-n = hx— cilj (h2+ h3),

y = h3cos -g- + h2cos 8 n= -\\/g(hS—hZ);
po podstawieniu wartosci hx, h2 i h3 otrzymamy

X = lim( sin (cof — %) —-i j°sin Mot —p— Aj +
+ sinawi—@p+ 7| =
= Hm] sin (cot — (@ i-]j2 sin [cot—(p G- wjj =

j sin (of —9) +-g- sin (01— | = -g- HmMsin (cot —),

y = Hml"sin "Gt — p+ —sin ~cof — (p— =

—aR an-@-y(IB(Cd:ﬂp):?é Hm CIB((U:—%

skad
X2+ y2-
koniec wektora h opisuje wiec koto z predkoscig katowg co; modut
3
tego wektora, czyli promien kota, wynosi
v

Przy obcigzeniach niejednakowych koniec wektora h opisuje na
0go6t ztozone krzywe.
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ZIAWISKA MAGNETYCZNE PRZY PRADACH
ZMIENNYCH

§ 33
HISTEREZA MAGNETYCZNA

Gdy ciato ferromagnetyczne, np. zelazo, po raz pierwszy pod-
lega magnesowaniu, indukcja B w tym $rodowisku wzrasta od
zera do pewnej wartosci, zaleznie od natezenia pola magnetycznego H.
Przebieg indukcji w tym przypadku dajg nam na wykresie cha-
rakterystyki magnesowania (rys. 90), ktorych ksztalt zalezny jest
od rodzaju ciata ferromagnetycznego. Jezeli po namagnesowa-
niu zelaza zaczniemy
zmniejsza¢ indukcje
przez zmniejszenie na-
tezenia pola, wtedy
indukcja nie bedzie
sie zmieniata wedtug
tej samej krzywej,
lecz z pewnym opo0z-
nieniem. Na rys. 91
wskazany jest prze-
bieg indukcji w przy-
padku magnesowania
i rozmagnesowywania pys. 90
ciata ferromagnetycz-
nego. Krzywa OA jest to krzywa pierwotna, dajaca przebieg
indukcji w srodowisku magnesowanym po raz pierwszy. Najwieksza
wartos¢ indukcji AA' odpowiada wartosci natezenia pola OA'
Gdy natezenie pola zacznie sie zmniejsza¢, indukcja spada wedtug

Teoria pradéw zmiennych 9



130 ZIJAWISKA MAGNETYCZNE PRZY PRADACH ZMIENNYCH

krzywej AC w ten spos6b, ze przy H= 0, B= OC, to znaczy,
ze pomimo znikniecia pola magnetycznego, w S$rodowisku pozo-
staje jeszcze tak zwany magnetyzm szczgtkowy, wobec czego in-
dukcja magnetyczna nie staje sie réwna zeru. Zmieniajac nastep-
nie kierunek natezenia pola, zmieniamy indukcje wedtug krzywej
CDE w ten sposob, ze w punkcie D, gdy B — 0, natezenie pola H
ma wartos¢ ujemna OD. Takg warto$¢ natezenia pola, ktora jest
potrzebna dla sprowadzenia indukcji do zera, nazywamy nateze-
niem powsciagajacym (koercyjnym).
Po doprowadzeniu indukcji B do
wartosci ujemnej EE' dlaH= OE’,
gdy zaczniemy zmniejsza¢ nateze-
nie pola do zera, a nastepnie znéw
zmienimy kierunek na dodatni —
indukcja bedzie miata przebieg po
krzywej EFGA. Rozpatrzone zja-
wisko, polegajace na tym, ze zmia-
na indukcji opdznia sie wzgledem
zmiany natezenia pola, nazy-
wamy histerezg magnetyczng. Obie
krzywe ACDEFGA tworza tzw.
obieg albo cykl histerezy. Obieg ten dla réznych ciat ma rozny
ksztatt i zalezy réwniez od najwiekszej wartosci B, do ktérej do-
prowadzamy namagnesowanie.

Przy pradzie zmiennym powstaje pole magnetyczne o zmien-
nym natezeniu; liczba zmian odpowiada czestotliwosci prgdu zmien-
nego. Oczywiscie, ze w ciele ferromagnetycznym znajdujacym
sie w takim polu magnetycznym — zachodzi
zjawisko histerezy magnetycznej. Dla przy-
rostu energii magnetycznej Wm odniesionej
do jednostki objetosci obwodu magnetycz-
nego, gdy indukcja zmienia sie od O do B,
mamy wzor

Wr HdB.

tatwo jest zauwazy¢, ze catka w tym wzorze odpowiada po-
wierzchni OAM (rys. 92). Mozemy wiec powiedzie¢, ze energia ma-
gnetyczna przy zmianie indukcji od O do B jest proporcjonalna do
tej powierzchni. Rozpatrujgc obieg histerezy przekonamy sie, ze
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energia magnesowania zachodzacego raz po krzywej EFGA, drugi
raz po krzywej ACDE — ma rézne wartosci; przy magnesowaniu
zuzywamy energie z zewnatrz pobierang, przy rozmagnesowywaniu
otrzymujemy jg z powrotem, lecz w mniejszej ilosci; zachodzi wiec
strata energii, ktora, jak wykazaly doswiadczenia, przejawia sie
w postaci ciepta. Ta strata energii przy jednym catkowitym obiegu
magnesowania jest proporcjonalna do powierzchni objetej przez obieg
histerezy; tatwo to jest sprawdzi¢ rozpatrujgc energie odpowiadajgca
dowolnej zmianie indukcji,

np. od Bx do B2 (rys. 93):

energia zuzyta przy magne-

sowaniu po krzywej NM

jest proporcjonalna do po-

wierzchni PMNQ, energia

za$ oddana przy rozma-

gnesowywaniu jest pro-

porcjonalna do powierzchni

PM'N'Q; wiec strata ener-

gii bedzie proporcjonalna

do réznicy, czyli do po-

wierzchni  zakreskowanej

MNN'M'; rozpatrujac

zmiane indukcji przy cat-

kowitym obiegu magneso-

wania, czyli w granicach od—B d o+ B, znajdziemy w ten sposob, ze
strata energii przy jednym obiegu histerezy jest proporcjonalna do
powierzchni objetej przez ten obieg. W elektrotechnice obchodzi
nas przewaznie strata mocy w postaci ciepta, spowodowana zjawi-
skiem histerezy. Dla obliczenia tej straty mamy dwa wzory. Pierwszy
wzor, Steinmetza,

PH= r]fBj'6 10" 7 watdw,

gdzie PH oznacza strate mocy w jednym cm3 srodowiska, / oznacza
czestotliwos¢ indukeji, czyli w przypadku otrzymywania pola magne-
tycznego za pomocg pradu zmiennego czestotliwos¢ tego pradu,
Bm—wartos¢ maksymalng indukcji magnetycznej w rozpatrywanym
Srodowisku, wyrazong w gausach, zas$ 1 — wspodtczynnik zwany
wspdtczynnikiem histerezy magnetycznej, ktory jest zalezny od ma-
terialu; tak np. dla blachy twornikowej wspotczynnik ten wynosi
od 0,001 do 0,002, dla stali 0,01 do 0,02.

8
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Doswiadczenia wykazaty, ze spdtczynnik histerezy magnetycznej
we wzorze Steinmetza nie jest wielkoscig statg dla danego gatunku
zelaza, zwlaszcza miekkiego; zalezy on od indukcji magnetycznej,
co sie szczegdlnie uwydatnia przy wiekszych wartosciach tej indukcji.

Tak np. dla blachy twornikowej przy maksymalnej wartosci
indukcji Bm= 4000G, j = 0,00137, za§ dla Bm= 16000G,
i) = 0,00185, natomiast dla stali odchylenia sg nieznaczne.

Drugi wzor, podany przez Richtera, ma postaé

Ph= f[« + R (16Qjj-) 1 watow>

gdzie PH, f i Bmmajg te same znaczenia co i w poprzednim wzorze,
Steinmetza, za$ ai B stanowig wspo6tczynniki zalezne od materiatu.

Dla wiekszych wartosci Bm powyzej 1000G, Richter podaje
wzér strat na 1 kg materialu w postaci

yf ( BmV
Ph — 100 V10000/

il dla blachy twornikowej ma wartosci 4,4 —4,7; dla blachy wysoko-
wartosciowej 2,4 —3,0.

Jak wida¢, w obu tych wzorach strata mocy na histereze jest
proporcjonalna do czestotliwosci indukcji magnetycznej.

Rozpatrzmy teraz, jaki wplyw wywiera zjawisko histerezy
magnetycznej na przebieg pradu zmiennego, powodujgcego zmienne
pole magnetyczne. Jezeli mamy np. cewke posiadajgcg z zwojow
0 bardzo matej opornosci rzeczywistej, bez rdzenia zelaznego, i przez
te cewke przepuscimy prad zmienny o przebiegu sinusoidalnym,
wolwczas indukcja magnetyczna wewnagtrz cewki rowniez bedzie
miata przebieg sinusoidalny; powstanie wewnatrz cewki strumien
magnetyczny, ktérego wartos¢ chwilowg </t mozemy wyrazi¢ wzorem

@t = &msin.;t.
Pod wplywem tego zmiennego w czasie strumienia powstaje
w cewce SEM indukcji whasnej, ktorej wartos¢ chwilowg okreslamy
Zze znanego wzoru

do,
u

watéw;

z = — wz<Pm COS Ot = tGaz0m sin

z tego wzoru widzimy, ze najwieksza warto$¢ SEM indukcji whasnej
wynosi cozOmi ze ta SEM jest opdzniona w fazie wzgledem wy-
wotujgcego jg strumienia o kat prosty. Jezeli rozpatrywany strumien
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powoduje powstanie SEM, to, na odwrot, dla otrzymania takiego
strumienia musimy z zewnatrz da¢ napiecie, ktore w kazdej chwili

bedzie
u= —e,

czyli
= —mz0msin WZ>mcos Ut =

= mzO0msin (wt + )

Jak widzimy, napiecie z zewnatrz przylozone jest przyspieszone
w fazie wzgledem strumienia magnetycznego o kat prosty, czyli
strumienn magnetyczny jest op6zniony w jazie o kat prosty wzgledem
wywotujacego go napiecia. W przypadku powstawania SE M indukcji
wihasnej strumien magnetyczny jest przyczyng, a S E M skutkiem,
w drugim przypadku przyczyng jest napiecie, za$ skutkiem jest
strumien magnetyczny; widzimy wiec, ze w rozpatrywanym zagad-
nieniu skutek jest op6zniony w fazie wzgledem przyczyny o kat prosty.
Z ostatniego wzoru wynika, ze maksymalna warto$¢ Um na-
piecia z zewngtrz przylozonego wynosi
Um= 2jifz0Om &N
wprowadzajgc wartos¢ skuteczng U tegoz napiecia, bedziemy mieli

2nfzOm

skad _
U=V2nfzOm

poniewaz yj2n w przyblizeniu réwna sie 4,44, dla wyrazenia za$ na-
piecia w woltach nalezy prawa strone ostatniego wzoru pomnozy¢
przez 10-s, otrzymamy wzor praktyczny, uzywany w elektrotechnice,

U = 4,44fz0 m10~8woltéw 2
lub
4l,J414°/§ makswetéw 3
i tak samo dla SEM indukcji powstajgcej pod wptywem strumienia
magnetycznego O bedziemy mieli w jednostkach bezwzglednych
Em= 2nfz0m 4
E =\2nfzOm
za$ w woltach
E = y2u/ zfpm10~8= 4,44fz0 m10-8 woltow. 5
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Poniewaz strumienn Om opdzniony jest w fazie wzgledem na-
piecia U o kat prosty,tak samo jak i prad przy opornosci indukcyjnej,
wnioskowa¢ mozemy, ze prad | przeptywajacy przez cewke jest
w fazie ze strumieniem 0. Prad ten | nazywamy pradem wzbudza-
jacym lub magnesujgcym.

Rozpatrzmy, jaki jest przebieg prgdu magnesujacego w po-
rownaniu z przebiegiem indukcji lub strumienia magnetycznego, gdy

Rys. 94

w cewce jest rdzen zelazny, a wiec w obecnosci zjawiska histerezy
magnetyczne;j.

Strumien 0t z biegiem czasu ma przebieg sinusoidalny; prad
magnesujacy O'L" (rys. 94), odpowiadajgcy krzywej pierwotnej in-
dukcji OA, jest w fazie ze strumieniem, natomiast przy nastepnym
magnesowaniu wskutek histerezy zachodzi przesuniecie fazy pradu
wzgledem strumienia, przy czym krzywa pradu staje sie odksztatcona.

Krzywa K'M'D'.L' odpowiada krzywej' indukcji CMDA, za$
krzywa L'N'F' — krzywej indukcji ANF, 0'D' = OD, punktom
M i N (prad réwny zero) odpowiadaja punkty M' i N' na krzywej
pradu itd. Widzimy, ze wobec zjawiska histerezy krzywa pradu
K'D'L'N" jest odksztatcona i przesunieta w fazie wzgledem strumie-
nia w ten sposob, ze prad wyprzedza w fazie strumien. Prad ten mo-
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zerny rozpatrywac jako sume dwoch pradéw: takiego, ktéry idzie na
magnesowanie, jest to prad wzbudzajacy, czyli magnesujacy ing oraz
pradu idgcego na wytworzenie ciepta wywotanego zjawiskiem histe-
rezy, oznaczmy go przez ih

1=1g+ h-

Dla przyblizonych rozwazah wprowadzamy zamiast prgdu od-
ksztatlconego prad zastepczy sinusoidalny, majacy te samag wartosc¢
skutecznag co istniejacy prad i takie przesuniecie w fazie wzgledem
napiecia, aby moc czynna pradu sinusoidalnego byta réwng mocy
wytwarzajgcej ciepto histerezy; wéwczas wartos¢ skuteczng | takiego
zastepczego pradu sinusoidalnego mozemy roztozy¢ na sume geome-
tryczng pradu magnesujgcego Ingi pradu lhidgcego na wytwarzanie
ciepta histerezy, czyli

n mg b 'n'

Pierwszy prad Ing jest w fazie ze strumieniem, drugi za$ |h
(czynny) jest w fazie z napieciem.

Oba te prady i prad wypadkowy przedstawione sg na rys. 95.

Oznaczajgc kat odchylenia prgdu od strumienia z powodu histe-
rezy przez a, widzimy, ze

Ilh= 1sin a
oraz
Ing= 1cos a;
kat a nazywamy katem histerezy. Jest on tym wiekszy, im wiekszy
jest wptyw histerezy. Mnozac U przez l|h
otrzymamy moc pradu straconego na hi-
stereze Ph czyli

Ph= Ulh= Ul sin a

Dla stabych pdl magnetycznych indukcja B zmienia sie propor-
cjonalnie do H, czyli ta cze$¢ charakterystyki magnesowania jest
linig prostg. Rozpatrzmy (rys. 96) punkt M, dla ktérego natezenie
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pola = H, indukcja zas = B. Przy malym zmniejszeniu natezenia
pola 0 AH indukcja zmniejszy sie 0 AB, gdy za$ z powrotem dopro-
wadzimy natezenie pola do poprzedniej wartosci H, indukcja przyj-

mie znowu warto$¢ B. Stosunek jir nazywamy przenikalnoscig

A
AH
magnetyczng odwracalng. Przenikalno$¢ te bierze sie pod uwage
woéwczas, gdy zelazo magnesuje sie pradem stalym i na prad staly
naktada sie staby prad zmienny. Przenikalno$¢ odwracalna jest na
0g6t mniejsza od przenikalnosci magnetycznej punktéw znajduja-
cych sie na obiegu histerezy.

§ 34
PRADY WIROWE

W masach metalowych znajdujacych sie w zmiennym polu
magnetycznym powstajg prady indukcyjne, majace na ogét rozne
kierunki i tworzgce jakby wiry w tych masach. Prady te, zwane sg
pradami wirowymi lub pradami Foucaulta od fizyka, ktory pierw-
szy je spostrzegh; wytwarzajg one ciepto i powodujg w ten sposob
strate mocy. Straty te na ogét mozna obliczy¢ tylko w przyblizeniu,
zaktadajgc, ze majg one przebieg prawidtowy i ze indukcja magne-
tyczna we wszystkich punktach rozpatrywanej masy ma jednakowg

wartos¢. W elektrotechnice musimy
sie liczy¢ przewaznie ze stratami mo-
cy, powstajacymi w osrodkach ferro-
magnetycznych, gdzie indukcja ma-
gnetyczna osigga najwieksze wartosci,
a wiec gldwnie w masach zelaznych
w postaci okragtych drutéw lub bla-
chy. Ograniczymy sie wiec tylko do
tych dwdch przypadkdw.
Rozpatrzmy kawatek okragtego
drutu o dlugosci 1 cm i Srednicy
dcm, znajdujgcego sie w zmiennym
polu magnetycznym (rys. 97). Induk-
cja magnetyczna, a wiec i strumien —
majag kierunek prostopadty do ptaszczyzny przekroju poprzecznego
i rownoleglty do osi, czyli do diugosci tego drutu. Podzielmy caty
drut na nieskonczenie wielka liczbe walcow wspdtosiowych o Sciankach
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nieskonczenie matej grubosci dx. Rozpatrujgc jeden z takich wal-
cow w odlegtosci x od osi, otrzymamy obwo6d zamkniety o dtugosci
2nx c¢cm i przekroju dx m1= dx cm2 Pole objete tym obwodem wy-
nosi nx2 Zakladajac, ze pole magnetyczne, w ktérym sie znajduje
rozpatrywany kawalek drutu, jest jednostajne, i oznaczajgc przez Bm
maksymalng warto$¢ indukcji w dowolnym punkcie, otrzymamy
dla maksymalnej wartosci strumienia objetego rozpatrywanym obwo-

dem wzér
<+ nx2B,,

Oznaczajac przez Ex wartos¢ skuteczng SEM indukcji powsta-
jacej w obwodzie pod wpltywem tego strumienia, bedziemy mieli na
podstawie wzoru (5)

Ex= 4,44/4xm 10-8 woltéow

albo
Ex= 4,44fnx2Bm10 8woltéw.

Opornos¢ rozpatrywanego obwodu wynosi

2nXx
Rx=Q dx

gdzie g oznacza opornos$¢ wlasciwg metalu drutu. Strata mocy w po-
staci ciepta wyniesie
dPx= 1\Rx= E =

- 10~16 _ 10nf*Bnta?10”™_ dx watéw
Q2nX Q

Dla znalezienia strat w rozpatrywanym kawatku drutu wzor
ten nalezy scatkowa¢ w granicach zmiany x, czyli od zera do d2.

Otrzymamy

iz wm

= 2 X 10-i6 352 nf2 Bn2d4 10- 16 watow.

Dla otrzymania straty mocy na 1cm3objetosci zelaza musimy

ostatni wyraz podzieli¢ przez-7— ; strata wiec na 1 cm3zelaza wynosi

Pa = -E-TQ Bn2d2 10- 16 watdw.

Dla okreslenia straty mocy zachodzacej w blasze rozpatrzmy ka-
watek blachy o dtugosci 1 cm i o przekroju poprzecznym nastepuja-
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cych wymiaréw: grubos¢ d cm i szeroko$¢ 1lcm (rys. 98). Indukcja
magnetyczna ma kierunek prostopadty do ptaszczyzny przekroju
i wartos¢ jednakowg we wszystkich punktach.

Podzielmy rozpatrywany kawatek blachy na nieskoriczenie cien-
kie blaszki o grubosci dx. Dwie takie blaszki rozmieszczone syme-
trycznie po obu stronach linii srodkowej AB w dowolnej odlegtosci x,

A tacznie z bokami, mozemy rozpa-
trywac jako obwod ab cf dla pra-
du powstajgcego pod wplywem
SEM indukcji. Pole objete tym
obwodem wynosi 2x cm2, wiec od-
powiedni strumiern magnetyczny
bedzie

4

pid

= 2xBm

wobec tego SEM indukcji po-

wstajgca w tym obwodzie bedzie
Ex= 4,44f2xBm10-8 woltéw.

Dtugos¢ obwodu mozemy w
przyblizeniu przyjaé réwna 2 cm,
nie uwzgledniajgc krotkich bokéw
o dhlugosci 2x; przekroj obwodu
2; wobec tego opornos¢ bedzie

Strata mocy w rozpatrywanym obwodzie wynosi

dp*= . 40f2Bnx2dx 10— Watow.

Strate mocy dla catego kawatka blachy otrzymamy catkujac

wzor ten w granicach od x=0 do x = —, czyli

p =] '40f2Bn2x2dx 10_18= 40f2Bn210_16

- io- - -t- 10_16 watow.
q24 3 q



PRADY WIROWE 139

Dla okre$lenia straty mocy na 1cm3 objetosci blachy musimy
podzieli¢ powyzszy wzoOr przez objetos¢ rozpatrzonego kawatka, czyli
przez d x 1 X 1= ¢i w ten sposéb strata mocy na 1cm3 wyniesie

P', = -K— /2i"n210~16 watdw.
0 Q

Z wyprowadzonych wzoréw na strate mocy z pragdéw wirowych
widzimy, ze straty te sg proporcjonalne do kwadratu czestotliwosci /
oraz do kwadratu indukcji magnetycznej Bmi sg odwrotnie pro-
porcjonalne do opornosci wihasciwej metalu, z ktérego sporzadzone
sg drut lub blacha.

Przy duzych masach zelaza w zmiennym polu magnetycznym
otrzymalibysmy bardzo znaczne straty z prgaddéw wirowych, szcze-
gélnie przy znacznej grubosci drutu lub blachy. W celu zmniejszenia
tych strat robimy zazwyczaj rdzen zelazny nie z jednolitego kawatka,
lecz z cienkich drutéw lub tez blach przektadanych izolacja (np.
dobrym, suchym papierem lub lakierem). Réwniez w celu zmniejsze-
nia strat z pradéw wirowych uzywamy, zamiast czystego zelaza,
stopdéw, czyli aliazy, np. zelaza z domieszkg krzemu. Opornos¢ wias-
ciwa takich stopdéw jest wieksza od opornosci wkasciwej zelaza i przez
to straty mocy na prady ,wirowe sg mniejsze.

Gatunki zelaza pod wzgledem strat na histereze i prady wi-
rowe czesto okreslamy za pomocg tzw. stratnosci magnetycz-
nej, rozumiejgc pod ta nazwg straty powyzsze, wyrazone w watach
na 1kg zelaza, otrzymywane przy Bm= 10000 G, / = 50 okresow
na sek, przy temperaturze 30°G. Dla zelaza czystego ta stratnos¢ wy-

ki
Oba rozpatrzone zjawiska: histerez% i prady wirowe, powstajg
jednoczesnie i nieroztgcznie. Za pomocg pomiaréw mozemy okresli¢
catkowitg strate mocy. Dla obliczenia, jaka czes$¢ strat przypada
na prady wirowe, jaka za$ na histereze, rozumujemy w sposob

nastepujacy: ze wzoru (3)
n E/108
4,44/z

nosi od 2—4 % , dla stopéw od 1—2 W
g

widzimy, ze dla osiggniecia warunku, aby Om lub, co na jedno wy-
chodzi, Bmmiaty warto$¢ stalg przy zmianie /, musimy dla stalej
liczby zwojéw z w jednakowym stosunku zmienia¢ napiecie U i czesto-
tliwos¢ / pradu stuzacego do badan. Gdy B = const, straty na prady
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wirowe i histereze dla danego materialu beda zalezne tylko od
czestotliwosci, a mianowicie

PH= hf oraz Pa= /32

gdzie kx i k2 stanowig w tym przypadku state wspotczynniki.
Catkowita za$ strata

p=Ph+p,= hf+ hf*
Strata przypadajgca na jeden okres prgdu zmiennego bedzie

P
| =*i + ~2e

Mierzgc catkowite straty w badanym materiale przy rozmaitych
czestotliwosciach, lecz przy statej wartosci indukcji magnetycznej,
i dzielgc te straty przez liczbe okreséw, mozemy rezultaty przedsta-
wi¢ na wykresie (rys. 99).

P

T\

Rys. 99

Na osi odcietych odktadamy wartosci czestotliwosci / — na osi
rzednych straty Z= kx+ k&, otrzymamy woOwczas prostg MN.

Jasne jest, ze OM = kx i ze prosta MP, przeprowadzona réwno-
legle do osi odcietych, daje nam wartosci strat na histereze, przypada-
jace na jeden okres. Réznica rzednych punktéw lezacych na prostych
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MN i MP daje nam straty na prady wirowe réwniez obliczone
na jeden okres.
Np. AB~"Mkx+ kn

przedstawia strate na jeden okres na prady wirowe i histereze,
dla wartosci / = OA; stanowi strate na histereze, zas kX —na pra-
dy wirowe.

Przytaczamy przyktady:

Dla blachy twornikowej przy Bm= 10000 G oraz czestotli-
wosci / = 50 okreséw na sek:

straty PH= 2,25 W/kg
Pw= 131 W/kg
razem P = 3,56 W/kg;
dla blachy stopowej przy tych samych wartosciach Bmi /
P.= 1,78 W/kg
PM= 0,18 W/kg
P =1,96 W/kg.

§ 35

OBWODY MAGNETYCZNIE SPRZEZONE. TRANSFORMATOR
POWIETRZNY

Przypusémy, ze mamy dwa obwody zawierajgce uzwojenia
(rys. 100), pierwotny i wtorny; przez obwod pierwotny ptynie prad ilt
we wtérnym zas pow-
staje prad i2 przez in-
dukcje. Mdéwimy, ze ta-
kie obwody sgsprzezone
magnetycznie. Obwody
magnetycznie sprzezone u>
daja moznos¢ zmiany
napiecia i natezenia
pradu za pomocg odpo-
wiedniej zmiany liczby
zwojéw. Zespot uzwojen Rys. 100
tego rodzaju nazywamy
na ogot transformatorem, stuzy on do przetwarzania pradu zmien-
nego jednego napiecia na pragd o innym napieciu.
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Transformatory bywajg powietrzne lub z rdzeniem zelaznym,
zaleznie od tego, czy uzwojenia znajduja sie w powietrzu, czy tez
zawierajg w sobie masy zelazne. Rozpatrzmy najpierw transformator
powietrzny.

Oznaczmy opornos¢ pierwotnego uzwojenia przez  , jego induk-
cyjnos¢ whasng przez L x, catego zas obwodu wtérnego przez R2oraz L 2,
indukcyjno$¢ wzajemna obu obwodéw niech bedzie M.

Na zasadzie znanych wzoréw, oznaczajgc przez ux wartos¢ chwi-
lowa napiecia z zewnagtrz przylozonego do uzwojenia pierwotnego,
mozemy napisac

oraz

Wprowadzajgc zamiast wartosci chwilowych wartosci skuteczne,
przepiszemy te wzory stosujgc wielkosci zespolone.

t) = R11+ j(oL11+ jcoMI2 6,
O= R22+ joL2A2T jcoMIx. @

Z ostatniego wzoru otrzymujemy

jojMIx= - (R2+ igL312

oraz

h M  jwM M+ oM >M
o 2 o /O
uM +1

Stad znalez¢é mozemy od razu wartos¢ (modut) stosunku pradéw
Ixi 12 oraz kat przesuniecia fazy 6 pomiedzy nimi. Mianowicie

skad A M j

3 "R\ + [ojL2Yy 11

ve )

przy czym 90° < 180°;
gdy

zas

R2=0, tg$6=0 i <%= 180°%
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czyli wektory wyobrazajgce prady 7Xi 12 bytyby w tym przypadku
skierowane w kierunkach przeciwnych.

Zobaczmy teraz, jaki jest stosunek pradu 7j do napiecia U1.
Podstawiajgc ze wzoru (7)

U JQm
B2+ ioL2 Y
do wzoru (6), otrzymujemy
. coM 2
01=B11+ ja>LU1+ ™2+ ja)L2

L (T2-— jo>L2) a2m 2
?
771+ joL1+ D+ W2 ZA

taczac razem liczby rzeczywiste i urojone, otrzymamy

n T2(WM)2 P coLg) (aM)2
1+ "2+ (w22 +/ ol 72+ 0 £221

Z tego wzoru widzimy, ze wyraz stojacy w gtéwnych nawia-
sach stanowi opornos$¢ pozorng obwodu pierwotnego z uwzglednie-
niem indukcyjnego wptywu obwodu wtdrnego. Opornosé rzeczywista
jest tu zwiekszona o

B 2(oM )2
772+ (toLg)2’
a opornos¢ urojona zmniejszona o
(Wij) (WV)2
7722+ (wLg)2'

To samo zagadnienie mozemy rozpatrze¢ na wykresie, przedsta-
wiajac najpierw wzor (7), nastepnie wzor (6). Wykres taki daje
rowniez moznos¢ obliczenia dwoch wielkosci z trzech: U1, 11} 12,
gdy jedna jest wiadoma.

Za 0$ podstawowg obieramy kierunek pradu wtérnego 12, zu-
petnie zreszta dowolny (rys. 101). Od punktu O odkiadamy w tym
kierunku odcinek OA = 12B2. Do tego odcinka OA doda¢ musimy
geometrycznie pod katem prostym naprzéd odcinek AB = ja>L212.
Wektor zamykajacy bedzie

OB ——jco M.

Wektor OBl—jcoMIi bedzie miat wobec tego kierunek od-
wrotny; w ten sposéb otrzymujemy wartos¢ <OM It, a wiec i war-
tos¢ 7X W celu wykreslenia wektora OC = 77171 wykonujemy obrét

w kierunku ujemnym o kqtlwstecz od OB1. Nastepnie od punktu
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C dodajemy do wektora OC pod katem prostym naprzéd odcinek
CD—j(oL1l1. Od punktu D w kierunku réwnolegtym do AB odkta-
damy wektor DF = ju>MI2. Wektor zamykajacy OF przedstawia
napiecie U1 z zewnatrz przylozone.

Jezeli w obwodzie nie uwzgledniamy rozproszenia, wtedy

M2= L 2.

Jezeli za$ rozproszenie uwzgledniamy, wowczas

M =" L i= K/XIX]j,
Vei °2
gdzie wielkosci ali a2 oznaczajg wspotczynniki rozproszenia Hop-
kinsona dla obwodéw pierwotnego i wtornego.
Wspotczynnik 2

nazywamy wspoétczynnikiem sprzezenia magnetycznego.

W przypadku, gdy nie ma rozproszenia, k = 1, w dobrych trans-
formatorach technicznych (z zelazem) k wynosi od 0,99 do 1, czyli 99
do 100%. W matych transformatorach powietrznych k wynosi nie-
kiedy zaledwie 0,1%.
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§ 36
TRANSFORMATOR Z RDZENIEM ZELAZNYM

Przypusémy, ze mamy dwa uzwojenia na wspolnym rdzeniu
zelaznym, czyli transformator z rdzeniem zelaznym; pierwsze uzwo-
jenie niech ma zx, drugie z2zwojéw. Jezeli oznaczymy warto$¢ chwi-
lowa zmiennego strumienia magnetycznego powstajacego pod wpty-
wem przechodzacego pragdu zmiennego w kazdym zwoju | uzwojenia
przez |t i zalozymy najpierw, ze nie ma rozproszenia magnetycznego,
wtedy w obu uzwojeniach powstajg SEM indukcji o wartosci chwi-

lowej dot
Rl= dt
oraz <Pt
fa *2 dt
Stosunek

)

nazywamy przektadnig transformatora.

Oznaczmy przez i0prad, ktory musimy przepusci¢ przez uzwo-
jenie pierwotne, aby otrzymac strumienn magnetyczny, wywotujgcy
SEM indukcji w drugim obwodzie, z uwzglednieniem strat na prady
wirowe i histereze. Prad ten mozemy nazwaé pradem magnesuja-
cym. Oznaczmy nastepnie prad powstajgcy we wtornym uzwojeniu
przez i2. Wowczas moc prgdu we wtérnym uzwojeniu wyrazi sie jako
iloczyn e22. Aby ja otrzymaé, musimy w pierwotnym uzwojeniu
oprocz pradu iOmie¢ prad i\, ktérego moc = eli'l.

Moc oddawana w pierwszym uzwojeniu powinna sie réwnac
mocy pobieranej we wtérnym uzwojeniu.

Wobec tego eli'll= —e2i2. )

Catkowity prad ix, jaki bedzie przeptywatl w pierwszym obwo-
dzie, stanowi sume pradéw iOoraz i\, czyli

h —1lo+ (10)
Ze wzoru (9) z uwzglednieniem wzoru (8), mamy
6t Ii[i_ z1
i'l
skad zxi\ + z2i2= 0.

Teoria pradéw zmiennych 10
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Podstawiajgc tu zamiast i\ jego wartos¢ ze wzoru (10), otrzy-

mujemy +
lub inaczej .
Zlh i ~"2722 — ZIIQ~

Stowami mozemy to wyrazi¢ tak. Suma amperozwojow pier-
wotnego i wtdérnego uzwojenia powinna sie réwna¢ amperozwojom
pradu magnesujgcego przeptywajacego w pierwszym uzwojeniu.

Z ostatniego wzoru mozemy napisac

Oznaczmy wyraz — —i2 przez i'2.
zX
lloczyn z2i2 stanowi amperozwoje wtérnego uzwojenia; podzie-
lone sg one przez liczbe zwojéw pierwszego uzwojenia. Prad i\
mozna wiec okresli¢ jako prad wtérny, zredukowany do uzwojenia
pierwotnego i wziety ze znakiem—.
Wobec tego mozemy napisac

li= o+ IV 11

Rozpatrzmy teraz przypadek, gdy uwzgledniamy rozproszenie

magnetyczne. Oznaczmy wartosci chwilowe strumienia magnetycz-

nego wspodlnego dla obu obwodow przez &t, strumien rozproszenia

pierwotnego obwodu przez <, a strumien rozproszenia obwodu

wtérnego przez Or> Calkowity strumien objety przez uzwojenie
pierwotne bedzie miat wartos¢

0, + ®*.
przez uzwojenie wtérne za$

SEM indukcji powstajgca w pierwszym uzwojeniu bedzie miata
wartos¢

<Pt
~odl 1 dl
a w drugim uzwojeniu
o<t don
Zs dl z2 dl

Rozproszenie zachodzi przewaznie w powietrzu. Strumien roz-
proszenia w tym przypadku jest proporcjonalny do pradu przepty-
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wajacego w obwodzie. Oznaczmy indukcyjno$¢ od strumienia roz-
proszenia w pierwszym uzwojeniu przez Ln, w drugim zas przez Lri,
bedziemy mieli

2107 = Lyl

2K = Lr,h-

Biorgc pochodne tych strumieni wzgledem czasu i majgc na
uwadze, ze w rozpatrywanym przypadku Ln oraz Lu majg wartosci
state, otrzymamy

d> dil
at Tat
dPr. _ r di2
dadt -~ rdt" u,
Oznaczmy przez ul Lr.
wartosé chwilowa napie-
cia z zewnatrz przyto-
zonego do pierwotnego
uzwojenia, przez
opornos¢ rzeczywistg
(rys. 102) tego uzwojenia, przez Ln indukcyjnos¢ rozproszenia oraz
przez zx ilos¢ zwojow. Dla uzwojenia wtdrnego te same wielkosci
niech maja wartosci B2, Lrj, z2, nastepnie niech u2oznacza napiecie
na zaciskach odbiornika wigczonego do wtdrnego uzwojenia. Oba
uzwojenia znajdujg sie na rdzeniu zelaznym.
Wedtug prawa Ohma w kazdej chwili musi zachodzi¢ zaleznosé
nastepujaca: d
U-ZI-d f-L'"-dt=
oraz

&P T di2 . _
~ Zi~dt Lrad7“ hB2+ u2

Rozwigzujgc te rownania wzgledem uxi u2, otrzymujemy
2 dp' # ik x* kn dii
oraz _ ., dmt j di2
WS TR w22 gy
Przechodzac od wartosci chwilowych do wartosci skutecznych,
mozemy symbolicznie przepisa¢ powyzsze wzory w spos6b naste-

10+
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pujacy: Ui-——Ex+ ID{RX+ j<oLr), (12)
&2~ Ai— A [R2+ 1 A™r)l (13)
wzor (11) w postaci
A=A+ A"
gdzie A
u: Wykre$lnie wzory te mo-

Ui
'"\4o0>£e

/U

Rys. 103

zemy przedstawi¢ jak na rys.
103.

Za 0$ podstawowag bierze-
my kierunek strumienia O.

Jak wiemy, SEM indukcji
jest w fazie opdzniona o kat
prosty wzgledem strumienia
magnetycznego; wobec tego
— EXx, wchodzgce we wzorze
(12), odktadamy pod katem
prostym naprzod (do gory), zas$
+E 2 pod katem prostym wstecz
(w dob).

Niech np. prad 12 bedzie
op6zniony w fazie wzgledem E2.

Prad magnesujacy 10 ze
wzgledu na straty na histereze
i prady wirowe jest przesu-
niety w fazie wzgledem stru-
mienia 0 o pewien kat a. Do

$ tego pradu dodajemy geome-

trycznie prad 1'2 w kierunku
przeciwnym do pradu 12i otrzy-
mujemy prad Ix.

Do wektora —Ex dodaje-
my geometrycznie RxA +
+ /a)Ln A; suma geometryczna
bedzie wektorem napiecia pier-
wotnego Ux. Odejmujac geo-
metrycznie od wektora E2, czyli

dodajagc w kierunku przeciwnym wektory 1R2oraz jwLrJ 2, otrzy-
mamy napiecie na zaciskach wtérnych U2.
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Jezeli we wzorach (12) i (13) zatozymy Ex= —E2, to mozemy
te wzory otrzymac¢ ze schematu przedstawionego na rys. 104.

§ 37
PRAKTYCZNE ZNACZENIE TRANSFORMATOROW

Gdy chodzi o przesytanie energii elektrycznej na znaczne odleg-
tosci, staramy sie osiggnac¢ jak najmniejsze straty.

Jezeli mamy do przeniesienia pewng moc P przy napieciu U,
to strata mocy w przewodach AP bedzie okreslona wzorem

AP = PB.

Opornos¢ przewodu podwojnego o diugosci | i przekroju s wy-
nesi 2i

gdzie g oznacza opornos¢ wiasciwg materiatu przewodu.
Wobec tego 9/

AP =P o .
Ts

Z wzoréw tych obliczamy potrzebny przekr6j przewodu

P g21
s AP

Przy pradzie zmiennym moc pradu

P = Ul cos q
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Dla statego, zwykle z gory okreslonego wspotczynnika mocy cose>
moc P zalezy od dwdch zmiennych wielkosci U i I.
Gdy powiekszamy napiecie np. n razy, to prad dla otrzymania

tej samej mocy P powinien mie¢ wartos¢ — .

Aby otrzymaé takag samg procentowg w stosunku do przeno-
szonej mocy strate mocy w przewodach, potrzebny przekrdj prze-
wodu wyniesie N

S n2AP

Widzimy, ze w tym przypadku przekréj przewodu bedzie n2
razy mniejszy. Tylez razy zmniejszy sie rowniez objeto$¢ materiatu
zuzytego na przewody. Przy pradzie statym, w celu zwiekszenia na-
piecia musielibySmy wzig¢ pradnice na wyzsze napiecie, a dla bardzo
wysokich napie¢ takich pradnic zbudowac¢ nie mozna. Przy pradach
zmiennych natomiast zastosujemy do tego celu transformatory, ktdre
nie wymagajg zadnej obstugi i mozna je konstruowac tatwo, wobec
braku ruchomych czesci, na bardzo wysokie napiecia.

§ 38
UKLAD SCOTTA

Uktad ten, zawierajacy dwa transformatory jednofazowe, daje

moznos$¢ otrzymania pradu dwufazowego z pradu tréjfazowego lub
odwrotnie.

Na rys. 105 koniec pierwot-

nego uzwojenia pierwszego trans-

A
u D
-naaaaaaaaaa” -
c D
%U B
Rys. 105 Rys. 106

formatora potaczony jest ze Srodkiem pierwotnego uzwojenia drugiego
transformatora; korice 1, 2 i 3 potaczone sg ze zrdédlem pradu troj-
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fazowego. Wtedy napiecie miedzy zaciskami C i D pierwotnego
uzwojenia Il transformatora bedzie réwne napieciu miedzyprzewo-
dowemu pradu trdjfazowego U, napiecie za$ miedzy zaciskami A i B

pierwotnego uzwojenia | transformatora bedzie réwne jak to

U*
4

To ostatnie napiecie jest przesuniete wzgledem napiecia BC
0 90°. Aby otrzymac jednakowe napiecie na zaciskach wtérnych
uzwojenn obu transformatoréw, trzeba odpowiednio dobraé¢ liczbe
zwojéw; mianowicie, jezeli dla transformatora Il stosunek liczby
zwojow wtdrnego uzwojenia do liczby zwojéw pierwotnego wynosi m,

wynika z rys. 106, gdzie AB =\AC2—CB2=

to stosunek ten dla transformatora | powinien wynosic¢ m.

Otrzymujemy w ten spos6b na zaciskach A'B'i C'D' napiecia
pradu dwufazowego. Odwrotnie, majgc prad dwufazowy na zacis-
kach A'B' i C'D', otrzymamy pomiedzy zaciskami A i C, C i D,
A i D napiecia pradu tréjfazowego.
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ZIAWISKA ZACHODZACE W PRZEWODACH
I W DIELEKTRYKACH PRZY PRADZIE
ZMIENNYM

§ 39
ZJAWISKO NASKORKOWOSCI

Przy pradzie statym gesto$¢ pradu w poprzecznym przekroju
przewodu jest roztozona réwnomiernie, to znaczy ma te samg war-
tos¢ we wszystkich punktach przekroju. Przy pradzie zmiennym
wytwarza sie wewngtrz przewodu zmienne pole magnetyczne, ktore
powoduje nierownomierny rozktad gestosci pragdu w poprzecznym
przekroju przewodu, a mianowicie gesto$¢ zwieksza sie w kierunku
od osi przewodu do jego powierzchni. Zjawisko to nazywamy na-

skorkowoscig (Skineffekt).

Zbadajmy rozktad gestosci pradu
w prostolinijnym przewodzie o okragtym
przekroju, ograniczajac sie do niewiel-
kiej jego dtugosci, z dala od jego kon-
cow. Dla uproszczenia zagadnienia
wprowadzimy zamiast wartosci chwilo-
wych wartosci skuteczne rozwazanych
wielkosci  sinusoidalnie zmiennych w
czasie.

W ten spos6b bedziemy mieli do czy-
nienia z funkcjami tylko jednej zmien-
nej: odlegtosci od osi przewodu. Rozpa-

trzmy w dowolnej odlegtosci x od tej osi (rys. 107) warstwe cylin-
dryczng o diugosci 1cm i nieskonczenie matej grubosci dx. Gdy
przez przewéd przepltywa prad zmienny, powstaje zmienne pole



ZJAWISKO NASKORKOWOSCI 153

magnetyczne i w dowolnym punkcie, na powierzchni rozpatrywanej
warstwy, natezenie pola magnetycznego bedzie mialo pewng war-
tos¢ skuteczna, ktorg oznaczymy przez 11X

Wektory tego natezenia pola lezg w ptaszczyznach prostopa-
dtych do osi przewodu i sg styczne do kot otrzymywanych w poprzecz-
nym przekroju. Czes$¢ pradu przeptywajacego przez przekrdéj o pro-
mieniu x i powodujgcego natezenie pola Hx oznaczmy przez Ix. Za-
rowno Ix jak i Hx beda funkcjami odlegtosci x. Dziatanie magne-
tyczne pradu Ix jest takie, jak gdyby caly ten prad piynat wzdiuz
osi przewodu; przy czym, w rozpatrywanym przypadku prostolinij-

nego przewodu,
2 Ix

X
jezeli Ix wyrazamy w jednostkach bezwzglednych, czyli

, _rHXX
X~ 2 b
Niech gestos¢ pradu w przekroju warstwy wynosi a. Prad prze-
ptywajacy przez cienkg warstwe bedzie dlIx, a poniewaz przekroj tej
warstwy wynosi 2nxdx, przeto
ae<2nxdx = dlr

skad

_ 1 dl,
% 2nx dx 2

Ze wzoru (1) mamy

dlx
dx

podstawiajgc te warto$¢ do wzoru (2), otrzymamy

4nxa —Hx+ x- ddx’ 3
Indukcja magnetyczna na powierzchni warstwy bedzie Bx = fiHX,
gdzie A oznacza przenikalnos¢ magnetyczng metalu, z ktérego prze-
wdd jest sporzgdzony. Dla metali magnetycznie obojetnych, jak np.
miedz, aluminium itp., przenikalno$¢ ma wartos¢ stalg i praktycz-
nie moze byé przyjeta réwna jednosci.
Strumien magnetyczny w warstwie o przekroju dx «1cm2 wy-

niesie dPX: ngX = [||]R(8X
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Pod wptywem tego strumienia powstaje SEM, ktorej wartosé
skuteczna wedtug wzoru (4) z § 33 wyniesie w jednostkach bezwzgled-
Dych dE= 2nfd$x;

poniewaz SEM jest opdzniona w fazie wzgledem strumienia o 90°,
przeto, wprowadzajgc wielkosci zespolone, napiszemy

B D d £ = —j2jifd&x

f Y. j 7 7 lub, podstawiajgc wartos¢ d&x,

3 dE ——j2nf[xAxdx. @)
I>eX Rozpatrujac przekréj warstwy wzdtuz osi
dx -i  przewodu (rys. 108), mozemy rozumowac¢ w Spo-

sob nastepujacy: przez jeden bok AB plynie
struga pradu di —ads, gdzie ds stanowi ele-
ment przekroju; przez drugi bok CD w tym
samym kierunku ptynie struga pradu di + d[di);

A d* C
Rys. 108

oporno$¢ kazdego boku wynosi , gdzie g oznacza opornosé¢ wia-

Us

sciwg metalu. Stosujac do rozpatrywanego zamknietego obwodu Il
prawo Kirchhoffa, otrzymamy

_ d(di
dE - di d%_[(TM >)]E - —< @

lub, po podstawieniu di = ads i wprowadzajgc wielkosci zespolone
dE ——qda. (5)
Zestawiajac wzory (5) i (4), bedziemy mieli

gda = j 2n f[i Axdx,
czyli _ _ q da
UX= -1 27i i dx

Podstawiajgc te wartos¢ Hx oraz jej pochodng do wzoru (3),

otrzymamy da d2a

et = —J iudx  12jifA dx2’

skad po uproszczeniu
da 1 da .8t*u
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Oznaczajac w skroceniu

" ,8n
m”- —/—-l 6,

otrzymujemy réwnanie rézniczkowe w postaci
da 1
.+ — - + = .
dxi T x dx * m2e= 0 h

Jest to rownanie drugiego rzedu, ktore posiada dwa rozwigza-
nia szczegblne, ktorych suma daje rozwigzanie ogélne. Rozwigzanie
szczegbdlne mozna zatozy¢ w postaci szeregu ze wzrastajgcymi pote-
gami x, czyli

a= a0+ axx + axx2+ a3a? + adhd + abx? + aowR+ ...,

gdzie a z indeksami oznacza wielkosSci state;
wtedy

= ax+ 2aXx + 3ad3k2+ 4adB+ S5a3a™ + 6aptb + ...,

g’/:%: 2a2+ 2 *3a3k+ 3 edadbl+ 4 «bA? + 5 =6abxi + ...;

podstawiajgc te wartosci do naszego réwnania rézniczkowego, otrzy-
mamy po zgrupowaniu

< + (M220+ 4a2 + {m2ax+ 9a3) x + (MA2+ 16adw2 +
+ (M2a3+ 25a5%3+ (m2ad4+ 36a6pkd+ (m2a3+ 49a7w5+ ... = 0.

Poniewaz wzor powyzszy jest tozsamoscig, to znaczy, ze lewa
strona powinna sie réwnac zeru przy wszelkich wartosciach x, przeto
wszystkie wspotczynniki przy wszelkich potegach x, jak réwniez wy-
raz staly, powinny sie réwna¢ zeru; w ten spos6b

ax= 0; m2a0+ 4a3= 0; m2ax+ 9a3= 0;
m2a2+ 16a4= 0; m2a3+ 25us= 0 itd.
Poniewaz ax= 0, wiec wszystkie wspotczynniki z nieparzystymi
indeksami stajg sie rowniez réwne zeru; pozostajg wiec tylko wspot-
czynniki z parzystymi indeksami, przy czym

m2a0 _ m2a2 mia0_ m6a0
az g2-' °4 42 N2242° °6  ~22e42<62
Wobec tego rozwigzanie szczegblne bedzie
m2x2 t méad MG6#6 m8x?

~W~ + 22942 224262 + WNA2 7 82+
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Szereg w nawiasach stanowi funkcje Bessela albo funkcje cylin-
dryczng pierwszego rodzaju, rzedu zerowego argumentu mx; ozna-
czymy jg przez 10(mx), czyli
tr \ . mx)2 (mx)* mx)6 mi)8
lo[mx) —1 ( Zg SZ’\)4)2 (2(.4 16)2* 12 -El .g -8)2 + ..

Dalsze rozwazania matematyczne doprowadzajg do wniosku, ze
druga catka szczegdlna rozpatrywanego réwnania rozniczkowego daje
dla funkcji, czyli w tym przypadku dla gestosci pradu, wartos¢ nie-
skonczenie wielka, gdy x = 0, to znaczy na osi przewodu. Nie ma to
sensu fizycznego, wiec stata dowolna przy tej drugiej calce szczegol-
nej musi sie rownac¢ zeru, pozostanie tylko pierwsza wyzej wyzna-
czona catka szczegdlna; rozpatrujgc a0 jako stalg dowolng i ozna-
czajgc ja przez A, otrzymamy ogoélng catke réwnania w postaci

a=A 10[mx). (10)

Stalg dowolng A mozemy wyznaczy¢ przez prad 1 ptynacy przez
caly przekroj przewodu o promieniu r. Wtedy bowiem

9

1=Ja <2nxdx = 2nA J | O[mx)xdx. (12)
0 0
Biorac wartos¢ /,, (mx) ze wzoru (9), mnozac przez x i catkujac,
otrzymamy

_ m2r* i m4r6 moér«
1=2nA I>2 22-4 + 22426 2242628 © J
ConA r | mr m3r®+ m5I® m7r7
ML 2 224t 22426 22.42.62<8

wyraz w nawiasach stanowi funkcje Bessela rzedu pierwszego argu-
mentu mr, czyli

; _ mb5r5 m7r7
fi(mn =87 B3R + 22-4276 22-42m62-8 " T
mr N 1 mAf 1 mér6 12
T[> 2 22 T3 @2e)2 4 @467 ] (29
Mamy wiec
2nA - L [mr),
skad
A= _ L (13)

2nrl1[mr)
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Wobec tego wzdér (10) daje
I ml @mx)
2nri1(mr) (14)
Dla matych czestotliwo$ci mozemy na podstawie wzorow (9) i (12)

zatozy¢ w przyblizeniu
y prey lolmx) = 1,

Irl(mr)\ mr
wowczas dla gestosci pradu otrzymamy ze wzoru (14)
" 1
7
° nr2
co wskazuje, ze gestos¢ jest jednakowa we wszystkich punktach
przekroju, jak przy pradzie statym.

Poniewaz m wchodzgce do funkcyj Bessela, jak widaé ze
wzoru (6), stanowi liczbe urojonag, przeto interesujgce nas wielkosci
mozemy wyrazi¢ w postaci liczb zespolonych.

Oznaczmy w skroceniu

2 fp

czyli =—/p2z
wtedy wyrazy wchodzace do szeregow funkcyj Bessela bedg miaty
nastepujace wartosci:

m2x2= —jp2x2 m2r2= —/p2r2

m4®4 = — pa#a4, mér4 = —p4r4,

m6:c6 = / p6x6, mo6ré = /p 6r6,

m8z8 = p8aR, nfirg = pB8re,
itd.

Wobec tego ze wzorow (9) i (12) otrzymujemy po zgrupowaniu

ple p8x8
I (2ra2F (244 -6 -8)2
AOjIO

L1 p 2ic2 p 6.x6
22 (2 4+6)s’ (2-4-6 -8-10)2
para 1 p8I®
- f [(® 3(24)2'5(2468)2_.)
P2r2 1 p6r6 . 1 ploplo
+ )(‘Er 22, 4 (24 6)2" 6 (246 8<10) T
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Lord Kelvin oznaczat cze$¢ rzeczywista stojaca w nawiasach
przez ber, cze$¢ urojona zas przez bei; uzywajac tych oznaczen, napi-

szemy 10(mx) = ber(px) + jbei(px); (15)

h {mr) = ~ [\berx(pr) + / beix(pr)J ; n (16)

wtedy wzdr (14) przepiszemy w postaci
- _ 1 ber(px)+ jbei (px)_
nr2berx(pr) + j beix(pr)

Jest to gestos¢ pradu w odlegtosci x od osi przewodu; na po-
wierzchni przewodu, czyli dla x = r, gestos¢ wyniesie

1 ber (pr) + j bei (pr) <
r jtr2ber”™pr) + j bei™pr)’
wobec tego stosunek gestosci:
a __ ber(px) + / bei(px)
ar ber(pr) + j bei(pr)

Licznik w ostatnim wzorze dla x < r jest mniejszy od mianow-
nika, co fatwo sprawdzi¢ ze wzoru (14); wynika stad, ze gestos¢ pradu
jest najwieksza na powierzchni i zmniejsza sie w kierunku od powierz-
chni do osi przewodu.

Na samej osi, dla x — 0, gdzie gestos¢ pradu jest najmniejsza,
ber(px) = 1, bei(px) —0; 10(mx) = 1,

= — = | ,
TirZ[Berx(pr) + 7 beil(pr)] z7|r|T(mr)

czyli, jak widaé¢ ze wzoru (13),

gestos¢ pradu na osi réwna jest statej otrzymanej w calce ogoélnej
rownania rozniczkowego, dajgcego rozklad gestosci pradu w po-
przecznym przekroju przewodnika.

Widzimy wiec, ze przy pradzie zmiennym przewdd nie jest wy-
zyskany jak przy pradzie statym, gdzie gestos¢ pradu jest taka sama
na osi jak i na powierzchni. Powoduje to, ze opornos$é rzeczywista
przy pradzie zmiennym jest wieksza niz przy pradzie statym.

Rozpatrujgc, jak i poprzednio, cze$¢ przewodu o diugosci 1cm
i promieniu r, bedziemy mieli dla opornosci Bs przy pradzie statym
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Moc pradu wytwarzajgca ciepto przy natezeniu pradu | bedzie
P = PR,.

W przypadku pradu zmiennego wartos¢ skuteczng pradu prze-
ptywajacego przez caty przekroj przewodu okresliliSmy we wzorze (11),

mianowicie
I = J o2jcxdx.
0

Oznaczmy przez Rz opornos¢ rzeczywistg, ktorg okresliliSmy
jako iloraz mocy wytwarzajgcej ciepto, przez kwadrat wartosci
skutecznej pradu; mamy wiec

P

R, P

Moc P, przy uwzglednieniu nieréwnomiernego rozktadu gestosci,
znajdziemy wyrazajgc moc dP nieskonczenie cienkiej warstwy cylin-
drycznej (rys. 104), ktorej opornosé¢ wynosi

dR 2nxdx ’

prad przeptywajacy przez te warstwe dl wynosi a.2nxdx, wiec

P .4Nn2x2dx2. Q

dP= (d1)2.dR = o ey

—2ngazxdx;

catkujac ten wyraz w granicach catego przekroju przewodu, czyli
dla x w granicach od 0 do r, znajdujemy moc pragdu zmiennego w roz-
patrywanej czesci przewodu

r

P = 2ng | a2xdx.

Dzielgc te moc przez kwadrat wartosci skutecznej pradu, otrzy-
mamy r
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Stosunek opornosci rzeczywistej przy pradzie zmiennym do

opornosci przy pradzie statym, ktéry oznaczymy przez k, wyrazi sie
wzorem

2nqgj* 02XdX nr2 rej* o2xdx

b z 0 O
Bs r 2 r
an2 laxdx .o 2 | axdx
J J
Lo J Lo

Do tego wzoru nalezy podstawi¢ warto$¢ a ze wzoru (17), przy
czym w tym przypadku chodzi nie o wartosci zespolone, lecz o same

moduty, czyli

I\ [ber (px)]2+ [bei (px)]2
nr2Yféerjjprj]2+ [beil[pr)]2

Obliczenie tych calek daje w rezultacie szereg, za pomoca kté-
rego mozemy wyznaczy¢ warto$¢ k w kazdym poszczeg6lnym przy-
padku z zadang doktadnoscig. Najczesciej postugujemy sie wzorami
przyblizonymi; w ogélnym przypadku dla niezbyt duzych czestotli-
wosci istnieje wz6r przyblizony

gdzie

przy tym nalezy zwro6ci¢ uwage, ze r wyrazone jest w centymetrach,
a opornos¢ wiasciwa metalu przewodu w jednostkach cgs uktadu
elektromagnetycznego.

Dla miedzi p = 1, q= 0,017 «105; istnieje przyblizony wz6r

i - 1+ 07k ™ > ) s- ° a9 (iw o )*

gdzie d oznacza Srednice przewodu w cm.

W nizej podanej tablicy utozonej przez Lorda Kelvina wska-
zane sg wartosci k dla roznych wartosci fd2 dla drutéw miedzianych.
Dla otrzymania wartosci k dla drutow innych metali nalezy wartos¢
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fd2 pomnozy¢ przez — «0,017 i dla otrzymanej wartosci fd2szukac k
w tabeli. n

fd2 k fd2 k fd2 k
0 1 720 1,3180 2880 2,3937
20 1,0000 980 1,4920 5120 3,0956
80 1,0010 1280 1,6778 8000 3,7940
180 1,0258 1620 1,8628 18000 5,5732
320 1,0805 2000 2,0430 32000 7,3250
500 1,1747 2420 2,2190

Widzimy stad, ze np. gdy fd2= 320, to dla / = 50, d2= 6,4,
d” 2,5cm, opornos¢ jest o 8% wieksza niz przy pradzie statym.

Dla aluminium wspotczynniki we wzorze poprzednio podanym
bedg inne, a mianowicie

W zelaznym drucie zjawisko naskorkowosci uwydatnia sie bardzo
znacznie, poniewaz wchodza tu w gre jego whasnosci magnetyczne.
Uzywamy przewodow zelaznych tylko przy stabych pradach, gdyz
mamy wtedy bardzo stabe pola magnetyczne.

Dla cienkich drutéow zelaznych, gdy A= 1000, ¢= 0,10 m105,

o -) 4

Przy wielkich czestotliwosciach uzywa sie wzoru nastepujacego:

Przy wiekszych przekrojach, w celu zmniejszenia wptywu na-
skorkowosci, uzywamy przewodow ztozonych z szeregu drutéw izo-
lowanych i odpowiednio przeplatanych.

Przy bardzo wielkich czestotliwosciach zjawisko naskoérkowosci
wystepuje w takim stopniu, ze mozna korzysta¢ z przewoddw ruro-
wych, gdyz caty prad skupiony jest w poblizu powierzchni przewodu.

Zjawisko naskdrkowosci wptywa réwniez na indukcyjnos¢ prze-
wodu, gdyz jednoczesnie zachodzi inny rozktad natezenia pola magne-
tycznego. Skutkiem tego indukcyjnos¢ przy pradzie zmiennym staje
sie mniejsza niz przy pradzie statym. Teoretyczne rozwazania, po-

Teoria pradéw zmiennych U
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dobne do poprzednich, doprowadzajg rowniez do funkcyj Bessela
i do szeregéw, ktére w praktycznym zastosowaniu sprowadzajg sie
do wzorow przyblizonych. Oznaczajgc przez Ls indukcyjnos¢ prze-
wodu przy pradzie zmiennym o bardzo matej czestotliwosci, grani-
czacym z pradem statym, przez Lz za$ indukcyjnos$¢ przy pradzie
zmiennym o S$rednich czestotliwosciach, mamy wzory przyblizone
dla pr <. 2

dla wielkich czestotliwosci wzér Zennecka daje

we wzorach tych r oznacza promien przewodu w cm, p jak i po-
przednio

§ 40
STRATY W DIELEKTRYKACH

Od dawna spostrzezono, ze dielektryk w kondensatorze ogrzewa
sie wowczas, gdy kondensator podlega zmiennemu elektryzowaniu.
W elektrotechnice mamy do czynienia z dielektrykami, ktére majag
za zadanie izolowac¢ przewody od ziemi lub od innych przewoddéw.
Kazdy taki ukiad z izolacjg mozemy rozpatrywac jako kondensator;
jezeli za$ przewdd znajduje sie pod napieciem prgdu zmiennego,
wowczas w dielektryku otaczajacym przewod zachodzi elektryzacja
na przemian w jednym i drugim kierunku, wydziela sie ciepto, wobec
czego w dielektryku zachodzi strata mocy. Zjawisko to posiada pewng
analogie z histerezg magnetyczna, zachodzacg w zelazie znajdujgcym
sie w zmiennym polu magnetycznym, przeto niektérzy elektrotech-
nicy (pierwszy Steinmetz) nazwali to zjawisko histerezg dielek-
tryczng, chociaz nie sg to zjawiska identyczne.

Oprocz powyzszych strat dielektrycznych moga zachodzic¢
w dielektryku straty spowodowane tym, ze kazdy dielektryk posiada
pewng przewodnos$é, skutkiem czego pod dziataniem napiecia po-
wstaje prad ptynacy wskro$ dielektryka, czyli tak zwany prad
skrosny. Wreszcie moga zachodzi¢ straty skutkiem wyladowan
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elektrycznych, czyli tak zwanego ulotu. Wszystkie te zjawiska po-
wodujg pewien uptyw elektrycznosci, przetwarzajacej sie w ciepto.
Uplyw ten mozna ujgé w postaci pewnego pradu czynnego, ktory
nazwiemy pradem uptywu, proporcjonalnego do napiecia dziata-
jacego na dielektryk. Wspdtczynnik proporcjonalnosci pomiedzy pra-
dem uptywu i napieciem nazywamy uptywnoscia; uptywnos$é be-
dziemy oznaczali literg A. W ten spos6b pomiedzy pradem uptywu Iu
napieciem U dziatajgcym na dielektryk oraz uptywnoscig istnieje

Zalezn0SC B (

Moc wytworzona przez prad uptywu, czyli moc Pu pochtonieta

w dielektryku, bedzie okreslona wzorem
Pu= UIU=AU\
skad
_ Pu.
A= U2

mozemy wiec okresli¢ uptywnosé¢ A jako iloraz mocy pochlonietej
w dielektryku przez kwadrat napiecia dziatajgcego na dielektryk.

W ten spos6b, majac niedoskonaty dielektryk znajdujgcy sie
pod napieciem, musimy uwzgledni¢ dwa prady: prad uptywu, jako
prad czynny, bedacy w fazie z napieciem,
oraz prad przesuniecia, stanowigcy zwykle
prad tadowania kondensatora, w skiad kto-
rego wchodzi rozpatrywany dielektryk. Ten
ostatni prad, ktéry oznaczymy przez lIc,
jak wiadomo, wyprzedza w fazie napiecie
0 kat prosty. Geometryczna suma tych pra-
doéw (rys. 109) stanowi prad I, ktéry wrzeczy-
wistosci bedzie plynat przez dielektryk. Rys. 109
tatwo zauwazy¢, ze kat d odchylenia pradu
wypadkowego | od pradu Ic jest tym wiekszy, im wiekszy jest
prad uptywu lu, przy czym

tg a =
poniewaz lc= ¢jCU, Ilu= AU, przeto:
tg H= -O4C A =wC tg6

Strata mocy w dielektryku spowodowana uptywnoscig bedzie:
Pu= AU2= cccu2tgbé= 2nfCU2tgd (19)

u*
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Kat d nosi nazwe kata stratnosci dielektrycznej, za$ tg $—
nazwe wspodtczynnika strat dielektrycznych.

Dla uzywanych w elektrotechnice materiatéw izolacyjnych wspot-
czynnik strat dielektrycznych wynosi od 0,001 do 0,3.

Uplywno$¢ spowodowana tak zwang histerezg dielektryczng za-
lezy od rodzaju materiatu dielektryka i w pewnej mierze od tempera-
tury. W sieciach kablowych izolacja zwykle jest tak dobra, ze straty
od pradu skrosnego mozna nie bra¢ pod uwage; nie ma réwniez
zjawiska ulotu, wiec stratnos¢ w dielektryku spowodowana jest wy-
tacznie zjawiskiem histerezy dielektrycznej.

Dla przyktadu obliczmy strate mocy w dielektryku kabla z izo-
lacjg papierowg przy pradzie zmiennym o napieciu 10000 V i czesto-
tliwosci 50 Hz, jezeli pojemnos$¢ kabla wynosi 0,5y F na kilometr;
wspoétczynnik strat dielektrycznych dla papieru impregnowanego
tgd= 0,024. Ze wzoru (19) otrzymamy:

P, = 6,28 <50 0,5 «10-6 «108+0,024 = 375 watow;
co w ciagu roku daje strate energii:

375.365.24

1000 = 3285 kilowatogodzin.

Uptywnosé przez izolacje od pradu skrosnego zalezy oczywiscie
od opornosci materiatu; jezeli chodzi o przewody elektryczne, to
w dobrych urzadzeniach ta uptywno$¢ nie przekracza zwykle
2 .10-7 S/km. Uptywnosé od ulotu w przewodach napowietrznych
zachodzi tylko woweczas, jezeli warto$¢ napiecia miedzy dwoma
przewodami lub miedzy przewodem i ziemig przekroczy pewng
granice, ktérg nazywamy napieciem krytycznym. Dla kazdej $red-
nicy przewodu i dla kazdej odlegtosci miedzy przewodami lub prze-
wodem i ziemig istnieje napiecie krytyczne, po przekroczeniu ktorego
rozpoczyna sie wytadowanie elektryczne i powstaje zjawisko korony;
na wartos¢ tego napiecia w pewnej mierze wplywajg jeszcze stan
powierzchni przewodu oraz stan pogody.

Badania dokonane przez Towarzystwo Inzynieréw Amerykan-
skich doprowadzity do empirycznego wzoru, ktory daje moznos¢
obliczania strat mocy, spowodowanych ulotem elektrycznosci. Wzér
ten, nazywany wzorem Peeka, jest nastepujacy:
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gdzie P U oznacza strate mocy w kW na km przewodu pojedynczego,
a— wspdtczynnik zalezny od temperatury i cisnienia powietrza,
przy czym 3,920

a 273+ t’

b —cisnienie powietrza w cm stupa rteci;

| —temperatura powietrza w °C;

| —czestotliwo$¢ pradu zmiennego;

r—promienn przewodu w cm; jezeli linka, to promien kota opi-
sanego;

a—odlegtos¢ miedzy przewodami w cm;

U —wartos¢ skuteczna napiecia w kilowoltach wzgledem punktu
zerowego (ziemi); przy pradzie jednofazowym stanowi to potowe na-
piecia w sieci; przy pradzie trojfazowym i potaczeniu gwiazdowym —
napiecie fazowe; przy uwzglednieniu spadku napiecia w przewodach
trzeba brac¢ s$rednig wartos¢ napiecia catego przewodu;

UO— warto$¢ skuteczna napiecia krytycznego w Kkilowoltach
wzgledem punktu zerowego.

To ostatnie napiecie oblicza sie ze wzoru

uUo= (’)m1m2arln—r ,

w ktorym $— napiecie przebijajgce powietrza; dla a= 1, czyli dla
b= 76cm i /= 25°G wynosi ono 21,1 R/cm;
ml— spéiczynnik zalezny od stanu powierzchni przewodu,
przy czym
dla powierzchni odpolerowanej ml= 1,
dla zwyktych drutéw ml= 0,98—0,93,
dla linek ml1= 0,87 —0,83;

m2—spotczynnik zalezny od stanu pogody i réowny
dla suchego powietrza m2= 1,
dla wilgotnego powietrza (chmury, S$nieg, deszcz) m2= 0,8.
Uwzgledniajgc wartosci a i 6, poprzednie wzory mozna napisaé
w sposOb nastepujacy:

Pu—— (U ~ Uo0)2+13-5 kilowatéw na km,

1T 1,1 .3,92. b , ., u.
0= —'oto— --—-—-"mIm2r‘n = kilowoltow.
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Poniewaz pojemnos¢ jednego przewodu wynosi

C= 1 mikrofaradéw na km,
18 In
przeto
a 1
r 18C’
wobec tego

21,1.3,92 t . r
[%z — gyg + t mm-Linz-¢ kdowoltow,

albo ostatecznie

UO= 4595 mim2~ © f *-gr woltéw,

gdzie pojemnos$¢ C okreslona jest w mikrofaradach na 1km poje-
dynczego przewodu.
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PROSTOWNIKI

§ 41
PROSTOWNIK RTECIOWY

Przyrzady, za pomoca ktérych mozemy prad zmienny prosto-
waé, czyli otrzymywaé prad o jednym Kkierunku, nazywamy prosto-
wnikami. Rozpatrzmy zasady dziatania Kilku prostownikdéw stoso-

wanych w elektrotechnice.

Prostownik rteciowy oparty jest
na wlasnosci lampy rteciowej, daja-
cej tuk swietlny tylko woweczas, gdy
rte¢ jest katoda.

Przypus¢my, ze mamy naczy-
nie (rys. 110) z rtecig; po wypom-
powaniu powietrza zostanie w naczy-

1

niu para rteci i jezeli nastepnie obie elektrody, np. zelazng A i rte-
ciowg B, polaczymy ze zrédtem pradu, to przy odpowiednim na-
pieciu otrzymamy #tuk, lecz tylko wtedy, gdy rte¢ jest katoda.
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Gdybysmy obie elektrody A i B przytaczyli do zrodta pradu
zmiennego, mielibysmy tuk w ciggu potowy okresu, gdy prad ptynie
przez elektrode zelazng w kierunku rteci; w drugiej potowie okresu
tuku by nie byto. Wykres pradu przechodzgcego przez taki przyrzad

Rys.

112

mamy na rys. 111

Dla unikniecia przerwy w po-
wstawaniu tuku zastosowane zo-
staty przy zwyklym pradzie zmien-
nym dwie elektrody dodatnie.
Prad zmienny od zaciskdw 1i 2
zrédta pradu zmiennego (rys. 112)
wchodzi do transformatora T, kto-
rego wtdrne uzwojenie potgczone
jest z dwoma zelaznymi elektro-
dami | i |I1I; srodek uzwojenia
wtérnego taczymy z rtecig przez
odbiornik A, zasilany pragdem sta-
tym, np. przez baterie akumula-
torow.

W chwili gdy biegun dodatni
znajduje sie na zacisku 1, prad
ptynie tak, jak wskazujg strzatki
ciggte, gdy za$ biegun dodatni
przejdzie na zacisk 2, prad popty-
nie tak, jak wskazujg strzatki prze-

rywane. Widzimy zatem, ze przez odbiornik A prad przeptywa zawsze
w jednym kierunku.
Transformator T posiada indukcyjnosé i wywotuje wskutek tego

przesuniecie fazy pradu wzgle-
dem napiecia, mianowicie prad
opoznia sie wzgledem napiecia.
W chwili wiec gdy napiecie
spadnie do zera, warto$¢ pradu
bedzie wieksza od zera. Wy-
kres dla pradu bedzie w da-
nym przypadku inny niz dla

napiecia; otrzymamy tzw. prad tetniacy (rys. 113).

Dla prostowania prgdu trojfazowego korzystamy z 3 elektrod
dodatnich (rys. 114). Kazda z tych elektrod I, Il i 1ll igczymy
z koricami poszczeg6lnych faz (pradnicy lub transformatora), elektrode
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rteciowg za$ tgczymy z punktem zerowym przez odbiornik A. Wy-
kres otrzymamy w danym przypadku nastepujacy (rys. 115):

Z chwilg gdy pomiedzy I
elektrodg i rtecig powstaje tuk —
zaczyna ptynac¢ prad z pierwszej
fazy, przedstawiony na rysunku
sinusoidg I. W dalszym ciggu
napiecie na pierwszej elektro-
dzie maleje, a na Il wzrasta,
i w pewnej chwili (punkt A na
rys. 115) tuk z elektrody | prze-
skoczy na elektrode Il. W dal-
szym ciggu napiecie na elektro-
dzie Ubedzie malato, a na elek-
trodzie 11l bedzie wzrastato, i
w pewnej chwili (B) tuk prze-
skoczy na elektrode Ill. Otrzy-
mamy w ten sposéb prad tetnig-
cy, ktérego wartosci nigdy do
zera nie spadaja.

Prostowniki rteciowe zy-
skaty szerokie zastosowanie,
zwihaszcza w kolejnictwie elek-
trycznym, i odznaczajg sie wy-

sokg sprawnoscia. Rys. 114

Rys. 115
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§ 42
PROSTOWNIK ELEKTROLITYCZNY

Prostownik elektrolityczny albo aluminiowy oparty jest na izo-
lacyjnych wiasnosciach tlenkdw niektérych metali, np. A120 3, i sklada
sie z jednego lub kilku ogniw; kazde ogniwo zawiera dwie elektrody:

aluminiowg i otowiang, zanurzone w naczyniu
z wodnym rozczynem kwasu siarkowego lub
jeszcze lepiej — zwyczajnej sody (rys. 116).
Gdy potaczymy nastepnie elektrode Al z ano-
da, zas elektrode Pb z katoda, wtedy na ano-
dzie wydziela sie tlen i tworzy sie warstwa
A1203, ktora posiada wiasnosci izolacyjne i

Rys. 116 w pewnym stopniu przy niewielkim napieciu
nie przepuszcza pradu.

Gdy przytagczymy obie elektrody do Zrdédta pradu zmiennego,
powstanie zjawisko nastepujgce: w ciggu potowy okresu, gdy elektroda
aluminiowa potgczona jest z biegunem ujemnym, prad bedzie prze-
ptywat, gdy zas w drugiej potowie okresu elektroda ta bedzie pota-
czona z biegunem dodatnim —prad bedzie przerwany.

P \Al A - ALl Pb
l
c «a | Pb _ 1 Pb AL U
1 e B - _
> T
Rys. 117

W celu wyzyskania catego okresu pradu zmiennego obmyslit
rodak nasz Pollak urzadzenie, przedstawione schematycznie na ry-
sunku 117.

Mamy cztery ogniwa potgczone ze sobg, jak wskazano na ry-
sunku. Mozemy tatwo sprawdzi¢, ze pomiedzy punktami A i B,
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gdzie wilgczony zostat odbiornik, np. akumulator, prad bedzie prze-
ptywat w jednym tylko kierunku, mianowicie od A do B. Rzeczy-
wiscie, gdy na zacisku 1 mamy biegun dodatni, prad bedzie ptynat
w kierunku wskazanym strzatkami ciagtymi do punktu C. W punk-
cie C, majac przed sobg dwie drogi, prad poptynie, w mysl wyzej
powiedzianego, przez elektrode otowiang, a zatem do punktu A.
Z tego punktu A — majgc znéw dwie drogi przed sobg, poptynie on
do punktu B, stad za$ przez punkt D wréci do bieguna ujemnego
na zacisku 2.

Zupetnie analogicznie wyznaczy¢ mozemy droge pradu w dru-
giej potowie okresu; wskazana jest ona na rysunku strzatkami prze-
rywanymi.

Widzimy zatem, Zze urzgdzenie powyzsze pozwala na korzystanie
z catego okresu pradu zmiennego.

Sprawnos¢ tego rodzaju prostownikow jest matla (do 25%), za-
chodzg tu bowiem znaczne straty na ogrzewanie. Uzyteczne sg one
przy niewielkich mocach, przy wiekszych za$ stajg sie nieekonomiczne;
mozna je stosowac przy niskich napieciach; juz nawet przy napieciu
120 V czes¢ pradu bedzie przeptywata rowniez przez elektrode alu-
miniowa.

§ 43
PROSTOWNIK ELEKTRONOWY

Prostownik ten sktada sie z banki szklanej, w ktorej umiesz-
czone sa dwie elektrody: anoda z blaszki wolframowej i katoda
z drucika wolframowego; wewnagtrz
banki —préznia. Katoda powinna
by¢ rozzarzona pradem albo z ba-
terii ogniw, albo ze zrédta pradu
zmiennego przez odpowiedni trans-
formator.

Tego rodzaju ukiad, nazywa-
ny lampg prostowniczg lub keno-
tronem, moze przepuszcza¢ prad
tylko w jednym kierunku, miano-
wicie wewnatrz lampy od anody
do katody; prad zewnetrzny bedzie ptynat od katody do anody.

Na rys. 118 wskazany jest kierunek pradu, ktéry powstanie,
gdy lampa prostownicza bedzie wiaczona do sieci prgdu zmiennego.
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A oznacza anode, K — katode, B oznacza Zzrdédto pradu zarzenia.
W takim obwodzie powstanie prad jednokierunkowy, przerywany
na przeciag potowy okresu. Azeby wykorzysta¢ obie potowy okresu
pradu zmiennego, mozna zastosowa¢ dwie lampy prostownicze, od-
powiednio je wiaczajgc, lub tez uzywaé lampy z dwiema anodami,
podobnie jak w prostowniku rteciowym.

Spadek napiecia w takiej lampie jest znaczny; uzywa sie ich do
wysokich napie¢ i stabych praddw.

Oprocz lamp prostowniczych prézniowych istniejg réwniez lampy
wypetnione wewnatrz argonem o matym cisnieniu (kilka centyme-
row). W takich lampach otrzymuje sie mniejszy spadek napiecia;
uzywa sie ich do napie¢ niskich i pradéw silniejszych, np. do tadowa-
nia akumulatoréw. Wytwarza sie je tak samo jak lampy prézniowe
z jedng lub z dwiema anodami.

§ 44
PROSTOWNIK TLENKOWY

Prostownik tlenkowy lub kuprytowy skiada sie z plytki mie-
dzianej pokrytej cienkg warstwg tlenku miedzi; na te ptytke nato-
zona jest plytka otowiana i obie te ptytki sg mocno Scisniete izolo-
wang $rubg. Dzialanie tego prostownika oparte jest na tym, ze prad,
ptynac w kierunku od otowiu do miedzi, napotyka w kontakcie opér
znacznie mniejszy, niz prad ptynacy w kierunku od miedzi do otowiu.
Prostownika tego uzywa sie przewaznie do niskich napie¢ i niewiel-
kich pradow.
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§ 45
SZEREG FOURIERA

Prady zmienne spotykane w praktyce — nie majg przebiegu do-
kfadnie sinusoidalnego, chociaz stanowig funkcje okresowo zmienne
w czasie, czasem odbiegajag nawet znacznie od takiego przebiegu.
Prady tego rodzaju bedziemy nazywali pragdami odksztatco-
nymi. Analize ich najdogodniej oprze¢ na rozktadaniu takich funkcji
w szeregi Fouriera, gdyz w ten sposéb sprowadzamy badanie pra-
dow odksztatconych do badania pradéw sinusoidalnych. Przypom-
nijmy, na czym polega rozktadanie funkcyj w szeregi Fouriera.

Niech bedzie /(cc), gdzie x = *, jednoznaczna funkcja czasu t,

okresowo zmienna z okresem T; znaczy to, ze wartosci tej funkcji
beda sie powtarzaty w odstepach czasu roznigcych sie o okres T lub
o catkowitg liczbe okreséw. Oznaczajac przez k dowolng liczbe cat-
kowita, mozemy napisaé

(A f)y= fl~~{t+kT)Jd= f(3p- F2k*y

Zaktadajac = X, otrzymamy

I(x) = /(x + 2kn),

czyli ze wartosci funkcji beda sie powtarzaty dla wartosci' x, roz-
nigcych sie o catkowitg liczbe 2n\ w tym przypadku 2n, bedzie
okresem.
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Wedtug Fouriera

f(x) = A0+ AlcosXx + A2cos 2x + A3cos 3* + ... + ANcos nx
+ Blsinx + B3sin2x + B3sin3x + ... + Bnsin nx =

k=n k=n
= A0+ ~ Akcos kx + ™ B ksinKkx, (1)
k=i k=i
gdzie AOQ, Ax, ..., An BIt ..., Bnsg wielkosciami statymi, n zas moze

by¢ liczbg skoriczong lub nieskonczona.

Dla znalezienia statej AOmnozymy obie strony wzoru (1) przez dx
i catkujemy w granicach od 0 do 2n albo od dowolnej wartosci x
do x + 2n. W ten sposéb otrzymamy

271 271 271 271

j'f(x)dx= j'A0dx + ...+ J'Akcos kxdx + ... +J"bfisin kxdx + ...
21 271

Wszystkie catki okreslone postacij A*cos kxdx iJ B ksin kx dx sg

zerami, poniewaz ich catki nieokreslone sin kx i -——-cos kx

maja te samg warto$¢ na poczatku i na koricu okresu. Zatem

2n 62[ %

If(x)dx 1A0dX = A 2nAOQ;
21
Ao = ont f f(x)dx 2

Dla znalezienia kazdego ze spétczynnikow przy cosinusach mno-
zymy obie strony wzoru (1) przez cos kx i catkujemy jak poprzednio.
Otrzymamy wtedy

27 271 271
1'f(x) cos kxdx = AOF cos kxdx + ... + Atj -cos ix cos kxdx +
0 0 0

2z 271

/| cos2kxdx + ... + B-J"' sinixcos kxdx + ...
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Pierwsza catka jest zerem, cosmy juz wyprowadzili poprzednio
Kazda z calek typu
22 27
cos ix cos kxdx] (i 5=k) i “sin iacos kxdx
0 0
jest réwniez zerem, bo funkcja podcatkowa daje sie zamieni¢ na
sume dwdch funkcji trygonometrycznych, a tych catki w rozpatry-
wanych granicach sa, jakesmy juz widzieli, zerami.
Otrzymujemy zatem
21 21

Jf[x) cos kxdx = AKJ' cos2kxdx .

Ale
27 27 2Ti 221
/ cos2kx dx = fI --1-:--99?--2-'-(-)-(--d’x = f$—(~+ If cos 2 kx dx 71,
0
skad 21

/.gx) cos kxdx = Akn;

271

f(x) cos kxdx. ®)

+ f*!

Zupetnie tak samo, dla wyznaczenia kazdego ze sp6tczynnikéw
przy sinusach, mnozymy obie strony wzoru (1) przez sin kx i catku-

jemy; wted
Jemy y o1

f(x) sin kxdx. 4

-T |/
W szeregu Fouriera mozemy potaczy¢ sinusy i cosinusy, ktérych
argumenty sa te same, piszac jedng tylko funkcje sinusoidalng, za-
ktadajgc N cos ¢& a. Bksin /X Fksin (kx + i),
Fk=\ARKR+ Bk tg*-" -
Ok
Na tej podstawie szereg Fouriera mozemy poda¢ w postaci
f{x) = AO+FIsm(x+rpl) + F2sin(2x + i@ + ...+ Fksm [kx + yK). (5)
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Sinusoida Fxsin (x + y¥) nazywa sie gldowna sinusoidg albo
gtbwng falg, lub pierwsza harmoniczng. Inne sinusoidy noszg
nazwe wyzszgch harmonicznych rozpatrywanej funkcji i, w za-
leznosci od wskaznika wielokrotnosci argumentu gtownej sinusoidy,
mowimy w skréceniu druga, trzecia itd. harmoniczna.

8 46
PRZYPADKI SZCZEGOLNE

1) Krzywa stanowigca wykres rozpatrywanej funkcji jest syme-
tryczna wzgledem osi X w ten sposob, ze potowa fali znajdujaca sie
pod osig X jest zwierciadlanym odbiciem potowy fali przebiegajgcej
nad osig X, przesunietym naprzéd o n (rys. 119).

W tym przypadku dla dwoch punktéw krzywej, ktérych odciete
réznia sie o n, rzedne beda sie réznity tylko znakami. To znaczy

f{x +n) = -/(*).

Aby temu zados€uczyni¢, w szeregu Fouriera nie powinno by¢
statej A0, poza tym zging¢ powinny wyrazy zawierajace funkcje
trygonometryczne od argumentow stanowigcych parzyste wielokrot-
nosci x. Moga pozostac¢ tylko wyrazy z argumentami o nieparzystych
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wielokrotnosciach o, gdyz tylko te wyrazy zmieniajg znak przy za-
mianie x na [x + n). Zatem w tym przypadku

/(aj) = Axcos x + A3cos 3cc + ... + ™M2A+1 cos (2k + ljcc + ... +
+ Blsin x + B3sin 3cc + ... + B2k+lsin (2k + l)cc + ... =

k=n k=n
= N A2*+jcos (2A+ 12 B2k+lsin (2k + 1) (6)
k=0 k=0

Przy wyznaczaniu spétczynnikéw wystarczy catkowanie w gra-
nicach od 0 do n, gdzie funkcja ma ten sam znak, i pomnozenie
rezultatéw przez 2. W ten spos6b

71 71

2xe1 =~ J /(@) cos (2A+ 1D acdec, B2k+l = —J f(x)sin (2k+I)xdx. (7,

2) Krzywa jest symetryczna wzgledem swego poczatku. Jezeli
poczatek osi spétrzednych umiescimy w punkcie krzywej, gdzie
rzedna réwna jest zeru, to symetria bedzie polegata na tym, ze
dwa punkty krzywej majgce odciete +x i —g bedg miaty rzedne o tej
samej wartosci, przy tym znaki tych rzednych moga by¢ rdézne lub
jednakowe; rozpatrzymy wiec dwie mozliwosci:

a) przy zamianie x na —x znak rzednych sie zmienia, czyli
I(-aj) = -I(aj),
jak to ma miejsce np. dla krzywej na rys. 120.

Teoria pradéw zmiennych 12
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W tym przypadku w szeregu Fouriera (1) nie powinno by¢
statej Ao oraz wyrazéw zawierajgcych cosinusy; otrzymamy wiec
sSzereg w postaci

/(x) = Btsinx + B2sin 2x + ... + Bksin kx + ... =
k=n
= ~ Bksin kx; (8)
k=i
b) przy zamianie x na —x znak rzednych sie nie zmienia, czyli

I(—*) = (>

jak to np. ma miejsce dla krzywej na rys. 121.

tatwo jest zauwazy¢, ze w tym przypadku w szeregu Fouriera

(1) nie powinno by¢ wyrazéw zawierajacych sinusy; bedziemy wiec
mieli szereg

f[xX) = A0+ Alcos X + A2cos2x + ... + Akcos kx + ... =

k=n

= A0+ ™ Akecos kx. 9)
k=i
3) Krzywa jest symetryczna wzgledem osi X, jak w przy-

padku (1), i wzgledem poczatku krzywej, jak w przypadku 2a.

Wtedy, na zasadzie poprzednich rozumowan, w szeregu Fou-
riera moga pozostac¢ tylko wyrazy zawierajgce sinusy argumentow
stanowigcych nieparzyste wielokrotnosci x, czyli

f(x) = Bxsinx + B3sin3a + ... + B2+l sin 2k + 1)® + ... (10)

Poniewaz w tym przypadku mozna podzieli¢ krzywg odpowiada-
jaca jednej fali na 4 jednakowe czesci o takim samym przebiegu
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wiec przy obliczaniu spétczynnikéw wystarczy catkowanie w gra-

nicach od 0 do-ul-i mnozenie rezultatu przez 4. W ten sposob
TC/2
Bosy) —~J" fix) sin [2k+t)xdX. (u)
0

§ 47
PRZYKLADY

Przyktad 1. Prad o natezeniu statym 10 zmienia okresowo
kierunek (rys. 122).
Zachodzi tu ostatnio rozpatrywany przypadek szczegolny (3); sto-
sujemy zatem wzory (10) i (11)
/@)= sinx+ B3sin3g + ... + BX&#lsin 2k + 1)* + ...;

n

B = Ar\] [ 2/(cc) sin (2k + 1)xdXx; f(m = 10= const.

B
4/, (2fe + 1)«~].
n2k+ 1) cos
s (2K+D)n g Al
2 .. B2k+1= hok + 1)
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Ostatecznie
f[x) = Ysing; + -i- sin 3x + ~ sinbx + -i-sinIx + ...J.

Dana funkcja jest wypadkowg nieskoriczonego szeregu sinusoid,
ktorych okresy i amplitudy malejg jak szereg naturalny liczb nie-
parzystych, a poczatek wszystkich jest wspolny. Glowna fala ma

amplitude - 1,3 trzecia harmoniczna & = 0,410 itd.

Przykitad 2. Funkcja zmienia sie w sposob trapezoidalny
(rys. 123) miedzy wartosciamii +/0. Mamy tu réwniez przypadek
szczegllny trzeci.

Rozpatrujemy cwier¢ fali.
Dla 0 N x N a, f(x) = — x\

a<xX " 0=/,

f(x) = sinx + B3sin 3* + ... + B2+l sin (2k + I)x + ...;
! :
B2+l = ~~ff(x) sin (2k + laiia; = 4 /« x) sin (2k + 1)xdx +
n

2

+ — //(*) sin (2k + 1)xdx;
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a a

3 /(@) sin 2+ DXxdX =3~ sin ke I)xdx-

a

AjAJ{2k+ 1) X sin (2/¢ + 1y Xd [{2k+ 1H®1;

e k+
sin Z0Z—_ Zcos Z+ scos ZOZ—_ Zcos Z+ sin Z;
a
i (2 + 1)ar sin (2 + 1)ard [(2/c + 1)ar] — (2/c + I)ar cos (2/c +
J ek k Hx +
+ sin (2/c + l)ar =* sin (2/c + 1) A— (2/c + 1) Qcos (2/c + 1) a;
i/(*) sta (2k+ 1), dz-
0
71 71
fm sin (2k+ \)de= Iq sin (2k+ I)X dX=
/O >s (2/c + 1) ar 12 IO cos (2/c + 1)
2/c + I ]Q 2/c + I
gdyz
cos (2/c + 1) -— o
4 h f.sin e + 1ya a + 1)
- cos (2/c
B 2k+1 n (27¢ + 1y2 (27¢ + 1)
4 4/ sin (2/c + ) a
+ h cos (2/c + I)<Z= 7 z !
7 2/c 1 na (27¢ * 1)2
4/0 ‘ 4 [«
Cg,___Lchos (2/¢ F |) a-1— /Otj cos (2/¢ T l)

4 10sin(2[c+ 1) a
~N~{2k+ 1)2 5

B/, isinasina sin3asin3ar sinbasinba:
P + 3* + 5i

__4/0” sin (2/c + l)a sin (2/c + lar

2/c + 1)2
K=o (2/¢ )
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Przyktad 3. Prad wzrasta i maleje proporcjonalnie do czasu
miedzy statymi wartosciami + 10 (rys. 124).
Jest to graniczny przypadek przykiadu poprzedniego, gdy

a= " z tego powodu, biorgc pod uwage, ze

s = _ ‘o, _ . 3M_
sina= sin-—= 1, sinda = sin—4-= —1,
C >

sin (4/ + 3)a= sin (4Z+ 3) = —1,
bedziemy mieli

v 8laisina; sin 3a; sin 5a; sin 7x

WYj-p e [ - - J— 7S— + e=f-
k—n
8/, Y1, sin 2k + 1) x
1 'W T

Przyktad 4. Prad zmienny sinusoidalny zmienia swoj kierunek
w drugiej potowie okresu, stajac sie w ten sposob pradem jednokierun-
kowym— tetnigcym (rys. 125).
Mamy tu przypadek szczegdlny 2b, wiec stosujemy wzér (9)
k=n

flx) = A, + Z a*cos hx .

k=1
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Rozpatrywana funkcja, majac wartos¢ najwieksza Im zmienia
sie od zera do Imw sposdb nastepujacy:

w granicach od 0 do n... f(x) = Imsina;,

% 0 . AN, 2n .. f(X) = —Imsin x.

Obliczamy spotczynniki
271

1|ms|nxdx+ /- |n5|nxde
0 1 71
H 71 171~1
N _asx + +asx - b
LI 0 nJ
71 2n
Ne sin x cos k x dx +J*— Imsin x cos kx d;cjj =
O 71

=-N-jj*-i-[sin (k+ Y x—sin [k—1),] dx—
0

sin(k+ )x —sin (k—1)xJ dx |=
n
1A cos (k + 1)x 1cos (k—1)x\n
2n\_ FoToa . k. o
cos (k + 1)x ~ cos (k— x 2
k+ 1 k—1 nJ
=hL[ cos(k+ I)n cos(k—ni 1
2jiL k+ 1 k-1 k+1 k—1
1 1 cos (k+ 1)n , cos (k—
F+T_ k~I F+1 + k
Im\ 1 1 cos (k + 1)n , cos [k—1)F]
~It[kTT~k —1 F+1 + k—1
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dla k nieparzystego
cos (k+ \)n= cos [k—I)n= 1,

wtedy, co tatwo zauwazyc,

Ak= 0;
dla k parzystego
cos (k+ \)n= cosn = —1,
cos (k—1)jz= cos (—n) = —1,
wtedy
ImT 2 212 im(k-)-(k+n 4im 1
* % [* + 1 fc-ij n  (k+i) (k—i) ni

Podstawiajgc wartosci AO i Ak do wzoru na rozpatrywang
funkcje, otrzymamy

Jezeli mamy prad tetniacy, ktoérego wartosci zmieniajg sie nie
od 0 do Im, lecz od 10do Im gdzie /,, > 0 (rys. 126), wowczas dla
znalezienia funkcji przedstawionej krzywa pradu trzeba tylko do
poprzedniego wzoru dodac 10.
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W rozpatrywa-
nych  przyktadach
wyzsze harmonicz-
ne wywierajg coraz
mniejszy wpltyw na
ksztalt krzywej, tak
zeuwzgledniajactyl-
ko niewielkg ilosé
harmonicznych, o-
trzymamy wzgled-
nie znaczng doktad-
nos¢. W praktyce
uwzgledniamy naj-
czesciej harmonicz-
ne do dziewigtej wig-
cznie.

Bardzo wazny
ze wzgledu na ksztatt
krzywej jest znak
trzeciej harmonicz-
nej; jezeli jest do-
datni, to krzywa
ma wierzchotki ste-
pione w stosunku
do pierwszej harmo-
nicznej, jezeli jest
ujemny, to wierz-
chotki sg zaostrzo-
ne. Zupetnie odwro-
tnie wplywa znak
pigtej harmonicz-
nej.

Na rys. 127 u-
widoczniony jest
wptyw tych harmo-
nicznych na ksztatt
krzywej.
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Rownania tych krzywych sg nastepujace:
I y — Imsin x,

1 y = Imsin X + -i- Imsin3x,
i I — Imsin X — " Imsin3x,

v y

Imsin x + Imsin5a;,

vV y

Imsin x — rjl- Imsin5ic.

Jest bardzo wiele sposobéw analizy krzywych. Rozpatrzymy tu
trzy metody.

Pierwsza, ktorg mozna nazwa¢ metoda arytmetyczng, polega
na tym, ze catki, przez ktére wyrazone sg spétczynniki w szeregu
Fouriera, obliczamy w przyblizeniu; w tym celu na wykresie, na osi
odcietych, dzielimy caty okres 2n na dowolna, zwykle parzystg liczbe n

rownych czesci; kazda wyniesie wiec 2n _ Ax; dla punktéw podziatu,
ktérych odciete beda
0, Aic, 2AXx, ... mMAX, .., (h—1) Aa,
znajdujemy z wykresu odpowiednie rzedne
YO, VYi» YOomemM ..o in-is

rzedne te nalezy bra¢ z whlasciwym znakiem; jezeli poczatek
spotrzednych wezmiemy w punkcie, gdzie krzywa przecina o$ od-

cietﬁlch, to yO: 5

Wyraz staly w szeregu Fouriera

0

znajdujemy jako Srednig powyzszych rzednych, zastepujgc w ten
sposéb wzdr Scisty wzorem przyblizonym
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Na rozpatrywanym wykresie odciete mAx odpowiadajg w szeregu
Fouriera odcietym a; rzedne ymodpowiadajg wartosci f(x); zamie-
niajagc we wzorach (3) i (4) (845), dla przyblizonych obliczen, catki
przez odpowiednie sumy, otrzymamy dla wspétczynnikéw przy cosi-
nusach i sinusach k-tej harmonicznej w szeregu Fouriera (1) (845):

Ak= — ™ f[x) cos kx = — ~ Ymcos km Ax,
x=0 m=0
x= 2ji —n—1
Bk= — \ f(x) sinkx = = N Ymsin km A
71 @% T m=0

albo
y0+ yXxcos k2—t+ y2cos Tk 24 +
2t|\

+ ymcos m /c’\ + e+ Uh-1cos (n—1)/c— 12
Ig)kz —fLu, sin k-2-----h\/93|n Zk ------
+ iimsin mII<2—tC+ ... ¥ yn_xsin (n—!L) kz—-ltl (13)

Majgc te wzory, obliczymy wspotczynniki dowolnej harmonicz-
nej; nastepnie znajdujemy wartos¢ maksymalng poszukiwanej har-
monicznej ze wzoru

Fk=V £?
oraz kat przesuniecia fazy ze wzoru
. Ak
tgn = W'

Im wieksza bedzie liczba n punktéw podziatu jednego okresu,
tym Scislejszy otrzymamy z obliczen rezultat.

Druga metoda analizy krzywych, ktéra tu rozpatrzymy, stanowi
wykreslny sposob podany przez Rothego.

Majac wykres badanej krzywej, postepujemy jak poprzednio:
dzielimy caty okres na dowolng catkowitg liczbe, najlepiej parzysta, n
rownych czesci; znajdujemy z wykresu rzedne odpowiadajgce punk-
tom podziatu:
2z 5 27 2Tt

=, 2 y oy N—1 —
n n
niech rzedne te beda:

yO) yii H2i e y -j-
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Robimy teraz nastepujacy wykres: z dowolnego punktu jako
Srodka przeprowadzamy promien podstawowy w dowolnym kierunku,
np. poziomym, oraz n—1 promieni pod kagtami 2. —,

n n

2 n
(n—1) — , odmierzonymi od promienia podstawowego. Na rys. 128

n= 24, — = 15°
n

Chcac znalez¢ wartos¢ maksymalng dowolnej, np. Ar-tej, harmo-
nicznej, odktadamy na przeprowadzonych promieniach pod katami O,

k_n' 2k—n, ..., (n—1) k— znalezione poprzednio rzedne YO,

yi, y,.-1, uwzgledniajgc
przy tym znaki tych rzed-
nych w taki sposéb, ze
wartosciom dodatnim da-
jemy kierunek od $rodka
O, wartosciom ujemnym
zas kierunek przeciwny.
Otrzymane w ten sposdb
wektory dodajemy do sie-
bie geometrycznie i sume

te dzielimy przez re-

zultat daje nam wartosé
maksymalng Artg harmo-
nicznej .
Rzeczywiscie, suma
geometryczna rozpatrywa-
nych odcinkéw moze by¢ wyrazona symbolicznie w postaci
: .27t .0 i 2ji
Sk=yo+ y\d n + y?e n+...+1, 1¢e"” »
albo

. 671 /71 . 21
8k = y0+ yi cos *— + y2cos - 1-... + ynicos (n—1)k

o opini SN 4 y29NZEET L L+ Qﬂ'[n—'l’)kz..ﬂT

Uwzgledniajagc wzory (12) i (13) widzimy, ze cze$¢ rzeczywista
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ostatniego wyrazu stanowi Ak, czes¢ za$ urojona Bk; wobec

tegO

A V]
Sk =~2 (na+i -@c)*
Oznaczajac przez xk kat, ktory tworzy §k z promieniem pod-
stawowym, bedziemy mieli
Sk(cos yk+ j sin ¥¥ = (Ak + j BK).
Wartos¢ maksymalna k-tej harmonicznej w szeregu podanym
we wzorze (5) bedzie
Ft=V V + =71
i, ~2~
kat przesuniecia fazy tej harmonicznej znajdujemy ze wzoru

Ak
tg™N = b7

Akstanowi rzut znalezionej sumy §kna o$ odcietych (promien podsta-
wowy), Bk—rzut tejze sumy na o$ rzednych (prostopadtg do pro-
mienia podstawowego).

Trzecig metode, ktérg tu podajemy, stanowi sposdb Fischer-
Hinnena. Oparty on jest na nastepujacym twierdzeniu: sumy

sinx + sin(x+ a +sin[x+ 2a) + ... +sin [x+ (p—1)a],
cos X + cos {x + a) + cos (x+ 2a) + ... + cos [x + (p— 1) a],

gdzie
2kn

przy czym ki p oznaczajg liczby catkowite, sg réwne p sin x, wzgle-
dnie p cos X, jezeli -k—ljest liczbg catkowitg, a réwnaja sie zeru, jezeli
K jest utamkiem. JI?en ostatni przypadek byt rozpatrzony w twier-

dzeniu o sumie wartosci chwilowych wielkosci uktadu wielofazowego
symetrycznego w 8§23, pozostaje wiec do rozpatrzenia przypadek,

gdy X jest liczbg catkowita.
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Wowczas, zaktadajagc lli = m, gdzie m jest liczbg catkowitg,
. - 2kn f . . .
bedziemy mieli a= —— =2 mn i rozpatrywana suma Sinusow

bedzie
sinx + sin (X + 2mn) + sin [x + 4mn) + ... + sin \x +
+ (p—1)2mn] = sinx + sinx + sinx + ... + sinx —p sin X\

w sposéb analogiczny znajdziemy, ze suma cosinuséw réwna sie p cos X.

Spos6b Fischer-Hinnena rozpatrzymy najpierw w przypad-
ku, gdy krzywa jest symetryczna wzgledem osi odcietych (rys. 129);
wtedy szereg Fouriera posiada, jak wiadomo, tylko nieparzyste har-
moniczne; wedtug wzoru (6)

f(x) = cos X + Blsinx + A3cos 3x + B3sin 3x + ... =
=
AX+1cos (2k + \)x + BX+j sin (2k + 1) x (14)
4

Ograniczymy liczbe harmonicznych do dziewigtej wigcznie.

Najpierw wybieramy poczgtek osi wspétrzednych w dowolnym
punkcie O na osi X (osi symetrii rozpatrywanej krzywej). Przypusc¢my,
ze od dowolnego punktu M na osi X, ktérego odcieta jest x, odtozymy
na tejze osi MM' = 2n; niech rzedna krzywej odpowiadajgca punk-
towi M bedzie y', wtedy

Axcos x + Bxsinx + A3cos 3x + B3sin3x + ... +
+ A9cos 9x + B9sin 9x = vy (15)
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Podzielmy MM' na 3 réwne czesci i niech y', y", y"' oznaczaja

rzedne w punktach podziatu, ktdrych odciete stanowig X, X + a,
2n

X + 2a, gdzie a= Te same wartosci rzednych musimy otrzymac,

zaktadajgc we wzorze (14) zamiast x kolejno x, x + a, x + 2a. Ozna-
czajgc sume

y'+y"+y"'= 83
bedziemy mieli

AxJcos x + cos (x + @ + cos (x + 2a)] + Bl[sinx + sin (x + a) +
+ sin (x + 2a)] + A3[cos 3x + cos (3x + 3a) + cos (3* + 6a)] +
+ B3[sin 3x + sin [3x + 3a) + sin [3x + 6a)] + ... +
+ Ag|[cos 9a: + cos (9x + 9a) + cos (9x + 18a)] + B9 [sin 9cc +
+ sin (9ic + 9a) + sin (9x + 18a)] = S3.

Na podstawie poprzednio wyprowadzonego twierdzenia, dla
2n
a= -g- otrzymamy
3yl3cos 3x + 3B3sin 3x + 3A9cos 9x + 3B9sin 9® = S3. (16)

Nastepnie dzielimy ten sam odcinek MM "' na 5 réwnych czesci,
odmierzamy rzedne w punktach podziatu x, x + a, x + 2a, x + 3a,

X + 4a, gdzie a = 2n Korzystajagc z wzoru (14) i biorgc sume rzed-

nych, ktérg oznaczymy przez Ss, otrzymamy jak poprzednio

hAscos 5a: + 5B5sin 5x = Ss. a7

Dzielac nastepnie MM' na 7, a wreszcie na 9 réwnych czesci,
otrzymamy T N orx+ gin 7x = (18)
*3A9cos 9® + 9B9sin 9a = S9, (19)

gdzie S71i S9oznaczajag sumy siedmiu i dziewieciu rzednych w odpo-
wiednich punktach podziatu.

Pie¢ wzoréw 15, 16, 17, 18 i 19 zawiera 10 niewiadomych
spotczynnikow A i B, dla znalezienia ktorych potrzeba 10 nieza-
leznych od siebie réwnan. Réwnania te mozemy z tatwoscia utozyc,
przeprowadzajac obliczenia dla dwoch rozmaitych wartosci x; w tym

przypadku najdogodniej zatozy¢ najpierw x = 0, nastepnie x = %/
Jezeli dla x — 0 oznaczymy rzedng przez yx, za$ sumy S3, S5, S7, S9
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odpowiednio przez y3, y5, y7, y9, nastepnie dla x = — oznaczymy
rzedng przez i sumy odpowiednio przez y3, ya, y7, y9, wtedy
z powyzszych wzoréw otrzymamy dla x = 0
-di + -d3+ d.5+ 47+ 9= y7,
3A3+ 34, = y3,

5A5 = i/5i
7d.7= y7,
9-d# = y9,

dlax = »
Bl B3+ Ba—B7+ X=ilj,
—3i?3+ 3B9= y3,

~ yz'>
7B7= y7,
9729 = y9,

skad od razu znajdujemy wartosci poszukiwanych wspoétczynnikdéw.

Sposo6b postepowania w przypadku krzywej symetrycznej wzgle-
dem osi odcietych bedzie wiec nastepujacy: bierzemy dowolny punkt
na osi X jako poczatek wspdtrzednych; od tego punktu (x= 0) odkita-
damy na osi X odcinek réwny 2 «;, odpowiadajgcy jednemu okresowi;
odmierzamy rzedng krzywej na poczatku wspotrzednych y1; nastepnie
dzielimy odcinek kolejno na 3, 5, 7 i 9 réwnych czesci, odmierzajac
za kazdym razem odpowiednie rzedne i sumujgc je przy uwzglednie-
niu znakow tych rzednych; w ten sposéb znajdujemy y3, y6, y7, t/9;
nastepnie przesuwamy sie na osi X od poczatku wspdtrzednych o *k

okresu i postepujemy w sposéb analogiczny, wyznaczajgc

y/, y3, ya, y7, y9. Znalezione wartosci podstawiamy do uktadu row-
nan i rozwigzujemy te réwnania; obliczone wartosci wspotczynnikow
A i B podstawiamy do wzoru (14), ktéry okresli badang krzywa.
W przypadku ogolnym, gdy badana krzywa nie wykazuje sy-
metrii, musimy przede wszystkim stwierdzi¢, czy szereg Fouriera (1),
okreslajacy poszukiwang funkcje, zawiera statg A0, ktorg sie oblicza

ze wzoru (2) )
n 271
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wyraz ten stanowi Srednig rzedng wszystkich punktéw Kkrzywej,
zawartych pomiedzy x = 0 i X = 2n, a wiec w granicach catego
okresu; poniewaz w jednej czesci okresu rzedne sg dodatnie, w dru-
giej ujemne, przeto w rezultacie dla ogélnej sredniej otrzymamy albo
wielko$¢ dodatnig, albo wielko$¢ ujemna, albo zero. Praktycznie taka
Srednig mozemy znalezé dzielgc okres od dowolnego punktu na osi X
(np. od x = 0 do « = 2n) na mniejsza lub wiekszg liczbe czesci, w za-
leznosci od stopnia odksztalcenia krzywej; nastepnie odmierzamy
wszystkie rzedne odpowiadajgce punktom podziatu, obliczamy ich
sume z uwzglednieniem znakéw, wreszcie dzielimy te sume przez
liczbe rzednych; otrzymany w ten spos6b rezultat da nam AO0. Jezeli
AOnie bedzie réwne zeru (praktycznie — bliskie zeru), wtedy, przesu-
wajac 05 odcietych rdwnolegle na odlegtos¢ réwng AO w strone do-
datnig lub ujemng, w zaleznosci od znaku A0 otrzymamy nowe osie
wspotrzednych, wzgledem ktoérych odciete krzywej pozostang te same,
wszystkie zas rzedne bedg zmniejszone o i 0.W ten spos6éb w nowym
uktadzie wspotrzednych w szeregu Fouriera pozbedziemy sie wy-
razu statego.

Na rys. 130 pokazana jest taka krzywa niesymetryczna; w jed-
nej potowie okresu, gdzie rzedne sg dodatnie, mamy przebieg inny
anizeli w drugiej potowie, gdzie rzedne sg ujemne; Srednia wszystkich
rzednych odpowiadajgcych jednemu okresowi wynosi 00" = AO\wy-
padia ona w tym przypadku dodatnia. Po przeniesieniu osi OX do
potozenia 0'X"' otrzymujemy nowy uktad wspétrzednych 0'X"', 0'Y,
wzgledem ktdrego rozpatrywana krzywa okreslona bedzie szeregiem
Fouriera, zawierajacym wylgcznie cosinusy i sinusy.

Znalezienie $redniej rzednej, czyli A0, moze by¢ uskutecznione
jeszcze lepiej za pomocg planimetru (przyrzadu do okreSlenia pola
powierzchni). Rozpatrujagc bowiem wyraz

0

i biorgc poczatek spotrzednych (x = 0) w punkcie przeciecia sie
krzywej z osig X, od ktérego zaczynajac rzedne krzywej 'przyjmujg
wartosci dodatnie, bedziemy mieli

0 0 a
gdzie  oznacza pole powierzchni zawartej pomiedzy krzywag i osig X

Teoria pradéw zmiennych 13
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w granicach x = 0 i x = n, zaS S2— pole powierzchni ograniczonej
krzywa i osig X w granicach x = n i x = 2n] wyraz S2 wziety ze
znakiem —, poniewaz w rozpatrywanych tutaj granicach wszystkie
rzedne krzywej beda ujemne. Jezeli wiec za pomoca planimetru
okreslimy pola i S2, to dla znalezienia AO trzeba ro6znice tych
wartosci podzieli¢ przez 2n. Jasne jest, ze po przesunieciu osi X do

potozenia 0'X' pola powierzchni odpowiadajace dodatnim i ujem-
nym rzednym krzywej beda sobie réwne; na rys. 130 pola te sg za-
kreskowane.

Przystepujgc do analizy krzywej nie zawierajgcej w szeregu
Fouriera stalej AO, musimy znalez¢ wspotczynniki przy cosinusach
i sinusach wszystkich harmonicznych, zaréwno nieparzystych jak
i parzystych. Ograniczymy i w tym przypadku liczbe harmonicz-
nych do dziewigtej wigcznie. Ustaliwszy w dowolnym punkcie na
osi odcietych poczatek osi wspotrzednych, odktadamy od dowolnego
punktu na tej osi z odcietg x odcinek réwny 2n. Odcinek ten dzielimy
kolejno na 2, 3, 4...9 réwnych czesci, odmierzamy rzedne krzywej
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w punktach podziatlu i obliczamy odpowiednie sumy rzednych
z uwzglednieniem znakéw rzednych. Oznaczajac przez Sx rzedng
krzywej dla odcietej x, za$ przez S2, S3... S4sumy rzednych odpo-
wiadajgcych 2, 3...9 dziatkom, otrzymamy, rozumujac tak samo jak
w poprzednio rozpatrzonym przypadku, nastepujgce wzory:
AXcos X + Bxsinx + A2cos 2a: + B2sin 2x + ... + A9cos 9x +
+ B9sin 9x = Sx,

2A2cos2x + 2B2sin 2x + 2Atcos 4x + 2i?4sin 4a: +
+ 2™M6¢c0s 6x + 2Besin 6x + 2™8cos 8x + 2B8sin 8# = S2,

3A3cos 3x + 3B3sin 3x + 3™M6cos 6a: +
+ 3i?6sin 6x + 3A9cos 9x + 3B9sin 9x = S3,

4Atcos 4x + 4Btsin4x + 4Aacos8x + 4Basin 8x = S4,

5™M5co0s 5x + 5Bssin 5x = Ss,
6™M6c0s 6x + 6Besin 6x = Se,
7A7cos 1x + 7B7sin 7x = S7,
8M8cos 8x + 8Basin 8a: = Sa,

9™M9cos 9x + 9Bg sin 9a: = S9.

Dla znalezienia wspotczynnikéw A i B musimy utozy¢ 18 row-
nan niezaleznych. Najpierw bierzemy x = 0, to znaczy wybieramy
pierwszy punkt podzialu w poczatku wspétrzednych; oznaczajgc
rzedng krzywej w tym punkcie przez yx, sumy rzednych za$ przy
kolejnych dzieleniach w tym przypadku przez y2, y3, ..., y9, otrzy-
mamy z powyzszych wzorow:

Ai + A2+ A3+ ... + A9= yx,
A2+ -Ad+ Aa+ Aa= —-i

A3+ A6+ Ag= i .
A4 + Aa= NAd
1 1]
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skad okreslamy wszystkie wspotczynniki A.
Dla znalezienia wspotczynnikéw B musimy da¢ x jakakolwiek

inng warto$é, ale takg, aby te wspdtczynniki pozostaty we wzorach,

czyli aby zaden z sinusdw nie stat sie rownym zeru (dla x = 4 jak

to czyniliSmy w poprzednim przypadku, zginetyby we wzorach wspot-
czynniki B z parzystymi indeksami). Oczywiscie, dogodniej jest da¢
dla x wartos¢ taka, aby ona stanowita n podzielone przez liczbe catko-

witg wiekszg niz 9, np. r lub i Odmierzajagc od nowego punktu

odcietej odcinek réwny 2n i postepujac jak poprzednio, otrzymamy
jeszcze 9 rownan dla znalezienia wspdétczynnikéw B.

8 «
NAKEADANIE SIE PRADOW ODKSZTALCONYCH

Wiadomo, ze suma dwoch pradéw sinusoidalnych o jednakowej
czestotliwosci jest rdwniez prgdem sinusoidalnym o tej samej czesto-
tliwosci. Oznaczmy wartosci chwilowe dwdéch pradéw przez ix i i2,
ich amplitudy przez /Im i 12m katy przesuniecia faz tych pradéw
wzgledem wspolnego napiecia przez qx i 2. Prad wypadkowy stano-
wigcy ich sume niech ma wartosé chwilowg i oraz amplitude Im kat
przesuniecia fazy tego pradu wypadkowego wzgledem napiecia
oznaczmy przez ip za$ pulsacje praddéw — przez co. Wtedy mamy

h- hmsin {Mmt- n), h=hm. {M. 99;
i = Imsin (mt + y); i= + i2.
Nastepnie
hmsin {mt + ) + 12nsin {mt + 49) = Imsin {mt + y>);
hm C0S {ASm 0)1 + 12mCO0S 92sin 0)1 + 1Im sin (fx COS 0)1 +
+ hm s~ €2 00s 0)1 — ImSin 0)t COS %+ 1 mccs 0)t siny.
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Stad {1ImQ3>B (y + 12ncos g2— Imcos y) sin O)t +
+ (Ilmsin qy + 12msin g2— Imsin y) cos cot = O.
Poniewaz réwnos¢ ta zachodzi dla wszystkich wartosci t, wiec
powinno by¢ rTm cos qy + ITchos qR- ITmcos y = 6;

lImsin K+ 12nsin e2— 1msin V= 0,
skad
ImCOS Y = 1ImCO0S gy + 12mC0S 2; Imsiny = Ilmsin<®y + 1/ siny2.
Podnoszac oba ostatnie réwnania do kwadratu i dodajac stro-
nami, znajdziemy
12m= h 2m+ 2 /imiam QB {fy- ya+ /2

skad
L = yjhj + 2/Iml2ncos (y- y2) + / 2Z2m;

dzielgc za$ drugie réwnanie przez pierwsze, otrzymamy

hm SiN <py + 12m SiN 42
WYV= Imosqy:  oos 4R

W ten spos6b znalezliSmy amplitude i kat przesuniecia fazy
pradu wypadkowego.
Jezeli amplitudy praddéw skiltadowych sg jednakowe

hm= hm, wtedy
m= V2VM 2/ACCS{(fy_ 1) = lymv 2[1+ as <y — D)1=

= 21Imcos { V7V
2 )
1 - VAN
t 7w (sin  + siny,) 2 sin cos 9’12 2:tg?’i + 9B
Am(cos & + cos ) 2 cog <y + y2cog oy—qR 6 2
2 2

Poniewaz katy 9'i y2 zawarte sg w granicach +90°, przeto
kat y nie moze przekroczy¢ +90°, wobec czego

<Pi+ <Pt
A=

Zanim rozpatrzymy nakladanie sie dwoch jednakowych pradéw
odksztatconych, wyjasnimy nastepujgce zagadnienie. Majac dwie
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jednakowe krzywe odksztatcone, dajgce wykresy dwdéch funkcji okre-
sowo zmiennych, przesunietych wzgledem siebie w fazie o kat a,
i biorgc na pierwszej krzywej dowolny punkt z odcietg x, bedziemy
mieli na drugiej krzywej odpowiedni punkt z odcieta x — a; wowczas
dla rzednych tych punktow, czyli dla f(x) i f[x —a), ktére ozna-
czymy przez yxi y2, stosujgc szereg Fouriera w postaci wzoru (5)
z §45, otrzymamy

yt= A0+ Fxsin (x + f-)) + ... + Fksin (kx + fK
y2= A0+ Fxsin (x—a+ y¥) + ... + Flsin [k(x —a) + fK =
= AO+ Fxsin (x + fi —a) + ... + Fksin (kx + fk—ka).
Zaktadajgc X = out, bedziemy mieli
jli = A0+ Fxsin (wt + fi) + ... + Fksin (kcot + fK (20)
y2~ Aqg+ Fxsin (cof + ft—a) ... + Fksin (kwt + fk—Ita). (21)

Z tych wzoréw wynika, ze dowolna k-ta harmoniczna drugiej
funkcji jest przesunieta w fazie wzgledem takiejze harmonicznej
pierwszej funkcji o kat ka. We wzorach powyzszych Fk stanowi
wartos¢ maksymalng k-tej harmonicznej. tatwo mozna zauwazyc,
ze gdy ka stanowi catkowitg wielokrotno$¢ 2n, wowczas k-te harmo-
niczne w obu funkcjach bedg ze sobg w fazie.

Rozpatrzmy teraz dwa jednakowe prady odksztalcone, przesu-
niete wzgledem siebie w fazie o kat a; rozumiemy pod tym, Ze o kat
a sa przesuniete wzgledem siebie w fazie pierwsze harmoniczne;
inne harmoniczne bedg wéwczas przesuniete w fazie o katy 2 a, 3a, ka.
Wartosci maksymalne, wzglednie wartosci skuteczne odpowiednich
harmonicznych bedg sobie réwne.

Oznaczajagc przez ilk oraz ix wartosci chwilowe k-tej harmo-
nicznej natezenia obu pradéw, zas przez | kmich wartosci maksymalne,
bedziemy mieli na podstawie poprzednich rozumowan

hk= 4msin ikwt + P*); lkmsin (kwf + n —ka),

gdzie gk oznacza kat przesuniecia fazy wzgledem tej samej harmo-
nicznej napiecia.

Suma tych dwdéch harmonicznych da nam sinusoide o tej samej
czestotliwosci; wartos¢ maksymalna 1'kmi kat przesuniecia fazy fk
tej sinusoidy bedg na podstawie wyzej wyprowadzonych wzorow

ka
ph- K. ~2
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bedzie to wiec harmoniczna pradu wypadkowego

ka

h = hk + hk = 2hm cos-y sin ~kwt —

W szczegolnym przypadku harmoniczne pradéw sktadowych

moga sie znosi¢ i prad wypadkowy bedzie wéwczas pozbawiony od-
powiedniej harmonicznej. Mianowicie, gdy

m= 21kmCoS-y = 0> CZYLl COS-y = °> = (2™« 1

gdzie m oznacza liczbe catkowita.
Odpowiednia harmoniczna pradu wypadkowego osiggnie naj-
wiekszg wartos¢ maksymalng, gdy

ka _ 2mn

ka
cos— = +1; mn; a= —r—

§ 50
WSPOLCZYNNIK KSZTALTU | WSPOLCZYNNIK SZCZYTU

Wspétczynnikiem ksztattu krzywej, przedstawiajgcej przebieg
w czasie funkcji okresowo zmiennej nazywamy stosunek wartosci
skutecznej do wartosci, sredniej rozpatrywanej funkcji:
Y
K=y,

Wartos¢ skuteczna jest okreslona wzorem

0
warto$¢ Srednia za$ 2n

0

w przypadkach szczegdlnych, gdy mamy przebiegi symetryczne, roz-
patrujemy tylko cze$¢ krzywej, odpowiadajgcg X2 lub 1A okresu.

Wspétczynnikiem szczytu krzywej, przedstawiajgcej przebieg
w czasie funkcji okresowo zmiennej, nazywamy stosunek wartosci
najwiekszej do wartosci skutecznej tej funkcji:
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Okreslimy te wspotczynniki dla niektérych przebiegow:
a) Sinusoida (rozpatrujemy X4 okresu).

71 71

V2

b) Przebieg prostokatny, to jest funkcja zmieniajgca sie
w ten sposob, ze w ciggu kazdego poétokresu wartos¢ funkcji jest

stala, po czym zmienia znak, zachowujgc te samg wartos¢ bezwzgle-
dng (rys. 131).

Y

Rys. 131

tatwo zauwazyé, ze zar6wno warto$¢ skuteczna jak i wartosé
Srednia sg rdowne sobie i réwne wartosci najwiekszej rozpatrywanej

funkcy:
Y=Y.= F,

wobec tego
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c) Przebieg trdjkatny. Jest to funkcja zmieniajgca sie li-
niowo miedzy dwiema wartosciami. Przeprowadzamy o0$ X jako o0$
symetrii, wobec czego bezwzgledne wartosci najwieksze bedg sobie
rowne (rys. 132).

Rozpatrujemy 14 okresu.

V=M Ymn® . r

4x2
71"



202 PRADY ODKSZTALCONE

zestawiajac, otrzymamy

Ksztalt funkgcji %X
n r u i 1 1
sinusoida . * ~1,n \/2=1,41
2V2
\N/\N/\N/\/\ \/3=1,73

t\/3S1'15

Zwracamy uwage, ze krzywa ptaska ma wspotczynniki mniejsze,
krzywa ostra wieksze niz sinusoida.

§ 51
WARTOSC SKUTECZNA PRADU ODKSZTALCONEGO

Jak wiadomo, wartoscig skuteczng funkcji okresowo zmiennej

nazywamy wyrazenie
LA

B - r y y2dX.
Dla pradu zmiennego odksztatconego bez skiadowej statej mamy

y = ~ (Akcos kx + Bksin hx).

k=i
Jezeli te sume podniesiemy do kwadratu, otrzymamy sume wy-
razdw nastepujgcych postaci: n

ARcosakx; 2AkBkcos kx sin kx\  BK2sin kx;
AkAjCos kx cos Ix; AkB cos kx sin Ix; BkB, sin kx sin Ix.
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Catka sumy réwna sie sumie catek, wiec pod pierwiastkiem
otrzymamy sume calek wyrazéw tych postaci, wzietych w granicach

od 0 do 2jt Ale
271

Zin kx cos kx dx= 0; j 'cos kx cos Ix dx

2ji

I
e

231 231

h]sin kx sin Ix dx —0; j 'cos kx sin Ix dx
0 0
pozostang zatem jedynie wyrazenia postaci

27 271

At2cos2kx dx = nAR"* |

f >

sin2kx dx = @B.2

Wobec tego
Y = % gy ~ (A%co_s_r k)f -t %ksin kx) I dx
0 0 *=1
- 1 ;- -V d -y -
[AR + B*2)-
Szereg

k=t

y = ™ (Akcos kx + Bksin kx)

mozemy tez przedstawi¢ w postaci

y = Fksin (kx + 9K).
gdzie
F¥*2= A*2+ £*2; tggk=4r

W ten sposob dla wartosci skutecznej otrzymujemy
k —tl

Z i-£(A=2+B9=1/-"-E F?2

k=1 k=1
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Ale wartos¢ skuteczna funkcji sinusoidalnej, a wiec kazdej har-
monicznej funkcji odksztatconej, réwna sie wartosci maksymalnej

tej harmonicznej podzielonej przez \2, czyli

F* V2 2Yh = Y\m

wiec ostatecznie

r*-/r 22 Sy, -
Wartos¢ skuteczna funkcji odksztatconej, okresowo
zmiennej w czasie, rowna sie pierwiastkowi kwadrato-
wemu z sumy kwadratéw wartosci skutecznych wszyst-
kich harmonicznych tej funkcji.
Tak np. dla napiecia

Uh=yt/2 + Uh + Uh + ... + Uh; (22)
dla pradu

' =1 1TE T2=V/F1+ /S + /e, + .. + [ec= (23)

Stosunek wartosci skutecznej funkcji odksztatconej do wartosci
skutecznej gtéwnej fali stanowi wspotczynnik odksztatcenia tej funkcji;
oznaczajac go przez s, mamy

Y y Y\+ Yh + ... + Yh
S~ Y1~ Y,

§ 52
OBWOD PRADU ODKSZTALCONEGO

Rozpatrujac czes¢ obwodu, w ktérym mamy napiecie u= Unsina)t
oraz w szereg potaczone opornosci: rzeczywista, indukcyjng
i pojemnosciowsg, wiemy, ze powstanie prad ustalony o natezeniu

i - Imsin {(ot — (p);
przy czym
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W przypadku, gdy w takim obwodzie mamy napiecie o prze-
biegu odksztatlconym, rozumujemy w sposob nastepujacy. Napiecie
takie sklada sie z szeregu harmonicznych o przebiegu sinusoidal-
nym, o réznych amplitudach i czestotliwosciach. Wobec niezalez-
nosci pradow plynacych w jednym obwodzie kazda harmoniczna
napiecia daje niezaleznie od innych prad o przebiegu sinusoidalnym
0 czestotliwosci tej samej co powodujgce go napiecie. Wszystkie te
prady, dodajac sie, tworzg prad wypadkowy, odksztatcony, przy
czym poszczegolne prady bedg harmonicznymi. Poniewaz czestotli-
wos$¢ harmonicznej rzedu k jest k razy wieksza od czestotliwosci
pradu pierwszej harmonicznej, wiec

Zbadajmy, jakie warunki muszg by¢ spetnione, aby wplywy
samoindukcji i pojemnosci znosity sie wzajemnie dla danej harmo-
nicznej, czyli zeby dana harmoniczna dawata rezonans napie¢. Be-
dzie to wtedy, gdy

1 1
ka>L |G>C_O' ktoL KtoC'

k2za2LC = 1; LC = ngsz
albo jeszcze

LC

lub
1

2nf~Lc’

Widzimy, ze rezonans moze zachodzi¢ wytgcznie dla jednej har-
monicznej na raz, i to tylko wtedy, kiedy spetniony jest warunek

LC —-X%E’t-

Jezeli dla danej harmonicznej zachodzi rezonans napie¢, to dla
tej harmonicznej opornos¢ pozorna staje sie najmniejszg i réwng
opornosci rzeczywistej, a wiec natezenie pradu tej harmonicznej
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bedzie najwieksze; inaczej, wplyw danej harmonicznej napiecia na
prad wypadkowy poteguje sie. To zjawisko pozwala nam wyodreb-
nia¢ w badaniu poszczeg6lne harmoniczne napiecia.

Ze wzoru (24) mozemy zbada¢, jaki wpltyw na ksztatt krzywej
pradu odksztatconego wywierajg indukcyjnosé i pojemnosé. Miano-
wicie, jezeli w obwodzie, w ktérym dziala napiecie o przebiegu od-
ksztatlconym, mamy oporno$¢ R i indukcyjno$s¢ L w szeregowym
potaczeniu, wowczas natezenie pradu bedzie miato réwniez przebieg
odksztatcony, przy czym natezenie pradu harmonicznej rzedu k
bedzie na podstawie wzoru (24) réwne

* —
V/?22+ (kwlL)2

wynika stad, ze im wiekszy wskaznik k harmonicznej, tym mniejszy
bedzie prad, to znaczy, ze wpltyw wyzszych harmonicznych maleje,
a wiec natezenie pradu bedzie miato przebieg mniej odksztatcony niz
napiecie, ktére ten prad spowodowato. Indukcyjnosé thumi wyzsze
harmoniczne pradu, zbliza wiec krzywg pradu do sinusoidy.

Jezeli zas w obwodzie z napieciem odksztatconym mamy opor-
nos¢ R i pojemnos¢ C w szeregowym potaczeniu, wowczas natezenie
pradu harmonicznej rzedu k wyrazi sie wzorem

Uk

Im wiekszy wskaznik k, tym mniejszy bedzie mianownik w ostat-
nim wzorze, czyli tym wieksze bedzie natezenie prgdu harmonicznej,
czyli wptyw wyzszych harmonicznych staje sie coraz wiekszy; prze-
bieg natezenia pradu bedzie wiecej odksztatcony niz przebieg na-
piecia. Pojemnos$¢ poteguje wyzsze harmoniczne, oddala wiec krzywa
pradu od sinusoidy.

§ 53
MOC PRADU ODKSZTALCONEGO

Kazda harmoniczna pradu odksztatconego jako prad sinuso-
idalny daje $rednig moc za jeden okres, czyli tak zwang moc czynna,
réwna iloczynowi napiecia przez natezenie pradu i przez wspétczynnik
mocy, zalezny od przesuniecia fazy pradu wzgledem napiecia. Dla
otrzymania mocy czynnej pradu odksztatconego musimy wzigé¢ sume
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mocy czynnych wszystkich harmonicznych tego pradu. W ten sposo6b
mozemy napisa¢ dla mocy czynnej P pradu odksztatlconego wzér
nastepujacy:

P = Ull1GB(fl+ U2 CBGR+ <=+ UnInG>b ([N

Rozpatrzmy prad sinusoidalny, Kktoérego napiecie i natezenie
majg wartosci skuteczne U i I, zupelnie takie same jak wartosci
skuteczne napiecia i natezenia pradu odksztatconego; na podstawie
wzoréw (22) i (23) znaczy to, ze

U = V*72L+ U\ + e=+ U\, (25)

1=V/N2+ ][] + ==+ /[,2 (26)

Niech natezenie pradu | bedzie przesuniete wzgledem napiecia U

o0 kate>, dobrany w ten sposéb, aby moc tego prgdu sinusoidalnego wy-
padfa taka sama jak dla pradu odksztatconego; wtedy bedziemy mieli

P- Uuicos«e= uii1cos (f1+ U212cos 922 + + U, inces <pn. (27)

Taki umyslony prad sinusoidalny, ktoérego napiecie i natezenie
majg te same wartosci skuteczne co i prad odksztatcony i ktérego moc
czynna rdwna sie mocy czynnej pradu odksztatconego, nazywamy
pradem sinusoidalnym réwnowaznym pradowi odksztatconemu.

Cos gpmozna nazwac wspdtczynnikiem mocy réwnowaznego pradu;
wspodtczynnik ten zawsze moze by¢ odpowiednio dobrany, wynika to
z tego, ze na podstawie wzoréw (27) oraz (25) i (26)

Uih cos (fi + U2l2cos G2+ ... + u,lncos <,  f90)
COb!' y (EA2+ tfaa+ - + W) (A2+ + 1\) '
Mianownik w ostatnim wzorze nie moze by¢ mniejszy od licznika,
czyli ze wyraz ten jest na ogot mniejszy od jednosci; inaczej mo-
wigc, zawsze mozna dobrac kat ¢rdla otrzymania potrzebnego wspét-
czynnika mocy.

W przypadku, gdy w obwodzie pradu odksztatconego z opor-
noscig rzeczywistg B zatozymy, ze dla wszystkich czestotliwosci (har-
monicznych) R ma wartos¢ stata, to znaczy, nie wezmiemy pod uwage
dziatania naskorkowosci, bedziemy mieli

Ul cos = 12B (29)
Ulllcos ql= Ix2R,
(30)

U,,I,, COS cpn = 1 ZB
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Wzér (29) daje

I 2+ h2+ +v
059y BVuizs Uzs =+ U2 D

okreslajac za$ ze wzor6w (30) wartosci 11t l,, i podstawiajac do (31),
otrzymamy

oS © V m052<r1 + U2Z2cos2qe + ... + U,2c082m
Uuek+U 22+ m. + U2
,w przypadku szczegélnym, gdy w obwodzie uwzgledniamy tylko
opornos$¢ rzeczywista, wszystkie harmoniczne pradu bedg w fazie
ze swymi napieciami, a wiec dowolny cos gk—:, wtedy cos = ..
lloczyn wartosci skutecznych napiecia i pradu odksztatconego
stanowi moc pozorng tego pradu; stosunek mocy czynnej do mocy

pozornej nazywamy wspotczynnikiem mocy pradu odksztatconego.
Oznaczajgc ten wspoétczynnik przez K, bedziemy mieli

K = Ulllcos (pl + ... + Ukh cos gk+ ... + U,l,, cos q, (32)
Y(ul2+ ... + uk+ hu2(122+ ... + IR+ ...+ 12
Poréwnujac wzory (28) i (32), widzimy, ze wspo6tczynnik mocy pradu

odksztatconego moze by¢ ujety w postaci

K -- cos o»

Nalezy tylko mie¢ na uwadze, ze kat jest tylko pewnym umyslo-
nym katem, ktorego cosinus stanowi wspotczynnik mocy na podstawie
wyzej podanego okreslenia, albo tez kgtem przesuniecia fazy natezenia
pradu wzgledem napiecia w réwnowaznym prgdzie sinusoidalnym.

Oznaczajgc dla pradu odksztatconego moc pozornag przez Pz,
moc czynng przez P, bedziemy mieli

Pz= Ul; P=KUI=UI cos = Pzcos q

Moc czynna mozemy rozpatrywac jako sktadowag mocy pozornej;
woéwczas drugg sktadowa, analogicznie jak dla mocy pradu sinusoi-
dalnego, bedzie pewna moc, ktdrej wartos¢ mozemy wyrazi¢ w po-
staci Ul sin ¢ nazwijmy te skladowa mocy pozornej moca bierng;
oznaczajac jg przez Px, bedziemy mieli

Px= Ul sin e
P2= P2+ P 2] Px=gP 2- P2

Nalezy zwroci¢ uwage, ze w przeciwienstwie do mocy czynnej pradu
odksztatconego, ktora jest réwna sumie mocy czynnych poszczegol-
nych harmonicznych, moc bierna, okreslona w sposéb wyzej podany,
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nie jest na og6t réwna sumie mocy biernych tych harmonicznych.
Ta ostatnia suma

Uxli sin ® + ... + Uklksin (k+ ... + Unl, sin gn=
k—n

2 u“ksin <pk

ma najwiekszg wartos¢ wowczas, gdy wszystkie sinusy bedg réwne 1,
czyli gdy katy przesuniecia wszystkich harmonicznych pradu wzgle-
dem swych napie¢ wynoszg 90°, ale wowczas wspétczynnik mocy, jak
wynika z wzoru (32), staje sie réwny zeru, wiec cos o= 0, Sin = 1;
obwod zawiera tylko opornos¢ bierna.

Poréownajmy w tym teoretycznym przypadku warto$s¢ mocy
biernej pradu odksztatconego, ktora staje sie wowczas réwna mocy
pozornej, z sumag mocy biernych poszczegélnych harmonicznych;
biorgc roznice kwadratow tych wielkosci bedziemy mieli

k—fl 2 k=n 2
Px2— Yi v xnnre = U212— N
k=i i=
ale uz2= Uf+ ...+ U?+ + U.
/ » = /1 o+ A + ...+ /= Z

U*P = Zi/,2/,2+ Z UK1? + Z U? V,
[Z UKIK>= (U.h + ... UninY = Z URIKR+ 2Z UKkIku,

Odejmujgc stronami ostatnie dwa wzory, otrzymujemy
hn

PJ- /7 ukik [uki U ”‘S( >0.
k—\
Wyraz z prawej strony w rozpa-
trywanym przypadku nie moze si¢ row-
na¢ zeru, gdyz wowczas mielibysmy
l_sz V = €onst,,
ik 1]
a to bytoby mozliwe tylko w obecnosci
w obwodzie wylgcznie opornosci czyn-
nej; tymczasem rozpatrywalismy przy-
padek, gdy w obwodzie mamy tylko opornosé¢ bjerna.
Analogicznie do mocy pradu sinusoidalnego mozna moce przy
pradzie odksztatconym uja¢ wykresinie w trojkat, jak na rys. 133.

Teoria pradéw zmiennych 14
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§ 54

WPLYW PRADU ODKSZTALCONEGO PRZY POMIARACH
INDUKCYJNOSCI | POJEMNOSCI

Zatozmy, ze do napiecia U pradu zmiennego o przebiegu sinu-
soidalnym wigczylismy tylko opornos$¢ indukcyjna, np. cewke o bar-
dzo malej opornosci rzeczywistej w poréwnaniu z indukcyjnoscig
wihasng L tej cewki. Woéwczas, oznaczajgc przez | natezenie pradu
ptyngcego w takim obwodzie przy pulsacji ca bedziemy mieli

U= IcolL,

skad dla mdukcyjnosci otrzymujemy

1 <0
Jezeli zas takg samg cewke wilgczymy do napiecia o takiej samej
wartosci skutecznej U, lecz o przebiegu odksztatconym, wdwczas,
oznaczajgc przez Ukwartos¢ skuteczng fc—tej harmonicznej, bedziemy
mieli dla wartosci skutecznej Ik tej samej harmonicznej natezenia

Pr~du , Uk
[* =
kwL

wobec tego dla wartosci skutecznych tych odksztatconych pradéw
bedziemy mieli

(/= vez+ — + U*

Ua2 Uk %K
1= . + ..+
/ (caL)a + fe2al)2 “ ¢ j [ u" k2
Oznaczajac wyraz TUO przy pradzie odksztatconym przez L',
otrzymamy
Uf+ ...+ K2
Poniewaz licznik pod pierwiastkiem jest wiekszy od mianownika,
przeto U>L

to znaczy, ze przy mierzeniu indukcyjnosci pradem odksztatconym
otrzymujemy rezultat wiekszy niz przy pradzie sinusoidalnym.

Do analogicznego rezultatu dojdziemy réwniez przy mierzeniu
pojemnosci. Jezeli mianowicie do napiecia U pradu sinusoidalnego
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wigczymy kondensator o pojemnosci C ze znikomo matga opornoscig
rzeczywistg, wtedy przy takim pradzie

U=1~c¢c
skad
C=-rj—m

Jezeli ten sam kondensator wigczymy do napiecia o takiej samej
wartosci skutecznej, lecz o przebiegu odksztatconym, wdéwczas
dla k - tej harmonicznej z napieciem U\ otrzymamy dla natezenia

Prqdu l,-lm CU h,

wobec tego dla wartosci skutecznych napiecia i natezenia prgdu od-
ksztatconego otrzymamy

U=V i2+ e= ki
I = V(WC)*t/L + ... {kwC)iUKR=(0CAU L2+ ... (k(0C)*UI2.

Oznaczajac przy pradzie odksztatconym -y—przez C', bedziemy

mieli
+ k2UK2
c'=cl/w fe + UR’
skad wynika, ze C >c
§ 55

WIELOFAZOWE PRADY ODKSZTALCONE

Rozpatrzmy uktad wielofazowy symetryczny Zrodta pradu od-
ksztatconego. SEM powstajgce w sasiednich uzwojeniach takiego
uktadu bedag przesuniete wzgledem siebie w fazie o jednakowe katy.
Zatozymy, ze wartosci maksymalne SEM we wszystkich uzwoje-
niach-fazach beda sobie réwne, jak to zresztg zwykle ma miejsce.
Przy jednakowym obcigzeniu wszystkich faz bedg takze réwne war-
tosci maksymalne napie¢ na poszczeg6lnych fazach. Oznaczmy
przez p ilo$¢ faz rozpatrywanego ukiadu,, gdzie p > 2; przez eJ, en,
eUi, ..., epwartosci chwilowe SEM odpowiednich faz; kat przesunie-

14»
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cia fazy miedzy dwiema sgsiednimi SE M (pierwszymi harmonicz-
nymi) przez a, przy czym a-= ; Nastepnie oznaczmy wartosci

maksymalne SEM poszczegélnych harmonicznych w kazdej fazie
przez EIm E2m ..., Ekm Na podstawie wzoréw (20) i (21) z 8§49, biorac
pod uwage, ze przy pradzie zmiennym bez domieszki pradu statego
nie powinno by¢ w szeregu Fouriera skladowej statej, bedziemy

mieli

ei = Elmsin M + y3) + ... + Ekmsin (kwt + v5i),

en = Elmsin (cot + yx—a) + ... + Ekmsin (kwt + igk—ka),
enj= Elmsin [col + —2a) + ... + E” sin (kot + ik—k . 2a),

+

eP = Elmsm[cot + ipl—[p—1) a]+ sin [keot+ yk—k {p - 1) a].

. . 2T I
Poniewaz a= — , przeto ka = i2n.
P

tatwo zauwazy¢, ze w przypadku, gdy Ljest liczbg catkowita,

czyli gdy ka, k. 2a, ..., k(p —1) a bedag catkowitymi wielokrot-
nosciami 2n, harmoniczne we wszystkich fazach bedg mialy te
samg wartos$¢ co /c-ta harmoniczna pierwszej fazy, czyli

Ekmsin iko)t + %)=
Suma wartosci chwilowych sit elektromotorycznych wszystkich

faz nie bedzie zawierata tych harmonicznych, dla ktérych LS nie jest
liczbg catkowitg, gdyz sumy takich harmonicznych dajg zg’o; nato-
miast pozostang harmoniczne, dla ktérych hjest liczbg catkowita.

Zastosujemy powyzsze rozumowania do tréjfazowych pradéw
odksztatconych, gdzie a—T:. Wartosci chwilowe SEM w poszcze-

gélnych fazach bedg

«/ = EIm sin M + WI) + eee + E km sin + V¥*),

2
en = EImsin [ oof + y>i + + Bmsin (kwl + —
«

em = Elmsin (@)t + y1—2 -~ B+ ... + Ekmem~kwt + yk—k ,2 .~ j;
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K bedzie liczbg catkowitg, gdy k jest wielokrotnoscig trzech, a wiec

dla harmonicznych trzeciej, szostej, dziewiatej itd.

Te harmoniczne stajg sie sobie rowne we wszystkich trzech fa-
zach. Przy potaczeniu faz w gwiazde (rys. 134), oprécz SEM fazo-
wych, rozpatrujemy SEM skojarzone, ktére bedg miaty wartosci
chwilowe réwne réznicy takichze wartosci SEM fazowych. Do tych
roznic nie wejda harmoniczne, ktérych wskaznik jest liczbg po-
dzielng przez 3. Przy jednakowym obcigzeniu wszystkich trzech faz
napiecia na poszczeg6lnych fazach zrdodta pradu bedg miaty te same

Rys. 135

wartosci maksymalne; napiecia skojarzone nie beda zawieraty har-
monicznych, ktorych wskaznik jest podzielny przez 3; prady powsta-
jace pod wpltywem tych harmonicznych napiecia réwniez nie bedg
zawieraty tych samych harmonicznych. Jezeli w ukfadzie gwiazdo-
wym mamy czwarty przewdd, tak zwany zerowy, woéwczas, wedtug
pierwszego prawa Kirchhoffa, algebraiczna suma wartosci chwilo-
wych wszystkich pradéw schodzacych sie w punkcie zerowym réwna
sie zeru, czyli pragd ptynacy w przewodzie zerowym bedzie rowny
algebraicznej sumie pradow ptynacych w trzech przewodach fazo-
wych. Dla przebiegéw sinusoidalnych suma ta réwna sie zeru, wiec
przy jednakowym obcigzeniu wszystkich faz prgd w przewodzie ze-
rowym nie bedzie ptynat; natomiast przy przebiegach odksztatconych
suma ta bedzie zawierata prady tych harmonicznych, ktérych wskaz-
nik jest podzielny przez 3, a wiec nawet przy jednakowym obcig-
zeniu wszystkich faz w przewodzie zerowym bedzie ptynat prad
zawierajacy te harmoniczne, ktdrych brak miedzy przewodami fa-
zowymi.
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Przy potaczeniu tréjkatnym (rys, 135), gdy dla pradu sinusoidal-
nego suma wszystkich trzech SEM rowna jest zeru, w razie prze-
biegow odksztatconych suma ta bedzie zawierata harmoniczne, kto-
rych wskaznik podzielny jest przez 3.

Pod wplywem tych SEM w tréjkacie stanowigcym zamkniety
obwod bedzie ptynat prad zawierajacy te same harmoniczne. Z tego
powodu w pradnicach nie stosuje sie potgczenia tréjkagtnego, aby
unikna¢ przy odksztatconym napieciu strat na ciepto, ktére powstaje
nawet wowczas, gdy prad na zewngtrz nie bytby pobierany.
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CZWORNIKI, rownania i wykresy obwodow
PRADU ZMIENNEGO OPARTE NA BADANIACH
W STANIE JALOWYM | W STANIE ZWARCIA

§ 56
POJECIA OGOLNE O CZWORNIKACH

W wiegkszosci przypadkéw w elektrotechnice mamy do czynie-
nia z obwodami, ktére mozna sprowadzi¢ do uktadoéw réwnowaznych
zawierajacych w ten czy inny sposob potgczone opornosci czynne,
indukcyjnosci i pojemnosci, inaczej mowigc, ukladdéw zitozonych
z kilku opornosci pozornych. Taki ukiad, znajdujgcy sie miedzy
zrédtem energii elektrycznej i odbiornikiem, zawierajgcy 2 zaciski
wejsciowe oraz 2 zaciski wyjsciowe, zostat nazwany czwornikiem
(rys. 136). Na rysunku M oznacza czwornik, la i Ib zaciski wejsciowe,

— 3. la__ 2a  _*J2
' n
2bt
Rys. 136

czyli zaciski na poczatku czwoérnika, 2a i 2b zaciski wyjsciowe, czyli
zaciski w koncu czwornika. Napiecie i natezenie pragdu na poczatku
oznaczymy wskaznikiem 1, za$ w koncu wskaznikiem 2. N oznacza
odbiornik wiaczony do zaciskdéw koncowych.

Jezeli uktad czwérnika jest tego rodzaju, ze do poszczegolnych
obwodéw mozna zastosowa¢ prawa Kirchhoffa i zasade super-
pozycji, czwoérnik taki nazywamy liniowym.
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Przypusémy, ze mamy w czworniku n obwodow, do ktérych
mozna zastosowac¢ prawa Kirchhoffa; otrzymamy wtedy n réownan
liniowych, do ktérych wejda rowniez napiecia i prady na poczatku
i w koncu czwérnika; z rownan tych mozemy wyrugowac¢ wszystkie
napiecia i prady, pozostawiajac réwnania zawierajace tylko napiecia
i prady na poczatku i w konhcu czwornika. Poniewaz wszystkie row-
nania sa liniowe, wiec i réwnania zawierajgce napiecia i prady na
poczatku i w koncu czwornika bedg liniowe; mozna je ujg¢ w naste-

wzory: 0l, AOt+ Bh, ()
ii = C02+ DI2, 2,

gdzie wspotczynniki A, B, Ci D sg na ogd&t liczbami zespolo-
nymi, zaleznymi od R, L i C oraz czestotliwosci (pulsacji) pradu
zmiennego.

W przypadku, gdy wewnatrz czwornika znajduje sie rowniez
zrodto energii elektrycznej, czwornik taki nazywamy czynnym; jezeli
zas tego zrddta nie ma, czwornik nazywamy biernym. Dalej bedziemy
rozpatrywali czworniki liniowe bierne.

W dalszych rozwazaniach przyjmiemy, ze B, L i C majg wartosci
state, wobec czego dla okreslonej czestotliwosci pradu zmiennego
wspotczynniki wchodzgce do wzoréw (1) i (2) bedg miaty wartosci
state, mozna wiec nazwac¢ te wspotczynniki statymi czwérnika.

W szczeg6lnosci, gdy czwornik ma uktad tego rodzaju, ze prze-
niesienie zrddta pradu na zaciski wyjsciowe, za$ odbiornika na za-
ciski wejsciowe nie powoduje ani zmiany natezenia prgdu pobiera-
nego ze zrédia, ani zmiany napiecia pradu ptyngcego do odbior-
nika, czwoérnik taki nazywamy symetrycznym.

We wzorze (1) kazdy z wyrazéw z prawej strony stanowi pewne
napiecie, z czego wynika, ze A nie ma wymiaru, zaS B ma wymiar
opornosci; tak samo we wzorze (2) wyrazy z prawej strony odpowia-
daja pewnym natezeniom pradu, wobec czego C musi mie¢ wymiar
odwrotnosci opornosci, czyli przewodnos$ci, natomiast D nie ma wy-
miaru.

Miedzy, czterema staltymi wchodzacymi do wzorow (1) i (2
istnieje zalezno$¢, ktérg mozemy ustali¢, rozumujac w sposéb naste-
pujacy: zamieniamy miejsca Zrddta pradu i odbiornika; oznaczmy
napiecie w koricu czwornika przez U2, zas$ na poczatku przez UX , oraz
odpowiednie natezenia pradu przez I\ i I'l. Prady te beda miaty
kierunki przeciwne do poprzednich (rys. 137) i we wzorach (1) i (2
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nalezy pisa¢ je ze znakami ujemnymi. Otrzymamy wowczas
O\~ AO\-BV2
-1\= C0"2-DI"2.
Z tych dwoéch roéwnan otrzymujemy

D B
0V= ap.gc 0+ ap-BC I ©)

C A
K- ap-sc U\* ap-sc I1* “)

Rys. 137
|

Przypus¢my, ze na poczatku czwdérnika przytozymy napiecie
Ux= U i zewrzemy zaciski w koricu, wtedy U2= 0; nastepnie przy-
ktadamy to samo napiecie w koncu czwérnika, czyli we wzorze (3)
U'2= U, i zewrzemy zaciski na poczatku, wtedy U\ = 0. Prady
ptynace przez zwarte zaciski czwornika beda wynosity: w pierw-
szym przypadku

z (1) 1Z="-, zaS w drugim przypadku z (3) llz= ~ &
ale prady te przy tym samym napieciu muszg by¢ sobie réwne, wiec

0 AD-BC H
B B U’
skad wynika, ze
1 (5)

Biorgc pod uwage ostatni wzdér otrzymamy zamiast wzordéw

@ i@
0', = DO'i + BI\, (6)

V2= CO\ + AI\. )

Pokazemy na przyktadzie, ze prady ptynace przez zwarte zaciski
czwoérnika beda jednakowe, gdy umiescimy Zrédio pradu raz na po-
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czatku, a drugi raz w koncu czwornika (to samo napiecie). Ze sche-
matu (rys. 138) widzimy, ze

u=21+/23

l,=—
Z, 4-
z22+12z3
Z tych réwnan znajdujemy natezenie pradu plyngcego przez zwarte
w koncu zaciski

Oz,

T ZX22+zx23+ 2273
Przenosimy zrodto pradu na
koncowe zaciski, na ktérych

Rys. 138 bedziemy mieli to samo napie-
cie U. Oznaczmy w tym przy-
padku natezenie pradu wycho-
dzacego z konca czwdrnika
przez /'2, za$ natezenie pradu,

U plynacego przez zwarte zaciski
na poczatku, przez I\ (rys. 139),
wtedy, jak wida¢ na schemacie,

Rys. 139 . .
N = P23+ 1\Z1,
@)
734 ZiZz2
Z\+ Z2
z tych réwnan znajdujemy
tfz,
zx22+z%w3+ 2722723
czyli
Yi= 12

W przypadku czwornika symetrycznego zamiana miejsca przy-
taczenia zrédta pradu nie zmienia natezenia pradu ptynacego do od-
biornika ani natezenia pradu pobieranego ze zrédta pradu, wiec we wzo-
rach (6) i (7) bedziemy mieli 0'1= t?2; /'2= 7X 1\ = /2, wzory te

prsyjm, posta6 OlI-DCi+ KB

i , - ¢ o , + y t 9



WYZNACZENIE STALYCH CZWORNIKA DROGA POMIAROW 219

Jezeli porownamy te ostatnie wzory z wzorami (1) i (2), doj-
dziemy do wniosku, ze w czwdérniku symetrycznym

A = D, (10)
wobec czego wzor (5) daje nam
A2= D2= 1+ BC. (1)
/ § 57

WYZNACZENIE STALYCH CZWORNIKA DROGA POMIAROW

Opornos¢ pozorna czwolrnika, mierzona na poczatku, wyrazi sie

wzorem
A

A
a opornos$¢ pozorna, mierzona w koricu, bedzie réwna

¢l=

B
£ *2
Na podstawie wzorow (1) i (2) otrzymamy

£ _ N2 N2 12,
1- ctf2+d/2

Dla znalezienia statych czwornika przeprowadzamy nastepujace
pomiary:

1) mierzymy na poczatku czwérnika przytozone napiecie (do-
wolne), prad przy tym pobierany oraz kat przesuniecia fazy pradu
wzgledem napiecia w dwoch przypadkach: raz, gdy w koncu czwoér-
nika prad nie jest pobierany, czyli mamy tak zwany stan jatowy,
drugi raz, gdy w koncu czwornika zaciski sg zwarte, czyli mamy stan
zwarcia. Oznaczmy dla obu tych standéw opornosci pozorne mierzone
na poczatku odpowiednio przez z 10i A»- Biorac pod uwage, ze we
wzorze (12) trzeba zatozy¢: w pierwszym przypadku /2= 0, w drugim
zas U2= 0, otrzymamy

z10—~ (13)
Ape-Jd Ly (14)

2) dajemy dowolne napiecie na zaciskach w koricu czwdrnika,
mierzymy to napiecie, pobierany przy tym prad i kat przesuniecia
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fazy pradu wzgledem tego napiecia: raz, gdy prad na poczatku nie
jest pobierany (stan jatowy), drugi raz, gdy zaciski na poczatku sag
zwarte (stan zwarcia). Oznaczmy dla tego przypadku opornosci po-
zorne mierzone w koncu czwérnika odpowiednio przez ZD i Z2z.
Na podstawie wzordw (6) i (7), zaktadajgc kolejno I\ = 0 i U\ = O,
otrzymamy

D

0 G (15)
B

Yz — (16)

Z rownan (13), (14), (15) i (16) mozemy stwierdzi¢, ze
'10 20
— 17
Nz ZZ 0
Do tego dochodzi jeszcze zaleznos¢ (5)
AD —BC = 1

Rozwigzujac réwnania (13) do (16) z uwzglednieniem ostatniej
zaleznosci, otrzymujemy wartosci statych czwornika w dwéch po-
staciach:

_ 10 (18)
Py ' 620 {2z VA20(~10 A lz)
: '10
B (19)
-h / 3 Iz V I 20 2%
. . . 20
¥ o0z o0 V-(,lo [Zo ¢(2) e
D= ¢20 1/ $20 21,

71020 ¢27) Y 210-zZ
Dla czwornika symetrycznego, gdy A = D, jak wida¢ z wzoréw (13)
do (16), ¢ 0= (D= (.. (is= ¢ Z= ,.» wobec tego wzory (18) do
(21) dajg nam

1/ ¢ 0
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c =i, 1.. 24
l\/ z0(z0-z 2 24)

D=1/ Z° = (25)
V Zo-Zz

Do tego ostatniego dochodzi zaleznos$¢ (11)

A2= D2= 1+BC.

Z ostatnich wzorow wynika, ze dla znalezienia statych czwdérnika
symetrycznego wystarczy dokonaé¢ pomiaréw tylko na poczatku, gdy
w koncu mamy stan jatlowy i stan zwarcia.

Wzory (1) i (2) daja nam wartosci napiecia i natezenia pradu
na poczatku czwornika, gdy mamy w koncu napiecie U2i pobieramy
prad 12. W stanie jatowym (/2= 0) napiecie zrédta U1 datoby nam
w koncu inne napiecie niz U2, ktére mamy przy pobieranym prg-
dzie /2; dla zachowania w stanie jatlowym napiecia U2 musieliby$my
da¢ na poczatku inne napiecie, ktore nazwiemy napieciem na po-
czatku czwornika w stanie jatowym i oznaczymy przez U10, réwniez
i natezenie pradu pobieranego na poczatku ulegnie wtedy zmianie,
nazwiemy go pradem w stanie jatlowym i oznaczymy przez 710.
Analogicznie rozumujgc, gdy mamy stan zwarcia (U2= 0), musimy
da¢ na poczatku napiecie Ulz i prad |1z, by natezenie pradu ptyngcego
przez zwarte w koncu zaciski czwornika wynosito 12, tak jak przy
normalnym obcigzeniu.

Z wzorow (1) i (2) otrzymujemy
tyi0=Ati2 &iz~ BIl2 110 Ctt2 1llz=DI2
Widzimy, ze
?io0 + 0Oi, (26)
Ko + Kz

K

Z wzoréw tych wynika, ze dla otrzymania wartosci napiecia
i natezenia pradu na poczatku obcigzonego czwoérnika nalezy dodaé
do siebie odpowiednie wartosci tych wielkosci w stanie jatowym
i w stanie zwarcia.

Przejdziemy teraz do rozpatrzenia najbardziej rozpowszechnio-
nych typéw czwérnika.
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§ 58
CZWORNIK TYPU T

Uktad czwornika nazwanego typem T posiada trzy opornosci
pozorne, z ktérych dwie, Zxi Z3, sg potgczone szeregowo, trzecia zas,
Z2, whgczona jest réwnolegle miedzy tamtymi (rys. 140).

Rozpatrujac ten uktad mozemy napisa¢ nastepujace réwnania:

01-0,- hzl+ hz3, (27)
/N\
HH li-72=-1(t71-1iZi). (28)

U u?
’ Z drugiego réwnania
i [ 0ix12z2,
Rys. 140 I - Zl +7 2

podstawiamy te wartos¢ do pierwszego roéwnania, wtedy

0! - Oa- (0!'+ /222 _. T-+ /223,
Zi+

z2
skad
d A — A—\=cg2+/
\V i1+ 2 2) ZX+22
ji _ Zi+ Z24§ Z1Zt+ Z1Za+ ZtZtA (29)
1- z2 2 z2
Analogicznie okreslajac z réwnania (28)
0X= 1172-1 222+ 1171
i podstawiajgc te wartos¢ do réwnania (27), znajdziemy
=4-02+ + Zsm/,. (30)
A z2 “ z2

Zestawiajac wzory (29) i (30) z podstawowymi wzorami czwérnika (1)

i (2) stwierdzimy, ze dla czwérnika typu T

A Zi+Z722. D Z1Z22+ 712S+72z23_ ZA4_ ~. n_ 7Z2"tZ3
i ' zt' z,

Dla stanu jatowego (/2= 0) bedziemy mieli z (29) i (30)

Zi+22
Oio— " 0, (31)

ho = 02 (32)
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skad opornos$¢ pozorna czwérnika w stanie jatowym bedzie
Z*~Nf-=7Z X+ 2722 (33>

Dla stanu zwarcia (U2= 0) z tychze réownan (29) i (30) otrzymamy
ty ZXZ2+ 721723+ 2273 f
w2

Utz — , (34)
Z2
f Z2
f,_#eraz3f (35)
z2
skad oporno$¢ pozorna czwornika w stanie zwarcia bedzie
-* . . . - . =
2 &i* 71722+ 2123+ 2273 (36)

A. z2+23
Wzory uzalezniajgce napiecie i natezenie prgdu na poczatku
czwornika od tychze wielkosci na koricu —moga by¢ wyrazone
prosciej, jezeli wprowadzimy do nich opornosci stanu jatowego i stanu
zwarcia Z0 i Zz oraz dwie nowe wielkosci zespolone, mianowicie

37>
= (38)
2
Na podstawie wzorow (31) i (35) dla naszego czwdrnika
6 Zx+ Z2
{>0==------ N ' (39)
9,- 22+73 )
12

Biorgc pod uwage wartosci Z0i Zz ze wzorow (33) i (36), znaj-
dziemy state czwdrnika w postaci

A=S0; B=Sz7z, C= D=S ;
Zq
wtedy zamiast wzoréw (29) i (30) otrzymujemy
t)1=S0V2+ SzZ212, (41)
A= ]~rC2+$§J 2 (42)
Zo

Poniewaz dla kazdego czwornika
AD —BC = 1,
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przeto Q. SgSzZ. 1
N2 A A
s 808z = Zp 43)
20 Zz
Czesto zamiast — wprowadza sie przewodno$¢ pozorng stanu
.(.,O
jatowego YO, wowczas wzory (41), (42), (43) beda miaty postac:
= sh2+ SMzi2, (41')
h S@ 002+ $212, (42)
S0Sz= -------\r=-=-- (43")
nZ,,

Kazda z wielkosci SOi Sz okreslonych wzorami (37) i (38) stanowi
pewng liczbe zespolona, zalezng od opornosci pozornych czwornika.
Oznaczmy kat przesuniecia fazy f?10 wzgledem U2 przez a0, a llz
wzgledem 12 przez az\ katy te bedg argumentami SO Si z, czyli

So= S0(cos sO+ / sin 00) = S0eJ°,
Sz= SZ(cos az + / sin az) = Szei**.

Dla czwérnika symetrycznego typu T wyzej wyprowadzone
wzory znacznie sie upraszczajg, wtedy bowiem Z3= Zxi zwzoréw (39)
i (40) wynika, ze

£0= =$=A +h , (449
z2
réwniez a0= az= a, czyli S= S(cos a+ jsina) = §eiJ
Z wzorow (33) i (44) znajdujemy

: S-1 .
Zi . IO 45
s %0 (45)
(46)

Wzory (41), (42) i (43) przyjmuja postac
IN=S502+ SzM2= S (U2+ Zz12), (47

h=you2+si2=8 (0 2+1i% (48)

(49)
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lub tez z wzoréw (41", (42") i (43"
u, = $§(C2+zzI12, 47
h- s 0, +!), (48)
S-V 4
Poza tym bedziemy mieli
Z12+27172. ¢,
z0 22

A=D=S=-1-t Zg; B=$gz, (50)
z2

§ 59
CZWORNIK TYPU n

Czwornik typu n zawiera trzy opornosci pozorne, potgczone jak
na schemacie (rys. 141). Rozpatrujac ten ukiad, znajdziemy:

(61
uz2 (52)
z, 17s
Z, .
5
1 :
U Zjiui
i
Rys. 141
Dla stanu jatowego (/2= 0)
(53)
[ - ™0 | "2- (54)
0 z, +r,’
z tych dwu réwnan rugujemy f10, wtedy
N0~ 2= 1-0 g,
(55)

] 71+za W
Uio = t7,

Teoria pradéw zmiennych 1S
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po podstawieniu tej wartosci V10 do wzoru (54), otrzymamy

A,=hz*L c2+ 4-02=A +/» +*8c . (56)
7273 .8 7273

Dzielgc stronami wzor (55) przez (56) znajdziemy opornos$¢ pozorng
czwornika w stanie jatowym:

z =A? = (Z1+287273 = Z"a + Zazg

N S (57)
/10 Z23(21+Z22+2Z3 Zi+Z22+2723
Dla stanu zwarcia (U2= 0), z wzoréw (51) i (52)
O«= A.- A (58)
z2
[la /.= (59)

Z rownan tych rugujemy t?la, okreslajac jego wartos¢ z (59)

i podstawiajac do (58), otrzymujemy

22 (A A)= A*n) —{i+ Z2) A

Zi+272

A, = A- (60)
Nastepnie z réwnan (58) i (59)

Ou-iL-lu+1JZr-2Z@®1
Dzielac stronami wz6r (61) przez (60) otrzymamy opornos¢ po-

zorng czwornika w stanie zwarcia

fr, 2.
v (62)
A Z IX+ 72

Sumujgc wartosci napie¢ i pragdow w stanie jatlowym i w stanie
zwarcia, otrzymamy na podstawie wzordw (26), (55), (56), (58) i (62):
0i = 01.+0i, = 0a+ Z1lt, (63)
Zi+Z722+2723jj NZj+22]
APz 3 z2
Z tych wzoréw okreslimy state, wchodzace do podstawowych
wzorow (1) i (2) dla czwérnika typu n:
A= Z1+73 B=%. Q= Z1+Zi+2a D Zx+Z2 (65)
Z3 2273

A—Ao+A, — (64)
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Wielkoéci S0i Sz, na podstawie (37) i (38) oraz (54) i (57) beda:
N - = - .=

s i 10 ZI+Z35 &i. ix_ ¢i+z2. (66,
40 + o. h

zamiast (65), biorgc pod uwage ostatnie wzory oraz (57) i (62), otrzy-
mamy:

A=S0, B=SZZZ\ C=— ; D-S.I
Zo
wtedy z podstawowych wzoréw (1) i (2), bedziemy mieli:
#i= so02+ §J 712, (67)
li= -ijr U2+ Szl 2. 68,
;0

Tak samo jak dla czwérnika typu T, otrzymamy dla czwornika
typu n zaleznos¢ (43)

z %% (69)
Dla czwornika symetrycznego typu /7 Z3=Z 2, woéwczas ze
wzoréw (65) bedziemy mieli

A=D= fi=zZx; C ™ -1+ 2* (70)
wzory (57) i (62) dadzg nam
(Zj+22722 ziz2
;0 = . ; L= — 71
O Zx+2z2 Zi+22 (71)
Nastepnie z (66)
. . Zi+2722
§»=S.= § = (72)
Z tych ostatnich wzoréw znajdujemy
(73)
7 Z,S
A2 Td T 74
< (74)
Wzory (67), (68) i (69) dadza:
01=SUi+ Sixl2=S(0Ot+ zMt), (75)
76
I~ f.0"+S1*~S(T .0, +1)- (76)
$§ = ) A _
V -2q Zz (77)

15%
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albo Ul= S(U2+ EJD (75

h = S(Y0oU2+ 1), (76"

*AA : (77)

Wreszcie, jak widaé¢ z tych wzorow,

A=D=§ B=SZzZ C ¢ .,

§ 60
CZWORNIKI ROWNOWAZNE

Czworniki réznych typéw nazwiemy réwnowaznymi, gdy od-
powiednie state tych czwdrnikdw sg sobie réwne, chociazby czworniki
byty ztozone z réznych elementéw. W takich czwérnikach otrzymamy
te same zaleznos$ci miedzy napieciami i prgdami na poczatku i w koncu.
Poréwnamy czworniki poprzednio rozpatrzonych typow T i /7.

Z wzoréw (29) i (30) dla czwornika typu T (rys. 140)

A —Z~NAZ3. g _ZiZa+ Z2i23+7227s. q_ j_. ji_ 22+2723
02 Z2 Z?2 02
zas ze wzordw (65) otrzymamy state dla czwdérnika typu /7 (rys. 141);

we wzorach tych, dla odrézn_ienia_ od e_Iement()W _czw()rnika typu T,
oznaczmy dla typu ii z1= Za; Z2= Zb; Z3= Zc, wtedy
A:Za+Z‘;B:Za',C:za+Zb+ZC |5 Za+ Zb
zb Zc ZhZe
Azeby oba czwérniki byly réwnowazne, powinna by¢ spetniona
réwnoscé
2\ Z2 Za+Zc_ ZiZ2 +Z1Z3+Z2Z3_ 74
Zc z2
Za+ib+Zc Z2+Z3  za+ 2v
z2 Zbzec z3 Zb
Rozwigzujgc te réwnania wzgledem Zx, Z2i Z3, znajdujemy:

ZaZb ZbZc Za Zc
N = . rz’z 73 ) .
Za+ zb + ZC Za+ Zb A Zc zb + Zc
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rozwigzujac je zas wzgledem Za, Zbi Zc, otrzymamy:
v M2t Z\Z$NXZ3Z3N 7 ZiZj+ 2173+ 2323"

_ 72122+ 72x23+22z3

Wzory te dajg nam opornosci elementéw skltadowych przy
przejsciu od typu T do typu /7 lub odwrotnie.

§ 61
CZWORNIK KRZYZOWY

Gzwdérnik krzyzowy zawiera 4 opornosci pozorne, potgczone
z sobg, jak wskazuje rys. 142. Rozpatrzymy tylko czwoérnik krzyzowy
symetryczny, w ktorym po dwie odpowiednie opornosci sa sobie
rowne. Ze schematu, na ktérym oznaczone sg napiecia i prady w roz-

nych czesciach ukiadu, otrzymamy stosujgc prawa Kirchhoffa:
A—A+A, A=7—7

. A+A Ly il —ts
3 2 ’ 2

skad

nastepnie

h Z3+ = IX /g 23+ 71-~ /a Z x

0i-0 2=1i3Z1+ 13z21= 21321
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albo
7 Zl+z22¢ , Zy—z2+
0. -0, , +1). (79)
Z wzoru (78) okreslamy
f 20n Z_'\+22_£>i (80)
T 7172 7172
wiec
IT_T_t,,gx+ZZ . 81
! 12 7|+zx-22:[I Zr-z 2 ZX-2 2 (81)

Dla stanu jatowego (J2= 0), z (78)
YN ZANnz22
D2 o> (82)
skad opornos$¢ pozorna w stanie jatowym

% Oio Zi+2Z2.

83
w-io [ 2 1 ( )
z (79) C10- C 2= 711105 (84)
podstawiajac do tego wzoru warto$¢ /10 z (82) otrzymamy:
Blo b= ~2"} (1
1 ~<T¢2
Hig- A+ %2 {ig (85)
7o 2i 2
wobec tego z (82) i (85)
. A2 no_ (86)
710 z2—Zi 2
([/2= 0) z (79)
Ol.= tuzt+ 12zv (87)

z (80)
- 2 f. Zx+ 72
ZX-722 IxX—722
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Podstawiamy do tego wzoru wartos¢ Vu z (87)

fom A2a (I 7T +1 2 )—Zizgazjfz

zl z2 01 A2

f —2 2 _ 9 Z\+ 22

zZz1- Z 272-7 1’

i- - +
/i |Z E__|L/2. (88)
podstawiajgc ostatnig wartos¢ /u do (87), otrzymamy:
(£i+222i f , t + 72172+ 72X722 Z12«
AR — * V- R A R — a A 127
z2 z* 2 Zj
czyli ntoil
OQu~4~n1(89
z2 zX . (89)
z (88) i (89) znajdujemy
7 = %ZIz2 QA
* /i z1+ za ( *

Na podstawie (26) oraz (85), (86), (88) i (89)

tfi = #io + #1* = N2+ . (91)
Z2 Zis 22 Zi

+ ) ) (92)
22 Zi zZ2 Zi
Z wzordw tych wynika, ze stale z podstawionych wzoréw (1) i (2)
wynoszg
A=D= M+73; B=—" 2; Tt (93)
z2-7Z 1 Z2-7Z X Z2-Z X
Wprowadzajac, jak i w poprzednio rozpatrzonych typach czwornika,
wielko$¢ § (czwdrnik symetryczny), bedziemy mieli
&jO_A*=§=Zi+22 (94)
n2 h “ (2-~1
Z wzoréw (83), (90) i (94) otrzymamy
S -i
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Biorgc pod uwage (94), (95) i (96), mozemy wyrazi¢ state czwornika
z (93) w postaci

A=D=§, B=S7ZZ C=-§nm
Z0

Wzory (91) i (92) mozemy napisa¢ w postaci
0,- §V2+szj2- $(02. 2J32, (97)

A-4-u2+8i2 S(Y0U2+ h). (98)
Z0

Do tych wzoréw dochodzi jeszcze zaleznosé

e (99)
- ?20zZ

§ 62
OKRESLENIE WIELKOSCI S0i Sz ZA POMOCA POMIAROW

Rozpatrujac wzory dla czwérnikéw typu T, /7 i krzyzowego,
wprowadzilismy wielkosci SO i S, przy czym, jak wida¢ z wzordw
(41). (42), (67" (68), (97) i"(98).*

5.. 4. S.-D-,
a dla czwornikéw symetrycznych
§0= Sz- S=A = D.

W 8§57 podana byta metoda doswiadczalna, za pomocg ktorej
mozemy znalez¢ wartosci statych A,B,CiD, oparta na pomiarze
opornosci pozornych czwoérnika w stanie jalowym i w stanie zwarcia,
przy czym w ogélnym przypadku przeprowadza sie pomiary z obu
stron czwdrnika; na poczatku znajdujemy opornosci pozorne Z10i Zlz,
w koncu znajdujemy opornoéci pozorne ZDi Z2z Dla czwérnikow
symetrycznych wystarcza pomiary tylko na poczgtku.

Korzystamy z gotowych wzorow (18) i (21); kazdy z nich daje
nam A i D, czyli 90i Sz w dwdch postaciach. Mnozac A przez D,
biorgc pod uwage drugie postacie, otrzymamy

. (100
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Biorgc za$ wartosci A i D w pierwszej postaci, otrzymamy, dzielgc A
przez D, n -

wo_1/ 10 | 1070 % z10 (101)
" ZD 72Z ~20 20
Ten ostatni wz6r mozna na podstawie (17) napisac¢ rowniez w postaci
45-= — e (102)
£E7 27

Wielkosci ¢¥i 4 majg argumenty, ktére oznaczyliSmy przez €0i az.
Katy przesuniecia faz miedzy pradami znalezionymi z pomiaru i na-
pieciem na poczatku czwor- y
nika oznaczmy odpowiednio O
przez €10, qu, EDi(pZaW 6w-
czas argumenty rozpatrywa-
nych opornosci pozornych
bedg (@O tdz, —(PM —nz-

Wynika to z tego, ze jesli

If: 0o ; Te',v =2 = le~a,
Z Ze'«
to a= —%
Bla znalezienia modutoéw Rys. 143
i argumentow i Sz stuzy
wykres dla wzoru (100). Bierzemy dowolny kierunek OU jako pod-
stawowy (rys. 143), odpowiadajacy napieciu, i odktadamy pod ka-
tami—qi0 i —@z OA = Z10, OB = Zlz, wtedy BA = Z10—Zlz.
Biorac pod uwage, ze AOB = Viz ( ™Mo) —MO \Viz
otrzymamy z A AOB
BA =yO T2+ OB2—20A «0OB cos (e€30—tdz)
czyli
BA =VZ20+ 2ZV 2Z10Zlicos (PO Vi%)-
W ten sposéb, na podstawie wzoru (100), bedziemy mieli

99 _ OA Zy (103)
BA VZ2io+ Z4z 2Z10Zlzcos (90— Vu)

Opuszczamy z punktu B prostopadtg BM na OA. Z A M AB mamy:
MB MB OBsin  AOB
MA OA -OM O A- OB cos gc AOB’

tg 3; OAB =

czyli .
. - z u sin [q0— Hz)
tg (EOAB 10 Zlz cos (FA0— qdz (104)
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Jak wida¢ z wzoru (100), argument $0Sz z jednej strony réwny
jest sumie argumentéw 60 i Sz, czyli a0+ az, z drugiej strony za$
réwny jest réznicy argumentéw Z10 i (Z10—Zlz), czyli katowi OAB,
ktorego tangens mamy w wzorze (104), wiec a0+ az= -;Z.OAB.

tg(g0+ g.) = MUWE‘ &O@Afm)@lz (105)
Nastepnie ze wzoru (101) mamy:
- S0e™  Zioe-J
Szei Z,e-f-"'
. 7 .
skad "Aej =- 10gj ,
Sz AD
R s Y (106)

- 20
albo na podstawie wzoru (102)

<y-= A a* = <Piz— <Pir- (107)

(o)v4 Zl 2z

Ostatnie wzory (106) i (107) tgcznie z wzorami (103) i (105) daja
mozno$¢ znalezienia modutdéw i argumentéw wielkosci 80 i §z

Ze wzordw (106) i (107) wynikatoby, ze jeden pomiar, czy to
w stanie jalowym, czy to w stanie zwarcia, jest zbyteczny; lepiej
jednak przeprowadzi¢ wszystkie cztery pomiary, czwarty stuzy
wtenczas dla kontroli.

W przypadku czwornika symetrycznego oczywiscie wystarczg
tylko dwa pomiary, na poczatku czwornika, wtedy bowiem 0= Sz= 'S
0= az= a, i wzory (103) i (105) dajg nam

S = '10
| Ao &#A* 42Z1ZIzcos (10 u)
A Sin ((FPo (fiz)

tg2cr
10 Zlz COs Pio  <Piz)

§ 63
LACZENIE CZWORNIKOW

Rozpatrzmy dwa rozne czwdrniki potgczone z sobg w szereg,
wtedy w miejscu potgczenia tych czwérnikow bedziemy mieli wspdlne
napiecie i wspolny prad; dla pierwszego czwdérnika bedg to wielkosci
wyjsciowe, dla drugiego — wejsciowe. Oznaczmy je przez U' i [
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(rys. 144). State pierwszego czwornika niech bedg Alt By, Cy i Dy,
drugiego A2 B2 C2 D2 Na podstawie wzoréw (1) i (2) mozemy na-

P1SaC 0t= AyC + Bj'- 1I\= Cyt!" + Dyl'-,
U = AV2+ Bj.22 V = C202+ D j2
Podstawiamy wartosci U' i I' do pierwszych dwoch réwnan, wéwczas
Cy = Ay [A2C2+ B212 + By (c 2C2+ D212,
ly = Cy(A202+ B212 + Dy (C202+ D212,

t 3. A, B. 3’ A, Bo
. ‘ i
Li O su Cz oi
Rys. 144

skad znajdujemy zaleznosci miedzy napieciami i prgdami na poczatku
i w koncu rozpatrywanego uktadu
Oy = (AyA2+ ByC2 t)2+ {AyB2+ ByD2 12
ly = (AXy+ CDy) 02+ (BXy + DyD2 12
Gdy czworniki sg jednakowe i symetryczne, w powyzszych
wzorach Ay= A2= Dy = Da= A
By —B2—B] Cy= C2—C;
poza tym A2—BC= 1
Wtedy ostatnie wzory przyjma postac:
Cy = (A*+ BC) C2+ 2ABI2
ly = 2ACC2+ {A* + BC) 12
zaktadajgc w tych wzorach BC = A2—1,
otrzymamy N o= (2A2_ j)C2+ 2AB 12
ly = 2ACC2+ {2A2- 1) 12

§ 64
WARUNKI OSIAGNIECIA NAJWIEKSZEJ MOCY NA ODBIORNIKU

Rozpatrzmy zagadnienie nastepujgce: na poczatku napiecie
obwodu u zrodita Uy ma wartos¢ stata, na odbiorniku spotczynnik
mocy cos q® rowniez pozostaje bez zmiany. W jakich warunkach
moc oddawana odbiornikowi bedzie miata wartos¢ najwiekszg?
Oznaczajgc te moc przez P2, mamy

P2= U2l2cos (2
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Warto$¢ P2 oczywiscie bedzie najwieksza wtedy, gdy iloczyn
U212 bedzie najwiekszy.

Wszystko, co sie znajduje miedzy zrodiem pradu i odbiorni-
kiem, jak przewody, transformatory itp., mozemy zastgpi¢ czwor-
nikiem. Wtedy, na podstawie okreslenia wielkosci SO i Sz, bedziemy
mieli

m —yne f — — Uz
2 80 . S SZ
egdzie Zz oznacza opornos¢ pozorng w stanie zwarcia, stad
ty t Uloulz.
© T 8082227

poniewaz S0SZZZ jest wielkoécig statg dla danego obwodu, wiec
maximum t)212 bedzie odpowiadato maximum iloczynu

OwGlz,
czyli maximum iloczynu modutéw tych wektorow
u 10u lz.

Z drugiej strony,
AL0 + Ulz —~ by

poniewaz z zatozenia ma wartos¢ stalg, wiec suma geometryczna
wektoréow Oi0i Uiz jest wielkoscig statg. Oznaczmy kat przesuniecia
fazy Uio wzgledem tJig przez a, tj.

< (¢U Qu) = g
dla okreslenia wartosci tego kata mamy

Gio= u280,0v = ItSM. = f-2 ,
Z2
gdzie Z2oznacza oporno$¢ pozornag odbiornika.
Oznaczmy
< (Uuoal)=n, < (Ou, Ul =y, < (U2 Ul =
Zwazywszy, 7e
<[U02 = &2 arg. 4 = ff0) arg. arg. Zz= — qu,
arg. 22= —e,

yo= y2+ 00,
Vz= 2+ R+ az— <y,
«= W—Vz= Wi+ —\W—92— + &

bedziemy mieli
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i ostatecznie )
a=- Z— Pa+ <V ilOS)
dla obwodu symetrycznego, gdy <0= az,
a—Vz ¢a (109)

Poniewaz wartosci katow okreslajacych kat a sg state dla da-
nego obwodu, przeto i kgt a pomiedzy wektorami £f10i 0lz jest
wielkoscig stala.

Mamy wiec do rozwigzania nastepujace zadanie: dwa wektory

(rys. 145) y
AB = 010= x y
BC —0lz=y

majg stalg sume geometrycz-
ng A C = t)1= citworzg staly
kat a; trzeba znalezé

max U10UIlz = max xy.
Oznaczajgc
U = xy,
bedziemy szukali max U; z A ABC

AB2+ BC2+ 2AB <BC mcos a = c2
czyli
X2+ y2+ 2Xy cos a = c2 110,
Rozpatrujgc y jako funkcje x, okreslong ostatnim réwnaniem,
i rézniczkujgc, otrzymamy
2a + 2yy' + 2x cos ay' + 2y cos a = 0,

skad
,_ ycosa+ X

y y + X cos a

Roézniczkujgc U bedziemy mieli

U = xy' +y
i, podstawiajgc znaleziong wartos¢ y', otrzymamy
,_ —XYycosa—x2 r
U = + i/ =
y + X Cos a y + X cos a

przyrownujac U’ = 0, znajdujemy

y =X
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czyli po podstawieniu do (110)

X =
y Y2(1 +cosa) 9§qps£

poniewaz dla takiej wartosci x i y U" < 0, przeto warunek y = x
daje nam max U, a wiec

max £/10Cu, czyli max P2

nastgpi wtedy, gdy
uo= Uu= Y1
bcos &

ale
ve ub_
S° 2S0cos]|

/1
2 Ss&%Zx 2sz77Z7c08 ¢

wiec

tA2cos g2
4cos2| so0S,Z2z

max P 2= max U2l 2cos V* =

Poniewaz

2cos2g=1+cosa= 1+ cos (qu—2+ 00—az),

mozemy napisac
n Utacos <2
maxP2=2S0SzZz[l + cos (Z*—22+ ~0-CT*)]

Rozpatrujgc teraz najwiekszg wartos¢ max P2 w zaleznosci
od 924 mozemy znalez¢ najwiekszga z najwiekszych wartosci mocy,
ktorg mozemy osiggna¢ na odbiorniku, dobierajac odpowiednio
U2 12 o0raz 92 W tym celu bierzemy pochodng ostatniego wzoru
wzgledem 42 i przyrownywamy jg do zera; po odpowiednich skrdce-
niach otrzymamy

—[1 +COS {(pg—<2 + D—az)] sin 92—sin {Pz~ P2+ °0—°z)cos ™~ =0

lub
(1 + cos a) sin (2+ sinacos 2= 0;
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9 e a a
. Sin Ccos
sin a

9= 1, cosa

2c0s2™-
gp= 2 - (y*— 92+ go— g%
skad
92 = — Wz + a0— azh
dla obwodu symetrycznego bedziemy mieli
- —F
i w tym przypadku najwieksza mozliwa moc bedzie
Wocos @ . _
2503222+ cos gcpzf_
Ui2cos qz Ui2
AS0SzZzcos2¢2 4S0.2Z2cos e2

max P,, =

§ 65
WYKRES PRACY OBWODU PRADU ZMIENNEGO

Wykresem pracy obwodu prgadu zmiennego nazywamy wykres,
za pomocg ktorego mozemy okreslaé napiecia i prady powstajgce
na pocrnNjjiu i w koricu obwodu, jak réwniez moc pobierang i od-
dawana, przy zachowaniu pewnych warunkéw. Podstawg do takich
wykresOw sg pomiary przeprowadzone w stanie jatowym i w stanie
zwarcia. W tym celu caly uktad znajdujacy sie miedzy zrodiem
pradu i odbiornikiem zamienimy na czwornik.

Wychodzimy znowu z zalozenia, ze napiecie na poczatku
obwodu pozostaje bez zmiany i ze spdlczynnik mocy na odbiorniku
cos e2 ma wartos¢ stata. Mamy trzy zasadnicze réwnania (41), (42)
i (43) lub (67), (68) i (69)

= 0o+ 0i+= 0A + 125z22, (111)
A- A . A.. 0.1le+ as., (112)
&’ — A %0 . (113)

pierwszego roéwnania okreslamy
02~0- oi-h$azz
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Podstawiajac do drugiego, znajdziemy

OI Tz28z22z , f é= tjj f 1
S e

na mocy za$ trzeciego réwnania

z0 SO
Oznaczmy przez 10 prad na poczatku obwodu przy napieciu
UIf gdy w koricu mamy stan jatowy; wtedy

$0
ma wartos¢ stalg, przy tym kat prze-
suniecia fazy 10 wzgledem U1l ozna-
czymy przez €; mozemy wiec na-
pisaé t
{1~ fo+ %
&0

Przyjmujac dowolny kierunek,
np. pionowy, jako kierunek napiecia
Ult odtozmy pod katem gD OA = 70

Rys. 146
(rys. 146). Gdybysmy wiedzieli, jaka

/
jest wartos¢ wektora P i jaki jest jego kierunek, wtedj™ ~dodajac

geometrycznie ten wektor do wektora otrzymalibysmy wek-
/12
tor Iv Przypusémy, ze AB stanowi wektor ~3:€~), wtedy OB wy-

raza wektor lv
Dzielagc obie strony réwnania '(111) przez S0SzZz, otrzymamy

Ov 1 Ou o+ ke (114)
SoSz~z Soszz7 S0SzZz Szzz SO
Kat pomiedzy wektorami O10 i 01z, oznaczony poprzednio
przez a, zostat okreslony na podstawie wzordw (108), wzglednie (109).
Jezeli te dwa wektory U0 i Clz podzielimy przez jeden i ten
sam iloczyn symboli S0SZZZ to, oczywiscie, otrzymane w ten sposob
nowe wektory bedg tworzyty ze sobg ten sam kat a, czyli

*(-£-. 40 =«
\SZz Sol
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Kat a bedziemy odmierzali w kierunku od wektora do

wektora - ina rys. 146 a <O;wektor ~A = BC jest przesu-

niety wstecz wzgledem wektora

Przechodzgc do naszego wykresu, przeprowadzamy od punktu
B pod katem a, np. wstecz (a< O) od AB, odcinek

BC=-~-f
S,Zz
wtedy, na zasadzie (114), geometryczna suma AB i BC bedzie
C = Ot
SnSzZz
Wyraz ten stanowi wielkos¢ stata, wiec jezeli do tego statego
wektora dodamy réwniez staly wektor OA — 10— 70" wtedy
0

otrzymamy rowniez jako wektor staly geometryczng sume

0C,» #+_[| L .| /A + 1 &
Zo S0SzZz Zz \Zo 80Sz)

Wyraz w nawiasach, na zasadzie wzoru (113), réowny jest 1
za$ v = lz stanowi prad ptyngcy na poczatku obwodu, gdy
koniec obwodu jest zwarty; kat przesuniecia fazy tego pradu wzgle-
dem napiecia i/x oznaczmy przez M bedzie to argument pradu,
gdy kierunek wektora C/x przyjmiemy jako o$ podstawowa.

W ten sposéb OC = lz, wiec jezeli bedziemy mieli wartosci
/., 1%, 90, gz, wtedy punkty A i C bedg na wykresie koricami wia-
domych wektorow 10i |z; tgczac te punkty, otrzymamy odcinek A C.

Wektory

AB i BC=
SzZ1z

majg zatem stalg i wiadomg sume geometryczng AC oraz tworzg
ze sobg staty i wiadomy kat a

Jezeli na danym odcinku AC —a zbudujemy trojkat tak, aby
dwa pozostate boki tworzyly kat zewnetrzny a (rys. 147), wtedy
geometrycznym miejscem wierzchotkow B takich trojkatéw bedzie
koto, ktdrego srodek O' ma spotrzedne

a
Xc = Yi yC: 2tgai (115)

Teoria pradéw zmiennych 18
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za$ promien a

Sina’

czyli ze dany odcinek AC stanowi cieciwe odpowiadajacg katowi
Srodkowemu 2 a, $rodek zas znajduje sie na prostopadiej przeprowadzo-
nej przez srodek tego odcinka.

Aby tego dowies$é, wybieramy osie wspotrzednych, biorgcw A
poczatek: 08 A w Kkierunku AC, za$ o$ Y w kierunku prostopadtym.
Oznaczmy wspoétrzedne zmiennego punktu i? przez a0iy 0; wspotrzedne
punktu A bedg 0,0, zas punktu C — bedg a, 0. Stosujac wzor na
rownanie prostej przechodzacej przez dwa punkty, otrzymamy
rownanie BC

y X—a i yo ay0
y0 x0—a’ czyli y x a Q

rownanie AB

)¥O:)ﬁ‘> YU y N ~rx-
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Kat pomiedzy prostg BC i prosta AB oznaczyliSmy przez a;
z réwnan prostych wynika, ze

ilo yo
— n
tg a= xXn a X ayo -
14+ _W* Xn axo + ilo

X0(x0—a)

skad
x@+ y®—axo tga y0= o,
albo
a2
4 sin2a

a
Jest to rownanie kota, ktorego srodek ma spétrzedne 2 2tga

. : a
promien zas rowny jest ™ q .

Na rys. 147 O' stanowi $rodek takiego kota.
Z trdjkgta AO'D lub DO'C mamy
a

tg< AOD = -Qijy=— = tga,

2tga
skad
<AO'D = a

Z rysunku widzimy, ze dla znalezienia srodka kota O' musimy
ze sSrodka odcinka AC przeprowadzi¢ prostopadlg, nastepnie
z punktu A pod katem 90°— a do A C przeprowadzi¢ prostg az
do przeciecia z prostopadta w poszukiwanym punkcie O'.

Kat a okresliliSmy jako kat przesuniecia fazy Ul0wzgledem 0 Iz]
nastepnlije stwierdziliém)/, ze ten sam kat stanowi kat przesuniecia
fazy &5 wzgledem 070—. Na rys. 147 jest to kat, jaki tworzy

BC wzgledem AB. tatwo zauwazy¢, ze dla punktéw B, majgcych
rzedne dodatnie, kat a< 0, czyli wektor BC, jest przesuniety
wstecz wzgledem wektora AB; gdy za$ rzedne punktow B bedg
ujemne, wtedy a > 0. Z tego wynika, ze przy a > 0 zadaniu bedzie
odpowiada¢ czes¢ kota lezaca pod odcinkiem AC (osig X), zas przy
a< 0 — czes¢ kota lezaca nad odcinkiem AC. Kat a, posiadajacy
wazne znaczenie w rozpatrywanym zagadnieniu, moze sie zmieniaé
w granicach od — 180° do + 180°.
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Pozostawiajagc do szczeg6lnego omdwienia przypadki, gdy

a=0, % i t jg rozpatrzymy, w jaki sposéb zmienia sie potozenie

srodka interesujgcego nas kota przy zmianie wartosci kata a. Na
. podstawie wzoréw (115) znak
A rzednej srodka kota jest taki
i sam jak i znak tg a; przy
I tym bedziemy mogli spraw-
dzi¢, ze we wszystkich przy-
padkach dla znalezienia tego
srodka wystarczy z punktu
A przeprowadzi¢ prostg pod
katem 90° —a do AC z u-
wzgtednieniem znaku tego
kata. Mozemy ustali¢ cztery
nastepujace przypadki:
I. (rys. 148). a>0, lecz < 90°,
tga> 0,
90°—a >0, lecz < 90c

AO' tworzy z AC kat dodatni i ostry; geometryczne miejsce
punktéw B znajduje sie pod odcinkiem AC.

1. (rys. 149).
a>90 , lecz < 180° tga< 0,

90° —ma > —90°, lecz < 0.
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AQO" tworzy z AC kat ujemny i ostry; miejsce geometryczne
punktéw B znajduje sie pod odcinkiem AC.
1. (rys. 150).

Rys. 150

a< 0, lecz > —90°,
tga< 0,
90° —a > 90°, lecz < 180°.

AO" tworzy z AC kat dodatni i rozwarty; miejsce geometryczne
punktéow B znajduje sie nad odcinkiem AC.
Y. (rys. 151).

a< —90°, lecz > — 180°,
tga> 0,
90° —a > 180°, lecz <270°.
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AO" tworzy z AC kat dodatni, zawarty pomiedzy 180° i 270°;
miejsce geometryczne punktéw B znajduje sie nad odcinkiem AC.

W przypadkach szczegélnych, gdy a = 0, + 180°, — 180°, miej-
scem geometrycznym punktéw B bedzie linia A C, przy tym

Rys. 152

Rys.

a

154

+isoe

A

Rys. 153

<6oa i

dla a= 0 punkty B lezg pomiedzy A i C (rys. 152);
dla a = + 180° punkty B lezg po stronie A (rys. 153);
180° punkty B lezg po stronie C (rys. 154);

dla a =

Rys.

155

gdy a = £90°, otrzy-
mujemy Srodek kota w
$rodku odcinka A C, przy
tym dla a= + 90° geo-
metrycznym miejscem
punktéw B bedzie dolne
pétkole, zas dlaa= —90°
—gorne potkole (rys.
155).

Powracajac do rys.
146 i opierajac sie na
powyzszych rozumowa-
niach, mozemy wykonaé
wykres pracy obwodu
pradu zmiennego w spo-
sob nastepujacy:

Wybieramy pocza-
tek wektoréow O (rys.

156) i podstawowy kierunek O Ut jako kierunek wektora statego
napiecia t/x Od poczatku O pod katami gD i gz odktadamy w usta-
lonej skali pradow wiadome wartosci 70= OA oraz lz= OC. taczymy
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A i C linig prostg i ze srodka D odcinka AC przeprowadzamy
prostopadta. Z punktu A pod katem 90° —a do AC prowadzimy
prosta A O' do przeciecia owej prostopadtej w punkcie O', ktéry
bedzie srodkiem kota o promieniu O'A. W zaleznosci od znaku
kata a wykreslamy czes¢ kota: przy a > 0 pod odcinkiem AC (jak na
rysunku), przy a<0 nad odcinkiem AC.

Otrzymany w ten sposéb tuk kota stanowi poszukiwany wykres
pracy. Na podstawie tego wykresu mozemy znalez¢ wartosci Ixi U2
dla rozmaitych wartosci 12 W tym celu dla danej wartosci |2 obli-
czamy so’ lub dla obwodu symetrycznego S ; W przyjetej skali

i
z punktu A odcinkiem rownym — przecinamy nasz wykres, znaj-
d

o
dujgc w ten sposob punkt B\ wtedy OB daje nam bezposrednio

wektor /It zas BC wektor 2 2 lub » - skad obliczamy 0 2.
SzZz SZz
Potrzebne do wykresu pracy wartosci 0, 1z, q@ powinny
by¢ wiadome lub znalezione przez pomiary pradéw i ich katéw
przesuniecia fazy.
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W przypadku obwodu symetrycznego modut spétczynnika <§
i jego argument a mozemy znalezé z wykresu pracy: wychodzac ze
wzorow (49), (77) i (99).

gdzie w naszym zagadnieniu

bedziemy mieli

czyli

i majac na wykresie 1z—10= AC (rys. 156), otrzymamy S2 dzie-
lac 1z przez wartos¢ AC, wreszcie znajdziemy S. RoOznica katow
wektorow 1z oraz 1z— 10 réwna sie argumentowi 2a wektora S2
czyli

2a = (@- > CLU1, skad a= <P~ < CLUI-

m%.CLUX trzeba odmierzy¢ np. katomierzem i wzigé oczywiscie
z wihasciwym znakiem, mierzac go w Kkierunku od osi podstawo-
wej OULt.

Za pomocg wykresu pracy mozemy rdwniez znajdowaé moc
P xna poczatku obwodu oraz moc P2w koricu dla okreslonej wartosci
pradu 12

Wektor OB = Ix tworzy z Kkierunkiem wektora napiecia 01
kat qv Jezeli kierunek O Ux przyjmiemy za o$ odcietych, a os$ rzed-
nych przeprowadzimy prostopadle do tego kierunku, wtedy otrzy-
mamy dla odcietej punktu B

BF — Ixcos qv
Poniewaz moc pradu na poczgtku obwodu ma wartos¢

Px= Uxlxcos qx,
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za$ Ux ma wartos¢ stalg, przeto odcinek

BF=~"-
Ux

jest proporcjonalny do tej mocy i w odpowiedniej skali daje nam
wartos¢ Pv W trojkacie ABC

AB=A. BC=Sy-
Pole tego tréjkata ma wartosé

A= eAB eBC esina= -i- = sin « |

poniewaz moc odbiornika ma wartos¢

Pi ~ U2Ili COS O,
wiec
sin a p
A=-2 S0SzZzcos qe 2

Z drugiej strony mozemy pole trojkata ABC okresli¢ jako
potowe iloczynu podstawy AC przez wysokos¢ BH.
Podstawa

zatem

ul .
S0SzZz° BH;

przez poréwnanie obydwdch wzoréw dla A znajdziemy

P9sin a
BH = U1 cos e2
BH Pt

sina Ulcos ?2;

BH
wartosé sina znajdziemy przeprowadzajgc prostopadtg BG z punk-

tu B na promien O'A; ta prostopadta przetnie odcinek AC w punk-
cie K; poniewaz
<AKG = a= <BKH,
przeto BH
sina Ulcos (@2
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iloczyn Ulcos q2 ma wartos¢ statg, wiec odcinek B K w odpowiedniej
skali daje nam warto$¢ mocy oddawanej w koncu obwodu przy

pradzie /2
Najwieksza moc na odbiorniku odpowiada najwiekszej war-
tosci BH; wartos¢ te otrzymamy przeprowadzajgc ze Srodka AC

prostopadta do przeciecia sie z kotem wykresu, woéwczas AB ——

oraz BC = QU’ dajg nam wartosci la i Ua, dla ktoérych moc

oddawana bedzie najwieksza.
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OBLICZANIE POJEMNOSCI | INDUKCYJNOSCI
W LINIACH ELEKTRYCZNYCH

8§ 66
ROZKELAD POTENCJALU W POLU ELEKTRYCZNYM

Bedziemy rozpatrywali przewody sktadajace sie z drutéw lub
linek okragtych, gotych oraz izolowanych, czyli przewodéw cylin-
drycznych z réwnomiernie roztozonymi tadunkami. tadunki znajdu-
jace sie na takich przewodach dajg pole elektryczne, ktorego nate-
zenie bedzie skierowane prostopadle do powierzchni przewodoéw, czyli
prostopadle do ich osi. Aby madc okresla¢ pojemnos¢ dla rozmaitych
uktadow takich przewodoéw, musimy przede wszystkim umie¢ okres-
la¢ warto$¢ potencjatu w dowolnym punkcie pola elektrycznego
powstajacego pod wplywem tadunku przewodéw. Najogolniejszy
wz6r dla potencjatu V w dowolnym punkcie (x,y, z) pola jest to wzdr
Laplace'a

d2v d2v d2v
dx2 N dy2~ dz2 (1)

Mozna wyprowadzi¢ ten wzor w spos6b nastepujacy. W polu
elektrycznym strumien indukcji dtp przez powierzchnie ds, gdzie
indukcja ma warto$¢ D i kierunek jej tworzy z normalng do po-
wierzchni kat a, wyrazi sie wzorem j

[dp= D cos ads.

Rozpatrujgc dowolny punkt pola, gdzie indukcja ma wartos¢ D,
natezenie pola K i potencjat V, i oznaczajgc przez promien r Kie-
runek dziatania natezenia pola oraz indukcji, przez e przenikat-



252 OBLICZANIE POJEMNOSCI | INDUKCYJINOSCI

nos$¢ dielektryczng osrodka, bedziemy mieli na podstawie znanych
wzoréw
dv — _ dv
ar DTeK=—
Wezmy w polu elektrycznym dwa nieskonczenie bliskie punkty
M i Q (rys. 157); wspotrzedne tych punktéw beda sie réznity odpo-
wiednio o dx, dy, dz.
Oznaczmy przez D indukcje elektryczng w punkcie M z Kkie-
runkiem r, a jej sktadowe w Kierunku osi spotrzednych przez Dx,
Dy, Dz. Strumien induk-
cji elektrycznej wchodza-
cy przez powierzchnie
MN = dydz bedzie réwny
—Dxdydz (a = 180° cos
a = —1), strumien wycho-
dzacy przez powierzchnig
PQ = dydz bedzie réwny

Dx+ vy > dxj dydz. Su-
rga tych dwdch strumieni
rowna jest - ~ x dx dy dz

9x

Analogicznie znajdziemy

sumy strumieni wchodza-

cych iwychodzacych przez
pozostate dwie pary powierzchni prostopadtych do osi Y i do osi
Z, w postaci

9Dy 9Dz
dxdyd .
d xdydz 97 dxdydz

y
Catkowity strumien, pozostajacy wewngtrz réwnolegtoscianu
MNPQ, réwny sumie tych strumieni, w przypadku, gdy w rozpa-
trywanym punkcie nie ma tadunku elektrycznego, powinien réwnac
sie zeru; wobec tego

3DX 9Dy 9Dz
9 + - 0, *)
X dy 9z
ale

D=—e dr
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wisc dv_ 9DX 92V

DX ——f£——, = — -
X dx ?x ¢ 9x5
9Dy 92V 9DZ 92V ,
9y e 9y2’' 9z £ 9z2 "

wiec po podstawieniu tych wartosci do wzoru (*), otrzymamy po
skréceniu przez — e wzér Laplace'a (1).

Dla naszych celéw wzdr ten mozemy znacznie uprosci¢. Mia-
nowicie bedziemy rozpatrywali przewody, ktorych ksztatt, wymiary
i cale otoczenie sg jednakowe na catej rozpatrywanej ich dtugosci.
Jezeli przeprowadzimy plaszczyzne prostopadla do osi takiego
przewodu, to zmianalpotencjatlu w rozmaitych punktach tej ptasz-
czyzny bedzie niezalezna
od tego, w jakim miejscu
przewodu taka plaszczy-
zna zostata przeprowadzo-
na. Biorgc 0§ przewodu
za 0$ Z, wyrazimy waru-
nek powyzszy w ten spo-
sob, ze zmiana potencjatu
nie zalezy od z, czyli

92v

972 (2)

Nastepnie, poniewaz,
jak zatozylisSmy, przewdd
jest okragty,przeto w pta- \
szczyznie prostopadtej do
osi przewodu (rys. 158) Rys. 158
wszystkie punkty znajdu-
jace sie w jednakowej odlegtosci od osi przewodu O beda miaty
potencjat o tej samej wartosci; mozna wiec zamiast dwoch zmien-
nych x iy wprowadzi¢ tylko jedng zmienng g, stanowigcg odlegtosé
rozpatrywanego punktu od osi przewodu. Wtedy bedziemy mieli
dla dowolnego punktu

b — vk . -_— " - - -
' =X* +y2; X~ g 2
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v dv 9y dv
dy dg .y dg e
v d2v  xz _dV y2
dx2 dg2 2 dg ' e3

d2v  d2v 12 N .dV X2
dy2" dg2 . dg - o3

Wprowadzajgc te wartosci do rdéwnania (1) i uwzgledniajgc
, rbwnanie (2), otrzymamy po uproszczeniu
d2ve 1 dVvt _

dg2 g dg ~—© ©)

gdzie Vg oznacza potencjat w punkcie odlegtym o g od osi przewodu.
Zaktadajgc w roéwnaniu (3)

dVe
dg Z, @
bedziemy mieli
dz z 0
dg g
skad
dz dg
z e :
InNZ = —Ing + InAv
gdzie Al—stata dowolna; wtedy
7Z = CI
i na podstawie (4)
dve AX
dg g’
czyli
Ve= AxIng+ A2, (5)

gdzie A2—druga stata dowolna.

Oznaczajac przez Fx potencjat wiasny (gdy nie ma wplywu
otoczenia) na samym przewodzie, ktérego promien wynosi r, to
znaczy dla g = r, otrzymamy z (5)

Vx= AxInr+ AZ2;
odejmujac stronami ostatni wzor od wzoru (5), otrzymamy

Fff= y. + A™nj-- (6)
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Dla okreslenia statej Ax musimy zna¢ warto$¢ potencjatu
jeszcze w jakiejkolwiek odlegtosci, np. gdy dla g= R potencjat
ma wartos¢ V2, wtedy ze wzoru (6) bedziemy mieli

F2= VI+ Alln— ,

_ Vi-V2
Al- R
In—
.
Vx- V,
V,- Vx- IXR Int. @
n

Natezenie pola elektrycznego K, wywotanego przez tadunek
rownomiernie roztozony na powierzchni walca (przewodu cylin-
drycznego), wyraza sie wzorem

2Q

EQ
gdzie £) —tadunek przypadajacy na 1 cm diugosci walca, s — prze-
nikalnos¢ dielektryczna wzgledna S$rodowiska, w ktérym sie walec
znajduje; g—odlegtos¢ rozpatrywanego punktu pola od osi walca.

Zwykle wz6r na natezenie pola elektrycznego powstajacego od
tadunku réwnomiernie roztozonego na powierzchni walca podaje sie
W postaci

K=

2n Qs '’

gdzie Q jest wyrazone w kulombach, e stanowi przenikalnos¢ dielek-
tryczng bezwzgledng. Przy zamianie kulombow na jednostki cgs
elektrostatyczne i wprowadzeniu przenikalnosci dielektrycznej wzgled-
nej musimy w ostatnim wzorze pomnozy¢ prawrg strone przez 4n,
wolwczas otrzymamy wyzej podany wzér na ii w uktadzie cgs elektro-

statycznym.
Poniewaz dvB
dg
wobec czego dve 5,0
dq “o 8

Ze wzoru (7) znajdujemy

dv;_ Vx-v 2

dg In R
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wiec ze wzoru (8) otrzymamy

Vi-V2
5 o 2Q ©
In

Uwzgledniajgc ostatnie réwnanie oraz wzér (7), mozemy po-
tencjat w punkcie znajdujacym sie w odlegtosci g od osi przewodu
okreslic w sposob nastepujacy:

V,-Vi- (10,

gdzie stanowi potencjat wlasny przewodu, Q —tadunek przypa-
dajacy na 1 cm dtugosci, r—promien przewodu, e —przenikalnosé
dielektryczng srodowiska otaczajgcego przewdd.

Wzory (9) i (10) dadzg moznos¢ okreslania pojemnosci dla
rozmaitych uktadéw przewodow.

W elektrotechnice potencjat ziemi przyjety jest jako réwny
zeru; wobec tego potencjat w dowolnym punkcie przy takim ujeciu
traktowany jest jako roznica potencjatow danego punktu i ziemi,
czyli jako napiecie pomiedzy punktem i ziemia.

§ 67
POJEMNOSC KABLA JEDNOZYLOWEGO OBOLOWIONEGO

Taki kabel mozna rozpatrywac jako kondensator cylindryczny,
ktorego jedng okladzine stanowi sam przewdd, druga zas$ ptaszcz
otowiany. Oznaczajac promien przewodu przez r lub jego S$rednice
przez d, promien kabla pod ptaszczem przez R lub jego Srednice
przez D, odpowiednie potencjaty przez V1i Vs, otrzymamy wprost
ze wzoru (9) dla pojemnosci takiego kabla na 1cm dlugosci

r Q _ 6 _ e
\Ai R
21In 2InJg
wzér ten daje nam wartos¢ pojemnosci w jednostkach uktadu elektro-
statycznego, czyli w centymetrach; dla przejscia do ukiadu elektro-
magnetycznego musimy uwzgledni¢, ze

1F = 9 «101cm lub 1pF = 9 «105cm;

nastepnie zwykle obliczamy pojemno$¢ przewodéw nie na lcm
dtugosci, lecz na 1km = 105cm i podajemy w pF\ wobec tego be-
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dziemy mieli
18In— 18InD
r d
lub, wprowadzajgc logarytmy dziesietne, otrzymamy

0,0241s 0,0241s [xF
A R D km v
19 Ig~d

C=

Przyktad.

Kabel jednozytowy obotowdony ma przewdd o przekroju 16 mmz2;
Srednica przewodu wynosi d = 5,1 mm, grubos$¢ izolacji papierowej
2 mm, wobec czego Srednica kabla pod ptaszczem wynosi 9,1 mm.

Mamy D 9 ,91
d 51 ig8 = 0,251.

Przenikalnos¢ dielektryczna dla papieru impregnowanego £= 4,3.

, 0,0241.43 _ uF
o251 - 0B

§ 68

POJEMNOSC KABLA JEDNOZYLOWEGO
OPANCERZONEGO

Kabel opancerzony posiada trzy me-
talowe powierzchnie cylindryczne: sam
przewod, nastepnie plaszcz otowiany,
wreszcie opancerzenie zelazne (rys. 159).
Taki ukltad mozna rozpatrywac jako
dwa kondensatory potaczone w szereg.
Oznaczajagc przez Ci pojemnos¢ | kon-
densatora (przewdd i ptaszcz otowiany),
przez C2 pojemnos$¢ Il kondensatora
(ptaszcz otowiany i pancerz), bedziemy mieli dla pojemnosci kabla

cicz 1
T cl+c2
Cl+ c2
Oznaczajac przez r, R, R', Rt promienie przewodu pod ptaszczem,
nad ptaszczem i pod pancerzem, otrzymamy na podstawie wzoru (11)

Teoria pradéw zmiennych 17
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0,0241 £1 (xF
. £ km
» T
0,0241 £3 xF
. R, km
W
gdzie £j —przenikalnos¢ dielektryczna izolacji przewodu, za$ e2— prze-
,nikalnos¢ dielektryczna materiatu znajdujgcego sie pomiedzy ptasz-
czem otowianym i pancerzem (zwykle impregnowana tasma papie-
rowa i warstwa materialu widknistego).

Wobec tego 0,0241 E
1, R 1, km
— 194 + ?2'9 R’

Jezeli ~ = £2= £ (np. papier impregnowany i juta majg prawie
rowne przenikalnosci dielektryczne 4,3), wtedy

0,041 £ juF
€= RRt km 12
19 —rw~

Poréwnujac wzér (12) ze wzorem (11), mozemy stwierdzic,
ze obecno$¢ drugiej oktadziny metalowej zmniejsza pojemnosé

kabla gbr ﬁ ,%> tr

Przyktad.

Ten sam kabel co w przykiladzie poprzednim (§67) posiada
jeszcze pancerz zelazny; grubos¢ ptaszcza otowianego wynosi 2 mm,
grubos¢ warstwy pomiedzy otowiem i zelazem wynosi réwniez 2 mm.

Wobec tego

r =25mm, R= 255+ 2= 4,55mm,

R = 4,55 + 2 = 6,55 mm,
Rx= 6,55 + 2 = 8,55 mm,
— 243,
0,0241.4,3
455855 9279 km
255.655

gdy tymczasem przy jednym plaszczu otowianym pojemnos¢ wy-
niosta

0,413 Kkm
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§ 69

ROZKEAD NAPIEC NA OKLADZINACH METALOWYCH KABLA
OPANCERZONEGO

Na rozpatrzonym kablu z dwiema okladzinami metalowymi
zbadajmy, jak sie rozkiada napiecie pomiedzy przewodem i po-
szczegblnymi okladzinami. Oznaczmy potencjaly (wzgledem ziemi),
czyli napiecia na przewodzie, na ptaszczu otowianym i na pancerzu
odpowiednio przez U, Ux t/2, za§ pojemnosci, jak i poprzednio —
przewodu wzgledem ptaszcza otowianego przez Cx oraz plaszcza
otowianego wzgledem pancerza przez C2 Oznaczmy dalej tadunek
elektryczny, ktéry mamy na przewodzie i tak samo na kazdej z ok}a-
dzin, przez Q.

Wtedy

skad
Ux-U\ Cxm

Z tego wzoru widzimy, ze spadki napiecia w rozpatrywanych
czesciach kabla sg odwrotnie proporcjonalne do pojemnosci tych
czesci.

Jezeli, co bywa przewaznie, pancerz jest potaczony z ziemig
i ma napiecie = 0, wtedy, zakladajac w powyzszym wzorze U2= 0,

otrzymamy U-Ux %
Ux Cx
skad Ui - Cx
"= ci+vc2"
Przyktad.

Ten sam kabel co i poprzednio, o przekroju 16 mm2 jest pod
napieciem U = 100 woltéw, pancerz uziemiony; mielisSmy

Cx= 0,413 Kkm

- gsz = 08 km

i9 655

17
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wobec tego napiecie na otowiu bedzie

0,413

= 0.413 + 0,895 100 = 31,6 wolta.

Ul
To znaczy, ze spadek napiecia od przewodu do ptaszcza oto-
wianego wynosi 68,4 wolta, od ptaszcza do pancerza — 31,6 wolta.

8§70
POJEMNOSC KABLA DWUZYLOWEGO KONCENTRYCZNEGO

Przekrdj takiego
kabla z oznaczeniem
promieni  pokazany
jest na rys. 160.

Dwa przewody,
zewnetrzny i wewne-
trzny, stuza do pro-
wadzenia tego same-
go pradu w dwdéch
przeciwnych Kkierun-
kach. Wobec tego
potencjalty na tych
przewodach majag te
same wartosci i roz-
nig sie tylko zna-
kiem.

Niech na jed-

nym przewodzie potencjat bedzie +V, na drugim za$ —V.
tadunek przypadajacy na 1cm dtugosci przewodu wewnetrznego
okreslimy ze wzoru (9)

«[v-{-v)]_

2 In— In-£ In-"}-

Wobec tego pojemnos$¢ przewodu wewnetrznego bedzie w cen-
tymetrach n
- »Y _ e
6= %=

In
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albo, po przejsciu do zwyktych logarytméw i do jednostek prak-

tycznych, 0,0483 s |iF
C1= -
9

Pojemnos¢ przewodu zewnetrznego stanowi sume dwoch pojem-
nosci: jednej w stosunku do przewodu wewnetrznego — i ta pojem-
nos¢ ma te samg wartos¢ C1, drugiej w stosunku do ptaszcza
otowianego; ta druga pojemnos¢ wedtug wzoru (11) bedzie

0,0241 e fiF
- km
19-
aw razie istnienia jeszcze pancerza zelaznego bedzie wedtug wzoru (12)
. 0,0241 e f/F
C
) km
g .
Wobec tego pojemnos$¢ przewodu zewnetrznego bedzie przy
jednym ptaszczu otowianym 1 1
+m
C2= Cl1+ CO= 0,0483 £ iq- 21
g-y 975
a przy ptaszczu i uziemieniu pancerza
1 1
C2=C 1+ C'o= 0,0483 £ . 2 1q 1315
ig g

r2r4
Niejednostajna pojemnos$¢ obu przewodéw w takim kablu po-
woduje to, ze prady tadowania bedg w nich rézne; oprocz tego straty
w izolacji otaczajgcej przewody na histereze dielektryczng, zalezne
od pojemnosci, réwniez beda sie réznity. Te okolicznosci mogg wy-
wotywaé niepozadane zjawiska.

§ 71
POJEMNOSC KABLA DWUZYLOWEGO SKRECONEGO

W przekroju (rys. 161) mamy dwa przewody (zyty), i A2
okragte, o jednakowym promieniu r, symetrycznie potozone z obu
stron Srodka kabla O. Odlegtos¢ osi tych przewodéw od osi kabla
oznaczmy przez a Plaszcz otowiany ma S$rednice wewnetrzng jR
Przez oba przewody ptynie prad o tej samej wartosci, lecz o kie-
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runkach przeciwnych. tadunki na 1cm dtugosci i potencjaty obu
przewodoéw oznaczmy odpowiednio przez + Q, + V.

Lord Kelvin wykazal, 7ze ukiad zawierajacy szereg natado-
wanych przewodéw znajdujacych sie wewnatrz cylindrycznej po-
wiloki metalowej mozna zastgpi¢ uktadem rownowaznym, w ktérym
zamiast powioki bedziemy mieli tzw. elektryczne odbicia tych

przewodow. Elektrycznym odbiciem jest przewdéd umyslony, znaj-
dujacy sie poza powierzchnig przewodzacag; o$ takiego przewodu
lezy w ptaszczyznie przechodzgcej przez o$ ukiadu (kabla) i o$ od-
powiedniego przewodu w takiej odlegtosci, ze promien przekroju
powtoki R stanowi $rednig geometryczng pomiedzy odlegtosciami
od osi ukfadu rzeczywistego przewodu a i elektrycznego odbicia h.

Dla Scistosci trzeba zaznaczy¢, ze odlegtosci powinny by¢é mie-
rzone nie od geometrycznych osi przewoddéw, lecz od ich osi elektrycz-
nych, czyli od linij, w ktérych mozemy skupi¢ tadunki roztozone na
powierzchni przewodéw, aby otrzymac¢ takie same dziatanie ze-
wnetrzne. Osie elektryczne przy niewielkich przekrojach przewodow
znajdujg sie bardzo blisko od osi geometrycznych, wobec czego tej
roznicy przy wyprowadzeniu wzorow praktycznych nie uwzgledniamy.

Na tych elektrycznych odbiciach musimy mie¢ tadunki i po-
tencjaty te same co i na odpowiednich przewodach, lecz o znakach
przeciwnych.
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Na rys. 161 B1 stanowi elektryczne odbicie przewodu A+, na

nim mamy —Q i —V; B2 stanowi odbicie przewodu A2 na nim
mamy +Q i +V. Poza tym musi by¢ spetniony warunek
R2= ab.

Pojemnos¢ kazdej zyly znajdziemy dzielac tadunek przez
potencjat tej zyly. Kazdy z przewoddw posiada potencjat wypad-
kowy, stanowiacy sume potencjatu wilasnego, powstajgcego od
wiasnego tadunku (w przypuszczeniu, ze wszystkie inne przewody
sg potaczone z ziemig), oraz potencjatow powstajgcych od tadun-
kéw znajdujacych sie na przewodach otaczajacych rozpatrywany
przewod. Oznaczajac potencjat wiasny kazdego z dwdch przewo-
dow przez +Vv bedziemy mogli okresli¢c warto$¢ potencjatu na
rozpatrywanym przewodzie, powstajgcego od innych tadunkéw,

stosujgc wzor (10): 9n
Ve = In—m
g e r
Rozpatrzmy przewod Av
Jego potencjat wiasny wynosi VX,
potencjat od tadunku na odbiciu Bx k/ -\--2-egrn bTa

” przewo&izi’e A2— -\r/l F+-2- o—I n-g-?->

.V, 20, bra
e r

odbiciu B2

Biorgc sume tych potencjatow, otrzymamy faktyczny potencjat
przewodu

' = a
r r
albo

V~AS-In [2a(b—a) 1
L r{b+a) J
Na -podstawie zaleznosci R2= ab mamy b = B2 i wobec tego

S [ r[R2+ a2
stad otrzymujemy pojemnos$¢ jednej zylty w centymetrach na 1cm
dtugosci
c- Q~
L~v~ r 2a (R2—a2 4

2
"I r(B2+a2 J
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lub a._ 0,0241 e fiF

y\ r(i?72+ a2 J

Pojemnosé pary zyt, czyli pojemnos¢ robocza w tym przypadku
wypadnie 2 razy mniejsza, gdyz roznica potencjatéw miedzy zytami
wynosi V —(—V) = 2 7, wiec pojemnos$¢ pary zyt bedzie

e, Q 0,01205 e uF
~ 2V~ i"2a(R2—a?1 '
iSrL r(i?2+ a2 J

Mozna wykazaé, ze w rozpatrywanym kablu, gdy potencjaly
na obu przewodach rdznig sie tylko znakami, na ptaszczu otowianym
potencjat bedzie réwny O.

W tym celu rozpatrzymy dowolny punkt P na ptaszczu (rys. 162).
Oznaczmy odlegtosci tego punktu od osi Ax A2 i Bv B2odpowiednio
przez glt g2, g3 i g4

Dla obliczenia potencjatu Vp w punkcie P mamy:

potencjat od tadunku przewodu A1 wynosi v/ - l\/é Zhlr_
9> 99 A’Z 99 - VI + én n 6r2'
99 99 Bl 99 - V 1+ 28 |I"I 'r3,

> 99 99 B2 99 VX~ Ze(g In 7r.4 '
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Suma tych potencjatow daje nam

Vp=~QIn~°1.
P SQ gigd

Oznaczajgc kgt POA2 przez 0 i spostrzegajgc, ze OP R,
O0AX= 0A2= a 0Bx= 0B2= 6, bedziemy mieli

Qf = R2+ a2+ 2aR cos 0,
e2 = it2+ a2—2aR cos 0,
g = R2+ b2+ 2bR cos 0,
g2= R2+ b2—2bR cos 0.

Poniewaz b= /;2, wiec

2i?3

= i? -2- = N il i? =
e = i?72+ §2+ a cos 0 a22 (ii2+ a2 2ai? cos 0) a20’2
_ R4 2fi3 cos 0 = 72
ef= 1?72+ a2 a = =z
albo
R
G&— a git
R
#- — @
2R i
— gi
e - *_
6164 .
gi Qg2
Wobec tego

2 [n g2, 2£>an:0_
e glg4
Wiec w dowolnym punkcie ptaszcza otowianego potencjat
rowny jest 0, czyli na ptaszczu nie ma napiecia. Jasne jest, ze wobec
tego nastepne metalowe powitoki znajdujace sie nad plaszczem,
jak np. pancerz, nie majg juz zadnego wpltywu na pojemnosci
kabla.



266 OBLICZANIE POJEMNOSCI | INDUKCYJNOSCI

POJEMNOSC KABLA TROJZYLOWEGO SKRECONEGO
PRADU TROJFAZOWEGO

W przekroju poprzecznym (rys. 163) trzy zyly AltA2i A3 sg

utozone symetrycznie wzgledem osi O.
Promien kazdej zyty =

r, odlegtos¢ osi zyly od osi kabla = a

Promienn kabla pod ptaszczem otowianym = R.
Elektryczne odbicia tych przewodéw bedg Bly B2i B3, ktérych
osie od osi kabla sg w odlegtosci b. Przy tym

Oznaczmy tadunki

(w pewnej

chwili) na przewodach oraz

potencjaty odpowiednio przez Qly Q21 Q3 Vly V2i V3; te wielkosci

Rys. 163

moga mie¢ znaki dodatnie
lub ujemne; wtedy na od-
biciach bedziemy mieli od-
powiednio —QIt —Q2, —Q3
-VIiy-vV2-V3

Uktad zawierajgcy 3
przewody i ptaszcz otowia-
ny zastepujemy wiec ukia-
dem zawierajgcym 3 prze-
wody i 3 elektryczne ich
odbicia. Okreslimy poten-
cjat kazdego z przewodow.
Potencjat zyly At stano-
wi sume potencjatéw pow-
stajacych od wiasnego ta-
dunku (réwny F/) oraz od
tadunkéw innych przewo-

déw. Oznaczmy dalej potencjaly, ktére powstatyby na A2 i A3od

wilasnych tadunkéw przez V2 i F3;
—V2 i —F3.

wiasne potencjaty —F/,

na odbiciach bedziemy mieli

Okreslamy poszczegblne potencjaty ze wzoru

Mamy nastepujgce geometryczne zaleznosci (rys. 164)

ANA2—4

N3 —a”sg,
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Al1Bl1= 0B1—0Al1l= b—a,
B2A12= (Mi2+ 05 2—20A1«0B2ecos 120° = a2+ b2+ ab,

B2Ax= Va2+ 62+ ab = B2A3
tak samo

53A! = 53A2= 5iA2= BXA3=V a2+ h2+ a&
5

Dla przewodu AXx
potencjat wlasny wynosi Vx,

potencjat od przewodu Bx wynosi FY + 2i§12n

? 9 ® ~2 9 Fg—V( In
) D D N @ VZ + 2Q2In

\Y I
@ 9 9 35 3 e N
D 9 9 53 5 V3 + 2QsIn

Biorgc sume, otrzymamy rzeczywisty potencjat przewodu Ax

Vi= 20L|pb~ a+Wa InV R+ fi2+ ab
e

r e aYs3
, 2Q3In™a2+ h2+ ab
€ aY3
2 _ , b—a _ ., Va2+ 62+ abl

t ,n av3 - Je
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Analogicznie

v. - 18[e,in"7" jo,+e) in'ix' & rabj .

y - A [e, + (Ql+q.)in 1.
skad
- Vi+V2+V3A1r{Q 1+ Q2+ Q3\In +21n V327 b?’ ab}
ay

Dla pradu trdjfazowego przy jednakowym obcigzeniu faz
VX+ V2+V3= o,
wiec w tym przypadku réwniez
0+®+3@B=o0
@ +03 = ~O0i-

albo
Wobec tego
20i, (b—a_ a\ 3 \
1 e \ r Va2+ b2+ ab / ’
ale 0= 52, wiec b—a-= A?Z__a_z

\Ja2+ b2+ ab = \Ja* + a2R2+ R*

y =10i In {R2~ d2ay™>
rNad+ azi?2+ i?4
Qx {R2- a22.3 a2
e r2@d+ aR2+ i?4
0i 3a2(i?2-a 23
e r2(R6—a6 1
Stad znajdujemy pojemnos¢ jednej zyly (fazy) jako iloraz ta-
dunku Q1 przez potencjat V1 (napiecie fazowe) w centymetrach

€= 332 {Re- a23’
(R«- ab)
albo .- 00483 I

3a2 (/i2—a23 km
C [ —ak
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Wobec symetrii trzech przewodéw, pojemnosci zyt sg oczy-
wiscie jednakowe.

Przy pradzie trgjfazowym, gdy spelniony jest warunek
*Y+ N2+ N3 =0,
na ptaszczu otowianym napiecia nie bedzie, to znaczy, ze w dowol-
nym punkcie P
ptaszcza potencjat
N=0 -
Rzeczywiscie
potencjat Vp znaj-
dziemy jako sume
potencjatow pow-
stajgcych od ta-
dunku przewodow
N fii> A2 A3
i B3. Oznaczmy

(rys. 165)
ei,
AP = i”)
A3P = iz
B.P = py
B2P = @
B3P = g3 Rys. 165

Potencjat od tad. Ai wynosi v j-

€ r
I o ) vt + 25u,<*
a a a A2 A 2e In .
i i i fi2 i V2 + ~£QZ in6§
a i i~z i V3~ 2Q31In 63

a on iz i V3+ 2£3Inex
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Suma daje nam

Ve-+ [ Qlln<zx+Q*In~ +Q*In".]
c

2 (53’

Znajdziemy wartosci — , — i —

61 e2 Qs

Z AOAI1P:

AXP2= OP2+ CMX-2 = O P «CMXcos AxOP,
czyli

pR2= P2+ a2—2aP cos AxOP,;

z AOBI1P:

PX2= OP2+ O#!2- 20P «OBlcos *"OP;
czyli

e/* = P2+ 62- 2bP cos AXOP;

ale wobec 6= %20

gxlaz P2 H—p _..2P3 cos AxOP =
ar a

=] (ff + «8-2flIP cos AxOP) - £ mbI*t

wiec
analogicznie znajdziemy

wiec
-*(e>*e.+s.)Iin%
Dla pradu trdjfazowego przy jednakowym obcigzeniu faz
QI + (22 + )23 =
wiee VP= 0.

Na tej podstawie mozemy stwierdzi¢, ze przy takim pradzie
trojfazowym pojemnosé kabla trdjzytowego nie zalezy od zadnych
powierzchni metalowych, znajdujacych sie nad ptaszczem otowianym.
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§ 73

POJEMNOSC PRZEWODU NAPOWIETRZNEGO POJEDYNCZEGO
(DRUGI PRZEWOD ZIEMIA)

Uktad zawierajgcy przewod cylindryczny i przewod w postaci
powierzchni ptaskiej, wedtug teorii lorda Kelvina, mozemy za-
stgpi¢ ukladem zawierajgcym dwa przewody
cylindryczne, z ktorych drugi bedzie odbiciem
elektrycznym, znajdujgcym sie po drugiej
stronie ptaszczyzny w takiej samej od niej
odlegtosci co i dany przewod, czyli stano-
wigcy jakby zwierciadlane odbicie pierw-
szego. Oznaczajac przez h odlegtos¢ osi prze-
wodu od ziemi (rys. 166), przez r jego pro-
mien, przez £+ V i + Q potencjaty i fadunki
(na 1cm dbugosci) przewodoéw, rzeczywistego
i jego odbicia, oraz przez + V' potencjaty RY:
whasne tych przewoddéw, bedziemy mieli
na zasadzie wzoru (10)

dla danego przewodu: Rys. 166
potencjat wihasny U,

od elek. odbicia (q= 2h) —V + 2Q In

a wiec suma
K-M ,n2A

stad znajdujemy pojemno$¢ przewodu na 1 cm dlugosci, uwzgled-
niajac, ze dla powietrza e — 1, w centymetrach

RSN
i 21n
albo
0,0241 /iF
, 2h  km
i9—

Jest to pojemnos$¢ przewodu wzgledem ziemi; mamy z nig do czy-
nienia wowczas, gdy zrodio pradu wigczone jest miedzy przewod
a ziemie.
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§

74

POJEMNOSC DWOCH ROWNOLEGLYCH DO SIEBIE PRZEWODOW
NAPOWIETRZNYCH

Tutaj mozemy rozpatrzy¢ dwa przypadki:
I —gdy osie obu przewodéw lezg w ptaszczyznie poziomej,

Sl

-fi'

Rys. 167

i 1l —gdy osie te lezg w pta-
szczyznie pionowej.

W obu przypadkach ma-
my na mysli dwa przewody
nalezagce do wspdélnego ob-
wodu i zamiast powierzchni
ziemi wprowadzimy elektry-
czne odbicia rozpatrywanych
przewoddw.

W przypadku 1 (rys. 167)
oba przewody A i B sgw od-
legtosci a od siebie oraz na
jednakowej wysokosci h nad
ziemia. Takie same odlegtosci
mamy dla odbi¢ A" i B'.

Potencjat na kazdym z przewoddéw, np. A, znajdziemy, majac

potencjat wiasny przewodu A

” od tadunku B

” " A’
B'
biorgc sume, otrzymamy
2 ah
V=20In a
\Ja* + 4ft*

V',
a

— V' +2Q In

2h

-V +2QIn 75

V a2+ 4 h2.
Vi-2 QIn ¥ 2

=2QIn

skad pojemnos$¢ kazdego przewodu w cm

~ QL
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Poniewaz odlegtos¢ miedzy przewodami a jest zwykle znacznie
mniejsza od podwdjnej wysokosci zawieszenia 2h, wiec najczesciej

odrzuca sie wyraz i uzywa sie wzoru uproszczonego
1
C=
2In—
r
lub 0,0241 pF
C=
a km
is-

Pojemnosé linii  dwuprzewodowej,
gdzie miedzy przewodami rdéznica po-
tencjatdw wynosi 2V, wypadnie dwa
razy mniejsza.

W przypadku Il (rys. 168) oba
przewody A i B sg zawieszone na
rozmaitych wysokosciach a + hi h
Dla obliczenia potencjatoww A i B

mamy
na przewodzie A Rys. 168
potencjat wiasny \%
potencjatod tadunku B V'+2QIn~,
» » » B’ V' —2QIn a+zh
» » a 4I. V' + 2Q|n 2a+2h
na przewodzie B
potencjat wiasny V,
" od tadunku A V'-2Qln-y,
2h
V —2QIn _—
. .. -f 2h
i i a A - v+2qm?

Teoria pradéw zmiennych 18
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Wobec tego
VA= + V= 2Q InT(a . 2/i)=
lah ™ +
=2Q In ~ 2Q In-
2 (1+W)
2ah
VB= —V = —2QIn fla + 2h)
- .2 QlIn 2ah 0 a
2rh

Voo 21)

skad pojemnos$¢ kazdego przewodu w cm

o, ¢
VT 2nn
lub n_ 00241 ixF
a kmt
'»T

czyli pojemnos¢ jest taka sama jak w przypadku 1

§ 75

POJEMNOSC TRZECH ROWNOLEGLYCH PRZEWODOW
NAPOWIETRZNYCH PRADU TROJFAZOWEGO

Rozpatrujemy najpierw uktad z trzech przewodéw I, 11 i Ill
(rys. 169), symetrycznie utozonych, przeznaczonych do przenoszenia
pradu tréjfazowego.

Dla wyprowadzenia wzoru przyblizonego, majac na wzgledzie,
ze odlegtos¢ miedzy przewodami a jest nieznaczna w stosunku do
wysokosci zawieszenia h (liczonej od srodka kola przechodzacego
przez srodki przekroju przewodow), bedziemy przyjmowali odlegtos¢
miedzy kazdym przewodem i kazdym odbiciem za réwng 2/i.
Oznaczajac przez F/, V2, V2 wiasne potencjaty przewodoéw oraz
przez Qv Q2 i £8 tadunki ich na 1lcm dtugosci, bedziemy mieli dla
przewodu |
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potencjat wlasny
r -V I'+ 2QxInn

1 VZ-2 Q2Inx,

n -F2+2Q3In~

i V3-2Q zIn
1 -V 3+ 20Q3In~
8kad V,=2[Q++ Q2+ Qz)In2h - 2 (Q2+ Qa)lnz';
Ale dla pradu trojfazowego przy jed- Q
nakowym obcigzeniu faz
Qi+Qi+Q=0 Qz+Q3=—0Qi, a a
wiec
vVinr2Q1lin~
i analogicznie VR Ya,
n=2Qzln-j,
N3=2Q3lny,
Wobec tego pojemnos$¢ kazdego prze-
wodu (fazy) .na 1 cm dlugosci w cm
bedzie
C= 1
2In—
lub .
0,0241 jtF_ VQ MQ
, a km ' ffrrm
'oT *Q'
a wiec taka sama jak i w przypadku dwdch
rownolegtych przewodow. .
W przypadku, gdy trzy przewody Ai}/V
pradu trdjfazowego sg utozone na jednej Rys. 169

prostej poziomej w réwnych odstepach; po-
jemnos¢ srodkowego przewodu wypada wieksza od pojemnosci prze-
woddéw skrajnych. W praktyce stosuje sie w tym przypadku tak

B
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zwane przeplatanie przewoddéw, polegajagce na tym, ze linie lub
jej czes¢ dzieli sie na trzy réwne odcinki i w koncu pierwszego
i drugiego odcinka zmienia sie potozenie kazdego z przewodow
(faz); kolejnos¢ faz jest nastepujgca:

1,2 3,2 3, 1,3, 1 2

i kazda faza w réwnych odstepach otrzymuje wszystkie trzy poto-
zenia. W ten sposéb ukiad niesymetryczny zbliza sie do uktadu
symetrycznego i bedzie tym blizszy, im krétsze sg odcinki przepla-
tane. Czesto dla odlegtosci miedzy fazami bierze sie Srednig geome-
tryczna z odpowiednich wartosci, czyli w rozpatrywanym przypadku

air= Vaea<2a=a\2

gdzie a stanowi odlegtos¢ miedzy dwoma najblizszymi przewodami.

§ 76
POJEMNOSC CZASTKOWA | POJEMNOSC ROBOCZA W LINIACH
ELEKTRYCZNYCH

W uktadach wieloprzewodowych znajdujgcych sie pod pradem
poszczegélne przewody posiadaja na ogét rozne tadunki elektryczne.
Kazdy z tych tadunkéw wpltywa na wszystkie przewody w ten
sposéb, ze na tych przewodach powstang potencjaty, ktérych war-
tosci sa proporcjonalne do poszczegolnych tadunkéw.

Rozpatrzmy ukiad zawierajgcy n przewodow z tadunkami
Qu Qn ...- Qn+ Zatézmy na chwile, ze wszystkie przewody, z wyjgtkiem
pierwszego, nie posiadajg tadunkéw, ze zatem mamy do czynienia
tylko z tadunkiem ; wlwczas potencjaty (wzgledem ziemi), ktore
powstang na wszystkich przewodach, proporcjonalne do Qv mozemy
wyrazi¢ w sposéb nastepujacy:

w pierwszym przewodzie an Q1,
w drugim " a21Qlt

w ostatnim " an Qx,

gdzie au, a2y, ..., anl oznaczajg wspotczynniki niezalezne od tadunkow.
Zaktadajgc nastepnie, ze mamy tylko tadunek Q2 na drugim
przewodzie, otrzymamy dla potencjaldw powstajgcych na przewo-
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dach wartosci al2Q2, a33Q2 ..., a,202 itd.; dla ostatniego tadunku
Qn «1h0Om ®2nQn ee= annQn-

Gdy wszystkie tadunki dziatajg jednoczes$nie, otrzymamy w re-
zultacie na przewodach potencjaty, ktoére stanowig sume potencjatéw
powstajacych od poszczegolnych tadunkéw; oznaczajgc te potencjaty
przez W, v2 ..., vn bedziemy mieli

= «1101 + «1202 + + «iB0,>
«2 = «2101 + «2202 + em» + «2n 0«!
Vn= «nl01l + «<n202 + e + «uhQn *
Z tych n rownan liniowych mozna wyznaczy¢ Qv Q2 ..., Qn
w zaleznosci od potencjatdw w v2, ..., vn przy czym otrzymamy

rowniez funkcje liniowe o postaci

01 = &U»1l + N12«2 + eee + KnVm

02 = &i»i + b2v2+ ... + b2rwn,

O«= bnlvi + bniv2+ ... + brrwvn.
Ostatnie wzory mozna przepisa¢ inaczej, mianowicie

01 = Clvli+ C12{v1—v2) + Cufoi —v3) + ... + CIn[vx—wn),
02 = C22+ CA(V2—ax) + CB(V2—Vv3 + ... + Ch(v2—vn),

0» = Cmvn+Cttllvn- v)+ C,2[v,-vI+... + Cn(n_I{vn v n_J),

gdzie, jak tatwo zauwazyc,

&l= M1+ CI2+ Cis+ ==+ Cu,
bB3= C2+ C2l+ CZB+ ... + C2n,

b,n- Cm+ CH+ Cr2+ ... + C,(,_D,

b12 N12) 21 = N21»

N — Chki; blk------ Clk.

Pomiedzy kazda parg przewodéw powstaje strumien indukcji
elektrycznej, przy czym strumien idacy np. z przewodu | do prze-
wodu Il jest rowny co do wartosci, lecz przeciwnie skierowany do
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strumienia idacego z przewodu Il do przewodu 1 itd.; z tego wynika, ze

M2{VL M) ~ 72 "1)
i ogolnie
Cki (vk~ vi) — ~ Cu
czyli
Cre — ~21
i ogolnie
i — f£f*e

Wielko$¢ CH nazywamy pojemnoscig czastkowa miedzy prze-
wodami K i I, przy czym jednym z przewodéw moze by¢ ziemia.

\Z7ANN NN NN NN VAR R VYY)
Rys. 170

tatwo zauwazy¢ ze wzoréw (13),
ze Cn, C2, Cm stanowig wartosci
tadunkéw na poszczegélnych prze-
wodach w przypadku, gdy potencjaty
vit v2, ..., vn na wszystkich przewo-
dach réwne sg 1

Pojemnos¢ wypadkowag ukiadu
zawierajgcego pojemnosci czgstkowe
nazywamy pojemnoscig roboczg tego
uktadu.

Tak np. dla linii dwuprzewodo-
wej napowietrznej otrzymamy 3 po-
jemnosci czgstkowe (rys. 170): dwie,
Cuy i C2, miedzy kazdym z przewo-

dow i ziemig, i jedna, C12 miedzy przewodami. Pierwsze dwie sg
polaczone w szereg, zas C12 rownolegle do poprzednich; wypadkowa
pojemnos¢ takiego ukiadu bedzie

C=C1rz+

C, C9
+ 0,22

Gdy oba przewody sa zawieszone na tej samej wysokosci,
wtedy Cu = C2= COi wypadkowa pojemnos¢ staje sie réwng

C=CR+"-;

bedzie to pojemnos¢ robocza rozpatrywanej linii dwuprzewodowej.
Gdy przewody sg zawieszone wysoko nad ziemig, pojemnos$¢ CO
ma warto$¢ nieznaczng w poréwnaniu do pojemnosci C12; wowczas
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pojemnos¢ robocza sprowadza sie do pojemnosci miedzy przewo-
dami.

Na rys. 171 mamy uktad trzech przewodéw Pv P 2i P 3otoczonych
uziemionym ptaszczem metalowym; spostrzegamy 6 pojemnosci
czastkowych: C10 CD i C miedzy poszczegdélnymi przewodami
i ptaszczem oraz C12 C13i CZB miedzy przewodami. Przy symetrycz-
nym uktadzie — UZ2g= U2 -3 Udoraz —CB—C2

Uktad poprzedni mozna schematycznie przedstawi¢ jak na
rys. 172, gdzie punkt O odpowiada uziemieniu.

Oznaczajgc napiecia fazowe (miedzy przewodem i uziemieniem)
dla poszczegolnych przewodéw przez Ult U2 i U3 otrzymamy dla
pradu tadowania kondensatordw, pobieranego z pierwszego przewodu,

Ic—02coCO+ (E?! t)2jwCi + (& —ii3)j(0C1l— +
+(201- C 2- 0 3jcoCl
ale dla symetrycznego ukiadu, przy jednakowym obcigzeniu wszyst-
kich trzech taz, 0,+ O,+ 0O, -0,
-0,-0,- 0,

wobec tego , _ N (c +3CJ.

Analogiczne wzory otrzymalibysmy dla pozostaltych przewodéw.
Wyraz C = CO+ 3Ci stanowi w tym przypadku pojemnos$¢ robocza
kazdego przewodu.
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8§ 77
INDUKCYJNOSC

Rozpatrzmy dowolny obwod, przez ktoéry przeptywa prad.
Pod wptywem tego pradu powstaje pole magnetyczne i przez obwdd
przeniknie strumien magnetyczny. lloraz tego strumienia magne-
tycznego przez prad przeptywajacy w obwodzie nazywamy indukcyj-
noscig wiasng tego obwodu. Jezeli w obwodzie ptynie prad | i catko-
wity strumien magnetyczny, objety przez ten obwdd i powstajacy
pod wplywem tego pradu, bedzie <P wowczas indukcyjnosé¢ wiasna
obwodu wypadnie n

Liczbowo indukcyjnos¢ wlasna réwna sie wartosci strumienia
wywotanego pradem o natezeniu réwnym jednostce. W ukladzie
elektromagnetycznym indukcyjnos¢ ma wymiar dhugosci i wobec
tego moze by¢ mierzona w cm. Praktyczng jednostka jest henr,
oznaczany przez H, przy czym

1H = 109cm.

Bedziemy rozpatrywali obwody zawierajace diugie przewody
z materiatdw magnetycznie obojetnych, jak miedz lub aluminium,
dla ktorych przenikalnos¢ magnetyczna wzgledna réwna jest 1
W tym przypadku L stanowi wielkos¢ stalg, zalezng tylko od geome-
trycznego ukiadu i wymiardéw przewodow.

§ 78
INDUKCYJNOSC LINII DWUPRZEWODOWEJ

Dwa dtugie i jednakowe przewody 1 i Il (rys. 173) o dtugosci Z
i Srednicy d znajdujg sie w odlegtosci a (miedzy osiami). Prostoliniowy
przewéd, po ktérym przeptywa prad |, daje pole magnetyczne,

ktorego natezenie w odlegtosci x bedzie Hx = 2)-({ Takie natezenie
pola bedziemy mieli we wszystkich punktach znajdujgcych sie poza
przewodem, czyli dla x » Dla okreslenia natezenia pola ma-
gnetycznego wewnatrz przewodu, czyli dla x » musimy brac¢ pod

uwage nie caty prad | roztozony w przekroju poprzecznym przewodu,



INDUKCYJNOSC LINII DWUPRZEWODOWE! 281

lecz tylko te jego czes¢, ktora odpowiada polu poprzecznego prze-
kroju o promieniu X\ oznaczajgc wartos¢ tego pradu wewngtrz
przekroju przez Ix, bedziemy mieli

h 71 X2 4x2
| dz2 d2
n-4

skad _ 4a2

/y_ ~d/\L
Wobec tego natezenie pola wewnatrz przewodu w odlegtosci x

bedzie 8x2 1 8x

a2 42 () (19)

Obliczmy strumieri magnetyczny przenikajacy przez rozpa-
trywany obwdd pod wpltywem pradu przewodu I. Przeprowadzmy
ptaszczyzne przez osie przewodow i rozpatrzmy na tej ptaszczyznie
w odlegtosci x od przewodu | nieskonczenie waski pasek szero-
kosci dx i dtugosci /; natezenie pola w tym pasku bedzie réwne Hx.

Kazdy z przewodéw mozna rozpatrywac jako jeden zwdj, przez
ktory przeptywa prad |; natezenie pradu Ix stanowi czes¢ tego

pradu odpowiadajgcag jakby zwojom.

Rys. 173

Wobec tego strumieri magnetyczny odpowiadajgcy pradowi |,
ktéry oznaczamy przez &It otrzymamy w postaci

A2 4x2 8x
d&l= d2 Hxldx = ~d2~‘~d2~”dx'
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czyli ostatecznie

323?
; | =
¢ 0! di1 1dx,

skad

3211 3210 d
d40j XX= "4 416~ 2 (15)

e Druga cze$¢ strumienia, znajdujgca sie zewnagtrz przewodu, bedzie

a
02= [ 2gyx = Ain22.
% X d

2

Caly strumien od przewodu | bedzie
Ox+ 02=//"0,5+2/n ™ -

Rozpatrujac teraz przewdd Il z takim samym pradem /, lecz o znaku
przeciwnym, otrzymamy zupeinie taki sam strumien, okragzajacy
przewod Il w kierunku przeciwnym, a wiec majacy kierunek jedna-
kowy z kierunkiem strumienia przewodu | w polu objetym przez
rozpatrywany obwdéd. W ten spos6b catkowity strumien dziatajacy
na obwo6d bedzie

0 =21170,5+ 21In
skad znajdujemy indukcyjnosc¢ catej linii w jednostkach cgs, czyli w cm
L= +4ln-~y. (16)

Zaktadajgc w tym wzorze | = 1km = 10®cm i wyrazajagc L w mli =
= 10®cm, otrzymamy

L-(°1+04'»¥)""e 7>
albo po wprowadzeniu zwyktych logarytméw
10.1+0,92/5~)N

Wz6r ten moze by¢ zastosowany réwniez do linii kablowej,
zawierajgcej dwa jednozytowe kable obotowione, lecz nie opancerzone.
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Wz6r nadaje sie tez do kabla dwuzytowego, skreconego, opancerzo-
nego, zelazo pancerza bowiem bardzo nieznacznie mogtoby wptywaé
na indukcyjnosé takiej linii, gdyz prady w obydwodch przewodach
w kazdej chwili majg wartosci jednakowe, Kierunki za$ przeciwne,
wiec nie powinno zachodzi¢ wieksze magnesowanie sie zelaza pan-
cerza.

§ 79

INDUKCYJNOSC LINII
JEDNOPRZEWODOWEJ
(DRUGI PRZEWOD ZIEMIA)

Uktad taki mozna zastgpi¢ za pomocag h
metody Lorda Ke lvina przez linie dwu-
przewodowg (rys. 174), przy tym drugi
umyslony przewdd stanowi elektryczne
odbicie danego przewodu. Oznaczajgc
przez h wysoko$¢ zawieszenia przewodu
nad ziemig, za$ przez d jego Srednice,
otrzymamy odlegtos¢ miedzy przewodami
a = 2h. Poniewaz w rzeczywisto$ci mamy
jeden przewod, ktory daje potowe stru- Rys. 174
mienia catkowitego linii dwuprzewodowej,
przeto we wzorze (18) musimy zatozy¢ a = 2h i wszystko pomnozy¢

\

przez -i-; wobec tego dla rozpatrywanej linii

. (0,05 + 046 M\ mMH

§ 80

INDUKCYJNOSC LINII TROJPRZEWODOWEJ*
PRADU TROJFAZOWEGO

Jezeli mamy uklad zawierajgcy trzy przewody pradu trojfa-
zowego, symetrycznie ulozone, wtedy we wszystkich trzech prze-
wodach w kazdej chwili bedg plynety prady, ktérych suma alge-
braiczna réwna jest zeru. Z tego wynika, ze w kazdej chwili prad
w jednym z przewodoéw co do wartosci swej réwny jest sumie pradow
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ptynacych w dwdéch pozostatych przewodach. Wobec tego w kazdej
chwili strumiern magnetyczny wywotany przez dwa przewody rowny
jest strumieniowi wywotanemu przez trzeci przewod. Mozna wiec
uwaza¢ dwa przewody pod wzgledem dziatania zewnetrznego za
rownoznaczne z trzecim i zamieni¢ dwa przewody na jeden réwno-
wazny (rys. 175); linie dwuprzewodowg otrzymamy wtedy, gdy na
kazdy przewod przypada potowa cat-
kowitego strumienia magnetycznego.
Mozemy wiec zastosowaé dla induk-
cyjnosci ten sam wzor (18), biorgc dla
kazdego przewodu potowe wartosci, tj.

(0,05 + 0,46 / ~ H =~

Taki wzdr mozemy stosowaé za-

rowno dla linii napowietrznej jak

i do kabla trojzytowego skreconego.

Gdy trzy przewody pradu troj-

fazowego nie stanowig ukiadu sy-

metrycznego i, jak to obecnie czesto sie praktykuje, sa utozone

na jednej prostej poziomej w réwnych odstepach, wéwczas — tak

jak to zostato juz oméwione w § 75 — stosuje sie przeplatanie prze-

wodow (faz). Wtedy oblicza sie indukcyjnos¢ jak dla ukladu sy-

metrycznego wedtug wyzej podanego wzoru, przy czym dla odlegtosci

miedzy przewodami bierze sie czesto Srednig geometryczng z odleg-
tosci rzeczywistych; w tym przypadku

§ 81
INDUKCYJNOSC KABLA DWUZYLOWEGO KONCENTRYCZNEGO

Oznaczmy przez d Srednice wewnetrznego przewodu, za$ przez
dx i d2s$rednice wewnetrzng i zewnetrzng drugiego przewodu kon-
centrycznego (rys. 176).

di
2
od osi kabla, natezenie pola magnetycznego bedzie zalezato wytgcznie
od pradu wewnetrznego przewodu, poniewaz prad zewnetrzny pola

W dowolnym punkcie znajdujgcym sie w odlegtosci x
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magnetycznego wewnatrz nie daje. Dla punktéw za$ znajdujacych

sie poza zewnetrznym przewodem, dla ktorych x natezenie
w

pola magnetycznego bedzie rowne zeru; rzeczywiscie, natezenie to
bedzie wypadkowag dwoéch natezen pél, powstajacych od pradéw +1

oraz —I ptyngcych w obu przewodach; pierwsze bedzie réwne
21
H"SZ. drugie---)—(—--, bo odlegtos¢ mierzy sie od osi przewodu,

a w tym przypadku osie sg wspolne.

w trzecim za$, to znaczy w masie zewnetrznego
przewodu koncentrycznego, dziata prad we-
wnetrznego przewodu + 1 oraz cze$¢ pradu
wiasnego (rys. 177), mianowicie
-1 _n(szAL\_|_12—4X2
nd2 nd~ \ 4) 21
4 4

wypadkowy prad bedzie
/ dj2—4a;2\ d2—4x2

2/~ 21(d2 - 4x¥)
X X(dzzf d',2)
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Dla obliczenia catkowitego strumienia magnetycznego, objetego
dwoma przewodami kabla o dtugosci /, obliczymy strumienie w od-
dzielnych czesciach kabla. Dla wartosci x od 0 do wedtug wzoru (15)

1
01 -~ 2

dla wartosci x od -]j do

r%dx

Hx" dx _211J - 211 d

Stosujgc rozumowanie przeprowadzone dla wzoru (15), okreslamy
strumienn magnetyczny w zewnetrznym przewodzie, gdy wartos¢ x

zmienia sie od ~ do w postaci
do _ d\ -4x*, o a» - 4Ax* 211 (d2- 4x2)
czyli

2/Z (d2—4092 .
d<p W -d I*v' ~ X dx’

skad q
0 21Z_ § pn.—8d2x2+ 16x* | _
3Z (d,2-d D23 =
2
id 4zn gd2 1 7222 ~i2 i 1fi 1 ~24 dxa1l
W-«/;TPL2ln~dI~Sdi 'Y — 4— +16-T A6 % J-“

2/1Z
(d2 'dj)2[ d* Inirl- d*2 =

_Z/ZJ:N 2%_',)2 g d’l’c"d‘l' d.++:>é)j

3@2—d|
L(CQ-dQZ d 42—

— d‘l' 22T _
2lz|£(d2d az dx dla ]
=2z i(d22—d,2)2m 4 2@2 d |2)JI

=2/z|
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Dodajac do siebie strumienie &It 02 i o8, otrzymamy catkowity
strumien magnetyczny, powstajacy w rozpatrywanym kablu

0 2+2IIInj+2II\’\diId*yInd] 4 2{d2-d 1]

5 z1 1. +Inii- -+ InN 4+ 1=
L4 +in d ¥(02- 0.Y d_4_2‘(62 o~y

Tlnsl ni
21/ J_(EIZ "jé] 4x J,
skad

r_JL —2 ZTZn 14 d [,
¥ Wi 'G—2adéd 5t
zaSdla/ = 1km i L wyrazonego w mH, po wprowadzeniu zwyktych
logarytméw,
dz* 0,1d2 1 mH

L= +W -d |2)2ty d2—dxJ km

§82

ROZSZERZENIE DZIALtU O PRADACH WIELOFAZOWYCH

Rozktad ukiaddéw niesymetrycznych pradu trojfazowego byt
rozpatrzony w 827, str. 105 i n. Przytoczymy tu zasadnicze wzory.
UstaliliSmy, ze niesymetryczny uktad
trzech wektoréow R, 8 i f (rys. 178)
mozna roztozy¢ na trzy grupy wek-
toréw skitadowych uktadu symetrycz-

nego.
R = Ko+xj+ Rb (1)
8= 80+ dA + aR2 2
t = ot aA +daA?2 (3)
gdzie
.In | .
a —2 ]
a2:e;. 4§ = %

a3=1;, 1+ a+ a2=0.
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W powyzszych wzorach (1), (2) i (3) mozemy wyro6zni¢ trzy
grupy wektoréow, a mianowicie:

flo, A,
i7i, a2?!, dA,
A, dfi2
Kazda z tych grup przedstawia ukiad symetryczny, przy czym
pierwsza stanowi jeden wektor, druga odpowiada normalnemu sy-
metrycznemu uktadowi pradu trojfazowego, trzecia za$ grupa rézni
sie od poprzedniej tylko zmieniong kolejnoscig wektordow.
Czesto nazywajg pierwszga grupe ukiadem zerowym, drugg —
uktadem wspotbieznym, trzecia — ukladem przeciwbieznym.
% Wektory skiadowe RV R2i ROWyrazamy przy pomocy wektorow
danych w spos6b nastepujacy:

RO=+{R + S+ T) (4)

#1= * (R+ &S+ d*T) )

R2= +{R + d*$+ &), (6)

W obwodach pradéw zmiennych mamy przewaznie do czynienia

z sitami elektromotorycznymi, napieciami i pradami. Bedziemy

oznaczali te wielkosci przy pomocy odpowiednich wskaznikéw; a wiec
dla wektordw ukiadu niesymetrycznego, ktdre oznaczyliSmy ogolnie
przez R, i S, t bedziemy pisali OR Os, BT, OR Us, UT, 1R Is, 1T,
za$ sktadowe symetryczne RO, Ru R2bedziemy odpowiednio oznaczali
przez EQ, £2 00 Ov 02 10, 11 12 W ten spos6b otrzymamy na-
stepujgce wzory np. dla napiecia.

OR= 00+ Oi + 02,

Os = 0Q+a*0i+a 02,

Ot= 00+ Atil+ A*Oa.

00 —-~"{Or+0s+ Ov)
01 — (OR+ aOs + a20v),
02— g-{Or + a20s + &0 t)-

i analogiczne wzory dla sity elektromotorycznej i natezenia pradu.
Obecnie zastosujemy metode sktadowych symetrycznych w ob-
wodach pragdu trojfazowego.
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§ 83
ZASILANIE NIESYMETRYCZNE

Majgc dany niesymetryczny ukiad sit elektromotorycznych lub
napiec¢ zrodta, nalezy wyznaczy¢ prady przewodowe, znajgc wszystkie
opornosci obwodu. W tym celu rozpatrzmy uktad gwiazdowy z prze-
wodem zerowym. Dla uktadu tréjkatnego stosujemy znang metode
Kennely'ego przeksztatcania tréjkata w rownowazng gwiazde (rys.
179). SEM fazowe ER Es, ET stanowig ukiad niesymetryczny.
Nalezy wyznaczy¢ prady przewodowe IR Is, IT, IO

Skladowe symetryczne rozpatrywanego ukiadu SEM bedg
[wzory (4), (5), (6)]:
BO= "g'{Br + BS + BT) »
Bi+ ¢ (BR+aEs +aZken),
E’/F-g— {BQ+ ks + aET) ;
kazdg z danych SEM mozna wyrazi¢ przy pomocy skladowych

symetrycznych w sposdb nastepujacy [wzory (1), (2), (3)I:

Br = BO+EL+E,
Bs = B0+ aFl+ ai2
El=B+aE + a’m

Jak wiemy z poprzedniego, grupa skiadowych E] Hl E] sta-
nowigcych wiasciwie jeden wektor, nazywana jest uktadem zerowym,

Teoria pradéw zmiennych 19
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grupy i?!, a2fi, af?2 ukladem wspotbieznym, zas grupa ¥E2 d£2
aZE 2 uktadem przeciwbieznym.

Zacznijmy od rozpatrzenia dziatania ukladu wspétbieznego
2% dZEx, aEx

W 8§29 str. 112, 113 dla ukiadu gwiazdowego z przewodem
zerowym (pradu tréjfazowego) byt wyprowadzony wzor (10), dajacy
napiecie miedzy punktami zerowymi zrodla i odbiornika w postaci

fy
u°0 ~ Yi+v Fas+ 13+ F.
gdzie Fx F2 i 70 oznaczajg przewodnosci pozorne odpowiednich
czesci uktadu, czyli
Yi= * i a -YR,
2 t— ?
Y= amezprzs Y
S y
Zw+p +2zp P
1
20 = -Y,@
- 00
W naszym przypadku zamiast mamy a22”, zamiast 2?3 mamy
d£x, wobec tego spadek napiecia na przewodzie zerowym wynosi
ii EiYr+P&iYs +dEXYT _ @i(Yr+ a2Ys+' aYry)
F.R + Fs+F :r+ b 00» Yr + £s + Yt+ F oo

Przewodnosci, ktére wprowadziliSmy do ostatnich wzordéw, mozna
roztozy¢ na skladowe, odpowiadajgce skltadowym symetrycznym
niesymetrycznego ukfadu, mianowicie

FO= vy (Fk + YS+Y7),
YX= -MFp + aFs +a2F7),

F2= 4 (2p+ a2Fs + aYT)

wtedy
Yr+ &YS. dYT- 3r2: Yr +Ys+ Yt = 3co0;
woéwczas dla napiecia miedzy punktami zerowymi otrzymamy wz6r
3 f2ex

U —
3F0+ FQO
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Znak (—) w ostatnim wzorze wskazuje nato, ze kierunek napiecia,
liczac od punktu zerowego odbiornika, jest przeciwny do kierunku
pradu zatozonego pierwotnie (rys. 179); jezeli punkt zerowy odbior-
nika ma potencjat wyzszy od potencjatu punktu zerowego zrodia,
wowczas napiecie zgodne z kierunkiem pradu wyrazi sie wzorem

S 3F82%
@ 3F0+ FQ

Prady przewodowe, ktore dla sktadowych wspétbieznego uktadu
oznaczymy przez IR, I's, I'T oraz /', bedg

Is* om)Ys=fs (d2- -373 ) £,
V =(dE£!- V'n-) 3y@+ 2V )

I 3y 2Fo0

W— A0~ 3yo+ Foo' X

Rozpatrzmy teraz dziatanie uktadu przeciwbieznego: £2 a£2 d2f 2
Analogicznie do poprzednich rozumowan znajdziemy dla napiecia
miedzy punktami zerowymi

o ?RE2+ ?2sdE£2+ 2 Td2E2 3Fx
00 Fa+ Fs+ Fr+ Fio 3F0+ Fp 27

Prady przewodowe

?R(Et-O0 @) = ?R(I1- $§&~ +V )HA,

;5»= fs(«e2- v )=" («- ~o
/r'= fT(d*E2-0 " 00)= ?r(a " ' v
370+ Foo'/ a
C reg s g o SP1T007E
B no = 3F0+ oo

Dziatanie ukiadu zerowego J0, £0, 220 rozpatrzymy w spos6b naste-
pujacy. Z schematu (rys. 180) napiecie miedzy punktami zerowymi
A ( +r o) 3R

Ol
®  Fr+ Fs+ Fr+ Fod = 3F0+ F,
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Prady przewodowe

Ir "= Yr(EO-U """ 0o YA 1

Is*"-2s(£0- 0"«0)= Ps(l- '3f 8+V @)

it'" = yt(£EO-tj"'w)= ~ (i---3~V —;) £o,
QV V /
1 0—"%o — BT T . P e
00”1 B _%I?O+ n>

Rzeczywiste prady przewodowe otrzymamy jako sume pradéw od
poszczegélnych skladowych
Ir lr + Ir" + Ir"

4 Is + Is" + s
4 = 1T+ 1T + 1ITr.

§ 84

ZASTOSOWANIE PRAW KIRCHHOFFA DO SKLADOWYCH
SYMETRYCZNYCH

Rozpatrzmy schemat (rys. 181), gdzie IR, Is, IT stanowig prady
doptywajace, zas IR, Is\ IT IR', Is", IT" prady odptywajace,
przy czym wszystkie prady stanowig ukiady niesymetryczne pradu
trojfazowego.

Stosujac do weztéow | prawo Kirchhoffa, bedziemy mieli

*Fx__\/
Is- Is'- Is”
IT- 1T- V

I
O oo
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Niech skiladowe symetryczne bedg

dla iR : /0, A> /2>
da v :10V, Vv,
dla 4": /0, V', /2.
Podstawiajgc te sktadowe do uktadu réwnan na | prawo Kirch-
hoffa i biorac pod uwage podstawowe wzory (1), (2) i (3) otrzymamy

(A+A + A)~(A" +A" +A")- (A" + A"+ /") =0,
o+ +5p) ~ (A +aA +aA) —1d' +RA’+d/2) =0
@o+ &Ji+ dh)- (V +«V +dA)- (/O +a/j" +d2/2) = 0
lub po przegrupowaniu

(V-V - V)+(A- A- AV+(A- A- A =q
(A- A- AY) +«A- A- A +d(A- A- A) =q
(A- A- AY) +d(A- A- A +aA-A'- A =a

Dodajac stronami te réwnania i bio-
rac pod uwage, ze 1+ &+ a2= 0,

otrzymamy J
0 o 0 u-

_ ST K _ .
Mnozac drugie réwnanie przez a,
trzecie przez i dodajgc stronami,
bedziemy mieli 1y— — A

* A-A'—A"=0;
wreszcie, mnozgc drugie réwnanie
przez a2 trzecie przez a i dodajac, Rys. 181
otrzymamy

2 J2 = 0.

W ten sposob stwierdzilismy, ze | prawo Kirchhoffa mozna
zastosowac¢ do skiadowych symetrycznych.

Aby dowiesé, zei Il prawo Kirchhoffa mozna stosowac do skia-
dowych symetrycznych, rozpatrzmy schemat (rys. 182). Dziatajg trzy
SEM Ejj, Es, ETM ukiadzie niesymetrycznym; napiecia na odbior-
nikach oznaczymy odpowiednio przez UR, Us', UT, za$ napiecie
miedzy punktami zerowymi zrddta i odbiornika niech bedzie UQD.
Stosujgc do poszczegélnych obwodoéw zawierajgcych jedng SEM
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oraz przewod zerowy Il prawo .Kirchhoffa, otrzymamy

= Cr'+ Coo,
Es= 0s + 0
Ej. = 0j. + UQ.

Sktadowe symetryczne SEM niech bedg EA Ej, E2\ napiet
00, Oi, 02. Podstawiajac sktadowe symetryczne do powyzszych

rownan i porzadkujgc wyrazy, analogicznie do poprzednich wzoréw
na | prawo Kirchhoffa, otrzymamy

E+5 +E)~(00+Q' +03)- UD-= o,

(EO+ a*Ej + dE2- {00'+ a20j +d02)- 0'K = o,

(EO. dEj + a2E) ~ (00 + dOj" + d202)- 007 - o
Po przegrupowaniu wyrazéw mozna napisac

(B> oo- AD)+(H- G)+ (B 02)- o

B - A0+ e(F- ) +2E 02)-=o

(E0- 00- 000) + d(Ej- IV)+..(6,- 02)= o

Postepujagc tak jak poprzednio, otrzymamy

co= O +Q0,
El= q-’
B- £V

co odpowiada Il prawu Kirchhoffa w zastosowaniu do sktadowych
symetrycznych?
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§ 85

WYZNACZENIE SKEADOWYCH SYMETRYCZNYCH NAPIECIA NA
OLBIOANIKU NIESYMETRYCZNYM

Dla danych pradéw przewodowych okreslamy sktadowe sy
metryczne, wedtug podstawowych wzordw (4), (5) i (6).

SB(/r+ 5+ 11)>

g (Ilr + als + a21T),

=
1

h = 3 (Ilr + d21s + dlj-)-
Poza tym, na podstawie Il prawa Kirchhoffa,
ho = 1r + nh + = 3/,.

Wprowadzamy skladowe symetryczne opornosci pozornych
cor— Jrcze v 2o+ 2z,
Zt=~{Zr +dzs’+ d22T),
(2 = =-{ZR + d2zs'+ dzr') -

Niech poszukiwane napiecia na odbiorniku majg skitadowe UQO,
Ui, UZ, wowczas bedziemy mieli

GO =*"g-(Gr'+ Gs"+ GT)= -g(IrZr' + IsZs + 1tZt),
ale

ANr= h + h + hi
Is=/0+ azll+ al2,

1T = h + dli + dzl2\
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00—3 [(A+A+A) Zr + (AHRRAHRA) Zs'+{tordIHdA2Z 7] —
=g[(Zr +Zs'+Zt ) 1IN (Z ¢™ u2Zs'-t&Z2t ) 11+(Zr'+aZs'+6-2Z t') A] =
-A(SZ"™lo +SZ™h + SZAI);

czyli ostatecznie i0=70/0+22/1+71/2 (7)
Analogicznie otrzymamy

0= g(Or+aUs'+a2Ut)=g['rZr 4alsZs +d2ltZt)=

= 3 [ZR+dZE+d2ZV) | 0+{Zr +Zs'+Zt)li+{ZR+a,2Zs+dZT)\ A =
=A@z A+320A+322A)
1 ostatecznie Noo= + +22/3 (8)
nastepnie
02 —g{Or+a20s'+al0t)—g (IrZr' + a2lsZs + dljZr)
i postepujac jak dla (A', znajdziemy

=A'A +A'A +A'A e

Biorgc pod uwage, ze napiecie miedzy punktami zerowymi

tfO= 102’0 = 31070 (10

oraz oznaczajac opornos¢ pozorng kazdego z przewodoéw fazowych

przez Zp, otrzymamy, stosujac Il prawo Kirchhoffa, dla napieé
u zrodia tA= C,' + IRZP+0O @,

oA = Os' + AAp * Qe
#A= $ AZB + tho -
Przy uwzglednieniu wzoru (10), sktadowe symetryczne napie¢
na zaciskach zrddia wynoszg

Uo—3 (Ur+Ost 0t)= g [(OR+0s'+0T)+{A+A+A)"p+t9A oo] =
=T A/+3A%e+9AZ'00")=A/+ (Zp+SZ"N') Al
tA=y ( + dAs+d20T)= *[(tV +dOs'+d20T) +
e (Tev ats e a2y i0+ (uoo s au oo s 2 2A00)] =

='"g[3C7+31yZp)+ AD(L +a+a2]=A/+AZ,,
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02=1-(OR+d*Cs+ dt)T)= £ [(OR' + d*Ds" +dt) T")] +
+ (IR+ a2ls+ alT)Zp + tlo™ (1 =
= d'3tj%+312Zp)= t)2+ 127P =

Ostatnie wzory mozna napisa¢ inaczej, uwzgledniajgc wartosci
Oy i 02 z wzoréw (7), (8) i (9).

UO= z0i0+ ZJU + Zi'h + (2, + 32'00) i0=

= (32'00 + Z0' + Zp) i0+ zZ2h + z2\ 12, (11)
O, = 2\10+ zy i, + zy 12+ 1Jtp =,

= ZT10+ {Z0 + Zp) 1 1+ Z21t, (12)
ty2= 2210+ 2111+ z0i2+ zpi2=

= 710+ 'zi'll+ (20 + zP)l a (13)

Gdyby w uktadzie gwiazdowym nie bylo przewodu zerowego,

czyli 700 = 0, wowczas

wobec czego

IR+ le + 1f —0,

/0=i(/* +/s+/r)=0

i W wyzej rozpatrzonych wzorach nastgpig odpowiednie uproszczenia.

8§ 86

WYZNACZENIE SKEADOWYCH SYMETRYCZNYCH PRADOW /,, /,, /2

DLA OLBIORNIKA TROJFAZOWEGO NIESYMETRYCZNEGO

Napiecia na odbiorniku niesymetrycznym OR, Us', tJT wy-

razamy przy pomocy sktadowych symetrycznych £0, Cy, t)2.

OR = 0o + tjy + Oy 1
Os'= Oy + d*Gy + dCy (14)
tyT = 00 + dtyy + d*tjy. )

Oznaczajgc przewodnosci pozorne poszczegdlnych faz odbior-

nika przez ZR, Ys', YT, otrzymamy dla pradéw przewodowych

{er -Iu_jSerl>
i =fj 'Y’ (15)
1IT= tyTt T.
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Dodajgc stronami Ostatnie wzory i biorgc pod uwage (14), otrzy-
mamy
Ir+ fs+ "t—0RYR +0SYs'+0TYt =

= (#.,+ OI"+ 0*®)Yr'+ (00 +d*0Oi' + a0 t") Ys'.

+(00+d0 +d02)?T ={Yr'+ Ys'+YT) OO +

+ (Yr' +d2vs' + &Yt) Oi + (Yr + aYs'+d2rt) 02. (16)

Oznaczajac skladowe symetryczne przewodnosci pozornych po-
szczegblnych faz odbiornika przez ?,> Yx, Y2, mamy

Yr'+ Ys'+ YT = 3YO,
Yr +d fs'+ d*?T = 37?i',
Yr'+ a?ys'+ dfT = 3Y2.
Nastepnie
?r+ ts+ 1T= 3 /m

Podstawiajgc te wartosci do wzoru (16), otrzymamy

3/, =3Y000+3YZO0i'+3Yi'02,

8kd h- £+ V+ 0. (ni

Jezeli poréwnamy ten wzér z wzorem (7), zobaczymy pewng
analogie: jezeli we wzorze (7) zamienimy Ix 12przez 00, 0X, 02,
oraz Z0,.i, Z2 przez i'0, Yx, Y2, to otrzymamy wzor (17).
Stosujac dla znalezienia i 12 le samg metode co dla znalezienia
poprzednio 00, Oi i 02, otrzymamy analogicznie do wzoréw (8) (9)

h = Yi'00 + YOOi'+ Y202, (18)
/2= Y200+ Yi'0i'+ YOOZ. (19)

§ 87

MOC W NIESYMETRYCZNYCH UKELADACH PRADU TROJFAZOWEGO
WYRAZONA PRZY POMOCY SKEADOWYCH SYMETRYCZNYCH

Jak rozpatrzono w przykiadach zastosowania metody symbo-
licznej w § 14, str. 65 i n., moc pozorng mozna przedstawi¢ w ten
sposob, ze jeden z wektoréw napiecia lub natezenia pradu nalezy
podstawi¢ w postaci liczby zespolonej sprzezonej; np. gdy napiecie
wyrazimy wzorem

O == Ue = U (cosa + / sina),
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gdzie a stanowi kat, ktéry wektor O tworzy z osig podstawowa,
wtedy liczbg sprzezong bedzie
U (cos a—j sin a);
nazwijmy ten wektor wektorem sprzezonym z wektorem O i dla
odréznienia oznaczmy wektor sprzezony stawiajgc nad U daszek
odwrécony, a wiec -
O = U (cos a—/ sina) — Ue~Ja

Wtedy moc pozorna pradu w ujeciu symbolicznym wyrazi sie

WZOrem Ol lub Ol.

W razie rozktadania niesymetrycznych uktadéw pradu tréjfazowego
na sktadowe symetryczne, przy stosowaniu wektorow sprzezonych,
zmieni sie porzadek wektoréw w uktadach wspotbieznych i przeciw-
bieznych, wobec czego

OR= 00+ 01+ 02

Os = 00+ a0l+ a02

0T= 00+ d2x+ d02

Moc pozorng catego ukiadu niesymetrycznego otrzymamy jako
sume mocy pozornych poszczegélnych faz. Oznaczajgc przez Pz moc
pozorna catego uktadu, zas przez PZR Pzs, P ZT, moce pozorne fazowe,
bedziemy mieli

Pz —Pzrd'Pzs + PZT»

a e

p_ 7T _ ¢ _ . a__ _ n _f . p__ _ n_.tl
rZR~ URIR>"mZS =~ USMI r ZT UTIT.
Po podstawieniu zamiast napie¢ i pradéw fazowych — ich wartosci,
wyrazonych przy pomocy skitadowych symetrycznych, otrzymamy

PZ = (tro+nivcy (U+h+U) + {O0+dOx+d*ot) (i0+d*il+di2) -
+ [00+ a1+ a02 (U + all+ a2u) =
- 30010+ UoU (@1 + d2: 4y + OoU (1 +d + d2 +
+ iTisoa +d+ a2 +30JIx+ 01|2(| + d2+ d)+
. 02u@. d2. @. 02U (1. .. ad. 30212

i ostatecznie

[ro.2 4 5,
8, = 3{ofo+ o1f1+ ooy
Moc pozorng mozna wyrazi¢ symbolicznie w postaci
Pz=P + iPx,

gdzie P —moc czynna, za§ Px —moc bierna.
Poniewaz moc czynna wyraza sie iloczynem wartosci skutecz-
nych napiecia i natezenia pradu przez cosinus przesuniecia kata
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fazowego pradu wzgledem napiecia, za$ moc bierna tym iloczy-
nem przez sinus kata przesuniecia fazowego, wiec o0znaczajgc
przez q0e?i, e2katy przesuniecia fazowego pradéw A, At A wzgledem
odpowiednich napie¢, otrzymamy

P = 3{UOIOcos 40+ Ulllcos + UZI2cos 49,

Px= 3 (UOIOsin €0+ Ulllsin e\ + U2 2sin e2).

8§ 88

ZASTOSOWANIE METODY SKLADOWYCH SYMETRYCZNYCH
DO OBLICZANIA PRADOW ZWARCIA

Ograniczymy sie do rozpatrzenia zjawisk zwarcia w ukia-
dach pradu trojfazowego tylko dla symetrycznych uktadéw gwiazdo-
wych, przy czym punkt zerowy zrodta potaczony jest z ziemia przez
pewng opornosc.

a) Zwarcie z ziemiag jednego z przewodow (np. prze-
wodu R w punkcie A, rys. 184).

Oznaczmy skladowe symetryczne opornosci pozornych, liczac
do miejsca zwarcia przez Z0,Zx 22, SEM fazowe pradnicy, dziata-
jace w takim uktadzie symetrycznym, majg réwne wartosci skuteczne,

czyli - E
Sktadowe symetryczne SEM bedg
EO- o; Ex= E; E2- o,

gdyz przy symetrii nie mogg wystgpi¢ skltadowe ukiadu zerowego
i przeciwbieznego.
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Wskutek zwarcia fazy R z ziemig w punkcie A, napiecia fazowe
w tym punkcie tworzg uktad niesymetryczny; napiecia te OR, O5i Uj-
wyrazimy przy pomocy ich sktadowych symetrycznych CO, Vx 02
sktadowe symetryczne pradéw przewodowych IR Is,/rbeda 10, 1v 12
Biorgc pod uwage, ze w miejscu zwarcia UR= 0, nastepnie w po-
réwnaniu z pradem zwarcia IRprady Is i 1T sg nieznaczne i w tym
przypadku mozna zatozy¢, ze Is = 0 oraz IT= 0, wtedy, stosujac
Il prawo Kirchhoffa do sktadowych symetrycznych, bedziemy

mieli 0-1.2, +o0,

£-17,+C, 20y

0 = 1222+ U2
Dodajgc stronami ostatnie réwnania, otrzymamy

£ - 1020+ lizl+ 12Z2+ Oo+ O\ + Uz
ale
uO+ ox+ #2= aR= o,

wiee E= 100+ 1121+ 1222 21,
Z wzoréw

Ir—h + il+ h-
is- lo+ 0,
1T= 10+ all+ a212= 0,

otrzymamy dodajgc stronami

3/0= 1R
Z pierwszego z powyzszych réwnan wynika
i +12= 210,

za$ z drugiego i trzeciego z tych réwnan
/, + a2l+ a/2= 10+ dIx+ a2/ 2

A (a2-«) = M az2-a),
/ =7)
3 Wwie® I1+ /2= 2/a= 2/2= 2I/K)
czyli
- f —"™"R
fo—b ',— 73,

Na tej podstawie wzér (21) daje nam
£=-1f (20+ zX+ 22,

skad 3E
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W ten sposéb, przy wiadomych wartoéciach Z0,Zu Z2 oraz
SEM E, zostat okreslony prad zwarcia w rozpatrywanym przypadku.
Mozemy rowniez tatwo znalez¢ skiadowe symetryczne napieé
w miejscu zwarcia. Z wzoréw (20)
JZa _EZO
20+ Zi +22
IrZ1l E{z0+ z1)
3 Zg+ Zi+ 22
tuzs_ EZ2
Z0+ ;i+22

Uo —- TqZ0—
0l=E -11z1™E -
02= —V/jjz2

b) Zwarcie z ziemig dwdch przewodow.

Zatézmy, ze zwarcie z ziemig nastgpito réwnoczesnie w dwdch
fazach, np. Si T (rys. 185). Nalezy wyznaczy¢ prady zwarcia Is i 1T,
przy czym zakltadamy, jak poprzednio, ze w stosunku do wartosci
pradéw zwarcia inne prady mozna poming¢, czyli

Ir= 0.
W punktach uziemionych napiecia
Os=0 i OT=o0
Wobec tego sktadowe symetryczne napie¢ beda

#°= 3 [Or+ Os+ OT)= — ,
—y (#* + ¢ + C2#r) = % ,

02= 3 (0Or+ &0s + a0t) =
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czyli wszystkie skladowe symetryczne napie¢ sg sobie réwne.
Stosujgc Il prawo Kirchhoffa, otrzymamy rowniez uktad réwnan

(20), a uwzgledniajac, ze 00= 01= 02= otrzymamy
hz O+
hzx + ~ 0,
+ 3 0;
skad
O*
~ 310
A zx 32
2 _ _OR.
8 322’
a poniewaz
10+ + 12= 1r= O [z zalozenia),
przeto
fR | R | Or ~
3Z0 3zX 372 71’
skad
Or . E
* L zl(x+-£+2Y
] \Zo Zt 1z j
czyli
00=ot= 2=
A (20+z1+29)
Sktadowe symetryczne pradow sg
Or EZ*
3z0 Z0Zi+Z2X22+ 72z 2
A 0(z0+z2
© Zi 3ZX Z0Z1+Z122+ 70Z2
Or 0:z0
A -

372 ZWZi+2iz2+z@?2
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Majac skladowe symetryczne pradéw, mozemy obliczy¢ prady
Is i gdyz

h + a2l1+a/2
10+ al, + dAt.

Is
1T

c) Zwarcie miedzy dwoma przewodami.
Przypusémy, ze zwarcie nastgpito miedzy przewodami S i T
(rys. 186). Zaktadamy, jak poprzednio, IR= 0

E* ——J*

Napiecia fazy S i fazy T sg sobie réwne

Us= 0T
Rozpatrujgc zamkniety, z powodu potgczenia punktow S i T, obwod
i stosujgc | prawo Kirchhoffa, otrzymamy

Is+ 1T= 0.
Wreszcie

Os = CT= 00+ d201+ dCc2= CcO+ a€, + d202
Z ostatniego réwnania wynika
(a2—a) 01= (a2—a) 02

0, = tf2
Wiemy, ze

lo+h+h=0
oraz

As =
czyli

/, +a2l, + al2= —(/0+ aAl+ d2i 2,

skad

210+ (a2+ a) I, + (a+ a2 12= 0,
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ale
= — 1,

wiec ostatni wzor przybiera postacé

2/n —/2—0
albo

370—(A>+ A+ ") —
wyrazenie w nawiasach réwne jest zeru, wiec otrzymamy
/0= 0
h =~h
Na podstawie wzoréw (20), dla symetrycznego ukiadu zrodia, be-
dziemy mieli
0= 100+ 00
£=1~ + O»
0= 1/222+ 72

z pierwszego z tych réwnan znajdziemy

~"o=0
Nastepnie, biorac pod uwage, ze Ul — tJ2oraz ze /x= — 12, z ostat-
nich dwoch réwnan otrzymamy
/2 =
ar Z1+122
01= __£z2
¢l + .22

Znajac skiladowe symetryczne pradéw i napieé, mozemy obliczy¢
prady Is i 1T oraz napiecia t)s = UT.

Uwaga. Przy obliczaniu pragdéw zwarcia w przypadkach b) i c)
natkniemy sie na nastepujgce wyrazenia:

1—a?2;, a—az2;, a—1
Wyrazenia te obliczymy, pamietajgc, ze
1 .1

a - 2 2 vV 3 -

Teoria pradéw zmiennych 20
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czyli
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PRZEWODY DLUGIE

§ 89
WIELKOSCI CHARAKTERYSTYCZNE

Dotychczas w obwodach pradu zmiennego zaktadalismy, ze
opornosé czynna, pojemnosé i indukcyjnos¢ sg skupione w poszcze-
gbélnych miejscach obwodu. W urzadzeniach elektrycznych mamy
czesto do czynienia z tymi wielkosciami roztozonymi w przewodach
wzdtuz obwodu. W przewodach krotkich, tgczacych zrodta z odbior-
nikiem, wptyw pojemnosci i indukcyjnosci samych przewoddéw jest
zwykle nieznaczny, nalomiast w przewodach diuzszych musimy te
wielkosci uwzgledniaé w obliczeniach.

Zajmiemy sie tylko przypadkiem, gdy roztozenie pojemnosci
i indukcyjnosci wzdtuz catej linii jest rdwnomierne.

Przy znacznej dtugosci przewodéw nalezy sie liczy¢ jeszcze
ze stratami spowodowanymi przez niedoskonato$¢ izolacji, przez
tak zwang histereze dielektryczng, wreszcie przez wyladowanie
elektrycznosci, czyli tak zwany ulot, w rozmaitych postaciach az
do powstania korony Swietlnej. Straty te, o ktérych byta mowa w §40,
powoduja uptyw pradu i ten prad uptywowy lu spowodowany na-
pieciem U, okresla sie wzorem

/.= AU,

gdzie wspotczynnik proporcjonalnosci A nazywa sie uptywnoscia linii.

Opornos$¢ rzeczywistg, indukcyjnosé, pojemnos¢ i uptywnosé
przewodu podajemy w odniesieniu do jednostki dtugosci linii (w prak-
tyce na 1 km) i oznaczamy przez R, L, C i A. Linia zatem o dtugosci |
posiada opornos¢ rzeczywistg RI, indukcyjnos¢ LI, pojemnosé CI
i uptywnosé Al.

20~
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§ 90
ROWNANIA ZASADNICZE

Rozpatrzmy linie dwuprzewodowa, na poczatku ktorej (u zrodta)
wartosci chwilowe napiecia i pradu wyptywajacego na linig sg uli ilt
za$ wartosci skuteczne Ol i 11, na koricu (u odbiornika) oznaczmy
te wielko$ci odpowiednio przez u2, i2, t)2i 12(rys. 187). Rozpatrzmy
odcinek tej linii nieskoniczenie matej dtugosci dx, odlegty o a od jej
poczatku. Niech wartosci chwilowe napiecia i pradu w tym miejscu
beda u i i, skuteczne O i /. Opornos¢, indukcyjnos¢, pojemnosé
i uptywnosé odcinka dx bedg miaty wartosci Rdx, Ldx, Cdx i Adx.

/, R.L.C.A

u. u. 0,\Ut

dx r*-

Rys. 187

Napiecie u i prad i sg funkcjami dwoch zmiennych: czasu +
oraz odlegtosci x. Na rozpatrywanym odcinku dx zachodzi zmiana
wartosci zaré6wno napiecia jak i natezenia pradu. ldgc w kierunku
dodatnim, tj. od strony Zzrodia do odbiornika, bedziemy mieli na
poczatku tego odcinka napiecie u i prad i, w koncu odcinka za$

napiecie u + ~ dx oraz prad i + ~~dx. Zmiana tych wielkosci wy-

niesie wobec tego dla napiecia

dla pradu

Zmiana napiecia spowodowana jest napieciami powstajgcymi na
opornosci rzeczywistej i opornosci, indukcyjnej badanego odcinka
i rowna sie sumie tych napiec.

Mozemy wiec napisac
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Zmiana wartosci natezenia prgdu réowna sie sumie pradu uptywu
i pradu pojemnosciowego odcinka dx. Pierwszy réwny jest Adx-u,
drugi Cdx m = Wobec tego bedziemy mieli
—dx dx = Adx mu + Cdx-é“fl
Z tych réwnan, po skroceniu przez dx, otrzymamy

du

. di
dx Hi + L~9t (1)
di ,du
(2)
§ 91

ROZWIAZANIE METODA SYMBOLICZNA

Rownania powyzsze bedziemy rozwigzywali ogélnie przy ba-
daniu pradéw nieustalonych. Dla pradéw ustalonych mozemy za-
gadnienie znacznie uprosci¢. Rozpatrujgc mianowicie prad sinu-
soidalny, mozemy zamiast wartosci chwilowych wprowadzi¢ wartosci
skuteczne, stosujgc metode symboliczng. Wartosci skuteczne, jako
niezalezne od czasu, beda funkcjami tylko odlegtosci x, wiec zamiast
rownan o pochodnych czgstkowych otrzymamy réwnania o po-
chodnych zwyktych.

W tym celu do réwnan (1) i (2) stosujemy metode symboliczng,
wprowadzajac wartosci skuteczne napiecia tJ i natezenia pradu 1
w odlegtosci x od poczatku linii; zaktadajac, ze prady ustalone sg
sinusoidalne (w przeciwnym razie wzory stosujemy do kazdej harmo-
nicznej), bedziemy mieli

u= Vyj2eat, i= i/2eJU;

wtedy z réwnan (1) i (2) otrzymamy

_iMV2ed'=RIy2emt+ jwL/V2eM\

B oy 2ewt - AUY2edmt+ jw CHov2d"!
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skad po skroceniu
~~dx~ (i? + /ftL) 7- ©)
- {A+j»C) O. (4)

W celu otrzymania réwnan zawierajgcych tylko jednag nie-
wiadomg funkcje bierzemy pochodne wzgledem x, co nam da

d20 _ . r,dl
dx2 - (i? + /ftL) dx > (%)
da*l .. . n.dV
dx2 (™ +/wC) diC’ ©)
. . , . d/ ,dtr i .
i podstawiamy wartosci i , otrzymane ze wzorow (3) i (4).
Wtedy bedziemy mieli
d*tJ
dx2 = (fl + /fHL)(A +/(aC) 0; (7
d2/ L .
dxi = (ii + jeoL) [A + jooC) 1L )
W tych wzorach C i i czynig zado$¢ temu samemu réwnaniu
rozniczkowemu w postaci
dxy
dx2 = K% ©
gdzie
k=Y (ii +jutL) (A + jwC); (10)

jego réwnanie charakterystyczne
z2= k2
ma dwa pierwiastki
zx= + k, z2= —Kk
i daje catke ogdlng

y = + CZe~kx,
gdzie cx i C2sg to stale dowolne, ¢ — podstawa logarytmoéw na-
turalnych.
W ten spos6b catka ogo6lna réwnania bedzie
V = CZe~kx. (12)

Z réwnania (8) moglibysmy napisa¢ réwniez dla | analogiczne
rozwigzanie, w ktorym mielibySmy dwie inne state dowolne. Do-



ROZWIAZANIE METODA SYMBOLICZNA 311

godniej bedzie unikng¢ wprowadzenia nowych statych dowolnych,
otrzymujgc 1 bezposrednio ze wzoru (3)

do
_ dx
~ (R + jcoL)
Ale ze wzoru (11)
do
dx kClekx-k C Z~kx

wiec

R juwL
Podstawiajac wartos¢ k ze wzoru (10), otrzymamy

W (H4/GL) A +j0C)

I= iR joL

(iClekx- C 2e~k¥) =

12
i/ r a i-( c'etetc*e )

Wzory (11) i (12) mozna przeksztatci¢ jeszcze inaczej, biorac
pod uwage, ze wyktadnik potegi k jest na ogo6t liczbg zespolong;
mozemy zatozy¢

k=YR+jwL)(A jwC —a jbh.

Dla odnalezienia spotczynnikdéw a i b podnosimy obie strony

do kwadratu:

AR —a2LC + jco [AL + RC) = a2— b2+ j 2ab,

skad B ds—AR — G0 ¢,

2ab = o (AL + RC). (13)

Nastepnie w ostatnich réwnaniach podnosimy obie strony do
kwadratu i dodajemy

a4-2 a2b2+ b*= A2R2- 2.2 ARLC + a0*L2C2
+ 4ad2 = ¢c.M2L2+ 2r>2Ai?L C + m2fi2C2;
(@2+ 622= A2(R2+ u2L2 + W2C2(i?72+ a2 2) =
= (A2+ 02C2 (R2+ o 2.
Wyciagajac pierwiastek z obu stron powyzszego rownania
otrzymamy
a2+ b2=Y (A2+ 02C2 (R2+ w2 2. (14)
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Dodajac i odejmujgc stronami réwnania (13) i (14), dzielgc
nastepnie przez 2 i wyciggajac pierwiastek, otrzymamy

*_\ / yvcA2t WX (R2+ wd )+ AR-cod C (15)

6= V A2+ 02C2) {R2+ A9 -A R + @2LC (16)

Na zasadzie wzoru Eulera mozemy napisaé

e** = eaxtjbx = eax (cos bx + j sin bx),
ke — e-ax-jbx g g (cos bx —/ sin bx).

Oznaczmy /I R+ jgL n
V A+ jwC
Symbol Z nazywamy opornoscig falowa.

Podstawiajgc powyzsze wzory do réwnan (11) i (12), otrzymamy

17)

U = Cteax(cos bx + j sin bx) + C2e~ax (cos bx—j sin bx), (18)
1 Z —— Cxeax(cos bx + / sin bx) + Cke~ax (cos bx —j sin bx).  (19)
§ 92

STALE CALKOWANIA

Zatozmy, ze mamy dane napiecie i prad na poczatku linii, mia-
nowicie dla a:=0 ij—O0 1—1

Wtedy wzory (18) i (19) daja

Q=X+ C2

N\z=—¢Cj+c¢c,
skad 01+ 117 Ci = Oi- hz
2 . 9= 2

wiec ostatecznie

t) = -i-1 (kA—1iZ) eax (cos bx + / sin bx) +

+

(Oi + 1i Z) e a(cos bx —] sin bx) | ; 20,

N
n

-i-1 — (0Oi—liZ) e x(cos bx + j sin bx)

+

(A A-1iz) e-°x(cos bx —j sin bx) |. 21
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Czesto przy projektowaniu linii elektrycznej zadane sg napiecie
i prad w miejscu zuzycia energii, czyli tJ2i 12 W tym przypadku
dogodniej jest oblicza¢ odlegtos¢ x nie od poczatku linii, lecz od jej
konca. Réwniez stale Cli C2nalezy wtedy okre$li¢ przez U2i L-
W takim razie we wzorach (18) i (19) trzeba x zmieni¢ na — x, gdyz
sposob rozumowania przy wyprowadzaniu tych wzoréw pozostanie
ten sam, tylko odlegtos¢ odmierza sie w kierunku przeciwnym. Wa-
runki dla okreslenia statych Cx i C2 bedg nastepujgce: dla x = 0,
0 —U2 | —L- Zmieniajgc we wzorach (18) i (19) znak przy x
1 zaktadajac x=0 i odpowiednie wartosci O i /, bedziemy mieli

C2= Cx+ C2,
|Z = C2—Cj,
skad
02+ LZ - Lz
c2= /I 2

i po podstawieniu tych wartosci do wzoréw (18) i (19)

O —-y! (02+ LZ) eax(cos bx + j sin bx) +
+ (021—22) e~ax (cos bx —/ sin bx) [, 22,

1Z = 4--1 (02+ 122) < (cos bx + / sin bx)

—(02—127) e a (cos bx —/ sin bx) |. (23)
W dalszych zagadnieniach bedziemy przewaznie korzystali
z tych ostatnich wzoréw.

Wzory (20) (21) (22) i (23) mozna napisa¢ w innej postaci wpro-
wadzajgc funkcje hiperboliczne

Poniewaz
et ax (cos bx + / sin bx) = exkx,
nastepnie
ke + e~kx
¢ ¢ cosh kx,
o —e~k

= sinh kx,
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otrzymamy z (20) i (21)

U = Uxcosh kx — 1XZ sinh kx, (24)
1Z = — Uxsinh kx + 1XZ cosh kx, (25)
oraz z (22) i (23)
U = UZ2cosh kx + 12Z sinh kx, (26)
1Z = U2sinh kx + 12Z cosh kx. (27
§ 93

FALE NAPIECIA | PRADU

W réwnaniach powyzszych U2oraz 127 sg wektorami; ich sumy
i réznice sg zatem tez wektorami. Oznaczmy

\{C 2+ 1 2Z) = Px, (28)

+-[C2- 1 %) =P2 (29)

Wartosci chwilowe wielkosci Pxi P2majg przebieg sinusoidalny,
gdyz taki przebieg majg wartosci chwilowe wielkosci sktadowych.
Mozemy wigc napisa¢ dla wartosci chwilowych Px i P2

Pl = PImsin M + M)> Pi = Pimsin M + y?).
Rownania (22) i (23) po uwzglednieniu (28) i (29) przyjmag
postac C = Pxea.elx+ P 2e~axe~ibx
1Z = Pxeaxeitx—P 2e~axc~'Ix;

przechodzac od wartosci skutecznych do wartosci chwilowych i bio-

ragc pod uwage, ze mnozenie wektorow i P2przez e+;i* powoduje
przesuniecie tych wektorow o kat bx, otrzymamy

u = Plmeaxsin (cot + ifx + bx) + P 2me~axsin [ml + x2— bx), (30)
iZ = Plmeaxsin [ml + yx+ bx) —P 2ne~axsin [ml + x2— bx). (31)

Wartos¢ chwilowa napiecia pradu oraz iloczyn wartosci chwilowej
jego natezenia przez opornos¢ falowa linii sg sumag wzglednie roznicg
dwdch wyrazéw postaci

Pnmez°* sin [ml + pt bx).

W kazdym z nich jeden czynnik Pm ma warto$¢ statg (nie-
zalezng od czasu ani od przestrzeni); drugi ezf* zalezy jedynie od
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odlegtosci. Wobec tego wartos¢ najwieksza (amplituda) napiecia
oraz natezenia pradu jest funkcjg tylko odlegtosci. Argument
[ml + y) £+ bx) zalezy zaréwno od odlegtosci jak od czasu i zmienia
sie okresowo; to samo wobec tego mozna powiedzie¢ o wartosciach
napiecia oraz natezenia pradu, inaczej moéwigc, napiecie i natezenie
pradu wzdtuz linii rozchodzg sie falowo.

Przystgpimy do obliczenia dtugosci i szybkosci tych fal. Dla
znalezienia dtugosci zbadamy, w jakiej odlegtosci znajduja sie naj-
blizsze punkty, w ktorych sktadniki napiecia lub pragdu w dowolnej
chwili majg te samg faze. Na to trzeba, zeby argumenty funkcji
sinusoidalnych roznity sie o 2ji. Przypusémy, ze argument
ml A A bx wzro$nie o 2n, kiedy x wzrosnie o X\ wtedy

mlAIpAb[XA X = ml+y+ bx £ 2n,
AbX~ A27

* = (32)

To znaczy, ze wartosci skladnikéw napiecia oraz natezenia
pradu sg w jednakowej fazie w punktach, ktérych najblizsza odlegtos¢
wynosi X= _2}n_ czyli taka jest diugos¢ fali napiecia lub pradu;
b nazywamy wspdtczynnikiem dtugosci fali.

Dla znalezienia predkosci rozchodzenia sie fal zatézmy, ze
w danym punkcie x w pewnej chwili t mamy okreslong faze sktad-
nikéw napiecia lub pradu i ze te samg faze mamy po czasie dt
w punkcie odlegtym o dx, czyli w czasie t A dt i w punkcie x A dx.
Przyréwnujac argumenty w obu przypadkach, otrzymamy

mAy>AbXx=wiiAdy AIpA b[x A dx),
mt+ipt bx=wt+ wdat + ipx bx = bdx,

skad
mdt — A bdx.
Predkos¢ rozchodzenia sie fali
dx m
dl =+ T

Pomijajac znak,
_m 2nf 2n _ X _ .,
T b ~BT ~ T = A"
gdzie / oznacza" czestotliwos¢, T —okres prgdu zmiennego. Wynika
stad, ze predkos¢ rozchodzenia sie fali rowna sie iloczynowi diu-

(33)
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gosci fali przez czestotliwo$é pradu zmiennego; inaczej, w ciggu
jednego okresu prad przebiega dtugos¢ jednej fali. Znak przy pred-
kosci v wskazuje na kierunek rozchodzenia sie fali: w kierunku do-
datnich x, czy tez ujemnych.

Rozpatrujac wzor (22) widzimy, ze dla napiecia 0 otrzymu-
jemy sume dwdch fal, przebiegajacych w rozmaitych kierunkach
z jednakowg predkoscig; jedna fala przebiega od poczatku linii
do jej konca, druga odwrotnie. Pierwsza nazywa sie falg gtéwna,
druga — falg odbitg. Czynnik etax wskazuje, ze amplituda,
czyli warto$¢ najwieksza, zmienia sie w zaleznosci od odlegtosci;
a jest to wspotczynnik tlumienia. Dla pradu 1, jak widaé¢ ze
wzoru (23), otrzymujemy roéznice dwoch fal, przebiegajacych tak
samo jak fale napiecia w dwdch przeciwnych kierunkach, lecz ich
amplitudy sg zmniejszone w stosunku opornosci charakterystycznejZ.
Wspotczynnik k = a + jb nazywamy statg rozchodzenia sie fal.

W literaturze elektrotechnicznej spotykamy oznaczenia y dla
statej rozchodzenia sie fal, (I dla statej ttumienia i adla wspotczynnika
dtugosci fali; ten ostatni nazywajg réwniez wspoétczynnikiem fazowym.
Wtedy mamy wzor NP+

Wspdtczynnik ttlumienia wielkosci fizycznych przyjeto okreslac
przez logarytm ilorazu dwdch wartosci rozpatrywanej wielkosci,
np. logarytm ilorazu dwdch napie¢, dwoch pradéw itp. Gdy sto-
sujemy logarytmy naturalne, otrzymujemy rezultat w ,neperach”;
w ten sposob o

ui
a—lgn% neperow

stanowi wspétczynnik tlumienia napiecia; z tego wynika, ze

Oprocz tego zostata wprowadzona inna jednostka tlumienia
z zastosowaniem logarytmow dziesietnych z okreslenia wspotczyn-
nika ttumienia mocy; jednostke te nazwano ,bel“, przy czym w uzy-
ciu dogodniejszym okazat sie ,decybel”, czyli 0,1 bela; mamy wiec

a =101g 10-2\2I decybelow.

Poniewaz moc jest proporcjonalna do kwadratu napiecia lub
pradu, przeto wspotczynnik tlumienia napiecia wyrazopy w decy-
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belach bedzie
a'v=20 /010—22 decybelow,
U

czyli

- 1= 1020;
«2
przez poréwnanie tego samego ilorazu, wyrazonego przez ai przez a',
znajdziemy a
- 1020 = ea,
~ =algm
ski*d a' = 20alglle = 8,6864;

z tego wynika, ze | neper = 8,686 decybeléw.

§ A
LINIA BEZ STRAT

Dla blizszego zbadania otrzymanych wzorow rozpatrzymy naj-
pierw rozchodzenie sie pradu w linii bez strat, to jest takiej, w ktorej
nie ma opornosci rzeczywistej ani uptywnosci, a jedynie indukcyjnosé
i pojemnos¢. A wiec

R=0, A =0. (34)

Opornos¢ falowa takiej linii bedzie

7- 1/ R+iwL =x/1!0L= [/ L _z. (35)
X A+jwC [/ jojC X C '
w tym przypadku jest ona liczbg rzeczywistg. Znajdzmy spotczyn-
niki aib
"= jy [A2-f co2c2) (ii2+ w2L2 « Aii —a2L.Cj =

- AC2ewA 2-w 2L.C ALC —co2LC} -
_I/I F W, w 1 o } -0, (36

6 = -ijv (A2+ 0AC2) (ii2+ WA -AR + eALcd

I0>2C2-tu2 2+ W2LC W I«<012|_c + waLC } -

=jli-2co2 0ALC = LC. 37)
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Wobec tego 1

czyli nie ma tlumienia. Predkos$¢ rozchodzenia sie fal
_ fe _ 1
b &\LC }/LC (38)

nie zalezy od czestotliwosci pradu.

W liniach napowietrznych indukcyjnosé jest wieksza, pojemnosc
za$ mniejsza niz w liniach kablowych.

Predkos$¢ rozchodzenia sie fal w liniach napowietrznych jest
bliska predkosci swiatta, czyli ok. 3.105 km/sek; w liniach kablowych
jest ona mniejsza i wynosi (1,2 do 1,6).10® km/sek.

Przy czestotliwosci f —50, przewaznie spotykanej w urzadze-
niach pradu silnego, dtugos¢ fali dla linii napowietrznej

A= vTr*300000 = ~ 6000 km

dorownywa dtugosci promienia ziemskiego. Przy czestotliwosci
/ = 3000, ktérg mamy np. w liniach telefonicznych,

X= vT~ 300000 = 2*-0 ~ 100 km.

Réwnania (22) i (23) w przypadku linii bez strat przeksztaicg
sie wobec ex= e~"*= 1, Z = Z na

O0=~~C 2 1 2Z"(cosbx + / sin bxj-]4"CI2- 2Z ™ cos bx—/sinéa;™| =
=~ 12172cosbx + 2j12Z sin bx] = U2cos bx + j 12Z sin bx,
1Z= ~"~0 2+ 12Z~(cosbx + jsinbxj-~ (G 2—AZ"cos bx—/sin 6a;|=

2/Zcos bx + 2/ C2sin aj = 12Z cos bx + j U2sin bx,

czyli ostatecznie
O = G2cos bx + j12Z sin bx, (39

1Z = 12Z cos bx + / U2sin bx. (40)

-Wartosci V i 1 z wyprowadzonych wzoréw mozemy znalezé
albo sposobem analitycznym, stosujgc metode symboliczng, albo
tez sposobem wykresinym.
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Stosujac metode symboliczng, musimy najpierw na podstawie
wiadomych L i C obliczy¢ opornos¢ falowg Z wedlug wzoru (35)
oraz spotczynnik diugosci fali b ze wzoru (37); nastepnie dla wia-
domej odlegtosci x obliczamy bx i znajdujemy cos bx i sin bx. Na-
piecie t?2, prad 12i wspoétczynnik mocy cos 2 na odbiorniku zakta-
damy jako wiadome. Za podstawowy Kkierunek wektoréw najdo-
godniej jest wzigé kierunek wektora V2, argumentem symbolu /2
bedzie wiec kat 42mierzony od podstawowego kierunku wektora t)2
Oznaczajac przez y>niewiadomy kat pomiedzy U i U2oraz przez y*
kat pomiedzy | i 02 otrzymamy na podstawie wzoréw (39 )i (40)

U = UZcos bx + /12Z sin bx (cos G2+ i sin ¢ —
= (U2cos bx — 12Z sin bx sin (@ + j12Z sin bx cos g2,
Iz = 12Z cos bx (cos 92+ j sin 49 + j U2sin bx —
= 12Z cos bx cos 42+ j (12Z cos bx sin g2+ UZ2sin bx),
skad
U —V (UZ2cos bx — 12Z sin bx sin 22+ (12Z sin bx cos 492,
, InZ sin bx cos v
> = G2eosbx=—127 siHbx sm 2
1Z= V(77-cos bx cos 92+ (12Z cos bx sin 2+ U2sin bx)2,
. 1Z cos bx sin @2+ U2sin bx

°n 12Z cos bx cos 2
Kat gppomiedzy 1i O znajdziemy majac katy ipi y)', mianowicie
= ip—y>

Bardzo tatwo mozemy znalezé¢ napiecie t) i prad 1 sposobem
wykresinym. W tym celu z dowolnego punktu O (rys. 188) prze-
prowadzamy dowolng linie prosta jako kierunek C2i na niej od-
mierzamy w odpowiedniej skali odcinek OU2= U2 Pod katem g2
do tego wektora przeprowadzamy kierunek 12 i w tym kierunku
odmierzamy odcinek 0/2= 122\ oczywiécie mnozenie wektora
przez opornos$¢ charakterystyczng Z, ktéra w tym przypadku jest
wielkoscig rzeczywista, daje nam wektor 127, ktérego kierunek jest
taki sam co i kierunek wektora 12. Nastepnie z punktu O pod ka-
tem bx do O2 przeprowadzamy prosta, na ktérej odmierzamy
OA = UZ2i OC = 12z, zataczajac w tym celu luki kota o promieniu
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OU2i Ol2az do przeciecia tej prostej. Z punktdéw A i C opuszczamy
prostopadte AB i CD na OU2 Oczywiscie

OB = I1XRcos bx, OD = 12Z cos bx,
AB = U2sin bx, CD — 12Z sin bx;

znalezlisSmy wiec wartosci (moduty) wektorow wchodzacych do
wzordéw (39) i (40), teraz musimy wykonaé¢ wskazane w tych wzo-

rach dzialania geometryczne, uwzgledniajgc réwniez Kierunki wek-
toréw.

Na podstawie wzoru (39) dla otrzymania 0 musimy do 0 2cos bx
doda¢ geometrycznie jl12Z sin bx; pierwszy z tych wektorow ma
kierunek Uz, wiec odcinek OB odpowiada wektorowi U2cosbx
i co do wartosci, i co do kierunku.

Drugi wektor ma warto$¢ 12Z sin bx, odmierzong odcinkiem
CD, ale kierunek wektora 127 sin bx musi by¢ zgodny z kierun-
kiem O12, zas kierunek wektora j12Z sin bx musi by¢ wziety pod
katem prostym naprzéd do Kkierunku 0/2; z tego wynika, ze od
punktu B, konca wektora Il12cos bx, przeprowadzamy wektor
BU = jl2Z sin bx prostopadle do Ol2i réwny co do wartosci od-
cinkowi CD; Hgczgc O z U, otrzymujemy wektor OU. = 0.

Analogicznie, na podstawie wzoru (40), do 12Z cos bx musimy
doda¢ geometrycznie jO 2smbx. Wektor 12Z cos bx ma kierunek
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012, przerzucajac odcinek OD = 12Z cos ¢a: na ten Kkierunek,
otrzymamy OF = 127 cos bx, do tego wektora dodajemy geome-
trycznie F1 = j0 2sin bx, mianowicie odcinek F1 = AB = UZainbx;
wektor za$ j02sinbx powinien by¢ przeprowadzony pod katem
prostym naprzod wzgledem wektora V2, wiec kierunek BA i takiz
sam kierunek F1 od-
powiada  kierunkowi v U
j O2sin bx\ faczac wre-
szcie punkt I z O,
otrzymamy wektor
Ol = 1Z. Za pomocg
katomierza  mozemy
tatwo zmierzy¢ kat

= 4ZUOI przesunie-
cia fazy 1 wzgledem t).

Miejscem geome-

trycznym koncow wek-
tora O na powyzszym
wykresie przy zmianie
kata bx od 0 do 2n Rys. 189
jest elipsa. Dla prze-
konania sie o tym wprowadzmy do rys. 188 prostokatny uktad
wspétrzednych (u, v), umieszczajgc jego poczatek w punkcie O (rys. 189).
i Kierujgc 08 u wzdluz OU2

Wtedy <uBuU?2=F_

Oznaczajac wspotrzedne zmiennego punktu U przez (u, v) be-
dziemy mieli

u= OB + BU cos = A2CS~x N sin ~x s N2 )

v = BU gm0 —cpy = 12Z sin bx cos 42 (1)
Z tych réwnan rugujemy zmienng niezalezng x. Z réwnania (I1)

sin bx = 127 cos &9

/

cos bx  mZ| —sin26a; = 1- 12 Z2cos2q2

Teoria pradéw zmiennych 21
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Podstawiamy znalezione wartosci do réwnania (I)

“5‘/ 14 22c0202"  “ 5" 127 cos (2

u= U'V 14 Z<:052<]£+ Wg <2,
2= a2, g

Podnosimy obie strony do kwadratu:
u22u2
1 2Z 2cos2g2

Przenosimy wszystkie wyrazy na lewg strone:
Ut
| 27 2cos249)
Otrzymalismy réwnanie drugiego stopnia, nie zawierajgce zmien-
nych w stopniu pierwszym, czyli rdwnanie typu
Au2+ Buv + Cv2+ F = 0.

u2—2 uatg 42+ a2tg2e2= U2

u2—2uv tg 2+ v2(tg2q2+ ut=o0.

Takie rownanie przedstawia elipse, jezeli
B2—4MC< 0 oraz F < 0.

W naszym przypadku

4 U2 4 U2
B2—4AC = 4tg29%2—4 tg2¢2- | 27 2cos2q® | 2002 (2 <0
F= -U2Z<0;

wobec czego wnioskujemy, ze rownanie nasze przedstawia elipse..
W szczeg6lnym przypadku odbiornika bezindukcyjnego i bez-
pojemnosciowego, wzglednie odbiornika dajgcego rezonans napiec,.

mamy' (2= 0, tgg?2= 0, cos 2= 1
Wtedy rownanie nasze przyjmie postac

«a+ »aj Wz2= Vvi
albo Gy i
Trz2e b
to znaczy, ze pétosiami otrzymanej elipsy sg U2i 12Z.
Gdy przy tym wyjatkowo 127 = U2 zamiast elipsy otrzymu-
jemy koto. Napiecie i prad majg wtedy wzdtuz catej linii wartos¢
stata.
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§ 95
LINIA BEZ STRAT W STANIE JALOWYM I W STANIE ZWARCIA

Stan, w ktérym linia nie jest obcigzona, to znaczy odbiornik
nie jest wilgczony do konca linii, nazywamy stanem jatowym.
W tym przypadku /2= 0. Napiecie w koncu linii zalezne jest od
napiecia na jej poczatku, wiec w stanie jalowym moglibySmy,
zmieniajac napiecie na poczatku, osiggna¢ dowolng wartos¢ na-
piecia na koncu; dobierzmy taka wartos¢ napiecia na poczatku,
aby, w stanie jatlowym, w koricu napiecie stato sie rowne f/2 ktoére
mamy przy obcigzeniu; oznaczmy wtedy napiecie na poczatku
przez UIDi nazwijmy je napieciem na poczatku w stanie jatowym.
Przy takim napieciu na poczatku linii poptynie prad, ktorego nate-
zenie oznaczymy przez 110, bedzie to prad na poczatku w stanie
jalowym. Dla dowolnego punktu linii w odlegtosci x od jej konca
napiecie i natezenie pradu w stanie jatowym niech wynosza UOi
wtedy, zaktadajgc we wzorach (39) i (40) /2= 0, otrzymamy

00= CZ2cos bx, (41)

1® = ju2sin bx (42)

Najwieksza warto$¢ napiecia zachodzi dla cosbx = + 1, bx = 0,

n, kn, gdzie k —liczba catkowita, czyli dla x =0, b Ifg

Poniewaz ditugos¢ fali na podstawie wzoru (33) wynosi A= 2n
przeto napiecie bedzie miato najwieksze wartosci na koricu linii
oraz w odlegtosciach od konca linii, wynoszacych catkowity iloraz
potowy dtugosci fali. W liniach pradu silnego, ktérych dtugos¢ jest
zwykle mniejsza od potowy dtugosci fali, napiecie wzrasta od poczatku
linii ku koncowi, gdzie jest najwieksze. Zjawisko to po raz pierwszy
byto spostrzezone w kablu koncentrycznym przez inzyniera Ferranti
na wystawie w Londynie i dlatego nazywa sie zjawiskiem Ferrantiego.

Widzimy nastepnie, ze prad w stanie jalowym wyprzedza na-
piecie o kat prosty, czyli o ¥4 okresu, otrzymujac najwiekszg war-
tos¢ tam, gdzie wartos¢ napiecia przechodzi przez 0, i odwrotnie,
wartos¢ 0 tam, gdzie napiecie przechodzi przez swojg najwiekszg
wartosc.

Stan, w ktorym konce linii sg ze sobg potgczone bezposre-
dnio, czyli bez opornosci, nazywamy stanem zwarcia. W tym przy-
padku napiecie U2= 0. Natezenie pragdu w koncu linii bedzie za-

22+
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lezne od napiecia, ktére przytozymy na poczatku. Dobierzmy takg
warto$¢ napiecia na poczatku, aby w stanie zwarcia natezenie pradu
ptynacego w koncu linii stato sie réwne /2, ktore bysSmy mieli przy
obcigzeniu. Oznaczmy to napiecie na poczatku przez Ulz; nazwiemy
je napieciem na poczgtku w stanie zwarcia. Przy tym napieciu na
poczatku linii poptynie prad, ktérego natezenie oznaczymy przez |z;
nazwiemy go pradem na poczatku w stanie zwarcia. Dla dowolnego
punktu linii w odlegtosci x od jej korica napiecie i natezenie pradu
w stanie zwarcia oznaczymy przez Uz i lz; wtedy, zakladajgc we
wzorach (39) i (40) C2= 0, otrzymamy

Oz = j12Z sin bx, (43)
1zZ = 127 cos bx. (44)

Najwieksza warto$¢ prgdu zachodzi dla cos bx = 1, czyli na
koncu linii oraz w odlegtosciach wynoszgcych catkowity iloraz
potowy dtugosci fali.

Widzimy, ze prad w stanie zwarcia opdéznia sie wzgledem na-
piecia 0 kat prosty, czyli o ¥4 okresu, otrzymuje, podobnie jak po-
przednio, najwiekszg warto$¢ tam, gdzie warto$¢ napiecia przechodzi
przez 0O, i odwrotnie, otrzymuje warto$¢ 0 tam, gdzie napiecie prze-
chodzi przez swojg najwiekszg wartosc.

W obydwu rozpatrzonych przypadkach wektory napie¢ i pra-
dow nie zmieniajg swoich Kkierunkdéw, inaczej modwigc, napiecie
oraz prad majg wzdtuz catej linii te sama faze; zamiast elipsy otrzy-
mujemy na wykresie linie prostg. Napiecie i prad zmieniajg tylko
swoje wartosci w zaleznosci od odlegtosci x, tworzac w ten sposob
fale stojace.

Takie samo zjawisko otrzymamy réwniez w przypadku, gdy
pomiedzy napieciem i pradem w koricu linii istnieje réznica faz
rowna 90°, to znaczy cos g2= 0, wtedy bowiem we wzorach (39)
i (40) wektory jl12Z bedg miaty kierunek wektora napiecia 0 2 a wek-
tory j C2 kierunek wektora pradu 12, zardwno wiec dla napiecia jak
i dla pradu otrzymamy jako wykres linie prosta.

Zestawiajac przypadki, gdy w linii bez strat otrzymuje sie
fale stojgce dla napiecia i pradu, mozemy wyprowadzi¢ wniosek,
ze takie zjawisko ma miejsce, gdy 1) 12= 0, 2) 02= 0 3) cose?2= 0,
to znaczy, gdy

U2l 2cos 2= 0,

czyli wtedy, gdy w koricu linii nie jest oddawana energia.
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Z poréwnania wzorow (39), (41) i (43) oraz (40), (42) i (44)
wynika, ze
O=o00+c,,

lz = 10Z + 1Zz,

1-h +h
To znaczy, ze napiecie, wzglednie prad, w stanie obcigzenia
sg réowne sumie napieé¢, wzglednie pradéw, w stanie jatlowym i w stanie
zwarcia.

§ 96
LINIA NIEODKSZTALCAJACA

Zbadajmy teraz jako szczegélny przypadek linig, ktérej opor-
nos¢ rzeczywista, indukcyjnosé, uplywnos¢ i pojemnos$¢ tworzag
proporcje

R A
skad AL = RC:

opornos¢ falowa takiej liniii bedzie

/ R+jeoL i/ L(F+/m)
74 A+j0jC V C4+/»)

jest ona wielkoscig rzeczywistg i réwna sie opornosci falowej linii
bez strat o takiejze indukcyjnosci i pojemnosci.

Obliczmy ze wzordw (14) i (15) spdtczynniki ai b

~ i/* { AR—02LC + " (A2+ w2C2 (R2+ w2L 2j =
— V - II 1. s~5i +Sip|},
z proporcji (45) mamy

R2 A2 i R2 i A2
c02L 2~ (02C2’ 1+w2L2~ 1+ w2C2
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wiee \ AR-co2C+<LC1/(1+ 721
= - +
a=y o @+ 0212

_1/1 AR —O9ALC+m2LC(F ) }-

_Vl jAR +w2LC ( o+ 1H-W§§§MA Ao + C172

Z proporcji (45) A i2C AR = CR2
wobec czego
1CR21CR2 C (46)
{L L
Poniewaz
wige a= " (7)

Spétczynnik thumienia linii réwny jest stosunkowi jej opor-
nosci rzeczywistej do opornosci falowej i niezalezny od .

iAN\W2LC-AR +"{A2+ aACD (i72+ 2L 1=

02L.2
- ‘ 21 i?
i A ALC-AR VAI1+4..|.2(I+ o

o2C 002l 2\
V,I- ALC-AR +ARI/(1+ J(1+-R2)
Z proporcji (45) mamy

co2L 2 c02C2
i”72 ~ A2
. | |
wiec
LC-AR +AR _ -
vV =Im -
co2 LA

2. C—AR +ARI( 1+

( , + T +t« -)r
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Z proporcji (45) mamy

Wspotczynnik ditugosci fali linii czynigcej zados¢ proporcji (45)
rowny jest temu wspdtczynnikowi linii bez strat o takiej samej in-
dukcyjnosci i pojemnosci. Rowne zatem beda rowniez dhugosci
oraz predkosci fali w obu przypadkach.

Rownania (22) i (23) przy uwzglednieniu, ze Z jest liczbg rze-
czywistg, przybierajg postacé

tS = 1(02+ 12Z) eax (cos bx + / sin bx) +
+ [02— h%) e~ax (cos bx —/ sin bx) | (49)
1Z=-g| {V2+ 1SZ) eax (cos bx + j sin bx) —

— (f22— 12Z) e~ax (cos bx —/ sin bx) | = (50)

Rozpatrzmy linie w stanie jatowym. Oznaczmy, jak i poprzednio,
napiecie i natezenie pradu w odlegtoéci x od konca przez 0Oi
Podstawiajac do powyzszych wzoréw /2= 0, znajdziemy

OQ= -i- f)2] eax (cos bx + / sin bx) + e~ax(cos bx —/ sin bx) J, (51)

10Z 5= OZ2leax(cos bx + j sin bx) —e~ax (cos bx —j sin bx) |. (52)

Rozpatrzmy nastepnie linie w stanie zwarcia, oznaczajgc analo-
gicznie napiecie i prad przez Ox i lz. Podstawiajac 0 2= 0, otrzy-
mamy

U, Jeax (cos bx + j sin bx) —e~ax(cos bx —/ sin bx) ], (53)

1% 4 N\ 1 e“x (cos bx + j sin bx) + e~ax(cos bx —/ sin bx) |. (54)

Bezposdrednio z poréwnania wzoréw (49), (51) i (53) oraz (50)
(52) i (54) wynika

1 ze t)= 00+tyz (55)
oraz lz = 10Z + lzZ,
+ (56)

] o <
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Napiecie oraz prgd w danym punkcie linii w stanie obcigzenia
sg réwne sumie napie¢, wzglednie pradéw, w tym punkcie w stanie
jatowym i w stanie zwarcia.

Zalezno$¢ wyrazona we wzorach (55) i (56) pozwala nam zasto-
sowa¢ metode wykres$lng znajdowania napiecia i pradu w dowolnym
miejscu linii.

Opieramy sie na spostrzezeniu, ze w kazdym ze wzorow (51),
(52), (53) i (54) na VO, 10, Uzi Iz wystepuje tylko jeden z wektordw

02 Ilub 12 poza tym
tylko funkcje wykta-
dnicze i zespolone
trygonometryczne.
Przede wszyst-
kim obliczamy anali-
tycznie wartosci aib
wspotczynnikdéw ttu-
mienia i dtugosci fali,
nastepnie dla danej
odlegtosci x wartosci
funkcji wyktadniczej
eaxi e~ax oraz kata bx.
Odmierzamy te-
Rys. 190 raz W odpowiedniej
skali, w Kkierunku,
ktory bierzemy jako kierunek podstawowy, napiecie korca linii 02
(rys. 190). Niech to bedzie odcinek OU2 Z punktu O zataczamy
koto promieniem OUZ2i odmierzamy od OUZ2 w obie strony przy
punkcie O katy bx.
Ramiona tych katéw przetng koto w punktach A \ A\

pHI20A = by,
<U 20A' = — bx.

OA i OA' stanowig wektory, okreslone w sposéb nastepujacy:
OA = UZ2(cos bx + / sin bx),

OA'

U2(cos bx —/ sin bx).

Mnozymy teraz U2 przez 5 i—1 i odmierzamy otrzy-
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mane iloczyny na liniach OA i OA' jako OB i OB'. Bedzie wiec

OB = -i- U2e? (cos bx + / sin bx),

OB' = ~ UZ2e~ax (cos bx —/ sin bx).

Budujemy sume tych wektoréw OF i ich rdznice OF', czyli
OF = OB+ OB'.
OF'= 0B-O'B".

Wiec
OF = -i- t/2ea  (cos 6a: + / sin 6a) +  UZ~ax (cos bx —j sin bx).
OF'=  Uzax(cos bx + / sin bx) — UZ~ax (cos bx —j sin bx).

Poréwnujac otrzymane wzory ze wzorami (51) i (52) widzimy, ze
OF = U0,
0> =1/,2Z

W ten sposob znalezliSmy napiecie i prad w dowolnym miejscu
linii w stanie jatowym. Przystgpimy teraz do znalezienia tych samych
wielkosci w stanie zwarcia.

Poréwnujac wzory (54) i (53) na prad i napiecie w stanie zwarcia
ze wzorami (51) i (52) na napiecie i prad w stanie jatowym, widzimy,
Ze prad i napiecie w stanie zwarcia zupetnie tak samo zalezg od pradu
konca linii, jak napiecie i prgd w stanie jalowym od napiecia konca
linii. Dla ich znalezienia powinnismy wykona¢ wykres zupelnie po-
dobny do porzedniego, odmierzajac wektor 127 zamiast wektora t)2
Korzystajgc z tego samego wykresu, powinnismy skale zmienié
u2
hz
by¢ przesuniety o kat e2 poniewaz wektor 12 Z tworzy taki kat
z wektorem £%. . .

W ten sposob wektory OF i OF' w nowej skali i przesuniete
0 kat g2dadzag nam prad i napiecie w danym punkcie w stanie zwarcia.

w stosunku nastepnie kierunek kazdego z wektorow powinien
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Aby przy pomocy rozwazanego wykresu znalez¢ napiecie i prad
w danym punkcie linii w stanie zwyklego obcigzenia, postepujemy
w nastepujacy spos6b (rys. 191).

: iy . . IpZz
Mnozymy diugos¢ wektorow OF i OF' przez stosunek P

i odmierzamy w tych samych kierunkach jako OF" i OF'". Wek-
tory OF" i OF"" przedstawiajg co do wielkosci (ale nie kierunku)
w skali pierwotnego wykresu prad i napiecie w stanie zwarcia.
'Obracamy je teraz okoto punktu O we wiasciwym kierunku o kat
€2 do potozenia OFt 0 OF2 Wektory OFt i OF2stanowig wektory

pradu i napiecia w stanie zwarcia. Budujemy sume wektoréw OF
i dNFZréwnq OU oraz sume wektoréw OF' i OFt rowng oL Wtedy
OU = OF + OF2= CcO+ cz= ti,
Ol = OF' + OFx= 10z + 1zZ = 1Z.
ZnalezliSmy- zatem wykreslnie napiecie i prad w dowolnym
miejscu linii.
Zauwazymy jeszcze, ze dla réznych odlegtosci x punkty B i B’
w wykresie (rys. 190) leza na spirali logarytmicznej.
Rzeczywiscie

O B="-U 2e°*, OB'=-1 [/2e-'*

W wspdtrzednych biegunowych bx = a dla OB, za§ — bx = a
dla OB' stanowig katy biegunowe. U2 a i b majg wartosci state;
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oznaczajgc promien wodzacy OB, wzglednie OB', przez r, = uz2= k,

5 = m, bedziemy mieli dla OB
r= keax= keb = kena,
dla OB’

r= ke ax= keb = ke”

Sg to réwnania spirali logarytmicznej.

W liniach kablowych, zwilaszcza telefonicznych i telegraficznych,
indukcyjnos¢ L oraz uptywnos$¢ A sg na ogo6t nieznaczne i mozna te
wielkosci zatozy¢ réwne zeru, co czynit W. Thomson przy rozpa-
trywaniu przenoszenia pradow telegraficznych w kablach. Woéwczas
ze wzorow (15), (16) i (17) otrzymamy

Jak widzimy, opornos¢ falowa w tym przypadku jest odwrotnie
proporcjonalna do pierwiastka kwadratowego pulsacji o, a wiec
i czestotliwosci, z czego wynika, ze im wieksza czestotliwos¢, tym
mniejsze jest napiecie potrzebne dla otrzymania tego samego pradu.
Natomiast spotczynnik tlumienia wzrasta ze wzrostem czestotli-
wosci. Argument opornosci wynosi —45°, z czego wynika ze prad
wyprzedza napiecie o kat 45°. Okoliczno$¢, ze tlumienie zalezne
jest od czestotliwosci, wptywa niekorzystnie przy rozmowach tele-
fonicznych i w og6le przy przesytaniu dzwiekéw po liniach ka-
blowych.

Dla wielkich czestotliwosci spoétczynnik ttumienia w przybli-
zeniu bedzie uzalezniony tylko od statych linii, mianowicie ze
wzoru (15) bedziemy mieli

i/t[mC(‘+PZ?)'1(‘+ 1+ AR - C]-
Rozwijajgc w szereg dwumiany w nawiasach i podniesione do

potegiy , otrzymamy
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przy zatozeniu, ze w ma wartos¢ wielka, mozemy odrzuci¢ te cztony
szeregu, ktdre zawierajg wyzsze potegi o2, i przyjac, ze

ii2 A2 U 1 R2 1 A2
1+ qj2C2) 1+ '2 co2L2+ 2 02C2

Wtedy

/1 C 1 0L 1,.,
a~]/ 4R L+4A C+2AR~

-Z RY W ?

Jak wida¢ z ostatniego wzoru, tlumienie zalezy od stosunku
i mozna znalez¢ takg zalezno$¢ miedzy statymi liniami, aby spot-

czynnik ttlumienia byt najmniejszy. Zaktadajac w ostatnim wzorze
~L
napiszemy
‘WM --Y +ir)’
1. L14 £V
dd 2\ —™x3°

przyréwnujac te pochodng do zera i biorgc pod uwage, ze x > 0,
znajdziemy

skad

poniewaz druga pochodna /(;leb staje sie wieksza od zera, przeto

znaleziona wartos¢ x odpowiada minimum funkcji a, thumienie wiec
bedzie najmniejsze, gdy

L Jl
c A’
wtedy
V BA.

Poniewaz w liniach kablowych L i A sg male, przeto w znacznym

stopniu
P L R
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dla zmniejszenia wiec ttumienia nalezy zwigkszy¢ indukcyjnos¢ L.
Pupin zaproponowat w tym celu wilgczanie cewek indukcyjnych
w kablach telefonicznych w odlegtosci 1¥2—2 km. Krarup zaleca
pokrywanie kabla cienkim drutem ze stopu zelaza z niklem, posia-
dajacego znaczng przenikalnos¢ magnetyczng.

§ 97
PRZYPADEK OGOLNY

Zbadajmy teraz linie w przypadku ogélnym, kiedy opornosc,
uptywnos¢, indukcyjnos¢ i pojemnosé nie sg powigzane zadnymi

zaleznosciami. Jak wiadomo, opornos¢ falowa linii jest wtedy liczbg
zespolong. Znajdzmy jej modut Z i argument a:

R {-jmL
~ATIMC = Z2 (cos 2« + / sin 2a),

= Z2(cos 2a+ / sin 2a)

= Z2(cos 2a + / sin 2a);

stad otrzymujemy

. _ {AR + a2 C)2+ w2 (AL —RC)2

z
(A2+ WXCD2
skad ostatecznie
(57)
LAL-RC
« =y arctg W-A-R + waLC (58)
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Argument a opornosci falowej ma znak taki sam jak licznik
we wzorze (58), poniewaz mianownik jest zawsze dodatni; wobec tego

a> 0 przy AL > RC,
[a< 0 przy AL < RC.
W szczeg6lnym przypadku, gdy AL = RC lub gdy R=0
i A = 0, argument jest zerem i wtedy opornos¢ falowa jest liczbg
rzeczywista.
Napiecie i prgd w dowolnym miejscu linii wyznacza sie z ogol-
nych wzorow (22) i (23)

O = -i |(E7a+ 127) eaz (cos bx + j sin bx) +

4 (t)2— 1) e~ax (cos bx —j sin bx) |, (59)
1Z = ~ | (t)2+ 1"Z) eax (cos bx + / sin bx) —

— 02— 12Z) e~ax (cos bx —j sin bx) 1. (60)

Rozpatrzmy, podobnie jak w § 96, linie w stanie jatowym.
Stosujac te same oznaczenia co tam, znajdziemy (12= 0)

O, eax (cos bx + j sin bx) + 6 ax(cos bx —j sin bx) |, (61)

loz = OZJ eax (cos bx + j sin bx) —e~ax (cos bx —/ sinbx j. (62)
Tak samo dla stanu zwarcia (f?2= 0)

Ox= 127 ]Jeax(cos bx + / sin bx) —e~ax (cos bx—/ sin bx |, (63)

tzZ = /2Z Jeax(cos bx + / sin bx) + e~ax(cos bx —j sinbx) J. 64)

Bezposrednio z poréwnania wzoréw (59), (61) i (63) oraz (60),
(62) i (64) wynika, ze i w tym przypadku stuszne sa wzory
tr= 00+ G z,
I=h +K
Prad /2 konca linii jest odchylony od takiegoz napiecia
o kat g2 iloczyn 12Z bedzie wigc przesuniety wzgledem 020 kat
£+ a.
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Z rozwazan tych wynika, ze sposob wykreslnego wyznaczania
napiecia i pradu w dowolnym miejscu linii jest zupelnie taki sam
jak w przypadku podanym w §96. Nalezy tylko uwzgledni¢, ze kat
miedzy kierunkami napiecia konca linii i iloczynem prgdu korica
linii przez jej opornosé falowa jest nie (2 lecz 2+ a), wiec na rys. 191
wektory OF" i OF"' powinny by¢ przesuniete o kat [g2+ a).

§ 98

OBLICZENIE STALYCH LINII NA PODSTAWIE POMIAROW DOKO-
NANYCH W STANIE JALOWYM I W STANIE ZWARCIA

Wszystkie state linii: opornos¢, uptywnos¢, indukcyjnos¢ i po-
jemnosé, moga byc¢ obliczone, jezeli wiadome sg opornosci pozorne
linii, odpowiadajgce stanowi jatlowemu i stanowi zwarcia. Wielkosci te
moga by¢ podane przez fabryke (np. dla kabli) lub tez okreslone za-
pomocg pomiarow; w tym celu wystarczy zmierzyé na poczatku
linii moc, napiecie i natezenie prgdu przy dowolnym napieciu oraz
kat przesuniecia fazy pradu wzgledem napiecia, najpierw w przy-
padku, gdy linia jest w stanie jalowym, nastepnie, gdy linia jest
w stanie zwarcia; na podstawie tych pomiaréw znajdujemy odpo-
wiednie opornosci pozorne. Oznaczajac przez ZOi Zz wartosci opor-
nosci pozornych linii w stanie jatowym i w stanie zwarcia, za$ przez ¢o
i qz katy przesuniecia fazy odpowiednich pradow wzgledem napiec,
mierzone w kierunku od napieé, bedziemy mieli dla argumentow
symboli ZOi Zz katy — 90 i — (.

Z0= z0(cos 0—j sin 0) = zC-T*, (65)

Zz= Zz(cos qz—j sin ) = Zze~i9z. (66)

Na podstawie wzoréw (26) i (27) mamy na poczatku linii, czyli

na odlegtosci x —1, mierzonej od konca, nastepujace wartosci na-
piecia )1 i pradu 12 gdy w koncu wartosci te wynoszg V2i 12,
V1= 02cosh kl + 12Z sinh kI, (67)

1XZ2 = 02sinh kI + 127 cosh K. (68)

Oznaczajgc dla stanu jatowego, gdy w Kkoricu linii napiecie
ma warto$é 02, za$ natezenie pradu réwne jest zeru, napiecie i prad
na poczatku przez O10i /10, nastepnie dla stanu zwarcia, gdy na-
piecie w koricu réwne jest zeru, za$ natezenie ma wartos¢ 12, napiecie
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i prad na poczatku przez O lzi |1z, otrzymamy ze wzorow (67) i (68),
zaktadajac kolejno 12= 0 oraz C2= 0,

ol0= cosh kl, (69)
117 = sinh kI, (70)
(?lz = 127 sinh KI, (72)
11zZ = 12Z cosh K. (72)

Dzielgc stronami (69) przez (70) oraz (71) przez (72) otrzymamy

-F10 = cotgh KlI,
Ou  ghkI;
tuz
ale . "
(9|_o._ bos 1.
110 x Iz
wobec czego Z0= Z cotgh kI, (73)
Z —Z tgh Kl. (74)
skad przez pomnozenie i dzielenie otrzymujemy
722—7@z
(tgh ki)2=
wreszcie 3= /2327 (75)
tgh ki = (76)
Poniewaz 2
tgh ki CH—e M -
g ed+e~'w e-H+ 1
wiec

1+ -

1+ tgh ki 1/50= Vip+isz,

1—tgh Kl 1 V t9z0-V z,

Biorac wartosci Z0 i ze wzorow (65) i (66), bedziemy mieli

& = \oe~2+ er-i2<

nzQ~P yI72 e ->2

(77)
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mnozac licznik i mianownik przez

—  f k- vz
VZ0e> 2 —\Zze> 1 .
otrzymam
Y Y , f (rz—0 (72— 9V
Zo Zz \Vz0Z2z W 2
e2« = (22— tg) (V—:

70+ Zz—yz@2 (i 2 +e-i 2

Zwazywszy, ze k= a+ jb, i zamieniajgc funkcje wyktadnicze
na funkcje trygonometryczne wedtug wzoréw Eulera, napiszemy
Zz0- Zzz- i2Vz0zZ, sin

e2al (cos 2bl + / sin 2bl) =
Zz0+ Zz — 2 VZoZ7cos

skad
[Z2O- zzy + 4 Z0Z2sin2(
e*al= =M,
[¢0 + Zz- 2yZoz7 cos (g~2— )]

2 yZNZ7 sin = N;

tg2 &= Z0 72

przez odpowiednie dziatania otrzymujemy
a= -le-EInM, b= 7 arctg Jv,

w ten spos6b obliczamy spétczynnik ttumienia a oraz spétczynnik
dtugosci fali b.

Nastepnie dla znalezienia opornosci falowej Z wprowadzamy
do wzoru (75) wartosci Z0i Zz z (65) i (66), wtedy

f.
Z=y ZOZZE\—JEHZZ) = yz0z2[cos (iV+y-.) _/ sm("Lt-"-)].(78)
Ale na podstawie wzoréw (10) i (17)
y (i? + jeoL) (A + jo)C)= a + jb,
R + je> L N

Adjc - 27

Wiee R + j(aL= (a + jb) Z,
a+ jb
A+ ijwC+ = a ;

Teoria pradéw zmiennych 22
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biorgc wartos¢ Z ze wzoru (78), otrzymamy
R+ ;«L- (a+jb)VAZT7][cos ) - isin
+ ¢ = (a+ _ A _[cos(*+ *) +/sin(*E *)];

przyréwnujac w tych wzorach czesci rzeczywiste i czeSci urojone,
znajdujemy

B —\zQzz£a cos Q; 4 bsin <R’+2
L \zQz: b cos o+ <R—asin n + <zl
A 2 2
1 1 o+ . n t <P\
A Nz 2 Thsin
i 1 1 o+ & n + <sz
Yjjzijzz \ 2 2

W ten sposéb mozemy obliczy¢é state linii, majac wartosci

Z)> ZM?0 i 9Y

§ 99

WZORY DLA NAPIEC | PRADOW, OPARTE NA WEASNOSCIACH LINII
W STANIE JALOWYM | W STANIE ZWARCIA.
WSPOLCZYNNIK LINIOWY

Rozpatrujac wzory (69) i (72) spostrzegamy, ze

f) 7
= -»-= cosh kl;
uz2 m2
poniewaz k = a+ jb jest na ogdt liczba zespolona, wiec i cosh ki
musi by¢ roéwniez liczbg zespolong; oznaczmy
cosh kl = S;

wprowadzajgc do naszych wzoréw ten wspotczynnik, musimy go trak-
towac jako liczbe zespolong; nazywamy go wspdtczynnikiem liniowym.
Mozemy wiec powyzsze wzory przepisa¢ w postaci

#io
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Niech a bedzie katem przesuniecia fazy t)w wzgledem lub,
co jest jednoznaczne, lu wzgledem /2; kgt ten bedzie wiec argu-
mentem wspdtczynnika liniowego w ujeciu symbolicznym; wdwczas

5 = Se'™ = S (cos a + j sin a).

Modut S i argument a mozemy okresli¢ przez spotczynniki
a i boraz dtugos¢ linii / w sposob nastepujacy. Z zatozenia wynika, ze

ed+ e~d da +_er-(atyw/
§ = cosh kI = - = A 20 @
albo
. o/ | g—al .
S (cosa + j sincr) <=---------—---- cos bl + / -~ sin bl =
= cosh al . cosh bl + j sinh al . sin bl,
skad

S = V cosh2al =cos2bl + sinh2al esin2bl =

= 2 (cosh 2 al + cos 2 bl),
tga= tgh al . tg bl.

Chcac okresli¢ S przez opornosci pozorne linii w stanie jalowym
i w stanie zwarcia, napiszemy

§ —cosh U = N -
V 1- tgh2kl’

biorgc wartos¢ tgh kl ze wzoru (76), bedziemy mieli

stad

A2_ A0 7Qe ' ¥ 7 -

6 ~ Z0— Zz zoe~ip°— ZZe~'rz Z0— Zze-»<'—ds’
mnozac licznik i mianownik przez Z0—Z2e,(f*,,) otrzymamy

Z0[Z,-Z,el»— ™
ZR+ 222—7ZZx[ei <*-' 1>+ «-my>--*>]"

zamieniajgc funkcje wykladnicze funkcjami trygonometrycznymi
i biorgc pod uwage, ze

S2= S2(cos a+ / sin 0)2= S2(cos 2& + / sin 2 a),
22+
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bedziemy mieli

0'2(cos 2<r + / sin 2a) = ~-LZo~ sin ( - e,
( ) Zo ocZz 22z0Zzcos (42 (:F%), >l

skad
ci = Zm@2<[Mo- Zzcos qz—y0]2+ Zz2sin2(y, —y0} =
[zZ@+ zZ2—27QZz cos (gp, —€9)]2

Y
Z@—Z 2—27Z0Z cos (€z—e¥)

S= 1
Vz 0+ Z222—2Z@zcos (qz—D) (61)

zzsin {qz—<9
Z0—Zzcos (z— (@) (82)

Ten sam rezultat mozna otrzymaé geometrycznie. Wychodzac
ze wzoru

tg 24

£2= z°
Z0 22
przeprowadzamy dowolny kierunek OX (rys. 192), odkiadamy
z punktu O pod katami (—9) oraz (—gz) OA = Z0, OB = Zz;

woéwczas
X ba =20 z2
MOA = —g9,
MOB = —q\

oznaczajac przez ip kat BMX,
ktéry tworzy BA z OX, be-

dziemy mieli
Z0= OA. e~i9%
Rys. 192 Z0—Zx= BA .e*
wobec czego . .
§2= -z° — UA J(AHY
z0—zz BA
skad
S2= BA ,
2a= —@0+ )

Wprowadzenie wspotczynnika liniowego 5 pozwala na uprosz-
czenie wzordéw uzalezniajgcych napiecia i prady na poczatku linii od
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napie¢ i pradow w jej koncu; ze wzoru (79) mamy ,

#10 = #.$, tu = t5,

nastepnie
Lol Zz,czyli t)lz = 1XZ27= 12778,
#o _ 70, czyli g = 710 _ #25
‘10 Zo
Poniewaz 41 = #10 + #10
A - A» + 112j
wiec po podstawieniu odpowiednich wartosci otrzymamy
#1 - &(#2 + t222), (83)
(84)
albo
SN = #2427, (85)
A f, # (86)
5 Z0

Wzory te sg identyczne ze wzorami (47) i (48); (75) i (76); (97)
i (98) z 88 58, 59 i 61, wyprowadzonymi dla czwornikdw symetrycz-
nych. Z tego wynika, ze dluga linia elektryczna z réwnomiernie
roztozonymi statymi stanowi symetryczny czwoérnik.

Przy rozwigzywaniu powyzszych réwnan metodg symboliczna,
gdy chodzi o znalezienie wartosci napiecia Vx, pradu | x oraz wspoét-
czynnika mocy cos g, gdzie gxstanowi kat przesuniecia fazy pradu Ix
wzgledem napiecia Cf1, musimy oprocz danych V2, t2i g2 mie¢
wartosci Z0, Zzoraz katy (@i ¢2; z tych danych obliczamy S wedtug
wzoru (81); okreSlenie argumentu a jest w tym przypadku zby-
teczne, gdyz kat gx pomiedzy Ix i Ox jest taki sam co i pomiedzy

, # . . . . . Tr
~]El- i -gl-; wystarczy wiec obliczenie katéw pomiedzy -rg}~| UZ2oraz
pomiedzy-gr i #2, wtedy réznica tych katow da nam wartos¢ qx

W poprzednich wzorach opornosci Z0 i Zz odpowiadaty catej
dtugosci linii . Czasami zachodzi potrzeba przerachowania tych
wielkosci, podanych dla okreslonej dtugosci I, na inng dhugosé I'
takiej samej linii. Oznaczmy poszukiwane opornosci pozorne, odpo-
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wiadajgce dtugosci V, przez Z0 i Zz \na podstawie wzoréw (73) i (74)

bedziemy mieli Zd =7 cotgh h/, A
z; = z tghku. (88,
gdzie wedtug wzoru (75)
z =\1z0z2z

jest wielkoscia niezalezna od dtugosci linii, lecz tylko od statych
B, L, A, C oraz co. Dla okreslenia funkgcji liiperbolicznych we wzo-
rach (87) i (88) mamy

7

oiw__i

tghkr- ew+ 1, (89)
e2w 4. 1

cotghkl'= v w_ x; (90)

z drugiej strony ze wzoru (77)

v sfz0+ \NZ,, m

vz 0
oznaczajgc w skroceniu
n 1+\Nzz _
yJZ0 \Za
mamy
e2W= q,
eXk = q
eMN_ X )

Podstawiajgc te wartos¢ do (89), (90), a nastepnie do (87) i (88),
otrzymamy

Zo — q, +1 (91)
<f 1
7-1

z:="N 7 azznN (92)
+1

Rozwiazujgc te wzory metodg symboliczng, znajdziemy moduty
Z0 i ZJ oraz ich argumenty.
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§ 100
UKLADY ZASTEPUJACE DLUGA LINIE

Wzory dla napie¢ i pragdéw w diugich liniach jednorodnych
(z rownomiernie roztozonymi staltymi), jak to juz stwierdziliSmy,
sg identyczne ze wzorami, ktore otrzymalismy dla obwodu syme-
trycznego; z tego wynika, ze gdy chodzi nam wytgcznie o ustalenie
zaleznosci napie¢ i pradéw w dwoch dowolnych punktach linii,
np. na poczatku i na koncu, mozemy zastgpi¢ taka linie lub jej
odcinek przez odpowiedni uktad zawierajgcy trzy opornosci po-
zorne, z ktérych dwie sg sobie rowne.

Dla znalezienia elementow czwornika, ktdry ma zastgpi¢ diugg
linie, musimy zna¢ opornosci pozorne stanu jatowego i stanu zwarcia
Z0i Zx oraz spoétczynnik liniowy S rozpatrywanej linii (wzory 81 i 82
z § 92). Majgc te dane obliczamy elementy czwdérnikdéw wedtug
wzoréw wyprowadzonych w 88 58, 59 i 61:

dla czwoérnika typu T (wzory 45 i 46)
(1)
2)

dla czwoérnika typu n (wzory 73 i 74)
Z1=127zS, (3)

)
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dla czwoérnika krzyzowego (wzory 95 i 96)
§ -1
A1=8Z ~ ()

Z -2 $ =m
2~ z$ -1 ©)
Gdy chodzi o zrealizowanie sztucznego ukiadu, zastepujgcego
dtuga linie, za pomocg opornikéw, cewek indukcyjnych i konden-
satoréow, nalezy wzig¢ pod uwage, ze B, A, L i C w powyzszych
wzorach nie mogg mie¢ znakéw ujemnych. Wowczas trzeba zbadac,
czy zawsze jest mozliwos¢ zastgpienia takiej linii czwornikiem typu T,
n lub krzyzowym. W tym celu rozpatrzmy wzory w § 97.
Z = Z (cos a + j sin a),
1 AB+w2LC
z2 A2+ (02C2°

. _ 1 AL-BC
sm2a Z2“ A* + g2C2'

n
cos ca =

W rozpatrywanym przypadku cos 2a ma zawsze warto$¢ dodatnia,
argument a moze sie zmienia¢ tylko w granicach

71 71
----- 4<a<~4i

przy czym znak a zalezy od znaku wyrazenia AL —RC. Biorac
pod uwage wzory (73) i (74) z § 91

Z0= Z cotgh KI,
Zz= Z tghKl,
otrzymamy dla uktadu T, na podstawie wzorow (1) i (2)),
Zj= 225" cotgh kI
5

7 cotgh Kkl

gdzie *§= cosh KI.

Dla ukiadu n, na podstawie wzoréw (3) i (4),
Z1= ZS tgh kI,
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Dla czwornika krzyzowego, na podstawie wzoréw (5) i (6),

z1=70 < =7 cotgh kI (jak dla typu T)
s

79=7, 5 =7 % tghkl (jak dla typu n)
S -1 S -1

Po odpowiednim przeksztatceniu ostatnie wzory przyjma postac
dla ukftadu T . . 'y

Z1=2Z7tghe,
dla uktadu 11

N2  sinh kI

Zx —Z sinh K,

5 sinh kl
2 " tosh kl—1

Dla czwérnika krzyzowego
ki
Zi—Z tgh ™}

Z22= Z cotgh ~ *

Kazda z opornosci pozornych i Z2sktada sie na og6t z opornosci
rzeczywistej R i opornosci biernej X, czyli
A= Ri+jXi; z2=R2+jx2

przy czym Rx i i?2> 0.
Podstawiajac do powyzszych wzoréw
Z=Z (cosa+ jsina) oraz k= a+ jb

i oddzielajac czesci rzeczywiste od czesci urojonych, otrzymamy war-
tosci opornosci rzeczywistych w ukladzie T

R 7 cos asinh al—sin asin bl
1 cosh al + cos bl
R _ , cos acos blsinh al + sin asin bl cosh al
2 co2bl sinh2al + sin2bl cosh2al

Mianowniki w obu ostatnich wzorach sg wieksze od zera, wiec, aby
Rx i i?2 miaty wartosci dodatnie, wystarczy, aby byty spetnione na-
stepujace warunki:

cos a sinh al —sin asin bl >0,

cos acos bl sin hal + sin a sin bl cosh al > 0;
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ale cos a > 0, jak to na poczatku byto stwierdzone, przeto powyzsze
warunki mozemy przepisa¢ w postaci

fl(@ = sinhal —tg asinbl > 0
/2(0 = cos bl sinh al + tg asin bl cos hal > 0

Dla uktadu n znajdziemy analogiczne warunki, ktore muszg by¢
spetnione, w postaci:

/3(0
/42 = cos bl sinh al —tg a sin bl cosh al > 0.

sinh al + tgasinbl >0

Dla czwornika krzyzowego warunki, ktére muszg by¢ spetnione,
otrzymujemy w postaci

/1(0 = /3(0 = sinhal—tg asinbl >0
/2(0 = fi (0 = cos bl sinh al —tg asin bl cosh al > 0

Te wyniki, dajace moznos$¢ okreslenia granic dla Z gdy wiadome
sg a, 4 i a, maja szczegblne znaczenie w liniach, przy stosunkowo
niewielkich dtugosciach fali, jak na przykiad w kablowych liniach
telefonicznych, pupinizowanych, gdzie sg stawiane w pewnych od-
stepach wzmacniaki, zawierajgce sztuczne uktady, zastepujgce od-
powiednie odcinki linii rzeczywistej. Jako przykiad rozpatrzmy linie
telefoniczna kablowg pupinizowang. Dane dla tej linii sg nastepujace:
B (tacznie z opornoscig cewek) = 28 QJkm;

L = 70 mH/km; C = 0,0355 (i F/km,
A = 0,8 pS/km; o = 5000 S-1
Znajdujemy z obliczenia
a= 001 b=025 a=0.
Z powyzszych wzordw otrzymujemy
/1(0 = /(0 = sinhal >0,
1/2(0 = /«(0 = cos bl sinh al > 0.
/3@ = sinh al > 0,
/142 = cos bl sinh al > 0.
Widzimy, ze fx@ = /3@ = fs@oraz /120 = f4() = /16(2, to znaczy,

ze warunki zastgpienia rozpatrywanej linii sztucznym ukladem sg
jednakowe dla wszystkich trzech typéw czwornikow.
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/1. /3 i A sgzawsze wieksze od zera, zas /122, /4@ i/, (@ beda
wieksze od zera w przypadku, gdy cos 3Z>0, czyli gdy

2nn < bl< -j-+ 2nn,

oraz 3
A-n+ 2nn< bl< (n +1)2jt

albo 5 ]
nn < /<iL +121Z2L
~b~ 27> b

3jt 2«T7r . . 2
+_g_<‘<("+!)-|--
Po podstawieniu b = 0,25, bedziemy mieli
25,12« < Z< 6,28 + 25,12 n,
18,84 + 25,12 n< I< (n+ 1) 25,12,

gdzie n oznacza dowolng liczbe catkowitg lub zero.
Podstawiajac za n rozne wartosci, znajdziemy granice Z dla ktérych
mozna zastosowa¢ sztuczny uktad:

dla n=10
0< Z< 6,28,
18,84 < Z< 25,12;
dlan=1
25,12 < Z< 31,40,
43,96 < Z< 50,24,

wiec np. dla Z zawartych w granicach 6,28 km i 18,84 km lub w gra-
nicach 31,40 km i 43,96 km, nie mozna sporzadzi¢ uktadu ani T,
ani fi, ani krzyzowego.

§ 101
LINIE tANCUCHOWE

taczac w szereg dowolng ilos¢ czwornikéw otrzymamy ukiad
zwany linig fancuchowa. Rozpatrzymy linie taricuchowe, sktadajgce
sie z jednakowych, symetrycznych czwornikéw, czyli ogniw. Kazde
ogniwo zestawione jest wedtug schematéw poprzednio rozpatrzonych,
a wiec typu T (rys. 140), typu fi (rys. 141) albo typu krzyzowego
(rys. 142).
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Bedziemy oznaczali przez n liczbe ogniw w tancuchu, przez

U i I, z odpowiednimi wskaznikami, napiecie i natezenie pradu
w koncu kazdego ogniwa. UQOi 10oznacza¢ beda napiecie i natezenie
pradu na poczatku tancucha, zas U, i |, te same wielkosci w koncu

tancucha, Ux i Ix oznacza¢ bedg te wielkosci dla ogniwa oznaczo-
nego liczbg x.

W celu wyprowadzenia wzoréw, dajgcych wartosci napiec
i pradow w dowolnym ogniwie, rozpatrzmy dwa dowolne, sgsiednie
‘ogniwa, oznaczone liczbami x i aH-l. Oznaczmy state kazdego czwér-
nika-ogniwa przez A = D; B i C. (rys. 193).

Rys. 193

Na podstawie podstawowych wzoréw dla czwdrnika symetrycz-
nego mozemy napisac:
Ux—i= AU X+ B Ix, 7

K-\ = CUX+ A Ix, )
Ux = A Ux+l + Blx+i, 9
Ix= CUXHl + Alx+1, (10)
2 (7) t UL A )
Y
Ix B B * (U)
z (9

t Ux A vy
h+l gX g X%(—l »

wstawiamy te wartosci Ix i IX+l do (10) i otrzymamy:
Ux— \ N 1) fl

— g - g—Y)yx——t\I{}le S+ o-g- A>x g Ux+l,

skad po uporzadkowaniu:
-2A U X+ (A*-BC)U Xt = 0;
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ale dla czwdérnika symetrycznego (wzér 11 z § 56) A2—BC = 1,
wiec ostatecznie
&—i— 2-40X+ t)x x= 0. (12

Stata A dla poprzednio rozpatrzonych typdw czwdrnikéw ma na-
stepujace wartosci:

z
dla czwoérnika typu T (wzoér 50, §58) A = 1+ 2/2

dla czwornika typu n (wzor 70, §58) A = 1+ Zi
dla czwornika krzyzowego (wzér 94, §58) A — Z\+ 122
22 X

Rownanie (12) jest rownaniem rézniczkowym; z powodu pewnej
analogii z dluga linig, bedziemy szukali rozwigzania tego réwnania
w postaci, = Kie*, + K%c-k" (13)

gdzie Kt i K 2— state dowolne, k od x nie zalezy; podstawiajac w tym
wzorze zamiast X najpierw a—1, nastepnie a+l, otrzymamy:

)X 1= Kle~lekx + K Zke~kx, (14)
#*+i = Kxekekx + K Ze~ke~kx; (15)

podstawiamy wartosci Ox 1, Ox i Cx+l do (12), wtedy:
e~kekk+ K 9%ke~kx—2 A K lekx—2 A K Ze~kx+ K lekeke K Ze~ke~kx—0
alb® {Kxekx+ K 2~k9 (ek+ e~k- 2A) = 0. (16)

Z tego wzoru wynika, ze wartos¢ Ux z wzoru (13) bedzie rozwig-
zaniem réwnania (12), gdy spetniony bedzie warunek ujety we wzo-
rze (16); w tym wzorze pierwszy nawias moze mie¢ dowolne wartosci,
wobec tego warunek bedzie spetniony, gdy

ek+ e k = 2A,
czyli cos hk = A, %)
A dla rozpatrywanych czwdrnikéw jest na ogot liczbg zespolong,
wobec tego k bedzie réwniez liczbg zespolong; oznaczymy
k= a+ b,
gdzie a i b—Iliczby rzeczywiste, wtedy:

cosh k = cos (a + jb) = cosh acos b + j sinh a sin b; (18)
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oznaczmy w tym wzorze cze$¢ rzeczywistg przez p, cze$¢ urojong

przez q,to jest p - cosh acos(19)
g = sinh asin b, (20)
cosh k = p + iq. (21)

Dla znalezienia wartosci a i b podnosimy do kwadratu kazdy
z wyrazéw we wzorach (19) i (20), otrzymamy

p2 = cosh2acos2b = (1 + sinh2a) (1 —sin2b),
g2 = sinh2asin2h.

Rozwigzujgc dwa ostatnie réwnania wzgledem sinh2ai sin2b, znaj-
dujemy

sinh2a = -—-- ANl —P2- 99+ g2+ ~ (1- p2- o2, (22)

sin2b. 4 (i-92>-2m)+]/Var+x (1l i2—ad (23)

Przy rozwigzywaniu tych réwnan pod pierwiastkiem kwadratowym
wzielismy tylko znak +, poniewaz niewiadome sinh2a i sin2 b jako
kwadraty liczb rzeczywistych muszg by¢ liczbami dodatnimi,
wartos¢ za$ pierwiastka jest wieksza od bezwzglednej wartosci
wyrazu przed pierwiastkiem. Przez analogie do dtugiej linii jedno-
rodnej wspoétczynnik a nazwiemy wspdtczynnikiem ttumienia, a wspot-
czynnik b, ktéry wplywa na przesuniecie fazy, moze by¢ nazwany
wspotczynnikiem przesuniecia fazy.

Dla znalezienia wzoru na natezenie pradu w dowolnym ogniwie,
musimy rozpatrze¢ oddzielnie kazdy z typéw ogniw, z ktérych skitada
sie linia taricuchowa. Wychodzac z wzoru (11) i podstawiajgc wartosci
Ox_i i Ox, znalezione ze wzordw (13) i (14), bedziemy mieli:

Ix= N Kxe~kek + K2ekekx— AK Lek*— AK 2e~k' J

ale (wzor 1 ~
( 7 coshk = &¢* ¢
obliczamy
A = e-k ek+28~k m—sinh/c,
k+ e~k )
ek— A = ek +2e 5 = sinh k,
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wobec czego ze wzoru (24) otrzymamy

sinh k
~~B..

N K 2e~k—K lek?y . (25)
Rozpatrzmy teraz kolejno 3 typy linii taricuchowych:

Typ t
Wedtug wzoru (50)

za$ na podstawie (17)
B = Zx(cosh k + 1).

Podstawiajac te wartos¢ do (25) otrzymamy

L= .. sinh k (K 2e~kx—K lem),
Zi(cosh k + 1)
ale

k k\ /7 k k
) ek—e-k (e2+ e 2)'e2—e 2
sinh k

e+ e~k+ 2

coshk+ 1= 5 5

sinh A e2 e 2 sinh ,

coshic+ 1 e+ e 2 ™ cosh-K ~ 1N 2

wobec czego
(26)

Oznaczmy

AL 27)

tgh-2
na podstawie wzoru
cosh k—2sinh2 + 1

z uwzglednieniem, ze

coshk= 1+ -T,
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bedziemy mieli

sinh ,=1/A
r 2V
Zt+ 272
cosh3=|/ 1+sinh2] -= ] /-
skad
tgh— =1/
2 r ZL+2ZS

wobec tego wzér (27) mozemy napisa¢ réwniez w postaci:
2l =Gl o)), (28)

|/ ZX+ 272

Zestawiajgc wzory (13) i (26), otrzymamy w najogolniejszej
postaci wyrazenia dla napiecia i pragdu w dowolnym ogniwie:

0X= Klekx+ K22~k (29)
7 = - Kiekk+ K 2~kx; (30)

wielkos¢ Z, odgrywajaca role opornosci, okreslong wzorem (27)
lub (28), przez analogie do dtugiej linii jednorodnej, nazwiemy
opornoscig falowa linii taricuchowej.

Wchodzace do wzoréw (29) i (30) stale Kxi K2mozemy okresli¢
na podstawie wiadomych wartosci napiecia i pradu w okresSlonym
miejscu; najczesciej wchodzg tu w gre te wielkosci na poczatku
i na koncu linii tancuchowej. Poniewaz dla poczatku x = 0, przeto
ze wzoréw (29) i (30) dla napiecia i prgdu na poczatku otrzymamy

#H0= K1+ K2,

10Z = -K 1+ K2,
skad cO I oz

Kx= 2

Koz O+ hz

Wobec tego z tychze wzoréw (29) i (30) otrzymamy

OxX~ ~ h ? ekx+ 00+ h* e kx (31)

Oo-hz ox+ 00+ hi e k« 32)

u = 2
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lub . . Ppkx 1 p—hx . Pkx__p—kx
OB, 2 L4 . (33)

pkx 1 o—kx " pkx __ p—kx
teky —! 7 f2 re 2 . (34)

w funkcjach hiperbolicznych

U« - UOcosh kx — 10Z sinh kx, (35)
IXZ - 10Z cosh kx — UQOsinh kx. (36)

Jak wida¢ z tych wzordw, napiecie i prad w dowolnym ogni-
wie jest wynikiem nakladania sie dwdch fal idacych naprzeciw
siebie, z ktérych jedna jest falg postepujgacg od poczatku do korica
linii, druga falg odbitg od korica (rozumowania te same, jakie byty
przeprowadzone dla dtugiej linii jednorodnej). Gdy linia tancuchowa
ma bardzo duzo ogniw (teoretycznie nieskonczenie duzo), wowczas
fali odbitej nie ma, gdyz napiecie i prad w koncu w tym przypadku
muszg sie rownac¢ zeru; wzory (29) i (30) wskazuja, ze powinno by¢

wedy Ux= K2~
IXZ= K2
skad
7 =-~
h
a takze
Z = Ah (37)

poniewaz ostatni wyraz stanowi opornos$¢ pozorng tancucha, wiec
w rozpatrywanym przypadku oporno$¢ pozorna tancucha réwna
sie opornosci falowej.

Uwzgledniajac wzér (37) otrzymamy w danym przypadku,
poniewaz fale ulegajg jedynie ttumieniu, ze wzoréw (31) i (32)

#,= Ooe-*, 1

38
4 - he~kx; (38)
dla konca tancucha, gdy x = n,
U, - 00e- "
1Q-K. (39)

W wyzej wyprowadzonych wzorach ogdlnych (31) do (36) nie
wprowadzaliSmy opornosci odbiornika wigczonego w koncu osta-

Teoria pradéw zmiennych 23
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tniego ogniwa. Rozpatrzmy teraz, jak sie zmienig te wzory, gdy
przyjmiemy pod uwage warunki istniejgce na koncu tancucha.
Jezeli lima tancuchowa na koricu nie ma obcigzenia, to znaczy
jest w stanie jatowym, wtedy In= 0; ze wzoru (36), zakladajgc
X —n, otrzymamy
10Z cosh kn = OOsinh kn,

lub 10Z = £0tgh krv, (40)
po podstawieniu tej wartosci 10Z do wzoru (35) dla x = n, bedziemy
V, = 00(cosh kn —sinh kn etgh kn)

lub po uproszczeniu n
= eOBiiknA' (41)
Z ostatniego wzoru mozna w rozpatrywanym przypadku zna-
lez¢ napiecie w koncu tancucha, gdy wiadome jest ono na poczatku,

lub odwrotnie. Prgd w dowolnym ogniwie da sie obliczyé wowczas
z wzoru, ktéry otrzymamy podstawiajgc (40) do (36), wtedy

sinh kx.
Ix= K (cosh kx — tgh kn
_ "~ sinh k(n—x)
0 sinh kn (42)

W przypadku, gdy linia tancuchowa jest w stanie zwarcia, to
znaczy konce ostatniego ogniwa sg zwarte, wtedy On= 0; z wzoru
(35) otrzymujemy dla x = n

UOcosh kn + 1QZ sinh kn,

lub 00= 10Z tgh kn ; (43)

podstawiajac te wartos¢ 00do (36) i zaktadajac x = n, otrzymamy.
In= 10(cosh kn —sinh kn . tgh kn),

lub po uproszczeniu - 1H

» = (44)

cosh kn’
wzér ten daje zalezno$¢ pomiedzy pradami na poczatku i w koncu
tancucha, gdy ostatnie ogniwo jest zwarte. Podstawiajgc wartos¢
10Z ze wzoru (43) do wzoru (35), otrzymamy wz6r dla napiecia
w dowolnym ogniwie

sinh kx sinh kin —x)
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Z wzoréw (40) i (43) mozemy otrzymaé opornosci pozorne
linii tancuchowej, gdy ostatnie jej ogniwo jest w stanie jatowym
lub w stanie zwarcia; oznaczajgc te opornosci pozorne odpowiednio
przez Z0i Zt, otrzymamy znane z teorii dtugich linii jednorodnych

Wzory Z0= Z cotgh kn,
Zz= 2 tgh kn.

Wzory (31) do (36) uzalezniajg napiecia i prady w dowolnym
ogniwie od napiecia i pradu na poczatku tancucha; oczywiscie mozna
uzalezni¢ rozpatrywane wielkosci od napiecia i prgdu w Kkoncu:
wtedy, zaktadajgc we wzorach (29) i (30) x = n, otrzymamy

Kiekn+ Kae~K = U,
- K lekn+ K2e~kn= InZ,
skad
K,.o._+1i.Z_¢e_

kn

wobec czego wzory dla napiecia i prgdu po odpowiednich uprosz-
czeniach przybiorg postac:

ua*= A <<¢«71vm ek(n-¥+ A . j»z e knX=

= U, cosh k [n —x) + InZ sinh k (n —X), (46)
ixz = eH»Xx) _ Q«-Jdnz

= Onsinh k (n —x) + IrZ cosh k (n —X) ; (47)

z tych wzoréw moglibySmy otrzymac réwniez wzory w przypad-
kach, gdy ostatnie ogniwo jest w stanie jatowym lub w stanie zwar-
cia, zaktadajgc kolejno In= 0 i On—O0.

Rozpatrzmy teraz przypadek, gdy w korncu ostatniego ogniwa
wigczony jest odbiornik, ktérego oporno$¢ pozorna wynosi Zn
Wtedy bedziemy mieli dodatkowy warunek tJ,= 1,Zn

Uwzgledniajgc ten warunek we wzorach (46) i (47), otrzymamy
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dla x = Q tj. na poczatku tancucha

00= Un”cosh kn + sinh knj , (48)

h = tn (cosh kn + — sinh k (49)
Z II)

Wzory te dajg moznos¢ w najogolniejszym przypadku obliczenia
stosunku napie¢ wzglednie pradéw na poczatku i na koncu linii
taricuchowej o wiadomej liczbie ogniw i wiadomych opornosciach
Zxi Z2oraz Zn

W przypadku szczegélnym, gdy oporno$é odbiornika Znréwna
jest opornosci falowej tancucha Z, czyli

z2=27,
z rownan (48) i (49) otrzymamy
UO= Un(cosh kn + sinh kn) = On *"
10=In (cosh kn + sinh kn) = /, e

1. !/ p~kn.

albo .
Un= cCoe~kn:

wzory te sg identyczne ze wzorami (39) dla linii fancuchowej o nie-
skonczenie duzej ilosci ogniw; a wiec gdy odbiornik posiada opornos¢
rowng opornosci falowej taricucha, linia o skonczonej liczbie ogniw
zachowuje sie tak jak linia o nieskonczenie duzej ilosci ogniw.

Typ n
Wychodzac z ogbélnego wzoru (12) dla linii tancuchowych, zto-

zonych z czwdérnikéw symetrycznych, otrzymamy dla napiecia

w dowolnym ogniwie, oznaczonym liczbg x, ten sam wzér (13), ktéry

mielismy dla typu T, przy czym stala A ma te samg wartos¢, czyli

cosh k = cosh (a + jb) = A.

Wzory (19) do (23) pozostajg w tym przypadku bez zmiany.
Inaczej bedzie z wzorem na natezenie pragdu w dowolnym ogni-

wie, poniewaz we wzorze (25)

sinh k 2e~kx— Kxek =

& (

Stata B ma dla typu n inng warto$¢, mianowicie (wzoér 70) B = Zv

wobec czego
« sinhk/

zi 'V
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Przez analogie do (30) opornoscig falowg w tym przypadku bedzie

_ Zi .

"~ sinh i (50)

Otrzymujemy wiec dla linii tancuchowej typu ii te same wzory
(29) i (30) g = Axe* 1Rk

IXZ = -K xekx+ K 2-

Poniewaz warunki na poczatku i na koncu linii sg dla obu typdéw
te same, to znaczy, ze napiecie i natezenie pradu dla x = 0 wynosza
UQi 10, a dla x = n wynoszg Oni przeto dla napie¢ i pradéw otrzy-
mamy zupetnie takie same wzory (31) do (49), jakie mielisSmy dla linii
typu T. Réznica polega tylko na tym, ze opornos¢ falowa dla linii
typu T okreslona jest wzorem (27), dla linii zas typu Fl wzorem (50).
Ten ostatni wzor mozna przedstawi¢ w innej postaci, mianowicie:

sinh k = Vcosh2k —1,

ale .
cosh k —A = Zi+z2
wiec
sinh k il
1/ftr'? m )
wtedy . s
A ZXZ2 (51)

i/(1:) 48t V 7' +%%'7"

Typ krzyzowy
Dla czwornika krzyzowego (wzdr 93 i61)-
Zi+2722_ B =
722—7x 2 Zi
Rozpatrujac wzory (13) i (17) z 8§94 widzimy, ze pozostanag one bez
zmiany, z tym, ze

coshk=A ="~ 72>
Zg Zi

natomiast wzdér na Ix (25) przyjmie postac
f _ sinhk{Z2—Z1)/ 1, u\
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Poniewaz

przeto ) ) o
sinhk{Z2~Zx) V4ZxZ2 1
2ZxZ2 272x722 N1IXZ2’
odwrotnos¢ tego wyrazu stanowi, jak wida¢, opornosé falowg:
Z =i1z2x22 (52)
W ten sposéb dla linii taricuchowej typu krzyzowego otrzymu-
jemy wzory ogélne
Ux = Kxeks+ Kne-N (53)

1,2 = —Kxek<+ K 2e~kx (54)

Wzory te sg takie same jak wzory ogoélne dla poprzednio roz-
patrzonych typéw linii faricuchowych: réwniez warunki dla okreslenia
statych dowolnych sg takie same, wiec wzory od (31) do (49) majag
zastosowanie do linii tancuchowych typu krzyzowego, z tym, ze
opornos$¢ falowa Z ma warto$s¢ podang we wzorze (51).

§ 102
FILTRY ELEKTRYCZNE

Rozpatrzmy obwody liniowe, w ktorych dzialajg jednoczesnie
prady o roznych czestotliwosciach, fazach i wartosciach maksy-
malnych. W zastosowaniach elektrotechniki, szczeg6lnie w teleko-
munikacji, zachodzi potrzeba przepuszczenia do dziatania tylko
czesci tych pradéw. Uklady, ktdre pozwalajg to uczyni¢, nazywamy
filtrami elektrycznymi. Mozemy tu odrdzni¢ kilka rodzajow filtrow:

1) filtry, ktére przepuszczajg prady o czestotliwosciach ~ponizej
pewnej granicy; nazwiemy je dolnoprzepuslowymi;

2) filtry, ktére przepuszczaja prady o czestotliwosciach powyzej
pewnej granicy; nazwiemy je gérnoprzepuslowymi;

3) filtry, ktére przepuszczajg prady o czestotliwosciach zawar-

tych w pewnych granicach, czyli przepuszczajgce pewng wstege
czestotliwosci; nazwiemy je filtrami wstegowymi;
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4) filtry, ktére zatrzymujg pewna wstege czestotliwosci,
pochtaniajg pewne fale, przepuszczajgc inne; nazwiemy pochtania-
czami fal.

Wszystkie tego rodzaju filtry mozna otrzymaé stosujac linie
tancuchowe o odpowiednio dobranych ogniwach.

Filtr dolnoprzepustowy

Rozpatrzmy linie taricuchowg typu Fl, ktérej dowolne ogniwo
przedstawione jest na rys. 194. Stosujac oznaczenia przyjete dla
czwornika typu Fi1, bedziemy

D Ali— \AAAAAAAA—p |  mieli

Zx= R+ jwL,

— % — O Z =_2
L ' R
. Stosujgc wzory (17) i (21) z §94
Rys. 194 oraz (70) z 8§58, otrzymamy

Z1_, /QC c2L C , . RwC
P+/7 1+ -:1+r(rh+](0L3—Qﬂ—:1 0 +/ o

skad 1. w2L C (55)
2
HtoC

Aby zbada¢ zachowanie sie rozpatrzonej linii tanicuchowej przy
rozmaitych czestotliwosciach, dogodniej bedzie wprowadzi¢ tzw.
czestotliwosé, wzglednie pulsacje, drgan swobodnych ogniwa. Gdy

mamy obwdd zamkniety, zawierajgcy L i

przy czym zachodzi wyladowanie kondensatora, wéwczas w takim
obwodzie, ktéry nazywamy obwodem oscylacyjnym, powstaje prad
drgajacy, czyli oscylacyjny; méwimy, ze w obwodzie powstaja
drgania wiasne, ktoére przy braku R bylyby swobodne o stalej
amplitudzie, przy czym pulsacja takich drgann swobodnych wynosi

_ 1
yic'
Jezeli w naszym przykiadzie rozpatrzymy jedno ogniwo jako
obwod zamkniety i spostrzezemy, ze oba kondensantory, posia-

<0 (57)

czyli
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dajgce kazdy pojemnos¢ réwnag sg potaczone szeregowo, wiec
pojemnos$¢ wypadkowa w tym obwodzie ogniwa wynosi na

podstawie wzoru (57) znajdziemy, ze pulsacja drgan swobodnych
oghiwa wynosi

to0= . . (58)
}JCT
Oznaczmy .
’ (59)
wtedy 2
n VLCAH. ©Q
i do wzoréw (55) i (56) i oznaczajgc dla
skrécenia
61
\ t =" (6D
znajdziemy D= 1-2r\ (62)
= (63)

Dla ogniwa fi, L i C muszg by¢ dane, przy czym dla niezbyt
wielkich czestotliwosci wielkosci te mozemy uwaza¢ za stale;
wtedy p i q bedg funkcjami tylko M\ podstawiajgc te wartosci p i q
do wzoréw (22) i (33), otrzymamy spétczynniki a i b jako funkcje 1.

Szczegblnie wazne jest rozpatrzenie zmiany spétczynnika thu-
mienia a przy zmianie czestotliwosci, wzglednie ri. Poniewaz zalez-
nos$¢ a od rj stanowi funkcje bardzo skomplikowana, przeto uproscimy

nasze rozwazanie w ten sposdb, ze wyraz Bl / ? , ktéry oznaczy-

liSmy przez q, przyjmiemy jako bardzo maty, co zresztg w praktyce
jest przewaznie bliskie rzeczywistosci; wtedy dla niezbyt duzych war-
tosci rj mozemy na podstawie wzoru (63) zatozy¢, ze g, bedac zawsze
wielkoscig dodatnig, jest bliskie zeru; wowczas wzory (19) i (20) (§ 94)
dadzg nam w przyblizeniu

cosh a cos b= p, (64)
sinh a sin b —O0. (65)
Poniewaz p = 1—2»2 gdzie rj — , przeto tatwo zauwazyc,

«0
ze najwieksza wartos¢ dla p wynosi 1, gdy rj = 0, czyli «0 = O;
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nastepnie dla ———, p= 0; dlav= 1 p = —1, za$ dla wszel-
V2

kich wartosci 4 >1, p < — 1. Zauwazmy oprdcz tego, ze cosh a ma
najmniejszg wartos¢ rowng 1 dla a = 0, poza tym zawsze jest
wiekszy od 1, natomiast sinh a ma najmniejszg warto$¢ 0 dla a = 0
poza tym zawsze jest wiekszy od O dla a > O;

gdy § < 1, czyli m< a0,

wted
y -1 <1,

—1 < coshacosb < 1 (66)

Wzor (65) wskazuje, ze albo a= 0, albo b= 0 lub n, lecz wa-
runkowi (66) wartos¢ a = 0 zawsze czyni zado$¢ przy wszelkich
mozliwych wartosciach cos b (dla 6= 0 lub n, rowniez a = 0),
przeto w rozpatrywanym przypadku a = 0, za§ b zmienia sie od
0 do 180° gdy > 1, czyli > w0; wtedy p< —1

Niech bedzie p = —k = — (22— 1), czyli k= 22— 1> 1;
wzory (64) i (65) dajg wodwczas

cosh acos b = —Kk,
sinh asin 6 = O;

a nie moze sie réwnac 0, bo wtedy z pierwszego rownania wypadioby,
ze cos b = —k ma warto$¢ bezwzgledng wieksza od 1; wobec tego
b = 0 lub n; z pierwszego réwnania wynika, ze poniewaz cosh a > 1,
wiec cos b powinno by¢ ujemne, czyli b = ®\wtedy cos b = — 1, za$

cosha= k= 27"2—1,

skad wida¢, ze a rosnie, i to szybko, ze wzrostem 1.

Z tych rozwazan wynika, ze w rozpatrzonej linii tancucho-
wej wspotczynnik tlumienia a = 0 (w rzeczywistosci bardzo maty)
dla wszystkich czestotliwosci nie przekraczajgcych czestotliwosci
drgann swobodnych ogniwa i ze tlumienie szybko rosnie dla cze-
stotliwosci wiekszych; natomiast wspétczynnik przesuniecia fazy b
wzrasta od zera do 180°, gdy czestotliwos¢ zmienia sie od zera do
czestotliwosci drgan swobodnych, i nastepnie przy dalszym wzroscie
czestotliwosci ten wspoétczynnik b pozostaje bez zmiany i stale jest
rowny 180°.

Na rys. 195 podany jest przebieg tych wspoétczynnikow w za-
leznosci od 1]

Za pomocag rozpatrzonego ukiadu cewek i kondensatoréw
mozemy wiec oddzieli¢ prady, ktorych czestotliwos¢ przekracza
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czestotliwos¢ drgann wilasnych ogniwa. Urzadzenie tego rodzaju
nazywamy filtrem elektrycznym. Filtr elektryczny, w ktérym, jak
w naszym przypadku, cewki sg polgczone szeregowo, a konden-

satory rownolegle, nazywamy filtrem dolnoprzepustowym; taki
filtr przepuszcza bowiem prawie bez ttumienia prady o czestotliwosci
mniejszej od czestotliwosci drgan swobodnych, zatrzymujgc, czyli
znacznie tlumigc, prady o wiekszej czestotliwosci.
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Filtry elektryczne majg szerokie zastosowanie w elektrotechnice,
gdy zachodzi potrzeba ttumienia pradow okreslonych czestotliwosci,
a wiec w radiotechnice, w telefonii, w miernictwie, dla otrzymania
mozliwie sinusoidalnego pradu zmiennego itd.

Obszar czestotliwosci, ktore filtr elektryczny przepuszcza, na-
zywamy widmem filtru. W rozpatrzonym przyktadzie widmo obej-
muje czestotliwosci od 0 do czestotliwosci drgan swobodnych ogniwa;
oczywiscie widmo bedzie tym wieksze, im wieksza bedzie ta czesto-
tliwos¢ drgan swobodnych, te za$ ostatnig czestotliwo$s¢ mozemy
dowolnie ustali¢, dobierajgc we wzorze (71) odpowiednio L i C.

Filtr gornoprzepustowy. Innego rodzaju filtr stanowi linia
tancuchowa réwniez typu n, ulozona w ten spos6b, ze konden-
satory sg potgczone ze soba szeregowo, natomiast cewki wigczone
rownolegle. Kazde ogniwo zlozone jest z kondensatora o pojem-
nosci C oraz dwoch cewek, ktorych opornosé i indukcyjnos¢ ozna-
czymy odpowiednio przez 21? i 2L, a to z tego wzgledu, ze przy

tgczeniu dwoch ogniw otrzymamy wspdlng opornosé R i induk-
cyjnos¢ L (rys. 1S6).
W tym przypadku

Z1= Ticoc
22= 2 (R 4 ju>L).
Nastepnie
ZX - 1
P+ N —lHm =1+ Thr s[RI
L R

=1 5 Ccn2+ w2 12C{R2+ c0*L2)
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skad

P 1 2C(R2+ co2L2) " (67)

g=~ 2(oC[Ra+ w*LZ ' (68)

Rozpatrujgc pojedyncze ogniwo i nie uwzgledniajgc opornosci
rzeczywistej, ustalimy pulsacje drgan swobodnych ogniwa, gdy
zwazymy, ze indukcyjnos¢ ogniwa, jako zamknietego obwodu, wy-
nosi 4L, apojemnos¢ C ; na podstawie wzoru (57) ta pulsacja wyniesie

/.'_ (69)
2yjLC
Jezeli oznaczymy

© Vv Vf?l
»0’ 2Y LC '

wtedy wzory (67) i (68) przybiorg posta¢ nastepujaca:
L 1

P=1 ,c(R2+c2 =~ ©
- (/72" + c2LCA

(«m+*)
R R

9= 2mC (i72+ L2

-4 = C(i?72+ w2L2

" V? i

>?]/~ (R2+ co2L2) N r2k +@21c) p(e2+ ™)
czyli ostatecznie

P=1 242+ rf’ (70)

4g
1= Uerad P ¢
Dla zbadania wiasnosci rozpatrywanego filtru, jak i w po-

przednim przyktadzie, zatozmy, ze p= R jest bardzo mate ;
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wtedy, jak to wynika z wzoréw (83) i (84), bedziemy mieli przy-
blizone wzory (72)

(73)
przy czym nalezy zwro6ci¢ uwage, ze g bedac bliskie zeru ma jed-
nakze wartos¢ ujemna. Przy takich wartosciach p i qwzory (19) i (20)
przybiorg postac

(74)
sinh asinb = 0. (75)
Zbadajmy wartosci a i b dla rozmaitych wartosci 1
gdy < 1, czyli o< w0,
p<—1,czyli p = —k, gdzie k> 1;
wtedy cosh acos b = —Kk,

sinh asin 6= 0,

skad wynika, ze a nie moze sie rownac zeru; wiec sinb = O, ale
cos b powinno by¢ ujemne, wiec cos b= —1; poniewaz jednakze,
jak wyzej zaznaczyliSmy, q dazy do O pozostajgc liczba ujemng
i poniewaz w rozpatrywanym przypadku sinh a> 0, przeto sinb
powinien dazy¢ do zera pozostajgc ujemnym.

Z tych wzgledéw wypada, ze b = — 180°, natomiast

cosha= k= —-5—1,

czyli ze wspotczynnik a, znaczny przy matych wartosciach ] (matych
czestotliwosciach), stopniowo maleje i staje sie rowny O (cosh a = 1).
gdy = 1, to znaczy dla czestotliwosci rownej czestotliwosci drgan
swobodnych ogniwa.

Gdy 4> 1, czyli ® > o, wtedy, jak wida¢ z wzoru (72), p zmie-
nia sie w granicach —1(1=) i + 1@=0), czyli

—1sip ™ + 1;
rownania (74) i ((75) wskazujg, ze sin b nie moze sie réwnaé zeru,
gdyz wtedy cos b= = 1, a poniewaz cosh a co najmniej moze sie
rownac¢ 1, wiec nie uczyniliby$my zados¢ warunkowi dla p; pozostaje
wiec jedyna mozliwosc:
sinha = O, a= 0/

wtedy cosh a= 1 i z réwnania (87)
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czyli (po uwzglednieniu, ze b powinno by¢ ujemne) wnioskujemy,
ze b zmienia sie w granicach od — 180° do 0°.

Z tych rozwazan wynika, ze rozpatrywany filtr, ktéry nazwiemy
filtrem gornoprzepuslowym, tlumi prady o czestotliwosci mniejszej
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od czestotliwosci drgann swobodnych ogniwa, natomiast przepuszcza
prawie bez tlumienia prady o czestotliwosci wyzszej. Na rys. 197
wskazany jest przebieg wspotczynnikéw a i b w zaleznosci od
w filtrze kondensatorowym.

Filtr wstegowy. Przez odpowiednie potgczenie cewek i kon-
densatorow mozna otrzymacé rowniez filtry, ktore beda prawie bez
tlumienia przepuszczaty prady o czestotliwosciach zawartych w okre-
Slonych granicach lub bedg ttumity prady okreslonej czestotliwosci,
przepuszczajac swobodnie prady inne. Osiggng¢ mozna takie wyniki
za pomoca bardzo wielu rozmaitych kombinacji; ograniczymy sie do
rozpatrywania Kkilku najbardziej charakterystycznych przyktadow.
W celu badania witasnosci filtréow poprzednio rozpatrzonych zakia-
dalisSmy, ze opornos¢ rzeczywista rowna jest zeru; to samo uczy-
nimy przy rozpatrywaniu nastepnych typéw filtrow, od razu upra-
szczajac wzory w zatozeniu, ze B = 0.

Rozpatrzmy najpierw filtr, ktérego ogniwo przedstawione jest
na rys. 198. Jest to tancuch typu Fl, przy czym

7\~ / Qhj

_ 4/VLa ~J~C
(i —

2/ (©L* -~ c)
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p+iq I+ A =i u>LIC{a)Lz~"¢c)
2L2
conC L x
2 + 2La
p=coshacosd=" _oic - L, ,
w [ 412

g= sinhasinb= 0.

Ttumienia nie bedzie, gdy a = 0, a wiec gdy cosh a = 1, wtedy

v aA 1C L,
PR e ol

wyraz ten moze sie zmienia¢ tylko w granicach +1
sie on réwny + 1, gdy

o2l 1C Ll
2L2’
czyli dla
VCL2
staje sie on réwny — 1, gdy
ufiLxC Lx -
2 + 2L« '
. 1+4
412+ Lj +
L~C CL,
czyli
1+4 +2
Li .
Vci2

i —1;, staje

wynika wiec, ze a = 0, gdy pulsacja pradu zawarta jest w granicach

I]----.< O< £ e ;

Vo oc 2 y c 1 2

przez odpowiedni dobér ilorazu {_— mozemy wiec zwezi¢ lub roz-
i

szerzy¢ granice czestotliwosci pradow swobodnie przechodzacych

przez filtr.
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Wykres, charakteryzujgcy zmiane wspotczynnika ttumienia dla
takiego filtru, pokazany jest na rys. 199. Obszar czestotliwosci AB,
dla ktérych tlumienia nie ma, nazywamy wstega czestotliwosci,
a filtr tego typu — filtrem wstegowym.

Otrzymamy rowniez filtr wstegowy biorgc ogniwa, jak na

Teoria pradéw zmiennych 24
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rys. 200; w tym przypadku

JcuC2’
wtedy
p=1+A - 1 WG, L\=1 2 " C'_7
z2 22 Ci —2T r2Cj
L C, 7 = O;
~“mrmrsv-— Jl+-—0 wiec
9’ c coshacos d = | W -Z-EC% c2

sinh asin 6 = 0.

Tiumienia nie bedzie, gdy
Rys. 200 cosh a= 1 (a = 0), wtedy

LC,
cos6=1 +2Cx’

wyraz ten staje sie rowny + 1, gdy

arLC» Cc2 1 3= 1
2 2cx’ YLC,
staje sie rowny — 1, gdy
CLQLC'»- — 2 .4.9
- 2CX
czyli
1+ 4—
= ,u]/ + C2
VLCX
Nie bedzie wiec ttumienia dla czestotliwosci zawartych w gra-
nicach

1 Sl @S V ' -I-iO/O'
VLCX VLA

granice te daja wstege czestotliwosci przepuszczajacych prady.
Rozpatrzmy teraz filtr, ktérego ogniwo utworzone jest jak na
rys. 201.
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Tutaj wal._J_ 1 _

Zi = Jecl H

Z2=2/"~woL2- [ ]
Wtedy

A
2Ci( wLi~ ~ ") (mL2~ ™ ¢c;)
9=0;

wobec tego

Li
2 A ML1-A =) ((oL2-~ -)

cosh acos6=1

sinhasin6 = 0.

Tiumienia nie bedzie, gdy cosha= 1 (a = 0), czyli

cos6=1 Li
9

- L1C202
2(m2L1C1~- 1)(m2L2C2~ 1)

Ze wzgledu na mozliwe wartosci cos 6 ostatni utamek moze sie
zmienia¢ tylko w granicach od 0 do 2 lub po odrzuceniu 2 w mia-
nowniku, w granicach od 0 do 4.

24*
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Powinno wiec by¢

0 < CAn2 4

W2LxCx— 1) @2L2C2—1) ' (76)
Licznik rozpatrywanego wyrazu jest dodatni, wiec i mia-
nownik powinien by¢ dodatni, to znaczy, ze oba czynniki w mia-
nowniku powinny mie¢ znaki jednakowe.
Dla znalezienia takich wartosci ca ktdre by czynity zadosé
powyzszej nierdéwnosci, rozpatrzmy najpierw warunek
L1C2q2 a
(co2L 1C'1— 1) (ca2L 2Ca— 1)
skad, przy uwzglednieniu, ze mianownik jest dodatni, otrzymujemy
4 {0A.1Cl- 1) (2L2C2- 1)- LxC2ta2> 0

albo /1 1 1 \ , 1
(1iCl+ L2C2+ 4L2CY a2+ ><J- (77)
Przyrownujac lewa czes¢ tej nieréwnosci do zera i rozwigzujac
rownanie dwukwadratowe, znajdujemy cztery pierwiastki:

/1/1 , 1 T~\ 1 /7 1 1 1 Y* —
¥ \-2\L1¢61+ LzC* 4L 2C j 4 U 1C1+ L,C, + 4L sC>l LjL.CjCi
/17~1 . 1 | 1 \ 1<1 1 1 M 1
"2 \N2VLC '.22+41gd) + 4 UjCi + L2X2+4L.2X2 ¢1¢2 M
woe = — W,
=_“2;

z tych pierwiastkow pierwsze dwa sg dodatnie, przy czym ca2 > cox,
za$ ostatnie dwa sg ujemne i wobec tego nie odpowiadajg warun-
kom zadania.
Uwzgledniajac znalezione pierwiastki mozemy nieréwnosé¢ (77)
przepisa¢ w postaci
(ca —Wa ca2) (ca + cax) (ca + ca2”™ O,

skad wynika, ze
(ca — cax) (ca— ca2) ™ 0,

czyli ca Jscol lub ca ™M wl

i GG lub ca ca2;

a poniewaz
P ca2 > ol,

wiec powinno by¢ ca ™ caa
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Biorgc teraz pod uwage drugi warunek
L co2
(co2LxCx- 1) (co2L2C2- 1)

widzimy, ze warunek ten bedzie spetniony przy wszelkich war-
tosciach oo.

Zestawiajgc oba warunki wnioskujemy, ze a = 0, to znaczy
nie bedzie ttlumienia dla takich, czestotliwosci, gdy pulsacja zmie-
nia sie

od 0 do col
i od co2do w —m o0,
natomiast zachodzi ttumienie dla pulsacji zawartych w granicach

col< o< 2;

przy tym tatwo zauwazy¢ z wzoru na cosh acos b, ze cosh a, a przez
to i wspdtczynnik ttlumienia a staje sie réowny nieskoriczonosci, gdy

oL—"==0 o !

o Gj W A
°raz L2 t " 1
w ~ > cz
CDCQ y yZAC,7

a wiec w rozpatrywanych granicach wspotczynnik ttumienia wzrasta
od 0 do oo i nastepnie maleje od oo do O; gdy przez odpowiedni
dobdr indukcyjnosci cewek i pojemnosci kondensatoréw zblizymy
do siebie wartosci pulsacji col i w2, wtedy ttumieniu beda podlegaty
prady o okreslonej czestotliwosci, czyli okreslonej dtugosci fali;
dlatego tez tego rodzaju filtr moze by¢ nazwany pochtaniaczem
fali i ma za zadanie usuniecie wptywu pradu wiadomej czestotli-
wosci. Wykres dla tego rodzaju filtru podany jest na rys. 202.

§ 103
LANCUCH IZOLATOROW WISZACYCH

Jako przyktad zastosowania teorii linii tancuchowej w sie-
ciach pradéw wysokiego napiecia, rozpatrzymy rozkiad napiec
w tancuchu izolatoréw wiszacych. Takie izolatory stanowig ukiad
zawierajacy pewng liczbe n umieszczonych jeden nad drugim izo-
latorow; pierwszy z tych izolatordw jest przytwierdzony do stupa, do
ostatniego izolatora przymocowany jest przewoéd o wysokim na-
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Rys. 202
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pieciu. W takim uktadzie mamy do czynienia tylko z pojemnosciami,
ktére rozpatrujemy albo pomiedzy kazdym izolatorem i ziemia,
albo pomiedzy poszczegolnymi izolatorami. Oznaczajgc pierwszg po-
jemnos¢ przez C2 druga przez Cy, otrzymamy nastepujgcy schemat
(rys. 203 albo rys. 204),

Rys. 203
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Oznaczajac 1
[« <V
1
=V
Z% l«jC,’
bedziemy mieli i x
(2

U, —iX+i= ™~

C X
TI o L
r ] " v I \
. C
-cxXx-=G - _, ‘ o R
U,
Rys. 204
Okreslajac z drugiego i trzeciego réwnania i Ix+l i podsta-
wiajac te wartosci do pierwszego, otrzymamy:
Q, _0;
Zx Z,
U*-i —~"2 + + N+ = 0;

jest to rownanie rézniczkowe; podobne byty rozwigzywane poprzednio,
szukamy rozwigzania w postaci

{?7*= ,4e** + Be'**, (78)
dzie
g coshk —1+ Z,t
27,

Podstawiajac wartosci Z1 i Z2, bedziemy mieli

coshk = 1+

2CX

skad znajdziemy fc
Mozemy uwaza¢, ze miejsce na poczatku tancucha (x = o), gdzie
izolator jest przytwierdzony do stupa, jest uziemione, a wiec
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napiecie wzgledem ziemi wynosi 0; w koncu tancucha mamy przewdd
pod napieciem U (wzgledem ziemi).

Wobec tego, zakladajgc we wzorze (78) kolejno x = 0 i x = n.
otrzymamy

A+ B =0,
Aelkn+ Be *' = U,
skad
= - A,
A (ekn- e-k) = 0O,
czyli
U
2sinh/cn
_ c
~ '2sinhkn’

Podstawiajgc te wartosci do (78), znajdujemy

U (ekx—e~kQ U sinh kx

Ux= sinh kn 2 sinh kn

Z tego wzoru mozemy znalez¢ napiecie na dowolnym izola-
torze, ktérego numer, liczony od miejsca przytwierdzenia do stupa,
wynosi x. Wykres rozkiadu napiecia uwidoczniony jest na rys. 208.
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STANY NIEUSTALONE W OBWODACH
ZE SKUPIONYMI: OPORNOSCIA RZECZYWISTA,
INDUKCYJNOSCIA | POJEMNOSCIA

§ 104
STANY USTALONE | NIEUSTALONE

Przy rozpatrywaniu obwodéw elektrycznych, zaréwno przy
pradzie statym jak i przy pradzie zmiennym, przewaznie mamy
do czynienia z napieciami i natezeniami pradéw, ktdrych wartosci
sg ustalone, to znaczy, ze albo wartosci te pozostaja bez zmiany,
jak to ma miejsce przy pradzie statym, albo stajg sie Okresowo
zmiennymi funkcjami czasu ze stalg wartoscig skuteczng — przy
pradzie zmiennym. Kazda zmiana warunkéw, w ktérych sie obwod
znajduje, zmiana napiecia u zrodia, zmiana opornosci lub innej
wielkosci wchodzacej w sktad obwodu — powoduje zmiane wartosci,
napie¢ i pradow. Przejscie od jednej wartosci do drugiej wymaga
pewnego czasu, czesto bardzo matego, ale w ciggu tego czasu moga
zachodzi¢ bardzo powazne zmiany w obwodzie, wywotujgce skoki
napie¢, czyli tak zwane przepiecia, lub znaczny wzrost natezenia
pradu — tak zwane przetezenia: mogg tez powstawaé przy tym
drgania napie¢ i pradow, czyli tak zwane fale elektromagnetyczne.

Musimy wiec w obwodach elektrycznych odr6znia¢é wartosci
napie¢ i prgdéow w stanie ustalonym oraz w stanie nieustalonym.
Przy wszelkich zmianach zachodzacych w obwodzie bedziemy
mieli stan nieustalony, zanim napiecia i natezenia pradéw nie
osiagng swych granicznych wartosci, odpowiadajgcych stanowi
ustalonemu. Mozemy sobie wyobrazi¢, ze w okresie przejsciowym
do wartosci chwilowych napie¢ i pradéw, odpowiadajgcych stanowi
ustalonemu, dodajg sie pewne przejsciowe napiecia i prady; w ten
sposéb wartosci chwilowe tych wielkosci w stanie nieustalonym
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mozemy rozpatrywac jako sume dwoch wartosci chwilowych, ktére
bedziemy nazywali odpowiednio wartosciag ustalong i wartoscig
przejsciowg, odrozniajac je wskaznikami ,u“ i ,p“, wobec czego

bedziemy pisali U= mit p,

1= lu+ ip, ‘

gdzie u i i oznaczajag wartosci chwilowe napiecia oraz natezenia
pradu w stanie nieustalonym. Po uplywie pewnego czasu wartosci
przejsciowe stajg sie praktycznie rdéwne zeru, wtedy wartosci u i i
otrzymujg wartosci uui iu. Na rys. 205 podany jest przykiad takiego

ujecia zjawiska w stanie nieustalonym dla natezenia pradu, ktérego
wartos¢ i zmienia sie od zera &> iu W tym okresie, w dowolnej
chwili, warto$¢ i stanowi sume wartosci iuoraz ip, przy czym war-
tosci ipw tym przykiadzie sg ujemne, zmieniajgc sie od —iudo zera.

§ 105

POWSTAWANIE | ZANIKANIE PRADU'STALEGO W OBWODZIE
Z OPORNOSCIA | INDUKCYJNOSCIA

Mamy obwod (rys. 206), w ktérym miedzy zaciskami Zrédia
istnieje napiecie pradu staltego o wartosci U, opornos¢ rzeczywista
R i indukcyjnos¢ wiasna L.

W chwili zamkniecia takiego obwodu pradu jeszcze nie ma;
liczac czas od tej chwili i oznaczajac przez i wartos¢ pragdu w do-
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wolnej chwili, bedziemy mieli

Ri+ LTI~ v- )
Catkujemy najpierw réwnanie uproszczone
R L T. Tdi .
RI +L~dt=0
dil B at.
Ini= —-jB- t+ InK,
gdzie ii —stata dowolna, skad
i=Ke N,

gdzie ¢ jest podstawg loga-
rytméw naturalnych.

Catka szczegélna réwnania (1) oczywiscie réwna sie wobec
tego catka ogolna tego réwnania bedzie

e I
Dla okre$lenia stalej K wiemy, ze przy / = 0, i = 0, wiec
i+ f (0}
K = ;—,
wobec tego
R
I=TUT-l?re H @)

tatwo zauwazy¢, ze w rozpatrywanym obwodzie dla stanu
ustalonego natezenie pradu

I, = u
B
a poniewaz
i=L+¢C
wiec z wzoru (2)
J7 R _ R

«&K =

B - 3)
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Ostatni wzér nazywa sie wzorem Helmholtza; — nazywamy

. . iy . L L
stalg tlumienia za$ odwrotnos¢, czyli — = r nazywamy stalg

(AN
czasu; im wieksze jest L i im mniejsze R, tym wieksza jest stala
czasu r, to znaczy, ze wiecej czasu potrzeba, aby prad osiggnat prak-
tycznie swg wartos¢ graniczna.
Przebieg i oraz ip podany jest na rys. 205. Jak wida¢ ze wzoru
(3) prad przejsciowy dazy do zera przy t dgzacym do nieskonczo-
nosci.

Przy z=-N-=1t, ipP=~T = _ 0,37 v

przy
t=2t, iprs—0,13iu; przyt= 3r, ip” —0,05 iu.

Gdy e L = 0,01, czyli e T= 0,01, t= tin? 100~ 4,6,
L
wtedy ip= 0,01 iu. Ma przykiad, gdy—R = 0,1, wtedy po uptywie

czasu 0,46 sek natezenie pradu przejsciowego wyniesie zaledwie
0,01 natezenia pradu u-

stalonego. W cewkach R L
elektromagneséw t mo-
ze dochodzi¢ do 1sek,
np. przy L = 11H,
R —11£?, t=1, wtedy
po uptywie 1s prad
przejsciowy wyniesie
0,37, po uplywie 2 s
0,13; po uplywie 3s
0,05, a po uptywie 4,6 s
0,01 natezenia pradu
ustalonego.

SEM indukcji wilasnej, powstajgca w stanie nieustalonym
wyrazi sie wzorem

Rys. 207

r> R

: R
es I[(J:“j—-—l-_ri'u'Llr 1 =_ Ye L1

wida¢ z tego, ze nie moze ona w swej wartosci bezwzglednej prze-
kroczy¢ wartosci napiecia U.
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Rozpatrzmy ten sam obwo6d co poprzednio. Wyobrazmy sobie,
ze raptownie nastepuje zwarcie w ten sposob, ze tworzy sie zamkniety
obwod z B i L bez napiecia U, np. przetacznik (rys. 207) przesta-
wiamy z potozenia 1 na 2. Niech takie zwarcie nastgpi w chwili,
gdy natezenie prgdu w obwodzie wynosito I, i od tej chwili roz-
poczniemy rachube czasu; wtedy dla takiego obwodu bedziemy
mieli

ne Tdi "
RI+L~dt =0
czyli * R
i=Ke L
a poniewaz dla I = 0, i = |, przeto
K=/
wiec
i=it=1le L @

Widzimy wiec, ze w takim obwodzie powstanie tylko prad

przejsciowy, zanikajacy, przy czym czas zanikania zalezy od stalej
ttumienia % wzglednie od statej czasu i = _IF

Na rys. 208 podany jest przebieg takiego pradu.
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Przy zanikaniu pragdu S E M indukcji wlasnej bedzie
ie R R

,=—L _=Ri=Ble = Ue L',
at

czyli nie przekracza wartosci U napiecia zrodia pradu statego.

§ X06
ZMIANA OPORNOSCI W OBWODZIE PRADU STALEGO

Jezeli w poprzednio rozpatrywanym obwodzie (rys. 206) przy
stalym napieciu prgdu stalego U opornos¢ zmieni swag wartosc
od B do B', wtedy prad ustalony zmieni swa wartos¢ od

iu 1 do iu I i,

dla nowego stanu obwodu bedziemy mieli

Ri+L ™-y,
* Rr
i=r + Ke~T".

Liczac czas od chwili zmiany opornosci B na opornos¢ B\ be-
dziemy mieli przy t= 0, i = 1,

wiec K=1I1-1",
-E

i=/"+(/-]") e L'
skad

ip={1~r) e

Podczas zmiany pradu od wartosci | do wartosci I', powstaje
S E M indukcji whasnej
e, = _|-_r-d{" = [ _(.I..-.!-_) _B_--__e 1 =

R*
1 *

e
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Oznaczajgc zmiane opornosci R'—R = AR, bedziemy mieli

Jak wida¢ z tego wzoru, na warto$¢ S E M indukcji wihasnej

na czas tlumienia.
Zrozumiate jest wobec tego, ze w opornikach musimy przecho-

dzi¢ od jednej opornosci do drugiej nie od razu, lecz stopniowo,
aby AR bylo < R, gdyz wtedy unikniemy raptownego skoku na-
piecia, spowodowanego S E M indukcji wilasnej.

§ 107

POWSTAWANIE | ZANIKANIE PRADU ZMIENNEGO W OBWODZIE
Z OPORNOSCIA RZECZYWISTA | INDUKCYJNOSCIA

Przypusémy, ze obwdd z R i L zamkneliSmy w chwili, gdy
faza napiecia pradu zmiennego réwna jest y3 to znaczy przy war-
tosci chwilowej napiecia u= Umsin (ot+y) rownej dla |1 —0
u = Umsin % Wtedy dla takiego obwodu

dla pradu przejsciowego otrzymamy, jak i poprzednio,
R

ip= Ke
zas prad ustalony bedzie, jak wiadomo,
iu= Jnsin M + y~<P),
gdzie

Wobec tego w stanie nieustalonym -
R

i= iumip= Imsin [cot + y»—<p + Ke L.

Poniewaz dla t= 0, i= 0,
wiec )
I'msin W— <P + K = 0,
K=- Imsinty- 9
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i w ten sposéb

- R
i = Imsin [cot + P—<P — Imsin (p—<Pe 1, @
_R
ip= — Imsin [v>-<p)e 4° .

Z ostatniego wzoru widzimy, ze prad przejsciowy jest funkcja
malejaca z biegiem czasu; nie ma go wcale, czyli ma on war-
tos¢ zero, gdy p= 9 to znaczy wtedy, gdy w chwili zamykania
obwodu prad ustalony przechodzi przez wartos¢ zero, poniewaz
przy t= 0, iu= Imsin (p—< = 0, natomiast najwiekszg wartos¢

bedzie miat prad przejsciowy, gdy y —op= + EL wtedy przy t=0

bezwzgledna warto$¢ najwieksza pradu przejsciowego bedzie max
ip — Im bedzie to miato miejsce woéwczas, gdy réwniez iu= Im to
znaczy, gdy w chwili zamykania obwodu prad ustalony przechodzi
przez swa najwiekszg wartosc.

W stanie nieustalonym warto$¢ pradu i, jak to wida¢ ze wzoru (5),
zalezy nie tylko od czasu, lecz rowniez od fazy ip, ktérg ma napiecie
w chwili zamkniecia obwodu. Najwiekszg wartos¢ tego pradu otrzy-
mamy dla tych wartosci p= yQ oraz t = 10, przy ktorych pierwsze
pochodne czagstkowe i wzgledem tych zmiennych stajg sie réwne
zeru. Dla okreslenia tych wartosci mamy

di L e
m#=* Imu>cos (cuf + P—aq + Im-p- sin (y>—P > (6)

di ) —F<
= Imcos (Qi + p—(@E — Imcos (P—q € [ 7

Przyréwnujac te pochodne do zera i dzielgc obie strony réownan

przez Im, otrzymamy
_ Rt

wcos (tot0+ O—aq) + R-sin [0—pe L *= 0, (8)
R
cos(u>tO+ O—ao)—cos(rp0—q))e L ", 9)

skad przez poréwnanie

R-j-sin<y>o—e))e 'E_u: —cos [0—(pe T

wL
tgin —r) R - — tge

Teoria pradéw zmiennych 25
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to ostatnie réwnanie w granicach jednego okresu daje dwie war-
tosci dla no:
1) Vo~ = —9> czyli ¥ =0,
2) WO— 9= T7Ti— m = n.
Dla znalezienia {Opodstawiamy do jednego z.réwnan (8) lub (9)
znalezione wartosci y0. Zaréwno dlay®= 0 jak i dlay= n otrzymamy

: f Rt
cos (cotO—w) = EE-sinroe L

lub, zamieniajac ©x przez tg <p

R
cos (ot,—@ = cospe 1"m (10)

Poniewaz kat qu stanowigcy warto$¢ bezwzgledng przesuniecia
fazy pradu wzgledem napiecia w stanie ustalonym, jest mniejszy,

n
wzglednie rowny , przeto prawa strona ostatniego wzoru jest

wieksza od zera, wzglednie réwna zeru; wobec tego powinno by¢

cos (cotO—aq) ~ 0, (11)
co w granicach jednego okresu daje
0< ©O0—q &, (12
albo 3
en A ootQ N 20 (13)

Dla przekonania sie, czy okre$lone w ten sposob wartosci xOi fa
dajg maksimum lub minimum funkcji i, musimy obliczy¢ dla tych
wartosci drugie pochodne czastkowe tej funkcji; oznaczajac

d*J d2i
di2 dq?

d2i

dedp =4 =B

=k
bedziemy mieli nastepujace warunki

gdy AC —52>0, A i C< 0 — maximum,
gdy AC —B2>0, A i C>0 — miminum.
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Na podstawie wzorow (6) i (7) znajdujemy

A = —7ml[0025in @to+ Y—% + -'?rfsin wve- Pe L ].
]

C= —Im[sin (0. 0+ yB—B —sin [to—q) e

*]-
B I m£eo sin (/O + e— cos(VB—2c i °J

Przy uwzglednieniu wzoru (10) oraz zamieniajac ——przez tg 9,
otrzymamy dla wartosci y9= 0 oraz y9= n
. ImQ2
A= = —S,I-r-]-g,coscz)rq,

sin colq,
COS B

22 = & iSAihc§sco i0)

gdzie pierwszy znak odpowiada YQ: 0, drugiy®= » Il
Dla obu wartosci yo:

AC B2- *mr2QSar 'dqas ~ >
Sin5®8 COS B

Poniewaz (wzér 9) cos (cof0—9B ~ 0, wiec aby byto mozliwe
AC —B2> 0, powinno by¢ coscozO< O, to znaczy w granicach
jednego okresu n n

2 < ot0< n lub < wto< -~ 71.

Ale w pierwszym przypadku
dla =0, A<0 i C< 0 istniegje maximum,
dla yJ0= &= A >0 i C > 0 istnieje minimum,
w drugim przypadku

dla y9= 0, A <0, C>0 1nie istnieje ani maximum,
daydo=7n,A>0 C< 0 j ani minimum.

Wartos¢ pradu i otrzymamy na podstawie wzoru (5):

- R
dla p= 0, i = Imsin (t—9B + Imsin e 1°

A
1

dla y»= 71, i = — Imsin (cot —B — Imsin Ve~
25»
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czyli dla obu wartosci y
i = D) + sin pee

najwieksza wartos¢ bezwzgledna, ktora, jak poprzednio stwierdzi-
lismy, zachodzi dla wartosci wt, zawartej pomiedzy-~- i n, w kaz-

dym razie jest mniejsza od 21m gdyz wyraz w nawiasach jest w tym
ewypadku mniejszy od 2.

Ostatecznie wiec mozemy stwierdzié, ze w rozpatrywanym
obwodzie, przy zamykaniu, moze nastgpi¢ wzrost pradu, czyli zja-
wisko przetezenia, gdy zamykanie nastepuje w chwili przejscia
napiecia przez wartos¢ O (faza O lub sr); jednakze najwieksza war-
to$¢ tego pradu nie moze przekroczy¢ podwdjnej wartosci pradu
ustalonego w danym obwodzie.

Na rys. 209 podany jest przebieg pradu przejsciowego ip, pradu
ustalonego iuoraz pradu i w stanie nieustalonym dla cos 9= 0,19,

napiecie przechodzi przez wartos¢ O [ip= 0).

Ro6znica pomiedzy zjawiskiem zanikania pradu statego, roz-
patrzonym w § 105, a zanikaniem pradu zmiennego polega tylko
na tym, ze w chwili zwarcia warto$¢ pradu bedzie zalezna od fazy
napiecia w tej samej chwili. Jesli bowiem napiecie w chwili zwar-
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cia przechodzi przez faze y3 to znaczy przy f= 0, u= Umsinip
wtedy prad bedzie miatl wartos¢ i= Imsin (">—ag). Wobec tego
wzor (4) przyjmie postac

R

z tego widaé, ze prad zanika stopniowo, przy czym w przypadku
p= @ to znaczy, gdy prad w chwili zwarcia przechodzi przez war-
tos¢ zero, nie ma wcale pradu przejsciowego.

ip= Imsin (v — ) e

§ 108

PRZERYWANIE OBWODU Z UWZGLEDNIENIEM ZMIANY
OPORNOSCI NA WYLACZNIKU

Przy przerywaniu obwodu opornos¢ jego w krotkim zwykle
okresie wylgczania wzrasta od pierwotnej wartosci R do wartosci
bardzo wysokiej, ktérg praktycznie przyjmujemy jako nieskoncze-
nie wielka. Zatézmy, ze zmiana opornosci w zaleznosci od czasu
zachodzi na zasadzie wzoru Aronsa. Wedtug tego wzoru, jezeli
oznaczymy przez 0 czas uzyty na wylaczenie, wartos¢ chwilowa
opornosci Rtw chwili t, czyli po uptywie i sekund od chwili rozpo-
czecia wylgczania, wynosi

= —V (14)

Wz6r ten daje dla t=0, Rt= R, zas dla t=/, R, = oo.
Przy takiej zmianie opornosci w okresie wylgczania otrzymamy
nastepujgce rownanie dla obwodu zawierajgcego R i L przy na-
pieciu pradu statego réwnym U:

m-337 + <G5>
to

albo di RtO . U
di+L{I0O-t)1 L
Dla scatkowania tego roéwnania zaktadamy

i = XYy (16)
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gdzie x i y sg funkcjami t; wtedy

du t dx R ka U
X~di + U~dt+ Lit~-r)Xy-T '
rdy t RL dx U 17
x [di+L\erT) y\ + ylt~ L (17)
funkcje y wybieramy w ten sposob, aby
’(*}/.+..Rio ., =0
t+ L{t0-t )y
czyli dy R t
y L to-t dt
jedno z rozwigzan daje
Iny = -Fjg-tOIn(tO—t)= In (tO—t)L"
skad
(18)

Wprowadzajac takag wartos¢ y do wzoru (17), otrzymamy

dx= U
[to ~ fIiDEP§~ tf,
skad
dl
ix-T7
(to-t)*"“

Dla okreslenia x przez catkowanie musimy rozpatrzy¢ 2 przy-
padki:

DN*« *i; 2) x io=L
W przypadku | bedziemy mieli
U (t0-t) Ltat+

L R, .
~TIP+1

X = + K,

gdzie K —stata dowolna, albo po uproszczeniu

X = LAN+K. (19)

U ot
Rto—| (to-ti’-
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Zaktadajgc wartosci dla x i y ze wzorow (19) i (18), otrzymamy
ze wzoru (16)

i= K(tO-t)E" +m [J-z (t0-t). (20)
Stalg K okreslimy z warunku, ze w chwili rozpoczecia wyta-

czania prad mial pewng wartos¢ /, to znaczy dlat= 0, i = I, wtedy
ze wzoru (20) otrzymamy

U

R
KtoL +
Btn LI° L

skad

Wobec tego ze wzoru (20) bedziemy mieli

I = RtO- 1) (to~VL * L +BtO-L {tt~H=
@1
W przypadku Il otrzymujemy przez catkowanie

X — %In (t0-t) + K;

wobec tego
K{t0-4)~ ~[tO0-t) In[tO—t) = (tO-t)*"K -~ -In (io-i)j-

Okreslamy statg K, zakladajgc t= 0, i= I,
wtedy

P(K~17~%) b

K = -j- + -7- Into,
i= (t0—t) In(t0-t) ]\:

22)

Prad /, ktéry mamy we wzorach (21) i (22), stanowi prad
w chwili rozpoczecia wylgczania, to znaczy dla t= 0. Prad ten
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moze by¢ prgdem ustalonym lub tez nieustalonym. Dla pradu

ustalonego | = Fl: woéwczas z wzoru (21) otrzymamy dla :f 4= 1
R
23
reoy W ) 23
0 R
za$ z wzoru (22) dla T =1
i -ifc-0 (£ + 4 ,nT™ (24)

Opornos¢ na wylgczniku w czasie wytgczania bedzie

Rt- R R R R
t0~t "’

za$ napiecie na wylgczniku w chwili t wyniesie

Rt
U—=1i
to-t ’

R . i . T U
dla —L_I: ~ 1, biorac wartoSC i ze wzoru (21) i zamieniajac i przez TR
otrzymamy

L t/to-t\T "
u.= 17- R to\ to ) (25)
* R
R .
Dla ™ t0= 1, na podstawie wzoru (22),
J
(26)

U ~Go + £ Int0-t)

Zbadajmy teraz wzory (25) i (26), okreslajac z nich wartos¢
napiecia na wytgczniku w koncu wytaczania, to znaczy dla = t0.
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\

Oznaczajgc to napiecie przez Ua, otrzymamy

u
w przypadku, gdy — 10— 1> 0, z wzoru (25)

— 1
In H L 0_ U
ums 5 1—U+BL (27)
0 R L
czyli Ua”™ U; lecz Un ma pewng wartos¢ skonczona.
AN

W przypadku, gdy — t0— 1< 0, z tegoz wzoru (25), biorgc
" /?

pod uwage, ze mianownik staje sie ujemny, gdyz t0< T

u . 00.
b—R

R
W przypadku, gdy — f0—1= 0, ze wzoru (26) otrzymamy

Lij

17.- + = C7+ 00- oo.

Napiecie zatem na wytgczniku bedzie zawsze wieksze niz na-
piecie z zewnatrz przytozone. Teoretycznie — w dwoch ostatnich
przypadkach warto$¢ napiecia otrzymuje sie nieskoriczenie wielkg;
w rzeczywistosci — w tych przypadkach tworzy sie iskra, trwajgca

tak diugo, az H t0— 1 staje sie wieksze od 0. Praktycznie zatem
zawsze E D>*I i najmniejszy okres czasu, po uptywie Kktérego
nastepuj;-‘ zupeine otwarcie obwodu, zalezny jest od stosunku -
powinno by¢
to> g
np. gdy L= 1mH = 0,001 H, B = 0,1 Q,
t0 > 0,01 sek.

Jezeli wylaczymy obwdd np. w ciggu fO= 8 wtedy na

0
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podstawie wzoru (27) otrzymamy na wylgczniku napiecie

OA
tiw= U 1 + =5F,
80 100

czyli 5 razy wieksze od napiecia zrodia.

§ 109

t ADOWANIE KONDENSATORA PRADEM STALYM PRZEZ

OPORNOSC RZECZYWISTA

Rozpatrzmy obwdd (rys. 210), w ktdrym pomiedzy zaciskami
zrédta mamy napiecie pradu statego o wartosci U, opornosé rzeczy-

wistg R oraz kondensator o pojemnosci C. Liczgc czas od

chwili

zamkniecia takiego obwodu i oznaczajgc wartos¢ chwilowa napiecia
na kondensatorze przez uc oraz przez i natezenie pragdu w stanie

nieustalonym, bedziemy mieli na zasadzie znanych wzordw:

Ri + uc= U,

w tym przypadku dla

t=0, uc=0.

Z ostatnich réwnan

otrzymujemy

Rcd r + Uc=

duc dt

In(luc-U) =-4 7 +InkK,
gdzie K —stata dowolna; wreszcie

uc— U = Ke RC,

t
uc= U+ Ke RC

U’
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Zakladajgc w tym wzorze t= 0, uc= 0, znajdujemy

K=-U,
wobec czego

u = U—Ue Fr°

d R

poniewaz w stanie ustalonym napiecie na kondensatorze bedzie

rowne U, pradu za$ wcale nie bedzie, przeto dla wartosci przejscio-
wych otrzymujemy

Ugp Ue R¢
i
p R
Widzimy, ze obie te wielkosci malejg stopniowo z biegiem
czasu; RC stanowi w tym przypadku statg czasu t, od wartosci
ktorej zalezy okres czasu potrzebny, aby napiecie i prad osiagnety
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praktycznie swe wartosci graniczne, to znaczy, aby nastgpit stan
ustalony obwodu.

Na rys. 211 pokazany jest przebieg napiecia i pradu po za-
mknieciu obwodu, czyli w czasie tadowania kondensatora pradem
statym.

Poniewaz wzory wyprowadzone dla wartosci przejsciowych
napiecia na kondensatorze oraz pradu tadujgcego kondensator sg
analogiczne do wzoru wyprowadzonego dla pradu przejsciowego
«v obwodzie zawierajacym opornos¢ rzeczywista i indukcyjnosé
(wzér 3), przeto mozemy wyprowadzi¢ tutaj takie same wnioski
co do zanikania napie¢ i pragdéw, a mianowicie, po uptywie czasu
t = RC wartosci przejsciowe spadng do 0,37, po uptywie 2r do
0,13, a po uptywie 3t do 0,05 swej pierwotnej wartosci itd.

§ 110

POWSTAWANIE PRADU ZMIENNEGO W OBWODZIE Z OPORNOSCIA
RZECZYWISTA | POJEMNOSCIA

Rozpatrujemy obwdd jak na rys. 210, z tg roznicg, ze zamiast
napiecia pradu stalego mamy na zaciskach napiecie prgdu zmien-
nego. Rozpoczniemy liczenie czasu w chwili zamknigcia obwodu
i niech warto$¢ chwilowa napiecia przechodzi wéwczas przez faze ip
to znaczy, ze warto$¢ napiecia w chwili t bedzie okreslona wzorem

u = Umsin (cot + y».
Dla takiego obwodu bedziemy mieli

Ri + uc= Umsin (ot + y»),

a poniewaz
. duc
i= C dl
przeto
duc 1 Um .. o8
ST +TtC“.“ 7fcsm (' + »>= (28)
Rozwigzujemy najpierw réwnanie uproszczone
duc 1 _
~dT + 1dC W~ °’
due dl

uc ~RC’
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skad
+
In u. RC InK,

gdzie K —stata dowolna, i ostatecznie

uc = Ke RC.

tatwo zauwazy¢, iz otrzymana wartos¢ uc stanowi wartos¢
przejsciowg, wiec mozemy napisaé

ucp= Ke RC. (29)

Catke szczegdlng réwnania (28), ktéra daje nam napiecie usta-
lone, moglibySmy znalez¢é na podstawie znanych metod matematycz-
nych; predzej ja znajdziemy rozumujac w spos6b nastepujacy:
jak wiadomo, w rozpatrywanym obwodzie powstaje prad ustalony

0 wartosci B deg {(Oi + ot qo} (30)

przyspieszony w fazie wzgledem napiecia na zaciskach zrodia o kat ¢

przy czym 1

. >_WC: 1
%= R ~RwC"
Zas

fn = -8dziez"'| /i’ + (vec)

nastepnie wiadomo, ze napiecie na pojemnosci (kondensatorze)
rowne jest iloczynowi prgdu przez opornos$¢ pojemnosciowg i ze
to napiecie wzgledem pradu jest op6znione 0 kat prosty. W ten
spos6b dla stanu ustalonego mamy

= AmMATsinMyt+ f + p—Tjrj = ~Y ~C QS (wf + y+ (p).

Dodajac do siebie wartosci przejsciowg i ustalong napiecia
na kondensatorze, otrzymamy napiecie w stanie nieustalonym

W= Up+ uu= Ke RC— -~g‘7=rcos (cot + y+ (p).

Zaktadajgc w tym wzorze + = 0, uc= 0, otrzymamy

ui

K= 7240 as pp+ 0

(31)
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wobec czego
uc = £cos (f+9Pe RC—cos Wt + ywy+p)d. (32)

tatwo jest zauwazy¢, ze wyraz w nawiasach nie moze by¢
wiekszy od dwdch, gdyz

Icos o+ P I< 1
Icos [cot + f + P \< 1,
t
e~ rc <1,

wobec tego

max ur = 2 U,

Za)C

a poniewaz — stanowi warto$¢ maksymalng napiecia na

kondensatorze w stanie ustalonym, przeto przyszliSsmy do wniosku,

Zze w stanie nieustalonym napiecie na kondensatorze nie moze prze-

kroczy¢ podwéjnej wartosci napiecia, ktére mamy w stanie ustalonym.
Na podstawie wzoru (29) po uwzglednieniu (31) mamy

uP= cos [p+ Pe RCi

stad znajdujemy prad przejsciowy

poniewaz Un T 1
Z ~ Im'" Ru>C~ig(p'
wiec t
ip= —Imtg (pcos {pP+ @ e~ RE. (33)

Dodajac do siebie wartosci pragdow ze wzoréw (30) i (33), otrzy-

mamy prad w stanie nieustalonym
t
i = iutip= Imsin[<ot+ mp+ @ —Imtg? cos {p+ Pe Rc. (34)

tatwo stwierdzi¢ z wzorow (32) i (33), ze nie bedziemy mieli
ani napiecia przejsciowego, ani pradu przejsciowego, gdy

n
P+ P=t 5,
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Dla + = 0 wzér (34) daje

i= Im[sin Ip+ 9 —tgpecos (p+ D)= COS(psin B,

najwiekszg wartos¢ pragdu w tym przypadku otrzymamy wtedy,
gdy mp= to znaczy, gdy w chwili zamkniecia obwodu napiecie

przechodzi przez warto$¢ maksymalng; wtedy

maxi oo AI\? Xr

Przy matym cos q czyli przy matej opornosci rzeczywistej w po-
rownaniu do opornosci pojemnosciowej, prad i moze w znacznym
stopniu przewyzsza¢ prad, Kktéry pozostaje w stanie ustalonym,
a chociaz tego rodzaju przetezenie trwa nadzwyczaj krotko, tym
niemniej w wielu przypadkach wskazane jest wiaczanie dodat-
kowych opornikéw do czasu ustalenia sie pradu lub stopniowe
zwiekszanie napiecia dziatajgcego w obwodzie.

Dla przyktadu wezmiemy

R=1Q, C= 1jxF, f= 50Hz

Wtedy
z~ V 1+ (riJTCR-)" - 3185c'
D 1
@Bp = -= 3185 ; ShW= 1, tg <+ = 3185.

Dla rp—'c oraz | —0, maxi= 3185 Im.

Prad przejsciowy w tej chwili ma warto$¢ 3184/m. Stata czasu
x—RC = 10-6s. Warto$s¢ pradu przejsciowego spadnie do war-
tosci Impo uptywie czasu t0, gdy

czemu odpowiada 0= 8 <10 6s.
Do wartosci 0,001 Imprad przejsciowy spadnie juz po uplywie
15 «10-6 s.
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§ Ul
WYLADOWANIE KONDENSATORA PRZEZ OPORNOSC RZECZYWISTA

Jezeli rozpatrzymy obwdd zawierajgcy opornos¢ rzeczywistg
i kondensator, ktdry w pewnej chwili zostaje zwarty w ten spo-
sob, ze tadunek znajdujacy sie na kondensatorze stanowi jedyne
zrodto energii elektrycznej, wéwczas nastepuje wytadowanie kon-
densatora. Oznaczmy wartos¢ napiecia na kondensatorze w chwili
takiego zwarcia przez Uc, niezaleznie od tego, czy to napiecie po-
wstato od pradu statego lub zmiennego, za$ wartos¢ chwilowg na-
piecia po zwarciu przez uc oraz prgdu powstajgcego przy wytado-
waniu kondensatora przez i. Bedziemy mieli dla takiego obwodu

Ri = uc;

poniewaz prad wyladowania ma kierunek odwrotny do kierunku
pradu tadowania, wiec

; r du' -
L dt -

RC”™ +ut= 0,

skad, jak poprzednio,

ue = Ke rtc.
Zaktadajac |1 = 0, uc = Uc, bedziemy mieli

K= Uc,

uc = Uce IiC

Prad wytadowania

i c Uc -4
= - - - C
i C??IJ R R

Widzimy wiec, ze w rozpatrywanym obwodzie zaréwno na-
piecie na kondensatorze jak tez i prgd wyladowania malejg sto-
pniowo z biegiem czasu. Predkos$¢ zanikania napiecia i prgdu zalezy
od wartosci stalej czasu r = RC.
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§ 112

OBWOD Z OPORNOSCIA RZECZYWISTA, INDUKCYJNOSCIA
I POJEMNOSCIA

Rozpatrujac obwod jak na rys. 212, bedziemy, mieli w kazdej

chwili .
LI (35)
| ]
— njtitiee- - nmNniN—
Rys. 212
_r due.
LdlI (36)
podstawiamy i z (36) do (35), wtedy
n~n , rAd |
i?7c_dT + LC dpT+u‘=u
albo
d*uc R duc 1 1
(37)

d* + L dt LC Uc~ LC u;

u moze by¢ napieciem o wartosci statej lub zmiennej.
Przy rozwigzywaniu réwnania (37) przede wszystkim musimy
znalez¢ catke ogélng réwnania uproszczonego

dac R duc 1

"W +THF +Lce-*- (38)

nastepnie musimy wyszukaé¢ catke szczegolng réwnania (37) i obie
te znalezione catki doda¢ do siebie, woéwczas otrzymamy catke
og6lng réwnania (37).

Przypomnijmy, ze roéwnanie rdzniczkowe liniowe rzedu dru-
giego o statych wspdtczynnikach typu

y" . PiV'. p2y -

Teoria pradéw zmiennych 26
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rozwigza¢ mozemy w ten spos6b, ze piszemy algebraiczne réwnanie

charakterystyczne ) .
X X k2 + pjic + p2= 0,

ktore po rozwigzaniu moze dac¢ pierwiastki

1) A i k2—rzeczywiste i rozne,

2) Ag= k2= kO—rzeczywiste i rowne,

3) A= m+ nj, k2= m—nj, gdzie j = 1, w postaci liczb
zespolonych sprzezonych.

Catki takiego rownania bedg w tych przypadkach

1) y = AxehX+ A2ehx, (39)
2) y = ekx{Al+ AX), (40)
3) y = enx[Ai sin nXx + A2cos NXx), (41)

gdzie A1li A2—state dowolne.
Na tej podstawie, rozwigzujac rownanie (38), napiszemy row-
nanie charakterystyczne w postaci

. R. 1
kK +~Lk+~LC =9

skad
R / R2 1
KX=" 51 1\ AL2 LC (42)
1

2L 'y AL2 LC (43)

Oczywiscie, w zaleznosci od tego, czy podpierwiastkowa jest
wieksza od zera, rowna zeru lub mniejsza od zera, otrzymamy kazdy
z trzech rozpatrzonych przypadkow, a wiec przy

R>2 pierwiastki beda rzeczywiste i rozne,

/?=21 [ | pierwiastki bedg rzeczywiste i rowne,

R< 2V * pierwiastki beda liczbami zespolonymi sprzezonymi.

Przypadek I

R> 2
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tatwo zauwazy¢, ze oba pierwiastki kt i k2 ze wzoréw (42)
i (43) majg wartosci ujemne, przy czym wartos¢ bezwzgledna pier-
wiastka k2 jest wieksza od wartosci bezwzglednej pierwiastka
oznaczajgc te wartosci bezwzgledne przez ax i a2 czyli zaktadajac

h = — aj,
k2 — cl2,

gdzie ax i aastanowia liczby dodatnie, przy czym a2> av mozemy
na podstawie wzoru (39) napisa¢

uc= Aie~ait + A2e~at. (44)
Przypadek II.

Jak wida¢ ze wzorow (42) i (43),

Ki —fi2— ZI?_ “

gdzie a = jest liczbg dodatnia.

Na podstawie wzoru (40) bedziemy mieli
uc = e~ [Ai + A2l). (45)
Przypadek 1II.

Pierwiastki ze wzoréw (42) i (43) mozemy woOwczas przepisaé
W postaci

o0znaczajac

1 R2
LC 4L2

26+
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bedziemymieli .
¢ X k~-a +iP,
k2= —a—jp,

wobec tegona podstawie wzoru (41) otrzymamy

—at
uc—e (Axsin pt + A2cos pt). (46)

§ 113
WYLADOWANIE KONDENSATORA APERIODYCZNE

Rozpatrzmy przypadek, gdy rozpatrywany obwod zawierajgcy
(rys. 212) R, L i C w pewnej chwili zostat zwarty. Wtedy nastapi
wyladowanie kondensatora posiadajgcego w poczatkowej chwili
napiecie o okreslonej wartosci, np. UO, zas prad piynacy bedzie
pradem wyladowania kondensatora, ktoérego Kkierunek jest prze-
ciwny do kierunku pradu plynacego przedtem od zewnetrznego
zrédta. Dla takiego obwodu bedziemy mieli

dla t= 0, uc= U0, i= 0, (47)

. du,
i=-C dl (48)

Wobec tego, ze u = 0, zamiast réwnania (37) bedziemy mieli
rownanie (38), dla ktérego mamy juz znalezione catki ogdlne, a wiec
w przypadku |, wedtug wzoru (44),

—iit —axt
uc= Ax e + A2e ,

skad .
. du. ~a, ~a<
i= —C-~"~-= AlCalk + A zCa2e ;

zaktadajgc w obu tych wzorach wartosci ze wzoréw (47), otrzymamy:

Al+ A2= U0,
A1O+ A2a2= 0,
skad: a, o
AI" az_ax H

A2— & wo.
«@ — 1
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Wobec tego:
U,
a,—a
albo U [ —at AN
uu= ——"— v —axe l. (49)
«—<«1 \ /
Biorgc pochodna uc wzgledem i, otrzymamy:
du, .

(50)

poniewaz, jak to przedtem stwierdziliSmy, a2> ax, przeto:

—dit —a\t
e <e

i wyraz w nawiasach wzoru (50) jest liczbg ujemna, zas wyraz przed
tym nawiasem jest liczbg dodatnig, wiec

duc

a <0

na tej podstawie stwierdzamy, ze uc jest funkcjg malejacg z biegiem
czasu i ma warto$¢ zawsze dodatnig, gdyz

—a,t —a,: —a,r —a,l

a2> ax, e > e , aze > axe ,

wiec najmniejsza jej wartos¢ = 0, teoretycznie dla I = oo (rys. 213);
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warto$¢ pradu i znajdziemy na podstawie wzoréw (48) i (50):

"oy

«’u.u _

a2— /

IS cou > (r ' < 5 »

Dla zbadania tej funkcji bierzemy pochodng wzgledem Z

di ca a2 / ~“t ~at\

d?— p 52>
wyraz w nawiasach moze by¢ wiekszy lub mniejszy od zera lub
moze sie réwnac zeru, mianowicie ~ = 0, jezeli

—axt —
cae = aZe (53)
skad

Bioragc jeszcze raz pochodng we wzorze (52), otrzymamy

Dla wartosci t, przy ktorej pierwsza pochodna staje sie réwng
zeru, czyli gdy ma miejsce rownanie (53), druga pochodna i ze
wzoru (55) bedzie ujemna, gdyz wyraz w nawiasach staje sie mniejszy
od zera; rzeczywiscie, na podstawie wzoru (53)

—ant —ar —ajt —aii
axle —aZe = aze —cace =
- 0,1
=cge (a-d@<0
gdyz «i < a2

Wobec tego przy znalezionej we wzorze (54) wartosci t rozpa-

trywana funkcja i ze wzoru (51) otrzymuje wartos¢ najwiekszg,
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—t —a
poniewaz zas €' >e , przeto i zawsze jest wieksze od zera;
tylko przy t= oo, i = 0 oraz przy t= 0, i = 0 (rys. 214).

W przypadku Il

Kr= ka= —2 X = —«;

stosujemy wzor (45)
_U)

= e (N + A2, (56)
skad
i=.c Mo _ce ™A a_n2a); (57)
zaktadajac + = 0, uc= f/0, i = 0O,
bedziemy mieli
A2— =0,
czyli
/\1 =
™2 = aUo.

Podstawiajac te wartosci do wzoréw (56) i (57) otrzymamy

uc= £0(1 + at)e-at, (58)
i = Caz2ztUOe~at;
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wobec tego, ze C e C‘]?z
T 412
zas
L
R2=4 _,
C 4L 1
Caz 42" c~L-

mozemy napisac
i = U?te-at; (59)

uc ze wzoru (58) jest funkcjg malejgca, gdyz jej pochodna

dl = - a Zte~at< 0,

wiec napiecie na kondensatorze stopniowo zanika, natomiast prad
ze wzoru (59), tak samo jak w przypadku I, najpierw wzrasta, do-

chodzi do swej najwiekszej wartosci, po czym stopniowo zanika;
tatwo to stwierdzi¢ z nastepujacych dziatan:
di .
dl e~ at{\ —at).
Z rownania e-at[l —at) = 0

znajdujemy
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przy tej wartosci t druga pochodna

_O(li; i = e~at(a2l1—2a) = a<o,

wobec czego stwierdzamy, ze max i bedzie przy
f=J = JF&‘ = 2— .-
2L

wartos¢ tego pradu najwiekszego bedzie

i= N0g h —
max i = 70g b ¢ Re = 0,74 .

Rys. 215 podaje przebieg uc oraz i. W obu rozpatrzonych przy-
padkach wyladowanie zachodzi w sposéb réwnomierny bez wahan
i z tego powodu takie wyladowania mozemy nazwac¢ aperiodycznymi.

§ 114
WYLADOWANIE KONDENSATORA OSCYLACYJNE
WZOR THOMSONA

Rozpatrzmy przypadek 111:

Na podstawie wzoru (46)

uc = e~a sin pt + A2cos pi), (60)
gdzie
= Tyr~» P= = l-a 2
> PEY e oy T YLE
Znajdujemy
aaf- -

I=_C- ja”n sinpt+

+ aA2cos pt + PA2sin pt—pAi cos ptJ. (61)

Zaktadajac we wzorach (60) i (61) 1 =0, uc= UQ, i = 0, otrzymamy
A2=U 0, aA2—pAl= 0,
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skad
Ay=ju 0,
A2 — Ud
wobec tego
uc= ~~e~at (asin pt + Pcos pi),
i= CUQe-a- sin pt.
Poniewaz
a sin pt + Pcos pt = Na2+ P2sin (pt + d),
gdzie
t a 4
zas
a2+ P2= a2+ a“ 2
LC LC '
przeto
ut= — °e—sin (pt + d), 62
LT (pt + d) (62)
. Ule~a
| = ~pirsmP}- (63)
tg 6= —5 sind= PYLC, cosd= aYLC. (64)

tatwo jest zauwazy¢, ze stosunek pomiedzy amplitudami uc
oraz i wynosi VO; prad i jest opézniony wzgledem uc o kat
et Eo
&= arc fg o

Stwierdzamy, ze napiecie na kondensatorze uc oraz prad i,
ptynacy w obwodzie, majg przebieg nieco odmienny od przebiegu
sinusoidalnego; rdznica polega na tym, ze na zmiane wartosci tych
wielkosci ma wptyw funkcja wykladnicza e~at; ta ostatnia, jako
funkcja malejgca, ttumi zjawisko, doprowadzajgc wreszcie wartosci
do zera. Tego rodzaju przebieg mozna nazwa przebiegiem sinu-
soidalnym tlhumionym. W naszym przypadku pulsacje stanowi p

czestotliwos¢ zas fw=§ W obwodzie zachodza wiec drgania
n
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napiecia i pradu, czyli oscylacje; drgania te nazywamy whasnymi,
dla odréznienia od drgan wymuszonych, wywotanych napieciem
pradu zmiennego, przytozonym od zewnatrz Zrédta. Taki obwod
nazywamy obwodem oscylacyjnym. Czestotliwo$¢ drgan wlasnych wy-
raza sie wzorem

-;-J-i/_1 (RV 65
Ta %» JZn[//TQ’\\KZI ) (65)
Amplitudy napiecia na kondensatorze i pragdu wynoszg

rj =JbL* -
an  pyJ~LCe

VILe-
(SLe '

lloraz tych amplitud, réwny mozemy nazwaé opornoscig

1/ -
pozorng drgan wiasnych.

Jak widzimy, amplitudy te stanowig funkcje malejace z biegiem
czasu, i szybkos¢, z jaka one maleja, zalezy od wspétczynnika ttumienia

R
2L
Poniewaz
duc i
ot
wiec na podstawie wzoru (63)
du. UOe~at . )
ot L C sin /5/,

pochodna ta staje sie rdwng zeru dla wartosci
pi =0, n,..., kn;

A0 ot Kpt

gdzie k —dowolna liczba catkowita; za$ druga pochodna

d2uc UQe~at m oi 0 ».i
~dW = ~PLC~ ™ Sm QoS Ne

dla powyzszych wartosci bedzie mniejsza od zera, gdy k jest réowne
zeru lub jest liczbg parzysta; natomiast druga pochodna bedzie
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wieksza od zera, gdy k jest liczbg nieparzystg: bedziemy mieli wiec
szereg najwiekszych i najmniejszych (najwiekszych dodatnich i ujem-
nych) wartosci napiecia uc, idagcych w réwnych odstepach czasu;
wartosci te malejg z biegiem czasu wedtug prawa funkcji wyktadni-
czej e~at. Najwiekszg wartos¢ bedziemy mieli dla t = 0, wtedy ze
wzoru (62)

maxUc = 7Vi/fe sino6)
a poniewaz (wzor 64) sin d= p\ILC, wiec

max u, U0

Napiecie wiec na kondensatorze zmienia sie wedlug prawa
sinusoidy tlumionej i posiada najwieksza swa wartos¢ w pierwszej
chwili po rozpoczeciu sie wyladowania kondensatora.

Dla pradu i ze wzoru (63)

di Tl p~at
= ~°p£— [P cos Pt—a sin pt) =
T —at
=y (cos (tt tg d—sin pt) =
I p-at

= " tgomL coso>" (Pt- 9=

UOe~at sin (pi —d)
singeL
Pochodna ta staje sie rowng zeru, gdy
sin (pt—6) = 0;
pt—6=kn [k=0, 1,2, ..),

6 2n d

IS n
J’J+I° T +J°

druga pochodna

d2i . .

42—~ %in d_.[ I\_Pcos Um—d)—asm (ptm 6)}

dla powyzszych wartosci (pt—6) bedzie ujemna, gdy k= 0 oraz
gdy k jest liczbg parzysta, natomiast bedzie dodatnia, gdy k jest
liczbg nieparzystg. W ten sposob stwierdzamy, ze réwniez prad
wyladowania bedzie przechodzit przez szereg najwiekszych i naj-
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mniejszych wartosci, zmieniajgc sie oscylacyjnie wedtug wzoru (63)
Oczywiscie, najwieksza ze wszystkich wartosci tego pradu otrzyma

sie dla najmniejszej wartosci |, dajgcej maximum funkcji i, to
znaczy dla pt—d= 0,
t d
p:
Wtedy ze wzoru (63)
. UOe e .sin6
max i
~JL

a poniewaz sind= BN LC, wiec
max i = U0 e V. (66)

Przebieg napiecia uc oraz pradu i w obwodzie oscylacyjnym
podany jest na rys. 216 i rys. 217.

Zarowno dla napiecia jak i dla pradu miarg tlumienia jest
funkcja

stosunek amplitud, odpowiadajgcych zmianie czasu o caly okres T,
wynosi ga

- — paT -
e-a(t + T)
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logarytm naturalny tego stosunku, rowny

‘mmEr 4 r-

nazywamy logarytmicznym dekrementem ttumienia.

Na szczegolne uwzglednienie zastuguje przypadek, gdy B jest
fi

bardzo mate w poréwnaniu do L, tak iz praktycznie mozna

zalozy¢ rowne zeru; powstajace w tym przypadku drgania w ob-
wodzie nazywamy drganiami swobodnymi; mamy wiec

tg 6=

ze wzorow (62), (63) i (65) otrzymamy
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i = U0O~"/-"-sin fit,

f

=1-=— U
2* 2 LC”
(67)

Ts=j-= 2*YLC.

Jezeli wezmiemy pod uwage, ze rezonans napie¢ w obwodzie
zachodzi, gdy

ai L 1
0jC '
czyli 1
w = LC"’
£r
j/r2C
to znaczy przy 1
I'= 2mvLc
T =2jcLC,

wtedy dojdziemy do wniosku, ze czestotliwo$¢ drgan swo-
bodnych odpowiada warunkowi rezonansu napiec.

Wzér (67) na okres drgan swobodnych obwodu oscylacyjnego
znany jest jako wzor Thomsona, poniewaz byt po raz pierwszy
wyprowadzony przez Williama Thomsona, pdzniejszego lorda
Kelvina; oczywiscie ze w rozpatrywanym przypadku ttumienia nie
ma i drgania trwajg, teoretycznie, czas nieograniczony.

Dla obwoddéw oscylacyjnych wprowadzony zostat termin wsp6t-
czynnik ttumienia w postaci

Oznaczajagc pulsacje drgann swobodnych takiego obwodu przez ds,
przy czym
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otrzymamy dla poprzednio rozpatrywanych wspotczynnikéw a i 3

nastepujgce zaleznosci:

.- R d d s d
2L —~TyiTC = 2

21/
1 (4) = i/x (4)

§ 115

LADOWANIE KONDENSATORA PRADEM STALYM PRZEZ OPORNOSC
RZECZYWISTA | INDUKCYJNOSC

Jezeli przytgczymy obwdd (rys. 212) do zrodka pradu statego
0 napieciu U, wowczas dla okreslenia napiecia na kondensatorze
bedziemy mieli na podstawie wzoru (37) rownanie rozniczkowe

d2uc R duc U 63
a2 +4 da~- Ltcuw LEY (63)

za$ prad piltynacy w obwodzie bedzie okreslony wzorem (36)

Catka szczegolna réwnania (68) bedzie uc = U, co tatwo spraw-
dzi¢; wobec tego catke og6lng tegoz réwnania otrzymamy dodajac
U do catek ogolnych réwnania uproszczonego (38), ktore znalez-
lismy juz dla trzech rozmaitych przypadkéw.

Dla okreslenia statych wchodzgacych do tych catek ogdélnych
bedziemy mieli warunek graniczny

t=0, uc=0,1=0.

W ten spos6b otrzymamy w przypadku I, gdy

R> 2V£!>
1

—it —ad
i Ale + A2 4 U, (69)

i=c M. _aicAxe —m2CA%2 (70)

dt

wedtug wzoru (44)

skad przy /=0 Al+ A2= — U,

aNAxX + a2A2= 0.
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Rozwigzujgc te rdéwnania, znajdziemy

At = «2 U
Qo Ali U
aa— di
Wobec tego
u, = Yo ovam'—aett\+ U (71)
a2—ai | !

Jezeli poréwnamy pierwszy wyraz prawej strony tego wzoru
ze wzorem (49), to spostrzegamy, ze r6zni sie on od tego ostat-
tniego tylko znakiem; poprzednio juz zbadaliSmy, ze taka funkcja
jest malejacg z biegiem czasu; wyraz ten stanowi napiecie przej-
sciowe na kondensatorze, gdy wyraz drugi U stanowi napiecie
ustalone n

U —axt ~att
o ae —axe (72
Przebieg napie¢ uwidoczniony jest na rys. 218.

Teoria pradéw zmiennych 27
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Prad i znajdziemy podstawiajgc wartosci statych Ali A2 do
wzoru (70), wtedy

- CU_ e al — a%t \.

22 [ - e (« (73)
badajac funkcje w nawiasach, znajdziemy, ze pochodna di staje sie
rowng zeru, gdy

e dt + aze ™ fl\.l (74)

Jde)_ as
=
b= - InN"A > 0;
a2— ax (75)
; : da . PV
poniewaz druga pochodna — przy znalezionej wartosci i jest
mniejsza od zera, wiec ta warto$¢ t daje nam max i.
Uwzgledniajac (73), (74) i (75), otrzymamy
max i = CU ai°2. 6 16"
az—cti | a
= CUale~d'
aj —aj aj
= CUaxe (76)

Rys. 219 podaje przebieg tadowania kondensatora.
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W przypadku Il, gdy
RS (/e -
wedtug wzoru (56)
u=-¢e a(Aj+ A2t + U, (77)
R
gdzie a = ;
duc — 1 : *\-
= c 0= L(Re—aA-aA ), (78)
zaktadajgc w tych wzorach i= 0, uc = 0, i = 0, otrzymamy
¢l = - u,
A2—aAl -0,
skad B
Aj = —17,
A2= —alU.
Wobec tego
uc= _ 1/(1 + af) e<' + 17, (79)
i = UCaHe~at;
poniewaz aL
o 172 ~C-
4L2 4L2 LC
wiec .- i/
= -L te (&0)

We wzorze (77) pierwszy wyraz z prawej strony, stanowi na-
piecie przejsciowe u(f; jest to funkcja malejgca z biegiem czasu.
Przebieg napie¢ podaje rys. 220 ) )

i
"Dla funkcji pradu znaJdUJemy, jak w analoglcznym przypadku
wyladowania (8106), maxi przy

J_ 2L
1~ a R
czyli
.U 2L _2U u
max 1= 17 =2 ¢ ~ rRe= O H

Przebieg pradu tadowania przedstawiony jest na rys. 221.

2r
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W przypadku 111, gdy

na podstawie wzoru (60)

uc = e~at (Axsin fit + A2cos /ji) + U,

Zaktadajgc w tych wzorach
t 0, uc=0, i=0,



t ADOWANIE KONDENSATORA PRADEM STALYM

otrzymamy Az= —U,
aA2+ PAX= 0,
skad
Ai mjuU; A2= —VU;
wobec tego
uc= ~~jfe a a sinNe+ Pcos Pt) + U,
i= CUe~a 612-Jfasz-sinpl.
Mamy
a2+ = LC
asin Pt + pcos /9f = N a2+ [2sin (3 + § =
1 sin (pt + §
V'LC ’
gdzie
tg$ P
przeto
m Ue~" =m a,
I=—pr~smP

Napiecie przejsciowe na kondensatorze wynosi

U . .
e absin (/3i+ 5.
fi\LC ( <

421

(82)

(83)

Jest to funkcja zupetnie ta sama jak i we wzorze (62), dla ktérej
znalezliSmy, ze maleje ona zmniejszajac sie sinusoidalnie, przecho-
dzac przez szereg wartosci najwiekszych dodatnich i ujemnych dla

t= 0, Pl Pl n

Najblizsza najwieksza warto$¢ dodatnig dla napiecia przej-

, . 71 .
Sciowego otrzymamy, gdy t = wtedy bowiem

sin(/Sf+ d) = sin(n+ §= —sin §
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poniewaz
sin $= fiJLC,

wiec dla t otrzymamy

max uc= " 6— jLC + U=
[\LC Pyl

=UM+ea™=u(l +e“f*y

Funkcja wyktadnicza w nawiasie nie moze by¢ wieksza od 1,
wobec tego mozemy napisac

max uc < 2U.
Co sie tyczy pradu i, to poniewaz wzor (83) jest zupetnie taki

sam jak i wzor (63), otrzymamy wiec najwieksza jego warto$¢ dla

t=
P

= c —d
maxlz_w_-J-e fi .
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Na rys. 222 mamy przebieg napiecia na kondensatorze w przy-
padku, gdy a jest mate

Przebieg pradu tadowania jest zupelnie taki sam jak przy wy-
tadowaniu (rys. 217).

§ H6

POWSTAWANIE PRADU ZMIENNEGO W OBWODZIE Z OPORNOSCIA
RZECZYWISTA, INDUKCYJNOSCIA | POJEMNOSCIA

Niech w chwili t = 0, gdy zamykamy obwéd z pradem zmien-
nym, napiecie na naciskach przechodzi przez faze y= wartos¢ chwi-
lowa tego napiecia bedzie okreSlona wzorem

u= Umsin [wt + ).
Na podstawie wzoru (37) rownanie dla takiego obwodu bedzie

d2uc R duc 1 Um

di2 + L dt + LC ¢ Lc SnWt+y (84)

Oczywiscie, przy rozwiazywaniu tego rdwnania, tak samo jak
poprzednio, bedziemy mieli do rozpatrzenia trzy przypadki; jednakze
w pierwszych dwdch przypadkach w poréwnaniu z tym, co mieliSmy
przy pradzie stalym, nic szczegdlnego nie spostrzegamy, przejdziemy
wiec od razu do przypadku 111, gdy

a2+ p2= LC

Catka ogolng réwnania uproszczonego bedzie (wzor 46)
uc = e~at (Axsin pi + A2cos pl),
gdzie A1 i A2 — state dowolne; daje ona nam wartos¢ napiecia
przejsciowego na kondensatorze; mozemy napisa¢ w postaci jednej
funkcji sinusoidalnej
up= e~at M sin (j6t + 9), (85)

gdzie M i d stanowiag state dowolne.

Catke szczeg6lng rownania (84) znajdziemy na podstawie takiego
samego rozumowania, jakie stosowalismy w § 110, mianowicie okre-
Slamy najpierw dla naszego obwodu prad ustalony

Umgin (cot + p— <), (86)
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gdzie
oC

z-Y * +{wl-~Y e isT~ R

majac wartosé¢ tego pradu, znajdujemy wartos¢ napiecia ustalonego
na kondensatorze

Um 1 / 7\
ul [ = [ Z N\ Sin y ) Ll
albo
- u ” —
uu= —., ° Cos (Wt + w—p). (87)

Ze wzoru (85) znajdujemy przejsciowy prad
ip= = Ce~at[pM cos ((it+ d—aM sin (/Si + ). (88)

Ze wzoréw (85) i (86) oraz (87) i (88) otrzymujemy wartosci
napiecia na kondensatorze i pragdu w stanie nieustalonym

uc= ua+ up= —, CO”(_ cos [ot+ y»—p+e M sin(/Si+ 6), (89)
-]

i=/k+ ip=— sin(f)i+ —>+
+ Ce~at [?M cos (pt + d —a M sin (/Si + §]. (90)
Zaktadajac w obu tych wzorach t= 0, uc= 0, i = 0, otrzy-
mamy ii

M sin &= ZooCCOS (m—a>),

aC M sind—p CM cos = — sin (>— @\

podstawiajgc warto$¢ M sin 6 z pierwszego wzoru do drugiego, znaj-
dujemy

M cos &= lé)m . COS (y>—<p—-(8-sin o—

Na tej podstawie obliczamy

M sin [pi + § = M cos $sin pt + M sin $cos pt =



POWSTAWANIE PRADU ZMIENNEGO W OBWODZIE 423

Um I\ asin fit + ficos /Si CO0 . . e
Zwé\t(\ ----- p - — J cos [y>—(p)—-p- Sin (p—a) sm fitj =
Un kV«2+ ﬂf (O ..
ZwC | 3 (\>—< sinjSij,
etgy
Nastepnie

M cos (fit + 6) = M cos Scos fit —M sin Bsin fit =

73 [ aos~ —~ aB (f~ P)cos fit—cos (mp—q)sinfifJ:
/5 sin fit— fit\ . .
ZLLJ,Ir)nC [ —cos (P—< 17201 —p?--c-(-)-s-l— | ~-F sin (V—Dcos i |=
.

ZLdbC ,,+ ﬁzcos (rp—<p sin [fit—y') + 30 sin (m—if) cos fit

gdzie
tg/ =r

Podstawiajac znalezione wartosci M sin (fit + ¢) oraz M cos (fit + d
do wzoréw (85) oraz (88), znajdujemy, uwzgledniajac, ze

Vi+NMN“vrec

it — —at u' Ng] 1 1 1 1
o fiZC sin (p—a) sin fit— QS ( sin(fit+ y)>$ (91)
gdzie
isr-jr.
oraz

i*=e % ?%OT[_ (® LC~ s'n (Ir—y’)—wsin (tp—q) cos fit —

cos (m—a sin (fit + + -g- @asin (p—o) sin fit =
FIALC (m—a sin (fit + y) g (m—®

= e Zfi ( sin (m—a) (a sin fit —fi cos fit) —
B (r—@

Sin (fit + y) —fisin (fit —
o Le [a §in (fit +y) isin (fi y
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gdzie tg / :_Iii
poniewaz tg/ = cotg y =
przeto , N
y -
e sin [pt—y) = — cos (pt +)
nastepnie

asin /31—Pcos pt =Y a2+ /2 sin (pt—y) = v sin (/3/ —vy),
Ic

i
asin (j8 + y) —/3cos {pt + y) = V«2+ P2sin {Pt+y —y) = ~L Csin
wiec ostatecznie

- -ni Uff . . .
’ — t—y) —QS N 92).
ZpALC [sm (P—Psin[pt—y) —a8  "win B (92)

Poréwnujac wzory (91) i (92) na up i ip widzimy, ze kazda
z tych wielkosci okreslona jest przez dwie sinusoidy (dwie fale)

z amplitudami malejacymi, zaleznymi od statej ttumienia a = Z’B:j ]
Pulsacja tych sinusoid wynosi /5 czyli ich czestotliwos¢ ™ ; obie

sinusoidy sg przesuniete wzgledem siebie o katy, przy czymtgy = —.

Sinusoidy pradu sa przesuniete wzgledem odpowiednich sinusoid
napiecia o kat y wstecz (prady sg opdznione w fazie o kat y). Stosunek

amplitudy napiecia do amplitudy pradu wynosi | / ?
Wzo6r (91) mozna przepisaé w postaci:

Umif . . COS (ip—p cos y~\ .
ucp= —e~d-pzclin - j( sin pt — Y

* ) _______
cos (ip—<Psiny cos pt [
w YLC 1

skad wida¢, ze amplituda tego napiecia réwna jest

_ a ] cos2(f—<p 2sin(™—(p)oos(y>—<p)cosy.
Dam p_‘9‘f/schS'”2 P9+ aoLc VLC
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poniewaz
cosy = 1 _« RyjLC_ R,/ c_

) yi+tgey yN+2 2L 2V L

wiec
e~at U, COS2(y>95) B
Uepm Sin 2 =
e~a Um )
o2 J/1 - CO8,(v-?)(l rc)- ¢ sin2 - &= (93)

W analogiczny spos6b przepiszemy wzoér (92)

eruUm _ qin ip—y) —cosy cos (y>—<) sin Pt-
zZp~LC if- oyLC ]

—sin (ip—@siny cos pt j ,

skad znajdujemy amplitude pradu przejsciowego

cos2(y—y) 2 sin(y —e>)cos(y—q) cos y

e~a,U -
pm— s sin2{y—(p +
Zp\LC 1 ty ) i2LC ©yLC

i na podstawie takich samych dziatari, co i poprzednio

AN/ 0-B -4 N )N SRTVE)

Poréwnujac wzory (93) i (94) spostrzegamy, ze amplituda na-
piecia na kondensatorze i amplituda pradu w jednakowy spos6b
sg uzaleznione od fazy y» ktorg ma napiecie zrddia pradu zmien-
nego w chwili zamkniecia obwodu. Aby znale$¢ takag wartos¢
dla ktorej obie wymienione amplitudy otrzymujg najwieksze war-
tosci, musimy zbada¢ funkcje znajdujgca sie pod pierwiastkiem
w obu wzorach (93) i (94), mianowicie

4 i c ) si” 2 - f)' i rrcos 2 (» -« 'n

Gdy przyréwnamy te pochodng do 0, otrzymamy

B
tg2fp- P=-— —

mL\Il ~w2L ¢ o
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ale
1
©cC
R g
wige tg 2 \>—<p)= cotg &b (95)

W granicach jednego okresu daje to dwa rozwigzania:

) 2(V-e>)=1-9>,

skad won
v - 2+ 4"
skad B} 3
V-2 +4n-

Biorgc druga pochodng X, otrzymamy

n =2 (1" -~ic¢)cos2(v'"-95)+] r sin2(v'- ?7):=

U_ -
@ cos Qj(y)—(p)\l_ I s g2 [rp—cn\

= 2R cos 2 (y —9B [cotg B+ tg 2 (»—B1;

przy uwzglednieniu (95)

d*X 4R
dy2  wi cos 2 (v—B cotg B
Dla wartosci y» odpowiadajgcej pierwszemu rozwigzaniu, tj.
B n
y --2+T"
_ i i? (,n _ \ j? - - .
dyiz = a)E cotg Bcos,| ) 93;1L = Cos B

przy wszelkich wartosciach 8 w granicach

n 1je d*X

0< &< bedzie d">0_;
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3
dla drugiej wartosci y>= n bedzie
dzx AR . /3 \ AR
= COig(pCOS{-2 n ~ P/ = coZT A0S
czyli
y d*X .
dp* <O0°
Otrzymujemy wiec dla funkcyj T i/
I n
minimum, gdy Y=
. 3
maximum, gdy y»= — + n.

Zbadajmy jeszcze te wartosci dla y»—e>= 0 oraz y»—@p = o

w pierwszym przypadku wzory (93) i (94) daja
- _ e~atUm 1
pzC LC
e~a Um 1 e~d U,
lom — )
PZ\~LC coy LC PZglLC

Poréwnujac te wartosci z maksymalng wartoscig napiecia na
kondensatorze i pradu w stanie ustalonym (wzory 87 i 86), miano-
wicie

Um, gy UM
Tam chl
znajdujemy

Jjepm IPm _ g—at. 1
uam PAL G’ n3LC

T
W przypadku, gdy f —p = , bedziemy mieli

rm _ e«xC7/m r =ri,U -
gm pZC ' tm pZ~LC’

P I = g« = e~01 — }- -.
t/Am 2 Tum P\LC

Na szczegdlne uwzglednienie zastuguje przypadek, gdy thu-
mienie jest bardzo mate, czyli R bardzo mate w poréwnaniu do L.
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Wtedy mozemy zatozy¢

aT“0" e."" 1’

W tym przypadku bedziemy mieli:

da —9=0,
al
Lpm
dla p—e=y
u,m_
ud
Lom

Z tych wzoréw wnioskujemy, ze gdy o > /5 mozna oczekiwac
przepiecia na kondensatorze, zas gdy /3> m— przetezenia w obwodzie.
StwierdziliSmy, ze stosunek wartosci maksymalnej napiecia na

kondensatorze do wartosci maksymalnej pradu wynosi

stad
FCTH —5 TI2

Pierwszy wyraz stanowi maksymalng energie elektryczng kon-
densatora, drugi maksymalng energie magnetyczng cewki induk-
cyjnej. Zachodzi wiec w obwodzie oscylacyjnym przemiana energii
elektrycznej na energie magnetyczng i na odwro6t; gdyby nie bylo
ttumienia (B = 0), taka przemiana energii miataby miejsce bez
konca. Obecnos¢ B wywotuje straty cieplne energii, zachodzi
tlumienie i zjawisko oscylacyjne stopniowo zanika.



PRZERYWANIE OBWODU Z 1i C 431

§ 17

PRZERYWANIE OBWODU, W KTORYM INDUKCYJNOSC | POJEMNOSC
SA POLACZONE ROWNOLEGLE

Zastosujemy powyzsze wyniki do obwodu prgadu zmiennego,

w ktérym C i L sa potgczone réwnolegte, B — 0 (rys. 223).
Przypusémy, ze

przerwa w obwodzie

nastgpita w chwili, gdy

napiecie na kondensato-

rze przechodzito przez

swojg warto$¢ najwiek-

sza, rébwng wartosci

maksymalnej napiecia Rys. 223
na zaciskach pradu

zmiennego, tj. < ac= Um

wtedy prad w obwodzie i= o0,

gdyz prad wyprzedza napiecie uco kat prosty. Cala energia znaj-
duje sie wéwczas na kondensatorze i wynosi ~C UA. Zaczyna sie

oscylacyjne wytadowanie kondensatora i po uptywie /i okresu cata
energia kondensatora przechodzi w energie magnetyczng na cewke;
prad przechodzi przez cewke i osigga wartos¢ |, przy czym

Y L/2=\ cul

skad
[=E£/,]/'e (96)
Jezeli za$ wytaczenie nastgpito w chwili, gdy uc= 0, to znaczy,
gdy prad i = Imprzechodzit przez obwdd, wtedy cata energia znaj-
duje sie w cewce i wynosi -i- L 1*. Po uptywie X4 okresu energia

ta przejdzie na kondensator, ktory uzyska napiecie Uc, przy czym

skad

(97)
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W stanie ustalonym mamy
um- i mz,

gdzie Z — oporno$¢ pozorna naszego ukiadu, ktérg mozemy tatwo
znalez¢ jako opornos¢ wypadkowag dwoch opornosci Zx= /oL

oraz Z2——/ — _ ; mamy
coC
JL
@ ©cC Cc
Zi+72 JfajL 1\
|l (0C) coL
skad
L
Z= c
- moj L
wi
Podstawiajgc do wzoru (96) zamiast Umy------ ImZ oraz do wzoru
(97) zamiast Im-—-—--—--- otrzymamy
7
- r

W tych wzorach mozna tatwo poréwnac prad i napiecie powsta-
jace przy wytadowaniu kondensatora z wartosciami tychze wiel-
kosci w stanie ustalonym.
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OBWODY SPRZEZONE MAGNETYCZNIE

§ H8

WYLADOWANIE KONDENSATORA W JEDNYM Z DWOCH OBWODOW
SPRZEZONYCH MAGNETYCZNIE

Rozpatrzymy dwa obwody znajdujace sie jeden obok drugiego
(rys. 224); w kazdym mamy kondensator o pojemnosci Clt wzgled-
nie C2>oraz cewke o indukcyjnosci whasnej Lx, wzglednie L2. Opor-
nosci rzeczywiste w obu obwodach przyjmujemy réwne zeru.

Kondensator pierwszego obwodu C\ przytaczony jest do Zrodia
pradu statego lub zmiennego i w pewnej chwili | = 0 zostaje odia-
czony od tego Zzrddia, gdy napiecie na kondensatorze wynosi UO;
jednoczesnie zostaje zamkniety obwod drugi. Oznaczajgc wartosci

Teoria pradéw zmiennych 28
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chwilowe napie¢ na kondensatorach przez uxi u2, zas wartosci chwi-
lowe pradéw, ktore przy wyladowania kondensatorow powstaja,
przez ij oraz i2, wreszcie wspotczynnik indukcji wzajemnej cewek
przez M, bedziemy mieli na podstawie znanych wzoréw dla obwodu
pierwszego

fiilj ,rdl,
LI~dt+ M ~a = )
dla obwodu drugiego
T dik __did
L*ii+Mit-= @
oraz warunki graniczne
=0, ux = f/0, ii = 0, u2= 0, i2=0. (3
Poniewaz
. dul N du2
C“hdi 2 °2 di
przeto wzory (1) i (2) mozemy przepisa¢ w postaci
~d2uy, d2u2 .
-Li Ci ai* -MC,2 a2 =«
d2ux
n _
m 2c?2 di2 mex 4o
albo MC,
B
MC\ .
« + EZCZ !.-E".‘ ux' =0
Oznaczmy
MC2 ~ MCi =
Licx— ™ ok @
1 1 (4)
Lici 9 12c2
wtedy
Ui" + aux= —kxu?', (5)
u2' + ba2= —kax', (6)
z rownania (6)
K

W= bm 1 "2 "2

za$ z rownania (5)

“ W= A4 UM+ ki Wy
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iec
Wie 5o kif)2 <l + kib2 “I.

1
wL- 20+ r2 U e
kb2 O jcnz U )
Biorgc pochodng wzgledem Zdwa razy, otrzymamy
o= Ak 85 22
T Tz T bz >
- 1-k xk2~ a2
ki uz b2 u + 29

Poniewaz

uk —MC3 Mc\ M2 _

12 LI1CL'Lons wmire ®)
gdzie k< 1 stanowi spdtczynnik sprzezenia magnetycznego, wiec
podstawiajgc te wartosci do réwnania (5) otrzymamy

1- k24> u2

u/t+ azui+ g3 Ul+-~b2 UI" =
albo
(1 —k2 ulV + (a2+ b2 ux' + a262Ui = 0. 9)
Jest to réwnanie liniowe czwartego stopnia, ktorego réwnanie
charakterystyczne
(1 —k2 a4+ (a2+ b2 x2+ ab2= 0,
jako rownanie dwukwadratowe, daje pierwiastki
9 -{a2+b2+}J[a2+ b22-4 (1-k Qa2

X 2(1—k2
podpierwiastkowa

[a2+ 622—4a262+ 4k2a2b2— (a2—h22+ 4k2a2b2> 0,
nastepnie

Ja2+ 621  (a2+ b22-4 (1 - kJa2b2 k< 1,

wiec a2 zawsze < 0. Oznaczajac
a2+ b2+ Y (a2+ b22—4 (1 —k2 a2b2
2(1 —k2

a2+ b2—Y (a2+ 622—4(1 —k2a2b2 2
2(1- F) “o

10,

28~



436 OBWODY SPRZEZONE MAGNETYCZNIE

otrzymamy 4 pierwiastki dla x :
*i“ +/0i. x2=—jpl}
*B=+/&!, *«t —/02-
Wobec tego. catka og6lna rownania bedzie
ux= Axsin 4- A2cos ptt + 413sin p2t + At cos /3, (1)

gdzie ztx, A2, M3, A4 stanowig state dowolne.
Biorgc dwa razy pochodng tz1 wzgledem t, znajdujemy

«j" = —iN sin Pil —PliA2cos Pit~p22A3sin 7ai—Pi' Ai cos /2.
Wstawiajgc te wartos¢ do (7) i uwzgledniajgc (8), znajdujemy

(1-k2 1
L, = — M>"2 jri2(Aisin Pit+ A2cos Px*) +

+ p2(Assin p2t + Aicos p2t) |+

N [Axsin pxt + A2cos pxt + A3sin p2t + Atcos p2tj =
_/ch’\ i :

= J* i [a*~ (1~ **)] =[¢1 sin A.t+ zi2cos Pitd +

+ Y®R2—p2 (1 —k2J mIM3sin p2t + At cos p2t] j

albo
u2= Bi sin pxt + B2cos Pil + B3sin p2t + Bi cos p2l, (12)
gdzie
= _ _ kN
Bi=a2-P Iub k ,_%_"
a2—/92 (1 —k2
B, Kib2 A3l
0 a*-PH{l~-k2 A
* K e k J 2 N3
kxb2
lub oznaczajgc w skroceniu
a2- p 2{\-k2
P= kxb2 "
a2- P 2{\-k 2 (13)

9= kib2
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Bx— pAX,

- pA2
B3—gA3, (4)
bd= gA4

Ze wzoru (11) znajdujemy

1= — =~ cos fixt + CipiA2sin fixt —

— Cxfi2A3cos p2t + CIf)2Ai sin p2t. (15)

Ze wzoru (12) otrzymujemy

; r dup - _ i in fi
he Lo dt2 C2piB1cos fixt + C2pxB2sin fixtm

C2p2B3cos /22z+ C2p2BAsin p2t. (16)

Zaktadajgc do wzoréw (11), (12), (15) i (16) warunki graniczne (3),
znajdujemy
Uo = A2+ AX,

0 = B2+ Bt,
0 = PA\ + "2/31
0 = PBX+ PzB3,
albo, po uwzglednieniu (14),
A2+ At — UO,
pA2+ gqAx= 0,
PXA X+ P2A3= 0,
pxpAx+ P2gA3= 0.

Z ostatnich dwoch réwnan otrzymujemy

(41 = Ol
Ol
za$ z pierwszych dwdch
Az — UQ
q—p
Aa= uo.
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Wobec tego na podstawie wzoréw (14)
B1=0, PAd o,
qa

B3=0, B4= PA o,
q p
B2—# Bi.

Podstawiajgc okreslone wartosci statych do wzorow (11), (12),
(15) i (16), znajdujemy

ui — ~ PuocosiM-—-q~puo0s/M

W= -U0a@»s t--—-—- UoGBP21 ™ -Uo(cos /xz—cos p2t),
qa-—p q—p q—p
li=g_Ptg pUosin i CiP2 ~lp UosinPo
h ~ U2Px Uosinp!'t C2p2 Uosin P21 =

= C*Y~p Uo(?Sinp .t-p, SinP2¥).

Z powyzszych wzoréw wida¢, ze mamy tu roznice dwoéch drgan
sinuso.dalnych o pulsacjach px i p2.

§ 119

WYLADOWANIE KONDENSATORA W PRZYPADKU, GDY OBA
OBWODY SA ZE SOBA W REZONANSIE

Na szczegélne uwzglednienie zastuguje przypadek, gdy kazdy
z obwodow, rozpatrywany samodzielnie, posiada drgania swobodne
0 tej samej czestotliwosci; mowimy wtedy, ze obwod drugi jest w re-
zonansie z pierwszym obwodem.

Oznaczajac czestotliwosci drgan swobodnych obwodéw odpo-
wiednio przez fSi/ , bedziemy mieli na podstawie wzoru (67) z § 102

fs

2n”~LCj, " 2n}/L2C2
skad otrzymujemy warunek rezonansu obu obwodow
L1C1— L2C2
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Wobec tego na podstawie (4) i (10)

a2= b2
2a2+ydad—dad+ 424 a2l +K a2
Pl = 2 (1 —A2) 1-/c2
_2 2a2—yd4ad—4ad+ 4jcczad a2l —A a2
n2 2(1 — A I-/c2 =rTfc’
= + 7
A=z y 1—£ y 1+k ’
za$ na podstawie (13)
a2- a2(1 + k) 3
P = kxa2 '
a2—a2(1—k
9= - kia2 v/

/.

albo, uwzgledniajac (8), ze k = \]Jk1k2 oraz (4) ze _n = (dla

Q
JT7

(L=

Lx”™ = L2C2, bedziemy mieli

9-P =21 /5"

Wobec tego wzory dla napie¢ i pradéw otrzymamy ostateczriie
W postaci

«i =y Uocos f3it+i UOcos /1= UO[cos i+ cos P2f],

Q= - 2721/0[cosMi-cos /2],
»l= Cl COy [/!sin PJ + P2sin Pi i],
i2= - C2|]/Ali.™ uO][p, sinplt-0 2sinPi t].

Z tych wzoréw wnioskujemy, ze prady sa przesuniete w fazie
o kat prosty wzgledem odpowiednich napie¢, przy czym prady sg

opoznione w fazie o - wzgledem napieé. Gdy napiecia przechodzg
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przez warto$¢ maksymalng, prady przechodza przez warto$¢ zero
i na odwrot. Gdybysmy uwzglednili obecnos¢ opornosci rzeczywistej
B, otrzymalibysmy jeszcze zjawisko tlumienia i wzory na napiecia
i prady datyby nam sinusoidy ttlumione, jak na rys. 225.

Ksztatt funkcji napiecia i natezenia pradu jest zalezny od pul-
sacji (czestotliwosci) /3 i /532 funkcje te mozna przedstawi¢ w innej
postaci: dla napiecia

cos 1+ cos /21= 2 cos ™M i *cos N gnN *’
dla napiecia u2:
cos /Jjt—cos [R1= —2 sin * s’ 2N N
dla pradu

b,an  +/Ran/&= (1 +/&Jan Nraos A ’]+

+(&-&) [sin ? Iyt cos(/\i+/y*

+ (A +w][sinM i cosi& +«'].

Na rys. 225 mamy wykres tej funkcji w przypadku ogélnym,
tj. gdy drgania sg ttumione, czyli we wzory na prad i napiecie



442 OBWODY SPRZEZONE MAGNETYCZNIE

wchodzg jeszcze funkcje wyktadnicze; z rysunku widaé, ze powstajg
dudnienia.

Czestotliwo$¢ dudnien drgan swobodnych zalezy od spétczynnika
sprzezenia k:

Gdy k jest mate, obwody nieznacznie wptywaja na siebie, dudnie-
nia bedg bardzo powolne, otrzymamy wykres dla pradu i2, jak na
rys. 226.
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§ 120

ROWNANIA ROZNICZKOWE DLA WARTOSCI CHWILOWYCH NAPIEC
| PRADOW. CALKI OGOLNE TYCH ROWNAN

W rozdziale X1 rozpatrywaliSmy przewody z réwnomiernie
roztozonymi statymi R, L, A i C, ale tylko w stanie ustalonym,
wprowadzajgc wartosci skuteczne napiec i praddw; obecnie dla stanu

a. nieustalonego musimy wy-
prowadzi¢ wzory dla war-
tosci chwilowych tych wiel-
kosci. Rozpatrzmy nie-

N skonczenie maty odcinek

UH i d* dx linii dwuprzewodowej
(rys. 227) w odlegtosci x od

—d\ zrodta pradu. Oznaczajagc

Rys. 227 wartosci chwilowe napiecia

i pradu w rozpatrywanym

punkcie odpowiednio przez ui i, otrzymamy na podstawie znanych

juz rozumowan (8 90)

T oax - Rt L ()
di du
~ dx Au+cdi’ 2

d.
biorac pochodna (1) wzgledem x i podstawiajac zamiast’\I jego

wartos¢ z (2), otrzymujemy

- = - ~ ~ - N~ A
fgo™ RAUS RGr-ILAG~ LCGs
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albo ?~=bau+ (pbc+l1a)™ +lcte> 3)

Po znalezieniu wartosci u z tego réwnania, mozemy okresli¢
wartos¢ i z rownania (2).

Rownanie (3) jest rownaniem rézniczkowym o pochodnych
czastkowych i moze by¢ rozwigzane rozmaitymi sposobami; odpo-
wiedz otrzymamy w postaci rozmaitych szeregéw, sumy tych szere-
géw muszg dawac te same rezultaty. Zastosujemy metode Eulera.

Zatozmy, ze niewiadoma funkcja u jest iloczynem dwoch funkciji,
z ktérych kazda jest funkcjg jednej tylko zmiennej + lub x, wiec

u= TX, 4
gdzie
T="h(,
Wtedy fu T dX_ Fu_ j,d?X’
dx dx ' dx2 dx2’
du dT d2u d2T

dt~ X dt ' dt* X dlI2°'

Podstawiajgc te wartosci do (3) otrzymamy

T = RATX +(RC. LAX-JT + LCX %

lub, po podzieleniu przez TX,

1d2X n. BC+LAdT LC d2T
I W + T dil A~ T dt2 - ©)

Lewa strona tego réwnania zalezy tylko od x, prawa za$ tylko
od t; poniewaz réwnos¢ musi mie¢ miejsce przy dowolnych wartos-
ciach x i t, wiec jest to mozliwe tylko wdwczas, gdy kazdy z tych
wyrazéw ma jedna i te samg stalg i rzeczywistg wartos¢ liczbowa.

Ta stata nie moze mieé¢ wartosci dodatniej, np. + a2 gdzie a
moze mie¢ jakgkolwiek wartos¢ liczbowa; oczywiscie mielibysmy
woéwczas 1 d2y

skad X = Kteax + K2e~ax
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gdzie Kxi A'2— state dowolne, ale z tego wynikatoby, ze przy wzros-
cie x do °o funkcja X réwniez wzrastataby do nieskoriczonosci; do
takich samych rezultatéw doszlibysmy badajac funkcje T, gdybysmy
przyréwnali do + a2 prawa strone réwnania (5); czyli ze w takim
przypadku napiecie u= TX wzrastaloby do nieskoriczonosci ze
wzrostem X, co oczywiscie nie odpowiada naszemu zagadnieniu.
Wobec tego musimy przyja¢ te stalg w postaci liczby ujemnej,
a wiec — a2 gdzie a moze na ogot mie¢ wartos¢ dowolna.

Z rownania (5) wobec tego otrzymujemy

1d2(__
X dx2 ~

RC + LA dT LCd2T _

a2,

RAY 1 d+ T di2
albo
7 § + o X - o (6)
da2T  (R_ A\dT+RA T-0
di2+\L + c) d LC ' (7)
Rozwigzujac réwnanie (6), znajdujemy
X = AOcos ax + BOsin ax, @

gdzie AO i BO — state dowolne.
Dla rozwigzania roéwnania (7) piszemy rownanie charaktery-

styczne: N
>+ k + RATE, °2= 0,

ktére daje pierwiastki

2 RA+a2
K g1 H)V{y1+") LC-
AV a2
:~{?|+4c)+Vﬁﬂ 2Cj  LC
k2 — , A\2 a2
(L+)~VLR- 2c) rLc-
W zaleznosci od tego, czy pierwiastki i K2 sg rzeczywiste —

rézne lub réwne, lub sg liczbami zespolonymi, otrzymamy trzy po-
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stacie rozwigzan; w pierwszych dwoéch przypadkach
1) T=Cx + C2ek\
2) T = ek[C1l+ C2t),

gdzie Cli C2— state dowolne; poniewaz kxi k2 sa liczbami ujemnymi,
wiec otrzymujemy funkcje malejgce i to nic osobliwego nie przed-
stawia; rozpatrujemy wiec przypadek, gdy pierwiastki sg liczbami

zespolonymi, czyli — < yN
wtedy Kt = —a+ 55
k2= —a_ g,
gdzie B A
“ 2L+ 2C’ ©
'Vra: v (10
A
- 2C" (V)

Zwroémy uwage, ze a i y zalezg tylko od statych linii, wiec dla
rozpatrywanej linii maja wartosci okreslone, gdy tymczasem /9 za-
lezy od statej a

Catka og6lna w tym przypadku bedzie

T = e~a (Clcos OL-} C2sin /AD).
Podstawiajac te wartos¢ T, a takze wartos¢ X z (8), do (4)
i zamieniajac iloczyny statych dowolnych pojedynczymi literami,
otrzymamy
u=e~a{{Alcos [+ A2sin /5]) cos ax+ [Bxcos AL+ B2 sin /) sin ax}-

W zaleznosci od wartosci a mozemy otrzymac¢ nieskonczong
ilos¢ takich rozwigzan, catka ogdlna bedzie wiec suma wszystkich
takich catek szczeg6lnych; oznaczajac dla dowolnej catki szczegdlnej
wartosci a przez an, odpowiednig wartos¢ /9 przez fin zas state dowolne
dla tej calki przez Aln, A2n BiIn, B2n, mozemy napisa¢ catke og6lng
W postaci

u=e~a2] {[Alncos pjt + AXsin pj) cos a, X +
=11

+ [Blncos /B + B2sin /9] sin a, x) J.
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Wzor ten mozna przepisa¢ inaczej, zaktadajgc
Ai, cos pJ + A2,sinpd = M, sin (PJ + 6,),
BlIncos PJ + Bxhsin pJ = N, sin (pJ + y>),

gdzie M, N, di y — stale dowolne; w ten sposéb

n=o0 |
u=e~a " Mnsin (PJ + 6,) cos anx + N,, sin (PJ+y>,) sinanx j . (12)
n=1
Teraz okreslimy prad ze wzoru (2)
di du
+ ¢ ~di’

biorgc wartos¢ u ze wzoru (12), bedziemy mieli
- dl = e-» \AMasm (PJ + &Jcosa,x +AWrsin (PJ + y>)sinajc-
—aC Mnsin (PJ + &Jcos anx —a C Nnsin (PJ + yf) sin anx +

+ Ph. Mncos (PJ + §)cos anx+ p,CNncos (PJ + y3) sin anx J,
albo
da VP
& ¢l
n=2

+ AV, r(A - aC)sin(pd + y3)+ p,Ccos (PI+ Vyssin anxi.

MJ (A - «C)sin(PJ+ Ky PrCcos (PJ+ Q)J cos a,x+

Wyrazy w nawiasach prostokatnych mozemy zastapi¢ sinusoi-
dami, ktérych amplitudy bedg jednakowe i rowne

\(A-a Cy+ (P, C)*
podpierwiastkowa przy uwzglednieniu (9), (10) i (11) bedzie réwna
(A- aC)2+ (pnC)2= A2—2ACa +C2a2+ C2? 2=
= A2- 2ACa + C2(a2+ 2,2 =

/ b \2 ba [ a \2\ rac rac
\2L/ + 2LC \2C/ ( L + L +a" L’
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wobec tego amplituda sinusoidy bedzie

kat przesuniecia fazy tej sinusoidy Gn okres$limy ze wzoru

PnC Pn Pn K
T A—ac A__R_A
C 2L 2C
Wobec tego
di

sin (2, t+ dn+ £,) cos anx +

_ i
dX e -« l L h:il_a" 1Mn :
+ Nnsin [pnt + wn+ #n) SiN am J-
Dla znalezienia i catkujemy ten wzdr wzgledem x, wtedy
i =eat | —Mn sin (P, t+ d, + 0n) sina, x +
n=i &
+ ~osin [pnt+  + &) cos anx\. (13)

Stalej dowolnej nie piszemy, gdyz oczywiscie jest ona réwna
zeru, albowiem dla t= 00, i —0, bo u= 0. Poniewaz

—sin a,x = COS(aX+- -

cos a,Xx —Sln(a*x+ ir)'

przeto, poréwnujac (13) z (12), mozemy sformutowaé otrzymany
wynik w ten sposoéb:

amplitude pradu otrzymujemy z amplitudy napiecia mnozgc te
ostatnig przez I/,.) . W czasie prad jest przesuniety o kat

\ = arctg
(-

*).

jezeli Y > 0, czyli y~>
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wtedy < 0, Pnzawsze >0, bo to warto$¢ bezwzgledna pierwiastka,
czyli prad jest op6zniony w czasie wzgledem napiecia;

gdy Ij? < ’é , Y < 0, wtedy dn> 0,
prad jest przyspieszony w czasie wzgledem napiecia; wreszcie

gdy ~L=~C' y=0,\ = arctg (—o00) = —-- ,

prad jest opozniony w czasie o kat prosty wzgledem napiecia.
W przestrzeni pragd wyprzedza napiecie o kat prosty.

Wzory (12) i (13) dajg nam wartosci chwilowe napiecia i pradu
w dowolnym punkcie obwodu, odleglym o xod poczatku w najogol-
niejszym przypadku; w tych wzorach mamy state dowolne

Mn> |, Nn,y>, 0,,
state i d, zaleza od a,.

Wartos¢ tych statych dowolnych moze by¢ znaleziona tylko
wtedy, gdy bedziemy mieli dostateczng ilos¢ dodatkowych danych
dotyczacych wartosci napie¢ i pradow w wdadomych chwilach i w okre-
slonych miejscach.

MowilisSmy juz poprzednio, ze wartosci chwilowe napie¢ i pra-
dow w stanie nieustalonym mozna rozpatrywac¢ jako sume dwdch
wartosci chwilowych, odpowiadajacych stanowi ustalonemu i sta-
nowi przejsciowemu

u= uu+ up,
i="+ipm

Wyzej wyprowadzone réwnania rézniczkowe moga by¢ zastoso-
wane zaréwno do wartosci u i i jako tez do poszczegdlnych wartosci
uu, iu lub up, ip. Oczywiscie w zaleznosci od tego, jaki stan obwodu
rozpatrujemy, state dowolne, wchodzgace do catek ogoélnych rownan
rézniczkowych, beda miaty inne wartosci.

Zajmiemy sie obecnie okresleniem napie¢ i pradow przejsciowych
w okresie nieustalonego stanu obwodu.

Bedziemy wiec mieli ze wzoréw (12) i (13)

T~ |

up==¢e¢ & IM,, sin (f}, + + d) cos a, x +
=1 |

+ N, sin Ont+ ) sin &,x |, (14)

Teoria pradéw zmiennych 29
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——t—eo (
o .
i /i i u ,sin (7, t+ d, + ®) sin a,x +
M1 \
+ Nnsin (7, t+ y3,+ £,) cos a, a |,
dzie
gaz 1/R A\
t (L +¢c)’

« J a*2 o 0%- o
~ 'LC y'LC>y’

1/R A\
y=A(L cr/’

~iy*

tg/\ -
|

§ 121

PRZYLACZANIE LINII W KONCU OTWARTEJ DO ZRODLA
PRADU STALEGO

(15

(16)

(17)

(18)

(19)

Na poczatku linii wartos¢ napiecia pradu statego, do ktorego
przytgczana jest linia w koricu otwarta, wynosi U. Bedziemy mieli

nastepujace warunki graniczne:

przy wszelkich wartosciach |

1) dla x = 0 (na poczatku przy zaciskach) u = U,
Uy
up= 0;
2) dla x = | (w koncu linii) i =0,
iu= 0.
ip=0;

przy wszelkich wartosciach x >0
3) dla 1= 0, u=0,
ul
up=-u;
4) dla t= 0, i =0,
«= °>

S
o
o
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Uwzgledniajgc we wzorze (14) pierwszy warunek graniczny,
otrzymamy no

0=c¢~at ™~ Mnsin (3l + 5K).
=l
Poniewaz réwnos¢ ta powinna mie¢ miejsce dla dowolnej war-
tosci t, wiec at _ n

W ten spos6b, zamiast wzoréw (14) i (15) bedziemy mieli

n=T0
N N, sin (7, t + y3) sin anX, (20)
=1

Nnsin (2,2 + y),+ =) cos arx. 21

Zaktadajgc w ostatnim wzorze, na podstawie warunku (2),
x = I, ip= 0 i zaznaczajac, ze Nn nie moze by¢ réwne zeru, gdyz
wtedy up= 0 przy wszelkich wartosciach x, co przeczy warunkowi (3),
otrzymujemy po uproszczeniu

cos anl = 0O,
czyli ze wszelkie wartosci anl muszg by¢ nieparzystymi wielokrot-
nosciami T7l’ a wiec
axl = ;l al=3-3; «6i=5]*,..., az_1f=(2k-1)-]

stad wynika, ze stala dowolna anmoze mie¢ w tym przypadku tylko
nastepujace wartosci:

n n (2k—\)n
ai= 27’ a3z — 27 —osai’ az2*-i = 2i =
-(2/c-1)al (22)

Rozpatrujgc fale napiecia i pradu wzdluz linii w okreslonej
chwili, spostrzegamy ze wzordw (20) i (21), ze dtugos¢ fali A, otrzy-

mamy, gd
Y, oy a«(x + K) = anX +

2n
skad K =
a,
gdy an—al— , bedziemy mieli A= 47

o
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to znaczy, ze cata dtugosc linii zawiera tylko y4 fali tej sinusoidy,
ktorg nazwiemy sinusoida gtéwng albo pierwszga harmoniczna.

Dla = a3=”" (trzecia harmoniczna) A3=4r
a, /6L( ) ar,

5T . .4
dla a,= a5= 2J (P~ta harmoniczna) z5= -g-;
widzimy wiec, ze cala fala uklada sie na dhugosci linii tylko dla
harmonicznych wyzszych, zaczynajac od pigtej, przy czym bedziemy
mieli tylko nieparzyste harmoniczne.
Uwzglednijmy teraz warunek (3) i zat6zmy we wzorze (20) t = 0,
up= — U, wtedy

=2p _ _
y N, sin ynsin anx = — U, (23)
=1

przy czym, jak stwierdziliSmy wyzej, an moze mie¢ tylko wartosci

podane w (22).

Wz6r (23) daje nam nieskoriczony szereg Fouriera
Ni sin yo sin axx + N 3sin y3sin 3a#x +
+ ... + N 1sin ipgk-i sin 2k — 1) alx + u.
Do tego szeregu wchodza tylko nieparzyste sinusoidy, wiec krzywa

przedstawiajgca naszg funkcje jest symetryczna i wzgledem osi X,
i wzgledem swego poczatku. Oznaczajgc dla dogodnosci

UiX=z, iV2A i sin = A3k t,
bedziemy mieli szereg
Axsinz + A3sin3z + ... + AZA jsin 2k—1)z= — U]
spotczynnik dowolnej sinusoidy okreslimy ze znanego wzoru
n

2

ro1. . T@sin(@k—1zd\

u nas /(z) = — U, wiec
4U —cos 2k—1)z
A3k—i = N2k—i sin yk\= — 25C-| )

czyli ostatecznie

Ntk—i sin y2e\= [2 f _UI') n (24)
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Wreszcie, po uwzglednieniu ostatniego warunku granicznego:

= 0, ip= 0, ze wzoru (21) otrzymamy, po skroceniu przez
(9=00)
N, sin {yjn4- 0,) cos anx = O.
«=i
Poniewaz ta roéwnos¢ powinna mie¢ miejsce przy wszelkich
wartosciach x, przeto kazdy wspotczynnik przy wszystkich cos anx
oddzielnie powinien sie réownac¢ zeru. Uwzgledniajac, ze n= 2/c— 1
otrzymamy
2% Sin Wik— + 7"2*}) = (25)

Ale N2k 1 nie moze by¢ réwme 0, jak wida¢ ze wzoru (24), wiec
powinno by¢

sin {y>2k-i + dak-i) = 0,
skad
V&1 + &k— = 0>
lub w ogole
W2k-1 + 02k—1= kn,
gdzie k — liczba catkowita; wtedy
gva—i = g ;
poniewaz, ze wzoru (19),
tg ®k1= v 12
y
przeto
N
tg Wh- 1= At

Z tego wzoru znajdujemy

sinyj i= —tgg\éz 1 P2
yi +tgV-i YpV -i+y2
poniewaz ze wzoru (17)

(}M1+y*=+«=L,

przeto ostatecznie

sin VLC- 26
! az 1 (20)
Ze wzordw (24) i (26) znajdujemy
4U
N1 —

2 fo— 1) /3 ~LC



454 STANY NIEUSTALONE W LINIACH DtUGICH

Zamieniajac w tym wzorze aX x na jego wartos¢ ze wzoru (22),

a mianowicie

n
a2k—1 ~ (2& 1) 2/1
otrzymamy po skroceniu ostatecznie
2U
N2k—— .
INLC Pk

(27)

Podstawiajgc do wzoréw (20) i (21) znalezione wartosci statych

dowolnych, otrzymamy

=00

2Ue~at

. . (2k—1D)n
U» - Tr==ry -J— sin (/72*1 t —$2) sIin 21
lyTc ¢il n
k=00
2Uke -1  cos {2k—1)n
T-£— > _— Sin fofc-I
T~ f4 Pk 21
albo inaczej
2U il 71X

=- YyjTC e \ sm(&*- $i)sin 2T+

+r (B N2+ MEFEHIHL; +

2U

- , 71X
p=~ 1L e ‘e {-Ism ftlcos-gy +

. [ . 5ua
+ sin p3tcos E9178' + 1 sin [dfc°s 2/ + ..

gdzie

= arctg |

(28)

(29)

(30)

(31)

(32)

(33)

Z tych wzoréw mozemy zbada¢ amplitudy wszystkich harmo-

nicznych, np. dla pierwszej harmonicznej
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- 2U 011 . p.
lip A - 1£~ 6 -N-Sin Pj/ COS
2 Ue~at
Ifm lyj LCPL’
2Ue~a
IItm ILp, '’
a= +%); ~="]/4BLC~ (2~ _ Fc) '

W zaleznosci od wartosci mianownika we wzorach na U lub 1
mozemy otrzymac przepiecie lub przetezenie.

§ 122

PRZYLACZANIE LINII W KONCU ZWARTEJ DO ZRODLA
PRADU STALEGO

Warunki graniczne bedg

przy wszelkich wartosciach t

1) dla x = 0, up —O0; (u= U, uu= U),
2) dla x =1, up = O; (u= 0- uu= 0),
przy wszelkich wartosciach x w granicach 0< x< I
3) dla t= 0; up= — Uu (u=0);
4) dla += 0; ip= —iu [i = 0);

jezeli nie wezmiemy pod uwage uptywnosci, ktéra przy pradzie
statym nie ma praktycznego znaczenia, mozemy zatozy¢, ze w stanie

ustalonym prad wzdtuz catej linii ma jednakowag warto$¢ iu=
gdzie B stanowi oporno$¢ catej linii, wobec czego ip= — B; napiecie
zas w dowolnym punkcie w odlegtosci x od poczatku, w stanie usta-

lonym, wyrazi sie wzorem

uu= U—U-j-= U , wobec czego up= —U (I —y~™.
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§ 123

PRZYLACZANIE LINII W KONCU OTWARTEJ DO ZRODtA
PRADU ZMIENNEGO

Niech wartos¢ napiecia pragdu zmiennego sinusoidalnego w chwili
zamkniecia obwodu przechodzi przez faze ip, czyli ze wartos¢ chwilowa
bedzie okreslona wzorem

W= umsin M + WO

Bedziemy mieli nastepujace warunki graniczne przy wszel-

kich wartos$ciach t:

1) dla x = 0, napiecie u bedzie od razu takie jak po usta-
leniu sie, a poniewaz u = uu+ up, przeto up= 0;
2) dla x =1, i =0, iu= 0, ip= 0;
przy wszelkich wartosciach x > 0:
3) dla =0, u=0, uu+ up = 0, up = — uu;
4) dla t= 0, i=0, iu+ ip= 0, ip= —iu

Wartosci ustalone napiecia uuoraz pradu iujako funkcje zmiennej
odlegtosci x mogg by¢ znalezione ze wzoréw dotyczgcych stanu
ustalonego.

Stosujac te same ogo6lne wzory (14) i (15) dla przejsciowych
wartosci napiecia i pradu i spostrzegajgc, ze pierwsze dwa warunki
graniczne sg te same co i przy pradzie statym, znajdziemy, jak
w § 114,

Mn= 0; cos anl = 0.

Warunek trzeci da nam

Nnsin w,sina,x = -u,,,
1
skad, jak dla szeregu Fouriera,

71

4 r2
sin vld-i = —— sin (2/c—1) alxd (alx);  (34)

0
w tym przypadku uujest funkcjg x, ktdra moze by¢ okreslona przez
stale obwodu i przez wartosci napie¢ na poczatku lub w koncu,
w stanie ustalonym. Wreszcie ostatni warunek daje

- % Nnsin (tp, + &,) cos a,x= —iu
/T
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co znowu nam daje szereg Fouriera, dla ktérego

71

Nk sin ()& + fok—) J' I“cos(2k —l)alxd(alx)
albo
WX i cos &% sinyXk ! + sin axs =
= ----ﬂl I/ L } 2z,,,cos (2/c— 1) axrd (ena). (35)

Ze wzoréw (19) i (17) znajdujemy

) . Y '\LC
COS fok i = Lo -
JI+EN=L vr2+ ~j
\ v2
sin =_h ~ LC-= "hEt
y (A &k

zas ze wzoréw (34) i (35 mozemy znalezé NZX 1 oraz y3Kk Xx.

§ 124

PRZYLACZANIE LINII W KONCU ZWARTEJ DO ZRODLA
PRADU ZMIENNEGO

Bedziemy mieli warunki graniczne analogiczne do tych, ktdre
ustalilismy dla pradu statego, mianowicie:

przy wszelkich wartosciach I:
1) dla x =0, up=20 (u= u),

2) dla x =1, w=20 (u=0, uu= 0);
przy wszelkich wartosciach x > 0:

3) dla t—0, up= —uu {u=0),

4) dla t=0, ip= —iu (i=0),

gdzie uui iusg funkcjami x, ktore moga by¢ okreslone na podstawie
znanych wzoréw dla stanu ustalonego. Sposéb rozwigzywania za-
gadnienia jest taki sam jak w § 123.
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§ 125
LINIANIEODKSZTALCAJACA.WYRAZENIEWARTOSCI CHWILOWYCH
NAPIEC | PRADOW W POSTACI DWOCH FAL

Znaczne uproszczenie we wzorach dla napie¢ i pradéw otrzy-
mamy rozpatrujgc linie, w Kktorej stale tworza znang proporcje:

R _A_
czyli tzw. linie nieodksztatcajacg. W tym przypadku wzory (16)
i (18) daja R A
c (37
y = 0.
Wezmy og6lne rdwnanie rézniczkowe (3)
92u n , .. 9u 92u
~dx*~ U+ (RC+LA) gj +LC J» (38)
zatozmy
u= Ye~a (39)
gdzie™F jest na razie niewiadomag funkcjg dwdch zmiennych x i t:
Y = f[x, t);
wtedy
9u uoy 92u _ g 9ty .
9x dx * 9x2 dx2’
du_ —a(dY v\ 92U _ -ati92y 9Y \

ot e \dt aY)’ 9t2 e \9t2 21091 +a Y)m

Podstawiajgc te wartosci do (38) i dzielgc obie strony przez
e ~ 'otrzymamy

92Y

oo RAY + (RC+LA)(?Y—ayyj+ LC(?*Y-- 2adY +a2y"=

= Y[RA-a(RC + LA) Ya2LC] +
+-Y [RC+ LA —2alLC] +~ Y LC. (40)

Uwzgledniajac wartosci a ze wzoru (37), obliczamy

RA-a[RC + LA) +a2LC = RA + R2C

RC + LA —2alLC RC+RC-2RC = 0.
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Wobec tego réwnanie (40) otrzymuje postaé
dz2y dz2y
dx2 LL dt2
Oznaczmy
a= 41
Vic’ (“1)
CZ¥]|i LC = 35-, woéwczas
dz2y %32F
— = a
dt2 ca?2 (42)

Jest to znane réwnanie rozniczkowe d'Alemberta, wyprowa-
dzone dla drgajacej struny. Gatka ogoélna tego réwnania ma postac:

Y = Ix[x —af) + /2@ + ai), (43)

gdzie /xi /2 stanowig na og6t dowolne funkcje odlegtosci a i czasu i.
Mozna tatwo sprawdzi¢ stuszno$é tego rozwigzania, gdyz

- o= — i NMl—r (— - %
gt~ abea A G ay
£9F d2ft
a2+ .
dl - d(x —at) 3@+ ai)2
2 dfi  4m
fd(x—al)2  d(x + al)z]o
dy ofi 1 of,
dx d(x—al) d(x + al)
d2y d2u

dx2 d(x—ai)2 1d(x + al)2
skad widaé, ze warunek (42) spetniony.
Podstawiajgc wartos¢ F ze wzoru (43) do (39), otrzymamy
u= e-af{fl(x—al) + /2[x + az)}.
Stosujgc nasze rozumowanie do stanu przejsciowego bedziemy
mieli w=e a{fl{x—al) + f2(x + al)}. (44)

Dla znalezienia i bierzemy wzér (2)

Tax - AUP T Cdpp
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podstawiajgc tutaj znaleziong warto$¢ uwp, otrzymamy
9h
-4 t +«m- “c (. +« 2 ax_

+CaT™ ar}-.--{(~-.0(0+1,)-

re i N *I» V e
- \ di((x-+at) d(x + at)Jf

Wobec (37)
A—aC=A—A =0,
wiec
— = _co«— Ls/'(*-»] 3@+ @) |
dec I 5(3:—62)) 5@+ a) |

albo, podstawiajgc a= i zmieniajac znaki,
® : Ag dafi (x-ai) df2{x + a? (
a [/ L I 3(@a—=2 g(x + at) |
Catkujac wzgledem a, otrzymamy

V=]lIx-e"a{/ll{x-at)-f2{x + af> (45)

Stata dowolna powinna réwnac sie zeru, gdyz dla Z= 00, y= 0
oraz ip= 0.

Stosunek amplitud napiecia i natezenia pradu stanowi opor-
nos¢ falowa Z; w rozpatrywanym przypadku

[-

Wzory (44) i (45) daja nam wartosci chwilowe napiecia i pradu
przejsciowego w dowolnym punkcie przewodu.

Rozpatrzmy dwa punkty znajdujgce sie w odlegtosci dx; w tym
drugim punkcie warto$¢ napiecia i pradu bedzie taka sama jak
w punkcie pierwszym po uptywie czasu dt. Wobec tego

1) x+dx—a @+ dt) = x —at,
2) x+dx+ aft+ dt) = x + at;
1 pierwszego réwnania otrzymujemy

dx —adt=0; a= ﬁ’f ,

z drugiego réwnania

dx

dx+ adt=0; a= ot
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Widzimy stad, ze spétczynnik a stanowi predkosé, z jaka sie
rozchodzg z jednego dowolnego punktu do drugiego te same wartosci
pradu i napiecia; inaczej mowigc, jest to predkos¢ rozchodzenia sie
fal napiecia i pradu wzdiuz przewodu.

Ze wzoréw (44) i (45) stwierdzamy, ze napiecie stanowi sume
dwoch fal, prad za$ rdéznice dwdch fal, ktére rozchodza sie z jedng
i ta sama predkoscia, ale w kierunkach przeciwnych (predkosci
maja znaki przeciwne); fale sa ttumione odpowiednio do funkgji
wyktadniczej e~at, ktéra jest funkcja malejaca.

Fale pradu sa podobne do odpowiednich fal napiecia; amplitudy

fal pradu otrzymujemy z amplitud napiecia, mnozac je przez co

stanowi odwrotnos$¢ opornosci falowej linii w rozpatrywanym przy-
padku.

Obie fale, ktdre mamy w powyzszych wzorach, nazywamy fa-
lami wedrownymi. Pierwsza z tych fal, wychodzaca ze zrédia, sta-
nowi fale gtéwnag; druga, biegngca z tg samag predkoscia, ale w Kie-
runku przeciwnym, stanowi fale wpadajacg do zrodta lub fale odbitg
na koricu linii.

§ 126

PRZYLACZANIE LINII NIEODKSZTALCAJACEJ DO OPORNOSCI
RZECZYWISTEJ

Fale wedrujgce, natrafiajgc na przeszkody w postaci skupio-
nych opornosci, bagdz rzeczywistych, bagdz urojonych, podlegaja
czesciowo odbiciu, czesciowo zatamaniu.

Rozpatrzmy najpierw przypadek, gdy fala z linii nieodksztal-

cajacej o opornosci falowej Z

natrafia w odlegtosci | od poczatku linii T
na opornos$¢ rzeczywistg R (rys. 228).

Wartos¢ chwilowa napiecia przej-
Sciowego na tej opornosci wyrazi siewe- 1____ I
dtug wzoru (44) w sposéb nastepujacy: Rys. 228

u,=e Ei il—at) + fzil+ at>]. (47)

a wartos¢ chwilowa natezenia pradu przeptywajgcego przez opor-
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no$¢ R wedtug wzoru (45) z uwzglednieniem wzoru (46) przybierze
postaé

h=~z~ [/i(~ at)- U(Z+at)J. (48)

Oznaczajgc w skrdceniu pierwsza fale jako fale gtéownag przez / ,
druga zas$ jako fale odbitg przez /0, czyli zaktadajac

e « Ix[l—at) = fg,
e~a 2{l + at) = N0,
bedziemy mieli ze wzoréw (47) i (48)

u2= tg+ /O! (49)
h--z (h-fo)- (50)
Ale “r= 2R,
wiec R
vy ~7(h-fo)- (51)

Przez zestawienie ostatniego wzoru ze wzorem (49), otrzymujemy

skad

ii-Z
r to= R+ Z U- (52)
Wyraz R .7 )
S_ R+Z

stanowi wspdtczynnik odbicia fali gtéwnej.
Podstawiajgc wartos¢ /,, ze wzoru (52) do wzoru (51), bedziemy

mieli ,
R -z 2R
u2 R+ 7 R+z U (54)
Wyraz )R
@« (55)

stanowi wspotczynnik przejscia fali gtownej.
Ze wzoru (50), przy uwzglednieniu wzoru (52), otrzymamy

Z\Is R+Z,) R+Zh (56)
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Z powyzszych wzoréw na u2oraz j2 mozemy otrzymacé wartosci
napiecia i natezenia pradu, gdy linia jest w stanie jatowym lub gdy
jest w stanie zwarcia. W pierwszym przypadku R = o0, wtedy

“2= 2/f,
i2= 0.

Ze wzoru (52) wynika, ze w tym przypadku
D= fg>

wskazuje to, ze fala odbita ma ten sam znak co i fala gtéwna, wo-
bec czego napiecie na opornosci wzrasta do podwojnej wartosci na-
piecia u, ktére mamy u zrddta. Dla pradu za$ fala odbita otrzymuje
znak przeciwny, skutkiem czego prad zanika.

Na rys. 229 pokazany jest przebieg fal napiecia i pradu w przy-
padku, gdy nie uwzgledniamy ttumienia (a = 0). Potozenie 1 odpo-

u

Rys. 229

wiada chwili, gdy pierwotna fala gtéwna nie doszta jeszcze do korica
linii; w koncu zostaje odbita, przy czym dla napiecia z tym samym
znakiem, dla pradu ze znakiem przeciwnym. Potozenie 2 wskazuje
stan po tym odbiciu; napiecie sie podwaja, prad za$ zanika; stan
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taki bedzie trwat, zanim fale nie dojdg do poczatku linii; tu napiecie
powinno sie zréwnaé z napieciem zrdédta, wobec czego zachodzi
odbicie fali ze zmiang znaku zaréwno dla napiecia jak i dla pradu.
Potozenie 3 daje nam obraz, gdy w pewnej odlegtosci od Zrodia ujemne
napiecie zniwelowato do wartosci ul poprzednie napiecie réwne 2ul
oraz ujemny prad osiagnat swojg wartos¢. Po dojsciu takiego stanu
do konca linii zachodzi odbicie fali napiecia z tym samym znakiem,
czyli ujemnym, wobec czego napiecie spada do zera, fala za$ pradu
odbija sie ze znakiem przeciwnym, czyli dodatnim, co powoduje za-
nikanie pradu, otrzymujemy potozenie 4. Taki stan trwa, az fale dojda
do poczatku, wtedy rozpoczyna sie wszystko na nowo w takim sa-
mym porzadku.

Najkrotszy czas, czyli okres T, po uptywie ktérego nastepuje
powtorzenie zjawiska, znajdziemy biorgc pod uwage, ze powtdrzenie
zjawiska zachodzi po czterokrotnym przebiegu fali wzdiuz catej
dhtugosci linii Zi ze predkos¢ przebiegu fali wynosi a; oczywiscie

41

T = .
a

znaczy to, ze na diugosci linii mamy JL catkowitej fali.

Gdy linia jest w stanie zwarcia R = 0, wowczas ze wzoru (54)
wynika, ze u2= 0,
fala napiecia odbija sie w koricu ze znakiem przeciwnym.

Na podstawie wzoru (56), w tym przypadku,

12— 22{9
a poniewaz fg=. UL
a
jL- i
25
rzeto
P i2= 21,

znaczy to, ze fala napiecia zostaje w miejscu zwarcia linii odbita
z tym samym znakiem.

Ciekawy przypadek zachodzi, gdy R = Z; wowczas, jak to wy-
nika ze wzoru (52). o~

to znaczy, ze nie zachodzi odbicie; cata fala gléwna przechodzi przez
opornos$¢ R.
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§ 127

PRZYLACZANIE LINII NIEODKSZTALCAJACEJ DO INNEJ
OPORNOSCI FALOWEJ

Rozpatrzymy obecnie przypadek, gdy do linii nieodksztatca-
jacej z opornoscig falowg ZI.przytgczamy opornos¢ falowg Z2 dru-
giej podobnej linii (rys. 230).

Zamieniajgc we wzorach poprzedniego paragrafu Z na Zxi R
na Z2 otrzymamy wzory odpowiadajgce nowym warunkom. Ze
wzoru (53) otrzymujemy dla rozpatry-

wanego przypadku wspétczynnik odbicia p —--------------- N
fali w miejscu przytgczenia oporno- zZ, z,> u
sci 22
' s A &

Z 2+ z X Rys. 230

ze wzoru (55) za$ wspétczynnik przejscia fali:

o7
% 725+ %2
Fala odbita w pierwszej linii w miejscu przytaczenia Z2 wyrazi
sie wzorem , t
fo = soft,
napiecie za$ na opornosci bedzie
272
U2  splg £ % *

Tak samo znajdziemy prad i2, wchodzacy do opornosci Z2;
ze wzoru (56)

2 , 2
Al z2fs Z1+ ;2 o!
ale ]
ui ~ Ziii,
wiec 27X

I>—

zZ X+ z 211«

W przypadku, gdy Zx= Z2, wspo6tczynnik odbicia staje sie
rowny zeru, czyli cata fala gtdwna przechodzi przez opornosé¢ Z2.

Teoria pradéw zmiennych 3
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