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'■ €ZĘŚĆ IV .

ROZDZIAŁ XVII.

O c a łk a c h  n ieo zn a czo n yc h .

§ 203. Definicja całki nieoznaczonej.

W rachunku różniczkowym rozwiązuje się następujące zagadnienie. 
Mając daną funkcję (pierwotną): „

F(x)

■wyznaczyć jej funkcję pochodną:

F '(x ) =  f(x )

Zarówno w matematyce czystej, jak i w jej zastosowaniach, mamy często 
do czynienia z zagadnieniem odwrotnem, a mianowicie, mając podan% 
funkcję (pochodną):

/ fix )

■chcemy wyznaczyć jej funkcję pierwotną:

F (x )
T

t. j. taką funkcję F (x\  której pochodną jest dana funkcja f(x).
Tak np. mając podaną funkcję:

f{x) =  8in X

stwierdzamy z łatwością, że jej funkcją pierwotną jest:

F{x) =  — C08 X

albowiem F '(x ) =  —  ( — sin aj) =  f{x).
Podobnie dla funkcji:

f{x) — x%
funkcją pierwotną jest:

F (x )  — $ x h

jak to łatwo sprawdzić przez różniczkowanie.
Racjmnek różniczkowy i całkowy, T. Z. 4



Przy rozwiązywaniu takich zagadnień należy szukać odpowiedzi na 
trzy następujące pytania:

1) czy do każdej danej funkcji f {x )  należy jakaś funkcja pierwotna, 
czy też /'(x) musi spełniać jakieś specjalne warunki?

2) czy do danej funkcji może istnieć tylko jedna funkcja pierwotna, 
czy też może być ich więcej ?

3) w jaki sposób wyznacza się funkcję pierwotną do danej funkcji f(x)?
Odpowiedź na pierwsze pytanie wymaga dość subtelnych rozważań.

W  X V I I I  rozdziale zajmiemy się tą kwestją nieco dokładniej i okażemy, 
że w każdym'razie do każdej funkcji ciągłej istnieje funkcja pierwotna 
(zob. § 215), a także wiele (jakkolwiek nie wszystkie) funkcyj nieciąg­
łych posiada funkcje pierwotne.

Bez trudności natomiast można rozstrzygnąć następnie drugie py­
tanie. I tak łatwo spostrzec, że, jeżeli istnieje jedna funkcja pierwotna 
F {x )  do danej funkcji f{x\ to istnieje ich nieskończenie wiele. Tak np. 
dla funkcji f {x )  =  x* funkcją pierwotną jest nietylko F (x )  =■ ^x*, lecz 
także up. F¡(x) =  Ja:8 - f  5, F t(x) =  %xi —  2, F a(x) —  -f-1  i Ł d.,
ogólnie:

F { x ) = $ x »  +  C

przyczem C oznacza dowolną liczbę stałą. Istotnie pochodną każdej takiej 
funkcji jest /(x ) = x i Ogóluie, jeżeli F (x )  jest funkcją pierwotną danej 
funkcji f(X), to istnieje cała jednoparametrowa gromada funkcyj pier­
wotnych, a mianowicie: F (x )  -f- C. W  geometrycznej interpretacji obrazem 
jednej funkcji pierwotnej jest jakaś linja, a obrazy wszystkich innych- 
funkcyj pierwotnych powstają przez równoległe przesunięcie tej linji 
w kierunku osi y-ów. Ta gromada zawiera już wszystkie funkcje pier­
wotne; wynika to z twierdzenia 2 z § 101 (tom 1, str. 318), a miano­
wicie: jeżeli dwie funkcje mają pochodne równe dla wszystkich wartości 
zmiennej niezależnej, to te funkcje mogą się różnić conajwyzej o stałą liczbę.

Gromadę funkcyj pierwotnych do danej funkcji f [x )  nazywamy 
całką nieoznaczoną funkcji f (x )  i oznaczamy ją symbolem:

J f { x ) d x

czytaj: „całka z /\x)dxu. A więc:

(O / f{x )dx  —  F{x) C

Pochodzenie znaków J i dx, występujących w tym symbolu, w y ­

jaśnimy później (por. § 212). Funkcję f [x )  (pochodną) nazywamy tu 
funkcją podcałkową a liczbę C stałą całkowania.
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Pochodną prawej strony jest funkcja podcałkowa. A  więc wzór (1) 
jest równoważny z wzorem:

(2) i  ( * • ( . )+  c ) - r t « )

Obliczanie całki nieoznaczonej z danej funkcji f ( x ) nazywamy całkowa 
mem, tej funkcji. Metody obliczania całek i badanie ich własności, sta­
nowią przedmiot rachunku całkowego.

Celem przekonania się, czy całkowanie zostało poprawnie wyko­
nane, należy, w myśl wzoru (2), obliczyć pochodną znalezionej gromady 
funkeyj F {x )  -f- C lub, co na jedno wyjdzie, pochodną funkcji F (x ) .  Cał­
kowanie można także pojmować jako rozwiązywanie następującego pro­
stego równania różniczkowego (por. tom I, § 87, str. 278):

(3) y' =  f (x )
Stąd:

y =  f ( x )  dx —  F (x )  +  C

Zatem najogólniejszem rozwiązaniem równania różniczkowego (3) jest 
cała gromada funkeyj, a mianowicie całka nieoznaczona z funkcji f{x ). Tę 
całą gromadę funkeyj nazywamy ogólnem rozwiązaniem danego równania 
różniczkowego lub ogólną całką tego równania. Każdą zaś poszczególną, 
funkcję pierwotną, należącą do tej gromady, nazywamy rozwiązaniem 
szczegółowem równania różniczkowego (3) lub jego całką szczegółową.

Przystępujemy obecnie do trzeciej kwestji, wiążącej się z naszem 
zagadnieniem, a mianowicie do omówienia sposobów wyznaczania funkeyj 
pierwotnych czyli do metod całkowania. Otóż jaanem jest, że każdy, po­
znany w rachunku różniczkowym wzór na obliczanie pochodnych, można za­
razem pojmować jako wzór na obliczanie całki z jakiejś funkcji; jeżeli bowiem

F  (x) =  f(x ), to można to napisać także w postaci.J ' f (x )d x  =  F (x )  -f- C.

W ten sposób otrzymamy z rozmaitych specjalnych i ogólnych wzorów 
rachunku różniczkowego rozmaite specjalne i ogólne wzory rachunku 
całkowego. Jednakże zaznaczamy już teraz, że obliczanie całek jest znacz­
nie trudniejsze od obliczania pochodnych. Do każdej bowiem funkcji ele­
mentarnej (w tomie I na str. 96 podano, które funkcje uważamy za ele­
mentarne) potrafimy z łatwością znaleźć pochodną i ta pochodna jest- 
znowu jakąś funkcją elementarną. Natomiast okaże się, że całki wielu 
funkeyj elementarnych są bardzo skomplikowanemi, nieelementarnemi 
funkcjami przestępnemi, których nie można oczywiście wyznaczyć drogą 
elementarną. Jakkolwiek więc proces całkowania jest stosowalny do szer­
szej klasy funkeyj, aniżeli proces różniczkowania (albowiem istnieją całki

1*
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dla wszystkich funkcyj ciągłych a nawet dla wielu funkcyj nieciągłych, 
podczas gdy pochodne istnieją tylko dla funkcyj ciągłych i to nie dla 
wszystkich), to jednak efektywne obliczenie całki jest zwykle o wiele trud­
niejsze, aniżeli obliczenie pochodnej.

Zobaczymy w dalszym ciągu, że bardzo wiele zagadnień z geometrji 
i z fizyki sprowadza się do obliczania funkcyj pierwotnych. Tutaj już 
jednak zwrócimy uwagę na jedno odrazu się nasuwające zagadnienie 
,z dynamiki. Widzieliśmy mianowicie, że mając podaną w ruchu prosto- 
linjowym drogę jako funkcję czasu: s =  f(t), potrafimy wyznaczyć pręd­
kość: v(t) =  f '  (t) i przyśpieszenie g{t) — v’ (t). Stąd wynika, że mając po­
dane przyśpieszenie jako /funkcję czasu, obliczamy prędkość zapomocą

całki: v(t) =  j 'g ifyd t,  mając zaś podaną prędkość jako funkcję czasu,

obliczamy drogę zapomocą całki s = J v  (t) dt.

Tak np. wiedząc, że przyśpieszenie jest stałe: g — a w ciągu całego

badanego czasu t, znajdujemy, że prędkość v =  J ' idt =  at -j- C,. Stąd zaś

znajdujemy wzór na drogę: s — j ( a t  - f  Cf) dt =  Ąat* +  C, t - f  Ct. Stałe

A  * A  można czasem wyznaczyć z początkowych warunków zadania, 
np. z żądania, żeby w początkowej chwili, t. j. dla t —  0, było s =  0 i »  =  0; 
wtedy wyniknie z tych wzorów Ç, =  0 i C2 =  0 i pozostanie s =  ^at\ 
v =  at. Inne wartości stałych otrzymamy, żądając, aby w chwili t =  0 
prędkość miała wartość v0 różną od zera» a droga wartość s0. Pozostawia 
się czytelnikowi obliczenie stałych C1 i Ct przy pomocy tych warunków 
początkowych.

§ 204. Odwrócenia specjalnych wzorów rachunku różniczkowego.

a) Jeżeli funkcja podcałkowa jest stale zerem, to całka nieozna­
czona ma stałą wartość C, albowiem z wzoru:

d(C)

wynika:
dx

=  0

/ 0  dx =

Jeśli więc obrazem funkcji podcałkowej jest oś x-ów, o równaniu y =  0, 
to obrazem gromady funkcyj pierwotnych jest gromada wszystkich pro­
stych równoległych do tej osi (wraz z nią samą).

b) Poznaliśmy w rachunku różniczkowym wzór na pochodną potęgi 
a mianowicie:

d ,
¿¿ (xn) =  nx"-'
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lub w formie różniczki. 

Wobec tego.

d(xf*) — nx"~' dx 

J v x " ~ '  dx =  x" -f- C

Tutaj funkcja podcałkowa nx”~' jest dość skomplikowana.
Prostszą funkcję podcałkową otrzymamy, tworząc pochodną funkcji!

x"+)
*»+1  '

a mianowicie:

czyli.

i I x*+' \ _ 
x \ ” - f 1 /

( ^ ) -d [ v + T }  =  x " d*

Stąd otrzymujemy bardzo ważny wzór

(4) / x"+'
=  7 + 7  + c

Wzór ten jest prawdziwy dla wszystkich wykładników n z wyjąt-

kiem n 1. Dla n =  — 1 ma funkcja podcałkowa postać —. Otóż

wiadomo z rachunku różniczkowego, że funkcja -  jest pochodną funkcji
x

log,». Tak więc z wzoru: 

wynika, że:

d (log x )  — -  dx 
x

fi dx — log x  -f- C

Tego wzoru można używać tylko dla dodatnich x. Dla ujemnych 
bowiem x  me jest określona funkcja lo g » ;  natomiast wtedy funkcja 
log (— » )  ma określone wartości.

Ponieważ:

d log (—  x) = --------(— 1) dx =  -  dx
—  X  X

przeto dla x  <  0 jest:

L - d x  =  lo g (—  » ) - f  C
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Obydwa te wzory można ująć w jeden wzór następujący*

(5) j d x  =  log |® | - f  C

Istotnie bowiem dla x  >  0 otrzymujemy log | a; | =  log aj, a dla x  <  O 
log ja?| =  lo g (— ®).

Przy pomocy wzorów (4) i (5) potrafimy więc scałkowaó każdą po­
tęgę zmiennej niezależnej.

Tak np.

/
r  a;0+1

1 • dx =  I x 9dx =  Q-q—j +  C =  x  -f- C

czyli 

(4a) 

Podobnie:

f  dx =

'  J~x dx =  £ ®* C, j x *  dx — j  x° - f  C,

c) Z wzorn. 

otrzymujemy:

(6)

y ®*+vj

* vł<te==r + j/ §  +  c

d (e1) =  e* da:

/ V  da; = e* -(- G’

Dla ogólnej funkcji wykładniczej dogodnie jest wyjść z wzoru:

Stąd wynika

(D

a‘ \ a* log .a ,
----' — — — — dx — a* dx

log ea

f a' dx =  -----p C = . a‘ log ae -j- C
J  log ta

d) Pochodne (lub różniczki) funkcyj trygonometrycznych prowadza 
do następujących wzorów:

( 8 ) d (sin x) —  cos x dx a więc J  cos xdx — sin x - f-  C

(9 ) d (—cos x) —  sin x dx n n sin xdx — —  C08 X  - f -  C

( 1 0 )
dx

d ( t g  x) =  — — fi fi f - % -  = t f f  X  - f  c
COS2 X J  C 0 8 -X

( U )
dx

d( — ctg®) =  —r—j — 
Hin* x

i  dx
— ctg x  - f -  Cn 17 J  sin2®
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e) Pochodne (lub różniczki) funkcyj cyklometrycznycb prowadzą do 
następujących wzorów;

dx
d (arcsin x) =

d(—  arccos te) =
dx

n x ‘

a więc

( 12)
f  dx

J  | / r ^ = arcsin x  -f- C =  — arccoB x  -j- C‘

Obydwa wyniki me są zasadniczo różne, ponieważ arcsin x  różni się od 
funkcji — arccos x  tylko o stały dodajnik, jak to wynika z wzoru;

arcsin x  -(- arccos x  =  £ n

(por. tom I, str. 69) A więc C =  C-\- ^n.
Podobnie dwa wzory:

dcc dcc
d (a r c t g ® )= — —  i d ( - a r c c t g a ; ) = 1—

prowadzą do wzoru :

03) ; =  arc tg x  +  C =  — arc ctg® G
1 - r  x

Obydwa wyniki są tylko pozornie różne; kładąc bowiem G =  Ąn -|- C, 
widzimy, że obydwa wyniki są identyczne, jak to wynika z wzoru; 
arc tg x -(- arc ctg x — £ n (por. tom I, str. 70).

Zwróćmy uwagę na ciekawy fakt, że całki niektórych prostych 
funkcyj są dość skomplikowanemi funkcjami.

Tak np. całką wymiernej funkcji * jest przestępna funkcja log|aj|;
CC

całką dość prostej wymiernej funkcji —- -  s jest przestępna funkcja arc tg ar,

całką algebraicznej niewymiernej funkcji =  jest przestępna funkcja

arcsin x.

Wszystkie te wzory należy dokładnie zapamiętać, są one bowiem 
równie ważne i równie często stosowane, jak odpowiednie wzory ra­
chunku różniczkowego.

Nie znajdujemy wśród tych wzorów całek tak ważnych elementar­

nych funkcyj, ja k ; tg x , log x, arc tg ®, i t. p.
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Istotnie, trudno jest odrazu odgadnąć, z jakiej funkcji należy utwó 
rzyć pochodną, aby otrzymać np. log x  lub arc tg x. Rozszerzymy znacz­
nie zakres funkcyj, które dadzą się w elementarny sposób scałkować, 
opierając się na odwróceniach niektórych ogólnych wzorów rachunku 
różniczkowego.

§ 205. Odwrócenia niektórych ogólnych wzorów rachunku
różniczkowego.

a) Wyłączanie stałego czynnika przed znak całki.
Niechaj-i1 (#) będzie funkcją pierwotną funkcji/(a;), to F '  (x) —  f (x )  czyli:

(I) J ' f { x )  dx =  F  (x) - f  C.

Zastosujmy do iloczynu a -F (x ),  gdzie a oznacza dowolny stały, różny od 
zera czynnik, znany wzór rachunku różniczkowego (por. tom I, § 75 
str. 244):

d [a • F  (a;)] — a-d [F (x ) )  — a f{x ) dx.

Stąd wynika, że:

J  a f (x )  dx — a F (x )  +  C,

Porównajmy ten wzór z wzorem, otrzymanym z (I ) przez pomno­
żenie obu stron przez a, t. j. z wzorem:

a - J ‘f{x ) d x =  a- F (x )  +  a-C

Widzimy, że prawe strony obydwu wzorów będą sobie równe dla każdej 
wartości C, jeżeli tylko obierzemy C, == a C. Prawe strony są także równe 
dla każdej dowolnie obranej wartości C,, jeżeli tylko obierzemy C =  Ct :a, 
co się da zawsze uczynić, ponieważ założyliśmy, że a jest różne od zera. 
Można więc zawsze dobrać stałe całkowania tak, że zachodzi równość:

(14)

Wzór ten wypowiadamy w następujący sposób;

stały czynnik różny od zera można wyłączyć przed znak całki. 

Przykłady.

1) J 5 x 3 dx —  5 J ' d x  =  | x* -f- C

2) J'4 cos x dx —  4 j  cos x  dx — 4 sin x  -j- C
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Fig. 1.

4 n* n* tnx 4 7i* n1

3) y * | c t e =  2 y ’^  =  2log|®| +  C — lo g ^  +  C

4) Naczynie w formie walca kołowego wiruje około swej osi z stałą, 
prędkością kątową, wykonując n obrotów na sekundę. Jaką postać ma 
swobodna powierzchnia cieczy, znajdującej się w tem naczyniu? Na fig. I 

przedstawiono przekrój tego naczynia za- 
pomocą płaszczyzny pionowej. Oś obrotu 
obieramy za oś y-ów a początek układu 
w O. Na każdy punkt A cieczy, mający 
masę m, działają dwie siły: siła odśrodkowa 
Pj = 4  Ti* mx, prostopadle do osi obrotu, 
gdzie x  oznacza odległość punktu A od 
osi obrotu i siła ciężkości Pt =  mg, zwró- 
coua pionowo w dół. Wiadomo, że swobo­
dna powierzchnia cieczy musi być w każ­
dym punkcie prostopadła do wypadkowej 
z wszystkich sił, działających na ten punkt.
Oznaczmy kąt, zawarty między styczną do swobodnej powierzchni a osią 
odciętych, literą a, to tg a =  P1: P t

czyli:
dy _ 
dx

Stąd:
/ '4 tzs m s ___

y — I --------x  dx =  - —
v 9 9

Jest to parabola. Najniższy punkt tej paraboli otrzymamy dla x  — O; 
rzędna tego punktu, oznaczmy ją a, ma wartość a — C.

Zatem swobodna powierzchnia cieczy wirującej ma postać parabo- 
loidy obrotowej.

b) Całkowanie przez rozkład (całka sumy).
Z wzoru na różniczkę sutny dwóch funkcyj:

d (F (x )  -f- G (x)) =  d F {x )Ą -  dG (x) =  {f{x) -f- g (* ) )  dx, 

gdzie F '(x )  — f (x ),  G '(x ) —  g{x), otrzymujemy:

J ( f ( x )  - f  g (z )) dx — F (x )  +  G (x) - f  C 

Ponieważ zaś: J f { x )  dx —  F (x )  -4- Cxt J 'g {x )  dx — G (x) -(- C3ł

przeto: J ’fiB) dx -(- J g  (x) dx =  F {x )-\ -  G (x) +  C, -f- C, 

Wyznaczmy stałe całkowania tak, aby zachodził związek C =  Cj -}- Ct.

mg

4 7l*n*X*

•x

9 jT 2
9 +  C = - ~ x * + C  
c 9
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W tedy:

(15)

To znaczy: całka z sumy dwóch funkcyj jest równa sumie całek z tych 
funkcyj. Twierdzenie to odnosi się — jak to łatwo stwierdzić — także do 
większej liczby dodajników.

Przykłady.
1) Przy pomocy wzorów (4), (14) i (15) można scałkować każdy 

wielomian:
f{x) =  a0 -f- a, x  +  a.% x* -f- a, a;5 +  ... +  a„ x"

I tak :

J  f(x )dx — J  a0dx +  J^a,xdx-\- J  at x * d x +  j ' a i x i dx  + . . . . +  j^anafdx 

— cioj'dx-\~ax J xdx -[ -a lJ ' x i dx-\-aaJ ' x ’dx-j-.^-j- anJ "x "d x

a więc:

j f(x ) dx =  a„ x  -f- £ a, x2 +  i  - f  i  a3 * 4 +  •• ■ +  ^ j  « ^ " +l +  C

2) Niekiedy udaje się rozłożyć funkcję podcałkową, której całka 
nie jest nam znana, na takie dodajniki, których całkowanie potrafimy 
wykonać.

Tak np. postępujemy z całką:

J  tg* a)dx

Korzystamy z wzoru: tg*® =  sec*® — I
Oznaczmy krótko szukaną całkę literą / (jest to początkowa litera 

słowa: Integral, oznaczającego w języku niemieckim i francuskim całkę). 
A więc:

l  —  f i — \------l id *  =
J  Icos*® /

~ ,/V os*®  +  =  tga? — J d x  =  igx -  x-\- C

Taki sposób obliczania całki nazywamy metodą całkowania przez rozkład.
3) W podobny sposób postępujemy z całką:

• = ( ____ i i ____
J  sin*® cos*®
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Zamiast 1 możemy napisać w liczniku sin'® +  0 0 8 *0 ;, a wtedy.

1/ sin*® - f  cos2® _  f
s i D 2"® C O S * ®  J COS2 ®

a więc: Z =  tg® —  ctg® -|- C.

dx 4- f - X -
J  sin*®

dx

§ 206. Całkowanie „przez części“ (per partes)

Bardzo ważną metodę całkowania otrzymuje się z wzoru na pochodną 
iloczynu dwóch funkcyj u(x) i v(x). Załóżmy, że te funkcje posiadają 
ciągle pochodne, to:

d(u(x) • v(x))
dx

— u [x )v '(x ) +  v(x)u '{x)

lub w formie różniczkowej:

(a| rf(u(®) • »(®)1 =  w(®) • v '(x )dx  - f v[x) • u {x )d x

co można także napisać w postaci:

d(u(x) • »(®)) =  u(®) • dv[x) +  v(x) • du(x) 

lub w skróceniu:
d(uv) =  udv 4“ v(^u

Z wzoru (a) wynika, że:

a stąd:

J u ( x )  •»'(*) dx 4* J "n{%) • u'(x) dx =  u(x) • «(®) 4- C 

J u ( x ) -  u'(x) dx — u(x) -v(x)  4- C — J"v(x)  ■ u'(®) dx

Stałą C możemy połączyć z stałą, zawartą w ostatniej całce nieoznaczonej, 
w jedną nową stałą, wobec czego można napisać otrzymany wzór w postaci:

(16) J 'u (x )  v'(x) dx — u{x) v(x) j  v (x )u ' (x )d x

lub w skróconej postaci: 

(16a) udv =  u v — J " »  d u

Należy pamiętać o tern, źe w pierwszej całce v nie jest zmienną, według 
której całkujemy, lecz dv jest tylko skróceniem wyrażenia v '(x )d x  
i podobuie du w drugiej całce.

Stosowanie tego wzoru nazywamy całkowaniem „przez części“  lub 
„per partes“ . Wzoru tego używa się w następujący sposób: rozkładamy
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w calce J'f{x) dx funkcję f (x )  na dwa czynniki: u(x) • v'(x) tak, aby

całka v(x) drugiego czynnika była znana lub łatwa do obliczenia; następnie 
stosujemy wzór (16); otóż często okazuje się, że całka, występująca po 
prawej stronie tego wzoru, jest łatwiejsza do obliczenia aniżeli całka, 
znajdująca się po lewej stronie. Zwykle postępuje się tak, że całe wyra­
żenie f (x )d x  rozkłada się na czynniki u(x) i v‘(x) dx =  dv(x) czyli 
krótko u i dv i używa się wzoru (16 a).

Przykłady.
1) Chcemy obliczyć

/ '
log x  dx

Rozkładamy w tym celu wyrażenie pod całką na dwa czynniki:

M =  loga; i dv =  dx
Wobec tego:

du — —dx a v — x 
x

Stosując wzór (16aj, otrzymujemy:

f log x dx =  x  log x — J x •  ̂dx — x  log x  — Jdx — x  log x  — x  4- C

2) Obliczyć: 

Kładziemy:

c o s , dx

u —  x L dv ~  cos x dx

Stąd: du — 2xdxy v =  sin *.
Według wzoru (16a) otrzymujemy;

(b> J x *  cos aodx =  X 2 sin x  — 2 J x  sin x  dx

Wprawdzie nie potrafimy odrazu znaleźć ostatniej całki, lecz jest ona 
w każdym razie łatwiejsza od poprzedniej. Stosujemy do tej całki powtór­
nie tę samą metodę, a więc kładziemy x  =  u\, sin x  dx — dv. a stąd 
dux — dx, tij =  — cos x, wobec czego:

J x  sin x dx —  — xcosx  -j- f  cos x dx =  — xcosx  -)- s in * -f- C 

i odstawiamy ren wynik we wzór (b) i otrzymujemy ostatecznie:

1 ~ J X* 008 x d x  ~  x% Sln x  +  2x  cos ® — 2 sin x  — 2 C 

czy ll; / =  sin — 2) - f  2x cos x  - f  C,.
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Widzimy, że pierwsze zastosowauie wzoru (16a) nie doprowadziło 
odrazu do obliczenia szukanej całki, lecz zredukowało ją  tylko do prostszej 
całki a dopiero drugi krok doprowadził do pożądanego wyniku. Takie 
redukowanie całki do kolejnych, corazto prostszych całek, jest charakte­
rystyczne dla metody całkowania „przez części“ .

Zobaczymy na nieco ogólniejszym przykładzie, jak można takie 
kolejne stosowanie wzoru (16) zastąpić tak zwanym ogólnym wzorem 
redukcyjnym.

3) Dla całki:

x*e*dx

Wyprowadzić wzór (redukcyjny), pozwalający wyrazić tę całkę zapomocą 
całki J„_L, zawierającej zamiast potęgi a? potęgę x n~1, o wykładnika 
o 1 niższym.

Kładziemy:
x" =  u, e* dx =  dv

a więc:
■du —  nxn~l dx, v — e*

Z  wzoru (16a) otrzymujemy:

(c) I a =  x"e* — n J e * x "  ' dx — xn e* — n I n_f

Jest to żądany wzór redukcyjny..

Na podstawie tego wzoru możemy całkę o dowolnym wykładniku 
naturalnym n sprowadzać kolejno do całek coraz prostszych a ostatecznie

do znanej całki /„ =  j x ° e * d x =  J e *  dx =  e1 - f  C. Gdy chcemy obli-

czyć I n dla dowolnie wielkiego « ,  to oprócz tego ostatniego całkowania 
nie trzeba już wykonywać żadnych innych całkowań. Tak np. chcemy

obliczyć /, = J ' x i efda;. Według wzoru (c) jest:

I s = x » e '  — 3 I t
I i = x *ex— 21i
h  =  xex —  1 • I 0 =  xex — e* — C

Wobec tego:

h  =  x*e* — 3(a?* • —  2(a5e* — e* —  C))
=  ®3e* — 3x2e‘ +  6xez —  6ex-\-Ci ^

I s =  e*(x* — 3x* +  6 x - 6 ) - j -  C,

Sprawdzić wynik przez różniczkowanie!

4) Wyprowadzić wzór redukcyjny dla całki:

In = J  log"x  dx
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Całkujemy „per partes“ , podstawiając:

u ~ \ o g nx, dv =  dx
Stąd:

tl x
du =  n log*~'x • — , v — x

X

a więc:

Ia — x\ognx —J X • «  log"“ '*  ~  =  xlog"a; — n j log'1 1x d x

czyli: i
l„ — x  lognx  — n l„_ t

5} Bardzo ważny jest wzór redukcyjny dla całki:

S„ =  j 'sin "x dx

Otrzymujemy go także przez całkowanie „per partes“ , I tak kładziemy 

M = s in ',-1;r, dv — a inxdx
Stąd:

du =  (w —  1) sin n" 1x  • cos x  dx; v —  — cos x
a więc:

czyli;

S„ — —  cos x  • sin n~lx  +  ( «  — ! )J 'sin " *x ■ cos*# dx

Sn — — cosx  sin n~^x +  (n — 1) f  (sin "*2#  — 8in\r)d.r

r *
Przenieśmy na pierwszą stronę (n — 1) I ein "#ci#  czyli (w — ljS , 

to otrzymamy:
n • S„ =  —  cos x  sin n~lx  -|- (n — 1) <$„_, 

a więc ostatecznie:

;i7 )

Przy pomoćy tego wzoru możemy obniżać wykładnik wyrażenia sin "a: o 2 
Jeżeli n jest liczbą naturalną, to stosując wzór (17) kilkakrotnie, otrzy­

mamy ostatecznie dla n nieparzystego <S, =  f  sin x  dx =  — cos x O

a dla n parzystego S0 — J " s \ n ° x d x — J d x  =  x-\-C.

Jeżeli n jest liczbą całkowitą ujemną, to należy z wzoru (17) wy 
razić odwrotnie Sn_2 zapomoeą S„, a mianowicie.

Sn- , +  ~n — 1
Smn — 1



Kładąc n — 2 =  m = — p, otrzymujemy dla m <  — 2:

(17a)

/* dx
Wzór ten pozwala sprowadzać obliczanie całki 8m — o_p =  I ——— do

y  81 n X

całki o wykładniku p mniejszym o 2.
Dla p  parzystego dochodzi się ostatecznie przez kilkakrotne stoso-

/ d x
—— j-  —  — ctg® -f- C.
81D ĆX

Przy nieparzystem p dochodzi się ostatecznie do całki S_x

której obliczeniem zajmiemy się w następnym paragrafie. 
Przykład zastosowania wzoru (17):

dx 
sin x

/

-i(
sin H d x  =  =

cos x  si n 6® 
6

■ ft , , I — cos* sin 3® , 3 0 \\ coax sin bx  -(- 5 I —---- —---------- — jSt ||

cos® sin6® 5cos®sins® , 15/— cos* sin® , 1
6 24

15 / — cos® sin® 1 \
+  24 \ 2 *■ 2 5°)

C08 X  * ' 15
= ----- - x -  (8 sin 5® -j- 10 sin 9® -(- 15 sin x) +  T5  ® +  Cj

4o 4o

Przykład na zastosowanie wzoru (17a):

cos® sin-3® , — 2
f 4 * r  =  « _  =J  sin 4x “ I-------- 5 & - i  —

cos x  2
“ - r a r 5 - 5 ,* * * , +  c  =  -

3 1 -  3

Ctg X  I  1
( - - V  + 2) + c-\ 8 1 n *® I

§ 207. Całkowanie przez podstawienie.

Obliczenie całki:

(a) J f ( x )  dx =  F (x ) -f- £

upraszcza się nieraz znacznie, gdy za zmienną ® wprowadzimy nową 
odpowiednio dobraną zmienną t, kładąc:

(8) x  — qp (<)

Załóżmy, że funkcja (p(t) posiada ciągłą pochodną.
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Z  wzoru (a) wynika, że:
d r
dx

— f№)

Jeżeli zaś w funkcję F (x )  wprowadzimy x  —  ę > (f ) ,  s to B u ją c  wzór 
na pochodną funkcji złożonej, otrzymujemy:

t w s> =  i i .  %  =  i f .  i f  ^ m - r m = n r (0 )  ■ » ' ( «dt dtp dt dx at 

Stąd wynika, że:

F(<p{tj) +  C —Jf(q>(t))-<p'(t)dt

cz*yli:

^(®) +  C =  Jf(<p(t)) • ę>'(f)df

Stąd otrzymujemy ostatecznie na mocy wzoru (a):

{18)

Jest to wzór na całkowanie przez podstawienie; jest on bezpośrednim 
wnioskiem z wzoru na pochodną funkcji złożonej. W idzimy, że funkcja 
podcałkowa f{x) nie przechodzi na f[<p(t)), lecz otrzymuje jeszcze dodat­
kowy czynnik: <p'(f). Wzór ten najłatwiej jest zapamiętać w ten sposób, 
że wprowadza się podstawienie x  — <p(t) nietylko w funkcję f{x), lecz 
także w różniczkę dx, która wobec tego przechodzi na:

dx =  d(p(t) =  (p'{t) dt

Podstawienie x==g>(t) staramy się zwykle tak dobrać, aby całka po pra­
wej stronie wzoru (18) była łatwiejszą do obliczenia aniżeli całka pier­
wotnie podana. Po wykonaniu całkowania według zmiennej t otrzymamy 
jakąś funkcję (? {() tej pomocniczej zmiennej t. Chcąc wrócić do zmien­
nej x , należy obliczyć z wzoru (b) t jako funkcję zmiennej as, np. t =  ifi(x) 
i  wstawić ip(x) w (7(f) zą zmienną t. Aby się to przekształcenie dało 
uskutecznić w sposób jednoznaczny,, trzeba obrać funkcję x  =  <p(f) tak, 
aby była odwracalna w sposób jednoznaczny. W tym celu wypadnie 
często ograniczyć zakres zmienności zmiennej niezależnej w tym związku 
funkcyjnym x  =  <p[t) (por. tom I, § 18).

P rzy , stosowaniu tej metody całkowania (przez podstawienie) roz­
poczynamy zwykle rachunek od. tego, że za jakąś odpowiednio dobraną 
funkcję rp(x) zmiennej *  podstawiamy nową zmienną:

f =  ifj{x)
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a następnie obliczamy stąd x  =  <p(t) i postępujemy dalej zgodnie z wzo­
rem (18). Funkcję ip(x) należy oczywiście obrać tak, aby była odwracalna 
w Sposób jednoznaczny i aby posiadała różną od zera pochodną: albo­

wiem potrzebna we wzorze pochodna cp'[t) ma wartość —— -r, jak wiadomo
xp (a?)

z twierdzenia o pochodnej funkcji odwrotuej (por. tom I, § 79, wzór 28).
Przykłady.
1. Obliczyć:

/==/ ( dX = f b(2 ~  3a>r6dX

Na pierwszy rzut oka mogłoby się zdawać, że ta całka ma wartość:

5(2 — 3 * )“ ‘
— 5

jako potęga o wykładniku ujemnym. Przez zróżniczkowanie

tej funkcji łatwo się jednak można przekonać, że jest to wynik błędny. 

Zastosujmy natomiast do całki podstawienie:

tp(x) =  2 —  3 x  — t
Stąd:

X =  | — =  (p{t) a dx  = —  ^dt

Wobec tego jest:

J b  (2 -  3 » )" '6 dx = f b r l5 • -  £ di =  ~  - t l  - f  C =  £ ł~ * +  C 

Wyrażamy teraz t zapomocą zmiennej x  i otrzymujemy: 

/ = ł , 2 - 3 » ) - + c = — l j j  +  0

2. Obliczyć:

-f, dx
ax -f- b

Chcąc tę całkę sprowadzić do znanej całki / — (por. wzór 5), używamy 

podstawienia:
ax -}- b =  t

¡Stąd:

a więc:

Wobec tego:

6 t
x = ------+  -

a a

d x = -  dt 
a

í = / V “ í Í t =  í 1"8I‘I + c
Rachunek rolníczkowy i całkowy. T. S.
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Wracamy do zmiennej x  i otrzymujemy

/;
=  1 log|*r +  6| +  c

ax b a

3. Obliczyć:
r  dx

/ dx
j— =  arctg x  C (por. wzór 13).

Staramy się sprowadzić szukaną całkę do tej postaci i w tym celu 
wyłączamy w mianowniku a ! przed nawias.

Stosując wzór (14), otrzymujemy zatem:

/ =  \  f  — —
aJ  1 -i- ( -er

Teraz już samo się nasuwa podstawienie: — =  t. 

Stąd:

a więc:
x — at, dx — a dt

, 1 r  a dt a f  dt 1
'  “  a j  1 +  P  “  a j  f + 7 -  =  i  ar° tg ‘ +  C

x
Wracamy do zmiennej x , kładąc t =  -  i otrzymujemy ostatecznie:

f  dx L x „J  ¿T+ii = -a + c
4. Wśród całek, któreśmy otrzymali bezpośrednio przez odwrócenie

Jf* dx
~ — - — ~

^  i ®
(por. wzór 13 z § 204), natomiast nie było tam bardzo podobnej całki:

f  dx
J

By tę całkę obliczyć, rozłóżmy najpierw funkcję podcałkową na dwa 
prostsze dodajniki (t. zw. ułamki częściowe, por. tom I, § 23, str. 91):

1 1
=  f ^  +

B
1 — X 2 ( l - f - ® ) ( l  — * )  \ - \ - X  1 —  X
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Wyznaczamy stale A i B  tak, aby ta równość zachodziła dla wszyst­
kich x  (z wyjątkiem oczywiście wartości x  —  1 i x =  —  1, dla których 
funkcja podcałkowa nie jest określona). Uwalniając obie strony od mia­
nowników, otrzymujemy:

1 =  A —  Ax -f- B -J- Bx  =  (i4 -(- B) -j- (B —  A )x

SpółczynDiki przy x° i X1 muszą być po obu stronach równe, a więc:

A + B  =  1 

A — B =  0

Z tych dwóch równań otrzymujemy: A =  £, B =  \. Zatem funkcję pod­
całkową możemy przedstawić w postaci:

1 _  j  , i
1 — x% 1 +  x 1 — x

Stosując tu wzór (15) na całkowanie sumy i wzór (14), otrzymujemy:

/ dx B dx i i  f  dx
r=^i — *J \ĄTX + *J \ ZT-X

Na podstawie wyniku, uzyskanego w przykładzie 2, otrzymujemy stąd:

f  f i r ^ s  =  4 l<>g|l + ® |  — 4 log 11 — ®| +  C =  | lo g | j- i| |  +  C

czyli:

(19)

Ten wzór znajduje dość częste zastosowanie.

Podobnie postępujemy z całką 

sprawdzić:

otrzymujemy, jak łatwo

(19 a) +  c

5. Wynik, uzyskany w poprzednim przykładzie, można zastosować 
do następującego zagadnienia z dynamiki. Na ciało o masie m, spadające 
pod wpływem siły ciężkości ziemi, działa ponadto opór ośrodka w kie­
runku przeciwnym do kierunku ruchu; opór ten jest w każdym mo­
mencie ruchu proporcjonalny do kwadratu prędkości v ciała spadającego

2*
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a nie może być większy od siły ciężkości Znaleźć wzór na prędkość 
tego ruchu i na drogę.

Otóż całkowita siła, działająca na to ciało, ma wartość:

P  — mg — kvl — my =  m
dv
di

gdzie g oznacza przyśpieszenie siły ciężkości (przyjmujemy je tu za stałe) 
a y przyśpieszenie w badanym ruebu. Prędkość v jest liczbą dodatnią 

a ponadto musi być kv% mg czyli 

Stąd.
dl m w 1

Wobec tego:

dv mg — kv* k — u* 

m f" dv1 ~ kJ
Według wzoru (19 a) otrzymujemy Btąd:

m l
k * ° g \ V ? ~ *

+  C

Wyrażenie pod pierwiastkiem jest nieujemne, a więc znak bezwzględnej 
wartości nie jest potrzebny. Gdy przyjmiemy, że dla t =  0 ciało było 
w spoczyn-ku, t.j. v =  0, to otrzymamy stąd C = 0 .  Z tego wzoru możemy 
obliczyć v jako funkoję t a mianowicie:

a stąd:

- ł

2 tV* +  »

e Y ^ - v

n~k ■ ~ =  V7  tgbyp V í )
e ' -|- 1

Z  tego wzoru widać, że dla t —>oo prędkość v dąży do wartości: ti, =  |/5, 

zwanej prędkością „krytyczną“ .

Całkując wzór na w =  jeszoze raz, otrzymujemy na drogę przy
Hj t

tym ruchu wzór:

I/— C , ,/r- lr~ r  sinhyp(t|/iQ dt

1= * i j f (<̂  dt= ^ 7
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Kładąc c o s h y p i i^ )  =  m, otrzymujemy:

du =  sin hyp (t\5 ) • dt

a więc:

,  _  J / Ś f i  J=  =  log H  +  C, =  "  log «o .  h ,p  ( i  | ? )  +  C. 

Jeżeli dla t =  0 jest s — 0, to otrzymamy C, =  0 i pozostanie wzór:

6. Całkę:

/ cos rx dx

oblicza się przy pomocy podstawienia r x = t .  Stąd x  =  - , dx —  -d t .

A więc:

ceyli:

J ' cos rxdx — J cos t • — dt — - J ' cos tdt — — sin t -\- C

f cos rx dx =  -s in  rx  -f-C

Przy pewnej wprawie wykonuje się takie proste całkowania odrazu, bez 
używania odpowiednich podstawień.

Tak np. odrazu jest widoczne, że:

px dx =  —  ̂  cos p® -f- C

7. Z wzoru redukcyjnego (17) (str. 14) na całkę z sin "x wypro­
wadzić wzór redukcyjny na całkę z cos mx.

Opieramy się na tern. że:

sin x  =  cos (| n —  x)

i kładziemy: — x  = »  t. Wtedy d x —  —  dt, sin x  —  sin ($ »  —  t) —  cost.
Wobec tego wzór:

^ s in  "X dx =  —  ^ cos x  sin a~'x -j- — J "<sin *x dx 

zmienia się na:

sin*- *® d *

(20)
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Kładąc n — 2 =  m = — p i wyliczając z tego wzoru ostatnią całkę, 
otrzymamy wzór redukcyjny dla ujemnych potęg cosinusa:

(20a) K_„ =  f  = ----------- 7—r sin t cos- ' ’+11 -)------ " t T i  f
v ^ J cos"* —p +  1 — p + l j '

dt
cos"-2/

Jeżeli p jest liczbą nieparzystą, to ten wzór redukcyjny prowadzi osta-

/ dt
- — którą omówimy w przykładzie 1 1 .

8. Często się zdarza, że nie trzeba obliczać wyraźnie zmiennej x  
z podstawienia rp (x )= .t, lecz wystarczy utworzyć różniczki obu stron 

tej równości. Tak np. celem obliczenia całki:

x d x

używa się podstawienia: 

Stąd:

J \ a *  +  x '

a2 +  x* — t

2 x dx — dt

a więc xdx =  £dt, a to właśnie jest potrzebne w liczniku. 
Wobec tego:

a więc:

/ xd x  l/——7------ ,
, , --------=  \a2 - f  x% +  C

\ a *+ x '

9. Wyprowadzimy wzór redukcyjny dla całki:

Tm = y t g mxdx

W  tym celu oddzielamy w funkcji podcałkowej:

tg *x — sec *x — I =e
cos2 x

— 1

Otrzymamy zatem:

Tm —J\tg m~2x  • tg 2x dx —  f  tg m~2x -  1 j dx =

=  f  tg m~*x ~  X- -----f  tg
J  8 cos lx J s

2x dx

Drugą całkę możemy oznaczyć literą Tm_2, pierwszą zaś obliczymy przez
. dcc

podstawienie: t g »  =  w, a więc — -— ~ d u . Wobec tego ta pierwsza całka
cos* K
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przyjmie postać:

/ ] ]
w "-8 du = ------ . um~' = ------- tg ł*

m — 1 m — 1

Stalą C, występującą przy całkowaniu, włączmy do Tm_*  to otrzymamy 
następujący wzór edukcyjny:

m — 1tg ' ‘X

10. Metody, podobnej jak w przykładzie 8. używa się, jeżeli funkcja 
podcałkowa jest ilorazem dwóch funkcyj, z których dzielna jest pochodną 
dzielnika, a więc dla całek postaci:

- /

T  (X )

f{x)
dx

Kładąc f (x )  — t, otrzymujemy f ‘ (x )dx=?dt,  a więc:

i = / y  =  log|<|+C

czyli:

(21) f f̂ d x  =  \og\f(x)\ +  C

Ten wzór można uważać za odwrócenie wzoru na pochodną logarytmiczną 
(por. tom I, § 85).

Tak ap.:

a) / tg x  dx
sin x  dx 

cos x f
si n x dx
cos x

Tu licznik jest różniczką mianownika, zatem według wzoru (21) otrzy­
mujemy ;

(22) J ' tg x  dx =  — log Jcos *| +  C

b) Obliczyć:

■ /
mx -(- n 

oxi +  bx -f- c
dx

Tu licznik nie jest wprawdzie pochodną mianownika, ale można go tak 
przekształcić, że będzie sumą tej pochodnej i liczby stałej, a mianowicie,
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rylączając z licznika otrzymamy:

I = m f2a j  a
2ax + dx

m 2 aX -f- 
2 nJ  ax'ax' -f- bx -j- c 

Tę całkę rozdzielamy na sumę dwóch całek

m f  2axĄ-b , . m ¡2 an \ C
^ 7 b ^ T r dx' I '  =  ¥ a \ - ^ - b) J  >

+  bx c
dx

m f
=  2 a j

dx
ax‘ -(- bx -f- c

Otóż pierwsza z tych całek ma właśnie postać lewej strony wzoru (21), 
a zatem:

A =  log |as* +  bx -j- cj

W drugiej całce należy sprowadzić mianownik do fermy kanonicznej: 

a |ar -f- ^ ° 4  ,  ̂ j- Kładąc x -f- =  k sprowadzamy tę całkę do

formy: / * £ r . - -  j ' zal®z,,ie od tego, czy wyróżnik 4ac—

jest dodatni czy też ujemny. Te zaś formy omówiliśmy w przykładzie 3 i 4.

/dx C dx
— - i K — I ------, potrzebne przy sto-

sin x  J  cos x  J
sowaniu wzorów redukcyjnych (17 a) i (20 a).

I tak:

dx
^ __ i  dx __ r  dx __ r  2 c o s ł ,Ja:

J n\nx I n . x x  ~~ / x  
J  2 s i n - c o s -  J  t g -

Tu licznik jest różniczką mianownika, a zatem:

(23|

Celem obliczenia całki K, sprowadzimy ją do całki S, zauważywszy, że 
«os x =  sin{%7i a;). Zatem:

K =  f  ^  =  f ___ d X:____
J  COS X J sin n -(- x)

Za Ąt i-\-x kładziemy t, to dx =  dt i otrzymujemy całkę typu (23).
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12. Celem obliczenia całki:

, = / v - dx

dogodnie jest użyć podstawienia wprost w postaci x =  <p(t), a n' e, .i“ *4 
to dotychczas czyniliśmy, w postaci t =  ty{x)- Podstawiamy mianowicie

x =  sin (, biorąc — % n ^  t <  Ą-

Podstawieniem tern wyczerpujemy istotnie cały zasób dopuszczalnych wartości x, 
albowiem, aby otrzymać rzeczywisty pierwiastek z 1 — ar*, musi być — 1 Si a: f i  -j- l

Wtedy dx =  cos t dt, a zatem

I  =  J ' ^1 — siu11 • cos t dt =  J ' cos’ tdt

Tę całkę moglibyśmy obliczyć odrazu przez zastosowanie wzoru rednk- 
cyjnego (20). Dla ćwiczenia obliczymy ją jednak w inny sposób, a mia­
nowicie oprzemy się na znanym z trygonometrii wzorze:

cos
1 -j- oos a

Wobec tego:

/ =  J J ' (1 +  cos 2 1) dt =  £ sin 2 i) +  C

Ale z wzoru x  — sint wynika, że t —  arcsin x  (przyczem —   ̂7t ̂  t <  l  n). 

Ponadto sin 2 1 —  2 sin t cos i =  2x|/l — xs (znak pierwiastka jest dodatni, 
ponieważ cos i ma wartości nieujemne dla t, zawartych w przedziale 
< — ^n, Wobec tego:

(25) / =  I — x* dx =  £ (arcsin x x\\ — ®ł) -j- C

Pozostawiamy czytelnikowi do wyprowadzenia nieco ogólniejszy wzór:

(86 a)
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13. Czasem przy obliczaniu całki trzeba użyć zarówno całkowania 
„per partes“ jak i metody podstawiania. Tak np. do obliczenia:

I  =  J arc tg x dx

stosujemy najpierw całkowanie „per partes“ , kładąc: 

arc tg x =  u,

du
dx

dx =  dv

x  =  v
1 + « * ’ •

/co dcc
j ——— . Całkę, która tu występuje, obliczamy 

zapomocą podstawienia 1 - | —  Otrzymujemy 2xdx — dt, a więc:

f r ^ - h f j  =  V°s\t\ +  c  =  V ^  +  ^ )  +  c  

Wobec tego:

J arc tg x  — x arc tg x  —  ̂ log (l -}- ®*) — C 

Niechaj czytelnik stwierdzi, że w podobny sposób otrzyma się: 

j  arc sin® dx =  x  arc sin x  -f- ^1 — X* +  C

14. Przy obliczaniu całki:

1 =  J e "  sin bxdx

stosujemy dwukrotnie całkowanie „per partes“, a mianowicie najpierw 
kładziemy:

=  u, sin bx dx =  dv

Wobec tego:

du =  ać^dT, v —  —  — cos bx 
b

(por. przykład 6).

/ =  —  T e“  cos bx 
b

e“* cos ó® d®

Stosujemy do występującej tu całki powtórnie metodę całkowania „per 
partes“ , kładąc:

« "  =  u, , cos bx dx =  dv,

du, — ae**dx, u, =  4 sin 6® 
b

1 —  —i— fi“* COS i®
o -+■ j  | ̂  e“  sin bx — â J ' e‘U 8*n

1 — ¿ 2   ̂cos fc® -j- e“1 a sin

Zatem:



21

A stąd:

/ 6* =  eax[a sin bx — b cos bx) — n* I , (a* 4  6*) / =  «“ (a sin bx — b cos fa;) 

a więc:

/ g "
e“  sin 6« da; =  —— (a sin bx —  b cos bx) 4  C

a* 4 - b*

W  podobny sposób oblicza się, że:

/ e cos bx dx = (a cos bx 4  b sin bx) 4  C
a* 4 -  6*

15. W  jednym z dalszych rozdziałów będą nam potrzebne całki:

/ sin na; sin rxdx , sin na; cos ra; da; i / cos na; cos rx dx

Przy obliczania tych całek opieramy się na znanych z trygonometrii 
wzorach:

sin nx • sin t x  —  \ (cos (n —  r) x  —  cos ( n  -(- r) a;) 

sin n x ‘ cosrx  =  ^ (sin (я 4 " r) a; 4  8'°  (n — r ) ж) 
cos na; • cos rx — £ (cos (n 4  r ) *  4  cos ( n —  r ) x )

Gdy и ф г ,  to otrzymujemy stąd:

J " sin nx sin rxdx  —  £ J cos (я — r ) x d x — \ J  cos (n 4  r ) я da; =

/sin [n — r) x  sin (n 4  r ) #\
M  Я  ---  Г  Я  4  r  /

(26)
y ' sin nx cos r/pda; =  J sin (n 4  r) 4  i  f  sin ( n — r )x d x  —

, /cos (n 4  f ) i  , cos (n — r) a;\
—  ~  M  4 4 4  4 ^ 4  j

J '  cos na; cos ratda; =  $ J * cos ( «  4  r) *  4  ł cos (n —  r )x d x  =

_  /sin (n 4  r)ą; ̂  sin (n —  r) a;i 

* V w 4  ** n — r  /

Dla n =  r jest cos (n — r) a; =  cos 0 = 1 ,  Bin (n —  r) a; =  sin 0 =  0, 
a więc powyższe całki przechodzą na.

(26a) [

Г  ■ . , , .s in  2 7
I bid* яа> dx =  J x  — 4  — - —

/  . , cos 2 na;
sin na; cos n x d x ~  — A — - —

i  n

/  sin 2 nx . ,
cos* nxdx =   ̂ 2 ^ ------H
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16. Wyprowadzić wzór redukcyjny dla całki:

■ J (i +  ®*r
Podstawiamy: x =  tgt, to dx =  —  , 1 4 - ® * = ! + ^ *  —

a więc:
C08*i'

, =  J  cos 2,,“ a t dt =

cos* t

Dla c a łk i  K m  Z D a ra y  już wzór redukcyjny (por. wzór (20) na str. 21). 
Stosując go tułaj, otrzymamy:

l B —  K*,,- 2n —  2 
tg i

* sini COS 1,-8 t ----- i! K,__, —2n — 
2 «  — 3

«—2 . T  c* -  «  •t«-l

czyli:

lub wyraźnie:

(2 »  — 2) sec,n_a t ~  2n — 2

, ____________ * ___________ 2 » - 3
" (2» — 2)(l-j-a?*)*- ’ ' 2w— 2 *“ *

(27)
J

C dx x  2a —  3 C da
( ! + » • ) "  (2 rc — 2)(1 - f ®*)’ - 1 1 2 n — 2 J (1 +  » * ) —*

Z tego wzoru będziemy korzystali w następnym paragrafie.

Uwaga. Do tego wzoru redukcyjnego można też dojść bezpośrednio, nie prze­
chodząc przez Wzór (20). W  tym celu przedstawia się funkcję podcałkową w postaci: 

1 1 -f- x* — x1  1 aj*
(1 +  x*\- (1 - f  x*)* (1 + * » ) — 1 (1 +  x ')*

/ x*dx
<

Całka l„ zamieni się wtedy na , -----------
( t -h *■)*

Do pozostałej całki stosujemy całkowanie „per partes", kładąc u =  x. de — —x ? x—
(ł 4- x*l"

i U 'd. Pozostawiamy czytelnikowi dalsze wykonanie raohunków-

17. Jeżeli znamy całkę jakiejś funkcji y =  f{x\  to potrafimy bez 
trudności obliczyć także całkę funkcji odwrotnej: w — <p(y). Itak, cbcąc 
obliczyć:

I  — J  V{y)dy

podstawiamy za <p(y) =  x, stąd y =  f (x\ dy =  f '(x ) dx 
a więc:

1 = j ' x -  f ( x )  dx
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Całkujemy „per partes“, kładąc: x — u, f '(x)dx — <iv Wtedy du =  dx, 
v = f ( x )  i otrzymujemy*

/ =  j <jp(y) dy =  x f (x )  —  J  f  (x) dx

Przykłady, a) Znamy dla y =  sin x  całkę Js\nxdx = — cos a;-)- C.

Wobec tego możemy obliczyć przy pomocy poprzedDiego wzoru 
eałkę z x — arc sin y, a mianowicie;

/ * "  siD ydy =  a: sina: — / sina: da: =  x  sin x  -j- cos x  4- C

Wracając do zmiennej y, otrzymujemy:

J ' arc sin ydy =  arc sin y • y \\ — y2 4* C'

(por. przykład 13 oa str. 26).

h) Dla y =  sia hyp x  znamy całkę:

/ " •  hypa?rfaj =  coa hypa? 4- C =  \\ -f- siD* hypx - f  C.

Stąd możemy obliczyć całkę funkcji odwrotnej, którą jest, jak wia­
domo (por. tom I, str. 290— 291):

*  =  log (y +  ]/1 4- y8)
Wobec tego:

f  log (y 4* h  4 -y ł) dy =

«= x sin hypa; — J  Bin hyp a? da: =  y log (y - f - 4- y*) — Kl 4- y* 4- C* 

c) Ponieważ dla y =  e* jest:

Je?  dx — e? 4“ C

przeto:

J\ogy  dy = x e ?  — <?* 4-  C  — log y-y —  y 4 - 

(por. str. 12 przykład 1 ).

C

§ 208. Całkowanie funkcyj wymiernycli. Rozkład funkcji ułam­
kowej na ułamki proste.

Potrafimy scałkować każdą funkcję eałkouńtą wymierną ezyli każdy 
wielomian (str. 10, przykład l).

Funkcja ułamkowa wymierna jest ilorazem dwóch wielomianów.

W (a:) F(x)
9 & )
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Jeżeli stopień licznika nie jest mniejszy od stopnia mianownika, 
to wydzielamy z tej funkcji ułamkowej część całkowitą przy pomocy 
znanego algorytmu dzielenia wielomianów ' W ten sposób otrzymujemy 
rozkład danej funkcji W (®) na część całkowitą, np. h(x) i na funkcję 

/ ( )
ułamkową, np. —— , której licznik ma stopień niższy aniżeli mianownik,

9 (OH)'a więc
fF (® ) =  h(x) + f(0B) 

9 (on)
Tak np. dla funkcji:

®* +  2x  4- 5
a?* —  4 x  +  3

wykonujemy dzielenie.

(®s +  2 x  +  6 ):(® *— 4® +  3) =  ® + 4
®3 — 4 x* +  3 a;
-__+ -_________

Zatem:

4- 4®* —  x  + 5  
+  4®* — 1 6 ® +  12
j:______ +______ -

+  15®— 7 

®3 -|- 2 x  +  5
®ł — 4 x  +  3

® +  4 +
15® — 7 

®* — 4® +  3

Część całkowitą h  (®) scałkujemy bez trudności. Pozostaje do cał­
kowania część ułamkowa, której licznik ma stopień niższy aniżeli mia­
nownik. Do takiej funkcji zastosujemy całkowanie przez rozkład. W  tym

f  (*P)celu postaramy się rozłożyć taką funkcję — na prostsze dodajuiai.

W specjalnych przypadkach używaliśmy już takiego rozkładu (por. 
str. 18, przykład 4). Jeżeliby spółczynnik najwyższej potęgi zmienoej ® 
w wielomianie g (x ) był różny od 1, to usuwamy go, dzieląc licznik i mia­
nownik tej funkcji ułamkowej przez ten spółczynnik; możemy się zatem 
ograniczyć w dalszym ciągu do badania tylko takich funkcyj ułamko­
wych, w których ten spółczynnik ma wartość 1. Spółczynniki innych 
potęg x są dowolnemi liczbami rzeczy wistemi. Algebra poucza (por. tom I, 
§ 22), że każdy wielomian stopnia n można przedstawić jako iloczyn n 
czynników stopnia pierwszego:

wn(x) — a„ (® — ®,)(® — ®8)... (®  — ®J 

przyczem liczby xu ® ,,...® „ są pierwiastkami równania wn (®) =  0. Nie-

1 W  podręczniku R u z i e w i e z a  i Ż y l i ń s k i e g o  p. t. Wstęp do matematyki 
czytelnik znajdzie w rozdz. V  dokładne uzasadnienie tego algorytmu.
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które a nawet wszystkie czynniki mogą się powtarzać wielokrotnie (jeżeli 
równanie posiada wielokrotne pierwiastki). Tak więc mianownik funkcji 
ułamkowej, mający spóiczynnik 1 przy najwyższej potędze x, można 
przedstawić w postaci:

g (x) — {x — a)° (x — P f . . . ( x  — p)' ■■■

jeżeli a jest a-krotnym pierwiastkiem równania g{x) =  0,(3 6-krotnym i t. d.
Pierwiastki równania g (a:) =  0 mogą być rzeczywiste i zespolone1. 

Wszystkie zespolone pierwiastki równania o spółczynnikach rzeczywi­
stych rozpadają się na pary sprzężone z sobą. Jeżeli więc:

H =  p -\-qi

(p, q są tu liczbami rzeezywistemi a q jest różne od zera) jest pierwia­
stkiem równania g (x) =  0, to także liczba:

p = p  — qi

jest pierwiastkiem tego równania. Co więcej, jeżeli p jest r-krotnym 
pierwiastkiem tego równania, to także sprzężona z p liczba p  musi być 
dokładnie r-krotnym pierwiastkiem tegoż równania. Iloczyn każdej pary 
czynników (x — p) (x — p), odpowiadających sprzężonym pierwiastkom, 
jest wielomianem drugiego stopnia o spółczynnikach rzeczywistych a o wy­
różniku ujemnym. I tak:

— p )- (x  — p) =  ( x - p — qi)(x — p-ł-q i) =  ( x — p)* -f- q* —
— x* —  2 px p* +  9* • »

Wyróżnik tego trójmianu kwadratowego ma postać:

d — (— 2p)* — 4 (p* +  q*) =  — 4 q* 
a więc ma wartość ujemną.

Wobec tego możemy przedstawić wielomian g (x) jako iloczyn sa­
mych rzeczywistych czynników stopnia pierwszego lub drugiego w postaci:

(28) g(x) =  (x -  a)° ( x -  /3)*...(x*-|-o, *  +  <.,)'• («*  +  a3x  - f  M  •••

przyczem występujące tu trójmiany mają wyróżniki ujemne. Czynniki 
pierwszego stopnia: x — a, x — /3,... odpowiadają rzeczywistym pierwia­
stkom równania g (x )  =  0, czynniki zaś drugiego stopnia: x* -}- x  6,. 
x% +  ® -j- ¿»j • •• odpowiadają parom pierwiastków zespolonych, sprzę­
żonych. Stopniem wielomianu g (x )  jest widocznie liczba n =  a -j- b - f - . . . 
-j" 2 r  -}- 2s .

Efektywne wykonanie takiego rozkładu bywa nieraz bardzo trudne, 
a mianowicie wtedy, gdy trudno jest rozwiązać równanie g (x )  =  0 
W praktyce mamy jednak najczęściej do czynienia bądźto z łatwemi do

Zasadnicze wiadomości o liczbach zespolonych są podane w paragrafach koń­
cowych.
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rozwiązania równaniami g(x) =  0, bądżto z gotowym już rozkładem funkcji 
q (x) na czynniki pierwiastkowe według wzoru (28).

Każdą więc funkcję wymierną ułamkową można przedstawić w po­
staci:

f { x )  _  ___________________________ £(®)____________________________
g (x ) (® — oi)a\x —  P f ... (x 2 -j— a, a? -|- ń,)^#2 +  a, a? -f- ¿a)1...

przyczem trójmiany, zawarte w mianowniku, mają wyróżniki ujemne. 
Załóżmy, że stopień licznika jest mniejszy aniżeli stopień mianownika. 
Prawą stronę możemy uważać za wynik dodawania prostszych ułamków, 
o mianownikach: x  — a, (x — a )2, ... {x — a)“, x  — p, (x  — /S)*, —  /3)*,...
x* -\- ax x -\- bu (x* ax x  +  ¿>j)2, ... (a?2 +  a, x  -j- 6, f, a;* - f  a, a; -f- 6 „ ----

Okażemy, że te ułamki można tak wyznaczyć, że liczniki będą 
bądźto liczbami stałemi, bądżto funkcjami pierwszego stopnia, a miano­
wicie udowodnimy prawdziwość następującego wzoru:

(29)

f {x ) /■(*)
g{x) ( x - a ) ° - { x  — № . . .  (a?2 - f  a, x  + b j { x i +  cu, x  +  b j .

x — a (x  —  a )2

B,

+  . -  +
Aa

+ A S+x  — § [x  — Pf +  ••■ +

[x  — a 

[x  — Pf

7a +

+

Mt x +  N, M, X +  .V, A ^a -fA T ,
'1~a:2-f-a1 a; +  '1" («* -| -o 1 x  - fA ,)*  +  "  ' +  (*• -f- o, *  - f  b j  +

/», x  +  <?, P , x + Q 2 P sX +  ft
®* -f- o2 a; +  6, (a:2 - f  a, a: +  ń2)2 ^ ( a ? 2 - f  a, a? - f  ń,)’  ■*

+ ...............................................................................................................

luczby ii,, /I_lt Aax Bx, ą , . . .  8„ . ..  Nt, AT,,... A/r,
Pn Pn Pa> ”  P** są stałemi liczbami rzeczywistemi.

laki rozkład funkcji ułamkowej na prostsze dodajniki nazywamy 
rozkładem  tej funkcji na ułamki częściowe.

Dowód. Rozpoczniemy od pierwszego wiersza w tym wzorze. Utwórzmy 
różnieę:

__________________________ / (* )_____ Aa
(I ) (® -  cc)‘  (X -  P t .... (*■ +  « , » + * , ) '  ( * 2 +  o, »  +  bty ( x - a i ~  

_ f ( x) — Aa (x — P)b. . . ( x t -\-al x  +  bx) ' . . .
(x — a)“ (x — P)b... (aj* - f  a, x  +  b t f . ..

Chcemy tę różnicę tak uprościć, aby jej mianownik miał stopień o jeden 
niższy od stopnia pierwotnego mianownika. Zażądajmy w tym celu, aby 
moana było licznik i mianownik uprościć przez »  —  a. Jeżeli licznik ma
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być podzielny przez x  — a, to liczba a musi być pierwiastkiem licznika, 
a zatem musi się spełnić równość:

f (a )  — Aa(a — /?)*... (a ! -+-a, o +  bx)r (a* +  o, a 4- bt )‘ .. —  0 

To się zaś spełni, gdy nieznaną dotychczas stałą Aa obierzemy według
wzoru:

Aa
f{a)

( I I )  (a — /3)V..(o8 +  a, a +  ó,)r (“ ! +  « i  a -P ó ,)* . ..

Dajemy zatem liczbie Aa tę wartość i upraszczamy licznik i mianownik 
drugiej 8trony wzoru (I )  przez x  — a Otrzymamy w ten sposób w licz­
niku jak%ś funkcję f x {x ) stopnia niższego aniżeli n — 1, a w mianowniku 
odpadnie jeden czynnik x  — a.

A więc:

f { x )  Aa ________  /, (X)

9 (* ) (x ( x — a t  1 (x — /?)*... (a:8 -\-axx-\-bxJ (x t -p a, x  +  b,)s. ..

odejmujemy

Z prawą stroną tego wzoru postępujemy znowu tak samo, a więc

A.-, redukujemy i żądamy, aby licznik i mianownik
(x  — a)a

były podzielne przez x  —  a; z tego warunku wyznaczy się stałą 
wzorem podobnym do (II). Postępując tak dalej, wyznaczymy wszystkie 
stałe A, wszystkie stałe B i t. d. w sposób jednoznaczny, aż pozostaną 
same mianowniki postaci x* -p a, x  -p b,, (a;* -f- ax x  -p 6, )*,...

Po przeniesieniu wszystkich ułamków, zawierających w mianowni­
kach dwumiany x  — a, X — (3,... i ich potęgi, otrzymamy po redukcji 
funkcję ułamkową:

_______________ R (x )_________________
( ¡ r * +  a ,ic-P  bl )r- lx t -ł-o , a Ą -h J . . .

Licznik jest tu stopnia niższego niż 2 r - ) - 2s-p ...
Teraz przystąpimy do wyznaczania spółczynników AL, Nr. W  tym 

celu przenosimy odpowiedni ułamek na pierwszą stronę i otrzymujemy:

R(x) Mrx -\ -N r

( I I I )
(®3 -p a, *  -p bx)r (x% at x  -f- b?Y ... (** -f- a, X -p b- Y

R (x) — {Mr x +  Nr) {x 2 4- a2 x  +  bty ...
(x* - f  ax x  +  b,)'(x* -f- a^x -f- b%f , . .

Żądamy, aby licznik i mianownik dały się uprościć przez ¡c* -j- a, x  -p bx 
czyli przez (x — p -p gi) • (x — p — qi) (założyliśmy bowiem, że trójmiany, 
występujące w mianownikach, mają wyróżniki ujemne, a zatem każdy 
z nich posiada parę pierwiastków sprzężonych).

Licznik musi więc także posiadać pierwiastki a?, = p - p y i i  Xt = p — qL 
Otrzymamy zatem dwa równania:
Rachunek różniczkowy i całkowy. T 2 . 3
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(IV ) # ( » , )  — (M r Xi - f  a2x i +  bt)* ... =  O
fi (* i )  — {Mr x2 +  Nr) • (aĄ -f- аг жг 4- bt f ... =  O

wystarczające do wyznaczenia stałych -Mr i Nr.
Przedstawmy liczbę zespoloną R (x , ) :  (ж? - f  a, x l -(- 6,)*... w postaci 

F(p, ?) +  * G (p , q), to liczba R  (a!j): (ж| a, ж, -f- 6 ,)'..., jako sprzężona 
z nią, ma postać: F (p , q) —  i G (p , j). Równania (IV ) przyjmą więc postać:

F {P, Я) +  * G{p, q) =  M r(p  +  ?i) -t- Nr 
F(j>, q) —  i  G{p, q) =  M r (p ~  qi) - f  Nr

Stąd otrzymnjemy z łatwością:

Мт =  I  9), ^  «= F  (p, q) -  (p, q)

л więc liczby rzeczywiste.
Obrawszy takie M r i Nr, możemy uprościć licznik i mianownik pra­

wej strony we wzorze ( I I I )  przez ж® -j- Oj x  -f- bx. Otrzymamy zatem:

________ fii (a?)__________
(** - f  «i ® - f  biY~' *  +  *»)*•• •

Tu stopień licznika i?, (a?) jest piższy aniżeli 2 r — 1 —(— 2 я...
Z tem wyrażeniem postępujemy dalej tak samo, a więc odejmujemy 

¡¡j , ж 4- Nr_,
- 8 C —---- -j— redukujemy i upraszczamy, wyznaczywszy odpowie-
(ж -j- а, ж -j- Oj)
dnio stałe M r_y, . Postępując tak kolejno r-krotnie z czynnikiem 
Ж2 -j- aŁ ж -j- ¿»,, a następnie s-krotnie z czynnikiem ж® -f- а, ж -f- ¿>2 i t. d., 
otrzymamy wszystkie stałe, występujące we wzorze (29). W  ten sposób 
prawdziwość tego wzoru jest udowodniona.

Szczególnie łatwo przedstawia się rozkład funkcji ułamkowej na 
ułamki proste, gdy równanie у(ж) =  0 posiada tylko jednokrotne pier­

wiastki. Niechaj:

9 (ж) =  (ж — а) (ж — /?) (ж — у ). .. (ж — v)

Zastosujmy do licznika /(ж) wzór interpolacyjny L a g r a n g e ’a (tom 1 
str. 605), przedstawiając wielomian /(ж) zapomocą jego wartości:

w punktach:

Otóż:

f { a ) , f W ) J ( y ) , . . . f \ v )

x  —  a, /3, y, . . .  v

y ) . . . { x  —  V )
a —  ¡3) (a  —  y ) . . .  (a —  v) /(«)■

(а? —  О) (ж —  у ) . . .  (ж —  * 0 (<p —  g ) ( g  —  jfo---
( P —  a ) ( p  —  y ) . . . ( P  —  v ) ( v  —  a)  (v  —  P ) . . .
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Podzielmy obie strony przez g (®), to otrzymamy:

f ix )  /(a) 1
g (x ) (a — P)(a —  y ).. . [a  — v) x — a +

№ i f(Y) 1
(P — a)(P  — y ) . . . (P  — v) x  — p (y — a ) ( y — P)...(y — v) x  — y

Oznaczmy stały spółczynnik przy

+•••

literą A, przy— literąB  i t. d.,
x  — a ‘ 1 " x  — P

to z wzoru tego otrzymamy odrazu żądany rozkład funkcji ułamkowej 
na ułamki proste:

f ix )  A , B C . . N
.. . -ł-

g(x) x  —  a x — p x  — y ' ' ® — v

Spółczynniki A,B,C,...  oblicza się mianowicie według wzorów:

m  D _  mA = . B
(a — P) (a— y)...(a — v)'  ~ (/? — a) iP — Y)--■ (P — r ) ’ "

Łatwo stwierdzić, że mianownik wzoru na A ma wartość g'(a), podobnie 
w B występuje g'(P) i t. d.; trzeba tylko utworzyć pochodną iloczynu 
(a; — a) (x — /?)... (® — v). A więc wzorom na spółczynniki A, B ,...  można 
też nadać postać:

A — / ( « ) B = f(P)
g '(a ) ' ~  g ' ( P ) ' -

Przykład.
Rozłożyć na ułamki proste funkcję (por. str. 30):

lf>a: — 7
®* —  4 x  -f- 3

Ponieważ równanie X1 —  4 a; —)— 3 =  0 posiada pierwiastki 1 i 3, przeto 
g (x ) —  ®2 —  4® -f- 3 =  (x — 1) (® —  3). Rozkład ma zatem postać:

15® — 7
+  :®* —  4 ® -f- 3 x  — 1 x  — 3 

Według wzorów na A i B otrzymujemy odrazu:

A

A  więc:

15-1 — 7
1 — 3 

15®

- 4 ,

-  7 — 4

15-3
3 — 1

19

19

® ł ®4 ® —(— 3 x  — 1

W ogólnym przypadku, gdy występują pierwiastkj wielokrotne, 
obliczanie spółczynników tą drogą, którą postępowaliśmy przy dowodzie 
wzoru (29), jest bardzo mozolne.

3 '
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Zwykle szybciej dochodzi się do celu inną, prostszą drogą. Uwal­
niamy mianowicie obie strony wzoru (29) od mianowników Po lewej 
Stronie otrzymamy w ten sposób f (x ), a więc wielomian stopnia co naj­
wyżej n — 1, po prawej zaś stronie wielomian stopnia dokładnie n — 1. 
a więc wielomian,-mający n spółczynników. Obydwa te wielomiany mają 
przybierać te same wartości dla nieskończenie wielu wartości x, a więc 
muszą być identyczne, to znaczy, że spółczynniki, występujące po obu 
stronach przy równych potęgach zmiennej ar, muszą być sobie parami 
równe. W  ten sposób otrzymamy n równań pierwszego stopnia na w y­
znaczenie n stałych: A3, A3... Aa, B,, Bt,... BA,... vl/,, N u Ma,
M r, Nr, Pu Pt, <?j... P s, f t , . . .  Liczba tych równań jest więc wy­
starczająca. Równania te nie mogą być ze sobą sprzeczne, albowiem zgóry 
wiemy, że istnieją ich rozwiązania: 4̂,, y4a, ..., wyznaczyliśmy je bowiem 
w poprzednim dowodzie w inny sposób. Ta metoda porównania spółczyn- 
ników prowadzi zwykle szybko do wyznaczenia potrzebnych stałych.

Przykłady.
1) Rozłożyć na ułamki częściowe funkcję:

bx* — 5 x  +  1 
a;5 — 3x* 3 x 5 — x*

Najpierw trzeba znaleźć pierwiastki mianownika, t. j. rozwiązać równanie:

— 3 x 4 +  3 x 3 — x2
czyli:

x ' ( x 3 — 3®* - f  3x  — 1) =  0
czy li:

x* (x — 1 )3 =  0

Pierwiastkami tego równania są: x, =  x2 =  0, x, =  X, =  X6 =  1.
Rozkład danej funkcji ułamkowej ma więc postać:

f> x* —  5 x -f- 1 _  A, A% ___ B,___ ____ B y _ ,  P i
x* ( x — l )5 x  x* x — 1 ' ( X — l )2 (x — 1)*

Uwalniamy obie strony od mianowników i otrzymujemy:

bx* — 5x - f  1 =  d, x (x  — l ) 5 +  A2(x  — l ) s x ' ( x  — 1)! +

Bt x* (x — 1) +  B3 x2
czyli:

5x4 — 5x +  1 =  A1(x* —  3x> + 3 x *  — x) +  A, (xs — 3 x2 -f- 3x — 1) -f- 
-f- B, (x* — 2 x 3 +  x*) -f- Bt (x* — xJ) -f- B3 x2

czyli:

bx* —  5x +  1 =  (At +  B1)x ‘ + ( —  3At +  A, -  2 B, +  B2)x« - f  

- f  (3 ^ , —  3 .4 ,+  Bs —  B3 +  Bs)x 2 +  ( -  At +  3 4 s) x -  At



3?

Spółczynniki przy równych potęgach zmiennej x  muszą być parami 
»obie równe, a zatem otrzymujemy następujący układ równań:

A, +  Bx —  5

— 3 A, - f  A, — 2 B, - f  Ą  =  0 

3 A1 — 3A, +  B, -  B, +  B, =  0

— 4 ,4 - 3 24, =  — 5

-  M ,  =  i

Z tych rówDań otrzymujemy kolejno, począwszy od ostatniego.

A ,  =  -  i ,  =  5 - f  3 ii, =  5 -  3 == 2, B x =  5 — /1 , =  5 -  2 =  3, 
J?s =  3 A, -  ilf +  2 R, 6 +  1 +  6 =  13 

=  - 3 A ,  +  3A, — Bx +  Ą  =  -  6 — 3 — 3 +  13 =  /

Wobec tego możemy przedstawić badaną funkcję w następującej postaci:

bx* -  5 x +  1 _  2 _  _1, , _3____ _____T3_  ___ l_
x s — 3 x* -j- 3 x 3 — x2 x x2 r̂  x — i ( x — l ) 2~ ^ ( x — 1)*

2) Rozłożyć na ułamki częściowe funkcję:

W (x) =
2 x  +  2

(x — l ) ( x 2"+  l ) 2

Mianownik ma już tutaj postać wzoru (28), albowiem czyDnik drugiego 
stopnia: x 2 -f- 1 ma wyróżnik ujemny: — 4 (pierwiastki są urojone, sprzę­
żone: -j-i, — i). Wobec tego rozkład na ułamki częściowe ma postać:

2 x  -f- 2 __ A M x x Nx M2x Nt
{ x -  1) (X2 +  l ) 2 “ i +  x* +  “l_  +  (a;8 - f  DT

Celem wyznaczenia liczników uwalniamy obie strony od ułamków
1 otrzymujemy:

2 x - f  2 =  A (x2 -|-1)2 +  (Mx x  +  Nx) (x -  1) (x ! + 1 )  +  (M, x  - f  Nt) (x -  1) 

czyli:

2 x + 2  =  (A +  M x)x* +  (NX -  M x) x '  +  {2A +  Mx -  Nx +  Mt) x ' - \ -  

+  (Nx -  Mx +  Nt -  Mt)x  +  (4  -  Nx -  AT*).

Spółczynniki przy równych potęgach zmiennej x muszą byó sobie 
równe, zatem musi się spełniać następujący układ równań:

A - f  Mx =  0 
N, — M , =  0 

2A +  M x — Nx +  Mt = 0  
AT, — My +  Nt — Mt =  2 

A -  Nx — Nt —  2
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Z tych równań otrzymujemy bez trudności: 4  =  1 , jV, =  V, =  — 1 , 
Si, —  — 2, — 0, a zatem daną funkcję możemy przedstawić w postaci

2 x +  2 a; —(- 1 2x
(x — 1 ) (ac* —|- 1 )* x  — 1 x* -f- 1 (a5* -f- 1 )*

Po tych przygotowaniach całkowanie fupkcyj wymiernych nie sprawia
już trudności. I tak chcąc obliczyć całkę:

- /
F (x )

l  — I — — dx
g (x )

wydzielamy najpierw część całkowitą i otrzymujemy:

I — f  h (x) dx 4* f  dxJ J 9 (x)
gdzie h(x) jest wielomianem, a stopień funkcji f {x )  jest niższy od stopnia 
9 (XI- Wielomian h(x) całkujemy bez żadnej trudności. Następnie rozkła-

A (*̂ )damy funkcję  ̂ na ułamki częściowe według wzoru (29), rozłożywszy

poprzednio g (x) na czynniki według wzoru (28), o ile już zgóry funkcja 
g (x )  nie jest podana w formie takiego iloczynu. Po wykonaniu rozkładu 
mamy do czynienia z całkami następujących typów

a) f ——— d x =  A log|x — a l-j- C
J  x — a

<-i f v ^ dx =  AJ i x - a r ' dz =  A- t£̂ T T T  +  c  =

—, 4- C, gdy w >  1

c )

1 — n) [x — aj 

’ Mx 4 - N
f  *J x' 4 — dx, przyczem wyróżnik a! — 4 6  <  0.

ax -r  o

Całkę tę obliczamy metodą, podaną w przykładzie 10 b na str. 28, 
a mianowicie:

S x + LZ-  , _ M  f _ 2 x  +  ° + M  —  a  

4- ax 4- X 2 J ax Ą- b
j  M x  4- A’ M f  2

J  x*+ax+b' 2 J  x5
=  f  log (a:* +  ox 4- ¿>) 4- (A — " * )  j -

dx
8 4- ax  4- b

Sprowadzamy trójmian x l -\~ ax b do formy kanonicznej: x* 4“ 4-  6 —

-= f “ j 4 - ^(46 — a8). Drugi dodajnik jest tu liczbą dodatnią, ponie­

waż a* — 4  b ’<  0 . Wyłączamy tę liczbę przed nawias, to:
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x* -)- ax -f- b —  -J(4ó — a2)a») L* a - o . ,i +i

Używamy przedstawienia:

2x  -f- a
\a b — o2

Stąd:

& zatem:
dx =  £ \Ab — a2 dt

U dx r  i  ^46 -  a'dt
- f  a x + b ~ J  ±(4b — a2) (i2 + T ) ~

\ 4 6 — i
: arctg ł -f- C =

2 2 x  —f- a i
a r c t g - r  c

Vib=ra ' b H b - a *

A  więc:

(30) / M x M  , ‘¿N — aM Łc +  o ,
~z .-------- - -< te  =  — log(a?*-f a « + d )  +  v—------arctg y = =  +  G

X* -{- dx -|- b 2 fib — a’ r*6 — o*

Taką postać ma całka, gdy wyróżnik a® — 4 b <  0.

d) Pozostaje jeszcze do omówienia całka z ułamka, którego mia­
nownik zawiera jakąś wyższą potęgę trójmianu ax -f- b o wyróżniku
ujemnym, a więc całka »postaci:

' - h

Mx -f- N
-\-ax-\-b)n

dx

Używamy tu tego samego przedstawienia, co w poprzednim przypadku 
i otrzymamy po łatwych przeróbkach:

, = ( _ L
\4 b — a'} J  (1

\l b — a»
(1 -h

dt

Oznaczmy krótko: ^ ̂  _  p  Mamy obliczy* całkę:
^46 — a*

di

(l +  <’ )*

Pierwszą z tych całek obliczamy bez trudności, używając przedstawienia 
1 -|- t1 — z. Po wykonaniu prostych rachunków otrzymamy:



40

(w )
/<

Mł dt M
i 4- <’ )' 2 (i -  w) ( i  +  ry.-3, +  C

Drugą zaś całkę obliczamy według wzoru redukcyjnego (27), wy­
prowadzonego w § 207 w przykładzie 16.

Zbierając razem wyniki, do których doszliśmy, całkując funkcje 
wymierne, widzimy, że całka każdej funkcji wymiernej da się wyrazić 
zapomocą samych funkcyj elementarnych, a mianowicie mogą wystąpić wie­
lomiany (z całkowania części całkowitej h(x)), funkcje wymierne (z ca­
łek, omówionych pod b), pod d) z wzoru (w ) i z wzoru redukcyjnego), lo- 
garytmy (z całek omówionych pod a) i pod c)) i funkcje arcus tangens 
(z całek omówionych pod c) i z wzoru redukcyjnego (27), gdy doj­
dziemy do n =  1 ).

Zasadniczą trudność może tu sprawić tylko rozłożenie mianownika 
g{x) na czynniki, t. j. rozwiązanie równania <7 (®) =  0. Rozkład zaś na 
ułamki częściowe i całkowanie są czasem żmudne, lecz nie sprawiają 
żadnych zasadniczych trudności.

Przykłady:
3) Obliczyć:

rx* Ą- 2 x  -\- b

f :
dx

x* — 4 x  -1- 3

Wydzielamy najpierw część całkowitą i otrzymujemy (por str. 30).

Ponieważ zas:

®* -j- 2  x  +  5 
®* — 4 x  4~ 3

15® — 7

=  * 4 -  4 +
15®

®* — 4 x  4~ 3

'"i +
19

x — 1 x  — 3x * —  4 ® -4 3 

(por. str. 35), przeto:

/ =  4 ®' 4- 4® — 4 log|® -  I | 4- 19 log|® 3 | +  C

4) / =  fJ ®* -  3®«
5 x 4 - 1

4- 3®j — ®*

Na podstawie rozkładu, wykonanego w przykładzie 1 ) na str 36, 
otrzymujemy:

Z -  rf^ _ i 4 . - 1  l _ J A _ _ | _____ !— dxJ [x *»^*-lM * - l)*M<r- 1)»J

=  2  log | ® | 4” ^ 4  ̂3 log | ® L | -  2 ^ - i r * + C

. f  2®+2J ( * - ! ) ( « »  4- 0 *
dx5)
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Na podstawie rozkładu, wyKonanego w przykładzie 2) na str. 37, 
otrzymujemy-

x dx
4 ij*

f  dx f * ± . 1 d x .-  r 2:
J  x  — ~\ ~ 1 X* 4 1 d j  (»•

- " - ‘ / i H

i  dx
X 1 4 1

/ =  log I *  — 11 — i  log (1 4  x ') — arctg x  +  j-J- -  +  C 

6) Obliczyć całkę:

/ =
J  * *  4  1

Należałoby rozwiązać równanie x* 4  1 — 0 Można jednak uniknąć 
tych rachunków, rozkładając ¡r1 4  * na ^wa czynniki drugiego stopnia 
zapomocą następującego przekształcenia 

Dodajmy i odejmijmy 2#*, to:

* • 4 1 = 1 * 4 1  -)r 2 xt — 2 x* = ( x * +  1)* — 2 xł —
- t e ' 4 i 4 N - ( i ! 4 i -  V2x)

Rozkład na ułamki częściowe ma więc postać:

1 _  Ax +  B ' Cx 4  D
i i 4 1 _ i i 4 |/2 * 4 l **  — h ~ * 4  I

Metodą porównania spółczynników otrzymamy po wykonaniu pro 
ttych rachunków:

A = ± [ 2, B =  i, C =  -  ± \ 2. L) =  i
A więc: ixJ'- f

4 7  x ' 4 ^ ® 4 1  4 y  f - p i 4 i

Obydwie te oałki oblicza się odrazu przy pomocy wzoru (30) i otrzy 
moje się:

L . i * ± ^ * + J . +
4f/2 °e * » - f / 2 * 4 ' i

+  |arctg (1̂ 2 x 4  1) 4  arctg 2a? — 1 ) ]4  C

7) Dwa ciała, znajdujące się w roztworze w koncentracjach a i by 
wytwarzają wskutek reakcji chemicznej (dwumolekularnej) trzecie ciało. 
Koncentracja tego nowego ciała w roztworze zmienia się w czasie od 0 
do t od wartości początkowej 0 do wartości x■ Szybkość tej reakcji wy-
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raża się zapomocą pochodnej koncentracji x  tego nowego ciała wzglę* 
dem czasu t. Na tę szybkość wyprowadzono wzór:

d x 
dt

=  k(a — x)(b  — x)

przyczem k oznacza pewną liczbę stałą. Chcemy wyznaczyć x  jako funkcję 
zmiennej t. W tym celu wyznaczamy najpierw funkcję odwrotną, t. j. t,

jako funkcję zmiennej x. Ponieważ ~ - =  ~ , przeto:
&  CD CL CD

dt
dt 1

a stąd:
dx k(a — x)(b — x)

t = r ______
J  k(a — x)(b — X)

Rozkładamy funkcję podcałkową na ułamki częściowe:

1 _  A B
(a — x) (b — x) a — x ' b  —  x

Stąd 1 =  Ab — Ax-\- Ba — Bx.
A więc: 4 6 - j - f la = l ,  — A — B = 0. Stąd A =  — B, — Bb-\- Ba =  1 

a zatem:
1 1

B =
a — 6’ b — a

Wobec tego (założywszy, że ® < a  i x  <  b) mamy:

t = X-r f - ^ d x  + ~ f  7T±-dx = 
k J  a — X k j b  — X

k(a — b)
[log(a — x) —  log(ft — * )) C

kt =  —
a — b b b — x

Dla t =  0 jest *  =  0, zatem:
1

Stąd:

a więc:

0 - r h 1‘* i + c'
- 1c  = . - - 6 ^  i

1 —  -
, 1 , a — x  b 1 ,
kt — ----- t log j---------- ---------t log------

a — b 6 6— x a a — b t _ ®
b
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Odwracamy tę funkcję i otrzymujemy:

u
X

b

a stąd

_  ab{e'a~b)k' -  1 ) 
X ~  a<fa- b* ~ - b

§ 209. Całkowanie niektórych funkcyj niewymiernych 
algebraicznych

W  poprzednim paragrafie dowiedliśmy, że całka z każdej wymier­
nej funkcji składa się z skończonej liczby funkcyj elementarnych. Funkcje
niewymierne tylko w wyjątkowych wypadkach posiadają całki złożone 
z skończonej liczby funkcyj elementarnych. Odnosi się to nietylko do 
funkcyj niewymiernych, przestępnych, lecz także do funkcyj algebraicz­
nych. Omówimy tu kilka takich specjalnych prostych przypadków, w któ­
rych całki funkcyj niewymiernych algebraicznych dadzą się wyrazić za- 
pomocą funkcyj elementarnych.

A. Pierwszym takim typem jest całka z funkcji wymiernej zmien­

nych: , x d,... X" , które są funkcjami uiewymiernemi Oznaczmy funkcję
wymierną ilukolwiek zmiennych literą R,

Chodzi więc o obliczenie całki

p

(31)

Znajdujemy wspólny mianownik m ułamków i podstawiamy:

(31 a) 

Jeżeli

x m — t czyli x — tm

m — i> • a' = d • c' — ... — ę • p'
to

x l  —  X  “  =  X d —  X m —  t K "____ X »  —  t ’w '

Ponieważ ponadto:
dx — mtm 1 dt



44

Teraz juz funkcja podcałkowa jest funkcją wymierną jednej zmiennej i 
(wszystkie uiewymierności, wynikające z ułamkowych wykładników, 
zostały usunięte).

Tę funkcję wymierną całkujemy metodami, omówionemi w poprzed­
nim paragrafie.

Przykład.
Obliczyć całkę:

Występują tu następujące ułamkowe wykładniki: f ,  §,
Wspólnym mianownikiem jest 12, podstawiamy więc:

x  — t li, dx —  12 f 11 dt
i  otrzymujemy:

Pt* — 7 t* 

i “ (*ł

+  12 i
- n

12 f11 dt
f« — 7i* +  121*

~t* — 1
di

Pod całką mamy już teraz funkcję wymierną. Wydzielamy część całko­
witą i otrzymujemy:

t * - u *  +  t* +  bt +  i +
Pozostawiamy czytelnikowi wykonanie dalszych rachunków. 
Ostateczny wynik jest:

1 =  — 2\ \x 4^a? +  30j/:r +  12|fx -f- 2 log(|Ż® -f-1 ) -j-

+  3 log||fx — l| +  C

B. W  podobny sposób postępujemy z następującą, ogólniejszą całką:

«  '- / * (< £ ) * •  ( s l iM *
Czynimy przytem założenie, że nie zachodzi proporcja a : c =  b : g.

(03/ | M?
caT^-g)' "  ^ *y

ją zamienić na funkcję wymierną jednej zmiennej, sprowadzamy ułamki
t) f  ,

do wspólnego mianownika m. Niechaj m =  q • p' =  s • r ‘ =  ... 

Używamy podstawienia:

(32l) (s + iT = ‘



Wtedy.

Podobnie:

Potrzebne jest jeszcze: 

dx =

lax +  b\ ?_  igX +  b - p _  ^  
\cx-\-ff) \cx-\-g]

[ax_±bY -_  .
\ c x + g ) - r

(a — cT) mgtm 1 [glm — b) cmtm~1
_  cr j * dl =  — — tntm 1 di 

(a — c r )s

Jeżeli te wszystkie wielkości wprowadzimy pod całkę, to otrzymamy 
funkcję wymierną jednej zmiennej t.

Sprowadziliśmy więc to zagadnienie do znanych całek.

Przykłady. 1) Obliczyć:

zakładając, że ® >  3.
- j m dx

Podstawiamy

d x —  3

[/! 3 — t. Stąd * = 3 1 +  ť*
+  3 ^ 1 — i*

(1—  <*) 2 i - } - U - ł- ż 2) 2 i 12*
(1 -  i*)2 (1 -  P ) '

Wobec tego:

1 =  f ł  - 12*-J  (1 -  n*dt

Funkcja podcałkowa jest jnż wymierną funkcją zmiennej t. Rozkładamy 
ją  znaną metodą na ułamki częściowe i otrzymujemy:

12i*
+  ; +

s więc.
( i — í*)* * — i — i )a í - H  1 ( í + i ) "

/ = 3 i o g | ł -  i| -3 io g | i  +  i | - r J -T - r q r i  + C —
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Powróciwszy do zmiennej x, otrzymamy po uporządkowaniu?

2) Obliczyć całkę;

Podstawiamy: (x — 1 )* =  i, więc ® =  dx =  2tdt, zatem:

i  l ) i  2 łdł =  2 J (< « - f  3 ł * - f  3 f 2- f  l )d t

i  =  +  t* +  t) +  C

I  =  2 -  1)» + 1[/(* -  1)» +  K(® -  l ) 1 +  J ^ T )  +  C

Uwaga. Do tego typu należą niektóro z t. zw. całek dwumiennych, t. j. z całek 
postaci:

a mianowicie wtedy, gdy albo w albo u> jest liczbą całkowitą (w tym drugim przy­
padku sprowadza się tę całkę do typu B przez podstawienie o -f- bx =  z). Także gdy 
suma u-\-w jest liczbą całkowitą, można tę całkę sprowadzić do typu B, pisząc ją 
w postaci:

Udowodniono1) jednakże, że tylko w tych trzech przypadkach całka dwumienna 
jest funkcją elementarną. We wszystkich pozostałych przypadkach (np. dla u =  j , t r =  J) 
otrzymujemy z całek dwumiennych nowe przestępne funkcje, nie należące do funkcyj 
elementarnych.

C. Bardzo często występują w zastosowaniach całki postaci:

przyczem R(x,y) jest funkcją wymierną dwóch zmiennych x  i y\ nato­
miast R(x,y), uważana jako funkcja złożona jednej zmiennej x, jest naj 
częściej funkcją niewymierną. Zakładamy przytem, że funkcja pod pier­
wiastkiem jest nieujemna, a więc drugi pierwiastek z tej funkcji ma 
wartości rzeczywiste. Okażemy, że całki tej postaci można zawsze przez 
odpowiednio dobrane podstawienia sprowadzić do całek z funkcyj wy­
miernych jednej zmiennej, a więc są one w każdym przypadku funkcjami 
elementarnemi. Rozróżnimy tu 3 przypadki, zależnie od znaków spół- 
czynników a i c trójmianu ax2 -f- bx -(- c, a mianowicie; 1° « > 0 ,  2° cStO,

l) Dowód poda} C z e b y s z e w  w r 185S w 18-ym tomie Journal de Liouville-

(C) J"R (x, y) dx =  J R ( x ,  \ axi —(— ¿>£C —(— c) dx
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3° a <  O i równocześnie c < 0 ,  Przypadkiem a =  0 nie trzeba się ta 
zajmować, wtedy bowiem mielibyśmy do czynienia z całką:

B{x, \bx +  c) dx

należącą do omówionego poprzednio typu B (zapomocą podstawienia 
bas-Ą-c— t* sprowadzamy ją do całki z funkcji wymiernej). W  całym 
rachunku chcemy operować tylko liczbami rzeczy wistemi.

1°. Jeżeli a >  0, to używamy podstawienia:

(33)

Jest ono tak dobrane, że po podniesieniu obu stron do kwadratu odpadną, 
wyrazy, zawierające X1 i pozostanie równanie pierwszego stopnia na 
wyznaczenie % jako funkcji nowej zmiennej t. I  tak;

\axs -j- bx -f- c =  t -)- x Ya

a więc: 

a stąd:

Wobec tego:

axl -j- jbx -j- c =  i* -J- 2 xt Ya -j- ax* 

^  bx c —  -|- 2 tx Y&

n — cm
x  = ----------

b — 2tYa

\ax' +  bx +  c = t - \ - V “ , - — “ 77=
b —  2 1 \ a

, 2 bt —  2<*^a— 2 c^a
dx = ------------------------------- dł

(b — 2 t\  a)*

Wprowadzając te wyrażenia w całkę (C), otrzymamy funkcję wymiernąr 
zmiennej t.

Zamiast podstawienia (33) można także użyć podstawienia:

(33a) \axi -j- bx +  o =  t — xVa
Przykłady.
Obliczyć całkę: £

Aby wyrażenie pod pierwiastkiem było dodatnie, musi być |£| <  x\ 
w razie gdy k jest liczbą ujemną. Ponieważ a —  1 >• 0, przeto możemy 
użyć podstawienia (33 a) i otrzymamy:

\k -f- x* =  ł —  X 
k -j- x* — t* — 2 tx +  **
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a stąd:

X =
i* — k

~27 , Vk +  * = t - * = ± - Z ± ±
2 1 2t

Zatem.

czyli:

(34)

Do tej całki sprowadzamy z łatwością całkę:

7, =

Posługujemy się w tym celu całkowaniem „per partes“ , kładąc:
. .. . < *
\k-\-x* =  m, dx — dv

du Ł  r -___ dx, v =  x
V T + x i

Zatem:

7, =  x  \k 4- x* — J
r  x*

\k - f  X1
C.r

I, — x\k  4  X1 — J \k 4~ x  *

/, =  x )/k 4- x* — 7, +  k log |
2 /, =  *  ^  +  x ! 4" A log \x +  K* +  x* | +  C, 

a więc ostatecznie:

(35) 7, =  J  \k 4- dx —  £ (x \k x i 4- k log |o; 4- 4"®* |) +  C

(Porównaj ten wzór z wzorem 25a na str. 25!).
Do obliczenia tej całki możnaby oczywiście dojść także, używając 

odrazu podstawienia \k. x l — t — x. łecz droga, której tu użyto, pro­
wadzi szybciej do celu.

Uwaga. Obierając we wzorze (34) 4 = 1 ,  otrzymujemy:

(34 aj
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(znak bezwzględnej wartości można opuścić, ponieważ zawsze jest 

*  +  K T + i *  >  0). Wiadomo (por. tom I, str. 290— 291), że funkcja 

lo g {*  -}- [̂ 1 -j- » * )  jest funkcją odwrotną względem funkcji hiperbolicznej 
® =  sin hyp y; oznaezamy ją symbolem y =  ar sin hyp x. Zatem:

(34 b) f  =  ar sin byp x  +  C
J fi + »*

Pisząc ten wzór w tej postaci, spostrzegamy ana.iogję z znanym wzorem (12):

dx

h
■■ arc sin x  - f  C

Ki -

Podobnie kładąc k — — 1, otrzymujemy wzory.

f  =  \o%\x-\-\x*— l| -ł-C=arcosbypx  -j- C (dla « > 1 )
J  \xl — \

=  ar cos hyp (— x)-\-C (dlaa?< — 1)

przyczem y — ar cos hyp a; jest funkcją odwrotną względem funkcji hiper­
bolicznej x — cos hyp y.

2*. Jeżeli 0, to używamy podstawienia:

(34 c)

(36) \ax% bx c =  Y~c tx

przez co osiągamy, że po podniesieniu do kwadratu odpada wolny w yr"; 
po obu stronach. I tak:

axi - ( - ¿ « - f - c  =  c-|-2 toKć-|- <*4* 

axl -f- bx =  2łx Yc +  (***  

ax -\-b — <2.t\c-\-tt x  

2 1 Kc -  b
x — a — i*

\axi -f- bx +  c — ]/ c -|- t • — -  '  ^
a —  i !

Zatem zarówno x, jak i \_axl -j- bx -f- c, wyrażają się wymierni: zspomocą 
nowej zmiennej i, wobec czego i całka (C) zamieni się na całkę z f  inkcii 
wymiernej.

Podstawienia tego używa się zwłaszcza wtedy, gdy a jest liczbą 
ujemną.

Przykład.
W  teorji ruchu wahadłowego występuje całka:

Bachanek róimctkowy i całkowy. T , 3.
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Spółczynnik o ma tu wartość — 1, a więc nie można użyć podstewie- 
nia (33), o ile chcemy operować tylko liczbami rzeczy wistem!; natomiast 
c =  0, a więc może być użyte podstawienie (36). Podstawiamy więc.

¡Stąd : 

a więc:

Zatem:

\bx — x* =  KÔ +  łx 

bx — æs =  t*xl

x  ~  fT i " -  ~  **

—  2h' J
dt

( 1 4- f*)"^

bt
r + 7 *

Sprowadziliśmy w ten sposób*-badaną całkę do całki z funkcji wymiernej, 
a mianowicie do całki, omówionej dokładnie już w § 207 (przykład 16), 
którą się oblicza przv pomocy wzoru redukcyjnego.

3° Jeżeli a <  0 i c <i 0 a wyrażenie y — \rax* bx c ma być 
rzeczywiste, to równanie:
(r) ax'; -f- bx -j- c =  0

musi posiadać pierwiastki rzeczywiste Albowiem:

y =  axi -f- bx +  c — a (« + £)’+
4 ac

ł a 1

Pomeważ a <  0, przeto i wyrażenie, w klamrze zawarte, musi mieć 
wartość ujemną, a to może zachodzić tylko wtedy, gdy 4ac — b* < 0  
czyli bl — 4 c c > 0 ;  wiadomo zaś, że wtedy równanie (r) ma pierwiastki 
rzeczywiste. Oznacz ly te pierwiastki literami u i fi. Trójmfan aiC3-j-¿w 4 "c 
można więc przedstawić w postaci a[x  — a)(x  — /?), a więc;

y =  \ax't bx -f- c =  \a(x — a )(x — fi)

Załóżmy, że x f> a .  Wyłączając przed pierwiastek x — a, otrzymujemy:

y =  ( X -  a) \ / ^ Ł = h
\ x — a

a więc całka (C) należy wtedy do typu B.
Przez podstawienie:

(37)

sprowadzamy ją zatem do całki z funkcji wymiernej nowej zmiennej t, ' 
jak to omówiono w przypadku B.
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Do tego samego wniosku dochodzimy, zakładając x  <  a, ponieważ 
wtedy:

(® —_£) 
a

Podstawienia (37) można użyć zawsze, gdy równanie (r) posiada pier­
wiastki rzeczywiste, a więc także wtedy, gdy c >• 0 lub c >  0.

Przykład.
Obliczyć całkę:

j ' ]/— x l -\-bx  — 6 dx

Z równania — ** +  5® — 6 —  0 otrzymujemy pierwiastki:

a — 2, /8 =  3

a więc:
— a:* +  bx — 6 =  — (x — 2)(x — 3) — (x — 2)(3 — x)

Załóżmy, że 2 •< a; <7 3, to iloczyn ten jest stale dodatni a zatem pier­
wiastek, występujący pod całką, jest rzeczywisty. Wtedy:

Y ~  X* +  5® — 6 =  — 2)(3 — x) — (x — 2)

Używamy podstawienia:

V I
/3 -  x 
x  — 2

=  .t

Wtedy:
3 — x 
x - r  2

=  i8, x  — +  2 i* r fx _ ~ 2 i rff
- f i * ’ d x - (1 + < 1)8
/3 +  2 i* 0

) < -  *
l 1 +  <* / 1 +  <*

A więc:

J x 2 +  bx — 6 c/a: =  J  — ~

Sprowadziliśmy więc to zagadnienie do całkowania funkcji wymiernej. 
Pozostawia się czytelnikowi dalsze wykonanie rachunków (rozkład na 
ułamki częściowe, zastosowanie wzoru redukcyjnego 27 z § 207). 

Wynik:

5

/ F a;2 —(— 5 a; — Qdx = ¿aretg14=
— x , 2 *

2 ' 1
x%-\- bx— 6 + C

Podstawienia, zawarte we wzorach (33), (36) i (37), służące do 
uwymiernienia funkcji podcałkowej w całce typu C, nazywamy podsta­
wieniami Eulera.

4*
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Często używa 3ię dla takich całek także innych podstawień, a mia­
nowicie podstawień irygonoyietryęznych, które zamieniają funkcję podcał­
kową nie na funkcję wymierną lecz na funkcję przestępną, jednakże 
łatwą do całkowania. Zanim się użyje takiego podstawienia natęży spro­
wadzić trójmian, znajdujący się pod pierwiasłtuem, do formy kanonicz­
nej, to znaczy przedstawić go jako s »raę tub różnicę dwóch kwadratów, 
^ouiewąż zakładamy, że pierwiastek z tego trójmianu jeat rzeczywisty, 
przeto mogą tu wystąpić tylko trzy następujące fcimy kanoniczne;

xi -f- ¿!, x l — k2, k2 — x 8

natomiast nie może wystąpić forma — x > — k*.
Sprowadzamy więc całkę (C) do jednej z następujących całek:

a) J fř, (x, Yk* —  x 2) dx, b) J Rx (x, \x% - f  k2) dx, 

• > / ' , (a?, Yx* — k*) dx

a) W pierwszym przypadku używamy podstawienia: 

(38) x — k sin t

zakładając, że k jest liczbą dodatnią.
Wtedy:

\k2 — x 2 — \k3 — k8 sin H =  k (̂ 1 — sin H —  k cos t 
d x — k cos t dt

i otrzymujemy całkę:

J ' /?, (k sin i, k cos t) k cos t dt

Taką zas całkę, zbudowaną w sposób wymierny z funkcyj trygonome­
trycznych, łatwo jest zwykle całkować, jak to zobaczymy' dokładnie 
w następnym paragrafie. Można także użyć podstawienia: x — k cos k

b) Także w drugim przypadku używamy takiego podstawienia, by 
zniknął drugi pierwiastek. Tu już podstawienie (38) nie prowadzi do cela, 
natomiast następujące podstawienie okazuje się odpowiedniem:

(39) x — k tg t
Wtedy bowiem:

M T * *  =  Yk* tg H +  k* =  k ̂ T + t g » /  =  ka ce tu  —
cos t

dx =
kdt 

cos H
Całka b) zamieni się więc na:

/
¿sini  k \ k 
cos t ' cos t ) ' cos*i dt



a zatem jest znowu zbudowana w spoBÓb wymierny z funkcyj trygono­
metrycznych sin i, cos t.

c) Wreszcie w trzecim przypadku odpowiedniem podstawieniem jest:

(40) x  =  k sec t
Istotnie wtedy:

\x2 — k* — \k* sec H —  k3 — k (/sec */ — 1 =  k tg t
, k sin t ,,

dx — ----- — dt
cos H

a więc z całki c) otrzymujemy:

k k sin /\ k sin t
----- » ------- I -------— dt
cos t cos 11 cos 3t

a zatem znowu funkoję, złożoną w sposób wymierny z funkcyj sin / i cos/.

8 210. Całkowanie funkcyj, złożonych w sposób wymierny z funkcyj
trygonometrycznych.

Zajmiemy się tu całkowaniem takich funkcyj wymiernych dwóch 
zmiennych: R(y,z), w których y =  sin x, z =  cos x. Są to więc funkcje 
złożone jednej zmiennej x:

//(sin x, cos x)

Wykażemy, że całkę z każdej takiej funkcji można przekształcić na 
całkę z funkcji wymiernej nowej zmiennej /, że zatem każda taka całka 
jest funkcją elementarną. W  tym celu używamy w całce:

podstawienia;

(41)

Wiadomo bowiem z trygonometrji, że wszystkie funkcje trygonometryczne 
są wymiernemi funkcjami tej nowej zmiennej i, a mianowicie:

sin x  =
2 /

Potrzebne jest jeszcze dx. Otóż:

cos X =
1 — /* 
1 - f  /8

ł

x =  2 arc tg t
a wobeG tego:

■ 2 dtdx —
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Po wykonaniu tego podstawienia całka 1 przyjmuje postać*

7 — f p /  2t 1 — t*\ 2 ,
1 +  p j  1 - f  ta dt

a więc funkcja podcałkowa nie zawiera żadnych pierwiastków ani funkcyj 
przestępnych, lecz jest jakąś wymierną funkcją # ,(* ) jednej zmiennej t:

dt

Możemy zatem wykonać całkowanie metodami, wyłożonemi w § 208. 
Jako wynik otrzymamy zawsze elementarną funkcję zmiennej t, a więc 
elementarną (zwykle złożoną) funkcję zmiennej x.

Przykłady.
1) Obliczyć całkę:

j __ r  dx
J  5 -(- 3 cos x

Używamy podstawienia (41) i otrzymujemy:

— ^ i ---------- dt
___ / F» _L F>1+0

/ =  / '_ i k L . - s f
5 _ | _ 5 i « _ | _ 3 _ 3

/ = *  i - “ - ? .
V  i + (-i)s

Kładziemy ^ — u,dt— 2du i otrzymujemy:

_  _  2 T  dř _ _  f ______
ť* J  8 +  2 t * ~ J  4 -|-ia

dt

czyli:
/ du t

=  ł  arctg «  +  0  =  4 arcts 2  +  c

2) Obliczyć całkę:

/ =  £ arctg ( ¿ t g | )  +  C

j   f  cos 2x dx
J  sin *x

Podstawienie (41) prowadzi do następującej całki:

1 J  , (tth)s V  *'

1 =  i [ Z T 2  ~  2Jl° S l i l +  ^
czyli *

r-li_i__ _ 9 uAta-
2

-  */(1̂  -  */ ( ś -  * -H)
'  =  -2 lo g | t|  + J )  +  C

/ =  -  21o
L2tg=;-

di

+  ł » g +  C
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5) Całkę

’ =  f  sin ix  cos ix dx

chcemy sprowadzić do całki z funkcji wymiernej Używając podsta­
wienia (41), otrzymujemy:

^ ł ( i  — t*)*
dt

Uzyskaliśmy wprawdzie wymierną funkcję podcałkową, lecz dalszy ra­
chunek, prowadzący do obliczenia tej całki, byłby bardzo uciążliwy Przy 
rozkładzie na ułamki częściowe otrzymalibyśmy bowiem 8 ułamków po- 

A | t -j- łł| ¿421 -j- Ą
staci: — —j- -, ----- - . . . .  a więc trzebaby rozwiązywać 16 równań

celem wyznaczenia spółczynników A„ Zf,, ,-lj,
Zobaczymy jednak (Da str. 56), że całkę tę można obliczyć w spo­

sób o wiele prostszy, używając innego podstawierna.
4) Sprowadzić do całki z funkcji wymiernej całkę:

=  f — --------
J  a sin

dx
fx -f- 2 b si d x  cos x -f- r. cos 

Przy pomocy podstawienia (41) uzyskujemy.

2 d i

l+e

'■ u

(1-0 2' 
(i-H*!*

(1 - f  i*)d<
+  c (ix£)!

4flC +  4 6/(1 — * * ) +  c(l  -  /*)*

Prostszą formę jednakże uzyskujemy, używając tu podstawienia:

tg z  =  t

Po podzieleniu licznika i mianownika przez cos tx otrzymujemy bowiem:

/ =  f  C & .___________=  f ____________
J  a tg'1 x - \ - 2b  tg x - \ - c  J  at* -f- 2 bt -j- c

a do tej całki można zastosować metodę, podaną w przykładzie 10b na 

str. 23.

Jakkolwiek więc podstawienie t — tg prowadzi do celu zawsze, gdy

funkcja podcałkowa jest zbudowana w sposób wymierny z funkeyj try­
gonometrycznych, to jednak w wielu wypadkach praktyczniejsze są inne 
podstawienia i inne metody całkowania. Tak się ma rzecz np. przy obli­

czaniu całek postaci:
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(T) 1 = J  ‘x cos *x dx

które występują bardzo często w zastosowaniach. Wykładniki s, k mogą 
tu być dowolnemi liczbami całkowitemi (dodatniemi, ujemnemi lub ze 
rami). Rozróżniamy tu kilka przypadków

a) Jeżeli któryś z wykładników jest równy 0, to otrzymujemy całkę:

^ s i  n sx dx lub J'coskxdx, a do tych całek stosujemy wzory redukcyjne,

omówione w §§ 206 i 207 (wzory 17, 17a, 20 i 20a na str 14, 15, 
21 i 22).

b) Jeżeli s jest liczbą dodatnią, nieparzystą: s =  2 w -)- 1, to przed­
stawiamy całkę w postaci:

I =  J'sin 7"x cos fx sin x dx = — J (1 — cos !x)" cos kx d (cos X). 
Widoczne jest, że podstawienie.

cos x — t
sprowadza funkcję podcałkową do funkcji wymiernej:

l=, —J(1 — <*)«<* dt
Przykład.
Zastosujmy to podstawienie do całki

i  =  J sin bx cos *x dx 
(omówionej na str. 55, przykł. 3). Otrzymamy:

/ =  — J "1 — cos *x)! cos tx d ( cosx) =  — f  (1.— i! )* <* dt =

= —j\t* — 2 t* + <•) dt
Zatem:

/ = — £ t* -f | P — i, V C = — ̂  cos sx-f- £ cos bx — łf cos ł® + C 
Widzimy, o ile szybciej prowadzi to podstawienie do celu aniżeli ogólne 

podstawienie tg ̂  — t.
e) Jeżeli k jest liczbą dodatnią, nieparzystą: ¿ =  2 n - ( - l ,  to uży­

wamy podstawienia:
sin x = t

Całkę I  możemy bowiem wtedy przedstawić w postaci:

l  =  J  sin ’x  (1 — Sin ,xj'1 cos x dx — I "sin *X (1 — sin ix)k d (sin x)
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A więc:

= J f ( \  — t«r dt

’ (1 — sin -aj)*d (sin x)
Przykład.

]  =  i ctg bx dx — f C?B dx =  f
J  J  sin bx J  sin °x

Dla sin x  =  t otrzymujemy:

A więc:

/ =  —  7—7 -  -  +  - Ą — 4- log | sin x| 4- C 
4 Sin #a? 81 n & '  1

d) Jeżeli któraś z liczb g. k jest dodatnią parzysta, to sprowa­
dzamy całkę do przypadku a), zastępując dla s =  2 m funkcję sin2*  przez 
1 — cos **, a w przypadku k =  2 n funkcję cos ~x przez 1 — sin s*.

Przykład

1 =  f ° ^ d a , =  / • ( ! =■..
J  81 n 5X J  8i n £X

J  sin 3*  J  sin *  J

Pierwszą z otrzymanych całek obliczamy przy pomocy wzoru reduk- 
cyjnego (17 a):

s-. = f - rJ  sin •*

A więc:

dx cos x sin 2x
- 2

+  i f A  =  _ ^  +  i  Ca
V  sin *  2 sin 2a; ,/ si

dx 
sin x

1 =  -
cos X 

2ein *ж
— § f  - А -  4 _ Г 8in xdx =

J  sin x  J

cos x _ . I . а; I . „= 2eTn~*i I '°8 p? 2 1

/dcc
—— ).
81П X

e) Jeżeli obydwie liczby s i к są ujemne, to albo s 4~ A =  — 2 я, 
albo s 4~  ̂==: —" 2 n — 1. Wtedy mnożymy licznik przez: 1" =  (sin *® 4* 
4 -cos !a!)'’ i rozkładamy daną całkę na sumę kilku całek, należących do 
poprzednich typów.
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Przykład.
Obliczyć:

1= f  ----- — ------
J  81 n 008 łiT

Tu 3 k =  — 4 — 3 —  — 7 =  — 2-3 — 1 a więc n — 3. Piszemy za­
tem w licznik j zamiast dx iloczyn (sin *x -(-.cos *»)* dx i otrzymujemy:

j __ Asm  ** -(- cos !a5j’ d x__
J  sin *x cos *x

__J ' B̂n 635 "i" 3 81 n *x C08 lx  +  3 sin *x cos *x -j- cos *x
s in  *x cos ‘x

dx

czyli:

I = f ± * dx +  3 f-< P L  +  i f  e » *  dx +  dx
J  cos ’ a: J  cos *  J  sin łx J  sin *x

Z tych całek pierwsza należy do typu d) drugą obliczamy posługując się 
Wzorem 24 na str 25, a trzecia i czwarta należą do typo c). Po wy­
konaniu prostych rachunków otrzymamy:

sin'* . . .  I (n  x 
~ 2cos*<c +  * ° g g ("4+  2

. __ _____1 Q
sin x 3 sin *x

U w a g i.

1) Jeżeli * -(- k =  — 2 n (przyczem jedna z tych liczb może być dodatnia), to 
bardzo praktyczne jest podstawienie:

tg X = t
Przykład.

i= f _______ * ______ =  f  ,  dx =
/ sin %x cos *x / . cos 6X, / COS »X

/ iLn*. cos *x / tgi/ COB«X ,/ ®

/ =  4 - * » ) *  =  -  j - f 2 ł + * * • + < ?

/ =  — ctgz  4 - 2 4 -  ̂ tg »x  4 - C

2) Jeżeli sum» Wykładników jest liczbą ujemną nieparzystą: ł  +  t  =  — 2 n  — 1, 

to korzystnie jest użyć podstawienia:

X
tg — =  t  

B 2

jeżeli w mianowniku jest tylko potęga funkcji sina: (t- j. * <C O, i  g i O jak w przy­
kładzie 2 na str. 54), a podstawienia:
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jeżeli w mianowniku jest tylko potęga funkcji cos x (t. j. jeżeli k < 0 , s^O).
Przykład.

Obliczyć:

7 =  f ^ * dx
J  COS lx

Kładziemy tg £ (J n — x) — t, to ^ — ~ =  arctgt, x — ^ ti - 2  arctgt,

— 2 dt 2 t 1 — i*
dx ~  r + 7 » ’ s,n( ł ^  — *) =  =  cos z, cos ( ¿ 7 1  — 1 ) =  =  sinx

Zatem:

i  =  - ł ( - 4 r * -  2 iog|ł| +  4 i*) +  c  =

i  !°g | tg 4 ( i — * )  I — ł  ł  ( ł n — ®) +  c8 tg2 —  * )

sin X
2  cos i - + ł l°8|t8 4 ( in — ®)|4- C

Stosując do całki (T ) omówione tu podstawienia i przekształcenia, 
zamiast jednolitej, ogólnej metody, omówionej na str. 53, uzyskujemy to, 
że rozkład funkcji wymiernej, otrzymanej pod całką po tych przekształ­
ceniach, otrzymuje się odrazu, bez mozolnego nieraz obliczania spółczyn- 
ników rozkładu tej funkcji na ułamki częściowe.

Zarówno wśród całek z funkcyj algebraicznych, jak i wśród całek 
z funkcyj przestępnych, znajdujemy bardzo wiele całek, które się nie 
dadzą sprowadzić do funkcyj elementarnych a więc nie dadzą się całr 
kować elementarnemi metodami. Do takich całek należą, jak to już wspom­
nieliśmy w § 209 B, niektóre całki dwumienne. Takiemi są także w ogól­
nym przypadku całki, zawierające drugi pierwiastek z wielomianu wyż­
szego stopnia aniżeli 2 , np.

bx'i -f- cx -f- d dx, +  « 2 ¡rs -f- a„ X1 at x  -j- «s dx

Całki, w których występuje tylko drugi pierwiastek z wielomianem 3-go 
lub 4-go stopnia, nazywamy całkami elipiycznemi. Nazwa pochodzi stąd, 
że takie całki występują przy obliczaniu długości łuku elipsy (por. § 229); 
występują one także w licznych zagadnieniach fizyki matematycznej 
i techniki. Jeżeli pod pierwiastkiem występuje wielomian jeszcze wyż­
szego stopnia, to całkę nazywamy hypereliptyczną.
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Także następujące całki z dość prostych funkcyj przestępnych nie 
dadzą się wyrazić zapomocą funkcyj elementarnych:

Okażemy w dalszych rozdziałach, że rozmaite takie całki można obliczać 
i badać przy pomocy nieskończonych szeregów. Każda z nich określa 
jakąś nową funkcję przestępną, nie należącą do funkcyj .elementarnych.

W  ten sposób rachunek całkowy wprowadził wydatne rozszerzenie 
zakresu badań matśmatycznych.



R O Z D Z I A Ł  X V I I I .

O całkach  oznaczonych.

§ 211. Definicja pola Ogary płaskiej.

Pojęcie całki pozostaje w bardzo bliskim związku z pewnem za­
gadnieniem geometrycznem a mianowicie z badaniem pól rozmaitych po­
wierzchni płaskich. W  matematyce elementarnej poznaje się metody, słu­
żące do znalezienia liczby, która jest miarą powierzchni dowolnego wie­
lokąta (ograniczonego odcinkami linij prostych); tę liezbę nazywamy 
polem tego wielokąta W szczególności przyjmiemy tu jako znany wzór 
na pole prostokąta i opierając się tylko na tym wzorze, podamy metodę 
obliczania pól dowolnych powierzchni płaskich, ograniczonych także li- 
njami krzywemi. Najpierw weźmiemy pod uwagę powierzchnię, ograni­
czoną tukiem jakiejś linji o równaniu:

y =  f{x)
rzędnemi w punktach końcowych tego łuku i osią x-ów (jak na fig. 2). 
Załóżmy, że funkcja f (x )  jest ciągła w badanym przedziale i nieujemna, 
t. j. że cała badana powierzchnia 
leży nad osią odciętych. Przy po­
mocy wiadomości z matematyki 
elementarnej nie potrafimy w ogól­
nym przypadku znaleźć liczby, któ- 
raby podawała w sposób zupełnie 
ścisły miarę takiej powierzchni a na­
wet nie posiadamy definicji takiej 
liczby, którąby należało nazwać po­
lem tej figury: nie mamy bowiem 
nawet żadnego ścisłego praktycz­
nego sposobu mierzenia takich po­
wierzchni. Otóż pierwszem naszem zadaniem będzie konstrukcja takiej 
ogólnej definicji pola, któraby odpowiadała intuicyjnemu pojmowaniu pola. 
Powierzchnia, o którą nam chodzi, jest z jednej strony ograniczona od­
cinkiem ab, leżącym na osi xów. Dzielimy p rzed z ia łk a , na do-
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wolną, skończoną liczbę części, np. na n części niekoniecznie równych, 
obierając w tym przedziale w zupełnie dowolny sposób kolejne punkty 
o odciętych: xt, X2, xa, .. Wtedy a < .x , <  x2 < ix 3 < . . .  < ® „_ i < ó .
Wykreślamy rzędne danej linji, cależące do tych punktów. Rozkładamy 
w ten sposób daną powierzchnię na skończony szereg pasków. W każdym 
z tych pasków rzęune danej linji o równaniu y — f  (x) osiągają wartości 
najmniejsze i największe, odpowiadające najmniejszej wartości m( i naj­
większej wartość; M, funkcji ciągłej f ( x ) w każdym z przedziałów o sze­
rokości x,— xl_1~ A x i. Przez najniższy punkt iinji w każdym pasku 
wykreślamy' odcinek prostej równoległej do osi odciętych aż do prze­
cięcia oię z rzędnem.. ograniczającemi dany pasek. W ten sposób otrzy­
mujemy figurę schodkową, złożoną z skończonego szeregu prostokątów. 
Nazwijmy te pcostoką minimalnemi. Suma pól tych prostokątów, zacie- 
niowanycb na fig. 2, jeet rćwna:

s =  »H (®, — a) +  rn„(xt — a;,J +  m ,(x3 — xt) -j- . . .  +  m„(6 — ®„_,1

czyli:

(42)

Przy każdym j udziale przędz' .łu < a ,  otrzymamy w ten sposób jakąś 
wartość s m « wuę pól prostokątów minimalnych. Zbiór tych wszystkich 
liczb s jest ograniczony zgóry liczbą M • (b — a), gdzie M oznacza naj­
większą wartość funkcji f (x )  w całym przedziale <ja, liczba ta bo­
wiem jest polem prostokąta ab BE, zawierającego wszystkie szeregi pro- 
stoKątów minimalnych. Wobec tego zbiór liczb s posiada kres górny, t. j. 
istnieje najmniejsza z liczb, ograniczających zbiór liczb s zgóry. Oznaczmy

n >

\  >«, Ax, . Otóż ten
/-i i

kres górny pól szeregów prostokątów minimalnych obieramy za miarę 
pola figury ab BA. Przyjmujemy więc następującą definicję pola takiej 
figury: kres górny pól wszystkich szeregów prostokątów minimalnych jest 
miarą badanej powierzchni; nazywamy go polem tej powierzchni:

ten kres górny symbolem K[s] lub wyraźniej: K

P  =  £■[*] =  K
n

i-l
Krótko, lecz mniej dokładnie, można powiedzieć: za miarę takiej powierzchni 
obieramy górny kres pól wszystkich możliwych figur schodkowych, wpi­
sanych w tę powierzchnię.

Całe powyższe rozumowanie odnosiło się do funkcyj nieujemnych 
a więc do powierzchni, leżących nad osią odciętych. Postępując podobnie
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dla funkcyj niedodatnich w badanym przedziale (por fig. 3), stwierdzamy, że 
szereg prostokątów minimalnych zawiera całą badaną powierzchnię. Liczby s. 
określone zapomocą wzoru (42), są w tym przypadku liczbami niedodatnierai, 
albowiem wszystkie w, są nie- 
dodatnie. Wobec tego i kres 
górny i?[s] tych liczb .« nie 
może być liczbą dodatnią. Na­
tomiast liczba — iT[s] jest wte­
dy nieujemną i tę liczbę nie- 
ujemną uważamy za miarę ta­
kiego pola, leżącego pod osią 
odciętych. A więc dla/^atj^O 
jest: P  — — K  [s] =

=  - K J£m ,Ax,

Uwaga. Do definicji pola takich powierzchni, leżących pod osią £-ów, możnaby 
użyć prostokątów maksymalnych, t. j. odpowiadających najwyższym punktom w każ­
dym pasku. Kres dolny odpowiednich sum, wzięty ze znakiem przeciwnym, nale­
żałoby wtedy uważać za miarę takiego pola. Okażemy później, że dla funkcyj ciąg­
łych f ix )  obydwie te definicje dają tę samą liczbę P  jako miarę pola tej powierzchni. 
Definicje te, zarówno jak i niektóre twierdzenia z nich wynikające, można stosować 
także w przypadku, gdy funkcja f {x )  jest nieciągła lecz ograniczona i posiada skoń­
czona liczbę punktów nieciągłości. Istnieje bowiem wtedy zarówno kres górny jak 
j kres dolny sum. występujących w tych definicjach

W ten sposób marny już określone pole każdej powierzchni, ograni­
czonej lukiem linji o równaniu y =  /'(x), gdzie f{x ) jest funkcją ciągłą, rzęd-

Fig. 4 a. Fig. ł  b ^  Fig. 4 c.

oemi w punktach końcowych tego łuku i osią odciętych. Jeżeli zaś po­
wierzchnia nie ma tej postaci, lecz jest geometryczną sumą lub różnicą takich 
części, to za jej miarę przyjmujemy sumę lub różnicę pól tych części. 
Tak np. pole figury, ograniczonej krzywą zamkniętą na fig. 4 a, oblicza
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się jako różnicę pól abBCA i abBDA, przyczem aA i bB są skrajnemi 
rzędnemi.

Pole, zawarte między byperbolą a promieniami OA i OB na fig. 4b, 
wyznacza się zapomocą wzoru 2 -(OCB— DCB), przyczem pola OCB i DCB 
wyznacza się zapomocą ogólnej definicji (pole trójkąta OCB można obliczyć 
także odrazu przy pomocy wzoru, znanego z elementarnej gecmetrji). Pole 
odcinka paraboli na fig. 4c wyznacza się zapomocą wzoru OCB -f- OAD — 
£CB -\- D£A, przyczem każde z pól, występujących w tym wzorze, można 
wyznaczyć przy pomocy ogólnej definicji

Korzystanie z tej ogólnej definicji jest narazie*trudne, ponieważ nie 
znamy żadnego dogodnego algorytmu, prowadzącego do efektywnego wy­
znaczenia górnego kresu dla dowolnego zbioru liczb. Aby uzyskać taką 
dogodną metodę rachunkową, przydatną do naszego zagadnienia, należy 
się zająć dokładnie sumami, występującemi we wzorze (42), a w szcze­
gólności górnym kresem takich sum. Uczynimy to w następnym para­
grafie, ujmując całe zagadnienie w sposób czysto arytmetyczny i znaj­
dziemy nieoczekiwane związki tego zagadnienia z omawianem w po­
przednim rozdziale zagadnieniem szukania całki czyli funkcji pierwotnej 
danej funkcji f{x).

§ 212. Definicja całki oznaczonej.

Weźmy pod uwagę dowolną funkcję y =  /($), ciągłą w przedziale 
<  o, b >  (dla ilustracji mogą służyć figury 2, 3 lub 5), przyjmującą w nim

dowolne wartości (dodatnie lub nie- 
dodatnie). Obierzmy w tym prze­
dziale dowolny skończony, wzra­
stający zbiór liczb:

®1> ®I • ■ ■ 1-
Pomnóżmy każdą z różnie:

Axt — —  a,
Ax<l =  * s Axn =  b — x„_,
przez najmniejszą wartość ms da­
nej funkcji w każdym z tych prze­
działów Axt i utwórzmy sumę tych , 
wszystkich iloczynów, t. j.

(42)

fłazwijmy to wyrażenie dla skrócenia sumą dolną. Jeżeli będziemy obie­
rali punkty podziału w rozmaitej ilości i w rozmaite sposoby, to otrzy­
mamy jakiś zbiór tych liczb s. Ten zbiór jest ograniczony zgóry liczbą



np. M • (b — a), gdzie M oznacza największą wartość badanej funkcji f{x ) 
w całym przedziale < a ,  Wynika to stąd, że każde w, jest nie więk­
sze od M, a więc:

« *

i-1 ¿-i

Istnieje zatem kres górny tych wszystkich liczb s, odpowiadających
wszystkim możliwym skończonym zbiorom liczb x , , X3, . . .  xn_, z prze­
działu <ia ,b )> . Do oznaczenia tego kresu górnego używa się takiego 
symbolu, który zawiera wyraźnie badaną funkcję f (x ) tudzież liczby a i b, 
ograniczające badany przedział. Używamy mianowicie zamiast /v[s) na­
stępującego symbolu:

To wyrażenie nazywamy całką oznaczoną z funkcji f (x ) od a do b i czy­
tamy: „całka od a do b z f (x )d x u. Liczbę a nazywamy dolną granicą całki,

b górną, a / (* ) funkcją podcałkową. Znak ̂ j e s t  liter, 5  i ma

przypominać, że to jest kres górny pewnych sum. Symbol zaś dx przy­
pomina, że wartości (najmniejsze) funkcji podcałkowej mnożyliśmy przez 
różnice Ax,. Doszliśmy zatem do .następującej defin icji: wartość całki 
oznaczonej z funkcji f (x ) od a do b jest to kres górny sum, wyrażonych 
wzorem (42), czyli:

6 m

(43) f f ( x )d x  =  /f[s] == K ^ m tAx,
• /-1

Z powyższego rozumowania widzimy, że każda funkcja ciągła posiada 
całką oznaczoną czyli jest całkowalną, oczywiście w każdym takim prze­
dziale, w którym jest ciągłą.

Symbol całki oznaczonej zdefiniowaliśmy na razie tylko dla a <  i.

Jeżeli a >  b, to znane nam jest znaczenie sym bolu^ f (x ) dx\ jest to

mianowicie kres górny i£[s] liczb s, otrzymanych przy podziałach prze-
s

działu <6 , a > .  Otóż w tym przypadku dajemy symbolowi J 'f [ x )d x

Rachunek różniczkowy i całkowy. T. t. 5
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znaczenie — K\s\ czyli:

(44 )

Ten wzór służy do uzupełnienia definicji całki oznaczonej w przypadku, 
gdy a >  b; jest on jednak prawdziwy także w przypadku, gdy dolna 
granica całki jest mniejsza od górnej, jak się o tętn przekonujemy, mno­
żąc obie strony wzoru (44) przez — l. Chcąc wreszcie, aby symbol całki 
oznaczał jakąś liczbę 4 także wtedy, gdy a =  6, kierujemy się w dobo­
rze tej liczby A tem. aby się spełniał wzór (44) także dla tego przy-

a a
r  r

padku, t. j. aby było / f{x) dx =  — J  f (x )d x  czyli A — — A. a więc
n i

2 4 = 0  a stąd 4 = 0 .  Należy więc obrać 4 = 0  Przyjmujemy zatem 
następującą dodatkową definicję.

(45)

Należy dokładnie odróżniać całkę oznaczona, od omówionej w poprzednim 
rozdziale całki nieoznaczonej. Całka oznaczona jest bowiem zawsze jakąś 
liczbą, podczas gdy całka nieoznaczona przedstawia nieskończoną gromadę 
funkcyj. Litera x, oznaczająca zmienną niezależną w symbolu całki ozna 
czonej, nie figuruje zatem w końcowym wyniku, a więc możemy ją za­
stąpić dowolną inną literą Tak więc symbole:

b • ft » 0

f f ( x )d x ,  j  f ( U )  du, f  f(t)dt, J f (y )d y , J f (z )d z
•  a a a a

i t. p. mają wszystkie tę samą wartość iC(s), są więc wszystkie sobie równe. 
Używając symbolu całki oznaczonej, możemy napisać omówione 

w poprzednim paragrafie wzory na pole w następującej postaci:

(46)

Pole powierzchni, leżącej nad osią odciętych, ograniczone łukiem hnji 
o równaniu y =  f(x), skrajnemi rzędnemi i osią odciętych, równa się 
zatem całce oznaczonej z tej funkcji od a do 6; pole zaś takiej powierz­
chni, leżącej pod osią odciętych, jest równe wartości takiej całki z prze­
ciwnym znakiem.

•

P = J f [x )d x ,  jeżeli
a

f(x ) ^  0 i b >  a

0
P  =  — f f (x )d x  „ f (x ) S O  „ b >  a
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Sprowadziliśmy w ten sposób zagadnienie obliczania pól do zagad­
nienia czysto arytmetycznego, uzyskaliśmy ogólny wzór na obliczanie pól, 
z drugiej zaś strony uzyskaliśmy dogodną interpretację geometryczną całki 
oznaczonej, w razie gdy funkcja podcałkowa nie zmiepia znaku w prze­
dziale całkowania.

§213 . Twierdzenie o wartości średniej dla całki oznaczonej.

Wszystkie sumy s (por. wzór 42), których używaliśmy przy defi­
nicji całki oznaczonej, są ograniczone liczbami m(b — a) i M(b — a), 
gdzie m oznacza najmniejszą wartość funkcji f (x ) ciągłej w całym prze­
dziale < a ,b >  a M  największą. Zatem i kres górny sum s jest zawarty 
w przedziale <^m(b — a), M(b —  a)j>, to znaczy, że zawsze spełniają się 
warunki:

(47)

»

a
a)

Wobec tego całka oznaczona jest równa jakiejś wartości pośredniej po 
między dwiema liczbami ograniczającemi. Dobierając więc odpowiednie 
liczbę p, pośrednią między m a M, otrzymujemy wzór:

Twierdzenie to nazywamy twierdzeniem o wartości średniej dla całki
oznaczonej.

Liczbę p, wyznaczoną z tego wzoru, t. j

nazywamy średnią wartością funkcji f (x )  w •przedziale <fa,bj>. Takich 
średnich wartości używa się bardzo często, zwłaszcza w naukach tech­
nicznych: mówi się tam np. o średniej wysokości jakiegoś profilu, o śred- 
niem natężeniu prądu zmiennego, o średniej wydajności rozmaitych źró­
deł pracy, a wszystkie te średnie wyznacza się właśnie zapomocą tego 
wzoru. Tę średnią wartość można uważać — jak później zobaczymy — 
za uogólnienie średniej arytmetycznej skończonej liczby rzędnych. Prócz 
tej średniej wartości funkcji używa się w wielu zagadnieniach także
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t. zw. średniej kwadratowej, określonej następującym wzorem:
b

(50) =  r ~ —  f f * (x )d xo — a j
a

Stąd o równa się drugiemu pierwiastkowi prawej strony.
Jeżeli funkcja f (x ) nie zmienia znaku w przedziale całkowania, np. 

jest stale nieujemną, to możemy interpretować twierdzenie o wartości 
średniej w bardzo dogodny sposób geometrycznie. I  tak z fig. 6 jest wi- 
docznem, że można zawsze dobrać taką wysokość fi prostokąta o pod­

stawie ab, że jego pole równa się polu 
badanej powierzchni ab BA, a więc:

ab BA — (b — a) • n
czyli:

b

/ f [x ) dx — fi(b — a)

Tę rzędną fi uważamy właśnie za śred­
nią wartość funkcji f (x ) w przedziale

Jeżeli funkcja podcałkowa f(x ) jest w całym przedziale < a , 
nieujemną, to i całka oznaczona z tej funkcji jest w tym przedziale nie- 
ujemna. A więc:

(51) i f ( x ) d x ^ 0  dla f  x )^ z  0

Wynika to z wzoru (48), w którym jest /u 0 i 6 — a >■ 0. Ponieważ 
funkcja podcałkowa jest ciągła w przedziale < o , bj>, przeto musi przyj­
mować każdą wartość pośrednią fi między m a M  przynajmniej dla jed­
nej wartości x, np. dla x =  £ =  a -)- 9(b — a). Wtedy więc (i =  f(£) 
a wzór (48) przyjmuje postać:

(62)

§ 214. Addytywność całki oznaczonej.

Całki oznaczone posiadają pewną zasadniczo ważną własność, zwaną 
addytywnością. Własność tę wyrażamy następującem twierdzeniem.

Jeżeli przedział < a , bj> jest sumą dwóch przedziałów <^a, c >  i <c, 
to całka oznaczona od a do b jest s u m ą  całek od a do c i od c do b. 
to jest:
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Dowód. J ' f { x )  dx =  K[s ]  =  K , gdzie K  oznacza kres górny sum a, utworze*
a

nych według wzoru (42) dla wszystkich możliwych podziałów odcinka ab. Podobnie 
«

f  f(&) d x  =  Ky [«,] =  A , jeBt kresem górnym podobnych sum t  dla odcinka ae.
O

b

i j ' f ( & )  d x  =  K t \sJ =  K , sum a, dla odcinka cb. Mamy wykazać, że: K  =  A , -f- A,.
r

Otóż A ' =  A , -f- A , jest kresem górnym zbioru wszystkich liczb a,
(por. tom I, § 25, str 99), jako suma kresów górnych zbiorów liczb s, i as Każda 
liczba a '= a , - j - a 2 jest równa jakiejś liczbie 8, odnoszącej się do całego odcinka ab. 
a więc zbiór liczb *' zawiera się całkowicie w zbiorze liczb a Wobec tego kres górny 
A ' nie może być większy od K. Okażemy jednak także, że nie może być A" O A . 
Gdyby bowiem tak było, to istniałaby przynajmniej jedna liczba a, nazwijmy ją 
a, większa od K '  a zatem większa od wszystkich liczb a'. Otóż łatwo stwierdzić, że 
aiema takiej liczby w zbiorze liczb s. Jeżeli bowiem a należy do zbioru liczb s, to 
odpowiada ona jakiejś snmie:

a =  » » , ( 0 ;, — o ) -f- m,{x, — x t) - j - ------j- m a to  — * 4 - 1 ) -f- ... -f- m„(b — * * - 1 )

Jeżeli wśród punktów podziału znajduje się punkt c, to ta suma jest'zarazem jakaś 
liczbą ze zbioru liczb a', np. liczbą a', a więc wtedy a =  a', nie jest większa od 
wszystkich liczb a'. Jeżeli zaś punkt c nie znajduje się wśród punktów podziału, tojeży 
on między dwoma punktami podziału, np. między ¡£4 - 1  a x k. Utwórzmy sumę a', na­
leżącą do zbioru liczb a', dobierając ten punkt c do punktów x , , x , , ... x k- i , xk ... at«-i. 
Wtedy:

a' =  m, (a;, — a) -f- mt(x t — a?,) -j-... -f• m'(e — # 4 - 1) -j- m” (xt  — <:)+•• — at*_i)

Otóż ta suma nie może być mniejsza od a, albowiem różni się od niej tylko tern, ze 
zamiast dodajnika m k ( x i ,  —  x k-\) =  A  występują dwa dodajniki: m‘k(c —  x 4-1) +  

-f  m"k(Xh — c) =  B.
Ale Wt' i « 1"  nie mogą być mniejsze od m*, są to bowiem najmniejsze wartości 

funkcji f {x )  W częściowych przedziałach < ® 4 —l,« )> i <^c,x4>, podczas gdy ma jest 
najmniejszą wartością tej funkcji w całym przedziale Jest więc B A
a wobec tego a' >  a. Okalaliśmy więc, że żadna liczba ze zbioru liczb * nie może 
być większa od wszystkich liczb zbioru a', a więc i od ich kresu górnego K ' , a to 
dowodzi, że nie może być A ' <  K. Przedtem zaś dowiedliśmy, że nie może być 
K '  ]> K  a więc musi być K ' =  K  czyli K t - f-A 3 =  A, c b. d. o

Wzór (53) jest prawdziwy także dla przypadku: a — b, wtedy bo­
wiem lewa jego strona jest zerem na podstawie wzoru (45) a prawa na 
podstawie wzoru (44).

Punkt c może leżeć także poza przedziałem np. może byd
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a ■ <  b <  c. Stosując bowiem wzór (53) do Liczb a. . .b. . .c , otrzymamy:
r /> i 6 ft

I f(x)dx — j f[x)<ix 4  ̂!\x)dx — J'fWdx — J’f{x)dx
a  a  b a  e

a stąd:
ft f ft

^ f(x)dx — y",f(x)dx + / f{x)dx
a więc otrzymamy znowu wzór (53). Trzeba przytem oczywiście założyć, 
że funkcja jest ciągła także w tym szerszym przedziale <^a,c^>.

Wzór (53) można uogólnić na dowolną skończonąliczbę dodajników. 
Tak np. dla r dodajników otrzymujemy:

t< «1 0| Oj b

(53aj y fix) dx — j f(x)dx + j f{x)dx -f j  f{x)dx -f ... -f j' f{x) dx
a a a ,  a t ° r —\

Najprościej dowodzi się tego zapomocą indukcji zupełnej.
Zastosowania.
1) Na podstawie tego ostatniego wzoru możemy podać geometryczną 

interpretację całki oznaczonej także w tym przypadku, gdy funkcja pod­
całkowa zmienia znak 
w przedziale < a ,  
skończoną liczbę razy 
Niechaj linja ACEB na 
fig 7 będzie obrazem 
takiej funkcji. Całkę 
oznaczoną od a do b 
z tej funkcji rozdzie­
lamy według wzoru 
(53a) na takie części,

aby w każdej z nich funkcja podcałkowa nie zmieniała znaku. Otrzy­
mamy zatem :

t> a t « j  a » f>

j f(x) dx — J'f(x)dx -f- j  f(x)dx 4 j  f{x) dx 4- j"f(x)dx
a a Oi a t

Według wzorów (46) z § 212 pierwsza i trzecia z całek prawej strony 
przedstawiają ujemne wartośei pól P, i P3, druga zaś i czwarta dodatnie 
wartości P8 i P4.

Wobec tego:
b

j f { x ) dx =  -  P, +  P, -  p, 4- p4 =  (P, 4- P«) -  (P, +  p.)
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Zatem: catka oznaczona przedstawia suną pól, leżących nad osią od­
ciętych, pomniejszoną o sumę pól, leżących pod tą osią, czyli algebraiczną 
sumę pól, opatrzonych odpowiedDiemi znakami. Chcąc zaś otrzymać 
sumę wszystkich pól bez zmiany znaku, należy obliczyć każdą z tych 
całek zosobna

Można jednak także podać wzór, przedstawiający sumę tych wszyst­
kich pól zapomocą jednej całki. W tym celu należy utworzyć symetryczne 
odbicia w osi *-ów powierzchni, leżących pod osią odciętych. Wtedy 
f(x ) zamienia się na |/(a?)| i otrzymujemy na całkowite pole wzón

( • * 4 )  / '  —  d1 , l \  F ,  P , =  J  \ f(X )  | d x
a

‘2. Opierając się na addytywności całki, możemy zacieśnić przedział, 
w który zamknęliśmy całkę oznaczoną przy użyciu wzoru (41) na

n
str. 67. Wiemy, że całka jako kres górny sum dolnych s— ^ m ,  Ax,

i-l
nie jest mniejsza od żadnej z tych sum, t. j.:

n b

^ m ,  Ax, <; J  f (x)dx

Znajdziemy obecnie także górne ograniczenie dla tej całki. Podzielmy tę 
eałkę na dodajniki, dzieląc przedział <u , b >̂ punktami x ,, X2, .. ■ x„_, i do 
każdej całki składowej zastosujmy wzór (47).

Oznaczmy literami Mx, M2, . .. Mn największe wartości funkcji f (x )
w każdym z częściowych przedziałów o szerokościach Ax,, Ax..... Axm.
Z  wzoru (47) otrzymujemy:

mlAxi 57J  f(x )dx lźkM iAx, dla »= 1 ,2 ,. ..».

1

Utwórzmy sumę tych wszystkich całek, to otrzymamy:

m b  n

(55) ^ m , A x J f ( x )  dx g j \A1,Ax,

Zamknęliśmy w ten sposób całkę oznaczoną pomiędzy dowolną sumą 
dolną i odpowiadającą jej sumą górną. Te ograniczenia są zwykle bliższe 
całki aniżeli liczby m{b —  a) i M(b — a), występujące we wzorze (47) 
a odpowiadające prostokątom ab CD i ab BE  na fig. 2 str. 61.

3. Opierając się na addytywności całki oznaczonej, możemy wyjaśnić 
związek średniej wartości funkcji z średnią arytmetyczną (por. § 213).
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Niechaj f (x ) będzie funkcją ciągłą w przedziale -<a, b> . Podzielmy 

ten przedział na n równych części o długości A =  -------. Nazwijmy ko-
f t

lejne punkty podziału literami: olt o ,,... am_, i rozłóżmy całkę według 
wzoru (53 a):

6 «, o* b

J f ( x ) d x  =  J f (x )dx -\ -  J f { x ) d x  +  ...-f  J ' f {x )dx

Do każdej z tych całek zastosujmy twierdzenie o wartości średniej, wy. 
rażone wzorem (62), to otrzymamy:

№{b a)— b—̂  +...+/■(£.)b—̂
a stąd:

f ( i) =
n

Widzimy, że średnia wartość funkcji f (x )  w przedziale < a , A >  jest 
równa średniej arytmetycznej wartości tej funkcji, dobranych odpowiednio 
w dowolnie wjelkiej ilości przedziałów ezęściowych. Te częściowe prze­
działy można też brać nierówne, np. o długościach A ,,A „...A ,, których 
suma jest równa b —  a.

Wtedy otrzymamy:

№  (b - a )  =  A, f l f t )  - f  A, / (I,) +  •.. +  A./(£„)

A  _  * .  V ( £ , )  - ł -  A . / ■ ( ! , )  +  • • • - + -  * . / ■ ( £ . )

A . - f  A. +  ... +  A.

Prawą stronę nazywamy średnią arytmetyczną ważoną wartości 
/(£i)>/(£*))•• •/(!«) a spółczynniki A,,A,,...A„ nazywamy wagami tych war­
tości funkcji. Widzimy więc, że średnią wartość /(£) funkcji w przedziale 
< u . możemy także uważać sa średnią arytmetyczną ważoną dowolnej 
liczby rzędnych, branych z tego przedziału, z odpowiedoiemi wagami.

§ 215. Całka oznaczona jako funkcja swej górnej granicy. Związek 
całki, oznaczonej z funkcji ciągłej z całką nieoznaczoną

Jeżeli funkcja f{x ) jest ciągła w przedziale < a , to jest ciągła 
także w każdym przedziale <(a, gdy a <C t <C A, a więc istnieje także 
całka z tej funkcji dla każdego takiego przedziału t> . Do każdej więc

i

liczby t z przedziału < a , A)> istnieje odpowiadająca je j liczba. I f(x )d x
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a więc ta całka oznaczona od a do t jest funkcją swej górnej gra­
nicy t :

r
J  f(x ) dx = <p[t)

Okażemy, że ta funkcja <p(t) jest ciągła.
W  tym celu badamy przyrost:

l +h t

<p(t +  A) — <p\t) = j  f [x ) dx — J f(x ) dx
a  a

(przyczem ograniczamy się do takich h. aby punkt t h  leżał także 
w przedziale O ,  6 » .

Stosując do pierwszej całki twierdzenie o addytywności, czyli wzór 
(53), otrzymujemy:

r t+h t r+A

ę {ł +  h) — q>(t) = j '/(*) dx +  j  f ix ) dx —J  f{x ) d x = j  f{x) dx

Z twierdzenia o wartości średniej, wyrażonego wzorem (48) otrzymujemy: 

<p(t -(- h) —  <p(t) — n[t 4- A — i) =  fi ‘ h

gdzie fi oznacza jakąś wartość pośrednią między najmniejszą a największą 
wartością funkcji f (x ) w przedziale <<, t -)- hj>. Stąd łatwo wnioskujemy, 
ponieważ fi • h dąży do zera, gdy h dąży do zera, że:

lim <p(t.-\- h) — q>(t)
*-►0

To zaś znaczy, że funkcja <p(t) jest funkcją ciągłą. Dowiedliśmy więc, 
że całka oznaczona jest ciągłą funkcją swej górnej granicy.

Ponieważ funkcja podcałkowa f (x ) jest ciągłą funkcją w przedziale 
<ia,b)>, to możemy zastosować twierdzenie o wartości średniej, wyra­
żone wzorem (52) i otrzymujemy:

cp[t +  h ) - ( p { t )  =  f ( i ) -h=hf (t - t -&h) ,  gdzie 0 < $ < 1
Stąd:

h

Ponieważ f(x ) jest funkcją ciągłą, to istnieje granica prawej Birooy, 
gdy h dąży do zera. a mianowicie: f(ł). Istnieje więc także granica lewej 
strony, czyli pochodna funkcji <p(t). Zatem:

» • w = uh-¥ 0 n



74

czyli:

(56) j t j f ( x ) d x  =  f(t)

Ten wzór ma nadzwyczaj doniosłe znaczenie dla rachunku całkowego. 
Treśó jego wyraża się następującem twierdzeniem: pochodna z całki 
oznaczonej z funkcji ciągłej według je j górnej granicy całkowania (uważa­
nej za zmienną) is tn ie je  i jest równa wartości funkcji podcałkowej dla 
tej górnej granicy.

Ponieważ <p'(t) — f ( t\, przeto qp(/) jest jedną z funkcyj pierwotnych 
funkcji t czyli jedną z gromady funkcyj, zawartych w całce nieozna 
czonej z tej funkcji /(/), t. j. jest jedną z funkcyj, zawartych we wzorze:

J f ( t )d t  =  F (t) -j- C

Ponieważ zaś każda funkcja ciągła f{t) posiada całkę oznaczoną, jak tego 
dowiedliśmy w § 212, przeto każda funkcja ciągła posiada jakąś funkcję 
pierwotną, W iemy zaś, że, jeżeli istnieje jedna funkcja pierwotna, to musi 
ich istnieć cała gromada (por. § 203), a zatem istnieje całka nieozna­
czona z f[t). W  ten sposób udowodniliśmy prawdziwość tego zasadni­
czego twierdzenia, które przyjęliśmy bez dowodn w poprzednim rozdziale, 
a mianowicie: dla każdej funkcji ciągłej istnieje całka nieoznaczona.

Jakkolwiek więc przy pomocy metod, poznanych w poprzednim 
rozdziale, nie zawsze potrafiliśmy znaleźć całkę nieoznaczoną z funkcji 
ciągłej (por. zakończenie § 210), to jednak teraz już wiemy, że te całki 
nieoznaczone istnieją, przeprowadziliśmy bowiem dla nich dowód istnienia 
(przechodząc w rozumowaniu przez definicję i własności całki oznaczonej).

§ 216. Obliczanie całki oznaczonej przy pomocy całki nieoznaczonej.
Wykazaliśmy w poprzednim paragrafie, że dla funkcji <p[t), okre 

ślonej wzorem:

(w) / f (x ) dx — <p(t)

jest (p'(t) =■ f ( t j  o ile f (x ) jest funkcją ciągłą. A więc <p(t) jest jedną 
z funkcyj pierwotnych, należących do funkcji f ( t )  czyli jedną z gromady 
funkcyj, zawartych we wzorze:

f f ( t ) d t  =  F (t) +  C
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Aby wybrać tę funkcję, o którą nam chodzi, należy wyznaczyć w odpo­
wiedni sposób stałą C. Otóż widocznem jest z wzoru (w), że:

a

J f ( x )d x  =  q>{a) =  0

Trzeba więc tak obrać stałą C, aby się spełniał warunek: ^ ( a ) - (-C =  0 
czyli C =  — F(a).

A więc:
<p(t) =  F(t.) -  F(a)

czyli:
ij',f(x) dx = F [t ) —  F(a)

a

Kładąc tu t — b. otrzymujemy ostatecznie:

(57)

co można zapisać także w postaci:
b

(57 a) f fix ) dx — f{x)dx^j  ̂ ^ f ( x )  dxj

Symbol (W(x))s=a oznacza tu, że w wyrażeniu W(x), zawartem w nawia­
sie, pojmowanem jako funkcja zmiennej x, należy za x podstawić a. 
Występująca tu funkcja F(t) jest zupełnie dowolną funkcją pierwotną 
funkcji f(t). Gdybyśmy bowiem obrali dowolną inną funkcję pierwotną

(f) — ~f~ Ci t0:

F> (b) -  F , (a) =  F(b) +  C, -  F(a ) -  C, =  F(b) -  F(a)

a więc wartość prawej strony wzoru (57) pozostałaby niezmieniona. 
Trzeba jednak o tern pamiętać, że F(b) i F{a) są wartościami tej samej 
funkcji pierwotnej; nie można więc brać np. F{b) — Ft (a). Uzyskaliśmy 
w ten sposób ścisły związek między całką oznaczoną a całką nieozna­
czoną a mianowicie:

całka oznaczona z funkcji c ią g łe j jest równa różnicy pomiędzy war­
tością, którą przyjmuje dowolna funkcja pierwotna tej funkcji dla górnej 
granicy całkowania a wartością tej samej funkcji pierwotnej dla dolnej 
granicy całkowania.

To twierdzenie sprowadza badanie całek oznaczonych, zdefinjowa- 
nych bez użycia rachunku różniczkowego (jako kres górny pewnych 
sum), do całek nieoznaczonych, otrzymanych z zagadnienia odwrotnego 
względem różniczkowania. Chcąc mianowicie obliczyć wartość całki ozna-
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czonej z jakiejkolwiek funkcji ciągłej w granicach od a do b, obliczamy 
najpierw jej całkę nieoznaczoną i wybieramy z tej gromady fuokcyj 
pierwotnych jedną dowolną, np. F (x ) a następnie tworzymy różnicę 
F{b) —  F(a), t. j. przyrost tej funkcji pierwotnej w przedziale <a, b> . 
Uzyskaliśmy w ten sposób bardzo dogodną metodę obliczania całek ozna­
czonych, możemy bowiem teraz zużytkować wszystkie metody, poznane

w poprzednim rozdziale. Tak np. chcąc obliczyć:^ einxdx, wyznaczamy
e

najpierw całkę nieoznaczoną:

n x  dx — —  cos x-\- C

Wybierzmy np tę funkcję pierwotną, dla której C =  0, a więc P [x ) =  
■= — cos*. Otóż na podstawie wzoru (57) otrzymujemy:

71

/ sin xdx — — cos n —  ( — cos 0) =  —  ( — 1)—  (— 1) =  2

Geometryczne znaczenie tego wyniku jest następujące: pole, zawarte 
między osią odciętych a połówką fali sinusoidy, ma wartość 2

Opierając się na wzorze (57). okażemy, że do definicji całki ozna 
czonej (i pola) można zamiast sum dolnych, wyrażonych wzorem (42) 
z § 211, użyć także suro górnych, wyrażonych• wzorem:

n

(42 a) S =  Mi d®, +  M3 d®, +  ... +  A/„d®„ —
i-i

przyczem oznaczają największe wartości danej funkcji f{x )
w odpowiednich przedziałach.

Dowód. Kres dokąy tych sum istnieje. Nazwijmy go całką górną 
z funkcji f (x )  od «  do b i oznaczmy ją symbolem:

b

a

(Całkę oznaczoną, pojmowaną jako kres górny sum dolnych, nazywają 
też całką dolną). Do tej całki górnej odnoszą s ię—jak łatwo spostrzec — 
wszystkie, poznane poprzednio dla całki określonej twierdzenia, a w szczegól­
ności wzory (44), (45), (52), (53), (56) i (57).

A  więc ta całka górna jest także równa różnicy wartości, które 
przyjmuje dowolna funkcja pierwotna F{x ) funkcji f (x )  dlft górnej i dolnej 
granicy całkowania, t. j.:

~b  ,

(57 a) J f i x )  dx =  F(b) -  F{a\ ,
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A  więc na podstawie wzoru (56) jest:

b *

J  f(x) dx =  J  f  xdx

A  zatem dla ciągłych funkcyj f (x ) całka górna jest równa całce ozna­
czonej Możemy więc pojmować całkę oznaczoną z funkcji ciągłej także 
jako kres dolny sum górnych. Stąd wynika, że pole figury, ograniczonej 
osią odciętych, lukiem dowolnej linji ciągłej i rzędnemi w końcowych 
punktach tego łuku, możemy pojmować także jako kres dolny sum pro­
stokątów maksymalnych (opisanych, gdy pole leży nad osią odciętych 
a wpisanych, gdy pole leży pod osią), jak to już zaznaczono w uwadze 
w § 211. Stąd także wynika, że wielkość takiego pola nie ulega zmianie 
przez odbicie symetryczne danej powierzchni w osi odciętych, przez takie 
bowiem odbicie wszystkie prostokąty maksymalne zamieniają się na mi­
nimalne i odwrotnie, a kres górny zamienia się na kres dolny, równy 
kresowi górnemu ze znakiem przeciwnym i odwrotnie.

Opierając się na wzorze (57), wyprowadzimy z rozmaitych ogólnych 
twierdzeń o całkach nieoznaczonych odpowiednie twierdzenia o całkach 
oznaczonych.

§ 217. Wyłączanie stałego czynnika przed całkę oznaczoną. 
Całka oznaczona z sumy.

A. Poznaliśmy następujące twierdzenie, odnoszące się do całek nie­

oznaczonych: jeżeli h(x) =  A • f (x ) przy A^=0, to: J 'h {x )d x — A J 'f (x )d x  

czyli:

J  A f ( X ) dx =  A j ' f (x ) dx

(por. § 205, wzór 14).
Jeżeli H (x ) jest jakąkolwiek funkcją pierwotną funkcji A{&), a F(m) 

funkcji f(x ), to możemy napisać powyższy wzór w postaci:

H(x)-\-C=A(F(tDy+C,)

Podstawmy tu za x  najpierw h a potem a i odejmijmy od pierwszej
w ten sposób otrzymanej równości drugą, to zostanie:

H(b) —  B(a) =  A (F (b ) — F(a)) 

czyli w myśl wzoru (57):

b b
J h ( x ) d x =  A J f ( x ) dx
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a to znaczy że;

(58)

Dowiedliśmy zatem, że stały czynnik różny od zera można wyłączyć 
z funkcji podcałkowej przed znak całki oznaczonej 

Wniosek;

(58 a)

o o
J  — f{x ) dx =  — J f ( x )  dx

B Do całek nieoznaczonych odnosi się następujące twierdzenie 
o całkowaniu sumy (t. zw. całkowanie przez rozkład). Jeżeli:

h[x) =  f{x)-\- g(x)
to;

J ' h ( x ) d x  =  j  f ( x ) d x - \ -  J  g { x ) d x  

(por. § 205, wzór 15). Zatem;

J  (/■(») +  g (* )) d x =  J f(x )d x  +  j g { x )  dx

Nieehaj H(x). F (x), G (x) oznaczają funkcje pierwotne funkcyj: h(x), 
f(x), g(x). Powyższy wzór możemy zatem napisać w postaci:

H(x) +  C =  F {x ) +  Cx +  G(x) +  Ct

Podstawmy tu za x najpierw b a potem a i odejmijmy od pierwszej 
w ten sposób otrzymanej równości drugą stronami, to otrzymamy:

H{b) —  H(a)  =  F(b) — F (a ) -f G { b ) -  G{a)

czyli w myśl wzoru (57):

b h b

J h(x) dx =  l" f (x )d x -{ -  jg { x )d x

a to znaczy, że:

(59)

Dowiedliśmy zatem, że całka oznaczona z suith/ dwóch funkcyj jest równa 
sumie całek oznaczonych z tych funkcyj.



79

Stąd otrzymuje się analogiczne twierdzenie o różnicy f lx ) — g (x ), 
przedstawiając ją w postaci f{x) ( — y(x)) i stosując wzór (59) a następ­

nie (58a). Zatem:
o 0 0

(59 a) j " ( f ( x )  — g(x))dx =  j  f (x )a x  -  j  g(x) <ixo o a
Widzimy więc, że twierdzenia, poznane w tym paragrafie, są zupełnie 
analogiczne dla całek oznaczonych i nieoznaczonych.

Wnioski.
I. Z tych twierdzeń wyprowadzamy następujące twierdzenie, służące 

do porównywania wartości dwóch całek oznaczonych jeżeli f(x) 5^ g(x) 
w całym przedziale < a . ń > , to także

(60)

0 ©

J  f(x) dx 2=: j  g(x)dx
Dowód. Z założenia wynika, że fix ) — <7(;r)^0. Na podstawie wzoru 

(51) z § 213 jest zatem:

J (fix) — g{x)) dx̂ 0
o

Na podstawie wzoru (59 a) otrzymujemy stąd: 
0 0

y  f(x)dx — J g(x)dx̂. 0
a to znaczy, że wzór (60) jest prawdziwy

2. Rozszerzenie twierdzenia o wartości średniej
Jeżeli funkcja podcałkowa jest iloczynem dwóch funkcyj ciągłych f(x) i g(x), z których jedna, np. g(x), zachowuje w przedziale < a , ¿>> 

stale ten sam znak, to okażemy, że można przed znak całki wyłączyć 
drugą funkcję, biorąc jej wartość na odpowiednio dobranem miejscu 
pośredniem z danego przedziału. Chcemy więc okazać prawdziwość na­
stępującego wzoru:

( 61) j  f(x)g(x)dx — /"(£) J  glx)dx gdzie a < £ < ń
o o

Dowód. Niechaj będzie np. g(x) 0 w < « ,  b~> Niechaj M oznacza, 
największą, a m najmniejszą wartość funkcji f (x ) w tym przedziale. 
Wtedy M — f ( x ) ^  0 i f ix )  — w całym przedziale <ia,b'>

Wobec tego także-'

'  *J (M —/(«)) g(x) dx ̂  0 i J(f(x)—m)g(x)dx Sź 0
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a więc:

M J  g(x) dx f(x) • g{x) dx j  g(x) da
a a  a

Istnieje więc taka liczba fi, pośrednia między m a  M% że:

b b

j  f{x) g[x) dx =  njg{x) dx
a  a

Ponieważ zaś ciągła funkcja f{x) przybiera przynajmniej raz każdą war­
tość pośrednią pomiędzy m a M, np. w jakiemś miejscu przeto ¿i =  /’(f), 
a to dowodzi prawdziwości badanego wzoru.

3) Nierówność S c h wa r z a .
Ponieważ zawsze jest (f(x) • t -f- g{x))* ^  0, przeto z wzoru (51) 

a § 213 wynika, że:
b

J {f{x) t - f  gix)y dx 0 

Stąd otrzymujemy na podstawie wzoru (59):

b b b

J  fl(x)t*dx + j  2 tf(x) g{x)dx -f- J"g*(x)dx ̂  0

czyli:
b b b

"fr *(#) dx-\~%t Jf{x) g(x) dx Ą-j"g1(x) dx ¿z 0
Występujące tu całki są liczbami stałemi. Oznaczmy je kolejno dla skró 
cenią literami A, B, C, %o:

<4 <* -f- 2Bt -f- C ^  0 .

Ten trójmiaa zmiennej t jest stale nieujemny, a zatem jego wyróżnik: 
B x — AC mast być ajemny lub równy zeru, jak to wiadomo z dyskusji 
trój mian a kwadratowego. A więc jest B* —  AC  5S 0 czyli: IP  S i AC, a to 
znaczy, że:

t> * »

(62) f (x ) g{x) dx)j* ^  j f * ( x )  dx . f , g '  (xj dx
•  •  c

Ten wzór nazywamy nierównością S c h w a r z a  dla całek.
Uwaga. Analogiczną nierówność S c h w a r z a  dla skończonych sum 

udowadnia się przez badanie wyrażenia:

(/■.•<+?!)* +  (/■*• t + * ) « + . . • +  (A  • ł + * . ) , ^ 0
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Tworzymy wyróżnik tego wyrażenia, po uporządkowaniu go według po 
tęg t Otrzymuje się:

( ¿ ' « M M i i # )

f, i g, są tu dowolnemi liczbami stałemi.

§ 218. Całkowanie przez części (per partes) całek oznaczonych.

Przy całkach nieoznaczonych używaliśmy często wzoru:

J ' u(x) V (x) dx — u[x) v(x) — J v {x )u '{x ) dx

wyprowadzonego przy założeniu, że funkcje tt(x) i v(x) posiadają ciągłe 
pochodne (por. § 206, wzór 16). Niechaj F'(x) oznacza dowolną fuukcję 
pierwotną funkcji u{x)v’[x) a G(x) funkcję pierwotną funkcji v(x) u'(x). 
Wzór powyższy możemy zatem napisać w postaci:

F(x) +  C =  u(xyv[x) — G(x) — C,

Podstawmy tu najpierw x — b a następnie x  =  a i odejmijmy stronami 
drugą w ten sposób otrzymaną równość od pierwszej. Otrzymany:

czyli:

(63)

F(b) — F(a) == u[b) v(b) — u(a)v(a) — (G(b) — G(a))

O
u(b)v(b) — u(a)v(a) — J  v(x)u'(x)dx

Używając skrócenia dv zamiast v’(x)dx, a du zamiast u'(x)dx, tudzież 

/(®)|* zamiast f{b) — f(a), możemy ten wzór napisać w skróconej postam:

(63 aj

Pamiętać jednak należy, że zmienną całkowania jest tu x  a nie u lub v. 
Widzimy tu analogję z wzorem na całkowanie „per partes“ całki nieozna­
czonej; zamiast wyrazu ú{x) v(x) występuje tu różnica; u(b) v(b) — 
—  u(a) v(a).
Jiaebunek różnicikowy i całkowy. T. t. 6

0
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§  219. Całkowanie przez podstawienie w całkach oznaczonych.

Wprowadzając w całkę nieoznaczoną zamiast zmiennej x  nową 
zmienną t zapomocą wzoru x — <p(t), otrzymaliśmy w § 207 wzór (18):

J f ( x )d x  =  J f[< p (t )) <p'(t) dt

Zakładaliśmy przytem, że funkcja <p{t) nietylko posiada ciągłą pochodną, 
lecz że jest ponadto odwracalna w sposób jednoznaczny. Funkcję od- 
wrotuą do <p(t) nazwaliśmy: t  =  t/j(x).

Załóżmy jeszcze, że ta funkcja tp(x) jest określona w przedziale 
< a ,  6 >  Dla x  =  a przyjmuje ona jakąś wartość i,, a dla x =  b  wartość 
f2, a więc: — *f>(b) —  t,.

Chcemy to samo przekształcenie zastosować do całki oznaczonej. 
Niechaj F [x )  będzie jakąkolwiek funkcją pierwotną funkcji f(x ), to

dx =  F (x ) - f  C. Podobnie niechaj G(t) oznacza-dowolną funkcję

pierwotną funkcji /'(ip(ł)) to wtedy J  f ( < P ( t ) ) < P ' ( t ) d t  — G(t) +  C, 

Wobec tego możemy napisać powyższy wzór w postaci:

F(x) +  C =  G{t) +  C, =  G(v(x)) +  C,

Podstawiamy tu x — b a następnie x  =  a i od pierwszej otrzymanej 
w ten sposób równości odejmujemy stronami drugą. Otrzymamy:

F(b) -  F (a ) =  G (tt)  -  G (tx) =  G(tp(b)) -  G(y>(a)) 

czyli na podstawie wzoru (57):

(64)

Wprowadzając zatem zapomocą związku x — <p{i) nową zmienną t w całkę 
oznaczoną, należy ją przekształcić według wzoru (64). Wprowadzamy 
zatem ą>(t) w f(x), zastępujemy dx różniczką <p'(ł)dt funkcji x =  q>{t) 
a ponadto zmieniamy odpowiednio granice, biorąc V»(a) zamiast a, a xp{b) 
zamiast b, gdzie ip{x) jest funkcja odwrotną względem <p{t). Całkowanie 
przez podstawienie jest dla całek oznaczonych nawet dogodniejsze ani 
żeli dla całek nieoznaczonych, nie trzeba bowiem po obliczeniu całki 
wracać do dawnej zmiennej, lecz oblicza się wartość całki wprost, pod­
stawiając za tę nową zmienną t odpowiednie wartości stałe.
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§ 220. Przykłady obliczania całek ozuaezonyck.
1) Jaką wartość ma całka oznaczona'

I  =  J "x"dx
-i

gdy n jest liczbą naturalną?

/ =  fa ?  dx =J  n -I- I
1 (—  1

2
4 - 11 w + l  »»4-1—ł

Dla n parzystych jest (—  1У**1 =  — 1, zatem I  =  " Dla n Bie-
n 4- i

parzystych jest / =  0.
2) Obliczyć wartości całek:

2я 2л ! «
sin nx sin rajd®, / si n пх сов rxdx, / cos n® cos ra;dxf*

dla »» =j= r i dla w =  r.
Obliczyliśmy już (w § 207, w przykładzie 15) całki nieoznaczone 

z tych funkcyj (por. wzory 26 i 26a). Zatem dla «  4= r otrzymujemy:

, 1 /sin (w — r № sin (w 4- r)a?\ f
si n nx si n rxdx =  -zr I — '------------------- -—-!— — 11 = 0

2\ w — r n 4- r »1o »

ponieważ zarówno dla x =  0 jak i dla x = ? n  obydwa wyrażenia, m- 
warte w nawiasie, są zerami. Podobnie:

/ 2n
1 /sin(n 4- r)x  , 8in(n — r)®\|

cos n x  cos rxdx — ^  — - - 4 — — J--------------— 1 = 0
21 » 4 - r  n — r /|0 0

Dla całki:
1 /cosfn 4- r)x  cos(n — OaJlI*’' n

/ sin»»® cos rxdx =  — „ I ------- r ----- *1------- 1------- ‘—II =  OJ  2 \ « 4- г  и — r /

otrzymujemy również wartość zero, ponieważ dla x  =  0 i dla x =  2a

funkcja pierwotna przyjmuje tę samą wartość: — ^   ̂-f~ ----- -J.

Dla n =  r  otrzymujemy z wzorów (26a) następujące wartości:

/■
81* n f nx dx

.2 n

2 n \ 2V
6*
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2л „  2 л
1 cos 2 т е '

вт  пх созпж dx =  — -  — -----
2 2 п

а *

Г = _ * а _ 1 ) = 0
2\2и 2я/

J  co&*nxdx =  +  *)| = | ( 0  +  2^) — | (0  +  0) =  n
?T 0

Z  tych wzorów skorzystamy w jednym z dalszych rozdziałów.
3) Obliczyć całkę:

=f\*\dx

Ponieważ |a?| =  x  dla x  0, a \x\ =  — x  dla * § 0 ,  przeto najdogod­
niej jest rozłożyć tę całkę na dwie części:

dx =

13
2

U 2  O 2

' “/w  dx -\- J  \x\dx — j —  x dx +f*

Niechaj czytelnik wyprowadzi ogólny wzór:

b

J \x\dx —  - \b\ — a-\a\)

rozróżniając dla a i b wszystkie możliwe przypadki, a więc: a ¡5:0 
i a <  0 i ó==;0, a •< 0 i ó <  0. Dla wyjaśnienia dobrze jest po­
służyć się odpowiedniemi figurami.

4) Wierzchołki trójkąta mają spółrzędne: 
0(0, 0), A(xt , y,), B (xt , 0), przyczem xt >  x, >  0, 
y, > 0 ,  jak na fig. 8. Wykazać, że pole tego 
trójkąta, obliczone przy pomocy całki, ma taką 
samą wartość, jak w geometrji elementarnej, 

^  t. j. równa się %x2 • y , .
^  - Łatwo stwierdzić, że boki OA i AB  mają

równania: y =  — x, y = ------ X -j--- xl l l —.x, xt — xi xt — xl
Pole trójkąta ma zatem wartość:

P =  ? * x d x  +  f  !-= ■ & -• - fJ  X, ' J  \x1 —xl xt — x j



Zatem:

P = ^ l  _  
a, 2 +  [ —  \ 2 ( x t

^  - +  - * *  -  x)
— x t) x t —  X x !

__x i yi yi(a» + a t)

4 a, y, — i .Vi
Niechaj czytelnik wykaże to samo dla innych położeń trójkąta, 

np. dla a, >• ®t >  0. y, >  0.
5) Obliczyć pole, ograniczone lukiem paraboli o równaniu t/i =  2px, 

leżącym nad osią odciętych, od początku układu do punktu o odciętej 
x  — a, rzędną końcową y =  ó i osią odciętych (fig 9). Otrzymujemy:

Pole, zawarte między osią rzędnych, prostą równoległą do osi odcię­
tych, a parabolą, ma zatem wartość P ,= ^ a ó , t. j. jest równe trzeciej 
części pola prostokąta o podstawie a. a wysokości h.

Wzór ten wyprowadza się w geometrji 
analitycznej także inną drogą, a mianowi­
cie zapomocą pewnego szeregu geome­
trycznego. Przy pomocy tego wzoru łatwo 
można obliczyć pole dowolnego odcinka 
paraboli, jak np. na fig. 4c, str. 63.

6) Obliczyć całkę od a;, do x t z ogól­
nej funkcji całkowitej wymiernej 3-go 
stopnia:

y =  a -f- bx -+- cx* -f- exs

i wyrazić wartość tej całki zapomocą rzędnych y ,,y , i rzędnej ys, na­
leżącej do środkowego punktu xt =  Ą(xt -f- a?3j  z przedziału <^x,,x,^>

ir‘
a -f- bx +  +  ex>) dx — ax +   ̂bxx - f  £ cx' +  j- exl

•i
I  =  a(x3 — *,.) - f  %b(xl — xf) - f  Ąc(x* — a?) +  ł e(xl —  aft)

7 = 5 T  ->[6a - f  3ó(a, +  x,) - f  2c(arf +  x l xs +  tri) +  %e{aĄ+a??a, +  x \ + a£i]

Ponieważ:

yj =  a -f- bxx - f  cx] +  cx], y i — aJr  bxa +  caĄ - f  eaĄ

przeto:

/ 4p5(ył + y, + 4a + 2Ó(®, -f- a,) + c(aZ + 2x,x, 4- a?) 4- 
4- %e(x\ 4- 3x\x3 4- 3 ^ !^  4- af)]
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Rzędna y4 w punkcie środkowym ma wartość:

y* =  a +  hb(x> +  ®*) +  i c(®! +  2«i +  ®s) +  +  3x]xs - f  dx, ¡rj +  ®1)

a zatem wyrażenie, zawarte w nawiasie graniastym, ma wartość y, -j- 
—)— y, —(- 4y,. Otrzymujemy zatem ostatecznie wzór:

(65) / =  Ł 5 (y , 4- 4y2+ y . )

Jeżeli y jest w całym przedziale <ar,,a;ł >  dodatnie, to ta całka daje 

wielkość pola, ograniczonego łukiem AB  (por. fig. 10) paraboli trzeciego 
stopnia, rzędnemi w punktach końcowych tego łuku i osią odciętych.

Ten sam wzór utrzymuje się 
dla paraboli 2 go stopnia i dla pro­
stej: y —  a -j- bx (t. j. dla para­
boli 1-go stopnia) jak to wynika 
ze specjalizacji stałych c,e w ogól- 
nem równaniu. Wzór (65) znaj 
duje częste zastosowanie w przybli­
żonych metodach obliczania całek, 
o czem będzie mowa w osobnym 
paragrafie. Jeżeli bowiem łuk ja ­
kiejś linji można z dostateczną dla 
żądanych celów dokładnością apro- 

ksymować zapomocą paraboli stopnia nie większego jak 3, to pole, leżące 
pod tym łukiem, można obliczyć w przybliżeniu wzorem (65), do czego 
są potrzebne tylko 3 rzędne i długość przedziału.

7) Obliezyć pole, ograniczone łukiem A B  elipsy o dodatnich
rzędnych, rzędnemi w punktach koń­
cowych tego łuku i osią odciętych 
(por. fig. 11). Równanie tej elipsy ma 
postać:

btx'i -f- a! y ’ =  a!ń*

a więc:

y —

Chodzi tu o obliczenie całki: 

S
P  =  y 2\ a ' - x * dx

Użyjmy podstawuenia trygonometrycznego: x =  a cos ł, to \a* — X1 =  a sin b 
d x =  — a sin t dt. Trzeba jeszcze zmierić granice całkowania, posługując 
się wzorem x — a cos t. Stąd f =  arcco i  a więc zamiast granic xt i xt



trzeba wstawić: /, — arccos-^, i, =  arccos^. Otrzymujemy zatem:

't
a sin t - (— a sin t) dł =  — ab J siu i l dt

Ponieważ zaś s in * i=  —-----h™— i przeto:

P  =  —  ab(% t — £ sin 2 t) |
'i

Stąd otrzymamy np. pole ćwiartki elipsy, biorąc <1 =  ¿rc, t, =  0 (bo

=  arccos — =  arc coa 0 =  i  n, t . =  arc cos — =  arc cos 1 =  0). Zatem: 
a 2 a '

P =  — ab(0 — 0 — ł i? r - j - 0 )  =  ła&Ji

Dla całej elipsy otrzymujemy stąd znany wzór:

P  =  ab n

Stąd dla koła o promieniu r — a =  b otrzymujemy:

P  =  r i n

zgodnie z wynikiem, znanym z geometrji elementarnej.

W  tym przykładzie widzieliśmy, że przy ostatecznem obliczaniu 
wartości całki oznaczonej nie trzeba było wracać do pierwotnej zmien­
nej x, lecz można było rachunek przeprowadzić do końca przy pomocy 
nowej, pomocniczej zmiennej t.

8) Pole, ograniczone łukiem hiperboli równobocznej:

należącym do dodatnich odciętych, rzędnemi końcowemi i osią a:-ów, ma 
wartość:

P  =  —  1°& ®
X . *1

—  log®, — log®, =  log ^

Jeżeli za początek przedziału obierzemy ®, =  1, a za koniec ®, =  a, 
to wprost:

a

Mamy w ten sposób przedstawiony geometrycznie logarytm natu­
ralny z dowolnej liczby a, większej od 1, zapomocą pola.
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Do tego przedstawienia możnaby nawiązać całą teorję logarytmów 
Tak np. zasadnicze dla nauki o logarytmach twierdzenie: 

log (aft) =  log a 4- log ft

można udowodnić w następujący sposób, używając całkowej definicji logarytmu:
av a ao

iog«.ói dx

ab b

Al© /  1 , jak to wynika z podstawienia x — at. A więc:

a 9
log (ab) = J ' —Cix ^_ J *— dz =  log o +  log 6

Z tego zaś twierdzenia wyprowadza się z łatwością inne ważne twierdzenia
0 logarytmach.

9) Obliczmy pole, zawarte między lukiem ABC  hiperboli równo­
bocznej o równaniu:

x 8 —  y* —  1

1 promieniami, łączącemi początek układu z kobeami tego łuku (por.
fig. 12). Oznaczmy żądane pole OABC literą w. 
Widocznem jest, że:

C /  $ «  =  OBC — O DC  — BDC =  ^  -  BDC

Otóż pole BDC  =  P  obliczamy przy pomocy całki:

, J y d x = j \ x * _ 1 dx

(tu jest y > O i  ® > 1 ). Całkę tę obliczamy przy 
pomocy wzoru (35) na str. 48, a mianowicie:

P = ^ { x  \x% — 1 — log ix  +  \xf — l ) )  1̂

Dla dolnej granicy: x —  1 otrzymujemy wartość 0, a dla górnej:

P  —  i  (®i \x\ ~ 1 — log ~  1))

\x\ — 1 =  yi

P — \Xi  Vi ~  + y t )
Wobec tego:

\u =  \ x x yx — £ ¡r, y, +  £ log (* ! +  y,) =  i  log(x, +  y0 

a zatem całe pole OABC ma wartość:

u =  log (a?, +  y.)

Lecz:

a więc:



Z tego wzoru możemy wyprowadzić bardzo interesujące wniosku 
I tak z wzoru tego wynika,' że:

(a) ®, +  y, =  e“

Ponieważ pomiędzy Xi a y1 zachodzi ponadto związek x? — y\ — 1 czyli:

więc:
(*. -  yi) (®i 4- yi) =  i

(b) *1 — y> =

Z równań (a) i (b) wynika:

1 _

+  y>

®, == i  (ea e a) =  coshypM 
¿/i =  i  (e” — fi- ' )  =  ainbyp«

Widzimy stąd, że w hiperboli równobocznej o pólosi 1 rzędna dowolnego 
punktu jeat sinusem hiperbolicznym a odcięta cosinusem hiperbolicznym, 
jeżeli je uważamy za funkcje pola wycinka OABC. Podobne związki zacho­
dzą między rzędną i odciętą dowolnego punk­
tu kola o promieniu 1 a sinusem i cosinu- 
sem kąta środkowego. Możemy jednakże 
także i trygonometryczne funkcje wyrazić 
jako funkcje pola odpowiedniego wycinka 
kola (por. fig. 13). I tak wiemy, że: 

xt =  cos a, yx =  sin a 

Wycinek OABC ma pole:

u =  ABC- \ OB — 2 a • i  — a 

Możemy więc także napisać:

X i  —  cos m , y ,  =  sin u

W ten sposób mamy już uwidocznioną ścisłą analogję pomiędzy 
funkcjami hiperbolicznemi a trygonometrycznemi (które można też nazy­
wać funkcjami kolowemi) i tą analogją tlómaczą się nazwy „sinus“ i „co- 
sinus“ dla funkcyj hiperbolicznych.

10) Obliczyć pole powierzchni, zawartej między jedną arkadą cy- 
kloidy a osią odciętych. Użyjmy dla cykloidy przedstawienia parame­

trowego:
x —  a (t — sin i) 
y =  a (1 — cos t)

Punkt przebiega jedną arkadę cykloidy, gdy t zmienia się od 0 
do 2 jz, a zatem gdy x  zmienia się od 0 do 2 an. Wobec tego:
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Użycie zmiennej x  byłoby tu niedogodne, trzebaby bowiem wyrazić y jako 
funkcję zmiennej x, co prowadzi do dość zawiłego wzoru. Jednakże przed' 
stawienie parametrowe nasuwa użycie następującego podstawienia:

x  — a (t —  sin t)

Wtedy oczywiście y wyraża się wzorem a ( l — cos ł), a badana całka 
ma postać:

czyli:

r  rP  — I o ( l — c o s t ) * a ( l— cost)d t =  ai I (1 cos i)8 dt

/n 2n 1 I O
(1 — 2 cos t +  cos H) dt =  a2 J  11 — 2 cos t -|----- ^°8— - j dt =

2 ji

— / *= W ( ! - 2  cost -|-^cos2<)dt

.2  n
P  =  a2 (| t — 2 sin t -j- l  sin 2t)\ — • 2n =  3 a *n

o
Zatem to pole jest trzy razy większe od pola koła toczącego się, któ 
rego punkt zakreśla cykloidę.

Niechaj czytelnik wykaże w podobny sposób, że pole zamknięte 
asteroidą (por. tom I str. 81), ma wartość: §a*7i.

11) Rozkład natężenia światła, wy* 
chodzącego z pewnego źródła światła O 
(fig. 14), przedstawiono zapomoeą odcin­
ków r, wychodzących z tego punktu pod 
rozmai temi kątami. Okazało się, że końce 
tych odcinków tworzą koło, położone tak, 
jak na fig. 14. Zbadać średnie natężenie N  
światła, uwzględniając wszystkie możliwe 
kąty.

Odcinek r  jest fankcją kąta <p, a mia­
nowicie:

r  =  2 R cos (p

a kąt zmienia się od —  n  do -j-1 jt. Chodzi tu o obliczenie średniej 
wartości tej funkcji w przedziale < —  ̂n, Na podstawie wzoru
(49) na str. 67 otrzymujemy:

+ -  + -
„  1 r \  , 2 E  . \ 2 2 R 4 R
N — — I 2i?cosmdm — ----sin® = -----(1 — ( — 1)) =  —

n j  tt | »  n
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W  podobny sposób można zbadać średnią odległość d punktów (obwodu) 
elipsy o półosiach a i b od ogniska, używając biegunowego równania 
elipsy;

Vr ~  i----- -------
1 —  £  COS <P

przyczem biegun leży w ognisku, a osią jest oś wielka elipsy; p oznacza 
tu parametr i ma wartość b*:a, a e jest to mimośród liczbowy;

e 1 i/---------
f  =  -  =  -  \a% — 6* a a ’

Dla górnej połowy elipsy otrzymujemy z wzoru (49) na str. 67:

f -, — - —n j  1 —  e cos tp
d<p

Przy obliczaniu tej całki dogodnem jest użycie podstawienia t g ^ = w

(por. § 210). Pozostawiamy czytelnikowi do stwierdzenia, że d — b. W y­
nik ten znajduje zastosowanie w astronomji, przy badaniu średnich od­
ległości planet od słońca.

12) Prąd elektryczny zmienny zmienia się perjodycznie według 
prawa sinusowego, a mianowicie;

i =  j0sinai

Tutaj i0 oznacza największe natężenie prądu. Okresem zmiany jest czas

jT =  — , gdy bowiem t zmienia się od 0 do t0 ał zmienia się od 0

do 2n. Zbadać średnią kwadratową a, czyli tak zwany „prąd skuteczny“ . 
Użyjemy do tego Celu wzoru (50) na str. 68 dla przedziału <C O 7’ > .  
Zatem:

at — Tp f  *0 siu* <*t dt — ^  j "
o Ć\ — cos 2at dt

a więc;

, iž ( t sin 2a^| ą l m sin 2 a T\
°  = 2 2 * r ------T a ~ ) r * T  \ -------

0
2 Ti

Ale 2 a 7 '=  2 a- —  =  4 n, a więc sin 2a T —  sin 4 n — 0 i otrzymujemy: 
a

° ' =  i  il

Stąd: o — n
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Jeżel' natężenie prądu zmiennego wyraża się wzorem:

i = i, sin at -)- i 2 sin 2 ał ... -f- i„ sin nat 
-|- yj cos ał -f- y, cos 2at -+-• ■ •-(- y „ cos nat

odpowiadającym kilku drganiom, to okazuje się w podobny sposób, jak 
poprzednio (używając przytem wzorów z przykładu 2 na str. 83), że prąd 
skuteczny ma wartość:

a = |̂  + *2 + j l  + j l  + • • • + j l

Wykonanie rachunków pozostawiamy czytelnikowi dla ćwiczenia.

§ 221. Wzory Wallisa 1 Stiriinga.

Wyprowadziliśmy dla całkiJ^siu"xdx  wzór redukcyjny:

J  sin "x dx —  — |— cos a; sin x j -{- ----- ̂  8lD" dat

nżywając całkowania „per partes“ (por. § 206 str. 14, wzór 17). 
Zastosujmy ten wzór do obliczenia całki oznaczonej:

n

^ 9Í O "X dx

Opierając się na wzorze (63), otrzymujemy:

I .  = ------ cos x sin * Jxn

Wyrażenie po znaku -równości jest równe zeru dla Jzt, ponieważ cos = •  
i dla 0, ponieważ sin *—10 == 0. Pozostaje zatem dla badanej całki nastę­
pujący prosty wzór 'redukcyjny:

Z, =  ?L— ! dla « ^ 2

Dla

a dla

5 5 5

n =  0 otrzymujemy wprost /0 =  J '  •sin ° x d x =  J '  1 • d® =  ®| =
0 Ó 0

a *

n —  1 jest /, =  J  sin xdx — —  c o s a ; | =  — 0 -j- 1 =  L

M
l 

S
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Na podstawie tego otrzymujemy dla parzystego n =  2p kolejno: 

Ogólnie:

T  1*3 ...(2p — 1) n
1%p 2 *4 ... 2 p 2

jak łatwo stwierdzić przez indukcję zupełną. Natomiast dla nieparzystych 
n =  2p l otrzymujemy kolejno:

ogólnie:

i  - 2 4 ...... 2p
2,+1 3 -5 . ..(2p +  1)

Ponieważ sino; jest w badanym przedziale <C0, £я^> nieujemne i nie 
większe od 1, przeto:

sin ip~'x sin грх  sin 2r+1x 

Stąd wynika (na podstawie § 217, wniosek 1), że:

i.P-1 =  2̂P =  Лр-Н
czyli:

2 • 4 • 6 ... (2  p  — 2) ^  1 » 3 • 5 ... (2 p — 1) я ^ 2 - 4 . 6 . ,.(2p  — 2 ).2p
3 • 5 • 7 .. (2p — 1 )=  2 • 4 • 6. —  2p “ ‘ 2 =  3 .5 .7 .. . (2 p  -  l).(2 p  +  l )

a stąd:
2 .2 - 4 - 4 - 6 - 6 . , . (2 p — 2 )(2p  — 2) ■ 2p 
1 *3 ‘ 3 -6 * 6 '7 . . . (2 p  — 3 )(2 p  — 1) (2 p —  1) =  

^ я ^ 2 .2 -4 -4 -6 -6 . . . (2 р  — 2) (2p — 2) 2p -2p  
=  2 =  1 • 3• 3• 5• 5• 7 . . . (2 p —  3) (2p — 1 j~(2p —  1 М 2 р +  Г)

Nazwijmy lewą stronę literą Ap. Po podzieleniu przez Ap otrzymamy:

1

2P +  1- 1 + , ’

1
Gdy p —> oo, to —-r—j— > 1, a zatem także ciąg ł  я : A,, dąży do 1,

' 3P
czyli:

(66) 2
_  .. 2 • 2 • 4 • 4 • 6 • 6 . . . ( 2 p — 2 )(2p — 2) 2 p

=  lim A„ lim
1 • 3 • 3 ■ 5 • 5 • 7 ... (2p — 3) (2p — l) (2 p  — 1)

Mamy więc przedstawioną liczbę przy pomocy iloczynu nieskoń­
czonego. Iloczyn ten możemy także napisać w dogodniejszej postaci w na-
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stępujący sposób:

p - 1

Można także, uzupełniając we wzorze (66) licznik i mianownik przez 
wprowadzenie dodatkowych czynników 2 • 2 • 4 • 4 ... 2 p • 2p • 2p, przedstaw - 
wić go w zwięzłej postaci:

(66 b) lim
p -*-o o

p!8 2łP
{ 2 p ) \ \ T p

W zór (66), zwany wzorem W a l l is a , nie nadaje się wprawdzie 
dobrze do obliczenia liczby n, jest bowiem bardzo wolno zbieżny. Ma 
on jednak bardzo doniosłe znaczenie z tego względu, że można z niego 
nietrudno otrzymać dogodne przybliżenie na obliczanie wartości wyra­
żenia p!, co przy wielkich liczbach p sprawia wielkie trudności, a jest 
potrzebne w rozmaitych zastosowaniach, np. w rachunku prawdopodo­
bieństwa.

Wzór, dający takie przybliżenie, ma postać:

(67)

i nazywa się wzorem S t i r l in g a .

Dowód wzoru Stirlinga.
Dzielimy* obie strony wzoru (66 b) przez i upraszczamy licz­

nik i mianownik prawej strony przez p\. Otrzymamy w ten sposób.

iim
p l  2* p - ' h

(p -j- t )(p  -f- 2 )...(2 p  — l jp ’7* |t2n

2%>-Vi / 2 P I*"—a
Uzupełnijmy ułamek ^— — - tak, aby miał formę ------ j j  czyli

=  I

2p , ip-1/.

2 p

( 1 >1P-Vt
l -j- — ---- - j , która dąży do e, gdy p - * o o . W  tym celu trzeba

V*
pomnożyć licznik i mianownik przez ^ ^

Otrzymamy w ten sposób:

+  1)(P +  2)..• (2 V -  2) K i *
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(2 p - j —*/t
Postępując tak samo z ułamkiem —^ --------—  i z dalszemi ułamkami.2p — 2
otrzymamy:

p! 1

1/2r ( ' + 2 ^ t)
I 1 / 1 \P+,/> / 1 !/>+>/<

• (■ + ip i )  •■'(1+ p-+ t) • ('+ ? ) = '
Chodzi jeszcze tylko o okazanie, że iloczyn występujących tu potęg

postaci I 1 4  —| o dodatniem x  można zastąpić przez iloczyn e • e... e =  tf

Oznaczmy dla krótkości całe wyrażenię, którego granicę utworzyliśmy, 
literą Wp. Zamkniemy ten ciąg Wp pomiędzy dwa ciągi, opierając się 
na tern, że:

(a) ;<(, + łp<.«*(ł-iy
Dowód nierówności (a).

i nierówności wynikają :
)■

l°g (1 + * )  =  log*  +  2 j t  3 ( 2 * 4  l)s ^ 5 ( 2 * 4 1 ) »

Te nierówności wynikają ze znanego rozwinięcia logarytmu (por- tom I, § 139. 
wzór 138):

1 1

czyli:

a więc*.

log(*  +  1) 2 *4  1 f 1 "*- 3(2*41)* ■*'6(2*41)‘

/ 1 )*+■/• 1 1 
log ( ł + * /  =  1 ^  3 (2 * 4  1)*+  6 (2 * -j-1)‘  +  "

f  ...]

Stąd wynika, że:
f 1 \*+v> / t 1 . \

1<log( , + * )  <  ’ +  * \(2*4 l), +  (2z4 l), +  " ')
zastąpiliśmy bowiem w mianownikach liczby 3, 5, 7,... w s z ę d z i e  liczbą 3. W nawiasie 

mamy szereg geometryczny o ilorazie ^  zatem jego wartością jest:

)» : ( ! (2 *4 D ’)
czyli:

Wobec tego : 

a więc:

( 2 * 4 1 ) ’. \ 

___l____ i /1___ L_\
2 * ( 2 * 4 ‘<J) * \* * 4  1/

k i o b ( h - j ) < l + A ( i - p r )
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Stosujemy te nierówności do wszystkich potęg, występujących 
•w ciągu Wp i otrzymujemy:

< W. •< -- • e"+ Tt^  ~ *+> + *+> ~ p +* *"+ — Ł )
P 

czyli

*-*Y 2 h ,p+V.\2 n

v ' e" -L
1 <  W, : - £ £ - =  <  «**

pp+'l')/2n

Ponieważ obydwa wyrażenia ograniczające dążą do 1, przeto także:

lim
p - t - c o

W„
pp+1>' \2n e~

Ponieważ zaś dzielna Wp dąży do 1, przeto i dzielnik musi dążyć do 1, 
a to właśnie jest treścią wzoru S t i r 1 i n g a.

Ponieważ iloraz ciągów p! i p1̂ 1' e~p\2n == sp dąży do 1, przeto 
mówimy, że ciąg sp przedstawia asymptotycznie wartość ciągu p\ Dla 
wielkich p można więc brać zamiast p! wartość sp; tę zaś wartość 
oblicza się dogodnie przy użyciu logarytmów. Popełnia się przytem

__ g J) *
wprawdzie wielki błąd bezwzględny, lecz błąd względny, t. j. —-----=  — — 1

Sp sp
dąży do zera. Tak np. już dla p = 1 0  jest pl =  3628800 a spk 3598700. 
Błąd bezwzględny wynosi tu wprawdzie około 30100, ale błąd względny 
nie osiąga wartości 0’009.

Używając ciągu bp= p l : s p, można uzyskać wzór, przedstawiający 
jeszcze dokładniej pi. Utwórzmy mianowicie iloraz:

p l ( P +  D! o + i )
1 \P + lla 
P >

>>p+i pp+l1' \2 7i e~p ' (p  +  1Y ** \2 n e~p~1 «

Posługując się nierównościami (a)j otrzymujemy stąd:

1 <; A _  <
bp+i

a  więc: bp >  bp+,, zatem ciąg bp maleje monotonicznie. Każdy więc jego
__ 1 1

wyraz jest większy od granicy 1. Natomiast bpe np 1S,P+I),
___i_

a więc ciąg b„e Up rośnie monotonicznie i ma również granicę 1, zatem 
wszystkie jego wyrazy są mniejsze od 1. A więc:

Stąd zaś wynika, że:
br > l > b pe m*

1.bpe i " : gdzie 0 <  #  <  1
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czyli:

czyli:

( 68)

n? + '/1
p ]  — —C _ ---- , e Kp — 1
\2  n e~p

p\ — pp+'l')f2n e p+ '2 P O <  ^  <  1

Używając tego wzoru na obliczenie 10!, otrzymujemy, biorąc za O górne 
ograniczenie I, liczbę: 3628930, a więc zarówno błąd bezwzględny jak 
i względny są tu znacznie mniejsze aniżeli przy użyciu wzoru (67) (błąd 
bezwzględny wynosi 130 a błąd względny około 0-00004).

Użycie wzoru (68) ma tę zaletę, że znajdujemy z niego dwie liczby, 
ograniczające jo! zdołu (kładąc 0 =  0) i zgóry (0 = 1 ) .

Uwaga. Jeszcze dokładniejsze przedstawienie wyrażenia p\ uzyskuje się, biorąc 
w wykładniku liczby e dowolną ilość wyrazów t. zwanego szeregu S t i r l i n g a  (Zob. 
Se rret.  Lehrbuch der Differential-und Integralrechnung, 3 wyd-, tom II, str. 248 i nast.).

§ 222. O ciągach, dążących do całki oznaczonej.
Na podstawie wyników, uzyskanych w poprzednich paragrafach, 

potrafimy obliczyć wartość całki oznaczonej tylko wtedy, gdy potrafimy 
znaleźć całkę nieoznaczoną badanej funkcji. W innych przypadkach 
trzeba się uciec do definicji i starać się wyznaczyć w jakiś sposób kres 
górny sum:

s =  mt(x l — a) j, — a?,) -|-... +  m„(b — ar„_,)

Okażemy, że z zbioru tych liczb s można wybrać w rozmaite, bardzo 
dogodne sposoby, ciąg: gu st,...sp, . .., dążący do kresu górnego K. Trzeba 
mianowicie dobierać kolejne podziały przedziału < a , bj> tak, aby wszystkie 
częściowe przedziały Ax, dążyły do zera; do tego zaś wystarcza, aby ciąg 
utworzony z największych przedziałów każdego podziału dążył do zera. 
Tak np. można dzielić przedział < a , kolejno na 2, 3, 4,... p -f- 1 
równych części i otrzymać w ten sposób ciąg sum:

ogólnie:

s, =  « { ’’ (a;)1! — a) -\- Tn^{b —  * ) '’ )

Sj =  w + fe f1 — a) -f- »4*)(a42> — ®)J)) +  m^)(h — ®*2a>) .. •

p+1
sp =  m\p)(x\p> — a) -j- — x[p)) + ... +  m<fh (b— 3#’)) =  mtf )A<ć,p)

/-i

Tu wszystkie częściowe przedziały dążą do zera, albowiem Ax\p) =■ 

a więc lim Ax\p) =  0.

b — a
P + l

Bachanek różniczkowy i ca/kowy. T. 2. 7



Można jednak także inaczej dzielić przedział < a , np. kolejno 
..na 2, 4, 8 ,...2P,... równych części. Wtedy także wszystkie przedziały 
Częściowe dążą do zera i to nawet szybciej, aniżeli w poprzednim przy­
padku. Możife także dzielić przedział < a , na nierówne części, wsta­
wiając np. pomiędzy a i b liczby według postępu geometrycznego o ilorazie

=  q; wtedy x[p) — aq, x ^  =  aq\...x$) =  a<f, a<f+* =  ^  —  6.

Wogóle istnieje nieskończenie wiele rozmaitych ciągów podziałów, 
przy których długość największego częściowego przedziału dąży do zera. 
Niechaj ogólnym wyrazem ciągu sum dolnych, odpowiadających takiemu 
ciągowi podziałów, będzie:

n„
sp =

i-i
b

Okażemy, że „ k i  ci*g d ,ż ,  d . e.lki < ~ » . ¡ :
«

gdy p wzrasta nieograniczenie.

Dowód. Według wzoru 65 z §  214 jest ta eałka zawarta pomiędzy dowolną 
sumą dolną sp a odpowiadającą jej sumą górną Sp. A więc:

Stąd wynika:

( I ) 0 ^ K - S p ^ S p  — sp -  m «) A rP

Chcemy okazać, że lim sp — K, to zniczy, że do każdej dodatniej liczby e
P - +  OO

można dobrać takie N, że dla wszystkich p ^ > N  jest prawa strona niniejsza od e. 
Oprzemy się na tem, że funkcja f{x ) jest ciągła w przedziale zamkniętym <^a, ft)>, 
a więc jest w nim jednostajnie ciągła (por. tom 1, § 59). To znaczy, że do każdej 
dodatniej liczby e' można dobrać takie dodatnie <5, że dla wszystkich x  i x 0 z prze­
działu < « ,  ó>, spełniających warunek |x —x0| <  <5, jest \f{x) — /(*„)| <  * •  Obierzmy

* — 1 wyznaczmy odpowiednie d. Do tego i  dobierzmy takie JV, aby dla p^> N

było \AxM #\<^ól w myg] założenia da się to uskutecznić, bo długości wszystkich, 
częściowycb przedziałów dążą do zera. Oznaczając w każdym z tych przedziałów lite- 
jątni x i &(, punkty, w których funkcja przybiera największą i najmniejszą wartość,

& j. MW i mW , widzimy, że \x — x„ \ <  <5, a zatem | Mjp) — < e '  =  — - — .Znak
o — a

bezwzględnej wąrtości nie jest tu potrzebny, ponieważ M W  :> mW  Wobec tego z nie-
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rówoośai (I) otrzymujemy

o S  K — a  a, - w  =  t i r .  2 * *  =  V - . (‘ -  •»='

Spełnia się więc dla wszystkich p >  N  warunek

(II)
a więc:

To znaczy, źe:

(69)

lub wyraźniej;

(69 a)

0 ̂  K —  « , S S , - « F< f

/(*) d*lim i p —  K —  f )
—aoo a/

a

H p  b

lim m(/,)ńxljpi =  J'f\x)dx
/-i •
(4 ^ » - > 0 )

Dowiedliśmy więc, że dąy mim dolnych, odpowiadających takim po­
działom przedziału, w których długość największego częściowego przedziału 
dąży do zera, dąży do całki oznaczonej.

Zamiast sum dolnych: sp można utyć do wyznaczenia całki ozna
np

«zonej także sum górnych: Sp=  V . I tak z wzoru (II) wynika
/-i

»draża, że także: 

oHa p >  N, a to znaczy, ie;
[5 , r -  sp\ <  e 

lim (Sf  — sp) =  0

azyli:

A więc:

(70)

lim Sp — lim sp =  K

np . i

lim \ =  lim Sp =  K  =  f  f(x)dx
P —» O O ^ T  p —¥ 0 0  J

(Axp>-+0)

To dowodzi, że także ciąg takich sum górnych, u> których wszystkie prze­
działy dążą do zera, difży do cuł/« oznaczonej.

Z tych dwóch twierdzeń wynika, że do wyznaczenia całki ozna- 
ezonej można także użyó ciąga 6um „pośrednich“ , utworzonych według 
wzoru:

7*
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gdzie £}p) oznacza dowolną wartość z przedziału a więc
dowolną wartość pośrednią, albo xf\ albo x}p). Ponieważ bowiem zawsze 
zachodzą nierówności;

t>Ąp)^ № p)) ^ M l p'

przeto muszą zachodzić także nierówności sp^ o p^  Sp. Ciąg zaś, którego 
wyrazy są stale zawarte między odpówiedniemi wyrazami dwóch ciągów 
zbieżnych do wspólnej granicy, jest także zbieżny do tej samej granićy. 
Zatem:

Hp b

(71) lim <Jp=  lim \ ’f(ę [p))Ax',p) — f f(x)dx .
p-¥<X> p -+ O Q  J

/-1 «

Całka oznaczona jest równa granicy ciągu sum, w których każdy 
dodaj ni k jest iloczynem z długości przedziału częściowego i z wartości funkcji 
w d o w o ln y m  punkcie tego przedziału, jeżeli tylko długość największego 
częściowego przedziału dąży do zera.

To twierdzenie zawiera poprzednie twierdzenia tego paragrafu jako 
przypadki szczegółowe. Przy budowaniu ciągów sum, zdążających do 
całki, możemy zatem brać z każdego przedziału częściowego albo naj­
większą wartość (M t) funkcji f (x ) w tym przedziale, albo najmniejszą (m,)» 
albo wartość funkcji na początku przedziału, t. j. f(Xi._x), albo wartość 
/(»,) na końcu przedziału, albo wreszcie zupełnie dowolną wartość f(£i) 
z wnętrza każdego przedziału.

Wszystkie te sumy zdążają do wspólnej granicy, gdy długość naj­
większego częściowego przedziału w każdym podziale dąży do zera, a tą 
wspólną granicą jest całka oznaczona z f (x )  od a do b. Tych ciągów sum 
dolnych, górnych lub dowolnych sum pośrednich można, użyć wprost do 
definicji, całki oznaczonej. Istotnie też w podręcznikach analizy najczęściej 
tą właśnie drogą wprowadza się pojęcie całki oznaczonej.

Uwaga 1. Widzieliśmy w § 214, str. 72, że średnia arytmetyczna z n wartości 
funkcji f (x ), dobranych odpowiednio w n przedziałach, otrzymanych przez podział

b  „

i cprzedziału < a , na n równych części, jest równa ----- - I f (x )  dx. Jeżeli zaś hie-

m.

rzemy te wartości funkcji f (x )  zupełnie dowolnie w tych n przedziałach, to ich średnia 
arytmetyczna

/•(£.) +  / • & )+  •■• +  /(&,)

o

4ązy do ^ j * f { x )d x ,  gdy n —y oo. Albowiem suma:
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« »  — f(Ši) +  /(I*) ¿í* + ..  • +  /■(£.) (& — «)
a więc:

lim ^ I + ^ ) +  -- - ± / í ^ =  i;m ^
/1 —>00 W n—*oc b  

n

Uwaga 2. Wszystkie te rozważania dotyczyły tylko funkoyj ciągłych w <ja, 6j>. 
Okazano, że twierdzenia tego paragrafu odnoszą się także do funkcyj nieciągłych, lecz 
ograniczonych i posiadających skończoną liczbę punktów nieciągłości w danym prze­
dziale, a nawet do niektórych funkoyj, posiadających nieskończenie wiele punktów 
nieciągłości w skończonym przedziale Przy tych rozważaniach wprowadza się odrazu 
szerszą definicję całki. W następnyńi paragrafie zajmiemy się niektóremi najprostszemi 
uogólnieniami pojęcia całki.

Przykłady.
1) Przy pomocy takich ciągów można obliczyć wartość całki ozna­

czonej, nie używając do tego funkcji pierwotnej, a więc całki nieozna­
czonej. Spróbujmy tą metodą obliczyć wartość całki;

s

x*dx

Użyjmy podziału przedziału całkowania < 0 , 5j> na równe części. Wyraz 
3 0 ciągu sum otrzymamy, dzieląc przedział na n równych części, a więc:

A r , =  ^ ?  =  -  (dla z =  1,2,3,.
n n

Długość każdego z tych przedziałów mnożymy przez wartość najmniejszą, 
t. j. w tym przypadku przez wartość funkcji y — Xx na początku każdego 
przedziału częściowego, albowiem ta funkcja jest monotonicznie rosnąca 
w przedziale < 0 , 5 > . Temi wartościami funkcji są odpowiednio:

a więc;

s

»=<>■> ( '• ! ) ’’ (*•!)’ (34 )!--[<” - 1>v

= 0 ^ .  |  + ,  -  (D *  - Ł +  . (D * .  Ł + . . . + _  X ).. ( D * . |

„ =  (| )* [1 2 +  2* -f- 3* + . . .  +  ( « -1 )*|

Na sumę kwadratów wszystkich liczb naturalnych od 1 do «  mamy wzót 
(por. tom I, § 196, wzór (207)) fn ( i i  +  l - ) ( f » +  U  a zatem na sumę 
kwadratów liczb naturalnych od 1 do w — 1 otrzymujemy wyrażenie: 

±(n  — l)n (2 n  — 1). Wobec tego;
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Stąd:

A  więc:

hm s„ =  i f i  (1 —  0)12 —  O) =  ^

‘ “ Z *
dx =  i f i

Próba. Przy pomocy całki nieoznaczonej J  x l dx — -f- C znaj­

dujemy:

'* »  dx =  łx>  +  C| =  J fŁ  4- c  -  0 -  C =

/ ’
a zatem tę samą wartość, którą otrzymaliśmy bezpośrednio z ciągu odpo­
wiednich sum.

2) Obliczyć bez używania całki nieoznaczonej wartość całki:

e
dx

■ - J t

Tutaj korzystniej jest podzielić przedział < 2 , 6 >  na części nierówne» 
lecz wzrastające według postępu geometrycznego o ilorazie:

* = h = i  3

Otrzymamy wtedy następujące punkty podziału:

n n n n n
2 \ \  2^3*, 2 ^ *  =  6

Chcąc otrzymać sumy dolne, należy brać wartości funkcji y =  — na końcu
X

każdego z przedziałów częściowych, funkcja ta bowiem maleje monoto 
nicznie. Otrzymamy w ten sposób na s„ następujące wyrażenie:

*- =  4 -  (2 h  -  +  (2^3* -  2]/Z) +  • - +  - i ~ ( 2  f e  -  * )/ ¥ * )
2 K3 2|/3* 2

Długości wszystkich przedziałów dążą do zera, gdy n wzrasta nieogram- 
ezenie, albowiem nawet najdłuższy, ostatni przedział, ma długość:

Wiadomo zaś, że ^3 =  3',m ->  3 ° =  1, a więc Axn ->-6(1 —  |) =  0.
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Wykonujemy w s„ zaznaczone działania i otrzymujemy;

S„ =

lim s« =  lim «(1  — 3_1/")
n - ¥ 0 0  łl-Ł -O O

Pierwszy czynnik dąży tu do oo a drugi do 0 Przy pomocy reguły 
H o s p i t a 1 a otrzymujemy;

lim ----- ------=  lim ------------- "lim s„
n —¥00

Zatem:
j. =  lim 3~1/n log, 3 =  log, 3

f

Próba Przy pomocy całki nieoznaczonej otrzymujemy 
o o

f (̂ r =  loS< l * l | == ,0&- 6 ~  łog-'2 =  !og, 5 =  log, 3
2 2

zgodnie z wynikiem,, otrzymanym zapomocą ciągu sum dolnych.
Z tych przykładów widzimy, źe znając całkę nieoznaczoną, docho­

dzi się bez porównania szybciej do wyniku. Jednakże pomimo to ta nowa 
metoda jest bardzo pożyteczna, ponieważ przy je j pomocy można także 
obliczać całki oznaczone z takich funkcyj. dla których nie znamy całek 
nieoznaczonych. Ponadto przy pomoey ciągów dążących do całki ozna­
czonej, łatwo jest definjować i obliczać rozmaite wielkości geometryczne 
i fizykalne, jak np. długość łuku, momenty statyczne i bezwładności, jak 
to zobaczymy w dalszym ciągu. Wreszcie na tej metodzie opierają się 
rozmaite -przybliżone metody obliczania całek oznaczonych (i pól) w takich 
przypadkach, w których zawodzi użycie całki nieoznaczonej, np. gdy 
funkcja podcałkowa jest podana tylko w sposób tabelaryczny lub gra­
ficzny. Temi przybliżonemi metodami zajmiemy się w dalszym ciągu 
w § 226.

§ 223- Całki uogólnione.

We wszystkich rozważaniach tego rozdziału czyniliśmy założenie, 
że funkcja podcałkowa f (x ) jest ciepła w przedziale zamkniętym <]o, ń> . 
Można jednak zdefinjować całkę oznaczoną także ogólniej, biorąc pod uwagę 
funkcję nieciągłą lecz ograniczoną w przedziale <^a, dopuszczając przy- 
tem skończoną liczbę punktów nieciągłości w przedziale ń > , a nawet 
w pewnych przypadkach nieskończenie wiele takich punktów. Do defi­
nicji używa się kresów górnych lub kresów dolnych lub też ciągów od
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i Y 0_______ B
'C;

A I • »
* 1 1 1 1

0
• i ! ■ i ■< i . >

a c-e c c+c i *

powiednich sum. W  ten sposób powstały rozmaite uogólnienia pojęcia» 
całki, odgrywające nadzwyczaj ważną folę w matematyce spółczesnej, 
jak np. całki R iem an n a  i całki L e b e s gu e ’a W  zastosowaniach praktycz­
nych te pojęcia nie znalazły dotychczas szerszego rozpowszechnienia i dla­
tego nie będziemy się tu niemi zajmowali J.

Ograniczymy się tylko do najprostszej klasy funkcyj, a mianowicie 
do funkcyj f ( x ,  posiadających w przedziale < a , 6 >  tylko skończoną 
liczbę skończonych skoków a pozatem ciągłych we wszystkich innych

punktach tego przedziału. Weźmy pod 
uwagę najpierw „ taką funkcję f(x ), 
która jest ciągła w całym przedziale 
<ja, z wyjątkiem jednego punktu c, 
leżącego wewnątrz przedziału, w tym 
zaś punkcie posiada skończony skok, jak 
na fig. 15. Obierzmy w przedziale < a , c >  
dowolny punkt c—e,a w przedziale < c ,b >  
punkt c -f- e'. Zarówno całka oznaczona 

od a do c —e, jak i całka od c - j-e ' do 6 istnieje. Gdy e dąży do zera, to

całka J"f (x )d x  dąży do skończonej granicy, a mianowicie do całki ozna-
a

ezonej od a do c z funkcji /j(x), która jest równa f{x ) w przedziale 
c), otwartym z jednej strony, a dla x  =  c przyjmuje tę wartość, do 

której dąży f(x ). gdy *  dąży do c z lewej strony.
6

Podobnie istnieje granica drugiej całki: j ' f { x )  dx, gdy e' dąży do
C+£'

zera. Sumę. tych dwóch granic nazywamy całką oznaczoną z funkcji nie­
ciągłej f(X ). A więc:

b c—£ • bj "f { x ) dx =  lim J" f (x )  dx 4 -  h m  j  f(sc) dx

Fig. 15.

Jest to całka uogólniona. Jeżeli funkcja f (x )  jest meujemna w całym prze- 
* dziale <^a, to wartość całki uogólnionej podaje pole figury, zam­

kniętej linją ACDB , rzędnemi aA i bB, tudzież odcinkiem CD na fig. 15 
W zupełnie podobny sposób określa się całkę z funkcji, posiadającej 
skończoną liczbę skończonych 6koków.

1 Czytelnika, który pragnąłby głębiej wniknąć w ogólną teorję całek oznaczo­
nych, odsyłamy do podręcznika S. Sak sa p. t. Zarys teorji całki (Warszawa 1930j 
lub de la V a l l é e  PouBS i na  p. t. Cours d’Analyse ln/tnitesimale (Paryż, wyd. 6» 
1926 r.).
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Uwaga. Nietrudno jest dowieść, że do tych całek uogólnionych stosują się to 
same twierdzenia: o addytywności, o całkowaniu sumy, o wartości średpiej (wzór 48), 
o całkowaniu przez podstawienie, .per partes“ , co do zwyczajnych całek oznaczo­
nych, nieuogólnionych.

Jeżeli w calce uogólnionej weźmiemy zamiast 6tałej górnej granicy b, zmienną t,
i

to ta całka jest funkcją <p (t) tej górnej granicy: dx — ¡p (f). Otóż można udo­
ił

wodnić, że ta funkcja <f (0 jest funkcją ciągłą zmiennej t, nawet w tych punktach, 
w których f ( x ) posiada punkty nieciągłości. Odrazu to widać z geometrycznej inter­
pretacji całki jako pola: gdy punkt c przesuwa się o dość mały odcinek, to wielkość 
pola zmienia się tak mało, jak tego zgóry zażądamy Jest to uogólnienie twierdzenia, 
udowodnionego na początku § 215. Pochodną tej funkcji <p(t) według zmiennej t jest 
wewnątrz przedziału < a , c >  funkcja f{t), a także wewnątrz przedziału <[c, na­
tomiast w samym punkcie c funkcja q>(t) nie posiada pochodnej.

Przykład.

Obliczyć:

I sign x dx

Funkcja sigo x  (por. tom I § 1, str. 12, fig. 3) jest równa -f- 1 
dla x  >  0, a — 1 dla x <  0, w punkcie zaś x  =  0 ua skok skończony. 
Rozkładamy zatem tę całkę na sumę dwóch całek:

J" sign x  dx =  lim J sign x dx +  lim J sign x  dx =  lim [ — I )d xĄ -

Z

-K lim /f'-*o J
(-F l )  dx — lim (—  x) +  lim x  — —  3 2 =  — 1

Niechaj czytelnik wyprowadzi ogólny wzór.

b

sign xd x  =  \b\ —/■
uwzględniając wszystkie możliwe wypadki dla a i b, a więc Dp. dla 
a <C. b, trzeba rozważyć a^sO i b ^.0, a 0 i i  ̂  0, a <  0 i b <̂ _0. W y­
godnie jest posługiwać się przytem obrazem graficznym funkcji sign x

+ 2n

Niechaj czytelnik obliczy w podobny sposób wartość całki  ̂j f  (x)dx,

przyczem f (x )  =  x  w przedziale < 0 , « ) ,  a f{x ) — x — 2n  w przedziale 

O ,  2n > .  Wykres!
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§ 224. Całki niewłaściwe.

Wszystkie całki oznaczone, o których dotychczas była mowa za­
równo uogólnione, jak i nieuogólnione, nazywamy całkami oznaczonemi 
Młaściwemi.

W  przeciwieństwie do nich nazywamy całkami niewłaściwemi takie 
nowe rodzaje całek, w których albo funkcja podcałkowa jest nieograni­
czona w otoczeniu jakiegoś punktu przedziału całkowania, albo przedział 
całkowania jest niewłaściwy, t. j. <^a, oo) albo (— oo, albo wreszcie 
(— ° ° , +  oo). Takie całki niewłaściwe określamy zapomocą następują­
cych definicyj.

Jeżeli funkcja f ix )  jest ciągła w całym przedziale -<a, b), a dąży 
-do nieskończoności, gdy x  dąży z lewej strony do b, to istnieje całka 
oznaczona właściwa z tej funkcji od a do każdego punktu, leżącego dowol­
nie blisko przed punktem b, a więc do b — e, g d ż ie e > 0 . Istnieje zatem

8=

/ f (x )d x . Jeżeli wartość tej całki dąży do skończonej granicy, gdy

dąży do zera, to tę graniczną wartość nazywamy całką oznaczoną nie­
właściwą z funkcji f ( x )  od a do b. Przyjmujemy więc następującą 
defin ic ję:

(72)

Jeżeli F (x )  oznacza funkcję pierwotną funkcji f  (x) w przedział« 
<  a, b — t to możemy ten wzór napisać także w postaci:

(72a )•

b

/ ,f (x )d x  lim /’ (¿i — c) —* F ia )
i —o

Podobnie definjujemy całkę niewłaściwą w przypadku, gdy funkcja f (x )  
jest ciągła w całym przedziale < a ,  z wyjątkiem początkowego
punktu a, a przy x, dążącem z prawej strony do a, dąży do nieskoó.
CZODOŚCi.

Wtedy mianowicie:

(73)

Jeżeli F (x )  oznacza funkcję pierwotną funkcji /(a?) w przedziale < ;a +  £',&>» 
to wzór (73) można napisać w postaci: ;
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(73 a)

b
f f ( x )  dx =  F(b) —  lim  F  (a -f- ť )

J  ť —o

Jeżeli funkcja f (x )  jest ciągła w całym przedziale < a ,  z wyjąt­
kiem jednego punktu c, leżącego wewnątrz przedziału, w którym dąży 
do nieskończoności, to rozdzielamy całkę na dwie części i używamy do 
definicji całki od a do b wzoru:

b e  b

J f ( x )d x  — j~f  (&) +  j  f ( x ) dx

Obydwie zaś całki, znajdujące się po drugiej stronie zDaku równości, są 
zdefiniowane przy pomocy wzorów (72) i (73). Gdyby przedział zawierał 
więcej punktów nieciągłości, lecz skończoną ich liczbę, to należałoby  

rozłożyć przedział odpowiednio na większą liczbę części
Drugi rodzaj całek niewłaściwych otrzymujemy, biorąc pod uwagę 

funkcje ciągłe, lecz przedział całkowania niewłaściwy.
I tak, jeżeli funkcja f (x )  jest ciągła dla wszystkich X^>a, to 

dla każdej liczby L  większej od a istnieje całka oznaczona właściwa:
Ł

^ f { x )d x .  Jeżeli ta całka właściwa dąży do skończonej granicy, gdy
a
L —y -f- oo, to tę graniczną wartość nazywamy całką niewłaściwą od a dooo. 

Przyjmujemy zatem następującą definicję takiej całki w przedziale
< a ,  oo):

(74)

oo L

f f ( x )  dx =  lim f  f(x ).dx
J  L—+00 J

Jeżeli F(x\ jest funkcją pierwotną fuokcji f{%\ to:

oo

(74a) / / (* )  dx =  lim F (£ )  —  F(a )
i/ L —*oo
a

Podobnie definjujemy całkę w przedziale niewłaściwym (— oo, 6)>: 

(75)

Jeżeli F (x )  jest funkcją pierwotną, to:

(75 a) i  f (x )  dx =  F {b ) — lim F {łT ) 
J  W-*-oo
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Wreszcie:

(75b)
0 + «

j  f  ( » )  dx —  j  f  (x ) dx -j- j  f ( x )  dx

przyczem można zamiast 0 obrać także dowolną inną skończoną liczbę c.

Z tych definicyj widzimy, że całki niewłaściwe są granicami, do 
których dążą całki właściwe. Zamiast mówić, że całka niewłaściwa 
istnieje, mówi się też, że całka niewłaściwa jest zbieżna. Całki niewła­
ściwe występują dość często w zastosowaniach. W  interpretacji geome­
trycznej możemy je  uważać za miary pewnych nieograniczonych pól 
(z uwzględnieniem znaku).

Przykłady.

1) Obliczyć całkę:
i

dx

/ , x M

Tu dla górnej granicy x  =  L funkcja podcałkowa posiada niecią­
głość, a miatfowicie dąży do -j-oo, gdy X dąży do -f- 1 z wnętrza prze­
działu < 0 , 1 > , t. j. z lewej strony. Do obliczenia wartości tej całki na­
leży zatem użyć wzoru (72). Wobec tego:

! 1 £

/ dx P  dx ..
ry z rz— —  =  l i m  / — =  =  l i m

\ 1 — x i J  \\— t-*»

=  lim arc sin (1 — e) — arc sin 0 

=  arc sin 1 — arc sin O =  \ n

Jakkolwiek powierzchnia, ograniczona linją o równaniu y =  - - = ! = :
y l — 35*

w przedziale < 0 , 1 > , rozciąga się w nieskończoność, to jednak miara 
tego pola jest skończoną liczbą \n  Niechaj czytelnik sporządzi wykres 
tej funkcji!

2) Zbadać, czy istnieje całka niewłaściwa:

/
dx

(a? — 3)2

Ponieważ funkcja podcałkowa jest nieciągła, a mianowicie posiada skok 
w punkcie o: = 3 ,  leżącym wewnątrz przedziału < 1 , 4 > ,  przeto należy 
rozdzielić przedział całkowania na dwie części: od 1 do 3 i od 3 do 4 
Otóż:

“ ii:. =.<” .¿=31= ( ! + § ) “ +“
ó

/i l



109

/ ¿/•27
■ — — =  -J- oo
(ar— o )2

3

A więc nie istnieje także całka od 1 do 4, jako suma tych całek.
Gdybyśmy zaś, rachując nieostrożnie, nie zauważyli, że funkcja 

staje się nieograniczoną wewnątrz przedziału całkowania, to otrzymali­
byśmy— przez zastosowanie zwykłej reguły F '(b )— F (a )— wartość:

x  — 3 =  - i

Moglibyśmy więc sądzić, że (nieograniczona) powierzchnia, zamknięta

linją o równaniu y = — w prze- 
(X — 3)

dziale < 1 , 4 > ,  ma pole skończone, tym­
czasem to pole ma wartość (niewłaści­
wą) nieskończoną, jak to wynika z po 
przednich rozważań.

Zobaczymy jednakże w następ­
nym przykładzie, że przez odpowied­
nie zmniejszenie wykładnika w mia­
nowniku funkcji podcałkowej uzyskamy 
figurę o polu skończonem.

3) Obliczyć wartość całki niewłaściwej:

dx

/
dx C dx

W  myśl definicji stosujemy tu rozkład: 

s

h ^ w . = f ^ w . + !<* -  H +

-ł-lim 3(a? —  3)'i>I =  lim 3 e —  3 J'— 2 +  3^1 —  lim 3 =  0 - f
8* —►O I 6 -»-0

l+ć
3 3

+  3 [ ^ - f  3 - 0  =  3 (l +  |/2)

W  geometrycznej interpretacji chodzi tu o obliczenie pola nieskończonej 
powierzchni, której część przedstawiono na fig. 16 (zacieniowana).



110

4) Ogólnie można dowieść, że całka:

dxJ (X -b ) ‘
a

ma tylko wtedy wartość skończoną, gdy a <  1. Prosty dowód pozosta­
wiamy czytelnikowi dla ćwiczenia.

5) Obliczyć:

Tworzymy najpierw:

J s  ~xdx

U k

J e~* dx —  — «"** | = — e~L -f- f,o —  i ____

Stąd:
oo L

f  e~‘ dx — lim f  e~~* dx =  lim ( 1 —  4 | =  1J  L -+ o o  J  L —►oo\ 6 J

Niechaj czytelnik przedstawi geometryczną interpretację tego wynika 

6) Obliczyć:

+oo 0 +00

Stad:

Zatem

' - / n b * - / r ? s + / i T i -

0 L 
l  =  lim arctga? | +  arctga?| — O — (— ¿Ji) -f- — O

K - +  —oo K  '  ‘  ‘

+oo
. f  dx
l = ) r + p - ”

7) Dla jakich wykładników s całka niewłaściwa:
OO
ndx

s %
ma wartość skończoną?

Obliczamy najpierw dla s4= l  całkę właściwą:

‘  '  ' > =
* 4 - 1  1 - s U 5- 1 j

Widocznem jest, że przy L —>oo prawa strona tylko wtedy dąży do 
skończonej granicy, gdy s >  1.

X ~ I+ l I1 L ~,+1
- « + l l i — «  - ( -  t
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Dla s =  1 otrzymujemy:
Ł
rdx

J - ~  —  log L  — log L =  log L

więc:
oo

/f=oo

8) Obliczyć:

r* dx

dla liczb n naturalnych.
Wyznaczmy najpierw zapomocą całkowania „per partes“ całkę 

właściwą:
L L L L

^ x "  e~‘ dx —  —  xT e~x | -f- n J 'a ?~ l e~‘ dx =  —  L" e~L -|- n j  xf~1 e~* dx

Gdy L  —> oo, to L" e~L dąży, jak wiemy, do zera, albowiem /  dąży 
do oo szybciej, aniżeli jakakolwiek potęga Ln. A więc:

czyli:

(» )

OO OO

J '  x? e~x dx — n j x n~x e~‘ dx

L  — n 1* -1

Przez kolejne stosowanie tego wzoru zwrotnego otrzymujemy:

/„ =  « ( « — 1) /„_2, /„ =  n (n — l )  (n — 2)
oo

i t. d., aż dojdziemy ostatecznie do 70 =  J 'e~ x dx =  1. A więc:

1 H —  n { n  —  1 ) (n  —  2 ) . . .  2 *  1 • / „  =  n !

Uwaga. Udowodniono, że ta całka istnieje także dla niecałkowitych *, gdy 
tylko » — 1. Dla ujemnych n ta całka jest W dwojaki sposób niewłaściwą: po 
pierwsze funkcja podcałkowa jest nieciągła w początkowym punkcie przedziału całko­
wania a mianowicie dąży do -f-oo, gdy x  dąży do zera z prawej strony; po drugie 
przedział całkowania jest niewłaściwy. Przy zmiennem n jest ta całka funkcją zmien­
nej »; nazywamy ją całką Eulera drugiego rodzaju lub funkcją U(n -j- 1) (czytaj 
gamą z n -f- 1). Możemy ją uważać za uogólnienie funkcji n!, określonej tylko dla 
naturalnych n. szczególnie ważną w zastosowaniach jest wartość tej funkcji dla 
n = - ; >  t.j.:

P(i) =

Wyznaczeniem tej cąłki zajmiemy się w następnym przykładzie»

OO
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9) Obliczyć wartość całki niewłaściwej:
oo

J e  _xf dx

du
Uwaga. Używając podstawienia x* =  u, otrzymujemy 2 x d x = d u , d x =  —=

2 Yu
a całka zamienia się na ¿•/’(J-). Ta całka, zwana całką Laplace ' a ,  ma wielkie zna­
czenie w rachunku prawdopodobieństwa i w teorji błędów.

Nie potrafimy obliczyć całki nieoznaczonej J e ~ x'  dx elemeDtarnemi

metodami. Pomimoto znajdziemy wartość powyższej całki oznaczonej, 
opierając się na odpowiednio dobranych nierównościach. 1 tak wiemy 
(por. topa I § 149, przykład 2), że zawsze jest:

1 +  u  e"

a więc:
i — z <; e~* i i - f  z e

czyli:

— <  -—~— dla z  j>  —  1.

Stąd:
l - « S r ' ś f l +  z ) ~ l

Weźmy:
Z  — y*, tO 2 >  0 >  — 1

i mamy:
1 —  y* ^  ^  (1 +  y T

A więc dla naturalnych n zachodzą nierówności:

(1 — y*)n S  e~”*  ^ ( 1  +  y »)- ’

¿¡całkujemy te wyrażenia od 0 do 1 i od 0 do oo, to (na podst. § 217 

wniosku 1) otrzymamy:
1 1 oo eo

/ ( l  ~  y*Y dy ^ J e~‘* dy <  j e dy S  f ( \ + y*r
0 0 0 0

Skrajne całki wyznacza się nietrudno przy pomocy odpowiednich 
wzorów redukcyjnych:

1 1 A
a) I„— /,(1 — y%)"dy =  y ( l  — i/8)'’ I +2nJyl i} — y3)"~'dy =

0 0 6 
1 I

=  y(i -  y 'f  | + 2”/ №  -  1) (i -  y « r '  +  0 -  y*r-‘] dy
0 0

/ „ =  -  2n ln +  2n (2 » +  1) /„ =  2n

/ — __“ w__/
" 2« +  I
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Ponieważż A = j  d y = y \  =  1, przeto /,==§,/,= $ . ..
0 0

b) 7. =  f  ~ d,J -  ___
J ( l  +  y Y  (2m 2)(1 + y * ) —

+  2m~ ? 7  -
^  2n —  2 " - ' ~

2 n - 3 T
2n~Z^>^n- '  *str 28, wzór 27)

Ponieważ:
oo

/ 1

f + y *  =  ł ” ’ Przet0 A  =  4 • 4« ,  A  =  I • i • 451 , . . .

Otrzymujemy więc:

— i : 6 "  ? " _____ <  / V * *  dv <  I • 3 • 5 ... (2n 3)
3 . 5 - 7  .. (2 »- j-  1) <  J  y =  2 - 4 - 6  ... (2n — 2 ) ' ^

Przez podstawienie ny2 =  a:2 czyli y =  r— , rfy =  ~  przekształcamy
\n \n

oo

wewnętrzną całkę na ^  I  e~* dx, a więc:

2 • 4 • 6 ... 2w|/»
3 - 5 - 7  ... ( 2 «  4- 1)

^ , -  1 * 3 • 5 ... (2w -  3 ) ^  .
<  / e *  dx - - g---- — (iT̂ — -

=/• 2 - 4 - 6 . . . ( 2 »  -  2)

Przy pomocy wzoru W a l l i s a  (str. 93, wzór 66) stwierdza się bez trud­
ności, że obydwa skrajne ciągi w powyższych nierównościach dążą do 

wspólnej wartości iJA*.

I tak z wzoru W al l i sa  wynika, że

2 - 4 • 6 ... (2n — 2)\2n
B.

3 - 5 • 7 ... (2 * — 1) • n *

a więc:

A, =
2 - 4 - 6 . . . ( 2  n — 2) Yn

4 \n a zatem i An -+  43 • 5 • 7 ... (2n—  1)

Z drugiej zaś strony:

1 - 3 - 5 . . . ( 2 «  — 3 )4 » , 1 - 3 - 5 . . . ( 2 n  — 3)(2w — 1) n\2
------------------------------=  4 n ---------------- ------------- =------------------

2• 4 • 6 ... (2 m — 2)\2n (2w— 1)2 - 4 - 6 . . . ( 2 »  — 2)

Bachanek różniczkowy i ca/kowy. T. 2. 8
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Zatem całka, zawarta stałe między wyrazami tych dwóch ciągów, ma 

wartość  ̂\n. Otrzymaliśmy zatem ostatecznie:

(76) j  e 11 dx — r] \n
o

§ 22&. Całkowanie graficzne.
Jeżeli funkcja, którą mamy całkować, jest podana graficznie, zapo- 

mocą wykresu, jak to często bywa w matematyce stosowanej, to możemy 
postępować dwojaką drogą. Można mianowicie, używając rozmaitych me­
tod interpolacji (por. tom I, rozdział X V I), znaleźć wzór matematyczny, 
przedstawiający wartość tej funkcji z dostatecznem przybliżeniem i do­
piero wtedy wykonywać całkowanie przy pomocy odpowiednich wzorów 
rachunku całkowego. Prostszem będzie jednak bezpośrednie zastosowanie 
odpowiednio dobranej graficznej metody całkowania; metodę taką otrzy­
mujemy przez odwrócenie metody graficznego różniczkowania, poznanej 
w rachunku różniczkowym .(por. tom I, § 6ó) Chcemy znaleźć:

mając podany obraz L  funkcji y =  f (x )  (fig. 17 a). Ta całka Y jest

funkcją górnej granicy x, a mianowicie taką funkcją, której pochodna 
jest równa funkcji podcałkowej:

(w) y

Jest to więc jedna z funkcyj pierwotnych funkcji f(x ), a mianowicie ta 
funkcja pierwotna, która dla x  —  a przybiera wartość Y —  0, albowiem
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a

/ f{x) dx — O. Szukana linja przechodzi zatem przez punkt B(a, 0). Obraz

graficzny każdej funkcji pierwotnej nazywamy hnją całkową danej linji
d Y

o równaniu y =  f(x). Pochodna —  przedstawia spadek stycznej do linji

całkowej. Oznaczmy literą ¡1 kąt stycznej do tej linji całkowej. Z wzoru (w) 
wynika, że:

V
ł

Związek ten prowadzi do następującej konstrukcji 1 injî  całkowej. Linja 
ta przechodzi przez punkt B(a, 0). Od tego punktu odmierzamy na lewo 
odcinek AB  =  1 i łączymy punkt P  linji y =  f (x )  z punktem A. Po­
nieważ y : 1 == tg/?, przeto bok A P  trójkąta APB  ma kierunek stycznej 
do linji całkowej. Przez punkt. B wykreślamy prostą t ¡j AP\ ta prosta 
jest styczną do linji całkowej w punkcie B. Przy pomocy takich stycz­
nych, wykreślonych dla rozmaitych odciętych, buduje się linję całkową 
jako obwiednią tych stycznych. I tak obierzmy jakiś drugi punkt P '

na danej linji L, należący do odciętej x ' — OB'. Zastąpmy łuk P P ' 
linji L  cięciwą P P ’. Jeżeli cięciwa ta ma równanie y — r»x  -f- w, to od­
powiadająca jej linja całkowa ma równanie Y  — x* -f- nx -f- p, jest za­
tem parabolą o osi równoległej do osi rzędnych Znamy jeden punkt tej 
paraboli, a mianowicie B, chodzi zaś o znalezienie drugiego punktu P[, 
należącego do odciętej OB'. Styczna w tym nieznanym punkcie ma być 
równoległa do prostej A 'P '. którą otrzymujemy podobną konstrukcją, jak 
prostą AP. Otóż wiadomo z własności paraboli, że styczne w punktach 
o odciętych x  i x ' przecinają się w punkcie, którego odcięta jest średnią 
arytmetyczną: ¿(æ -j- x ’). Połowimy zatem odcinek BB' punktem D i w y­
kreślamy przez ten punkt prostopadłą do osi odciętych. Punkt Z)', w któ­
rym styczna t przecina tę prostopadłą, leży zatem także na stycznej t\ 
należącej do nieznanego punktu P [. Wykreślamy przez ten punkt D'
prostą t' || A' P ' i otrzymujemy w ten sposób drugi punkt linji całkowej»
a mianowicie punkt P [, należący do odciętej x '= O B '.  Postępując 
w ten sposób dalej, dla dalszych punktów linji L, otrzymujemy szereg 
punktów linji całkowej; łączymy je następnie (przy pomocy krzywki) 
tak, aby otrzymana linja była styczna kolejno do prostych t,
Chcąc uzyskać dobre przybliżenie, należy obrać dość gęsto punkty
P, P ', P " . ... na linji różniczkowej L. ^

Wielokrotne odcinanie jednostki: AB, A'B\ A "B " , ... i linij AP, 
A 'P ,  A " P " , . . .  zaciera zwykle przejrzystość rysunku. Z tego po­
wodu modyfikuje się zwykle konstrukcję w ten sposób, że odcina się 
ową jednostkę tylko raz, od początku układu 0 do punktu M  o spół-

8*
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rzędnych (—-1 ,0 ) (por. fig. 17b), Następnie rzucamy każdy punkt P y 
obrany na linji L, na oś y-ów do punktu Q i łączymy M  z Q: prosta 
MQ  jest równoległa do stycznej t. Wykonujemy zatem całą konstruk­
cję linji całkowej w następujący sposób. Obieramy na danej linji L  
szereg punktów P y P lyP i ... i rzucamy je  na oś at-ów i y-ów. Połowimy 
odcinki BB1, Bl Bi ... na osi a?-ów i przez te punkty podziału wykreś 
lamy pomocnicze linje prostopadłe do osi oj-ó w . Rzuty Q, Qx, Q2, . . . 
punktów P, P 15P , ... na oś y-ów łączymy z punktem M  o spółrzędnych 
(—  1,0). Przez punkt B wykreślamy prostą t\\MQ aż do przecięcia się 
z najbliższą (pomocniczą) prostopadłą do osi at-ów. Z tego punktu prze­

cięcia wykreślamy prostą t' || MQX aż do przecięcia się z następną po­
mocniczą (kreskowaną) prostopadłą i tak samo postępujemy dalej. Otrzy­
mamy w ten sposób szereg punktów B, P\, P j ... linji całkowej i szereg 
stycznych w tych punktach do linji całkowej. Przy pomocy krzywki wy 
kreślamy całą linję całkową l. Gdybyśmy rozpoczęli konstrukcję nie od 
punktu B, lecz od dowolnego innego punktu tej prostej B P, to otrzyma­
libyśmy inną linję całkową l\ jednakże przystającą do l, a mianowicie 
przesuniętą równolegle. W  ten sposób można otrzymać całą gromadę 
funkcyj pierwotnych, zawartych w całce nieoznaczonej, t. j. obok linji 
o rzędnych Y, gromadę linij o rzędnych F-|- C. Gdybyśmy zaś zamiast 
jednostki MO  =  1 użyli innej jednostki: MO  =  b, to zamiast linji cał­
kowej o rzędnych F  otrzymalibyśmy linję o rzędnych F  =  )  F.

Omówiona tu konstrukcja jest przybliżoną, albowiem polega osta­
tecznie na tem, że łuki linji L  zastąpiliśmy cięciwami.

Jeżeli linja L  jest zwrócona wypukłością ku górze, to widocznem jest, że wsku­
tek takiej aproksymacji otrzymujemy wartości mniejsze od prawdziwych wartości całki, 
nie wyczerpujemy bowiem pola, zamkniętego tą linja, rzędnemi i osią odciętych.

Lepsze przybliżenie można uzyskać, zastępując łuki PP,, P-P,, ■ • ■ nie cięciwami, 
lecz odcinkami prostych równoległych do osi iC-ów; odcinki te trzeba dobierać na oko w ta-
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kich wysokościach, aby przyczyniać z jednej strony takiego odcinka tyle pola, ile opusz­
czono z drugiej strony. Szczegółowe opracowanie tej ulepszonej metody znajdzie czy­
telnik w podręczniku C. R u n g e ’go p. t Graphische Methoden. (Lipsk 1915. roz­
dział 111, str 96-112)

Opierając się na tej konstrukcji linij całkowych, zbudowano przy­
rząd, zwany intcgrafem, którym się rysuje w sposób mechaniczny linję 
całkową l do danej linji różniczkowej L: jeżeli jeden kolec mechanizmu, 
złożonego z odpowiednich prętów metalowych, wózków i kółek, posuwamy 
po linji L, to drugi kolec, opatrzony ołówkiem lub grafjonem, rysuje od­
powiednią linję całkową l. Opis tego przyrządu, wynalezionego przez 
A b a k a n o w i c z a ,  byłego profesora Politechniki lwowskiej, znaleźć można 
np. w podręczniku A. G a 11 e’go p, t. Mathematische Instruments (Lipsk 
1912, rozdział IX , str. 154 i nast.) lub w dziełach zbiorowych A b a k a ­
n o w i c z a ,  Por. też St. G o ł ą b ,  Wskazówki do ćwiczeń z integrafem 
Abakanowicza, Kraków 1933.

§ 226. Całkowanie przybliżone liczbowe (numeryczne).

Jeżeli chodzi o obliczenie całki oznaczonej z takiej funkcji, dla któ­
rej nie potrafimy obliczyć całki nieoznaczonej, to bardzo często, zwłaszcza 
w zastosowaniach praktycznych, poprzestajemy na obliczeniu przybliżonej 
wartości tej całki. Podobnie postępujemy, gdy funkcja podcałkowa jest 
dana tylko tabelarycznie.

A. Metoda prostokątów
Najprostszą drogą, prowadzącą do tego celu, jest użycie wyrazów 

ciągów, zdążających do wartości badanej całki oznaczonej, omówionyek 
w §222. Biorąc odpowiednio daleki 
wyraz takiego ciągu, możemy otrzy­
mać każdą zgóry żądaną dokładność.
Każdy wyraz ciągu jest sumą pól 
prostokątów, mających za podstawy 
odcinki osi odciętych a za wysoko­
ści rzędne w dowolnych punktach 
tych odcinków. Najprościej przed­
stawi się rachunek, gdy przedział

O .  podzielimy na równe części o długości: h — — iw  każdym

przedziale weźmiemy początkową wartość funkcji, jak na fig. 18
Przybliżoną wartością całki

h *

f(x) dx — J  y dx
n *
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jest zatem suma pól tych prostokątów, t  j.:

=  h ■ 20 +  h ' • • • +  h • y*

°n — h{y i +  Vt +  •• • +  Vn)
żyli:

Używając »naku w jako znaku przybliżonej równości, możemy zatem 
napisać:

(77)

Przybliżoną metodę obliczania całki oznaczonej przy pomocy tego wzoru 
nazywamy metodą prostokątów. Widocznem jest zarówno z geometrycz­
nego przedstawienia jak i z własności ciągu a„, że przez powiększanie 
liczby n możemy uzyskać dowolny stopień aproksymacji.

Przykłady.
1) Zastosujmy powyższą metodę najpierw do znanej całki:

2
/ =  p l*  =  log,® =  log, 2 =  0-6931471806

Tę samą całkę obliczymy teraz metodą prostokątów, a następnie porów­
namy z sobą wyniki.

Podzielmy przedział < j l , 2 >  na 10 równy.ch części o długościach
2 __ i

=  0 1. Rzędnemi w punktach x =  1, 11, 1’2, .. . 1-9 sąh -
10

1 1
V 1’ 11’ 1-2

Według wzoru (77) otrzymujemy zatem: 
1 9

i* 01 f1 + r2 +  n + •' + rs + Fo)
=  01 1

090909 0 ...
0-83333 3 ...
0-76923 0 ...
0 71428 5 ...
0-66666 6 ...
0625
058823 5 ...
0 55555 5 ...
0-52631 5 ...

. 7-18771 — n- 718771

Błąd wynosi: 0-718771 — 0693147 ... w 0-025624.



119

2) Znaleźć wartość przybliżoną całki:

20

, f  di

J >°g,
/ dx

której nie potrafimy obliczyć elementarnemi metodami całkowania. Po­
dzielmy przedział całkowania na 10 równych części o długościach 
, 2 0 — 10

= 1. Stosując przybliżony wzór (77), otrzymujemy;10

1 •
log, 10 + +log, 11 1 log, 129 +  -  + log, 19/

W tablicy logarytmów naturalnych znajdujemy występujące tu logarytmy, 
a dzielenia wykonywamy np. przy pomocy maszyny do rachowania i otrzy­
mujemy:

/ «  0-4342 9448
04170 3239
04024 2960
0-3898 7125
03789 2318
0-3692 6937
0-3606 7376
0-3529 5613
0-3459 7626
0-3396 2327

I x  37910

Przy używaniu przybliżonej metody obliczania całki oznaczonej ważną 
jest rzeczą oszacowanie błędu, który się popełnia, biorąc zamiast praw­
dziwej wartości całki wartość przybliżoną. Jeżeli funkcja podcałkowa 
posiada pochodną ciągłą w przedziale <Ca, to nietrudno jest otrzy­
mać dogodny wzór na oszacowanie tego błędu. I tak weźmy pod 
uwagę jeden przedział częściowy o szerokości A, np. <c, c -)- A > . 
Obliczmy błąd:

( I )

c + A

r(h ) =  J f ( X ) dx — h f(c) == F (c  -j- /i) — F{c) —  h f(c)

Widocznem jest, że r(0) =  0. Pochodne obu stron wzoru (I) względem A 
są równe, a więe:

r\h) -  f(c +  h) -  f{c)

Do prawej strony stosujemy twierdzenie o wartości średniej ( Lagran-  
ge'a) i otrzymujemy:

r\h) =  h f(c  +  f>h) 0 < & < 1
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Niechaj M' oznacza największą wartość funkcji \f\x)\ w przedziale
to — hM’ S  r'(h) S  -f- hM‘ Scal kuj my tę nierówność od 0 do h, to
otrzymamy;

a to znaczy, że:

Taki więc błąd wynika z zastąpienia całki w jednym przedziale częścio­
wym polem prostokąta: h-f{c ). Ponieważ zaś mamy n takich przedzia­
łów, przeto na całkowity błąd Rn otrzymujemy oszacowanie:

Ale:
b —  a

h —

a więc: 

(78)
(6 — a)*M'

2 n

Widzimy stąd, że błąd dąży do zera, gdy n wzrasta nieograniczenie. 
Tak np. w przykładzie 1) otrzymujemy

M'
20№ . i S a -2 •  10

Ponieważ f(x ) —  / '(* ) =  — —„  przeto M ' =  max |/’ (*)|  — ~ z = z l
x  x 2 1*

Ostatecznie więc:
Ifl.ol ^  ^  =  005

Błąd faktyczny wynosi tylko 00256...
Pozostawiamy czytelnikowi do stwierdzenia, że bezwzględna war­

tość błędu w drugim przykładzie nie przekracza liczby: 2 1 ~ T jq =  

=  ¿log?0e =  0 0943...

B. Metoda trapezów.
' Lepszą na ogół aproksymację uzyskujemy, biorąc w każdym pasku 

na fig. 18 za wysokość prostokąta średnią arytmetyczną obu rzędnych, 
ograniczających ten pasek, czyli zastępując każdy pierwotny prostokąt 
trapezem, którego dwa wierzchołki leżą na danej linji o równania y =  f(x). 
Suma tych trapezów daje zwykle lepszą aproksymację aniżeli suma pier­
wotnych prostokątów (mających za wysokości początkowe rzędne). W ten 
sposób otrzymujemy zamiast ciągu an inny ciąg:

czyli:

o'n  =
yi +  y> y« +  y% _|_ y% +  V* _ J _  y- +  y«+i)

2 T 2 1 2 1 ’ 2

<7» =  A(£y, + y »  + y .  +  -  +  y. +  |y»«)



121

Ten nowy wiór na przybliżoną wartość całki nazywamy wzorem trape­
zowym. Zatem:

(79) 4- ys +  y» +  • ■ • 4- y. +  ii/n+t)

Prawa strona tego wzoru różni się od wzoru (77) tylko tern, że w  nawia­
sie ubyło ¿y, n przybyło \yn+x, a więc:

=  On +  i(y .+ i — yi)

Rachunki są tu więc równie proste, jak przy metodzie prostokątów, a do­
kładność jest zwykle znacznie większa.

2

/dx
— , omówionej w przykładzie 1) na str. 118,

trzeba dodać do wyniku, otrzymanego metodą prostokątów,
t S - ) -

= ---- — =  —  0025. Otrzymamy w ten sposób.

/»0-718771 —  0025 =  0-693771 

Wynik ten jest o wiele dokładniejszy,' albowiem błąd wynosi tylko.

0-693 771 — 0-693147 =  0-000624

Stosując metodę trapezów do drugiego przykładu na str. 119, otrzymujemy: 

/»3-7910 +  ¿(0-33381 — 0-43429) =  3-7408 .

W  podobny sposób, jak dla metody prostokątów, wyprowadza się dla metody 
trapezów wzór na oszacowanie błędu, który popełniamy, biorąc zamiast prawdziwej 
wartości całki wartość przybliżoną, otrzymaną z wzoru (79). Trzeba mianowicie dwu­
krotnie zróżniczkować obie strony wzoru:

r ( h )

<■+*

- J  f(x ) dx — l
m + f ( c + h )

Otrzyma się:

r " ( h )  =  - 2 f ' \ c  +  h )

W  sposób podobny, jak przy metodzie prostokątów, otrzymuj© się na błąd 
w jednym przedziale częściowym wzór:

\ r (h )\ ^ M "

a dla n całek, t. j. dla całego przedziału < a ,b > ,  wzór:

gdzie M "  oznacza największą wartość funkcji \f''(x)\ w przedziale < o ,6 > . Ponieważ
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, V ---
*  = ------, przeto otrzymujemy ostatecznie:71

(80)

C. Metoda łuków parabolicznych. Wzór Slmpsona. v
Wzór trapezowy możemy interpretować geometrycznie w ten spo­

sób, że zastępujemy badaną linję o równaniu y — f(x ) w każdym czę­
ściowym przedziale <®*,a;*+1>  o szerokości A linją prostą, przechodzącą 
przez dwa punkty (ar*, y*), (a;*^, y*+1) danej linji. Jasnem jest, że lepszą 
aproksymację ozyskamy zwykle dla linji krzywej, zastępując ją w każ­
dym przedziale -<ixkj ar*+2l> o szerokości 2h Jukiem ‘paraboli drugiego 
stopnia, przechodzącej przez trzy punkty (xk,yk\ (ar*+, , y*+l), (®*+2,y*+2) 
i obliczając pola powierzchni, ograniczonych temi Jukami parabolicznemi 
i odpowiedniemi rzędnemi. Ponieważ punkty na osi ar-ów obieramy 
w równych od siebie odstępach, przeto możemy użyć do obliczenia tych 
pól wzoru (65) z przykładu 6 na str. 86, a mianowicie:

(a) P =  Xt+7Q Xi (y* +  4 y*+i +  y*+a)

Dzielimy przedział <^a, ó>- na 2 «  równych części o długościach

h =  i obliczamy rzędne: y,, yg, y, ... y* _ , , y*,, y2«+i • Powierzchnia

rozpadnie się na n par przylegających do siebie pasków. W  każdej parze 
pasków zastępujemy łuk danej krzywej łukiem paraboli drugiego stopnia, 
przechodzącej przez trzy punkty danej krzywej, należące do trzech są­
siednich punktów podziału odcinka < a , Pole to obliczamy według 
wzoru (a). Ponieważ xt+i — xk =  2h, przeto otrzymamy w ten sposób 
następujący wzór na obliczenie przybliżonej wartości całki:

1

czy li:

(81)

Ten wzór przybliżony, wynikający z użycia pasków parabolicznych, na­
zywamy wzorem S im psona .

Rozumowaniem podobném, jak dla metody prostokątów i trapezów, oblicza się 
błąd, wynikający z zastąpienia całki w jednej parze takicb pasków wartością P

c+h

7. wzoru (a), t. j. r[h) =  I f(x) dx — -j-(/(e — *) +  4 f(e) +

= J  f { x ) d x x $ ( yi +4y2 4-y3 + y, + 4y, -t-y* -f-y* + ... -f
4" + 4 yif,~\- yi*+\)

i  ^ |(yi +  yzn+1 4 -2(y» 4 -y»4---• 4~y*>-i)4 -4 (yt 4~ y»4* - 4-y ^ )
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Przez trzykrotne różniczkowanie otrzymuje sięj

'•"'(*) =  -  £  (/■'"(« 4- A ) -  f "\ c  -  h\) =  _  4 *y<«xi)

ł  Stan :

— }*W <4> i  r"\h) á
Następnie przez trzykrotne całkowanie otrzymujemy:

4A5

Stąd otrzymujemy dla «  par pasków, kładąc h =
b — a 

2«~

(82) |iřa
. (b - o)ł d/(‘ i

1 — 2880«*

Tutaj oznacza największą wartość funkcji | f ( iHx'\\ w przedziale < a, ó>  

Przykłady.
1) Zastosujmy wzór S im psotra  do przykładu 1 na str. 118, biorąc 

2n =  10. Wtedy:

l!*T (:1 + \ +2 (A+R+Fe+Fs)+ 4(iT+ F3+ F54T7+ ¿))

=  T  f 1’5 + ' 2 ’ 2-728173 +  4 ’ 3'459546) =  ^  • 20-794490 

czyli 0 693l4j97.
2

/
dcc
— = 0 -6931471...,

widzimy, że błąd występuje tu dopiero na 6-em miejscu po kropce dzie­
siętnej. Przez zastosowanie wzoru (82) otrzymujemy:

I S ■24“ W » “ 0000013 •

Dokładność taka jest zwykle dla celów praktycznych zupełnie wystar- 
ezająca.
2) Niechaj czytelnik obliczy na podstawie liczb, podanych w przy- 

:ie 2 na str. 1 li 

żoną wartość całki:

kładzie 2 na str. 119 i liczby ^  =  0-33380820, następującą przybli-
l°g«20

/ , - — «  3 7397 
log,*

O
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Obliczyć tę wartość w przybliżeniu przy pomocy wzoru S i m p- 
dzieląc przedział całkowania na 16 równych części

I ł  *8 (30 4" y\t +  2(y3 +  50, +  - +  Jul +  4(y4 yĄ - f  y,,))

Dla:

otrzymujemy. 

Zatem:

x  — +  1*61 7^ - > 1*8 ) • • • ł t  - i t

y — *i 1$?> > Stf i 2 B 6 i
WT * 2

yt — i
,y, =  0 99610 89494 
y} =  0 98461 53846 
,y4 =  0-96603 77358 

ys =  0-94117 64706 

,y6 =  0-91103 20285 

y, =  0-87671 23288 

£g =■-• 0-83934 42623 
y9 = 0 - 8
,y10 =  0 75964 39169 

yn =  0-71910 11236 
y „  =  0 67904 50928 
y 13 =  0-64 

, =  0 60235 29412 
y l5 =  0 56637 16814 .
,ylti =  0-53222 45322 
y,: =  05

y> +  y u =  1 &
2(y, +  y. - f  y7 -j- ... +  y,5) =  2-5-5279769890 =  11 0659539780 
4(y, +  y4 +  y,; +  ... +- y1B) =  46 2857894601 =  251431578404

/**>5 -37 6991118184
Stąd:

Ponieważ zaś:

47 * 37:6991118184 12 =  3 14159 265,15

4 1 =  Ti =  3 14159265,3589

przeto widzimy, że błąd wystąpił tu dopiero na 9-tem miejscu po kropce 
dziesiętnej.

Wzór trapezowy i wzór Si nip bo na można dalej uogólniać w rozmaite sposoby 
I tak wzór trapezowy polega na zastąpieniu funkcji f (x )  funkcją y =  a0 atx  0- j- 
badanej liqji linją prostą) w- każdym przedziale częściowym o szerokości A; wzór zaś 
S i mp s o n a  polegał na zastąpieniu funkcji f (x )  funkcją y =  «„ -(- -f- a%x* (t j-
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badanej linji parabolą drugiego stopnia! w przedziałach o szerokości 2h. Otóż wy­
prowadzono wzory, polegające na zastąpieniu f (x )  funkcją: y =  o 0- j - o ,a:-j-atx*-\-at x* 
w każdym przedziale częściowym o- szerokości 3h i ogólnie funkcją n-tego stopnia 
w przedziałach o szerokości nh. Wszystkie te wzory, których specjalnemi przypadkami 
są wzory: trapezowy i Simp son a, nazywamy wzorami N e w t o n a - C o  tes ’a-

Dalsze udoskonalenie przybliżonych metod całkowania uzyskano, obierając na 
osi tr-ów odBtępy nierówne w odpowiedni sposób. Na tej myśli przewodniej' opierają 
się przybliżone metody całkowania Gaussa  i Cz e b y s z e wa .  Szczegółowe omówienie 
tych wszystkich metod wraz z licznemi przykładami znajdzie czytelnik w następują­
cych podręcznikach: C. Rn n g e  und H. Kón i g ,  Numerisches Reehnen (Berlin 1924, 
str. 238—285), E. W h i t t a k e r  und G- Ro b i n s o n ,  The Calculus o f Observations 
(London 1926, str. 132, 163) i G- K o w a l e w s k i .  Integration und genaherte Quadra- 
lur (Leipzig 1932).

C]



ROZDZIAŁ XIX

Z a s to s o w a n ia  ca łe k  o z n a c z o n y c h  do g e o m e trji i do
m e ch a n ik i.

§ 227. Pola wycinków.

W  poprzednim rozdziale omówiliśmy zastosowanie całek oznaczonych 
do obliczania pól figur, ograniczony cli lukiem dowolnej linji o równaniu 
y =  f(x ), rzędnemi w końcowych punktach takiego łuku i osią odcię­
tych. Opierając się na wynikach, uzyskanych w tych rozważaniach, 
a w szczególności na wzorach (46) z § 212, wyprowadzimy obecnie wzór 
na pole un/nnka, ograniczonego lukiem dowolnej linji i promieniami, łączą- 
cemi końce tego łuku z początkiem układu. Weźmy najpierw pod uwagę

tylko takie luki, w których do jednej odciętej 
należy tylko jedna wartości rzędnej, a więc któ­
rych równanie da się ująć jedną (jednoznaczną) 
funkcją y — j\x ) (por. fig. 19). Oznaczmy 
końce tego łuku literami A i B w takim po­
rządku, abyśmy, przebiegając pokolei punkty 
0 ,A .I i  mieli'powierzchnię wycinka po lewej 
ręce czyli aby obrót, sprowadzający prostą 
OA do nakrycia z prostą OB, miał kierunek 
dodatni, to znaczy taki, jak obrót, sprowa­
dzający dodatnią część osi 0 X  do nakrycia 

z dodatnią częścią osi 0 Y. Z figury tej odczytujemy, że pole W  wycinka 
O A B  jest równe polu trójkąta OB B, pomniejszonemu o pole trójkąta O A ' A  

i o pole krzywolinjowego czworokąta A ‘B'BA. Zatem:

(a)
*

W = f b f { b )  -  ±af{a) - J  y dx

Na tej figurze cały luk 3 B leży wewnątrz pierwszej ćwiartki. Nietrudno 
jednak stwierdzić, że ten sam wzór (a) utrzymuje się ogólnie, przy do­
wolnych położeniach punktów A i B, jeżeli tylko przy posuwaniu się p*



luku od A do B  mamy po lewej ręce pole wycinłta. Tak t.p. pole wy­
cinka OAB na fig. 20 oblicza się w następujący sposób:

W =  OAB =  OAC - f  OCB =
=  OAA' — A A 'C Ą - BCB’ +  OB'B

Pole trójkąta OAA' ma wartość 
—  | a • f{a\ ponieważ rzędna f(a ) ma tu 
wartość ujemną. Pole 0B'B  =  %b • f(b ) 
a pozostałe pola AA'C  i BCB' oblicza 
się przy pomocy całek:

i *

— AA'C =  J f ( x ) d x
c

ponieważ funkcja f (x )  jest ujemna w przedziale (c, a), a:

c

BCB' =  J ' f(x)dx

Zatem:

W m
czyli:

a c

— — ka f(a0 +J '/(a?) dx + jf(x) 'dx + %b
y i " . '  ' I . • • '•  V * '

b
W — £ b f[b) — £ a f(a) —Cf(x) dx

v n

zgodnie z wzorem (a).
Niechaj czytelnik stwierdzi prawdziwość tego wzoru także dla innycb 

położeń łuku AB, np. gdy łuk przebiega pierwszą, czwartą i trzecią 
ćwiartkę płaszczyzny!

Sprowadzimy wzór (a) do dogodniejszej, symetrycznej postaci.
I tak widocznem jest, że-

a więc:

o n n

bf{b) -  a  f(a) =  X f (x Ą  =  xy\ =  j  ixy\
<» n a

b

$bf(b) — ¡¡a f(a) =  v f  {xyY

dx

dx

Wobec tego:
» b h

W =  £ J ' {x t/Y dx — f 9 dx — \ J  (X dy y dx — 2 y dx)i
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a więc:

(83)

Otrzymaliśmy w ten sposób wzór (L e ib n i z a )  na pole wycinka.
W ciągu całego rozumowania uważaliśmy x  za zmienną niezależną 

a  y za (jednoznaczną) funkcję tej zmiennej. Wobec tego należy za dy 
podstawić we wzorze (83) wartość y • dx i dopiero wtedy wykonać cał­
kowanie według zmiennej x  w granicach od a do b. Gdyby zaś x  było 
jednoznaczną funkcją zmiennej y, to możnaby wyrazić wszystko zapomocą 
zmiennej y, a więc za dx podBt&wić x'dy i całkować według zmiennej y 
w odpowiednio zmienionych granicach, np od a do /8 (por. 6g. 19). Jeżeli 
zaś x  i y są podane jako funkcje zmiennej i, to znaczy w przedstawieniu 
jMrametrowem, to wzór (83) ma, po wprowadzeniu nowej zmiennej t zapo­
mocą podstawienia x  =  <p(t), postać:

(84)

L iczby tA i tB są to wartości parametru t, odpowiadające punktom ¿4 i B.
Bardzo prostą formę przyjmuje wzór na pole wycinka przy użyciu 

spółrzędnych biegunowych. I  tak jeżeli równanie linji, ograniczającej 
wycinek, jest podane w formie biegunowej: r =  r(<pj, to uzyskamy nastę­
pujące przedstawienie parametrowe:

¡r =  r(q>) cos <p, y =  r((p) sin <p
Stąd:

dx =  (r ‘ cos q> —  r sin ip) dtp, dy =  (r sm q> -j- r cos <p) d<p
a więc:

xd y— yd® =  (r r'sin <p cos qp -j- r łcosl <p — rr'sin qpcosqp -j- r*sin*<p)d<p —  r fdtp

Wzór (83) przyjmuje zatem dla spółrzędnych biegunowych postać:

Wzory (84) i (85) są ogólniejsze od wzoru (83). Zaznaczyliśmy miaoo- 
wicie wyraźnie, że wzór (83) odnosi się tylko do takich wycinków, któ­
rych łuk ma z każdą prostą równoległą do osi rzędnych najwyżej jeden 

punkt wspólny.
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Chcąc zaś obliczyć pole takiego wycinka, jak np. wycinek OAB 
na fig. 21, należałoby go rozłożyć na dwie części: OAC i OCB, obliczyć 
wartość odciętej c punktu C i stosować dwukrotnie wzór (83). Raz nale­
żałoby podstawić za y funkcję yx =  f1(x), t. j. 
równanie dolnej części łuku, a drugi raz y2= / J(a;), 
t. j. równanie górnej części łuku. W  ten sposób 
otrzymuje się na pole takiego wycinka dość za­
wiły wzór:

c b

W = i  J \xdy  ̂— £ j (xd}Ą — y2dx)

Natomiast przy praedstawieniu parametrowem 
bardzo często nie trzeba zmieniać funkcyj x(t)
i y(t\ albowiem przy zmianie parametru t od łA do t„ mogą war­
tości tych samych funkcyj x(ł) i y{t) przebiegać spółrzędne całego

łuku ACŚ (np. w elipsie, w kole). Otrzym&my więc w takim razie:

ÍC tB tfí

W  =  \ J {xy‘ — x'y) dt +  l j 1 \xy' —  x'y) dt =  — x 'y) dt

W  takich więc przypadkach — najpospolitszych w praktyce — można 
używać wzoru (84) bez żadnej zmiany, natomiast wzór (83) musi ulegać 
dość znacznym modyfikacjom. To samo odnosi się oczywiście także do 
wzoru (85), który jest specjalnym przypadkiem wzoru (84).

Zdarza się, że przy zmianie parametru i od do łt punkt (*, y) 
przebiega jakąś linję zamkniętą. Wtedy wzór (84) lub (85) może służyć 
do obliczenia.nietylko wycinka, lecz całego pola, ograniczonego tą linją 
zamkniętą, jeżeli się tylko ta linja zamknięta nie przecina sama z sobą 
(t. j. jeżeli nie ma punktów węzłowych). Przy używaniu tych wszystkich 
wzorów na pole wycinka trzeba zawsze uważać na kierunek przebiegania 
łuku. Przy zmianie kierunku należy pomieniać z sobą granice całkowa­
nia lub zmienić znak funkcji podcałkowej: jeżeli tego nie uczynimy, to 
otrzymamy ujemną wartość pola.

Przykłady.
1) Znaleźć pole wycinka linji rozwijającej koła (por. tom I, § 169, 

str. 513) od t — 0 do < =  i, (por. fig. 22). Równania tej linji mają 
w formie parametrowej postać:

X  j =  i? (cos i  - f -  t sint)  

y — R (sin t — t  cos t)

Gdybyśmy chcieli użyć spółrzędnych prostokątnych, to należałoby to pole 
rozdzielić na dwie części: OAC i OCB. przyczem punkt C trzebaby wy-
Rachunek różniczkowy i całkowy. T. 2. 9
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znaczyć zapomocą extremum względem osi y-ów. Pole wycinka jest sumą 
tych pól. Przy użyciu przedstawienia parametrowego ten rozklad nie jest

potrzebny, lecz można odrazu zastoso­
wać wzór (84). Ponieważ

B k
m Ę m

x ‘ — R{— sin t — t cos t -f- sin t )— Rt cos t 
y' =  R(cost -}-<sin< — C 0 8 ( )  =  ft<81U t

w m c
przeto:

xy' — x ‘y =  /?*<(sin i cos t
-f- ťsin H --  Siní COSÍ -j- Í COS®<)=: ft*t*

Zatem: •

W R H *dt=$R , i3 =

Fig. 22. 2) Obliczyć pole wycinka spiral­
nej Arch im edesa od <p =  0 do qp =  qp,. 

Równanie tej spiralnej ma w formie biegunowej postać

r =  aq>

Przy użyciu wzoru (85) otrzymujemy

9‘
W =  £ a'qp’ dqp =  jt a2<p: =  i a><Pl

Gdybyśmy obrali <p,^>2n, to niektóre części pola byłyby przytem po­
liczone dwukrotnie lub więcej razy.

3) Obliczyć pole, zamknięte lemniskatą. Biegunowe równanie lem-
niskaty ma postać:

r* =  a * cos 2 cp
Promień r zakreśla ćwiartkę całego pola

P  =  2-

Ćwiartki obliczymy z wzoru:

/1 .1í  i
I  P  =  Jj J r '1 d<p =  \ J 'a *  cos 2 <p

a* sin 2 q> I

dtp

Zatem pole, zamknięte lemniskatą, jest równe polu kwadratu o boku O A.
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8 228. Planimetr biegunowy.
Obmyślono wiele przyrządów do wyznaczania wielkości pola drogą 

mechaniczną. Przyrządy te nazywamy 'planimetrami.
Opis i teorję rozmaitych planimetrów znaleźć można w podręczniku 

A. G a l l e ’go, p.t. Mathematische Instrumente (Lipsk 1912 r., str. 66— 131).
Najbardziej rozpowszechnionym jest planimetr biegunowy Am slera. 

Składa się on z dwóch prętów AO i AB  (fig. 24), złączonych w punkcie A 
tak, że mogą się obracać koło tego punktu. Koniec 0 pręta OA jest przy­
twierdzony do płaszczyzny rysunku a koniec-B 
pręta AB  przesuwamy po obwodzie powierzchni P  
której pole chcemy wjziiaczyć. Do pręta AB jest 
przytwierdzone kółko K, połączone z mechaniz­
mem zegarowym, który pozwala wyznaczyć do­
kładnie liczbę obrotów i części obrotów kółka.
Oznaczmy odległość punktu A od B literą R.
Okazuje się, że wielkość pola P  otrzymuje się 
z bardzo prostego wzoru:

(a) P =  R ■ s

przyczem s oznacza drogę, zakreśloną przez punkt na obwod/ie kółka K. 
Jeżeli więc r  oznacza promień tego kółka a n liczbę obrotów (wraz 
z ułamkami obrotów), to s =  2 rn n ,  a zatem:

P  =  2 rn  R • n

Stały spółczynnik 2 rn  R — C nazywamy stalą planimetru. Wzór na pole 
przyjmuje zatem postać:
(b) P  =  C • n

Stałej C nie trzeba wyznaczać zapomocą dość żmudnych pomiarów R i r, 
lecz można ją otrzymać drogą empiryczną. Tak np. rysujemy koło o pro­
mieniu 10 cm i obwodzimy je  planimetrem. Jeżeli np. mechanizm zega­
rowy wskaże, że kółko wykonało przytem 32*35 obrotów, to ponieważ 
pole wynosi 314159... cm2, przeto:

314159... =  C - 32-35

a stąd otrzymujemy na stałą C wartość 314159...: 32*35 =  9 71...
Dokładna teorja tego przyrządu jest dość skomplikowana. Podamy tu 

tylko poglądowy dowód wzoru (a). Przy wszystkich ruchach planimetru 
porusza się punkt A (fig. 25) po obwodzie koła o promieniu O A a o środku O. 
Gdy punkt B  obiega obwód danego pola, to pręt AB zakreśla jakąś po­
wierzchnię P'. Oznaczmy literą / tę część powierzchni P\ która nie należy 
do P. Tę część przebiegamy dwukrotnie, przyczem dodajemy ją przy ruchu 
pręta w jedną stronę a odejmujemy przy ruchu w stronę przeciwną.

9*
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Wobec tego:
P  =  P  -\ -f — f = P

Aby więc otrzymać szukane pole P, badamy cale pole P ,  uwzględniając przy- 
tem rozmaite znaki części składowych. Weźmy pod uwagę powierzchnię,

zakreśloną przez pręt przy dość małej 
zmianie położenia, jak np. powierzchnię 
A Ai Bl B  na fig. 26. Pręt przeszedł 
z położenia AB  w położenie 4 i Bl . 
Zastąpmy ten ruch -pręta dwoma ru­
chami: najpierw niechaj się pręt poru­
sza w kierunku prostopadłym do AB 
tak daleko, aż znajdzie się na prostej, 
na której leży 4 ,. Pręt zakreśli przy- 
tem prostokąt ABCD, a kółko, umiesz­
czone na nim, obróci się o kąt, odpo­
wiadający długości łuku As. Następnie 
posuńmy pręt po tej prostej w położe­
nie A,C', przyczem kółko nie wykona 

żadnego obrotu. Wkońcu obróćmy pręt około punktu 4 , tak, aby zajął 
położenie AtB ,. Zakreśla on przytem wycinek koła Al C'Bl, a kółko nie 

wykona żadnego obrotu. Powierzchnia, zakreślona przy 
tych dwóch ruchach, ma pole:

R • As -j- ^ Jt*Aq>

Podzielmy całe pole P ' na takie elementy AAt BXB  
i każdy z nich zastąpmy w podobny sposób prostokątem 
i wycinkiem. Otrzymamy sumę:

e ¿o

2 RAs< +
i-i

Gdy rozdrabniamy podział coraz bardziej, tak że wszyst­
kie Ast i A(p/ dążą do zera, to granica, do której dążą 

powyższe sumy, daje wielkość pola P\ zakreślonego istotnie przez pręt. 
Granicą pierwszej sumy jest R • s, przyczem s oznacza łuk, zakreślony 
przez obrót kółka przy całkowitym obiegu badanego pola. Granicą dru­
giej sumy jest całka:

f.

/ £ Rtdcp —  £ R*{<pt — <Pi)

przyczem qp, oznacza nachylenie pręta do jakiejś obranej osi na początku 
ruchu a <p, na końcu. Ponieważ pręt wraca po obiegu całego pola spo*
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wrotem do swego pierwotnego położenia, przeto cpt z=tpl , a więc ta całka 
ma wartość 0 i zostaje:

P ' —  P  =  Rs
zgodnie z wzorem (a).

Ścisły dowód tego wzoru, polegający na wzorze (83) na pole wy­
cinków, znajdzie czytelnik w podręczniku R. R o th e ’go p. t. Höhere Ma­
thematik, tom I I  (Lipsk 1929, str. 71 i nast.). Także w podręcznikach 
geodezji podaje się zwykle teorję rozmaitych planimetrów.

§ 229. Długość laku.
. Drugiem nadzwyczaj ważnem geometrycznem zastosowaniem pojęcia 

całki jest definicja i obliczanie długości łuków dowolnej linji.

Weźmy pod uwagę łuk AB  linji o równaniu y =  f{x ) (por. fig. 27). 
Podzielmy ten łuk punktami Cj1*, C§i ...CHtL, na nx dowolnych, nieko­
niecznie równych części i wpiszmy w ten łuk linję łamaną, łącząc ko­
lejne punkty podziału A i Cl11, Ĉ ł) i C£l)... cięciwami ¿J,ł, 4 ‘\ • . .c<»?- 
Długość Ł, tej linji łamanej jest równa:

¿ , =  riř>+  <*> +  .• •+ < *?  =

Tworzymy ciąg takich linij łamanych, zwiększając nieograniczenie liczbę 
cięciw, jednakże w taki sposób, aby ciąg, utworzony z największych cię­
ciw każdego podziału, dążył do zóra 
(wtedy wszystkie ciągi cięciw, wy­
branych po jednej z każdego podziałm 
dążą do zera). Jeżeli wszystkie takie 
ciągi £,, Ł %, ... Łp ... długości tych 
linij łamanych posiadają wspólną gra­
nicę, to tę granicę nazywamy dłu­
gością tuku od A do B i oznaczamy 
ją zwykle literą s. Do istnienia skoń­
czonej granicy nie wystarczy tu, aby 
f (x ) była funkcją ciągłą w przedziale
< a , b> , albowiem linja, która jest obrazem tej funkcji, może posiadać 
tak gęste i tak znaczne falowania, że ciąg długości linij łamanych, wpi­
sanych w tę linję, dąży do nieskończoności. Okażemy natomiast, że do­
statecznym warunkiem istnienia (skończonej) długości łuku jest, aby po­
chodna f '(x )  była funkcją ciągłą w przedziale < a ,b > .

Fig. 27.

✓
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Ale:

Dowód. Długość każdej cięciwy, Dp. cj1>, wyrażamy wzorem:

ej» = +  =  J/l + (MJ)*. W
W "  =  f ( t f n +  ¿a }») —  f (x ^ )  =  / '(§ }» ) .

przyczem I)’* jest jakąś wartością pośrednią pomiędzy x j1* a ®jł) -f- Aaft'\ 
Zatem:

J * { »  7 '
a więc:

^ , =  k r + 7 i ( łn - d ® j1>

Podobnie wyrażamy długości innych cięciw i otrzymujemy na długość 
linji łamanej Ł t wzór:

■i

£ » =  + /,’ (f5iW )

Oznaczmy ^1 -\ -f '* (x )—  <p{x) to:
«1

Według założenia jest / '(* )  funkcją ciągłą a więc i <p{x) jest funkcją 
ciągłą. Wraz z cięciwami także i przedziały Ax, dążą do zera. Ciąg takich 
sum ^ ii Łn  ... Ł p. .. posiada zatem granicę, a tą granicą jest całka ozna­
czona z funkcji tp(x) w granicach od o do i  (por. § 222). Zatem:

czyli:

(86)

s =  lim Ł p —  lim
p - + o o  p —+ co

J£<p(£P>)Aatft =  jf f>  (x) dx

Otrzymaliśmy w ten sposób wzór na długość łuku.
Jeżeli pochodna f ' ( x ) jest nieciągła w skończonej liczbie punktów 

przedziału < a ,  b > , to długość łuku oblicza się przy pomocy odpowiedniej 
całki uogólnionej lub niewłaściwej, wyrażonej tym samym wzorem (86).

Z wzoru (86) otrzymujemy na długość łuku wartość dodatnią, gdy 
a <Ĉ b a ujemną, gdy o >■ ¿>, a więc z wzrostem odciętej x  wzrasta dłu­
gość łuku.
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Zatrzymajmy w całce, podającej długość łuku, dolną granicę a 
a zmieniajmy górną granicę b; zastąpmy literę b literą x. to:

Długość łuku jest zatem funkcją górnej granicy x Pochodna tej 
funkcji ma wartość:

Różniczkę łuku nazywamy często elementem tuku\ wzór (87) podaje więc 
kwadrat elementu łuku

Jeżeli równanie linji jest podane w formie parametrowej:

Wciągając cp'(t) pod pierwiastek, możemy otrzymać przed pierwiastkiem 
znak-f- lub— , zależnie od znaku funkcji cp'(t). Jeżeli obierzemy stale 
ZDak -f-, to wzór na długość łuku przyjmie postać:

Wartość t — tx odpowiada wartości x =  a a t — tt wartości x  — b. 
Z tego wzoru otrzymamy na długość łuku wartość dodatnią, gdy zało­
żymy, że łuk wzrasta wraz z wzrastaniem parametru t (a więc umowa 
co do znaku jest przy użyciu tego wzoru inna, aniżeli przy użyciu 
wzoru (86)).

Użycie spółrzędnych biegunowych sprowadza się, jak wiadomo, do 
specjalnej formy przedstawienia parametrowego, a mianowicie gdy rów­
nanie linji jest podane w postaci:

a

(86 a) 

a stąd:

ds* =  dx2 (1 -(- y 'ł) =  dx* +  (y' dx)1
czyli:

(87.) ds* — dxi +  rfy*

X = (p (t ) ,  y = X p (t)

to wzór (86) przyjmie postać:

(88)

r — r{(p)
to x = r  {(p) cos<p, y —  r(<p) sin cp\ parametrem jest tu. kąt <p.
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Ponieważ: 

przeto:
* '  =  r' cos q> —  r  sin <p, y sin qp r cos <p 

|/®'!0jp) +  y '8(<p)==

—|/r'scos!ę) — 2 r r ' sintjp cosqci +  rasin,()p +  ?-'2 ain,qp+ 2 r r 'sin qpcos(p +  r , cost«p =

=  V?* -f- r *.

Wobec tego wzór na długość luku przyjmuje dla spółrzędnych bie­
gunowych postać:

(89)

Obliczanie długości luku linji krzywej nazywamy r e k t y f i k a c j ą  (t. j. wy­
prostowaniem) tej linji.

Zupełuie podobną drogą dochodzi się do definicji i wzoru na dłu­
gość łuku linji p r z e s t r z e n n e j ,  trójwymiarowej.

Jeżeli równania tej linji są podane w postaci:

y  =  y { x ) ,  Z  =  z ( X )

to na długość łuku otrzymuje się wzór:

(90)

Jeżeli zaś równania linji są podane w formie parametrowej:

X  =  < f { t ) , y  =  i p { t ) ,  z  =  x ( ‘ )  

to wzór na długość łuku przyjmuje postać:

(91)

Uważając we wzorze (90) górną granicę całki za zmienną: b  —  x ,  

otrzymujemy na długość łuku funkcję s ( x ) .  Tworzymy pochodną tej 
funkcji według zmiennej x  i podnosimy obie strony otrzymanego wzoru 
do kwadratu. Po pomnożeniu obu stron przez d x 8 otrzymujemy następu­
jący wzór na kwadrat elementu łuku krzywej przestrzennej:

(92) d s 3 =  d x i  +  d y *  - f -  d z *
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Przykłady.

1) Obliczyć długość łuku paraboli o równaniu

y =  axi
od wierzchołka do dowolnego punktu. Niechaj będzie a > 0 .

Ponieważ y '= 2 a x ,  przeto według wzoru (86) otrzymujemy:

S —J  ^1 +  4 Ci2x 2 dx — 2a J  J / ~  -(- a?* dx
o o

Całkę tę oblicza się według wzoru (35) (na str. 48), kładąc *  =  —
4ał

i otrzymuje się. ,
_______ _______  *

* “  ” (®K f i -  +  * ’ +  4 ? ‘°8(* + ( / 5 + » ’))|
0

=  f [ / l  +  4 «* ±  lo g ( *  + j / ±  +  *■) -  ±  log J / Z

czyli:

s =  ~̂  + 4 a2®2 +  ^ l o g  (2ax + (^1  +  4o*®*)

Niechaj czytelnik wykaże dla ćwiczenia, że łuk linji łańcuchowej 

o równaniu y =  g -f- e 0 j  od wierzchołka do punktu o odciętej ® wy­

raża się wzorem: s = - ^|c “ — j.

2) Obliczyć długość łuku jednej arkady cykloidy. Równania cy­
kloidy mają w formie parametrowej postać:

i
X — a{t — sin t) 
y =  a (1 — cos t)

Używając wzoru (88), otrzymujemy:

A s • - . a 
a2 (1 — cos i)* -f- a2 sin*t dt =  a j  \2 —  2 cos t di

czyli:

• =  a J " f^4sin2 5  i/ł =  4a ^d d )

Długość łuku jednej arkady otrzymuje się, zmieniając t od 0 do 2 n. 

W  tym przedziale ma sin ^ wartość dodatnią, a więc Ĵ sin2 £ =  sin
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Wobec tego:

F— Aa I si
. 2*

sin 2  d (¿) =  4 a ( — cos ¿) =  8 a

Godnem jest uwagi, że w tym wzorze nie występuje liczba n.
3) Obliczyć długość luku spiralnej logarytmicznej o równaniu:

r  =  aeff (przy a >  0)

od qp0 do dowolnego (p.

Przy pomocy wzoru (89) otrzymujemy:

<f tp

s ~ f  \a *  +  a *  b *  dtp =  a \\ -f- b* f  tbf  d<p

h  +  6* (ae*!1—

Oznaczmy promień, należący do kąta qp0, literą r0, to:

Km 7**, xa =  ' - J -  (r  — r0)

Łuk spiralnej logarytmicznej zmienia się więc proporcjonalnie do pro­
mienia.

Niechaj czytelnik okaże, że długość luku spiralnej A rch im edesa , 
o równaniu;

r  =  ctp

od cp —  0 do dowolnego (p, wyraża się wzorem:

# =  | (?> Km -<p! +  log (<p-f Ki +  ?>*))

4) Obliczyć długość łuku linji śrubowej. Równania jej mają w for­
mie parametrowej postać:

aj=rcosi, # = rsiuf, z — cł
(por. tom I, str. 378 wzory (107)). Z wzoru (91) otrzymujemy:

s — j  \r* sin* t -f- r 2 cos* t -(- cł dt =  J Yr* -)- c1 dt —  J/r* c* (łt — i,)

Długość linji śrubowej, odpowiadająca jednemu krokowi śruby, t. j. od 
t =  0 do t — 2 n, wynosi:

8 =  \ r! -f- c* 2 n
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Niechaj czytelnik wykaże, że długość luku linji o równaniach:

liczona od x  =  0, wyraża się wzorem s - x - \ - z .  Użyć wzoru (90)!

Rektyfikacja linij krzywych prowadzi tylko w niewielu wypadkach 
do całek, dających się wyrazić zapomocą funkcyj elementarnych. Zwykle 
otrzymuje się na długość łuku skomplikowane funkcje przestępne, nie- 
elementarne. Tak np. spróbujmy obliczyć długość łuku elipsy.

Użyjmy formy parametrowej;

x — a sin t
y — b cos t

Na podstawie wzoru (88) otrzymujemy:

=  J*\a* cos* t -f- b* sin* tdt =J — (o* — b*) sini tdł

Oznaczmy literą k mimośród liczbowy, t. j. stosunek e : a czyli \a* — bł : a 
(wobec czego *  <  1), to:

k2 sin1i di

Całka ta nie da się wyrazić przy pomocy funkcyj elementarnych. 
Oznaczmy:

t
(93) J '\ \  — A* sin* td i— E (k ,ł) 

o

Funkcję tę nazywamy całką eliptyczną drugiego rodzaju. Istnieją 
tablice, pozwalające obliczyć tę całkę dla rozmaitych wartości k i t, np. 
J a h n k e , Funklionentafeln (Lipsk 1933, wyd. 2) lub H tlttte , Des In- 
genieurs Taschenbuch (Berlin 1925, wyd. 25, str. 42). Używając togo 
oznaczenia, napiszemy wzór na długość łuku elipsy w postaci:

s =  a (E{k, tt ) — E(k, t,))
Uwaga. Całkę:

t •

(94) / h - i * 8 i n * l  =  F(fc’ ł)

nazywamy całką eliptyczną pierwszego rodzaju; jest ona także nieelementamą funkcją 
przestępną. Te całki eliptyczne i funkcje odwrotne względem nich, zwane funkcjami 
eliptycznemi, mają bardzo rozległe zastosowania w rozmaitych działach fizyki i tech-
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niki. Do tych całek sprowadza się zapomocą. odpowiednich podstawień całki eliptyczne, 
wspomniane na str. 59. Teorję funkcyj eliptycznych rozwinięto nadzwyczaj szczegó­
łowo, poświęcając jej wiele prac specjalnych i podręczników. Spośród licznych pod­
ręczników wymieniamy tu następujące: L. L é v y ,  Précis élémentaire de la théorie des 
fonctions elliptiques avec tables numériques et applications (Paris, 1898) i H. Burk-  
hardt ,  Elliptische Funktionen (Lipsk, 1906, wyd. 2).

Wartości całki E(k, t) można wyznaczyć dla szczegółowych wartości t, k np. 
przybliżonym wzorem S i mpsona .  Dla dokładniejszych obliczeń posługujemy się 
ogólnem rozwinięciem funkcji podcałkowej na szereg. Metodę tę omówimy w roz­
dziale, poświęconym teorji szeregów nieskończonych.

Obliczanie łuku hiperboli sprowadza się także do obliczania całek eliptycznych 
pierwszego i drugiego rodzaju. Pozostawiamy czytelnikowi wyprowadzenie wzoru na 
długość łuku lemniskaty o równaniu:

^ = 2 » ’  cos 2 <p
Otrzymamy:

/ dtp

yi - 2 s hPy
o

Po podstawieniu cos 2 <p =  cos11 uzyskuje się Stąd całkę eliptyczną pierw­
szego rodzaju, a mianowicie:

s =  a f  -  |
J  K l - ł s i n « «  /
0

§ 230. Zastosowania wzorów na długość łuku w geometrji róż­
niczkowej płaskiej.

Z wzorów na długość i na element łuku wynika kilka wniosków 
ważnych dla geometrji różniczkowej.

1) I  tak z wzoru (86a) wynika:

d*x = \  1 + 7 *  =  h  +  t g =  l''860 *« =  fcoTa|

czyli:
(95) dx =  | cos a | ds

Widzieliśmy, że wzór (86) jest prawdziwy" pod względem znaku 
wtedy, gdy długość łuku wzrasta z wzrostem odciętej. Jeżeli w ostatnim 
wzorze opuścimy symbol wartości bezwględnej, pisząc wprost:

(96) dx —  cos a ds

to zmienimy przez to tylko założenie, dotyczące kierunku wzrastania łuku. 
Łatwo mianowicie okazać, iż zakładając, że łuk wzrasta w tym kie 
runku, który obieramy za dodatni kierunek stycznej, możemy użyć 
wzoru (96) zamiast wzoru (95). Tak up. ua fig. 28 a łuk wzrasta w tym
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samym kierunku, co odcięta x, a więc, gdy dx >  0, to i ds >  0. Kąt a 
stycznej z osią x-6vr ma tu wartość z pierwszej ćwiartki, a więc cos a > 0 ,  
wobec czego iloczyn cos a • ds ma znak -f-, zgodny ze znakiem dx. Na 

fig. 28b luk wzrasta w kierunku 
przeciwnym aniżeli *, a więc, gdy 
dx > 0 ,  to ds <  0. Kąt a stycznej 
ma tu wartość z trzeciej ćwiartki, 
a więc cos a <  0. Wobec tego 
iloczyn cos a • ds >  0, zgodnie ze 
znakiem dx. Pozostawiamy czytel­
nikowi rozważenie innych przy­
padków (gdy kąt a należy do 
drugiej lub czwartej ćwiartki).

Z tych figur jest widoczne, że element luku ds równa się odcinkowi AC 
stycznej od punktu styczności do punktu, w którym przecina styczną rzędna,

doc
należąca do odciętej x-\-dx. Istotnie AC — ------=  ds

cos a
Odcinek ten nie jest z reguły równy prawdziwemu przyrostowi 

luku, t j. łukowi AB  =  ds.

szyli:

Także różniczkę dy można wyrazić zapomocą elementu luku. 
I tak:

dy = y ‘ dx =  tga • dx =  tg a • cos a ■ ds

Wzory:

(97)

dy =  sin a ds

dx =  cos a ds 

dy — sin a ds

bywają często stosowane w rozważaniach geometrji różniczkowej. Zamiast 
kąta a można wprowadzić kąt /?, jaki styczna tworzy z osią y-ów. Po­
nieważ a —  90° — /?, przeto sin a =  cos (t. Wprowadzając tę wartość 
w drugi wzór, otrzymujemy bardziej jednolite wzory:

a stąd:

( 98 )

dx —  cos a ds 
dy —  cos /8 ds

Te cosinusy nazywamy cosinusami kierunkowemi stycznej (por. t. I, sir. 522). 
Oosinusy kierunkowe stycznej są zatem pochodněmi odciętej i rzędnej wzglę­
dem luku. Podobne rozważania i wzory dotyczą krzywych przestrzennych.
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2) Łuk linji krzywej jest zawsze większy od cięciwy, łączącej końce 
tego łuku. Zbadajmy, do czego dąży stosunek luku do cięciwy, gdy dłu­
gość cięciwy dąży do zera.

Długość cięciwy, łączącej punkt A(x,y ) z punktem B (x  -j- Ax, y -f- Ay\ 

ma wartość [̂ da:2 -j- dy2, a długość łuku, łączącego te punkty,, nazwijmy As. 
Załóżmy, że równanie linji jest podane w formie y =  f{x\ . przyczena 
f '(x ) jest funkcją ciągłą. Chodzi nam o zbadanie granicy:

.. As .. ds
lim — =  lim ■ —
c-*-o c c-*o \ Axa -f- Aya

Zamiast c —> 0 możemy brać Ax —> 0, albowiem obydwa te warunki są 
ze sobą równoważne, ponieważ-y =  f (x ) jest funkcją ciągłą. Niechaj bę­
dzie Ax >• O. O tóż:

lim
A*-*0

As

\Axa +  Ay*
—  lim r  . s'(s)

Ki 4- y’\x)
*'(<*>) . 

* '(*)

Dowiedliśmy więc, że: 

(99) lim — == 1
c-*0 C

t  j., że stosunek luku do cięciwy dąży do jedności, gdy długość cięciwy 
dąży do zera

3) Krzywiznę linji w dowolnym jej punkcie określiliśmy (por. t. I, 
str. 552 i nast.) jako bezwzględną wartość granicy, do której dąży sto­
sunek kąta Aa, zawartego między styczną w tym punkcie a styczną 
w punkcie z jego otoczenia, do cięciwy c, łączącej te dwa punkty, gdy

długość cięciwy dąży do zera. A więc: fc =  |lim — I, gdzie a jest kątem
|f->0 c  |

stycznej z osią odciętych. Okażemy, że tę definicję można zastąpić nową, 
równoważną z nią, a lepiej oddającą intuicyjne pojmowanie stopnia za­
krzywienia. Bierzemy mianowicie pod uwagę stosunek kąta Aa do dłu­
gości luku As, zawartego między temi punktami i badamy granicę bez­
względnej wartości tego stosunku, gdy długość łuku dąży do zera, t. j.:

9 = lim
4»* o

Aa
As

„ A a  . .  Aa
Zamiast - możemy napisać —

wrdtnie, a więc:

c
ds

Gdy ds —> 0, to cięciwa c —> 0 i od-

9 =
c —► o  C

C

As

i
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Ponieważ zaś lim T  =  1,
e—* O di

przeto:

a więc g =  k Zatem:

( 100) k — lim
¿j->o

da 1
ds I

A więc krzywiznę można też określać jako bezwzględną wartość granicy, 
do której dąży stosunek przyrostu kąta a d o  przyrostu luku s

Wzór na krzywiznę (znany z tomu I) można otrzymać łatwo z de­
finicji, zawartej we wzorze (100). I tak niechaj równanie linji będzie po­
dane w formie y =  f(x).

Ponieważ tga — y'(x), przeto a =  arc tgy' -)- nn, a zatem:

Wiemy, że: 

a więc:

Stąd:

da =  r + y * dx

ds — \\ -f- y '2 dx

da _  y" 
ds ~ (1  +  y'*)*

I y"\
(1 +  y'*)*

zgodnie z wzorem (194) z tomu I (str. 553).
4) Długość luku ewoluty. Mechaniczna konstrukcja ewolwenty.
Linję I-i', która jest miejscem geometrycznem środków krzywizny 

danej linji nazywamy, jak wiadomo, ewolutą czyli rozwiniętą linji l, 
(por. tom I, § 184, str. 555 i nast.), a samą linję Z, nazywamy ewolwentą 
czyli rozwijającą linji Z,.

Niechaj x,y oznaczają spółrzędne punktn bieżącego danej linji Z,, 
a Ę,.r] ewoluty Zj. Równania ewoluty mają postać:

Ź =  x — y' i +  y'ł
y"

v =  y - f
l + y ' s

Jeżeli a oznacza długość luku ewoluty, liczoną ,od jakiegoś obranego 
punktu, to:

da* =  - f  <fy2
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a więc:

cl \dx) ‘ \dx) 

Obliczmy pochodne: |\ i t]'. Otóż:

d<J\
dxl

d j
dx~

i _ y ^ y ^ - d + y ' ’) / "  _  . (1 ~f~y'ł) y  "  — 3y'y"*
* */' * | *• 1 -."8 y ./'2y;

| y" • 2y'y" (1 4- y'*)y'" _  (i+ y '* )y '" -3 y 'y " *
der. " ' u"* «"*dx

Wobec tego:

(£)Va+*•■>(,«/y"'(l +  y'*) -  3y'y"‘.T
Zupełnie podobny wzór otrzymamy na pochodną promienia krzywizny 
danej linji lt . I  tak z wzoru:

„ _  . n +  y',)Vl 
“  y"

otrzymujemy: ¥ '

¡dQ\a_  /y" • s/2(l + y '* ) * . 2 y y '- ( l  + y ' i)i -y'"\’
(2 ) - F ,."2 ) -

- (t  | s; i P * ,>,' , - S " i l  +  y” >V

A  więc: 

Stąd:

,  l

(daX — l ^ y
\dx) \dx)

lub
dx dx dx

Chcemy usunąć tę wątpliwość co do znaku. Załóżmy w tym celu, że 
promień wzrasta w całym badanym przedziale zmiennej x  lub maleje 
w całym przedziale, a więc nie ma extremów. Obierzmy za dodatni kie­
runek wzrastania łuku ten kierunek, w którym ę wzrasta, to:

( 101)
do do . , „
5 = S . . i *  ° = e + c

■— ' <!

Jeżeli a, oznacza łuk e^ilu ty a p, promień krzywizny danej linji, nale­
żące do tej samej wartości x lt a oa,ę 2 dla x2, to:

. t Oi =  (>! +  C, ot =  p, +  C
a stąd wynika:

( 102) O j  O j --- Q j  Q j
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Widzimy stąd, że długość łuku, zawartego między d w o m a  punktami ewo- 
luty jakiejś linji można wyznaczyć bez całkowania, obliczając różnicę od­
powiednich promieni krzywizny tej linji Z,. Wzór (102) można wyrazić 
w następujący sposób: -przyrost długości łuku ewoluiy równa się przyrostowi 
promienia krzywizny pierwotnej linji, wziętemu z odpowiednim znakiem.

Na tym związku łuku ewoluty lt z promieniem krzywizny linji 
polega mechaniczna (nitkowa) konstrukcja 
ewolwenty /, z danej ewoluty lt . Niechaj aAB 
oznacza długość łuku ewoluty /g od i  do B  
(fig. 29), qa, promień krzywizny ewolwenty Z,, 
należący do punktu A', dla którego A jest 
środkiem krzywizny, a podobnie ęB. dla pun­
któw B' i B. Wiadomo (por. tom I, str. 555), 
że normalna ewolwenty Z,, na której leży 
promień krzywizny qa, =  AA\ styka się 
z  ewolutą w punkcie A (w środku krzywizny, należącym do A',). Niechaj 
punkt P  będzie początkiem liczenia łuku ewoluty. Według wzoru (102) jest:

Fig 29.

o  AB    ° P B  G pA    Q / l '   Q a ‘

Gdyby punkt P  leżał po drugiej stronie punktu B, jak np. punkt O, to 
należałoby zmienić znak prawej strony.

Przytwierdźmy nitkę w dowolnym punkcie ewoluty, Dp. w punk­
cie O i nawińmy ją wzdłuż ewoluty do punktu A a pozostałą wolną 
część AA ' wyprężmy tak, aby była styczną do ewoluty. Rozwijajmy tę 
nitkę stopniowo, wyprężając ją zawsze w kierunku stycznej. Przyrost 
odcinka AA ' będzie zawsze równy przyrostowi długości łuku, czyli przy­
rostowi rozwijanej nitki. Koniec A! zakreśli zatem ewolwentę lx. Stąd 
pochodzą nazwy: „rozwijająca“ czyli ewolwenta dla linji a „rozwi­
nięta“ czyli „ewoluta“ dla linji Z, (właściwie należałoby pomienić te na­
zwy z sobą, jednakże powszechnie utarły się one w literaturze matema­
tycznej w sposób podany powyżej).

5) Równania eioolwenty.
Znalezienie równań ewoluty danej linji wymaga, jak widzieliśmy, 

tylko różniczkowania. Natomiast wyznaczenie równań ewolwenty do da­
nej ewoluty wymaga już rachunku całkowego. Niechaj:

V =  f(£)

przedstawia równanie danej linji, którą uważamy za ewolutę szukanej 
linji y — (p(x). Niechaj a, (fig. 30) oznacza kąt stycznej do ewoluty w do­
wolnym jej punkcie B z osią odciętych. Ponieważ BB' =  ę, przeto:

x  — £ =  q cos a,

V — V =  Q
Haetaonok różniczkowi i całkowy. T. i. 10
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Z wzoru (101) wynika, że p — a — c, a więc

x  =  £ -f- (a — c) cos o, 

y =  V +  (° — c) sin a,
Ale tg a, =  rj' a zatem:

ponieważ a, jest kątem rozwartym. Zatem:

0

Fig. 30.

*  (104)

Są to równania ewolwenty w formie parametrowej, przyezem parametrem 
jest §, a e stałą dowolną Widzimy, że w tych równaniach występuje 
lok o  danej linji 17 =  /"(£), trzeba zatem wykonać całkowanie:

Ponieważ w otrzymanych wzorach występuje dowolna stała c, przeto 
otrzymujemy do jednej danej linji całą gromadę jednoparametrową ewol- 
went. Jest to zgodne z tem, że każda ortogonalna trajektorja stycznych 
do liuji rj — f(£) jest ewolwentą tej linji (por. tom I, str. 555). Wszystkie 
linje tej gromady są, jak łatwo zauważyć, linjami równoległemi do siebie. 
Gdybyśmy obrali na stycznej jako dodatni kierunek nie od B ku B\ 
lecz przeciwnie od B w drugą stronę, to przy wzrastaniu promienia 
krzywizny malałby łuk, zatem należałoby podstawić p —  — (a c), ale 
równocześnie kąt a, należałby do czwartej ćwiartki, a więc we wzorach 
na eosa, i sin o:, należałoby zmienić znaki. Wobec tego znaki we wzo­
rach (104) pozostałyby bez zmiany. Niechaj czytelnik rozważy w podobny 
sposób przypadek, gdy kąt a, jest ostry.

Przykład.
Wyznaczyć równanie ewolwenty koła (por, tom I, str. 513). Użyjmy 

parametrowej formy równania koła, t. j.:

Do obliczenia długości łuku nie trzeba używać całki, znany jest bowiem 
dla długośc> tuku koła wzór:

U

ę — a cos t 

rj — a sin t

o =  at
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przyczem łuk liczy się od punktu, dia którego i =  0 , w kierunku wzra­
stających t. Kąt a „  utworzony przez dodatni kierunek stycznej z osią 
odciętych, ma wartość a, =  */, n -|- t (por. 
fig- 31). Równania ewolwenty otrzymamy tu 
najprościej z wzorów (103), a mianowicie:

x  =  a cos tĄ -{a t —  c) cos a, 

y =  a sin t —(- {at —  c) sin a.

Ponieważ:

a

przeto:

cos a, =  cos(| 7r -(- i) =  sin t 

sin a, =  sin (| n +  t) =  — cos t

x  — a cos t -j- (at — e) sin t 

y === a sin t —  {at — c) cos t 

Wybierzmy z tej gromady ewolwent tę, dla której c — 0 , to znaczy:

(105)
X — a (cos / -|- ł sin t) 
y =  a (sin t —  t cos i)

Przechodzi ona przez punkt D  na obwodzie koła, ponieważ dla f =  0 
otrzymujemy z wzorów (105) x  =  a, y —  0, a więc spółrzędne punktu D. 
Inne ewolwenty są krzywemi róttmoiegłemi do ł, (definicję krzywych 
równoległych podano w tomie I, str. 526 i 584).

§ 231. Obliczanie objętości przy pomocy całki pojedynczej.

Okażemy, że, jeżeli znamy pola wszystkich przekrojów jakiejś bryły, 
równoległe do jednej stałej płaszczyzny, to objętość jej możemy wyrazić 
zapomocą całki. Niechaj tą stałą płaszczyzną będzie płaszczyzna boczna YZ  
Na fig. 32 przedstawiono bryłę, której objętość chcemy obliczyć, w rzucie 
na płaszczyznę pionową ZX. Nazwijmy q>(x) pole przekroju, leżącego 
w odległości x  od stałej płaszczyzny YZ. Pole to jest oczywiście jakąś 
funkcją zmiennej x. Zakładamy, że znamy wartość tej funkcji dla każ­
dego x. Podzielmy bryłę zapomocą systemu płaszczyzn równoległych do 
Y Z  na warstwy i każdą taką warstwę zastąpmy walcem o wysokości, 
równej szerokości tej warstwy a o podstawie równej temu przekrojowi 
tej warstwy, który ma póle najmniejsze: mt. Objętość walca o podsta­
wie m, a wysokości Ax, jest równa miAXi. Otrzymamy system walców 
o łącznej objętości:
(a) ml Axt +  w, Ax^.. . +  m„ Ax„

10*
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przyczem m, oznacza najmniejszą wartość funkcji cp(x) w przedziale da?,. 
Wykonując podział na warstwy w rozmaite Bposoby, otrzymujemy roz­
maite sumy (s). Kres górny tych sum nazywamy objętością danej bryły.

Ten kres górny jest całką oznaczoną funk­
cji cp(x), a zatem objętość wyraża się 
wzorem:

(106)

przyczem (p(x) oznacza pole przekroju pro­
stopadłego do osi a? w zależności od od­
ległości tego przekroju od stałej płaszczyzny
(bocznej).

W  specjalnym przypadku, gdy bryła jest obrotowa, t. j. powstaje 
przez obrót linji (południkowej) o równaniu y = f [ x )  w przedziale < a ,  6 >  
około osi a?, to każdy je j przekrój płaszczyzną prostopadłą do osi x  jest 
kołem o promieniu y. Pole tego przekroju ma zatem wartość g>(x) — 
== y*n =  f* (x ) n, a więc objętość takiej bryły obrotowej wyrażamy 
wzorem:

(107)

4 6

a a

Z wzoru (106) wynika następujące twierdzenie C a v a l i e r i ’ego: jeżeli 
przekroje dwóch bryt zapomocą płaszczyzn równoległych do jednej stałej 
płaszczyzny mają parami równe pola, to objętości tych brył są równe.

Wtedy bowiem q>(x) jest tą samą funkcją dla obu brył, a więc na 
objętość obu brył otrzymujemy tę samą wartość na podstawie wzoru (106).

%
Przykłady.

I )  Dla stwierdzenia, czy przy pomocy nowej de6 nicji objętości otrzy 
mamy na objętość znanych brył te same war­
tości, które znamy z matematyki elementarnej, 
obliczmy objętość stożka o dowolnej podstawie 
(niekoniecznie kołowej), mającej pole Д а о  wy­
sokości w. Umieśćmy ten stożek tak, aby płasz­
czyzna podstawy była prostopadła do osi x 
a wierzchołek leżał w początku układu (fig. 33). 
Jeżeli <p(a?) oznacza pole przekroju w odległości* 

od wierzchołka, to wiadomo, że:

<p(x): D — x* :w*
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a więc:

<p{x) —Dx*

Z wzoru (106) otrzymujemy:

V = f D * d x  =  ™ \  
J  w' 3 w*

Dw3__ w
' 3 ^ ~  3

zgodnie z wzorem, znanym z geometrji elementarnej.
2 ) Obliczyć objętość elipsoidy trójosiowej, której powierzchnia ma 

równanie:
X2 l/ 8 Z*
- v +  7^H--- : =  1a* b% 1 c*

Przekrój płaszczyzną prostopadłą do osi x  w odstępie x  od płaszczyzny 
Y Z  jest elipsą o równaniu: 2

y* 2 * _  ar* 
b* ~i” c* a*

czy li:

+
6 2 0 - S )

Pole tej elipsy jest równe ABn , gdzie A 
i B oznaczają połówki osi tej elipsy. Zatem:

Wobec tego objętość całej elipsoidy jest równa:

*H* +a

V — J^bcn^l — dx — hen [x  — ~ j  j =  | aben

Niechaj czytelnik obliczy w podobny sposób objętość, ograniczoną para- 
boloidą eliptyczną (tom I, str. 43) o równaniu:

x

i płaszcz}'zną równoległą do płaszczyzny bocznej w odstępie x. (Wynik: 
V — nab x t).

3) Bardzo prosty wzór otrzymuje się na objętość wszystkich bryt, 
których pole <p(x) przekroju jest funkcją całkowitą wymierną, nie prze­
kraczającą 3-go stopnia. Niechaj Du D it D3 oznaczają pola przekrojów 
tej bryły w odstępach x lt £C8ł x 3 od płaszczyzny bocznej, przyczem x%
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jest średuią arytmetyczną odciętych ar, i ar3, t. j. ar, =  £(ar,-f-® 3 j. W y ­
sokością tej bryły, należącą do podstawy Z), lub Da, jest w =  xt —  a

Według założenia jest:

<p(x) =  ax* -|- bx't -\-cx -\-d =  y

przyczem niektóre spółczynniki mogą być 
zerami. Objętość takiej bryły wyrażamy

V —J  (nar5 -f- bxi -f- cx -j- d) dx 

Widzieliśmy (w § 220, przykład 6 , wzór (65)), że ta całka ma wartość:

* 2/j
v  =

\

czyli:

(108)

v =  g — 1 ( V i  +  4 <Pj + < P t )

Ten wzór, zwany wzorem S i mp son a lub O u g h t r e d a ,  jeat ścisły dla 
wielu brył graniastych i okrągłych. Tak np. dla stożka (por. fig. 33)

D, — 0, D3: D — : x* — ł ,  a więc D 2 — ^D, Ds =  D, zatem:

w w
V = ę ( 0  +  4 - t D  +  D ) =  D ^

egodme ze znanym wzorem.
Dla elipsoidy: D x = 0 ,  Dt — bcn, Z>3 = 0 ,  zatem:

V =  2°- (0 +  4bcn - f  0) =  $abcn

zgodnie z wzorem, otrzymanym w przykładzie 2). Niechaj czytelnik za­
stosuje ten wzór do obliczenia objętości beczki obrotowej, powstałej przez 
obrót luku elipsy o równaniu b*xt -f- a2 y1 =  a2 6 * około osi odciętych,
, .  , , W , , w /Trr ., Tr nw 2Si +  s2
biorąc łuk od ar, =  —  — do x l = -\ -  9 - (Wynik:  V  =  -g - • ----- g ---- »

gdzie s oznacza średnicę dna beczki a S średnicę przekroju średniego). 
Sprawdzić wynik przy pomocy wzoru (107)!

Wzoru (108) używa się do przybliżonego obliczania objętości także 
wtedy, gdy <p{x) nie jest wielomianem stopnia nie przekraczającego 3. 
Przybliżenie takie jest dogodne wtedy, gdy w rozwinięciu funkcji <p(%)
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na wzór Mae l aur ina ,  reszta, następująca po wyrazie trzeciego stopnia, 
może być w rachunkach pominięta.

4) Obliczyć objętość beczki o luku parabolicznym. Powstaje ona 
przez obrót powierzchni, zamkniętej lukiem paraboli o równaniu:

y =  axl b
, w j , w

od x} — — g do x2 =  -f- g, osią x  i rzęd-

nemi w punktach końcowych tego luku 
(fig. 36), około osi ®-ów.

Dla x  —  0 jest y =  b =  R,

rt

a stąd:

t02
» y =  aT  +  i i  =  r

* ( r - R )  
to1

Stosując wzór (107), otrzymujemy:

»  w

— n ^ (aa?ł -j- b)1 dx — n J '  (a*x•*-\-2abxi -\~bt)dx

Funkcja podcałkowa jest wielomianem 4-go stopnia, a zatem do oblicze­
nia tej całki nie można zastosować wzoru S impsona .

Całkowanie prowadzi tu do wyniku:

12 a* w" 4 abws f 2  blw\
\ 5 • 32 1 3 -8  1 2  )

Podstawiamy wartości za a i b i otrzymujemy po wykonaniu prostych ra­
chunków;

V =  ~  ( 8  i8 ! 4 /? r -)- 3 r l) =  y j ( 2 £ 2- f  Ss +  f  s»)

gdzie S oznacza średnicę środkowego przekroju beczki a s średnicę dna. 
Zamiast tego wzoru używa się dla beczek o łuku parabolicznym innego, 
prostszego wzoru, jednak tylko przybliżonego. Zastępuje się mianowicie 
objętość tej beczki objętością walca o tej samej wysokości w, przyczem 
za promień dna bierze się średnią wartość r' promienia, obliczoną zapo- 
mocą całki (według wzoru (49) na str. 67):

1 C, . , ,, , 1 la w* , Ł ) » » '  , t 4( r — R)w* p
r = - J  (a»* +  A ) r f « = - ^ T  +  i« tJ — jg- +  6 =  l2 -w i - + R

w

,  r  +  2R
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Zatem:

F  « 5 r"1 n w —

Znacznie trudniejszy wzór otrzymuje się na objętość beczki o luku koło- 
wym, jeżeli środek tego koła nie leży na osi beczki, lecz np. w odległości q 
pod osią. Wtedy równanie tego koła ma postać x% -J- (y -)- qA =  (q ~t~ i?)*.

Zatem:
w
i

V — n j  ([/(g -|- By  —  x* — qY dx
w

~T

przyczem R oznacza promień środkowego przekroju beczki. Pozostawiamy 
czytelnikowi obliczenie tej całki; w wyniku wystąpi funkcja arcus sinus 
i drugi pierwiastek z funkcji 2 -go stopnia.

Uwaga. Obliczaniem objętości beczek zajmowano się wiele ze względów’ prak­
tycznych (cłowych) jeszcze przed wykryciem rachunku całkowego. Szczególnie intere- 
sującem dziełem z tego zakresu jest praca K e p l e r a  (1571—1630), p. t. Nova ste- 
reometria doliorum vinariorum, zawierająca wiele myśli i metod, pokrewnych z rozwa­
żaniami rachunku całkowego. Rozmaite przepisy, dotyczące przybliżonego obliczania 
beczek, znaleźó można w książce C l a u d e  l'a, p. t. Introduction à la science de l'in ­
génieur. T. I, str. 587 (wyd. 8, Paryż 1913).

§ 232. Polo powierzchni obrotowej.
Przy pomocy całki można obliczyć pole powierzchni obrotowej. 

Obierzmy oś obrotu za oś odciętych, a równanie linji obracającej się nie­
chaj ma postać y =  f (x )  w przedziale b^>. Załóżmy, że w tym prze­

dziale cały łuk AB  leży po jednej stro­
nie osi obrotu, a więc np. że f (x ) 0 . 
Gdyby było inaczej, trzebaby rozłożyć 
łuk na odpowiednie części. Za początek 
łuku na linji y =  f{x ) uważajmy do­
wolny punkt T  i oznaczmy długość łuku

TA literą sa a łuku TB  literą Całko­

wita długość łuku AB  ma zatem wartość: 

8 =  sb   8a

Podzielmy ten łuk na dowolną ilość 
części (niekoniecznie równych), np. na n 

części i zastąpmy każdy łuk częściowy cięciwą. Weźmy pod uwagę po­
wierzchnię obrotową, powstałą przez obrót linji łamanej, złożonej z tych 
cięciw c,, Cj, c#,...c «. Składa się ona z pobocznie stożków ściętych a ewen-
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tualnie także z pobocznie walców. Potrafimy zatem obliczyć jej pole Pit 
używając znanego z elementarnej geometrji wzoru 2 p?is na pobocznicę 
stożka ściętego lub walca (<? oznacza promień środkowego przekroju a s  

długość boku). Pobocznica stożka ściętego lub walca, zakreślonego obro­

tem cięciwy c;, ma zatem pole 2 yP ~ ^ - n c , ,  a cała powierzchnia:

n

(a) p i = * „ 2 * l ń J ! M et
i - 1

Utwórzmy cały ciąg podziałów łuku AB tak, aby ciąg, utworzony z dłu­
gości największych łuków składowych z każdego podziału, dążył do zera. 
Otrzymamy w ten sposób ciąg Pr... pól powierzchni obro­
towych, złożonych ze stożków ściętych lub walców. O ile istnieje granica

tego ciągu {P r}, niezależna od tego, jaki ciąg podziałów łuku AB  obie­
rzemy (byleby największe łuki składowe dążyły do zera), to tę granicę 
nazywamy ‘polem danej powierzchni obrotowej.

Zamiast c, możemy napisać we wzorze (a) wyrażenie s/+, — a,— 
— (s/ + 1  — s, —  ej), przyczem s, oznacza długość łuku, należącego do cię­
ciwy c,. Zatem:

/-I / - 1

Nazwijmy literą Lx pierwszą część prawej strony, a K t drugą. Okazuje 
się, że ciąg, złożony z K u Kt, K „ . . . ,  dąży do zera.

Dowód. Niechaj M  oznacza największą rzędną y z całego przedziału < o , 6>. 
Ponieważ jest liczbą dodatnią (bo J */> c,j, przeto:

»  n

0 < K , <  2 -  et) =  2nM\a -
i- i '-i

Gdy rozdrabniamy podział łuku AB tak, że wszystkie Ast a zatem i c,- dążą do zera,
n

to sumy^^ et dążą do s na podstawie definicji długości łuku, a więd całe wyrażenie

/-i
'w nawiasie dąży do zera. Ciąg K v  1T3, . . . ,  odpowiadający tym kolejnym podzia­
łom, jest stale zawarty między dwoma ciągami, dążącemi do zera, a więc dąży także 
do zera.

Wobec tego ciąg P ^ P t, P .....  dąży do tej samej granicy, co ciąg

Lj, L „  L 3,.. . ,  przyczem:

Z-l
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Uważajmy y za .funkcję zmiennej s. Możemy to czynić, ponieważ s jest 
funkcją monotoniczną i ciągłą zmiennej x, a więc odwrotnie x  jest jakąś 
funkcją (p(s) zmiennej s, a wobec tego y — f(x) =  f(<p[sj) =  F(s\ War­
tość ł(y/ +  y/+i), pośrednią między y, a. y/+ł, przyjmuje funkcja ta na 
jakiemś miejscu a,y pośredniem między s, a s/+I. A  więc:

¿ i = 2  л
/ - 1

Gdy wszystkie ds, dążą do zera, to ciąg takich sum L , d ą ż y  

do całki oznaczonej 2?ry(s) ds. Ponieważ do tej samej granicy dąży ciąg

sa
P ,, P2, Ps, . . . ,  przeto otrzymujemy następujący wzór na pole P  powierz­
chni obrotowej:

(109)

Wprowadźmy zamiast zmiennej s spowrotem zmienną x, to ds =  

=  \\ -f- y ' 2 (x) dx, a więc:

( H O )

Wzór ten można z łatwością dostosować także do parametrowego lub 
biegunowego przedstawienia danej linji.

Przykład.
Obliczyć powierzchnię elipsoidy obrotowej spłaszczonej, t. j. po­

wstałej przez obrót elipsy około osi małej (taką postać ma w przybliże­
niu powierzchnia ziemi).

Biorąc oś x  za. qś obrotu, należy przyjąć rów­
nanie elipsy obracającej się w postaci:

**  +  * !  =  i

Stąd otrzymujemy następujące równanie górnej 

połówki elipsy:

У —  — ®*

Stąd:

У —
ах

b\b* — x zFig. 38.



Obliczmy pole tej elipsoidy, żawarte między kolami, należąeemi do od­
ciętych Xj i x t.

Xg

P z = 2 n  J  i № '—
a2x*

b* (b2 — x *) dx

A ' .  __________________________  /5 ______________________

p  2 n a  /  I  a - x *  , 2 ? i a  /  I  / T  « *  —  ¿»*

P ’ ^  = - r  / p
*• -r

Oznaczając a* — 6 * =  e2, otrzymujemy:

r = 2- r f \ A6 2 -f- — a: 2 ete
_  2;r«e /* 1/5 

F <
+  ®* d®

Wartość tej całki znamy (str. 48, wzór (35)), a mianowicie:

' - ?p | fF ^ + £ M -+ F ^ )] f
*t

Dla całej elipsoidy należy obrać granice: xt —  — b, x2 — -{-b\ otrzymamy:

b +  V »  +  T
e* 2 « 1  °  fb2 - f i)

a stąd po łatwych rachunkach:

«  +  e\
a  —  e )

W podobny sposób otrzymamy dla elipsoidy obrotowej wydłużonej, t j. 
powstałej przez obrót koło osi wielkiej, wzór:

P  =  2nbiyb -\- — arcsin — j

Niechaj czytelnik okaże, że dla a — b dążącego do zera otrzymuje się 
z obydwu wzorów wzór na powierzchnię kuli (wystąpią tu wyrażenia 
nieoznaczone!).

Dla ćwiczenia poleca się czytelnikowi wykazać, że pole powierz­
chni obrotowej, zakreślonej przez obrót linji o równaniu :

9 yl — a;(3 —  x )2 — 0 od *  =  0 do x  =  3

koło osi rc-ów, ma wartość P ~ 3 n .  Prostemi wzorami wyrażają się także 
pola powierzchni obrotowych, zakreślonych przez obrót około osi odcię­
tych linji łańcuchowej, kardioidy, lemniskaty, przez obrót spiralnej A r ­
ch i m ed esa  około osi biegunowej.



§ 233. Moment statyczny laku
Weźmy pod uwagę zbiór (A), złożony z n dowolnych liczb:

i przyporządkujmy im wartości:

r3 l... r.
jakiejś zmiennej r.

Sumę:

™iri - f -m t rt +  ••• +  »».r .

nazywamy momentem pierwszego stopnia zbioru (A), sumę:

Wjrf 4  w,r? 4  .. . +  mnr* 

momentem drugiego stopnia, a ogólnie:

mxr* 4  mt r*2 4  ... 4  m„r\

momentem k-tego stopnia zbioru {A).
Momenty mają bardzo rozległe zastosowania w rozmaityeh naukach, 

np. w statystyce a szczególnie w mechanice, skąd się nawet nazwa wy­
wodzi (momentům jest skróceniem słowa movimentum, co oznacza czyn­
nik, wpływąją,cy na ruch). W  mechanice używa się tylko momentów i-go 
i 2 -go stopnia. I tak, jeżeli liczby m „ m2, ... m„ oznaczają masy punktów 
materjalnych a r1, r t , . . , r a ich odległości od jakiejś osi (linji prostej) 
z uwzględnieniem znaków, to moment pierwszego stopnia nazywamy mo­
mentem statycznym tego zbioru punktów materjalnych ze względu na tę 
oś, a moment drugiego stopnia momentem bezwładności tego zbioru punktów 
ze względu na tę oś. W  podobny sposób określamy moment statyczny 
i moment bezwładności ze względu na punkt i ze względu na płaszczyznę, 
obierając za r , , r2, . . .  r„ odległości punktów materjalnych od stale obra­
nego punktu lub od stale obranej płaszczyzny.

Definicje te rozszerzymy na przypadki ogólniejsze, a mianowicie, 
gdy masy są rozmieszczone w sposób ciągły linjowo, powierzchniowo lub 
objętościowo.

Zajmiemy się najpierw masami, rozmieszczonemi linjowo, wzdłuż 
jakichś łuków. Rozmieszczenie takie jest w przybliżeniu zrealizowane 
w drutach, w nitkach, w linach. Weźmy pod uwagę łuk linji płaskiej 
o równaniu y — f(x ) lub w przedstawieniu parametrowem x  =  <p(s), 
y =  ip(s), przyczem dla dalszych rozważań najdogodniej jest obraó za 
parametr długość łuku s, liczoną od jakiegoś obranego punktu tej linji. 
Weźmy pod uwagę dla zmiennej x  przedział 6 >  lub odpowiadający 
mu przedział <C.sa, dla zmiennej s.



157

Niechaj funkcja ę(s) oznacza gęstość linjową masy tego tuku. Za­
łóżmy, że q (s ) jest funkcją ciągłą. Gęstość linjową w każdym punkcie 
określa się jako granicę, do jakiej dąży 
stosunek masy łuku ds, zawierającego 
ten punkt, do długości tego łuku, gdy ds 
dąży do zera. Najpospolitszym w prak­
tyce jest przypadek, gdy masa jest roz­
mieszczona jednorodnie, t. j  gdy gęstość Q 
jest liczbą stałą dla każdego punktu.

Podzielmy dany łuk AB  na dowolną 
ilość części o długościach d«i, ds,,...ds„.
Masa łuku o długości ds, ma wartość m, =  p((X,)ds„ gdzie ę(a,) oznacza gę­
stość w jakimś pośrednim, odpowiednio dobranym punkcie tej cząstki łuku.

Utraga. Tę średnią wartość gęstości można otrzymać przy pomocy całki:

s/+l

Masę tę mnożymy przez odległość y dowolnego punktu luku ds,- od 
osi odciętych. Możemy obrać ten punkt łuku, który należy do wartości a„ 
a więc brać zawsze y{ot). Otrzymamy zatem ę(o,)y(o,)ńs, Tworzymy sumę 
tych elementów:

n
S, =  J£Va,)y(ff/)dł,

i-t

i budujemy ciąg St , St . Sa, ... takich sum, dzieląc łuk AB  w rozmaite 
sposoby na części ale tak, aby największe luki składowe dążyły do zera. 
O ile istnieje granica ciągu tych sum, niezależna od sposobu podziału 

łuku, to nazywamy ją momentem statycznym łuku AB  względem osi *-ów. 
Ta granica jest równa całce oznaczonej:

(Ul)

Wzór ten na moment statyczny łuku upraszcza się, gdy gęstość jest stała, 
wtedy bowiem można wyjąć ę przed całkę i otrzymujemy:

( U l a )
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Dla p =  1  otrzymuje się wzór:
[

( 112)

Podobnie na moment statyczny luku względem osi y-ów otrzymuje się 
(przy g —  1 ) wzór:

( 1 1 2 a)

\

Wprowadzając za s pierwotną zmienną x, otrzymujemy;

b b

-j- y '! dx, My= J 'x \ \  +  y'* dx

Dla spótrzędnych biegunowych wzory te przyjmują (na podstawie wzoru (89) 
oa 3 tr. 136) postać:

v, v,
(114) — j ' r  sin <p \r* r ' 1  dq>, My — J ir cos <jp ]/rl -\~r,:>d(p

V, f,

O ile ę 1 , to należy wprowadzić pod całkę jeszcze czynnik q.
Przykład.
Obliczyć moment statyczny pręta z materjału o gęstości stałej p, 

wygiętego w półkole o promieniu c, względem średnicy tego półkola.
Obieramy prostą, na której leży ta średnica, za oś aj-ów. Najdo­

godniej jest tu użyć biegunowej formy równania koła, a mianowicie 
r — c. Z pierwszego z wzorów (114) otrzymujemy:

A1 71 n
K  =  o j  o sio =  * ■ / « »  * * *  =  -  W  « 0 .  *| =

o 0 0
=  p(c* — (—  c*)) —  2pc2

Niechaj czytelnik stwierdzi, że moment tego półkola ze względu na oś 
■y-ów ma wartość 0 , co zresztą wynika także odrazu z tego, że masy są 
rozmieszczone symetrycznie względem tej osi (a więc całka od 0  do ^ 
równa się przeciwnej wartości całki od § do n).

Poleca się czytelnikowi dla ćwiczenia okazać, ae moment statyczny
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linji łańcuchowej o równaniu y — ^ (e" -(- e" ), dla stałej-gęstości q =  1 , 
względem osi odciętych, wyraża się wzorem:

M, =  i  (|«= +  ? « — 2' ) |“
*1

Pozostawiamy czytelnikowi stwierdzenie, że dla krzywej przestrzennej 
moment statyczny względem osi np. *-ów wyraża się wzorem:

**

ił/, =  y  p Ky5 -j-~ai di
sa

i analogicznie dla innych osi.
W podobny sposób można określić moment statyczny łuku waglę- 

dem punktu i względem płaszczyzny Tak np. moment luka względem 
początku układu wyraża się wzorem:

M , = j  eK *1+  *• +  * *
s„

a względem płaszczyzny X Y  wzorem:

§ 234. Moment statyczny powierzchni płaskiej

Weźmy pod uwagę jakąś powierzchnię płaską, obłożoną masą po­
wierzchniową, t. j. posiadającą w każdym punkcie jakąś gęstość powierz­
chniową q(x , y). Takie rozmieszczenie masy mamy zrealizowane w przy­
bliżeniu w blachach płaskich a ściśle w ładun­
kach (czyli masach) elektrycznych. Zajmiemy 
się tu najprostszym a najważniejszym w prak­
tyce przypadkiem, gdy masa jest rozmieszczona 
jednorodnie, t. j. gdy gęstość q jest liczbą stałą 
Określimy uiypierw moment statyczny prosto­
kąta o podstawie a a wysokości w względem 
jego podstawy (fig. 40). Obierzmy za oś odcię­
tych prostą, na której leży podstawa prostokąta.
Podzielmy prostokąt prostemi równoległemi do 
podstawy na szereg pasków. Masa paska o szerokości Ayt ma wartość 
Q' a-Ay , . Mnożymy ją przez odległość dowolnego punktu tego paska od 
osi odciętych, up. przez §t i tworzymy sumę tych iloczynów:
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M t =  ęaAy, • y, - f  ęaAy2 • &  - f  ... i>aAy»' Vn

Dzielimy następnie ten prostokąt w rozmaite inne sposoby na takie paski 
i tworzymy cały ciąg takich podziałów tak, aby szerokości wszystkich 
pasków dążyły do zera. Otrzymujemy w ten sposób ciąg sum:

M „ M t , M s, ...

Granicę ciągu tych sum nazywamy momentem statycznym prostokąta 
względem osi ao-ów. Ta granica istnieje j równa się:

(115) M
u

ęaydy =  %ęau>*

Jeżeli P  oznacza pole tego prostokąta, równe a • w, to wzór przyjmuje
postać:

(115a) M  — qP  • £

Moment statyczny prostokąta względem jego podstawy jest równy masie tego 
prostokąta, pomnożonej przez połowę wysokości.

Z tego wyniku skorzystamy przy wyzna­
czaniu momentu powierzchni płaskiej, ograni­
czonej dowolną linją. 1  tak weźmy pod uwagę 
powierzchnię, zamkniętą łukiem linji o równaniu 
y —  /(aj), rzędnemi w punktach końcowych tego 
łuku i osią odciętych. Załóżmy, że /(aj) >  0. 
Podzielmy to pole zapomocą prostych równoleg­
łych do osi y-6w na paski. Każdy taki pasek 
zastąpmy prostokątem o tej samej podstawie 
a o wysokości równej rzędnej y, należącej do 
dowolnego punktu jego podstawy (fig. 41). Mo­

ment statyczny każdego takiego prostokąta obliczamy przy pomocy 
wzoru (115), a więc np. dla prostokąta o podstawie Axt otrzymujemy: 
^pdaj/ • y]. Tworzymy sumę tych momentów;

m , =
/ - 1

Następnie tworzymy cały ciąg takieh podziałów danego pola na paski 
ale tak, aby szerokości tych pasków dążyły do zera i otrzymujemy odpo 
wiedni ciąg Mt , M t , Ms,

Granicę tego ciągu nazywamy momentem statycznym danej powierz­
chni względem osi odciętych. Wartością tej granicy jest całka oznaczona:
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(116)

Chcąc otrzymać moment tego samego pola względem osi rzędnych na­
leży masę ęAx,y, każdego prostokąta pomnożyć przez odległość dowol­
nego punktu tego prostokąta od osi y-ów, np. przez odciętą należącą 
do rzędnej y,. Otrzymamy w ten sposób ęAxix iyl . Tworzym y ciąg sum 

postaci:

J £ qAxi £19,

a granicę tego ciągu nazywamy momentem statycznym danej ‘powierzchni 
względem osi y-ów. Ta granica ma wartość:

(117)

Uwaga. Do tego wzoru można dojść takie bez rozważań granicznych, odejmu­
jąc od momentu prostokąta OFBD  moment prostokąta OEAC i moment pola CABD ,

\ r bobliczony zapomocą wzoru -g / x*dy. Wzór ten otrzymuje się z wzoru (116), zamienia­

l i
jąc z sobą role zmiennych x  i y. Trzeba następnie wprowadzić zmienną x  zamiast y 
kładąc dy =  y' dx i zastosować całkowanie »per partes“ . Momenty statyczne powierzchni 
płaskiej, ograniczonej z wszystkich stron dotoolnemi linjami, omówimy później, po wpro­
wadzeniu całek podwójnych.

Przykłady.
1 ) Obliczyć moment statyczny półkola o promieniu r , obłożonego 

masą o stałej gęstości q, względem jego średnicy. Obierzmy tę średnicę 
na osi x-6w (fig. 42). Z równania koła otrzy­
mujemy y2, —  r* —  a więc na podstawie 
wzoru (116) otrzymamy:

—r —r

.  = p ( r s —  =

2) Dla dodatniej połówki elipsy o równaniu — -}- |̂  =  1  a gę­

stości q =  1  otrzymujemy następujący moment statyczny względem
Raehtinak różniczkowy i całkowy. T. a.
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osi »-ów :
+fl +•

Mx — \ j b- t [ai ~ x t)dx =  ^ -%{aix ~ \ x i)  ̂ = | a 6 *
Dla połówki elipsy, należącej do odciętych dodatnich, otrzymujemy mo­
ment względem osi y-ów z wzoru (117):

o *

M , =  2 f af-j/a* —  x l dx — — ~  (a* —  aj2)ł/,| = t ~ (at)'l,=  $óa*J  CL Od |  Od
o 0

Do tego samego wyniku doszlibyśmy, używając wzoru:

M, =  h £ * 'd y

i wstawiając =  a* |l —

§ 235. Środek ciężkości czyli środek masy.
W bezpośrednim związku z momentami statycznemi jest inne pojęcie, 

bardzo ważne w fizyce i w technice, a mianowicie środek ciężkości czyli 
irodek masy.

Środkiem masy lub środkiem ciężkości układu dwóch punktów ma- 
terjalnych A, i As o masach m, i mt • nazywamy punkt, dzielący ten 
odcinek w stosunku odwrotnym do mas (punkt ten leży zatem bliżej 
masy większej). A więc A, S : SAt =  w s : mx (fig. 43).

Utwórzmy rzut odcinka A, A j na oś odciętych. Otrzymujemy:

a stąd:
(x — aj,): (a?j — x) — m% : wt, 

w, - f -  »«jaj,
x —

m, -f- w,

Jest to średnia arytmetyczna ważona liczb 
aj, i aj2 z wagami m, i mi .

Podobnie:

ml y1 -f- mt yt 
ml - f  mt

mi zl -}- mtzt 
mx -(- m,

Dobierzmy trzeci punkt A, o masie m3. Chcąc znaleźć środek ciężkości 
układu tych trzech punktów, umieszczamy w punkcie S masę ml -f- w, 
i znajdujemy według poprzednich wzorów środek ciężkości dwóch mas: 
jednej -f- mt, umieszczonej w S, a drugiej wi„ umieszczonej w A4.
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Dobierając kolejno coraz, więcej punktów materjalnycb o masach
m ,, m ,, . .. rn„ i o spólrzędnycb ( * , ,  y , , *,), (®2, yt , 2 t ) , . .. (a?., y„, zH), otrzy­
mujemy na spółrzędne środka ciężkości następujące wzory:

_  »V®, +  m>g» ~h • • • +  _  m\y\ +  m»y» +  • • : Hh m-y-
5 —  »w, -(- m , - f  • • • +  >». ’ »n, 4 - m , - f  . . .  4 - w .

__ mxzx +  mt zt +  ■■■-(- mnz„
. w, 4 - w, +  .. . - f  mi.

Są to średnie arytmetyczne ważone spólrzędnycb danych punktów, przy- 
czem wagami są masy.

Widzimy, że sumy, znajdujące się w licznikach, są momentami 
statycznemi systemu punktów materjalnych, a mianowniki całkowitą masą 
tego systemu. Uwaga ta prowadzi nas do rozszerzenia definicji środka 
ciężkości na masy, rozmieszczone w sposób ciągły

Zajmiemy się tu tylko masami, rozmieszczonemi na płaszczyźnie 
linjowo (t. j. wzdłuż łuków) lub powierzchniowo. Środkiem ciężkości ta­
kich mas nazywamy punkt o spółrzędnych:

(118)

przyczem M x, M, oznaczają momenty statyczne względem osi spółrzęd­
nych a M  całkowitą masę. Pisząc te wzory w postaci:

możemy określić środek ciężkości w następujący sposób: jest to punkt, 
w którym umieszczona całkowita masa M  miałaby taki sam moment sta­
tyczny względem osi spółrzędnych, jaki ma ta masa, rozmieszczona wzdłuż 
danego tuku lub danego pola.

Środek ciężkości masy, rozmieszczonej linjowo wzdłuż luku, ma 
zatem spółrzędne.

| = gyds

przyczem M oznacza całkowitą masę danego łuku Jeżeli gęstość ę jest 
stała, a całkowita długość łuku wynosi 5, to:

(1 1 9 )

11*
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Środek masy, rozmieszczonej powierzchniowo, jednorodnie, na powierz­
chni płaskiej o polu f , zamkniętej lukiem linji o równaniu y =  f(x ) od 
x  =  a do x  =  b, rzędnemi w punktach końcowych i osią odciętych, <ma 

spółrzędne:

(120)

Środek ciężkości, uważany za punkt, w którym jest skupiona masa 
ma ze względu na każdą prostą (a więc nie tylko ze względu na osie 
spółrzędnych) ten sam moment statyczny, co masa M\ rozmieszczona do­
wolnie linjowo lub powierzchniowo.

Okażemy to tylko dla masy, rozmieszczonej linjowo. (Dla mas, roz­
mieszczonych powierzchniowo, trzebaby najpierw określić moment pola, 
zamkniętego dowolną linją, względem dowolnej osi a do tego nadają się 
lepiej całki podwójne).

Niechaj punkt C (6 g. 44) będzie środkiem ciężkości łuku AB  o cał­
kowitej masie M. Jeżeli (£, 17) są spółrzędnemi tego punktu, to

M . £ =  M  M ‘ T} =  M,

Obliczmy moment punktu materjalnego C 
o masie M  względem dowolnej prostej l, 
o równaniu (w postaci normalnej):

X  cos a - f-F s in a  —  p =  0

a z drugiej strony moment całego łuku AB  
względem tej prostej.

Odległość punktu C od prostej l wyraża się wzorem: 

d =  £cos a -j- ?jsin a — p

a więc moment masy M, umieszczonej w tym punkcie, względem pro­
stej l ma wartość:

M/(C) —  (£ cos a -f-ł^s ina  — p) • M  =  cos a -f- Mr\ sin a —  Mp

czyli:

Mf( O  = J  QX ds • cos ą -f- J'Q y ds • sin a —  pM
‘a >a

Natomiast moment łuku AB  względem osi l  ma wartość:



przyczem $ oznacza odległość punktu bieżącego (x, y) tego łuku od osi l. 
Z wzoru na odległość punktu od prostej otrzymujemy:

g =  «c o s  a +  y sin a — p
a więc:

h »*

M^AB) —  f<Q(x  cos a -|- y sin a — p)ds — J 'ę x d s  • cos a -f*

•a sa
‘b ' »

-f- J 'Q y ds • sin a —  p J 'ę d s
’« •«

•b

Ponieważ J 'ę d s  =  M , przeto widzimy, że ten moment jest równy mo-

sa
mentowi Mt(C) masy M, umieszczonej w środku ciężkości, c. b. d. o.

Moment statyczny ze względu na oś, przechodzącą przez środek cięż­
kości, ma wartość zero. Tak np. jeżeli środek ciężkości leży na osi ®-ów, 
to r) —  0, a więc z wzoru (118) wynika, że Mx =  0. Każdą zaś inną 
prostą (oś) możemy sprowadzić przez przesunięcie i obrót do nakrycia 
z osią a?-ów.

Przykłady.
1) Wyznaczyć spdłrzędne środka ciężkości łuku, tworzącego pół­

kole o promieniu c, jeżeli masa jest rozmieszczona jednorodnie, t. j. gę-* 
stość ę jest liczbą stałą

Obliczyliśmy moment względem osi odciętych (str. 158):

M x =  2ęc*

Moment względem osi rzędnych ma, jak łatwo stwierdzić, wartość:

My =  0

co zresztą wynika odrazu z symetrycznego rozmieszczenia mas względem 
osi rzędnych. Całkowita masa półkola wynosi cn • ę, a więc:

? = ±  =  o,
ęcn ęcn n

Zatem środek C ma spółrzędne:

141
2 ) Środek ciężkości masy, rozmieszczonej jednorodnie na polu pół­

kola, obliczymy przy pomocy momentów (por. str. 161):
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a mianowicie otrzymujemy:

| = 0 ,  77 =  —  =  4 —
* ' £ Ć*nQ 3 U

A więc: Widzimy stąd, że środek ciężkości łuku leży w innym

punkcie aniżeli środek ciężkości pola, ograniczonego tym tukiem i cię­
ciwą, łączącą jego końce.

3) Obliczyć spółrzędne środka ciężkości pola, ogra­
niczonego dodatnią gałęzią paraboli o równaniu y* =  2 px  
(fig. 45), osią odciętych i rzędną w punkcie x  =  a. Gę­
stość ę weźmy równą 1. Nazwijmy daną rzędną i, a więc

a a  a

MX= $ J  yidx =  \ j  2pxdx  = ^ r |  =  hPa*
0 0 0

a a  a  ■ r ■ ■  a

My —J x y d x = j x \ 2 p x d x  — \2p j ' x 3!'dx =  j =  § ^2pxxx

Pole tego odcinka ma wartość:

f — J y d x —j  \Ypx 'i =  ¡y—— | =

Wobec tego:
ę =2 la * : %l a  =  %a 
V — vPn%:\la =

Ale '¿pa —  /*, więc y  =  a stąd r, =  $ 1.
Zatem: C(%a, $/).

§ 236. Reguły Guldina.
Środek ciężkości łuku i pola mają bardzo interesujące zastosowanie 

przy obliczaniu powierzchni i objętości brył obrotowych. Związek ten 
wy kryjemy, zestawiając wzory (109) i (107) na pole powierzchni obro­
towej i objętość bryły obrotowej:

** bP =  2nJ"y  ds, V =  nj y*dx

z wzorami (119) i (120) na rzędną środka ciężkości łuku i środka cięż­
kości pola, a mianowicie z wzorami:

* *

v==h f y' dx
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m

Ponieważ J 'yd s =  g -S , przeto:

»«

(121) P  =  2 ng • S

W zór ten, zwany regułą G u l d i na na obliczanie pola powierzchni obro­
towej, wypowiada się w następującej postaci: pole powierzchni obrotowej, 
zakreślonej przez obrót luku o długości S, równa się długości drogi, zakre­
ślonej przez środek ciężkości tego luku około osi obrotu, pomnożonej przez 
długość obracającego się luku. Istotnie g jest odległością środka ciężkości 
od osi obrotu a 2 nr\ obwodem koła, zakreślonego przez środek ciężkości 
około osi obrotu.

Podobnie wnioskujemy z drugiej pary wypisanych wzorów, że

a więc:

( 122)

j "* y*dx =  2 g - f

V —  2 n g •f

W zór ten, zwany regułą G u ld in a  na obliczanie objętości bryły obroto- 
wej, wypowiada się w następujący sposób: objętość bryły obrotowej, za­
kreślonej przez obrót powierzchni płaskiej o polu /, równa się długości 
drogi, zakreślonej przez środek ciężkości tego pola około osi obrotu, pomno­
żonej przez pole obracającej się powierzchni. Przy pomocy reguł G u l ­
d i na  można obliczyć pole powierzchni obrotowej i objętość bryły obro­
towej, jeżeli znamy rzędną środka ciężkości, z drugiej zaś strony można 
wyznaczyć rzędną środka ciężkości, jeżeli znamy pole odpowiedniej po­
wierzchni obrotowej lub objętość odpowiedniej bryły obrotowej.

Tak np. wiemy, że przez obrót półkola około średnicy powstaje 
powierzchnia kuli, której pole znamy, a mianowicie P  — Ar*Ti.

Stosując zaś wzór ( 1 2 1 ), otrzymujemy P — 2ngS\ ponieważ zaś 
S — rn  jako długość półkola, przeto:

4r*Ti =  2  ng • rn
a stąd:

2 r

zgodnie z wynikiem, otrzymanym na str. 165.
Podobnie ze znanego wzoru na objętość kuli: V =  $ r3n  i z wzoru (122), 

w którym f = ^ r ln, wnioskujemy, że środek ciężkości pola półkola ma

rzędną n —  zgodnie z wynikiem, otrzymanym na str. 166
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Przykłady.
1 ) Obliczyć powierzchnię i objętość bryły obrotowej, powstającej przez 

obrót koła o promieniu r  (fig. 46) około osi, leżącej w płaszczyźnie tego koła 
w odległości R >  r  od środka tego koła; jest to obręcz kołowa czyli torus.

Ponieważ długością obracającego się łuku jest 
obwód koła o promieniu r, a środkiem ciężkości 
tego łuku jest oczywiście środek tego koła, przeto 
S = 2 r n ,  rj =  R, a więc pole obręczy wynosi:

P —  2 R n  • 2r7i =  4 R rn *

Ponieważ pole koła obracającego się wynosi r*n, 
a rj =  R, przeto z wzoru ( 1 2 2 ) otrzymujemy:

V  =  2 R n  • r%n  =  2R r*n 2 =  ^ r P

2) Obliczyć ciężar wieńca koła rozpędowego, jeżeli średni promień 
wieńca wynosi 3 m, przekrój wieńca jest kwadratem o boku 0-26 m, 
gęstość zaś materjału wynosi q =  7.

Z wzoru (122) otrzymujemy (wyrażając objętość w metrach sze­
ściennych):

V —  2n • 3 • 025a »1 -178

Ponieważ ciężar 1 dm8 wynosi 7 kg, przeto całkowity ciężar wynosi:

<? =  V .  7000 kg x  8247 kg

Uwaga. W  architekturze zachodzi często potrzeba wyznaczenia powierzchni lub 
objętości kopuły, która jest bryłą obrotową, powstającą przez obrót pola, ograniczo­
nego z jednej strony linją, nieraz bardzo skomplikowaną. Do tych obliczeń używa się 
reguły G u l d i na ;  położenie środka ciężkości wyznacza się albo empirycznie albo też 
jakąś przybliżoną.metodą rachunkową albo rysunkową (chodzi tu o przybliżoną war­
tość odpowiedniej całki).

>'• ' t

§ 237. Moment bezwładności łuku.
Już w § 233 określiliśmy moment bezwładności systemu punktów 

materjalnych ze względu na oś. Rozszerzymy obecnie tę definicję na 
masy, rozmieszczone w sposób ciągły. Ograniczmy się do rozważania mas 
o stałej gęstości q. W eźm y najpierw pod uwagę masę, rozmieszczoną 

linjowo, t. j. wzdłuż jakiegoś łuku A B { fig. 47). Uważajmy spółrzędne xf y 
punktów tej linji za funkcje długości łuku s; niechaj odciętej x = a  odpo­
wiada długość łuku sa (liczona od jakiegoś punktu T, stale obranego na 

linji l), a odciętej x  —  b długość łuku sb. Podzielmy łulc AB  na dowolną 
liczbę części, np. na n części: ds,,¿ts2, . . . Na każdym z tych łuków 
częściowych obierzmy dowolny punkt pośredni, np. na łuku ds, =  s/+l— s,-



punkt a,, a więc s ,^  a ,^  s,+ Rzędna, należąca do tego punktu, ma war­
tość y(<J,). Pomnóżmy masę pds, każdego łuku częściowego przez kwadrat 
odległości dowolnego punktu tego łuku od y  
osi odciętych, a więc przez yi {ai) i utwórzmy 
sumę:

a

B, =  J £ ę y t (o,)Asl

Wykonujemy cały ciąg takich podziałów tak, 
aby wszystkie As, dążyły do zera- Otrzymamy 0 
odpowiedni ciąg sum:

Bj, B „  Bt, . . . Bp. . .

Granicę tego ciągu, gdy p  —> oo, nazywamy momentem bezwładności ma-

terjalnego łuku AB względem osi odciętych. Wartością tej granicy jest,, 
jak wiadomo, całka oznaczona:

(123)

Określając zupełnie podobnie moment bezwładności By względem osi rzęd­
nych, otrzymujemy:

Fig. 47.

(124)

Sumę tych dwóch momentów, t. j.

O -O

Bx -\- By= J ę ( x t y2) ds =  J ę r 2 ds

gdzie r  oznacza odległość bieżącego punktu linji l od początku układu, 
nazywamy momentem bezwładności danego łuku względem początku układu 
i oznaczamy ją  symbolem:

(125)

Ten moment B0 można też określić bezpośrednio, bez powoływania się 
na momenty Bx i By, zapomocą ciągu sum:

J £ V * (a , )4 s ,
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Moment bezwładności względem dowolnej osi można wyrazić zapomocą 
momentu bezwładności względem osi równoległej do niej i przechodzącej

przez środek ciężkości. Tak np. moment bez­
władności względem osi OX, przechodzącej 
przez środek ciężkości C (fig. 48), ma wartość:

Qy°-ds

Fig. 48.
Moment bezwładności względem osi 0'X\  
równoległej do OX  w odstępie t], ma wartość:

sb *b sb *(.

Bx. — J Qy'l ds— J  ę(y-\-rtjds — j ę y d s  +  tfp S

*a * «  *«

czyli:

(a) Bx. =  Bx +  r]t -M

sb

Całka^ ę y d s  ma bowiem wartość zero, jako moment statyczny wzglę-

5a
dem osi, przechodzącej przez środek ciężkości.

A więc moment bezwładności wzglądem dowolnej osi jest równy mo­
mentowi bezwładności wzglądem osi równolegle do niej poprowadzonej przez 
środek ciężkości, powiększonemu o moment bezieładności całkowitej masy M , 
umieszczonej w środku ciężkości, względem danej osi. Prawo to odnosi się—  
jak można okazać — nietylko do momentów bezwładności łuków, lecz 
także do momentów bezwładności pól.

Przykłady.

1) Obliczyć moment bezwładności pręta prostolinjowego o gęstości 
linjowej q względem osi prostopadłej do niego, a przechodzącej przez 
jego koniec. Obierzmy prostą, na której leży ten pręt, za oś ®-ów. Łuk s 
liczony od początku pręta, jest w tym wypadku równy x. Zatem:

Bx == J ę x * d x  =  ~

Jeżeli oś przechodzi przez środek pręta, to z wzoru (a) "otrzymujemy, 
uważając poprzednio obliczony moment za Bx., wartość:

Bx= $ Q a '— ( ! )  •? »= =  Ą g o *
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2) Wyznaczyć moment bezwładności łuku koła o promieniu c od 
ą> =  <p, do (p —  (pt względem środka tego koła (fig. 49). Obierzmy gęstość 
0 = 1 . Ponieważ stale jest r == c, przeto z wzoru (125) otrzymujemy:

s - a P l

.cv,

=  cł i y 8 ~  <Pi) 
cr,

Moment bezwładności całego okręgu koła 
otrzymamy, biorąc «p od 0  do 2n, a więc:

(126) B 0 =  2c*n

Oznaczając obwód koła literą U, otrzymujemy: 

(I26a) B0 =  U - c*

3) Wyznaczyć momenty bezwładności całego okręgu koła ze względu 
na obie osie spółrzędnych (przy gęstości stałej ę =  1). Wskutek symetrji 
rozkładu masy widoczne jest, że Bx— By. Ponieważ zaś Bx-\-By— B0, 
przeto 2 BX= B 0 a więc Bx =  \ B0 i tak samo By. Opierając się na Wy­
niku poprzedniego przykładu, otrzymujemy zatem:

(127) Bx= B y =  c»n

§ 238. Momenty bezwładności płaskiej powierzchni względem o«ł.
Zajmiemy się tylko przypadkiem jednorodnego rozmieszczenia masy 

a więc założymy, że gęstość powierzchniowa ę jest stała. Wyznaczymy 
tn najpierw (podobnie jak przy badaniu momentów statycznych) moment 
bezwładności prostokąta o podstawie a a wysokości w względem jego 
podstawy (fig, 50). Podzielmy dany prostokąt na paski prostokątne zapo- 
mocą prostych równoległych do osi odciętych. Pasek o szerokości Ay, ma 
masę pady,.

Pomnóżmy masę każdego takiego paska 
przez kwadrat odległości dowolnego jego punktu 
od osi odciętych, np. przez y, i utwórzmy 
sumę tych iloczynów:

Bt — J fęa y jA y ,

Dzielimy następnie dany prostokąt w rozmaite inne sposoby na takie 
paski i tworzymy cały ciąg takich podziałów tak, by szerokości wszyst­
kich pasków dążyły do zera. Otrzymujemy w ten sposób ciąg sum:

• Bu Bt) BS,. . .B P,...
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Granicę ciągu takich sum, gdy p —> oo, nazywamy momentem bezwład- 
nośct danego prostokąta względem oń odciętych. Wartością tej granicy jest* 
jak wiadomo, całka oznaczona:

W H*

(128j Bx==f  Qay*dy = Q<̂t\ =i£fi£i
Masa tego prostokąta ma wartość M = Q 'P = Q > a w y a więc możemy 
napisać wzór (128) w postaci:

(128 a)

Jeżeli więc obierzemy punkt materjalny o masie równej masie M  całego

prostokąta w odległości d —  od osi odciętych, to ten punkt ma ten
V ^

sam moment względem tej osi, co cały prostokąt, obłożony równomiernie 
tą samą masą. Tę odległość d nazywamy ramieniem bezwładności badanej 
powierzchni względem tej osi.

Należy zwrócić uwagę na to, że d jest różne od £ a więc nie można 
umieszczać całkowitej masy w środku ciężkości.

Ogólnie dla każdego rozkładu masy M  liczbę d, określoną wzorem:

B =  Md*

gdzie B oznacza moment bezwładności tej masy, nazywamy ramieniem 
bezwładności tej masy względem danej osi lub danego punktu.

Przykład.
Przy pomocy wzoru (128) oblicza się momenty bezwładności prze­

krojów rozmaitych belek, zwanych trawersami. Znajomość tych momen-

Fig. 51 a. Fig. 61 b. Fig 61 c.

tów jest bardzo waźlja, od nich bowiem zależy wytrzymałość tych tra­
wersów na złamanie.

Obliczmy np. moment przekroju belki o przekroju, uwidocznionym 
na fig. 51 a, względem osi aź-ów. Załóżmy, że gęstość ę =  1 .

Stosując wzór (128), otrzymujemy:
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Niechaj czytelnik wykona podobne obliczenie dla przekrojów postaci, 
uwidocznionych na figurach 51 b i 51 c.

Opierając się na wzorze (128), wyprowadzimy wzory na momenty bez­
władności powierzchni, zamkniętej lukiem dowolnej linji, rzędnemi w punk­
tach końcowych tego luku i osią odciętych (fig. 52). Postępując tu po­
dobnie jak przy określaniu momentu statycznego (por. § 234), tworzymy 
momenty bezwładności elementarnych pro- *y  
stokątów: np. dla prostokąta o szerokości 
Ax, a wysokości y, otrzymujemy (z wzoru 
(128)):

ł e M y ?

Tworzymy sumę:

< 4 Fig. 52

Granicę ciągu takich sum Z?,, Bt, nazywamy momentem bezwład­
ności powierzchni AB F E  względem osi odciętych. Wartością tej granicy 
jest całka oznaczona:

(129)

Moment bezwładności tej powierzchni względem osi rzędnych określamy, 
mnożąc masę każdego z tych elementarnych prostokątów przez kwadrat 
odległości dowolnego punktu każdego takiego prostokąta od osi rzędnych.

Obierzmy dla każdego prostokąta odciętą Xt, należącą do rzędnej yt. 
Otrzymamy w ten sposób ęAxt • y, • xf. Tworzymy ciąg sura postaci:

^ ę £ jy ,ń x /

Granicę tego ciągu nazywamy momentem bezwładności danej powierzchni 
względem osi rzędnych. Wartością tej granicy jest całka:

130)

Przykłady.

1 ) Obliczyć moment bezwładności powierzchni trójkąta prostokątnego 
o podstawie a, a wysokości w względem podstawy (biorąc gęstość ę =  1 ). 
Obierzmy podstawę za oś z-ów, a jeden jej wierzchołek za początek układa
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(fig. 53). Równanie prostej OA, przechodzącej przez początek układu
i przez punkt 4(a, w), ma postać:

u>
y a

Z wzoru (129) otrzymujemy:

a o
_ . , u?9 a>4 I ,

o o

Stąd łatwo otrzymać moment bezwładności powierzchni dowolnego trójkąta 
względem podstawy, np. trójkąta O AC. Trzeba tylko dodać ^ a 'tv s. Ozna­
czając a -f- o' =  b, otrzymujemy dla O AC:

B. =  T*2 bw*

Moment bezwładności trójkąta O AB  względem osi y-6 w ma, w myśl 
wzoru (130), wartość:

B = /'*.."»^=” 1̂ = 
J  a a 4 |

was
~ C

Niechaj czytelnik obliczy momenty bezwładności trójkąta OAB względem 
osi, przechodzącej przez jego środek ciężkości: £(-§ o, ^ w) a równoległej 
do osi spółrzędnych (por. wzór (a) na str. 170).

2 ) Obliczyć momenty bezwładności elipsy względem obu osi głów ­
nych. Z równania elipsy i * ® 1  a*y2 =  a*ó! otrzymujemy dla dodatniej 
połówki:

y - r  V * x %

Moment bezwładności całej elipsy względem osi ®-ów równa się podwój­
nemu momentowi połówki elipsy, zatem:

•ho -f*o

B, — 2 . f y~  d x = \  dx
—a —o

Całkę tę obliczymy przy pomocy podstawienia ® =  osin<p Otrzymuiemy:

+ H L /1
bs 5  9  2

B, =  § — C0B d <p =  ^  C 0 8  *<pdq>

Przy pomocy wzoru redukcyjnego (str. 21, wzór (20)) otrzymujemy

/ , sin ffi cos „ /sin w cos w f  \
008' * * 9  =  — * 4 ------ +  !  ( — 2-  W +  ł j d < p )



175

a stąd:

Wobec tego:

Jasněna jest spowodu symetrji, że na moment elipsy względem osi y-6vr 
otrzymamy:

* fy — i  ba* n

Stąd dla koła o promieniu a:

Bx =  By — \a*n

§ 239. Moment bezwładności płaskiej powierzchni względem punktu.
Przy wyznaczaniu momentu bezwładności powierzchni względem 

punktu dogodpie jest odrazu użyć spółrzędnych biegunowych i badać pola 
wycinków, ograniczonych lukiem jakiejś linji i promieniami, łączącemi 
końce tego luku z punktem, który obieramy za początek układu. Ogra­
niczymy się do jednorodnego rozmieszcze­
nia masy, t. j .  do stałej gęstości powierz­
chniowej Q.

Rozpocznijmy od wycinka koła (fig. 64) 
o promieniu c, należącego do kąta:

a =  <pt — <p,

Zapomocą kół spółśrodkowych dzielimy 
ten wycinek na wycinki pierścieni kołowych i jeden wycinek koła przy O.

Masa takiego elementarnego wycinka pierścienia równa się jego 
polu, pomnożonemu przez gęstość, a to pole, np. ply oblicza się przy po­
mocy wzoru:

Pt —  ł  (¿ 4 - Ł ) -A r ,
czyli:

Pt— \{r ,a  -K r, +  4r,)a)4r, =  ( r , - f  \Ar,)aAr, — ?,adr,
Wartość:

»*/ =  »•/ 4 - \ A r ,=  ' i  4 - 1  (»•/+! —  rt) —  i ( r/4 - ri+]) 

jest średnią wartością z przedziału < > „  Pomnóżmy masę ę-p , przez
kwadrat odległości dowolnego jej punktu od punktu O, np. właśnie przez łf, 
to otrzymamy elementarny moment bezwładności:

HPtfJ — Ar,
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Tworzymy sumę takich wyrażeń dla całego wycinka koła, t. j.:

■

B , =  ̂ ę a f f A r ,
i - 1

Tworzymy cały ciąg rozmaitych takich podziałów wycinka w taki spo­
sób, by wszystkie dr, dążyły do zera i obliczamy odpowiednie sumy 

Granicę ciągu tych sum, gdy p ->  oo, nazywamy mo 
mentem bezwładności wycinka O AB  względem punktu O. Wartością tej 

granicy jest całka oznaczona:

(131)

e c

B0 =  ję a r * d r  =  ęa ^-| =

Całe koło otrzymamy, kładąc a =  2 n, a więc moment bezwładności po­
wierzchni całego koła względem jego środka ma wartość-

(132) B0 =  iQC*7l

Opierając się na wzorze (131), określimy moment bezwładności wycinka, 
ograniczonego łukiem dowolnej linji krzywej o równaniu r  —  r(qp) i pro­

mieniami w punktach końcowych tego łuku 
(fig. 55). Podzielmy ten wycinek w dowolny 
sposób na n części, wykreślając szereg pro­
mieni. Każdy wycinek aproksymujemy wy­
cinkiem koła, biorąc za promień koła np. 
promień początkowy każdego wycinka. Obli- 
czarny według wzoru (131) moment bezwład­

ności każdego takiego wycinka kołowego względem punktu 0, Np. dla 
wycinka o promieniu rt a o kącie dqp,- otrzymamy:

bt =  \r\A(pr  Q
Tworzymy sumę:

a następnie ciąg Bu Bt, B%, . . . takich sum, zagęszczając podział tak, aby 
wszystkie d<jp, dążyły do zera. Granicę tego ciągu nazywamy momentem 
bezwladnošá całego wycinka względem punktu O.

Wartością tej granicy jest całka:

nt O}

B0 =  J  \Qrl d<p =  J  r*d(p<i33:
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§  240. Moment bezwładności powierzchni obrotowej I b ry ły  obro­
towej względem osi obrotu.

Z wzoru (126) i (132) na moment bezwładności okręgu koła i pola 
koła korzysta się, aby określić moment bezwładności powierzchni i bryły 
obrotowej względem osi obrotu.

Dzielimy luk linji obracającej się (fig. 56) na części 4s,,4s„ 4*,,... 
i przyjmujemy masę każdego takiego łuku skupioną w jednym dowolnym 
jego punkcie. Niechaj gęstość linjowa łuku będzie p = l .  Przez obrót tego 
punktu materjalnego powstaje okrąg koła o promieniu y,, o masie 2 n y,A st. 
Moment bezwładności tego koła ma według 
wzoru (126) wartość:

b, =  2n$A8,

Sumując te momenty i tworząc ciąg takich 
sum, otrzymamy po przejściu do granicy:

(134)

Jest to wzór na moment bezwładności powierzchni obrotowej względem jej 
osi obrotu OX.

Celem określenia momentu bezwładności bryły obrotowej, bierzemy 
zamiast każdej płytki, leżącej między dwoma przekrojami proatopadłemi 
do osi obrotu, walec o promieniu równym rzędnej y, w dowolnym punk­
cie pośrednim odpowiedniego łuku As,. Każdy taki walec zastępujemy 
kołem o promieniu y„ obłożonem masą o gęstości Ax„ równej wysokości 
tego walca. Moment bezwładności powierzchni tego koła ma według 
wzoru (132) wartość:

b ,^ ^ y )n A x ,

Stosując tu proces sumowania i przejścia do granicy, otrzymujemy;

(135)

Przykłady

1 ) Obliczyć moment bezwładności walca kołowego o wysokości u> 
a o promieniu a względem jego osi, przyjmując stałą gęstość p = l .  Dla 
powierzchni walca otrzymujemy (fig. 57):

9

BM =  2 n  J a sdx =  2 n a 3 w — P  • a*

Rachunek rtónłctkew’'  l całkowy. T  2. 13
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<t dla objętości:

iV X
L ____ ir

w

Bx — \ n J a *  dx
na* w V •

U f

Fig. 57.

2) Obliczyć moment bezwładności wieńca 
koła rozpędowego względem jego osi.

Przekrój płaszczyzną, przechodzącą przez 
oś tego koła,, przedstawiono na fig. 58. Trzeba od momentu bezwładności 
walca o promieniu rx odjąć moment bezwładności walca wewnętrznego 

o promienia r,. Stosując tvzór, otrzymany w przykła­
dzie 1 , otrzymujemy:

t
Ht

Ponieważ objętość wieńca tego koła ma wartość:

r\nw — Ąnw
przeto:

Fig. 58. Bx = - - łV ( r l+ r %

h'; OL.': r. '  ć or.rr.sai bezwładacści objętości kuli o promieniu R 
względem jo, średnicy. Obierzmy tę średnicę za oś obrotu. Ponieważ 
x ‘ - f. ył —  prze o:

y- =  (&  —  z 2)* — R* -  2  R* x* +  x*

a więc:

B , =  ^nJ^iR* — 2i?*®2 -f- x*)dx — Ąn(R*x — §i?’ ®8 4- $ x 6) | 

a stąd:

§ 241. Praca siły, działającej w kierunku drogi.
Jeżeli wzdłuż drogi o długości S działa stała siła P  w kierunku 

tej drogi, to pracą tej siły wzdłuż tej drogi nazywamy iloczyn:

L - P - S

Jeżeli jednak siła P, działająca w kierunku drogi, jest zmienną, t. j. zależy 
od tego, w którym punkcie drogi działa, a więc jest funkcją długości prze- 
bytej drogi s (łuku), to trzeba pracę inaczej zdefinjowaó Podzielmy drogę, 
—zdłuż której działa siła P(s),. na części ds,, ds„ ds3, .. .  As„. Każdą taką
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część drogi pomnóżmy przez silę, działającą w dowolnym jej punkcie, np. 
w punkcie początkowym; otrzymamy w ten sposób dla każdej części drogi 
pracę, którą wykonałaby siła, gdyby była stałą wzdłuż całej tej części. 

Utwórzmy sumę tych iloczynów:

Lj =  PO ^ds, +  P (s ,)d s, H-----yj- P(sK)As,

Wykonajmy następnie cały ciąg takich podziałów drogi ale tak, aby 
wszystkie Ast dążyły do zera. Utwórzmy odpowiadający tym podziałom 
ciąg sum: L u U , L t, . . . L p... Granicę tego ciągu nazywamy pracą siły 
(zmiennej), działającej w kierunku drogi, wzdłuż całej drogi S. Wartością 
tej granicy jest, jak wiadomo, całka oznaczona:

(136)

Ta całka podaje więc pracę, wykonaną przez siłę P(s), działającą w kie­
runku drogi, wzdłuż całej drogi o długości S.

Jeżeli siła nie działa w kierunku drogi, lecz je j kierunek tworzy 
ze stycznemi w rozmaitych punktach drogi rozmaite kąty, to tworzymy 
w każdym punkcie drogi rzut wektora, przedstawiającego siłę, działającą 
w tym punkcie, na kierunek stycznej. Niechaj P, oznacza wielkość 
tego rzutu siły P  na styczną, to pracę określamy przy pomocy sum postaci:

L, =  P ł(s,)4sł -j- P ^(sjjdsj -j- .. . -j- Pt{sn)As„

Na obliczenie tej pracy otrzymujemy wzór: 

(136a) .

gdzie P,(s) oznacza wielkość rzutu siły P  na styczną w każdym punkcie 
drogi. Powrócimy do tych rozważań w ustępie, poświęconym całkom 
krzywolinjowym (por. § 244).

Przykłady.
1 ) Wydłużamy sprężynę o długość S\ wiadomo, że przy każdem 

wydłużeniu o odcinek s działa siła sprężystości, proporcjonalna do tego 
wydłużenia, a zatem do pokonania jej trzeba użyć siły P = k ’ $, działa­
jącej w kierunku przeciwnym do siły sprężystości, a mianowicie w kie­
runku wydłużenia. Praca, wykonana przy całkowitem wydłużeniu 5, ma 
zatem wartość:

s

o
15*
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I

t. j. ma taką wartość, jak gdyby działała stała siła P  — równa po­

łowie siły kS, działającej w końcowym punkcie drogi.
2)' Obliczyć pracę, wykonaną przez tłok maszyDy cieplnej, posuwa­

jący się pod wpływem ciśnienia P  gazu. Ciśnienie to zmienia się w miarę 
rozprężania się gazu. Jeżeli pole przekroju tłoku wynosi F , droga prze­
byta przy jednym ruchu ma długość S a p oznacza ciśnienie gazu na 
jednostkę pola (prężność), to P — p - F  a zatem praca ma wartość:

s

L  J "p  • Fds

Wprowadźmy zamiast zmiennej s zmienną F ‘ 8, oznaczającą objętość v 
gazu, znajdującego się w danym momencie ruchu pod tłokiem, to:

v , dv 
• “ F ' d , =  F

Niechaj p, oznacza objętość początkową, t. j. dla s =  0, a vt końcową, 
t. j. dla s =  S. Otóż:

: J ’pdv

Tak np. przy izotermicznej zmianie objętości pod tłokiem związek między 
objętością o prężności wyraża się wzorem:

pv <
a zatem:

•»
L a s  J 1 dv =  c log —

Przy adiabatycznej zmianie objętości zachodzi między p a p  związek:

p . a* ** c
a więc:

8 ) Jaką pracę cfdda masa 1  grama, spadająca pod wpływem siły 
ciężkości ziemi z wysokości 60 km na powierzchnię ziemi, na wyso­
kość 0  km.

Przyjmijmy za jednostkę siły ciężar 1 grama (przy powierzchni 
z.omi). W  odległości s od środka ziemi działa na masę 1  grama siła P(s)
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odwrotnie proporcjonalna do kwadratu odległości od środka ziemi. Jeżeli R 
oznacza promień ziemi, to:

P ( s)  : 1 =  R '  : s»

a stąd:

A więc praca:
«

l  = / * ;  * = « ■ / . - ■  = ? ?  | - « •  ( —  

e-ł-ao « + « 0  « + « 0

4-60
1 \  -  6012

—  r  4-60
Ponieważ promień ziemi ma długość około R =  6370 km, przeto 
L =  — 59 kgm (albowiem za jednostkę masy obraliśmy 1 g =  0001 kg 
a za jednostkę długości 1  km =  1 0 0 0  ra).

I

‘



ROZDZIAŁ XX.

C ałk i z fu n k c y j  d w ó ch  i więcej zm ie n n ych .

Ustęp I.

§ 242. Całki krzywolinjowe.
W  poprzednich rozdziałach zajmowaliśmy się wyłącznie całkami 

z funkcyj jednej zmiennej: funkcja podcałkowa y =  f (x )  była dotąd 
zawsze funkcją jednej zmiennej x. Przystąpimy obecnie do badania całek 
z funkcyj dwóch zmiennych, a więc funkcja podcałkowa:

2  = 5  P{aj, y)

będzie funkcją dwóch zmiennych x,y.
Rozpoczniemy od przypadku najbliżej związanego z całkowaniem 

funkcyj jednej zmiennej, a mianowicie od przypadku, gdy zmienne a?, y 
nie są od siebie niezależne, lecz są ze sobą związane jakiemś równaniem;

(a) F(x, y) —  0

A  więc punkty o spółrzędnych (x,y), które będziemy brali pod uwagę, 
nie będą wypełniały całej płaszczyzny (X } Y ) ani też żadnych obszarów 
tej płaszczyzny, lecz będą przebiegały w ogólności jakieś linje. Równanie 
takiej linji (l) może być podane w formie uwikłanej, jak we wzorze (a), 
albo w formie parametrowej:

(b) x  — <p(t), y =  ip(t)

albo też w najprostszym przypadku w formie wyraźnej

(e) V =  /"(*)

Zacznijmy od tego ostatniego, najprostszego przypadku. Weźmy pod uwagę

łuk AB  linji o równaniu (c), przyczem punkt A należy do odciętej x  =  af 
a B do x = b .  Ponieważ y =  f (x ) jest jednoznaczną funkcją, przeto do każdej 
odciętej z tego przedziału należy tylko jedna rzędna. Utwórzmy całkę:

b
( d )  j  P {x ,y )d x

przyczem y =  f{x ).
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Tę całkę z funkcji P (x , y) dwóch zmiennych zamieniamy na całkę 
z funkcji jednej zmiennej:

b b
j  P (x , f (x j) dx — j '  U(x) dx
a  a

O funkcjach P ( x , y )  i f (x )  wystarczy uczynić założenia, że P(x,  y)  jest ciągłą 
funkcją dwóch zmiennych w jakimś obszarze, zawierającym luk AB. a f{x ) jest funkcją 
ciągłą w przedziale O ,  i>>. Wtedy bowiem funkcja złożona P ( x , f ( x ) )  =  U (x )  jest 
ciągłą w przedziale < a , b y , a więc jest całkowalna w tym przedziale. Można też 
dopuszczać rozmaite nieciągłości dla P (x ,  y) i f{x ), byleby tylko istniała całka uogól­
niona lub niewłaściwa z U{x).

Taką całkę (d) z funkcji dwóch zmiennych, w której te dwie zmienne 
są związane równaniem y =  f(x ), nazywamy całką krzyw olin jow ą 

z funkcji P{x,y), braną po łuku AB  i oznaczamy ją symbolem:

(137) J  P(x, y)dx

Aby ten symbol miał określone znaczenie, musi być podane ponadto

równanie linji, do której należy łuk AB.
Jak widzimy, definicja ta nie wprowadza jeszcze niczego nowego, 

albowiem ta całka krzywolinjową równa się zwykłej całce oznaczonej 
z funkcji złożonej P (x , f { x ) ) ‘.

b

(137 a) J P̂X' ̂  dX “  f  P̂X) dX
AB

Jeżeli zmienimy porządek granic a, b tej całki, to w symbolu całki krzy- 
wolinjowej zmienimy porządek odpowiednich liter A, B. Wiadomo, że 
przez zmianę porządku granic a, b całka zmieni znak, a więc:

a

f  P (x , y) dx — f  F(x, f{a,)) dx =  -
TA V

b
— f  P(x,f[co)) dz — — j Piz, y) Jx

J,!’)

c

o ć c 

Fig. '59.

Mówimy wtedy, że przebiegamy łuk AB  w kie- - 
runku przeciwnym. A  więc: przy zmianie kie­
runku przebiegania luku całka krzywolinjową 
zmienia znak.

Weźmy teraz pod uwagę taki łuk, w którym do jednej odciętej 

należeć może więcej rzędnych, jak np. łuk AB  na fig. 59.
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Używając formy wyraźnej, musimy użyć do analitycznego wyraże­
nia tego iuku trzech funkcyj:

y — (x ) w przedziale < a , c >

y =/ *(& ) „ <c, d >

y =  /*(») „ < 4  &>

Dla każdego z łuków CD, DB tworzymy osobno całkę krzywolinjową 
i obliczamy ją osobno w sposób podany we wzorze (137 a).

Tworzymy następnie sumę tych trzech całek krzywolinjewycb:

j  P (x, y ) d x + J  P(x, y)
A C  C D

dx

Tę sumę nazywamy całką krzywolinjową z funkcji P(x , y) po całym 

łuku AB i oznaczamy ją symbolem:

J P(«> y)dx

Ogólnie, jeżeli luk AB składa się z części AAX, At o równa­
niach y =  f 1[x), y =  f t (x ),... y — fn(*), które każda prostopadła do osi 
odciętych przecina tylko w jednym punkcie, to całką krzywolin jową 
z P (x ,y ) według zmiennej x , po całym łuku AB, nazywamy sumę całek 
krzywolinjoicych po wszystkich łukach składowych i oznaczamy ją sym­
bolem:

J  P{x,y )dx
A B

Symbol taki ma zatem następujące znaczenie:

J P ( x , y ) d x =  J P ( x ,  A ( » ) )dx - f  J P { x , f t (x))dx +  ...
if i a °t

b

• • • +  J P {x ,fn {x ))  dx
(138)

gdzie a, a,, at, ... a„_,, b są odciętemi punktów A, A,, At, ... A„_,, B.
Rozszerzyliśmy w ten sposób znaczenie symbolu (137), nie da się 

on bowiem w tym ogólnym przypadku wyrazić zapomocą jednej całki 
według zmiennej x, lecz jest sumą kilku takich całek. Wprawdzie rów­
nanie takiego łuku AB  można wyrazić w formie uwikłanej zapomocą 
jednego wzoru F (x ,y ) =  0  (np. przypadek, przedstawiony na fig. 59, od­
powiada równaniu (y —  w )’  — (x  — n) =  0 ), ale przy obliczaniu wartości 
tego symbolu trzeba go rozłożyć na odpowiednią ilość całek.
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Ta ogólniejsza definicja całki krzywolinjowej dopuszcza też całki, 
brane po linjach zamkniętych. Tak np. całce krzywolinjowej według zmien­
nej x z jakiejś funkcji P (x ,y ), branej po kole. K 
(fig. 60), dajemy następujące znaczenie:

JP{x,y )dx — j ' P{x, y) dx - f  J  P(x,y)dx
A B C D A  A B C  C D A

Jeżeli to koło ma równanie xl -f- y3 — a1 =  0 , to 

w pierwszej całce należy za y podstawić Ya3 — x 8 

a w drugiej — \al — x8. Otrzymamy w ten sposób:

—a +a

J^P(x, y) dx — J ‘P(x, Ya2 — x*) dx -\-J"P(x, — |̂ as — x*) dx
ABCDA +a

Obliczenie całki krzywolinjowej po linji zamkniętej sprowadza się więc 
w tym przypadku do obliczenia dwóch zwykłych całek oznaczonych.

Sposób pisania: j jest niedogodny, toteż zmieniamy go, oznaczając

A B C D A  ^

całą linję kołową jedną literą, np. K . i piszemy krótko: / P(x,y)dx.

Ogólnie, oznaczając jakąś linję zamkniętą literą /, oznaczamy całkę krzy* 
wolinjową, braną po tej całej linji, symbolem:

(139) f  p(x, y) dx
(6

W takim sposobie pisania tkwiłaby jednak dwuznaczność, gdybyśmy nie 
ustalili raz na zawsze kierunku, w którym obiegamy linję. Otóż ustalono, 
że symbol (139) oznacza, że przebiegamy linję l w takim kierunku, aby 
powierzchnia, zamknięta tą linją, pozostawała po lewej ręce przy tym 
obiegu, t. j. obieg ma być przeciwny do ruchu wskazówek na zegarze. 
Tak więc np. na kole na fig. 60 przebiegaliśmy kolejno punkty A,B, C, D, A, 
mając wnętrze koła po lewej ręce; wobec tego tę całkę krzy wolinjową

należało oznaczyć symbolem I P(x, y) dx. Gdybyśmy zaś przebiegali te
(k>

punkty w przeciwnym porządku: A, D, C,B, A, to odpowiednią całkę krzy- 

wolinjową należałoby oznaczyć symbolem:—  / P(x,y)dx- Wynika to stąd,

wo Y r
że każda z całek składowych zmieniłaby wtedy znak: np. zamiast /

wystąpiłaby całka J  =  — J ' ,

ĆBA

Xbc

ABC
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Obliczanie całki krzywolinjowej przy pomocy wzoru (138) jest 
zwykle dość niedogodne. Używając jednak zamiast wyraźnej formy równań 
linji, po której całkujemy, formy parametrowej, sprowadzamy zwykle 
obliczenie całki krzywolinjowej do jednej, zwykłej całki oznaczonej, wpro­
wadziwszy zamiast zmiennej x  zmienną t, służącą do parametrowego 
przedstawienia danej linji.

Wyjaśnimy to najpierw na przykładzie, a mianowicie na omówio­
nej poprzednio cąłce po kole. Użyjmy parametrowego przedstawienia 
koła K  o równaniu x * y 2 — a® =  0, a mianowicie:

f x =  a cos t, y == a sin t

Całki oznaczone, które służyły do obliczenia całki krzywolinjowej po kole, 
przyjmą po wprowadzeniu nowej zmiennej t postać:

/ P(x, |la* — x*)dx =  —  / P(a cos t, a sin ł) a sin t dt
-fa 1-0

I P(x, — Ya% — x*) dx =  — I  P(a cos t, a sin t) a sin t dt

(Ponieważ sin t ma w przedziale ( jz, 2 n) wartości ujemne, przeto w dru­
giej całce trzeba było podstawić a sin t za — |/a! — x l ).

Sumę tych dwu całek można przedstawić jedną całką od Q do 2 n, 
a więc:

2n
P [x , y)dx = — J '  P{a cosi, a sin i) a sin i di

Tak samo postępuje się w ogólnych przypadkach. To prowadzi nas do 
wypowiedzenia definicji całki krzywolinjowej w następującej postaci, 
bardzo dogodnej przy obliczaniu wartości takiej całki.

Jeżeli przy przebieganiu wartości parametru t od tx do t2 punkt o spół- 

rzfdnych x =  qp(t), y =  tp(t) opisuje tuk AB dowolnej linji, to całką krzy- 
wolinjową z dowolnej funkcji P(x, y) według zmiennej x, braną po tym 
tuku, jest całka oznaczona od i, do tt z funkcji P(cp(t), ip(t)) <p'(t) według 
zmiennej t:

(140) P(<p{t),ip(t)) (p\t) dt

Prawą stronę tego wzoru łatwo jest zapamiętać, powstaje ona bowiem 
przez wprowadzenie w całkę z P(x ,y )dx  zmiennej f, związanej z x  za- 
pomocą równania x =  cp(t). Wtedy dx należy zastąpić przez q>'(t)dt.
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Wszystkie poprzednie rozważania można zastosować także do przy­
padku, gdy uważamy y za zmienną niezależną, a x  =  g{y) za zmienną 
zależną. Jeżeli punkt A odpowiada rzędnej y — a, a punkt B rzędnej 

y —  /?, to całkę krzywolinjową po łuku AB  według zmiennej y z funkcji 
Q[x, y) określamy wzorem:

Q{x, y )dy t=  j  Q(g[y), y) dy
i

w razie, gdy każda prostopadła do osi y-6w przecina łuk AB  najwyżej 
w jednym punkcie. W  ogólnym przypadku używa się parametrowego 

przedstawienia łuku AB, a ogólna całka krzywolinjowa według zmien­
nej y jest określona zapomocą wzoru:

( H I )

Jeżeli obydwie całki krzywoliojowe, określone zapomocą wzorów (140)

i (141), są brane po tym samym łuku AB, to także sumę ich można 
przedstawić zapomocą jednej całki oznaczonej. Sumę tę oznaczamy sym­

bolem : J { P d x  -f- Qdy) a zatem:

A B

(142)

W  tej ogólnej postaci występują całki krzy woli njowe najczęściej.
W  zupełnie podobny sposób określa się całki krzywolinjowe po lu­

kach linij w przestrzeni trójwymiarowej. I tak mamy podaną funkcję 
trzech zmiennych: P (x ,y ,z ), które są jednak ze sobą związane tak, że

punkt o spółrzędnych x ,y ,z  przebiega łuk AB  jakiejś linji o równaniach:

y =  f{x\ z =  g(x) 

lub #  formie parametrowej:

® =  V(t)t y =  tp(t), z =  x(t)

Niechaj punkt A odpowiada odciętej x  =  a lub wartości parametru i =  
a punkt B odciętej x  — b lub wartości t =  tB. Chodzi o obliczenie całki:

f  {P (x ,y )d x +  Q{x,y)dy) =  j* (P(q>(t),ip(t))q>‘(t) +

+  Q(<p(D,V(t))V '(t))dt

b b
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Tę całkę nazywamy całką krzywolinjową po łuku AB  i oznaczamy ją 

symbolem^^P(x,y,z)dx. Używając formy parametrowej, mamy:

'a

J  P{W, y, z) dx ==J  p(<p{t), rp{t\ %{t)) (p'(t) dt

Podobnie ma się rzecz dla całki z funkcji Q(x,y,z) według zmiennej y 
i z funkcji R (x,y ,z) według zmiennej z.

OgójDą postacią całki krzywolinjowej w przestrzeni trójwymiaro­
wej jest suma trzech takich całek, branych po tym samym łuku. a więc:

I  —J  (P (x , y, z) dx -f- Q{x. y. z) dy -(- R(x, y, z) dz)

Najdogoduiej jest zwykle obliczać tę całkę zapomocą jednej zwykłej całki 
oznaczonej, wynikającej z użycia parametrowego przedstawienia linji, po 
której całkujemy. Wtedy otrzymujemy:

'a

1 =  J(P(<p(t), ^(0, z(0) ęp'(0 -f tp(t), x(t)) V(t) -f
•a

+  R(<p(t), ip[t), x( t) )x ' ( ł )))dt

Wartość każdej całki krzy wolinjowej zależy tylko od linji, po której 
całkujemy, a nie zależy od jej analitycznego przedstawienia.

Przykłady.
1 ) Obliczyć całkę krzy wolinjową z funkcji x • y według zmiennej x  

po łuku paraboli y* =  2px o rzędnych nieujemnych od .4(0,0) do B(a,b) 
(por. fig. 61). Otrzymujemy

(I)

J  xyd x— J  x \2px dx — Y^T ^x ~

=  ^2 ^  a‘/j: § =  f  a 1  V fp « =  § a1* b

tej prostej jest y — ~ x, a więc:

C . /  b , 6  /  , J
I xy ax =  / x -  x dx =  -  I X1 dx =  —-  =  i  a 2 6  

J  J a  a j  3 a A-----

Widzimy stąd, że całka krzy wolinjową z tej samej funkcji, między temi 
samemi punktami koócowemi, ale brana po różnych lukach, może mieć 
różne warloici.
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Obliczmy jeszcze całkę z tej samej funkcji po drodze łamanej AEB. 
Równania całej tej linji nie można przedstawić w formie wyraźnej. 

Natomiast nie trudno uzyskujemy parametrowe przedstawienie tej linji 
łamanej.

Trzeba położyć:

X  =  t ,  y  — 0 dla O S i ś a
X  —  o, y  =  t  —  a  „  a  ^  a  b

Używając wzoru (140), otrzymujemy:

f x  y dx a
Zpk

*(<l y{t) • x '(ł) di :
a a+6

= t • 0  • 1  dt j  a(t — a) • 0  •dt — 0

Obliczmy jeszcze całkę z tej samej funkcji po konturze zamkniętym 
l — ACBEA. Ponieważ obiegając kontur w tym porządku, mamy pole, 
zamknięte tym konturem, po p r a w e j  ręce, przeto należy tę całkę ozna­
czyć symbolem:

(I I )  — f  xy dx
iT)

Wartość jej jest równa sumie całek po łuku ACB i po linji łamanej BE A, 
a zatem jest równa jta2& -f- 0  =  %a3b.

Całka (I) zarówno jak i całka ( I I )  przedstawiają, jak wiemy, mo­
ment statyczny względem osi rzędnych powierzchni, 
ograniczonej konturem ACBEA.

2) Obliczyć całki krzywolinjowe (fig. 62):

j  (3 y dx 4- 2 x dy) i ^ * (3  y dx -(- 2 *

ACB AOB

dy)

Pierwsza całka jest brana po półkolu o promieniu 1.
Używając parametrowego przedstawienia: ® = co s< , y =  sin t, otrzymu­
jemy dla całki po półkolu:

o

J (3 sin t (—  sin t) -f- 2 cos2 1) dt =  J '(— 3 sin21 -j- 2 cos2 1 ) dt =
ACB

/ 71 71
(3 — 3 cos2 1 — 2 cos2 1) dt =  3 J 'd t  — 5 cos*£ dt =  — 5 • f

W  całce po linji prostej AOB  jest stale y  —  0, a więc:

^J '($ydx  -f- 2xdy) (3y dx +  2xy'dx) (3 • 0 -f- 2 x  • 0) dx =  0
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a więc otrzymaliśmy inną wartość dla drogi ACB a inną dla drogi AOB, 
łączącej te same punkty końcowe A i fi.

Niechaj czytelnik stwierdzi w podobny sposób, že całka krzywo- 
linjowa:

( 2  xy dx -f- x % dy)

ma tę samą wartość po drodze .<4C.fi, co po drodze AOB , a mianowicie 
wartość 0. Można okazać, że ta całka przyjmuje tę samą wartość po 
każdej drodze, łączącej z sobą punkty A i fi.

3) Obliczyć wartość całki krzywolinjowej:

I  = *J  (z dx -j- x  dy -(- y dz)

przyczem AB  jest łukiem liuji śrubowej o równaniach (por. tom I, str. 378): 

x  =  a cos t, y =  a sin t, z —  at

dla łuku, odpowiadającego jednemu krokowi śruby, t. j. od t —  0  do 
t — 2n czyli od A(a, 0,0) do fi(o , 0, 2an).

Wyrażamy całkę I  zapomocą zwykłej całki oznaczonej, a mianowicie:

sin t) -f- a cos t • a cos ł -j- a sin t • a) dt =  

ł sin < - f  cos* t -f- sin t) dt —

Y
I  =  I [at-. (— a 8 Í

an a n a*

=  —  a * ^ * s*n i  ̂ 2 ° 8— ‘ ^  ^
o o  o

Po wykonaniu tych prostych całkować otrzymujemy;

I  =  3 a*n

§ 243. Całki krzywolinjowe w zagadnieniach geometrycznych.
Przy obliczaniu zapomocą całek oznaczonych pól, zamkniętych 

linjami, natrafiamy na pewne niedogodności, gdy do jednej odciętej należy 
więcej aniżeli jedna rzędna. Zobaczymy, że unikniemy tych niedogod­
ności, używając całek krzywolinjowycb.

I tak pole, zamknięte łukiem AB  linji o równaniu y =  f{x ) (dla 
y >  0 ), rzędnemi w punktach końcowych tego łuku i osią odciętych,
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h

- f ly  dx

przyczem a i b są odciętemi punktów końcowych danego luku.
Tę całkę możemy pojmować jako całkę krzywolinjową z funkcji

P{x, y) — y po łuku AB, albowiem:
h

J  y dx=* j ' y dx — P

Aby obliczyć przy pomocy całek oznaczonych pole, zamknięte dowolną, 
linją krzywą, np. linją ADBC czyli l na fig. 63, trzeba było rozdzielić 
tę linję na łuki, w których do jednej odciętej 
należy zawsze tylko jedna rzędna i obliczyć ^  
kilka całek. Tak np. do obliczenia pola, przed­
stawionego na fig. 63, trzeba użyć dwóch całek:

*  b

= fV i  {x)dx — f  yl(x)dx
Fig. 63.

Otóż te dwie całki można ująć w jedną całkę krzy wolinjową, a mianowicie:

P =  j  ydx — j  ydx =  f  ydx-\- j  y d x — f  y dx
ACB ACBDA

Obiegając punkty konturu tej powierzchni w porządku A, C, B, D, A, 
mamy po prawej ręce pole, ograniczone tym konturem, a więc, używając

symbolu J ' , należy mu dać znak — . A zatem:

(143)

Widzimy stąd, że pole, zamknięte dowolną linją ciągłą, można wyrazić 
zapomocą jednej całki krzywolinjowej.

Uważając x  za funkcję zmiennej y, możemy to samo pole wyrazić 
także zapomocą innej całki krzy wolinjowej, a mianowicie:

P  —  J $ d y  — J ' xdy =  f  xdy Ą- J ' xdy — j  xdy
oBe PAC DBC CAP DBC AD
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czyli:

(144)

Całka ma tu znak -j"> albowiem przebiegając punkty konturu w porządku 
D, B, C, A, Dy mamy pole, zamknięte tym konturem, po lewej ręce. 

Dodając stronami wzory (143) i (144), otrzymujemy:

a stąd;

(145) (X dy — y dx)

Ten wzór na pule wyprowadziliśmy już właściwie w poprzednim rozdziale, 
używając przedstawienia parametrowego, a mianowicie wzór (84) na str. 128 
jest równoważny z wzorem (145).

Podobnie można przedstawić zapomocą całki krzy wolinjowej wzór 
na objętość bryły obrotowej, zakreślonej obrotem powierzchni, np. ACBFE 
na fig. 63, około osi odciętych, a mianowicie:

6

Jeżeli chodzi o obliczenie objętości bryły, zakreślonej obrotem powierzchni, 
ograniczonej dowolną linją zamkniętą l, to postępując podobnie, jak dla 
pola, otrzymujemy wzór:

Także wzór na pole powierzchni obrotowej, zakreślonej obrotem łuku

dowolnej linji (np. ACB na fig. 63) około osi odciętych, można interpre­
tować jako całkę krzy wolinjową, a mianowicie całkę z funkcji Q(s, y) =a y
Otóż:

P =
>»

y
A C B
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§ 244. Zastosowanie całek krzywolinjowych w fizyce

I. Praca jako całka krzywolinjowa.
Bardzo ważnem zastosowaniem całek krzywolinjowych jest definicja 

i obliczanie pracy, wykonanej po dowolnej drodze przez dowolną siłę, 
działającą niekoniecznie w kierunku drogi i zmieniającą swą 'wielkość 
i kierunek zależnie od położenia punktu na drodze. W  poprzednim roz­
dziale rozważaliśmy tylko specjalny przypadek, a mianowicie, gdy siła 
była skierowana wzdłuż drogi. Obecnie zajmie­
my się przypadkiem ogólnym. I tak określmy 
najpierw pracę, wykonaną wzdłuż odcinka AB 
linji prostej przez siłę F  stałą, lecz tworzącą 
z tą prostą jakiś kąt a (fig. 64). Praca L  jest 
w tym wypadku równa iloczynowi z rzutu 
siły F  na tę prostą i z długości tego odcinka, 
a więc:
(a) L  =  F  cos a • AB /  V Fig. 64

¿ ¿ - i
z,

Uważajmy odcinek AB  za wektor i zastąpmy go składowemi w kierun­
kach trzech osi spółrzędnych. Te składowe mają wartości x%— x t, y2— yu 
2t — 2 j. Rozłóżmy także wektor F, reprezentujący siłę, na składowe 
w tych samych kierunkach i nazwijmy je: P, Q, U. Pracę L  możemy 
wyrazić także jako sumę trzech prac, wykonanych wzdłuż tych dróg 
składowych przez siły składowe, a więc:

(b) L == P -(®, — xt) +  Q • (y, — y,) +  R • (z, — a,)
Dowód. Jeżeli wektor F  tworzy z osiami kąty a,, fli , 7,, a odcinek A B  kąty 

<*2' 7t> to P = i ’ coB«1, ę =  Fc osĄ, R = F c o s y t , x t — x,  =  A B  cos a,,
— Vi — A B  cos Zj — sr, =  A B  cos 7S, a więc:

B{xt — aą)-t-ę(y,— zx) = F -  AB  ■ (cosOjeos»£-(-cosi,cos -j-cos 7 , cos 7 ,)

Wiadomo zaś z geometrji analitycznej, że wyrażenie, zawarte w nawiasie, przedstawia 
cos a , gdzie a jest kątem, zawartym między wektorami F  i AB. A więc istotnie prawe 
strony wzorów (a) i (b) mają te same wartości.

Chodzi nam teraz o definicję pracy, wykonanej wzdłuż dowolnego

łuku A 0  (fig. 65), przez siłę F  zmienną. Wartości składowych tej siły 
w kierunku osi spółrzędnych zmieniają się, zależnie od punktu, w któ­
rym działa siła, są więc funkcjami spółrzędnych punktu bieżącego na 
krzywej; oznaczymy je zatem wyrażeniami P(x,y ,z), Q (x,y,z), R(x,y,z).

Rozłóżmy łuk AD  na dowolną liczbę części, np. na n części a każdy 
łuk częściowy zastąpmy cięciwą, łączącą jego końce. Zmienną siłę, dzia­
łającą wzdłuż każdego łuku częściowego, zastąpmy stałą siłą, np. równąRachunek różniczkowy i całkowy. T. t  13
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sile, działającej w początkowym punkcie tego łuku. Praca wzdłuż cię­
ciwy AB  ma zatem według wzoru (b) wartość:

L, =  P (x ,, y , , 2 ,)(a3, —  ®,) +  Q{xu y „  z f )^  — yx) - f  , yt , * j)(* , — *ą)

Tworzymy sumę tych prac dla 
wszystkich cięciw, a mianowicie:

m

Si = y<, */)(®<+i — »/) 4-
/ - 1

4- ę(®<, Vi, «/)(y/+ — y<) 4- 
4- R (x „  y i> »/)(»łfi — */))

Dzielimy następnie łuk ^¿> w roz­
maite sposoby na części tak, aby 
długości wszystkich łuków częścio­

wych dążyły do zera; wtedy także różnice spółrzędnych dążą do zera. 
Otrzymamy w ten sposób ciąg takich sum:

Su St, Si,-- - Sp...

Granicę ciągu tych sum nazywamy pracą zmiennej siły wzdłui drogi AD.
Aby wyznaczyć tę granicę, weźmy najpierw pod uwagę sumę, zło­

żoną z dodajników P(xt) yn z,)(®,+i —  ®,). Jeżeli linja AD  ma równania 
y == f(x), z — g(x), to:

P(x„ y„ */) =  P(xf, f(x(), g(x,)) =  U(x,)

jako funkcja złożona zmiennej x,. Sumy postaci.

n m

J£P{x„ yt, ^ ) ( ® ,+ ,  —  x,) — ̂ £U{x,)(xl+1 — x,)
c- 1  Ć-J

dążą, jak wiemy, do całki r
b b

j '  u  (x) dx => J  P(x, f(x),g{x)) dx — J  P(x,y,z)dx
-  «  AD

Podobnie ma się rzecz z dwiema pozostałemi częściami sumy Sx, a więc 
ciąg {Sp} tych sum dąży do całki krzywolinjowej:

L —f  (A ® » y> *) dx +  Q{x, y, z) dy - f  R{x, y, z) dz)
fo

Tę całkę krzywolinjową możnaby uważać wprost za definicję pracy.

Rozumowanie, oparte na równaniach y — f{x), z — g{x), zakłada, że do każdej 
branej pod uwagę odciętej x  należy jeden punkt drogi AD  (i podobnie dla y i z
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przy funkcjach Q[x,y,z), R (x ,y ,t ) ) .  W  przypadku ogólnym należy przeprowadzić całe 

rozumowanie, opierając się na parametrowem przedstawieniu łuku AD. Wtedy, sto­
sując twierdzenie o wartości średniej, otrzymujemy: xi+\ — x i =  x(t/+i) — x{t,-) =  
=  * ' ( r/)(*/+l — łi) i dla tej średniej wartości r/ trzeba brać wartość funkcji P, a zatem 
w sumie S, wystąpią wtedy wyrażenia:

y(r,), * (r /) )  — t , )  =r V ( T —  t , )

Dalsze rozumowanie przeprowadza się tak, jak poprzednie

Przykład.

Obliczyć pracę, wykonaną wzdłuż luku A Ít przez silę, zwróceaą 
w każdym punkcie drogi do stałego punktu i zależną tylko od odległości r 
od tego stałego punktu. Obieramy ten stały punkt za początek układu O.

Wyraźmy równanie linji AB  w formie parametrowej, używając jako pa­
rametru odległości r; a więc:

X =  <p[r), y =  y (r), z —  x(r)

Składowe siły F (r )  w kierunku osi spół- 
rzędnycb mają wartości:

P(x, y, z) =  F (r )  coś a — F (r )

H{r)

i padobnie:

Q (x ,y ,z )=  K (r), R(<s, y,z) =  Af(r)

a więc zależą także tylko od r =  Wobec tego praca wzdłuż

drogi AB  ma wartość:

L  = J  (H (r ) • <p'(r) - f  K (r ) • xp\r) +  M {r) • %'(r))dr ■

AB
rB

=  f  T (r ) dr =  J T ( r )  dr

^ AB rA

Jeżeli U (r) jest funkcją pierwotną funkcji T{r), to:

L  —  U(rB) —  U (rA)

Widzimy, że w tym wypadku wartość pracy, wykonanej po drodze AB, 
zależy tylko od odległości punktów końcowych łuku od stałego punktu O,

a nie zależy od kształtu drogi AB.
Przypadek ten odgrywa w fizyce nadzwyczaj ważną rolę.

13
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Niechaj czytelnik wykona obliczenie pracy między punktami A{a, b) 
i B(x, y), leżącemi na płaszczyźnie (A T ), w przypadku, gdy siła działa

. m
według prawa Newtona ,  t. j. F =  —

/ m w» m m\
( Wynik: L — , - --- — , - ■■ = ------— I •
l J \x' +  y* \a* +  b' *• rAl

Ćwiczenie. Dla siły o składowych P = — y, Q = x , Z =  0 obliczyć 
pracę od 4(0, 0, 0) do 4(1, 1, 0) po prostej AB i po półkolu o średnicy AB. 
(Wynik L, =  0, L a =   ̂n, a więc prace po tych drogach są różne).

II. Zastosowanie całek krzywolinjowych do procesów termo­
dynamicznych.

W  termodynamice charakteryzuje się „stan“ ciała jednorodnego 
zapomocą jego objętości v i ciśnienia p , jakiemu jest poddane to ciało. 
Te zmienne v i p są ze sobą związane pewnem równaniem, np. dla gazów 
doskonałych: pv =  RT.

Jeżeli początkowemu stanowi ciała odpowiadają wartości vll pu t. j. 
ciało ma objętość ią i poddane jest ciśnieniu pu a następnie doprowa­
dzimy to ciało w jakikolwiek sposób do stanu (t>2, Ps)< to zmieni się w ogól­

ności ilość ciepła, zawartego w tern ciele, o Q 
kaloryj. Użyjmy do przedstawienia związku 
między zmiennemi v i p układu spółrzęd- 
nych (fig. 67). Punkt A odpowiada stanowi 

^  (vu P i) a punkt B  stanowi (t>2, p2). Od punktu 
^  J  do f i  można dojść rozmaitemi drogami. 

Tak np. łamana droga ACB  oznacza, że naj- 
Pig 0 7  pierw zmieniamy ciśnienie z pt na p2 przy

stałej objętości vt a potem zmieniamy obję­
tość do wartości w2. Jeżeli zmieniamy równocześnie v i p według wzoru 
pv — R T  przy stałej temperaturze T, to punkt A porusza się po łuku

ADB  hiperboli równobocznej (zmiana izotermiczna) a można się też po­
ruszać po rozmaitych innych drogach: AEB , AFB  i t. p. Bardzo ważną 
kwestją jest badanie, jak się zmienia przy takich procesach ilość ciepła, 
zawartego w ciele i jego euergja wewnętrzna. Otóż okazuje się w ter­
modynamice, że przyrost energji wewnętrznej u(v,p) ciała można wyra­
zić zapomocą całki krzywolinjowej.

Tak np. dla drogi ADB  otrzymujemy na ten przyrost energji wzór:

f  (C . (T , » )d T + ( l - p ]d v )

A D B



gdzie O, oznacza ciepło właściwe przy stałej objętości, a l ciepło utajone 
(por. tom I, str. 360). Dowodzi się, że ta całka ma taką samą wartość 
dla różnych dróg, łączących te same dwa punkty. Natomiast zmianę Q 
ilości ciepła można wyrazić zapomocą całki krzywolinjowej z wyrażenia

^  dv -f- ^  dp -f- pdv czyli du(v,p) p • dv, gdzie funkcja u{v,p) jest

energją wewnętrzną ciała. Otóż dla drogi np. ADB  otrzymujemy:

+ p d v )

Dla różnych dróg otrzymuje się naogół różne ilości ciepła.
Jeżeli natomiast podzielimy wyrażenie, znajdujące się pod zna­

kiem całki, przez temperaturę T, która jest funkcją zmiennych v i p

|np. dla gazów doskonałych tó otrzymamy całkę krzywo-

linjową:

- /
du(v, p) Ą- pdv 

T(v, p)

Otóż okazuje się, że wartość tej całki krzywolinjowej nie zależy od drogi 
całkowania, a zależy tylko od stanu początkowego 4 (0 ,, p ,) i końcowego 
B{v%,p%), Wyrażenie S nazywamy entropją ciała (por. tom I, str. 360). 
Badanie tych dwóch całek krzywolinjowych odgrywa zasadniczo w a ż D ą  

rolę w termodynamice.
Całki krzywolinjowe znajdują też zastosowania w innych działach 

fizyki, np. w hydrodynamice i w elektrodynamice.

III. Zastosowanie całek krzywolinjowych do obliczania mo­
mentów.

Wyznaczaliśmy momenty statyczne powierzchni, ograniczonych z jed ­
nej strony dowolnym łukiem, który proste równoległe do osi y-ów prze­
cinają tylko w jednym punkcie, a z innych stron rzędnemi w punktach 
końcowych łuku i osią odciętych. Otrzymaliśmy przytem zupełnie inne 
wzory na momenty statyczne względem osi odciętych a inne względem 
osi rzędnych. Używając całek krzywolinjowych, możemy wyrazić jednym 
wzorem moment powierzchni, zamkniętej dowolną linją a ponadto otrzy­
mamy zupełnie analogicznie wzory dla obu osi.

Obierzmy gęstość stałą: Q =  1 . Wtedy moment statyczny powierzchni, 
zamkniętej linją l (fig. 6 8 ), względem osi odciętych, ma wartość:
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jeżeli y =  y1(x ) oznacza równanie łufcu ACB a y — yt {x) luku ADB. 
Obydwie te całki możemy jednak uważać za całki krzywolinjowe, a mia­
nowicie:

Mx =  ł iJ 'y * dx — ^ j y *  dx =  \ J y %d x-\ -1J '  y2 dx

ACB

Stąd:

(146) M, — y* dx — — y*dx

Znak — pochodzi stąd, że obiegając linję l w porządku A, C, B, D, A, 
mamy powierzchnię, zamkniętą tą linją, po prawej ręce.

Moment statyczny tej samej powierzchni względem osi rzędnych 
ma wartość:

M, =  dy — |y®jj dy =
a  a

=  tJ ' 1rfdy — ł j ' X l dy — \J'X1 dy
DBC DAC DBCAD

a więc:

(147) My =  +  ± j x 'd y

Otrzymaliśmy więc dla obu momentów wzory, różniące się tylko znakiem 
i przemianą liter. Podobnie dla momentów bezwładności powierzchni, 
zamkniętej dowolną linją /, względem obu osi, otrzymujemy przy użyciu 
całek krzywolinjowych dwa wzory:

(148) Bx= - ^ J y ^  dx, B, =  ł j tx » dy

w których są tylko przemienione litery x, y a znaki zmienione.

§ 245. Zastosowanie całek krzywolinjowych w teorji funkcyj 
zmiennej zespolonej

Zbiór wszystkich liczb zespolonych przedstawiamy graficznie zapo- 
mocą punktów płaszczyzny, zwanej płaszczyzną liczbową (Gaussa ) .  
Każdej liczbie zespolonej:

2  =  X -(- iy

1 Zasadnicze wiadomości o zmiennej zespolonej są podane w rozdziale koń­
cowym.



przyporządkowujemy punkt o spółrzędnych x, y i odwrotnie każdemu 
punktowi tej płaszczyzny o spółrzędnych x, y przyporządkowujemy liczbę 
zespoloną z— x-\-iy. Weźmy pod uwagę jakiś obszar (D) tej płasz­
czyzny (fig. 69). Jeżeli każdej liczbie z =  x -f- iy z tego obszaru przy­
porządkujemy jakąś ljczbę zespoloną u —
—  to z nazywamy zmienną nieza­
leżną a u zmienną zależną, czyli funkcją 
tej zmiennej z i piszemy:

u =  f(z )

Nie można podać obrazu graficznego tej 
funkcji nawet przy użyciu trzech osi spół­
rzędnych, albowiem do przedstawienia war­
tości u — P  iQ  trzebaby użyć jeszcze dwóch osi (dwie są potrzebna 
dla z=x -\ -iy\  a więc mielibyśmy do czynienia z przestrzenią cztero- 
wymiarową, niewyobrażalną.

Natomiast można interpretować graficznie związek u =  f{z) między 
zmiennemi zespolonemi u, z w inny sposób, a mianowicie zapomocą od­

wzorowania płaszczyzny (X  Y ) na inną płaszczyznę ( P  Q) (por. tom I, 
§ 121, str. 364 i nast.).

Każdemu punktowi z z obszaru (D ), czyli każdej parze liczb rze­
czywistych x, y, które są spółrzędnemi punktu tego obszaru, odpowiada 
jakieś rzeczywiste P  i jakieś rzeczywiste Q. A  zatem P  i Q są funkcjami 
rzeczywistemi dwóch zmiennych rzeczywistych x, y. A  więc:

M =  f(z ) =  P (x , y) +  iQ (x, y)

Zajmiemy się tu zdefinjowaniem całki oznaczonej z funkcji f (z ) zmiennej 
zespolonej, branej po różnych drogach w granicach od z —  zA do z =  zB, 
odpowiadających punktom A i B obszaru (D ). Połączmy w tym celu

punkt A z B  dowolnym łukiem ACB, leżącym w obszarze (D ) i obierzmy 
na tym łuku dowolną liczbę punktów zA — zx, zt , 2 g, ...za, zk+x =  zB, o spół­
rzędnych xx, x%,... xa+l; yx,y f y * + i• Utwórzmy sumę:

fi n

— ̂ f { z k){zk+l— zk) =  J£(P(xk,yk) + iQ(xkyk))(xk+l+iyM — xk—iyk)
4-1 4-1

to znaczy sumę wyrażeń postaci:

P (xk, —  Xk) —  Q[xt , yk)(yk+i — yk) +

+  *[P{xk, yk)(yk+i — yk) +  Q(xk, yk){xk+i — ®*)]

Utwórzmy następnie ciąg Sx, St ,.. .S „ ,... takich sum, obierając przedziały 
częściowe zmiennych x  i y tak, aby wszystkie dążyły do zera. Granicę
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ciągu tycb sum nazywamy całką oznaczoną funkcji f(z) zmiennej zespo­

lonej od z — zA do z =  zB po drodze ACB. Ta granica składa się z dwóch 
całek krzywolinjowych, a mianowicie:

(149) J  f{z )d z— J  (P (x ,y ) dx — Q[x,y) dy) - f  iJ  (P {x ,y )dy+Q {x ,y )dx )

ACB ACB

Wartość takiej całki zależy w ogólności nietylko od granic całkowania 
zA,zg, lecz także od drogi, po której całkujemy. Szczególnie ważne są 
takie specjalne funkcje zmiennej zespolonej, których całki oznaczone nie 
zależą od drogi całkowania w pewnym obszarze.

U s t ę p  II.

RÓŻNICZKOWANIE I CAŁKOWANIE CAŁEK WEDŁUG PARAMETRU.

§ 246. Całki pojedyncze z funkcyj dwóch zmiennych niezależnych.
Rozważaliśmy dotychczas całki z funkcyj dwóch zmiennych x, y 

w przypadku, gdy te zmienne były od siebie zależne, co prowadziło do 
całek krzywolinjowych. Obecnie omówimy przypadek, gdy *  i y są zmien- 
nemi niezależnemi. Funkcję:

z  =  f{x, y)

można wtedy całkować według jednej zmiennej, uważając drugą za pa­
rametr.

Załóżmy, że funkcja f (x ,y )  jest ciągłą funkcją dwóch zmiennych 
w obszarze prostokątnym, t. j. dla x, zawartych w przedziale < o ,, « , )> , 
a y w przedziale < ó i , 6 gj>. Jeżeli ustalimy wartość y, to Rx,y ) będzie 
ciągłą funkcją jednej zmiennej x, a więc istnieje całka:

W  j  /(*> y) dx — g(y)
at

a wartość jej zależy od tego, jaką wartość obraliśmy za y. Uwidoczni­
liśmy to, kładąc tę całkę równą jakiejś funkcji g(y) zmiennej y. Jeżeli 
więc x  uważamy za zmienną całkowania, a y za. parametr, to ta całka 
jest fcnkeją parametru.

W  interpretacji geometrycznej obrazem funkcji f(x ,y ) jest płat 
jakiejś powierzchni nad prostokątem (fig. 70). Wartości tej funkcji, odpo­
wiadające stale obranemu y, mają jako obraz linję AB, otrzymaną przez 
przekrój tej powierzchni zapomocą płaszczyzny równoległej do płasz-
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ozyzny (X Z ) w odstępie y Wartość g{y) całki (a) jest równa polu prze­
kroju ABCD. Gdy zmieniamy y, to pole zmienia Bię według prawa g{y). 
Zajmiemy się własnościami tej 
całki. I tak udowodnimy przede- 
wszy8 tkiem, że całka (a) jest nagłą 
funkcją parametru y, gdy /'(aj, y) 
jest ciągła w prostokącie

Dowód. Tworzymy różnicę :

«1

i {y + H ) -9 [y )  — J  U \ x ,y + h )~  J(x,y))dx

Fig. 70.
przyczem wartości y i y -j- h są wzięte 
z przedziału Na mocy wzoru (60), str. 79, jest:

lf(y +  *) — ?(y)l

«i

; J  i a *. y + A )  — f ( .x ,y ) ldx

Ponieważ funkcja f ( x t y) jeBt ciągła w całym obszarze zamkniętym (w prostokącie), 
przeto jest w nim jednostajnie ciągła. Do każdej dodatniej liczby e można zatem dobrać 
takie 6, zależne tylko od e a niezależne od x,y, że dla wszystkich |A|<d jest:

I f ( x ,y  +  h) — f (x ,  y)| <  r
Wobec tego:

(b)
I

\g(y +  h )~ 9 (y )[<  I  edx =  e[at — o, )=  «,

Do każdego r, można więc dobrać takie ó, że dla wszystkich |h| <  ó spełnia się ta 
nierówność, a to dowodzi, że ff(y) jest ciągłą funkcją parametru y w przedziale <ó ,,ó t> .

Przykład. Scałkujmy według zmiennej aj od 1  do 2  funkcję 
f(x, y) — X’- Jest ona ciągła np. w prostokącie, określonym warunkami:

1 ^  a> < ; 2, - 2 ^ y S  +  2
Otóż:

/ xy dx —
x 2y+l — 1

y + 1| y  +  1
t

3
log x   ̂=  log 2

dla y  =j= —  1

y =  -  1

Moglibyśmy mieć wątpliwość, czy funkcja g(y), określona temi dwoma 
wzorami, jest ciągła dla y =  -— l. Otóż ta ciągłość wynika z dowiedzionego 
twierdzenia. Możemy to zresztą sprawdzić także bezpośrednio, obliczając 
przy pomocy reguły H o s p i t a l a :

#— -i *  +  1  r-*-i l
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A  więc funkcja g(y) dąży do log 2 przy y ->  — 1 i osiąga tę wartość 
dla y —  — 1 , a zatem jest ciągła w punkcie y —  —  1 .

Zbadajmy teraz;

gdy /'(aj, y) jest w danym prostokącie nieciągła lecz ograniczona i posiada 
skończoną liczbę linij nieciągłości, dających się zamknąć w obszar o do­
wolnie maiera polu, wzdłuż których posiada funkcja skończone skoki.

Wyjaśnimy ten przypadek poglądowo. Niechaj np. powierzchnia 
o równaniu z =  f (x ,y ) posiada jedną linję przerwy, jak na fig. 71.

Otóż funkcja:

(a) y (y ) *=J f ( x , y )  dx
a‘

przedstawia dla każdego y pole przekroju bryły, uwidocznionej na ry­
sunku, płaszczyzną równoległą do (Z K ), w odstępie y od tej płaszczyzny. 
.Na 6 gurze zacieniowano jedeD taki przekrój, należący do y =  yt. Jak-

kolwiek linja G FED , ograniczająca ten przekrój z jednej, strony, nie jest 
ciągła w punkcie E, to jednak jego pole ma skończoną, oznaczoną war­
tość, wyrażoną zapomocą całki uogólnionej (a).

Gdy zmieniamy y, to przechodzimy do coraz dalszych przekrojów. 
Zmiana wielkości pola odbywa się przytem w sposób ciągły, a więc g(y) 
jest ciągłą funkcją zmiennej y.

Jeżeli linja przerwy przebiega równolegle do płaszczyzny (Z X ), jak 
na fig. 72, to przekrój zmienia się w sposób ciągły tak długo, aż doj­
dziemy do linji przerwy. W  tern miejscu następuje skończony przyrost 
przekroju o AA 'B 'B t a więc skończony skok funkcji g{y).
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§ 247. Różniczkowanie całek właściwych według parametru.
Udowodnimy prawdziwość następującego twierdzenia o różniczko* 

w&lności funkcji g{y). Jeżeli funkcja f(x ,y ) jest ciągła w prostokącie, 
■określonym warunkami a, S  i  S  o „  b, <  y 6 , i posiada cząstkową po­
chodną fr [x, y) ciągłą w tym prostokącie, to całka (a) posiada pochodną 
według parametru y, a oblicza się tę pochodną, różniczkując według tego 
parametru funkcję podcałkową.

Twierdzimy więc, że przy tych założeniach zachodzi wzór:

(150)

Ten wzór na różniczkowanie całki według parametru nazywamy regułą 
L e i b n i z a .

Dowód. Chodzi nam o pochodną funkcji g(y), określonej wzorem (a) na str. 200. 
Coraz różnicowy ma wartość:

4(A) =_  g(y +  * ) ~  g(y) = J f{x,y +  h ) - f ( x , y )
dx

Chodzi o obliczenie granicy wyrażenia 4  (A), gdy
StOBując do funkcji podcałkowej twierdzenie o wartości średniej, otrzymujemy:

m =  A *  , y -j- &h) dx 

Przedstawiamy tę całkę w postaci:

fy{x- y) dx +  i ( f y(x, y +  dh) — fy(x, y)) dx

Z jednostajnej ciągłości cząstkowej pochodnej fy(x, y) wynika, że:

lfA*>y +  #h) — f A x , y )\ < e  dla | A j < d
a więc:

ř  i rA(h) -  ( 
J

fy{x, y) dx  <  f  edx  — i (o , — aj =  e,
«» «1

Do każdego a, można więc dobrać takie i ,  że dla |A|<<5 spełnia się ta nierówność.
To  zaś znaczy, że:

r '
lim 4(A) =  / fy(x, y)dx  

k-+t J

czyli:
«i

! f ( y ) = J  fy{x,y)dx  c. b. d. o.

«1
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Przykład. Nietrudno jest obliczyć wartość całki:
x

/ dx n
— -  przy a > 0

Stosując mianowicie podstawienie t —  , sprowadzamy ją do całki
1  .

i otrzymujemy: .
1 -H *

(A) / dx 1  x
~  Fo  arC 8  pa

Parametrem jest w tej całce a (trzeba więc we wzorze (150) zastąpić y 

literą a). Funkcja podcałkowa jest ciągłą funkcją dwóch zmien­

nych a?, a w każdym prostokącie o dodatnich a, a także jej cząstkowe 
pochodne wszystkich rzędów według tej zmiennej a są ciągłe w każdym 
takim prostokącie. Możemy więc do tej całki zastosować regułę L e i b n i z a  
różniczkowania według parametru. Otrzymujemy w ten sposób:

x

- / i0
x

dx d l  1  
(a? 2 +  oj* da \ arct& yI)

dx
- i i

( !C '+ o ) ' da'\\-a(\k ar0,g Va)
ogólnie:

(B) (-  !)-(» -  w f ( ^ r = f M r a arc«  f j
W  ten sposób ze znanej całki (A ) otrzymujemy szereg trudniejszych, 
bardziej skomplikowanych całek, nie wykonując żadnego całkowania, 
tylko różniczkowanie. Otrzymany wzór (B) jest zwięzłem ujęciem wyniku

całkowania funkcji _j_ ay , który to wynik otrzymaliśmy na str. 28

w bardzo zawiłej postaci, opierając się na wzorze redukcyjnym. Niechaj 
czytelnik wyprowadzi w podobny sposób z prostej całki:

4

faf dx =   ̂ przy a >  0

wzór;
1

/ x‘ (\ogxydx==

podający wartość dość skomplikowanej całki.



Regułę L e i b n i z a  rozszerzymy także na przypadek, gdy granice 
całki są zależne od parametru, t. j. na całki postaci:

j  f{x ,y )d x  =  y(y)
«l( y)

Załóżmy, jak poprzednio, że f(x , y) jest ciągła i ma ciągłą pochodną f y 
w prostokącie a, ó, S  y ^  6 , a ponadto, że n, a, ty)
« ,  S o , (y )  a, i że pochodne al(y), a2(y) są ciągłe w przedziale < ó j, .

Przypadek ten sprowadzimy do poprzedniego, wprowadzając za x 
nową zmienną i, związaną z x, y wzorem: x  =  a, (y) -f- (os (y) — o, (y)) ť. 
Dla *  =  a, (y) jest < =  0  a dla x — a2{y) jest i = l .  Otrzymujemy więc 
całkę o stałych granicach, niezależnych od parametru y:

1

9(y) =  / f{x {t,y \ y )~  dt

Do tej całki stosujemy regułę L e i b n i z a  z wzoru (150) i otrzymujemy:

dx
9(!/>- J  fe  +  śiap)0

_
J  3y

3*x
-----\ -f——dt ^ '  dtdy

dt

”d f 3x , . C [3f3x  3*® \ , 
dt +J  ( Tl 3y +  f  3idy) dt

0 o
cayli:

9'{y) j i  % dx + |) dl =/ fÁX'y)dx + f
ax(y) 0 ax(y)

3x I
3y I

(151)

Przykłady.

1) Obliczyć pochodną całki:

y (y )=  sin (xy) dx

według parametru y. Stosując wzór (151), otrzymujemy:
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2) Dana jest całka:
y

(M) g(y) =  K { y )  =-J {y ~ ,a) A®) rf®
0

przyczem zakładamy, że /"(a;) jest funkcją ciągłą.
Obliczyć (n +  1 )-szą pochodną tej całki oznaczonej według zmien­

nej y. Z wzoru (151) otrzymujemy:

✓ w  - « * >  * + * 4 ^  / W  -  -

>

f (y -  ® r 1 
( » - 1 ) 1

f {x )  dx

A więc:
y'(y) =  ^ - t ( y )

Stąd otrzymujemy kolejno:

g"(y) =  Fn-t(y) ' t. d.
a ostatecznie:

Wreszcie:

gw {y) =  F0{y) =  y  f {x)  da 

9 ^ "{y ) =  f{y)

Zatem funkcja y(y) ma tę własność, że jej (n -)- l)-sża pochodna ma 
wartość f(y). (Zarówno sama funkcja g(y) jak i je j pochodne aż do n-tej 
włącznie mają wartość 0  dla y — 0 , albowiem wtedy górna granica 
całki jest równa dolnej). A zatem jeżeli scałkujemy dowolną funkcję 
ciągłą f(y ) (n -f- l)-krotnie, to otrzymany wynik można przedstawić 
w postaci zwykłej, jednokrotnej całki, używając wzoru (M).

§ 248. Całkowanie całek właściwych według parametru.
Wykazaliśmy już (w § 246), że całka;

/f(x , y) dx =  g[y)

jest ciągłą funkcją parametru y, jeżeli funkcja f{x ,y ) jest ciągła w pro­
stokącie. Wobec tego istnieje całka z tej funkcji według zmiennej y. 
Wykażemy, że tę całkę można obliczyć, wykonując całkowanie według y
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pod znakiem całki, odnoszącej się do zmiennej x. Innemi słowami twier­
dzimy, że prawdziwy jest następujący wzór:

(152)

a% ot bt

J(ff ^ '  y) dX) dy=f(f ̂X'y) dy) ̂
«1 ai bx

Jeżeli więc mamy całkować funkcję ciągłą dwóch zmiennych x, y w sta­
łych granicach, najpierw według x  a wynik według y, to możemy prze­
mienić porządek całkowania, t. j. całkować najpierw według y a potem 
wynik według x.

Dowód.

Weźmy zamiast stałej górnej granicy całkowania bt zmienną gra­
nicę b i obliczmy pochodne obu stron wzoru (152) według b. Otóż dla:

b <2|

h (b )~  J f ( x ,  y) dxj dy
»1 8,

pochodną jest, jak wiadomo, funkcja podcałkowa, w której zamiast y 
wstawiono tę górną granicę £>, a więc:

h'(b) =  j  f(x ,b )d x
fl|

Dla drugiej strony wzoru (152), t. j. dla:

a, *

Hb) —J \ j  / f o  y )  dy) dx
8,

tworzymy pochodną według reguły L e i b n i z a ,  a więc:

o* b a

** W  ̂dy] dx=zJ f x̂' ̂  dx
«i £ «1 1

Ponieważ h'(b) —  k'(b), przeto te dwie funkcje mogą się różnić tylko 
o stałą liczbę, a więc h(b) =  k(b) -j- C. Aby wyznaczyć tę stałą, połóżmy 
b =  bl . Wtedy h(bx)  = 0  i fc(ó,) =  0 i zostaje 0 =  0-}- C, a więc C =  0. 
Zatem:

h (b) — k(b)

dla wszystkich b z przedziału Podstawmy 6  =  6 ,, to otrzy­
mamy h (bt ) =  k(bt), a to jest właśnie wzór (152), napisany w skróceniu.



208

Przykład.
Obliczyć:

/ = j ' [ J x>dx} dy> przyczem a >  0  i b >  0
a 0

Całkując najpierw według x, a potem według y, otrzymujemy.

f  J x y+1 |‘ 1
r r n

O o
a więc:

O "

< = fv h dy=log (y+1) I:= log£ i
Ten sam wynik musimy otrzymać, całkując w porządku zmienionym, 
a więc:

1 b

I =  J  ( j V d y )  dx =  log
0 * a

Całka wewnętrzna ma wartość:
b

C  y J &
J  log®

®* —JC‘ 
log®

a więc:

r / V  — ®* , , b 1
J logx a + 1

Otrzymaliśmy w ten sposób wartość całki oznaczonej z takiej funkcji, 
która się me da scałkować elementarnemu metodami, a mianowicie z funkcji:

xb — x“ 
log®

$ 249. Różniczkowanie i całkowanie całek niewłaściwych według
parametru.

Reguły różniczkowania i całkowania całek oznaczonych według 
parametru wyprowadziliśmy tylko dla całek właściwych. Najważniejsze 
są jednak właśnie całki niewłaściwe, zależne od parametru. Do takich 
całek nie zawsze stosują się powyższe reguły, jak to zobaczymy z nastę­
pujących przykładów.
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1) Okażemy (na str. 215), że istnieje całka niewłaściwa:
oo

# v Tsin yx ,
9iy) —J  - ^ - d x  =  ^n  dla y >  0 .

0

Pochodna jej gf(y\ jako pochodna stałej liczby l  n, ma wartość 0.
Gdybyśmy jednak próbowali obliczyć tę pochodną zapomoeą reguły 

L e i b n i z a ,  to otrzymalibyśmy:

/ ¿ ( n r ) dtt ̂ f*0' ^  **
Aby wyznaczyć tę całkę niewłaściwą, obliczamy najpierw:

oj  cos (yx) dx =
sin (yx) I sin ya

Ta funkcja nie dąży do żadnej granicy przy a dążącem do oo, lecz

oscyluje pomiędzy — ^ i -f- A więc nie otrzymaliśmy prawdziwej

wartości g'{y), zatem reguły L e i b n i z a  nie można stosować w tym 
przypadku.

2) Podobnie ma się rzecz z całkowaniem całki oznaczonej według 
parametru. W całkach niewłaściwych nie zawsze można zmieniać po­
rządek całkowania. Weźmy pod uwagę całkę:

i i

Jw+f)*<to = i?(y) = (*+7)* I= “  n+7*
o c

Funkcja podcałkowa jest tu nieciągła dla x  — 0, y =  0, a więc jest to 
całka niewłaściwa.

Scałkujmy ją według parametru y od 0 do 1 . Otrzymujemy:

d> 7 "  T O r t * <'y = t t
i -  1  = - *j  1 + y

0 0 0 u

Zmieniwszy zaś porządek całkowania, t  j. całkując funkcję podcałkową 
najpierw według parametru y, otrzymujemy:

ÁSůŤh *•) dx7 ( h 7  =- rpil— * ■+1=0 0 o o

a więc wynik fałszywy.
Aby zatem dó całek niewłaściwych można stosować takie reguły 

różniczkowania i całkowania według parametru, jak dla całek właści-■Rachunak różniczkowy i całkowy. T. 1  14

17
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wych, nie wystarcza, aby te całki istniały, czyli aby były zbieżne. Oka­
żemy natomiast, że wystarczy, jeżeli te całki są zbieżne w pewien szcze­
gólny sposób, a mianowicie, jeżeli są jednostajnie zbieżne.

Całkę niewłaściwą:

/ /(®, y) dw

nazywamy jednostajnie zbieżną w jakimś przedziale zmiennej y, jeżeli 
do każdej dodatniej liczby e da się dobrać taka liczba IV, (e), zależna 
tylko od e, a niezależna od y, że:

oo

|Jf{a>, y)da>|<e

dla wszystkich N  k> (e).
Ponieważ:

oo A/ oo

j  f{x,y) d x = J f { x ,  y )d x - f  J f ( x ,  y) dx
a  a  f f

przeto ten drugi dodajnik można uważać za rodzaj reszty RN, otrzyma­
nej z danej całki niewłaściwej w granicach od o do oo, gdy z niej 
opuścimy część, wziętą w granicach od o do IV, przy odpowiednio wiel- 
kiem N. Otóż zbieżność jest wtedy jednostajna, gdy się da dobrać takie Nu 
wspólne dla wszystkich y, by owa reszta była dowolnie mała, gdy JV> JV,. 
Podobnie określamy jednostajną zbieżność dla takich całek niewłaściwych, 
w których funkcja podcałkowa wzrasta nieograniczenie. Gdy np. takim 
punktem nieciągłości jest górna granica a, całki:

»i

S'f (x ,y ) dx

to całkę nazywamy jednostajnie zbieżną, jeżeli do każdej dodatniej 
liczby e da się dobrać takie dodatnie d,(e), zależne tylko od e, a nieza­
leżne od y, że:

1 1
f (x , y) dx <  «

dla wszystkich d, spełniających warunki-,

0  <  d <  d, (e)

Nietrudno okazać, że jednostajnie zbieżna całka niewłaściwa z funkcji 
ciągłej jest ciągłą funkcją parametru.

Jednostajną zbieżność całki niewłaściwej można często rozstrzygnąć
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zapomocą następującego kryterjum. Jeżeli istnieje taka dodatnia funkcja 
tp{x\ niezależna od parametru y, że:

(i)

dla wszystkich x >  a, a i ,  ^  y 5Ś bt i jeżeli istnieje całka:

00

(II) Jq > {x )d x
O

eo

to całka j ' f(x, y) dx jest jednostajnie zbieżna.
a

Dowód. Wskutek zbieżności całki (II) można dobrać do każdej dodatniej liczby * 
taką liczbę N t, zależną oczywiście tylko od e, że dla N > N ,  jest:

OO

J ' f  ( x )d x  <  i

Wskutek nierówności (I) jest jednak:

00 00

f ( x , y )d x  J <p(x)dx <  e dla

a więc spełnia się warunek jednostajnej zbieżności (albowiem # , (« )  nie zależy od y). 

Przykłady.

o cos (yx) dx

jest jednostajnie zbieżna, bo:

\e~‘ cos(ya5)| ^  é~*
OO

a całka J e ~ *  dx istnieje (jest równa 1 ).

OO

21A  v  dx jest jednostajnie zbieżna dla wszystkich y >  l >  0 .

Jeżeli bowiem obierzemy dowolną liczbę stałą i bierzemy
pod uwagę y >  ł, to:

I/(®, y) I =  «->x <  «r“‘ =  <p(x)

a ponadto istnieje całka:

A w , « = / e- ^ = ^ r = Ą ( - Ą - ( = i(

_ • ® »«o
14*
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Jeżeli całka niewłaściwa z funkcji ciągłej f(x,y ), zależna od parametru, 
jest jednostajnie zbieżna, to można zmieniać porządek całkowania, t. j. można 
całkować według parametru pod znakiem całki i otrzymuje się całkę, 
która jest także jednostajnie zbieżna.

Dowód. W  całce:
oo

/ =  j  { J f (x ,y )d x j  dy '
¿ i  a

rozłóżmy wewnętrzną całkę w następujący sposób:

oo N
dx +  j f { x ,  y)dx— J f{x ,  y) dx +  rN(y)

Wtedy:
t* N *. •

/ = J(f‘f{<B, y) <te) dy+f r^y) dy
i, a t>,

W  pierwszej całce, która jest całką właściwą, można zmienić porządek 
całkowania, a więc:

/V », *,1 f('x'ŷdy)dx ̂  fr"^
a b , ft,

Wskutek jednostajnej zbieżności całki (c) jest |rA,(y)| ■< £ przy odpo­
wiednio wielkiem N, a więc:

N

|1 —J ( J f ( x ,  y) dy) dx I < e(ós — bx)
a b,

To dowodzi, że dla N —> oo całka, występująca w tym wzorze, dąży do 7 
(i to jednostajnie) a więc:

oo £]

I  —f[j f(<*>,y)dy^dx
•

Widzimy więc, że tę sarną wartość całki / dostajemy, gdy zmienimy 
porządek całkowania.

Podobnie dowodzi się tego twierdzenia dla takich całek niewłaści­
wych, w których funkcja podcałkowa wzrasta uieograuiczenie dla skoń­
czonych wartości x.

W podobny sposób rozszerzamy na całki niewłaściwe regułę L e i b ­
niza,  dotyczącą różniczkowania całki według parametru.
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¡ f ix  y)
Jeżeli funkcja f(x , y) i cząstkowa 'pochodna — sq ciągle w prze­

dziale bx ^ y  bt, oraz dla x j>  a i jeżeli całki:
3y

9(y)
= / '

f {x ,y )d x  i h{y) =  J f , { x ,y )d x

są jednostajnie zbieżne, to:
oo

g’(y) =  Jfy{a>, y) dx
a

Dowód. Wedíug twierdzenia o całkowaniu według parametru mamy:
/  y  oo  o o  y

j  h(y) dy =—/ (/ f,[x , y) dxj dy =  f,{x, y) dy j cte
*< «

Całka wewnętrzna ma wartość:

f t M ,  y) dy =  /(*, y ) — f{X, 6 ,)

A  więc:

/ 00 OO

hiy) d y = f  fix , y) dx — yV(a>, 6 ,) rfa? =  g(y) — g(bt

Ponieważ h(y) jest funkcją ciągłą, więc istnieje pochodna lewej strony 
i otrzymujemy:

h(y) =  g 'iy )
czyli:

g '(y )=  J  f,(x ,y )d x c. b d. •.

Podobnie dowodzi się reguły L e i b n i z a  dla innych typów całek nie­
właściwych.

Przykłady.
1) Całka niewłaściwa:

(» ) /e 'y*d x

jest jednostajnie zbieżna dla jak to można wykazać w sposób
podobny, jak w przykładzie 2  na str. 2 1 1 , powołując się na to, że:

OO

J d x = \ \ [ n

\
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(por. str. 114, wzór (76)). Używając podstawienia yx* —  obliczamy 
wartość całki (a), a mianowicie;

Różniczkujemy tę całkę według parametru y i otrzymujemy wartość 
bardziej skomplikowanej całki:

0 9

/■
x % e~y*  dx =  i  \n \ y 4 

Różniczkując całkę (a) n-krotnie, otrzymujemy ogólny wzór:

1 •3 ...(2n— 1) 1

y" fy

Można dowieść, że wszystkie otrzymane całki są jednostajnie zbieżne, 
a więc stosowanie reguły L e i b n i z a  było dozwolone.

2) Chcemy wyznaczyć wartość całki niewłaściwej;

O

Dojdziemy do niej, stosując szereg przekształceń do całki niewłaściwej:

00

(T* cos (yx) dxf
której wartość można wyznaczyć elementarnemi metodami całkowania, 
znajdując całkę nieoznaczoną (por. str. 27, przykład 14).

Otrzymuje się:

J  e~*cos (yx) dx ■■
1  + » *

Scałkujmy obie strony od O do y według parametru y. Ponieważ ta całka 
jest jednostajnie zbieżna (por. przykład 1  na str. 2 1 1 ), przeto można wy­
konać całkowanie pod znakiem całki. Otrzymamy w ten sposób nową 
jednostajnie zbieżną całkę:

OO

f 6~'
sin (yx)

dx —  arctg y
x
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Stosując raz jeszcze całkowanie według y od 0 do y, otrzymujemy po 
wykonaniu prostych rachunków:

oo

/' „ 1  — coa{yx) .
e ----- dx =  y arctg 2/ — j  log ( 1  -f- yl )

0

Wprowadźmy nową zmienną z — xy, przyczem y >■ 0, to otrzymamy:
oo

— - 1  —  cos z . log ( 1  4- V1)
— -----dz =  arctgy -  T ! "

2 *
» (

2 2 /

Dla y —» o o  otrzymujemy stąd:

oo

/1  — cos z 
2 *

dz — \ n

Zastosujmy do tej całki całkowanie „per partesu, kładąc 1  

=  dv, a więc du —  sin z dz. v =  —— .
9.

COS Z =  u,

Otrzymamy:

(153)

Całki tej nie można wyzuaczyć elementarną drogą zapomocą całki nie­
oznaczonej.

Interesujący wynik otrzymuje się, wprowadzając w tę całkę para­
metr a zapomocą podstawienia z — ax  Otrzymuje się różne wartości, 
zależnie od tego, czy ten parametr ma wartość dodatnią, ujemną czy też 
zero. I tak dla a >  0  otrzymujemy:

f  dx _  i „
J  x  d x ~ * n
O

Dla a <  0  otrzymuje się:
3
sin ax  , ,
-— — dx —  | n 

x
o

(a >  0 )

ponieważ przy z —► -f- oo mamy x  - »  — oo. Wprowadzając za x  zmienną 
—  X ,  otrzymujemy:

•foo
sin ax 

X
i x  =  — !  n

0
(a <  0 )
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Wreszcie dla a =  O jest funkcja podcałkowa stale zerem, a więc:

J  dx =  0  (dla o =  0 )

O

Mamy tu interesujący przykład funkcji nieciągłej, podanej jednym wzorem .

po

r  sin ax jnal=J —  *
O

która dla a >  O ma wartość  ̂n, dla o =  O wartość O, a dla a <  O 
wartość —  ̂Ti, a więc ma w punkcie a =  O skończony skok.

Ustęp III.

CAŁKI PODWÓJNE.

§ 250. Całka podwójna po prostokącie.
Zajmowaliśmy się już w § 248 całkowaniem funkcji z =  f(x. y) 

dwóch zmiennych niezależnych według obu tych zmiennych. I tak cał­
kowaliśmy najpierw według zmiennej x, uważając y za parametr, a otrzy­
many wynik g{y) całkowaliśmy następnie według zmiennej y i otrzy­

maliśmy:
A* <*1

(a) 1 =  f { f f (x ,y )d x }d y
»1 «1

Dogodniej jest pisać to wyrażenie bez klamer, a mianowicie w postaci:

A* f?*

(b) 1 =  j  j f{x, y) dx dy
<*,

Zakładaliśmy przytem, że funkcja f(x, y) jest ciągła w prostokącie P, 
określonym zapomocą warunków: a, S  X ^  a2, ^  y ^  b.j.

Całkowania te można wykonać także i wtedy, gdy funkcja f (x , y) 
nie jest ciągła w całym prostokącie P, lecz jest w nim ograniczona i po­
siada skończoną liczbę linij nieciągłości, dających się zamknąć w obszar 
o dowolnie matem polu. Widzieliśmy bowiem w § 246, że wtedy funkcja 
g{y), otrzymana przez pierwsze całkowanie, a mianowicie według zmien­
nej *, jest albo funkcją ciągłą zmiennej y, albo posiada skończoną liczbę 
skończonych skoków, a zatem jest w każdym razie funkcją całkowalną 
według zmiennej y. A więc całka /, wyrażona wzorem (a), istnieje także 
w tym ogólniejszym przypadku.
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Całkę, otrzymaną przez divukrotne całkowanie funkcji dwóch zmien­
nych, najpierw według jednej od a, do a2l a następnie według drugiej 
zmiennej od bx do bt> nazywamy c a łk ą  p o d w ó jn ą  z tej funkcji po 
prostokącie P, określonym warunkami o, <  .71 <  nt 1 b, y SS b9.

Zobaczymy w dalszym ciągu (w § '251), że wartość całki podwój­
nej nie zależy od tego, w jakim porządku wykonujemy całkowanie, gdy 
tylko funkcja spełnia wyżej wymienione warunki ciągłości. Dla funkcyj 
f{x ,y ) ciągłych dowiedliśmy tego już w § 248 (por. wzór (152)). Dla­
tego to w definicji całki podwójnej nie wspominaliśmy nic o porządku 
całkowania. Krótko oznaczamy taką całkę symbolem'

(c) J J f(x ,y )d x d y  lub j  j  f (x ,y )d y d x

Wykażemy, że do całek podwójnych po prostokącie odnosi się podobne 
twierdzenie o wartości średniej jak do całek pojedynczych. I tak niechaj m 
oznacza kres dolny a M  kres górny wartości funkcji f (x ,y ) w całym 
prostokącie P. Z twierdzenia o wartości średniej dla całki pojedynczej 
(§ .213, wzór (47)) wynika:

m («* — « i ) S J  f{x ,y )d x  5S M(at — a,)

Scałkujmy tę nierówność według zmiennej y w granicach od do 6 , 
to otrzymamy:

a stąd:

£ m{at — ax)dy  < ; f{x,y) dx^dy %  / M[a' ~  a\)dy

»»(a* — ai)(6s -  — J \ j y* rf£C| dy — ^ a* ~  a ,)^ ‘  ~  b'»)

Oznaczając literą P  pole danego prostokąta, otrzymujemy stąd: 

(154) m - P ' śś /'(a?, y)  dy < ; M  • P
0i ot

Dobierając odpowiednio liczbę p, pośrednią pomiędzy m a Af i używając 
skróconego oznaczenia (c), otrzymujemy stąd wzór:

(155) I  f  f (x ,y ) dx dy =  H - P
> r

Ten wzór wyraża twierdzenie o wartości średniej dla całki podwójnej 
o stałych granicach całkowania czyli po prostokącie.
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Wniosek. Jeżeli funkcja f(x, y) jest nieujemna w całym prostokącie, 
to także fi ^  0, a więc według wzoru (155) także całka po prostokącie 
z tej funkcji jest nieujemna. Stąd wynika, że jeżeli w całym prostokąci 
warunek f(x,y) 5S g{x,y) spełnia się dla dwóch funkcyj f(x,y) i g(x,y), 
to także:

f  f  f (x,y)dxdy < ^ f  fg{x ,y )dxdy
(p) <p)

Jeżeli f{x,y) jest funkcją ciągłą w danym prostokącie, to przyjmuje 
tę wartość pośrednią fi w jakimś punkcie tego prostokąta, np. w punkcie 
o spółrzędnych (£,g). Wtedy wzór (155) przyjmuje postać:

(156) =  f ( l  r j ) .P

Wartość fi, obliczoną z wzoru (155), nazywamy średnią (całkową) war­
tością funkcji f(x, y) w prostokącie P.

Łatwo jest dowieść, że jeżeli podzielimy prostokąt P  prostą rów­
noległą do osi a>ów lub y-ów na dwa prostokąty P, i Pt, to całkę po 
całym prostokącie można przedstawić jako sumę całek po prostokątach 
składowych, a mianowicie:

(157) f  f f (x ,y )dxdy =  i  f f (x ,y )dxdy  - f  f  i f ( x ,y )dxdy  
%py > ,r  (po

Twierdzenie to odpowiada twierdzenia n addytywności całki pojedynczej, 
poznanemu w § 214.

§ 251. Sumowa definicja całki podwójnej o stałych granicach.
Opierając się na twierdzeniu o wartości średniej, zbudujemy nową 

definicję całki podwójnej, analogiczną do podanej w § 2 2 2  definicji całki 
pojedynczej, a mianowicie określimy tę całkę jako granicę ciągu pew­
nych sum.

Weźmy pod uwagę całkę:

P  r
'  =  / > * ■  

5 ,  a ,

y) dx dy

z funkcji z =  f(x, y) ciągłej w prostokącie ABCD  (fig. 73) o polu P. 
Obrazem tej funkcji jest płat powierzchni, w ogólności krzywej, wzno­
szącej się nad tym prostokątem. Podzielmy przedział <Ccti,0 *)> na do­
wolną liczbę części, np. na n, części, punktami ..., a prze­
dział < ó u 6 a>  na mx części punktami y „  y „  y3, -  -, y^_, ■
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//

m 7Z

X

Oznaczmy ponadto a, =  x 0, o, =  a*,, i, =  =  Jf«,.
Przez punkty podziału wykreślmy równoległe do osi X  i Y, to 

prostokąt ABCD  rozpadnie się na kratkę drobniejszych prostokącików. 
Oznaczmy przez p ^  pole prostokąta, 
zawartego między proste mi:

x  =  x h x  =  ®/+,, y  —  y t , y — yk+i

Całkę podwójną po całym prosto­
kącie możemy przedstawić jako 
sumę całek po tych wszystkich 
prostokątach składowych (w myśl 
wzoru (167)). Zastosujmy do każdej 
takiej całki składowej twierdzenie 
o wartości średniej.

Niechaj i M [i* oznaczają 
najmniejszą i największą wartość 
funkcji f (x ,y ) w obrębie prostokąta p^, to twierdzenie o wartości śred­
niej dla całki po tym prostokącie ma (według wzoru (154)) postać:

#*+i ‘ /+i

»»ii1 №  Si J  J /1®. y)dxdy<L Mg] pii*
'»  “i

Utworzywszy te nierówności dla wszystkich całek składowych, sumujemy 
je  stronami i otrzymujemy ostatecznie:

/»i— I — 1’  b% Cą  n i i — 1 H|— ]

i1) » 1 =  A®. y) d x d y - ^  ̂
4-0 i-0  V, a, 4-0 i-0

Fig. 73.

Zamknęliśmy w ten sposób całkę podwójną między dwie sumy; nazwijmy sk 
sumą dolną a <S, sumą górną. Sumy te oznaczamy też krócej symbolami:

i

<p> (P)
Tworzym y następnie przez dalsze podziały cały ciąg {sp}  takich sum 
dolnych i ciąg {Sp} sum górnych w ten sposób, aby przekątna najwięk­
szego z prostokątów składowych w każdym podziale dążyła do zera. 
Okażemy, że wtedy obydwa ciągi {sp}  i {S p}  dążą do wspólnej granicy, 
a mianowicie do całki podwójnej po prostokącie ABCD.

Dowód.
Zbadąjmy różnicę pomiędzy dowolną sumą górną Sp a dolną t„:* > - l  ■ „ - !  m - l  «  -  J « - I

P P P P  P P

(II) =  2 2 {M<£) -  m“ ]p(£)A -O  / -0  A -O  / -0  A -O  /-0
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Okażemy nąjpierw, że ta różnica dąży do zera, t. j. ze do każdej dodatniej liczby rf , 
można dobrać takie N t że dla wszystkich p >  N  jest | Sp — ®p| — Sp Sp <  I tak 
dzieląc prostokąt P  na odpowiednie maie prostokąty (co uzyskamy, biorąc p większe 
od odpowiednio dobranego N), można uzyskać, że różnica między nąjwiększą a naj­
mniejszą wartością funkcji ciągłej y) będzie w każdym prostokącie składowym

*mniejsza od dowolnej zgóry podanej liczby dodatniej, a więc także mniejsza od p. 

Wynika to *  jednostajnej ciągłości tej funkcji w prostokącie P. A więc:

Mjp — J  dla p >  N

Wobeo tego:
m — 1 n — 1

\sp- » p\ < y j >  J g W
/-o

Ale suma podwójna wszystkich prostokątów p j f  daje cały prostokąt P, a więc:

Z wzoru (I), ą raczej z odpowiedniego wzoru, napisanego dla sp i Sp, wynika, że :

%

,y)dx-dy — «pi ^  Sp —  Sp <  e
•  «rtęć:

Podobnie:

a więc także:

lim s,

a t

—j j K X' dX ^
b\ a»

- /  / '/ (*, 
<r i

y) dx dy

lim S. r  ?
= / . / « * ■  6, n.

■Sp —  Sp <  e

y) da: dy

Na podstawie dowiedzionego twierdzenia możemy podać także nastę­
pującą definicję całki podwójnej:

ca łk a  p o d w ó jn a  o stałych granicach całkowania jest to granica 
ciągu takich sum dolnych lub górnych, w których przekątna największego 
prostokąta składowego dąży do zera; sumę dolną (górną) tworzy się, dzieląc 
dany prostokąt na dowolną liczbę prostokątów zapomocą prostych rów­
noległych do osi spółrzędnych, mnożąc pole każdego składowego prosto­
kąta przez najmniejszą (największą) wartość funkcji w tym prostokącie 
i dodając do siebie wszystkie otrzymane w ten sposób iloczyny.
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Zamiast najmniejszych lub największych wartości funkcji można 
użyć do definicji całki także wartości funkcji w dowolnym innym punk­
cie (£л> Vu) tego prostokąta składowego. Albowiem:

«Л  /"(&*, V» )  ^  M,t

a więc i każda suma, utworzona przy pomocy tych wartości pośrednich, 
zawiera się stale pomiędzy odpowiednią sumą dolną i górną, a zatem 
dąży do tej samej granicy. Stąd wynika, że także ciąg sum pośrednich:

m — Í  я  - 1
P P

5 ,- V
* - 0  Í- 0

dąży do całki podwójnej o stałyoh granicach całkowania.
Używaliśmy w naszych rozważaniach ■podwójnych sum i podwójnych 

wskaźników i i k, aby uwydatnić ich związek z całką podwójną. Można 
jednak także ponumerować wszystkie prostokąciki składowe, używając 
tylko jednego wskaźnika, np. r, przebiegającego kolejne liczby szeregu 
naturalnego od 1 do Np— m -n  i przedstawić sumy sp> Sp, Sp zapomocą 
sum pojedynczych postaci np:

r - 1

Wszystkie wyniki, uzyskane w tym paragrafie, odnoszą się, jak to zaraz 
zobaczymy, także do funkeyj f(x , y) nieciągłych, lecz ograniczonych, po­
siadających skończoną liczbę takich nieciągłości, które się dadzą zamknąć 
w obszar o dowolnie małem polu.

I tak dla funkeyj nieciągłych nie wszystkie różnice — m(J>, figurujące we 
wzorze na S p  —  sp, dadzą się uczynić dowolnie malemi. Jeżeli bowiem prostoką­
ciki zawierają części linij przerwy (jak na fig. 72, str. 2Q2), to różnice między 
największą a najmniejszą wartością funkcji f (x ) y) w takich prostokąeikach nie będą 
dowolnie małe, lecz będą równe skokowi funkcji (np, odcinkowi C C  na fig. 72 w oto­
czeniu punktu D). Podzieliwszy cały prostokąt P  na drobniejsze prostokąty, rozłóżmy 
go na dwie części: na jedną P*p), w, której prostokąty składowe nie zawierają żad­
nych punktów nieciągłości l  na drugą P ^ \  w której prostokąty składowe zawierają 
punkty nieciągłości. Różnica między sumą górną a dolną, utworzona dla części Р { “\ 

da się uczynić dowolnie małą, np. mniejszą od f-e, ponieważ dla tej części różnice 
— mjr* dążą do zera. W  części zaś P / >  nie są te różnice dowolnie małe. lecz 

w każdym razie są mniejsze od M  — m, przyezem M  oznacza kres górny, a m kres 
dolny wartości funkcji f (x , y) w całym prostokącie P. Część sumy, określonej wzo­
rem (II), przypadająca na P 2p>, będzie zatem mniejsza od ( M  — m) • Pif). Otóż pole 
Р^> możemy uczynić dowolnie rtiałem, albowiem według założenia można zamknąć 
wszystkie linje nieciągłości w obszar o dowolnie małem polu. Można np. uzyskać, że 

8
P ^ 1 <  , a więc ( M - m )  - P<J> <  Razem więc można także dla nieciąg-



łych funkcyj uzyskać, że będzie [ Sp— — e>
teraz jest:

lim (Sp — sp) =  O
p -*c o

a to znaczy, że także

Stąd zaś wynikają dalsze konsekwencje tak samo, jak dla ciągłych funkcyj f(x,y).
We wszystkich rozumowaniach tego paragrafu nie grał żadnej roli 

porządek, w jakim występują zmienne a? i y. A  więc także całka:
a,

al Ol

y ) dy\ dx czyli■ / / f(x , y) dy dx

jest granicą tych samych ciągów, ma zatem tę samą wartość, co całka, 
obliczana najpierw według zmiennej x  a potem według y. Wzór (152) 
na str. 207 stosuje się zatem nietylko do funkcyj ciągłych, lecz także 
do takich funkcyj nieciągłych, które są ograniczone i posiadają najwy­
żej skończoną liczbę linij nieciągłości.

Jeżeli więc obliczamy wartość całki podwójnej po prostokącie za- 
pomocą dwóch kolejnych całkować, to możemy zmieniać porządek cał~ 
kowania.

Uwaga. Całkę podwójną oznaczoną można też zdefinjować jako kres 
górny sum dolnych lub kres dolny sum górnych, analogicznie jak to 
czyniliśmy w nauce o pojedynczych całkach oznaczonych w § 2 1 2  i nast.

§ 252. Związek całki podwójnej z objętością.
Przy pomocy całki podwójnej można zdefinjować i obliczać objętości 

rozmaitych brył, których nie można badać metodami matematyki ele­
mentarnej. Z drugiej strony uzyskamy w ten sposób dogodną geome­
tryczną interpretację całki podwójnej. Istnieje tu podobny związek między 
objętością a całką podwójną, jak między polem a całką pojedynczą.

Weźmy pod uwagę bryłę, zamkniętą prostokątem, płatem dowolnej 
powierzchni o równaniu z —  f(x , y), wznoszącym się nad tym prostoką­
tem i płaszczyznami, rzucającemi ten płat powierzchni na płaszczyznę (X Y ), 
np. bryłę AB CD EFG H  na fig. 73 (str. 219). Niechaj żaden punkt tej 
powierzchni nie leży pod płaszczyzną (X Y ), t. j. niechaj funkcja f (x ,  y) 
będzie nieujemną dla wszystkich punktów (®, y), zawartych w badanym 
prostokącie. Utwórzmy dla tej funkcji sumę dolną nad prostokątem ABCD. 
Każdy jej dodajnik ma p t jest równy objętości graniastosłupa o podsta­
wie pit a o wysokości m ~ równej kresowi dolnemu wartości z na^ tym 
prostokątem p!k. Cała suma dolna jest równa objętości schodkowej bryły, 
wpisanej w daną bryłę. Tworząc ciąg takich sum dolnych, w których 
przekątna największego składowego prostokąta dąży do zera, otrzymu­
jemy ciąg objętości odpowiednich brył schodkowych, aproksymujących 
coraz lagiej badaną bryłę. Granicę tego ciąga uważamy za objętość danej
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bryły. W iemy zaś z poprzedniego paragrafu, że granicą tego ciągu jest 
całka podwójna z funkcji f (x ,y ) po prostokącie. Przyjmujemy zatem na­
stępującą definicję objętości.

Objętość V  bryły, zamkniętej prostokątem, leżącym na płaszczyźnie [X Y ) 
o bokach równoległych do osi spółrzędnych, powierzchnią o równaniu z— f{x y), 
wznoszącą się nad tym prostokątem i płaszczyznami, rzucającemi ten płat 
powierzchni na płaszczyznę (X Y ), jest to całka podwójna z funkcji f (x , y) 
po tym prostokącie, a mianowicie:

(158)
t %

F  = / J  zdxdy— J
bt ax o»

J f{x, y) dx dy
Ol

Dla powierzchni, leżącej pod prostokątem, t. j. dla ujemnych z, ma ta 
całka wartość ujemną i podaje wartość —  F. Ogólnie całka podwójna 
po prostokącie z funkcji, przybierającej dodatnie i ujemne wartości 
w prostokącie P, przedstawia algebraiczną suinę objętości, leżących nad 
płaszczyzną (.Y Y ) i pod nią.

Przykład 1) Obliczyć objętość bryły, wznoszącej się nad prostoką­
tem, zawartym między prostemi x  =  0  i x  =  o, tudzież y —  0  i y — b 
na płaszczyźnie (X Y )  a zamkniętej 
u góry powierzchnią o rówuaniu:

‘ pxy

(Jest to paraboloida hiperboliczna, por. 
tom. I, str. 44).

Bryłę tę przedstawiono na fig. 74.
Oznaczmy literą c wartość funkcji z 
w wierzchołku C prostokąta,t.j. c=p-a*6 .
Przekrój danej powierzchni płaszczyzną 
® = a ,  prostopadłą do (X  Y ), jest linją
prostą o równaniach: x  — a, z —  pay, a podobnie przekrój płaszczyzną 
y — b jest linją prostą o równaniach y =  b, z =  pbx. (Celem plastycz­
nego uwidocznienia zakrzywienia tej powierzchni narysowano siatkę linij 
prostych, leżących na niej). Objętość badanej bryły wyrażamy wzorem:

b a

V =  J  J pxy dx dy

Wykonujemy całkowanie najpierw według x  a następnie według y i otrzy­
mujemy:

6 * -0  b t>

ł P V J dy —  Jłspa*ydy =  \pat y% | =  $pat b*
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Ponieważ pab «*= c, przeto:
V =  \a.bc

Objętość tej bryły jest więc równa czwartej części objętości prostopa­
dłościanu o tej samej podstawie a o wysokości .c. Widzimy stąd analogję 
z wzorem na pole, ograniczone łukiem paraboli o równaniu y* =  2 pa?,

osią rzędnych i prostą prostopadłą do tej 
osi (por. § 220, przykład 5).

Przykład 2) Obliczyć objętość prosto­
padłościanu, ściętego dowolną płaszczyzną 
o równaniu:

(I ) 9 =  Ax +  By -j- C

znając krawędzie a i b podstawy.
Umieszczamy ten prostopadłościan 

tak, aby krawędzie podstawy leżały na 
dodatnich kierunkach osi X  i Y  (fig. 75). 
Objętość bryły, wznoszącej się nad pro­

stokątem P, a zamkniętej u góry płaszczyzną o równaniu (I), wyraża się 
wzorem:

b  a

V — J J (A x  - f  By -f- C)dxdy

A więe:
b m b

V — J '^  Ax* - f  Bxy 4- Cx) jdy =  J (£żla* -+- Bay - f  Ca) dy

V ~ ^ A a * y Ą -^ B a y *  +  Cay)\ =  % Aa*b +  \ Bab* +  Cab
0

V =  ab (A  • i  - f  B  • £ +  C)

Oznaczmy wysokość z, należącą do punktu środkowego prostokąta P  
(wysokość ta trafia w środek przekroju, który jest oczywiście równoległo- 
óokiem), krótko znakiem zt , to wzór przyjmie postać:

i' T

V =  P  • z, .

Objętość prostopadłościanu ściętego dowolną płaszczyzną jest zatem rówua 
objętości zwykłego prostopadłościanu o tej samej podstawie a o wvso 
kości równej odległości środka przekroju od podstawy.

Wysokość ta jest średnią arytmetyczną czterech krawędzi bocznycŁ 
prostopadłościanu ściętego (wykazuje się to, wstawiając w równanie płasz­
czyzny za (a>, y) kolejno (0 , 0 ), (a, 0 ), (0 , 6 ), (a, 6 ) i biorąc średnią aryt-
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mityczną czterech otrzymanych na z wartości). Można więc wyrazić 
otrzymany wzór także tak: objętość prostopadłościanu ściętego jest równa 
podstawie, pomnożonej przez średnią arytmetyczną czterech krawędzi 
bocznych.

§ 253. Całki podwójne po dowolnych obszarach (w zmiennych
granicach całkowania).

Omawialiśmy dotychczas tylko całki podwójne nad obszarami pro- 
•tokątnemi. Takie całki występują nader rzadko w zastosowaniach. Naj­
częściej mamy do czynienia z ogólniejszemi 
obszarami; tak np. przy obliczaniu objętości 
ósemki elipsoidy natrafiamy na całkę podwójną 
nad. obszarem OAB, zamkniętym z jednej 
strony elipsą (por. fig. 76). Będziemy tu rozwa­
żali tylko obszary domknięte (por. tom I, str.
17— 18), których brzeg składa się ze skoń­
czonej liczby linij, dających się przedstawić 
w postaci y =  q>(x) lub x  —  ip(y). Takie 
obszary nazywamy obszarami regularnemi1). Brzeg takiego obszaru regu 
larnego da się zamknąć w obszar o dowolnie małem polu.

Weźmy zatem pod uwagę funkcję f(x ,y ), określoną w dowolnym 
obszarze regularnym, jak na fig. 77.

Niechaj f{x .y ) spełnia te same 
warunki ciągłości, co w § 250. Defi­
nicję całki po takim obszarze D  spro­
wadzamy do definicji całki po pro­
stokącie. Aby to uskutecznić, opisz­
my na obszarze D  prostokąt P  
o bokach równoległych do osi X  i Y  
dwa jego boki przechodzą zatem 
przez te punkty obszaru D, które 
mają największą i najmniejszą od­
ciętą, a dwa inne przez te punkty, 
które mają największą i najmniej­
szą rzędną. Określmy funkcję pomocniczą f t (x ,y ) dla wszystkich punk­
tów prostokąta P  w następujący sposób.

Niechaj /j(aj, y) — f (x , y) dla wszystkich punktów obszaru D, 
% f l (x ,y ) =  Q dla wszystkich pozostałych punktów płaszczyzny (X Y ).

Por podręcznik prof. S. Ba na c ha  p- t. Rachunek różniczkowy i elkowy 
Tom 11, str. 171.
Rachunek rotniezkowT i catfcowv. T.-a. 15
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Całkę •podwójną z tej pomocniczej funkcji /, (#, y) po p ro s to k a -  
■Cle P  nazywamy całką podwójną z'funkcji f [x , y) po obszarze D .

Całkę podwójną po obszarze i )  oznaczamy symbolem: / / f(x,y )dxdy ,
(D)

całkę zaś podwójną po prostokącie P  oznaczyliśmy (str. 217) symbolem 

J ”J ' t a zatem możemy naszą definicję napisać w następujący sposób:
W)

f  J f ( x , y )  d x d y =  J  f  f x (m, y) dx dy przyczem /, (x, y) =  | ^  ^
v>r V r  poza

Uwaga 1. Funkcja f x(x ,y ) jest zwykle nieciągła wzdłuż brzegu l obszaru D nawet 
wtedy, gdy f (x ,  y) jest funkcją ciągłą (brzeg l tylko wtedy nie byłby linją nieciągłości, 
gdyby brzeg L  danej powierzchni z — f (x ,y ) leżał na płaszczyźnie (X Y ')). Wiemy jed­
nak, że całka nad prostokątem istnieje także dla nieciągłąj funkcji /, (x , y), jeżeli tylko 
ta funkcja jest ograniczona a jej linje nieciągłości dadzą się zamknąć w obszar o do­
wolnie maiem polu- Tutaj zaś właśnie mamy do czynienia z takim przypadkiem.

Uwaga 2. Całkę po dowolnym obszarze można także określić bezpośrednio jako 
granicę ciągu odpowiednich sum dolnych (lub górnych), otrzymanych przy pomocy 
podziału obszaru na drobniejsze elementy zapomocą prostych, równoległych do osi 
X  i y. Nie wszystkie jednak elementy będą prostokątami, albowiem przy brzegu 
obszaru wystąpią elementy, w których brzeg wchodzą łuki linji l.

Uwaga 3. Jeżeli obszar D  rozłożymy zapomocą dowolnej linji na dwie części 
fi, i f ia, to można okazać, że:

f f n*■ y) dx dy =  J  y f (x ,  y) dx dy -)- J  J' f [x ,  y) dx dy

W) (Di) (Di)

Ju t to uogólnienie twierdzenia o addytywności całki pojedynczej (por. §  214).

Okażemy, że obliczenie całki po dowolnym obszarze regularnym
sprowadza się — podobnie jak 
dla całki po prostokącie — do 
obliczania całek pojedyńczych, 
w których jednak nie wszystkie 
granice są liczbami stałemi. 
Weźmy pod uwagę obszar re­
gularny D, zamknięty taką linją, 
którą każda prosta równoległa 
do osi X  przecina najwyżej 
w dwóch punktach (jak na 
fig. 78). Inne obszary, z któremi 
będziemy mieli do ccynienia, 

można rozdzielić na obszary tego rodzaju i zastosować następnie twier­
dzenie z uwagi 3.
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(b)

Według przyjętej powyżej definicji całki po obszarze D  mamy:

f  j  f ( x , y ) d x d y =  f \(®. V )dx J dV
ADY ix a,

Obliczmy najpierw całkę wewnętrzną:

g(y) =  J f A x , y )  dx 
a'

Obierzmy jakieś stałe y z przedziału <fbx,b{f> i wykreślmy przez odpo­
wiedni punkt osi Y  równoległą do osi X . Przetnie ona opisany prostokąt 
w punktach A ,  B , a brzeg obszaru D w punktach A\ B‘ o odciętych 

* » (y )  ' x*{y).
Zaznaczyliśmy wyraźnie, że te odcięte są funkcjami zmiennej y, 

albowiem do każdego y z przedziału należy jakaś odcięta x t
na łuku K N M  i jakaś odcięta * ,  na łuku KLM. Równania łuków, two­
rzących brzeg obszaru, mają więc postać: x  — x x(y), x  — x%[y).

Całkę g(y) możemy rozłożyć na trzy całki:

a, Hy)
g { y ) —  I  f \ (x, y) dx — I  /,(x, y) dx -(- j  f i ( x , y)dx-\-  j  f t (x,y)

a l  “ i * i  t y )  * l ( > )
dX

Pierwsza i trzecia całka po prawej stronie mają wartość 0, ponieważ 
/, (a?, y) =  0 poza obszarem D . Natomiast w drugiej całce można zamiast 
f i( x ,y )  napisać f(x ,y ) , ponieważ te funkcje mają w obszarze D  te same 
wartości. Ostatecznie więc:

g{y) =  f  /(*. y) dx
w )

Wobec tego wzór (b) przyjmuje postać:

(159)

*1 ( S i

f  f  A®, y) dx dy =  y ' !  j f { x, y) dx | dy
(o> m

przyczem X — x,(y) i x  — X2(y) są równaniami dwóch łuków, tworzą­
cych brzeg obszaru D, a 6 , i bt są wartościami najmniejszej i największej 
rzędnej punktów brzegu. Widzimy stąd, że obliczenie całki po takim 
obszarze D  sprowadza się do kolejnego obliczenia dwóch całek pojedyń- 
czych, przyczem granice pierwszego całkowania (według x) są zmienne 
a drugiego (według y) stałe. Zwykle opuszczamy klamry i piszemy po­
wyższy wzór w postaci:

(159a)
5? xi y>

J  A®, y) dx dy =  f(x, y) dx dy

1 6 »

V
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Całkowanie można wykonać także w innym porządku, wtedy jednak 
zmienią się granice całkowania, jak to zaraz zobaczymy. Niechaj obszar D  
ma tę własność, że każda prosta równoległa do osi Y  przecina jego brzeg 
najwyżej w dwóch punktach. W  całce, występującej po prawej stronie 
wzoru (b), można zmienić porządek całkowania, jest to bowiem całka po 
prostokącie. Otrzymamy w ten sposób zamiast wzoru (b) następujący wzór:

f  f  /(®, y) dx dy =  i i  i  f i  (®, y) dy \
(DV a, £

dx

Celem obliczenia wewnętrznej całki:

h{x) =• f y) dy

obierzmy dowolne x  z przedziału O i>  i wykreślmy przez odpo*
wiedni punkt osi X  prostą równoległą do osi Y. Przetnie ona brzeg 
obszaru w dwóch punktach o rzędnych yx(x ) i yt (x). Rozumując tak, jak 
w poprzednim przypadku, otrzymamy:

>*!')
h{x) =  / f(x , y) dy

."IW ,
Zatem:

(160)

przyczem y =  y±(x) i y —  y2(* ) są równaniami łuków, tworzących brzeg 
obszaru Z), a o, i a, wartościami najmniejszej i największej odciętej 
punktów brzegu. Ten drugi sposób obliczania całki po obszarze D  mo­
żemy uwidocznić już w jej symbolu, pisząc dy dx zamiast dx dy.

Klamry opuszeza się zwykle, podobnie jak we wzorze (159a).
Najprostszem zastosowaniem całki podwójnej po dowolnym obszarze 

jest obliczenie pola tego obszaru. Wystarczy w tym celu obrać f[x ,y ) ^  1 
dla wszystkich punktów obszaru.

Twierdzimy, że:

(161)

Dowód. Jeżeli każda prosta równoległa do osi Y  przecina jego brzeg 
najwyżej w dwóch punktach, ta stosując wzór (160), otrzymujemy:

f  f  dx dy j d y  dx — j  dy j dx =  J ( t f t (x) — yx{x))
(D) U» a. W ) a.

dx
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Czyli:

J  J dx dy =  f  yt (x) dx —  J  yi ( X )  ax =  D
(D ) a ,  a,

(por. Btr. 191). Jeżeli proste równolegle do osi spólrzędnych przecinają 
brzeg obszaru w więcej aniżeli dwóch punktach, to rozkładając obszar 
na takie obszary, które proste równoległe do osi przecinają najwyżej 
w dwóch punktachf stosujemy do każdego składowego obszaru poprzednią 
metodę i otrzymujemy także w tym przypadku wzór (161).

Do całek po dowolnym obszarze odnosi się twierdzenie o wartości 
średniej, podobne jak dla całek po prostokącie, a mianowicie:

(162)

Dowód. Ponieważ m oznacza kres dolny wartości funkcji f(x , y) 
w całym obszarze, zatem:

m ;§  f(x , y)
Stąd wynika, że także:

czyli:

I  f  m dxdy<z l  I  f(x ,y )dxdy
l o r  (D)

m j J "d x  dy J f (x ,y )d x d y

Stąd otrzymujemy na podstawie wzoru (161):

m - D J f ( x ,  y) dx dy

W  podobny sposób stwierdzamy drugą nierówność, zawartą we wzorze ( 1 62). 
Stąd otrzymuje się na średnią wartość funkcji w obszarze D — podobnie 
jak w § 250 — wzór:

(163)

Jeżeli f ( X , y )  jest ciągła w obszarze D, to istnieje taki punkt o spółrzęd- 
nycb y  —  w którym funkcja przyjmuje tę wartość średnią \ i

i wtedy zachodzi wzór:

(163a)
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Opierając się na twierdzeniu o wartości średniej, wyrażonem wzorem (lti2), 
można okazać, że całka po dowolnym obszarze jest granicą ciągu sum 
dolnych (lub górnych), otrzymanych przy pomocy podziału obszaru na

drobniejsze elementy zapomocą dwóch systemów 
dowolnych linij, prostych lub krzywych (a więc 
niekoniecznie prostych równoległych do osi spół- 
rzędnych). Trzeba przytem obrać taki ciąg sum, 
aby średnica największego elementu składowego 
przy tym ciągu podziałów dążyła do zera. (Śred­
nicą takiego elementu powierzchni nazywamy 
kres górny odległości dwóch dowolnych jego 
punktów od siebie).

Tak np. przy użyciu spółrzędnych bieguno­
wych r, (p dzielimy obszar D  zapomocą pęku 

prostych, określonych warunkiem <p =  c i gromady kół spółśrodkowych, 
odpowiadających warunkowi r =  cx, na elementy nieprostokątne <jtt> jak 
to uwidoczniono na fig. 79. Całkę podwójną po obszarze D  można wtedy 
uważać za granicę ciągu sum postaci:

£  a*
( D )

Określiliśmy (w § 252) objętość, wznoszącą się nad prostokątem. Obecnie 
możemy uogólnić tę definicję na objętości, wznoszące się nad dowolnemi 
obszarami. Definicja całki po dowolnym obszarze zapomocą sum doluych 
(lub górnych) naprowadza nas na przyjęcie następującej definicji obję­
tości, wznoszącej się nad dowolnym obszarem (jak- na fig. 77 lub 78). 
O b ję to ś c ią  V bryty, zamkniętej obszarem D, leżącym na płaszczyźnie {X Y \  
powierzchnią o równaniu z — f(x , y), wznoszącą się nad tym obszarem i po­
wierzchnią walcową, rzucającą ten płat powierzchni na płaszczyznę (X Y ),  
nazywamy całkę podwójną z funkcji f (x ,y ) nad tym obszarem, a mianowicie:

(164) j ' z  dx dy =  f i f [ x , y) dx dy
<D> ( D )

Dla powierzchni, leżącej pod obszarem D , t. j. dla ujemnych z, całka ta 
ma wartość ujemną i podaje wartość — V, Ogólnie całka podwójna 
z funkcji, przybierającej dodatnie i ujemne wartości w obszarze D, jest 
równa algebraicznej sumie objętości nad płaszczyzną (J tY ) i pod nią 
(przyczem pierwsze są dodatnie a drugie ujemne).
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§  254. Przykłady całek podwójnych po dowolnych obszarach.

1 ) Wyznaczyć granice całkowania dwóch całek pojedynczych, do 
których się sprowadza obliczanie całki:

1 = f f  f{x,y)dxdy
(O)

jeżeli obszar całkowania jest ograniczony parabolą o równaniu y =  #*, 
prostą y —  2 — x  i osią Y (fig. 80). Punkt A ma spółrzędne (0, 2) 
a punkt B spółrzędne ( 1 , 1 ), jak to wynika z rozwiązania układu rów­
nań y =  i y — 2 — x. Wykonując najpierw całkowanie według y, 
trzeba ustalić x. Stałemu x  odpowiada prosta równoległa do osi Y. 
Przecina ona obszar całkowania w dwóch 
punktach o rzędnych y, i yt, przyczem y, 
należy do łuku paraboli, a więc y, =  
a y, =  2 — x, jako rzędna prostej AB. Gra­
nice zań dla zmiennej x  są stałe, a miano­
wicie całkujemy od najmniejszego x, t. j. od
x, =  0 , do największego: x 2 =  1 .

A więc:
i i-*

I  =  J j f(x , y) dy dx
0 •»

Jeżeli chcemy zmienić porządek całkowania, pig go
to należy rozłożyć dany obszar na dwie części:
OBC i ABC, albowiem w każdym z tych obszarów będą inne granice 
(zmienne) dla x. Wobec tego należy także całkę 1 rozłożyć na dwa do- 
dajniki, w myśl uwagi 3 na str. 226. I tak w obszarze OBC, przy sta­
łem y, zmienia się x  od odciętej osi Y  do odciętej paraboli, t. j. od x t =  0 
do xt =  \/~y- Dla zmiennej y granice całkowania są stałe: od y, = 0  
do y, =  1 . W  obszarze zaś ABC  zmienia się x  od x x =  0 do odciętej 
prostej AB, t. j. do xt =  2 —  y, a granice dla y są-stałe, a mianowicie
y, =  1 , y, =  2. Zatem przy tym porządku całkowania jest:

. \>

/ = j T  j f ( x ,  y)dxdy-{- y* j  f(x, y) dxdy
0 0 1 0

2) Zbadać, jaką postać ma obszar całkowania w całce:
o xĄ-2a

- / /  f{x, y) dydx
0 JAj*—** <

Jak się zmieni sposób obliczania tej całki, gdy zmienimy porządek cał­
kowania?
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Rzędna zmienia się od y =  \/aa — x i do y =  x  -f- 2 a, t. j. od laku 
półkola o promieniu a, o środku w początku układu, do linji prostej, 
przedstawionej na fig. 81. Odcięta zmienia się od x  =  0  do ¡c =  (i, 
t. j. od osi rzędnych do prostej równoległej do tej osi w odstępie a. 
Obszar całkowania ma zatem postać czworokąta krzywolinjówego ABEF.

Gdybyśmy zmienili porządek całkowania, to 
trzebaby rozłożyć całkę na 3 dodajniki, odpo­
wiadające obszarom ABC, ACDF  i DEF. 

Otrzymamy w ten sposób:

a a  ¿a a

— J J A®. y)dxdy + y y V ( a ,  y) dx dy +

+

• ł<2 a

j  j  f[x ,y )dxdy

3) Wyznaczyć granice całkowania, jeżeli obszar całkowania jest 
trójkątem o wierzchołkach A (—  1 , 0), J3(l, 2), C(4, — 1) (fig. 82). Przy

pomocy znanego z geometrji analitycznej 
wzoru:

y - y i _  ® — ®,
y\ — ®i — ® 2

otrzymujemy równania boków tego trójkąta: 

A B ...y  =  x  - f  1 
B C ... y —  — a; -f- 3 
<4C... 5 j/ -f- x  -f- 1 = 0

Jeżeli całkujemy najpierw według x, to trzeba ustalić y Widzimy, że 
wtedy otrzyma się inne granice (zmienne) dla x  w części AEB, a inne 
w części AEC. Wobec tego trzeba rozłożyć całkę po całym trójkącie ABC 
na dwa dodajniki w następujący sposób:

r* J* 3—y, 0 3—y

— J  I  y) dx dy — j '  J V(®, y) dx dy - f  j  J f ( x ,  y) dx dy

Przy zmienionym porządku całkowania trzeba inaczej rozłożyć obszar, 
a mianowicie zapomocą prostej BF  Wtedy:

t-i *+l t -*+3

= J  f  /(®. y )dydx-\~ j  J  f(x , y) dy dx

-!<*+>>
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4) Obliczyć pole obszaru, zawartego między parabolą o równaniu y = x 2 
a elipsą o równaniu btx t -j- a*y® =  a * 6 ® (fig. 83). Według wzoru (.161) 
pole tego obszaru ma wartość

D = J "  j  dx dy
u>)

Gdybyśmy całkowali najpierw według x, to trzebaby obliczać osobno 
obszar, leżący nad cięciwą AB a osobno 
pod nią. Dogodniej jest jednak całkować 
najpierw według y Wtedy granice dla y

są y, —  x*, y, =  -  \a* — X1. Najmniejszą

odciętą jest odcięta x  —  —  m punktu A, 
w którym parabola przecina elipsę a naj­
większą odcięta x  — m punktu B. Odcięte 
te otrzymuje się przez rozwiązanie układu równań: paraboli 

Zatem:

: ł ^

elipsy.

, S|
~ rm  a  '

D — J  J  dy dx = J ' — x 2 — a ;2j  dx
—m jT* —m

Używając dla pierwszej części tej całki wzoru (25a) na str 25, otrzy­
mujemy:

D  —  Im \ a ‘i  —  m8 -(- a 2 are sin W ) —  | w s

5) Nad ćwiartką D koła o równaniu x 2 -f- y 2 =  r 2 wznosi się po­
wierzchnia krzywa, określona równaniem:

p xy

(jest to paraboloida hiperboliczna; por. przykład 1  na str. 223). Obliczyć 
ćrednie wzniesieniem tej powierzchni nad poziom (X Y ). Chodzi tu o obli­
czenie średniej wartości y funkcji p x y  nad obszarem D. Z wzoru (163) 
otrzymujemy:

1
^ "“ 75

(D)

Pole obszaru jest D  =  ^r® n. Jeżeli całkujemy najpierw według x, to 

granicami całkowauia dla x  są: x, 0 , \rl — y* a dla y od y2* O  de
y, — r. Zatem:

r f

* = r * ń f , f P x * d x d *

pxy  dx dy

ł

i
*



6 ) Obliczyć objętość części walca kołowego o promieniu a na fig. 84, 
wznoszącą się nad trójkątem OAB , który jest połówką kwadratu OCAB

o boku a. Równanie walca kołowego tak po­
łożonego, jak na fig. 84, ma postać:

x* -)- z* =  a !

Obszarem całkowania jest trójkąt OAB, którego 
bok OA ma w układzie X, Y  równanie y =  x.

Funkcją, którą mamy całkować, jest z =  

a* \a* -  x*. Użyjmy wzoru (164), a więc:

-ffr*
(O)

x*dxdy

Wygodniej będzie ciłkować najpierw według y, a więc do obliczenia 
tej całki użyjemy wzoru (160). Przetnijmy obszar całkowania dowolną 
prostą równoległą do osi Y, to y, jest stale równe 0, a y, =  x, jako 
rzędna punktu, leżącego na prostej OA. Granicami całkowania według y 
są więc y, = 0  i yt = x .  Najmniejszą odciętą dla tego obszaru jest x  =  0, 
a największą x  =  a, a więc granicami całkowania dla a: są a, = 0 , a, =  a. 
Wobec tego:

V — x3y

x a

0 0

Ostatnią całkę obliczymy najłatwiej, używając podstawienia: a* — x * — t 
a stąd —  2 x  dx =  dt, czyli xdx — — \dt. Dla *  =  0 jest t =  aJ, a dla 
m — a jest t =  0 A więc:

a 0 0

(Niechaj czytelnik okaże, że przy zmianie porządku całkowania należy 
obrać dla x  granice x { =  y, x2 — a, a dla y granice y, = 0 , y 2 =  a).

Interesującem jest, że wzór na objętość tej części walca.nie zawiera 
liczby u. Objętość części tego walca, wznoszącej się nad całym kwadra­
tem OCAB, me jest bynajmniej równa podwójnej objętości części, wznoszącej
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się aad połówką OAB  tego kwadratu. Objętość ta bowiem ma wartość 
\a*n, jako ćwiartka walca równobocznego o promieniu a, a to jest różne 
od 2 V = % a *. A  więc przez poprowadzenie przekroju OAF  rozpada się 
ćwiartka walca na dwie nierówne części:

r = £ a 5 i r , = ^ a s7t — £ a 3 —  a3(% — $■)

Utcaga. Takie bryły spotykamy w architekturze, a mianowicie t. iw . sklepieni» 
klasztorne składa się z 8 powierzchni postaci FAB , 
zestawionych tak, jak to uwidoczniono na fig. 85a 
w rzucie na płaszczyznę poziomą (kreski na ry­
sunku biegną wzdłuż tworzących walców). Nato­
miast sklepienie krzyiowe składa się z 8 części 
powierzchni walcowej, mających postać E A F  na 
fig. 84, zestawionych obok siebie tak, jak wska­
zuje fig. 86 b.

7) Przy pomocy całki podwójnej możemy obliczyć objętość elipsoid/ 
trójosiowej o równaniu:

(Obliczaliśmy ją już w inny sposób w § 231, przykład 2). Weźmy pod 
uwagę ósemkę tej elipsoidy (por. fig. 76, str. 225). Obszarem całkowa­
nia jest ćwiartka elipsy OAB  o równaniu:

J +  czyH x  =

Funkcja podcałkowa ma postać: '

1/7 f
i - i i - f i

Całkując najpierw według x, mamy następujące granice całkowania:

a dla y: 

Zatem:

^  =  0 , x t — |  \b' — y*

Vi = 0 , y,

"o i

Po wykonaniu rachunków otrzyma się:

V =  £ abc Ti.
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8 ) Obliczyć objętość, zawartą między powierzchnią elipsy o równaoin;.

„ 2
, r  _  ,

a* ' b*

powierzchnią o równaniu:
z — A x i -f- Ry*

gdzie A i B są liczbami dodatniemi (jest to paraboloida eliptyczna, por. 
tom I, str. 43) i pomiędzy powierzchnią walca eliptycznego o tworzących 
prostopadłych do płaszczyzny (Z 7 ),  mającego tę elipsę za kierownicę.

Obliczmy ćwiartkę tej objętości, a mianowicie objętość nad ćwiartką 
elipsy. Jeżeli całkujemy najpierw według x, to granice całkowania są 
takie same, jak w poprzednim przykładzie; jeżeli zaś całkujemy najpierw 
według y, to granicami całkowania dla y są:

Vx =*= 0 * ]/a* —  x l

granicami zaś dla x  są &, =  0 , xt = a .  Rozdzielmy odrazu całkę z funkcji z 
na sumę dwóch całek i wykonajmy w pierwszej z nich najpierw całko­
wanie według y, a w drugiej najpierw według x. A  więc:

b- \ ^

\V —J J A xt dydx-\-J ij By* dx dy — /, - f  J*
0 0 0 0

Otóż pierwszą całkę obliczamy w następujący sposób:

Óa V ^

7, =  ̂ A  xa y | dx — ~ J ^ X* — X1 dx
O 0 O

Używając podstawienia x  — a sin t, otrzymujemy:

Jt n

/j =  £ A ba3̂ (s in  2 ty dt =  % A b a *J '(l — cos 4 t)dt =
0

Drugiej całki nie trzeba nawet obliczać, albowiem różni się ona od pierw­
szej tylko tem, że zamiast A występuje B, a a i b należy pomieniać ze 
sobą. Wobec tego:

Bab*n
1% 16

więc:

V =  \n  a b ( A a 'JS6 *)
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§ 255. Pole powierzchni (Komplanacja powierzchni).
Obliczaliśmy dotąd tylko pola powierzchni obrotowych, a używaliśmy 

do tego celu całki pojedynczej (por. § 232). Do definicji i obliczania 
pól dowolnych powierzchni, a więc także nieobrotowych, użyjemy całki 
podwójnej.

Weźmy pod uwagę część powierzchni o równaniu z =  f{x,y\  wyciętą 
przez walec, którego podstawą jest dowolny obszar regularny D, a two­
rzące są prostopadłe do płasz­
czyzny (X Y )  (fig. 8 6 ). Załóżmy, 
że badana powierzchnia posiada 
płaszczyznę styczną, nie pro­
stopadłą do (X Y ),  w każdym 
punkcie nad obszarem D. Za- 
pomocą dwóch systemów pro­
stych równoległych do osiJC i Y  
rozkładamy obszar D na ele­
menty P n P f  -PN- Nad każdym 
z fiich budujemy słup prosty, 
ograniczony z jednej strony 
elementem danej powierzchni, 
w ogólności krzywym. Każdy 
taki element p'r powierzchni za­
stępujemy ścianką płaską sr 
punkcie A, o spółrzędnych £r, rjn a ograniczoną pobocznicą odpowiedniego 
słupa o podstawie pr. Utwórzmy sumę tych ścianek stycznych:

ii

s, =
»-i

Tworząc dalsze, coraz drobniejsze podziały obszaru D. otrzymamy w ten 
sposób ciąg St , St1...S p... takich sum.

Definicja. Polem P  badanej części powierzchni nazywamy granicę 
ciągu sum Sp ścianek stycznych, otrzymanych przez ciąg kolejnych po­
działów obszaru D  (i danej powierzchni), na elementy, których średnice 
dążą do zera (t. j. przez ciąg tych podziałów, przy których największe 
średnice dążą do zera).

Okażemy, że ta granica istnieje, gdy funkcja f(x , y) jest ciągła 

i posiada cząstkowe pochodne: p —  ^  == [x, y) i q =  —  =  fy(x. y), ciągłe

w obszarze D. I  tak pr jest rzutem- płaskiej ścianki stycznej s, na płasz­
czyznę (X Y ),  zatem:

» , . =  s, cos y, czyli s, =  — '  —
cos yr

Fig. 8 6 .

styczną do niego w jakimkolwiek jego
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gdzie yr oznacza kąt ostry, zawarty między płaszczyzną styczną w punkcie 
^riir,Vr) a płaszczyzną (A T ).  Cosinus tego kąta wyrażamy wzorem (por. 

tom I, str. 339):
1

cos y —  ■■ . ,= =
h +/>* +  ?•

ezyli:
___________ 1____________

°°ł V "  \\ +  y) 4 - T f M

W cos y, należy brać na (x, y) spółrzędne dowolnego punktu prosto­
kąta p„ np. (£ ,, 17,).

Mianownik jest funkcją zmiennych ®, y; nazwijmy go krótko ę (x ,y\  
A więc:

s  =  p r - |/l +  / ? (£ ., T]r) +  / ? (£ .,  iyr)  * = < p ( £ r ,  Vr) • P ra:
Sj =  Vr)'Pr

r - 1

Funkcja <p(x, y) jest ciągła w obszarze Z), a więc granica ciągu takich 
sum, gdy średnice elementów pr dążą do zera, istnieje i w myśl uwagi 2  
na śtr. 226, jest równa całce:

f  f  <p(tc, y) dx dy czyli / / h - f  f l (x ,  y) +  f\[x, y) dx dy
(fi) (DY

Zatem pole. P  badanej części powierzchni jest równe tej całce. Używając 
skróceń p, q na cząstkowe pochodne, otrzymujemy ostatecznie następu­
jący wzór na pole powierzchni o równaniu z — f(x , y) nad obszarem D:

(16» )

Obliczanie pola powierzchni krzywej nazywamy komplanacją tej po­
wierzchni; znając bowiem liczbę P, możemy z łatwością znaleźć płaską 
powierzchnię (np. prostokąt lub koło), mającą pole równe polu tej po­
wierzchni krzywej.

Wzór (165) możemy także pisać w postaci:

(165a)

przyczem y jest kątem, zawartym między normalną do badanej powierzchni 
a osią Z. Wyrażenie, znajdujące się pod całką, nazywamy elementem po­
wierzchni i oznaczamy je  krótko symbolem da.
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A więc:

Uwaga Celem łatwiejszego zapamiętania tego wzoru zwróćmy uwagę na to. że 
jest on analogiczny do wzoru na długość luku:

Przykłady.

1 ) Jak wielką powierzchnię wycina prostopadłościan, którego wierz­
chołki podstawy mają spółrzędne A (0, 0), £ (3 ,0 ), C(0, 6 ), Z) (3 ,6 ) z po­
wierzchni o równaniu:

z — \2 xy

(Jest to stożek eliptyczny, którego wierzchołek leży w początku układu 
a osie X  i Y  są tworzącemi; oś jego jest symetralną kąta X O Y ). 

Obszarem całkowania jest prostokąt ABCD. Zatem:

e 3

b

Ale:

a więo:

8 8

Stąd:
6 8 

P ~ / w » J

0

( I )

2) Obliczyć pole powierzchni, wyciętej z kuli o równaniu: 

¡0» - f  y « -j_ _  o* =* 0
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przez dwa walce o równaniach:

( I I )  X* -\-y ' — ax —  0, ( I I I )  ®* +  y* +  aaj =  0

Na fig. 87 przedstawiono ósemkę kuli.
Kierownicą pierwszego walca jest koło o równaniu ( I I )  a tworząca

są równoległe do osi Z.
Pochodne cząstkowe p i q obli 

czarny s uwikłanej formy (I):

f , 2x
P ------ f . ------- 27 —

w

*JL.
2z

y
z

Jeżeli całkujemy najpierw według x, 
to zmienne granice dla y są y1 =  0 , 
yt — \ax — X2, a x  zmienia się od 
x, —  0 do Xi —  a. Całkowita po­
wierzchnia, wycięta z kuli przez 
ten walec, składa, się z 4 takich 
części: dwie leżą na górnej pół­
kuli, dwie zaś na dolnej. Widocz- 

nem jest, że drugi walec wycina dwa okna o równej powierzchni. Zatem:

Fig. 87

r - ' f f 1*-.
+  y* +  2 * dy dw

czyli:

dy dx

x2 — y*

Obliczenie tej całki jest dość mozolne. Najpierw sprowadza się wew-

nętrzną całkę zapomocą podstawienia t = do funkcji arcus sinus
\a* -  x !

a następnie przy całkowaniu według x  używa się całkowania „per par- 
tesu Dochodzi się ostatecznie do wyniku:

P ^ 8 a *(§  -  O

Wynik ten uzyskamy w jednym z następnych paragrafów (§ 258) 
znacznie szybciej, wprowadzając za x  i y nowe zmienne w całkę podwójną.

Powierzchnie, wycięte z kuli przez takie dwa walce, stykające się 
z sobą wzdłuż osi 2 ź, nazywamy oknami V i v i a n i ’ego.
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§ 256. Związek całki podwójnej z całką krzywolinjową. Twier­
dzenie Greena-Ricinanna.

Całka podwójna po obszarze ma bardzo bliski związek z całką krzy­
wolinjową, braną po brzegu tego obszaru.

Weźmy pod uwagę całkę krzywolinjową po linji zamkniętej L  z do­
wolnej funkcji P(x, y), ciągłej w obszarze 
domkniętym regularnym, zamkniętym tą liują:

1 = J  P X̂) y } dx

Załóżmy o linji Lv że każda prosta równo­
legła do osi Y  przecina ją najwyżej w dwóch 
puuktach (jak na fig. 8 8 ) i że w równaniach 

y =  yi{ą>), y — y2{x) łuków ABC i ÄEC, tworzących tę linję zamkniętą, 
yi(x) i yt {x) są funkcjami ciągłemi. Okażemy, że ta całka krzywolinjową 
jest równa ujemnej wartości całki podwójnej po obszarze D , zamkniętym

tą linją, z funkcji ---• Zakładamy przytem, że ta cząstkowa pochodna

jest ciągła w całym danym obszarze domkniętym D. Twierdzimy więc, że:

(166)

Dowód. Wykonajmy w tej całce podwójnej najpierw całkowanie 
według y. Granicami całkowania dla y są yt (x) i y2(x). Granicami zaś 
całkowania dla x  są skrajne odcięte * , —  a, x, —  b. Zatem:

* M*

3 P

J I Ę d x d y = - i i % iy d *
(D) a /i(x) •

Całką z -x~ według y jest oczywiście P(x,y ), a zatem:dy

—j f l y  d x d y ~ —J \ (P (x , y2(x )) — P {x , y x (cc)) dx =
( D )

a b

— f  P(x>Vt ( x ) ) d x +  I'P (cc, y t (& )) dx

Pierwsza z całek prawej strony jest całką krzywolinjową z funkcji P (x , yi 

po łuku CBA, druga zaś po łuku AEC.
Bachanek różniczkowy i caikowy. T. 2. \
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A więo;

- m  dx dy —  j  P(x, y) dx -f- J'P(w, y) dx
<OI ĆOA AEC

J  P(x, y)dx =y P(®, y) da?
ĆBAed

Kierunek obiegu linji L, zaznaczony porządkiem liter CBAEC, jest do­
datni, albowiem przy takim obiegu mamy powierzchnię D  po lewej ręce. 
A więc całka podwójna po jakimś obszarze da się wyrazić zapomocą 
całki, branej tylko po brzegu tego obszaru. Zdawaćby się mogio, że mając 
wykonać całkowanie po obszarze, trzeba znać wartość funkcji dla wszyst­
kich punktów tego obszaru; tymczasem okazało się, że wystarczy znać 
wartości tylko na brzegu obszaru, ale wartości innej funkcji, a miano-

9P
wicie nie funkcji podcałkowej - - , lecz funkcji pierwotnej (względem y) P.

dy
Z czemś podobnem spotkaliśmy się już w całkach pojedynczych,

I tak:

dx =  F(b) -  F{a)

Przy tem całkowaniu w przedziale od a do b mogłoby się zdawać, te 
trzeba znać wartości rzędnych dla każdego pupktu tego przedziału; tym­
czasem wystarczy znajomość rzędnych dla końców przedziału, ale nie dla 
funkcji F '(a?), tylko dla funkcji pierwotnej F(x).

Twierdzenie analogiczne do twierdzenia, wyrażonego wzorem (166), 
otrzymujemy, wykonując najpierw całkowanie według zmiennej x . Otrzy­
mujemy mianowicie pomiędzy całką krzywolinjową po linji zamkniętej L

z funkcji Q(x, y) według y, a całką podwójną z funkcji —  po obszarze, 

zamkniętym tą linją L, następujący związek:

(167) JJ1®dxdy ~f Q(w'y)dy
CO)  { L )

90
Zakładamy przytem, że Q(x, y) i y  są ciągłe w obszarze D , a linja L

o*C
ma z każdą prostą równoległą do osi X  najwyżej dwa punkty wspólne. 

Pozostawiamy czytelnikowi szczegółowe przeprowadzenie dowodu. 
Utworzywszy sumy całek po obu stronach wzorów (166) i (167), 

otrzymujemy następujący wzór ogólny:
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(168)

W zór ten zawiera w sobie wzory (166) i (167) jako specjalne przypadki 
(dla Q =  0 lub P —  0). Twierdzenie, wyrażone tym wzorem, nazywamy 
twierdzeniem Greena-Rlemanna. Dowiedliśmy prawdziwości jego dla 
obszarów Z), zamkniętych takiemi linjami L, 
które każda prosta równoległa do osi spół- 
rzędnych przecina najwyżej w dwóch punk­
tach. Twierdzenie to jest jednak prawdziwe 
także dla ogólniejszych obszarów, a miano­
wicie dla takich, które można rozłożyć na 
skończoną liczbę obszarów powyższego typu 
(jak np. na fig. 89). Aby to okazać, wypisu­
jemy dla każdego częściowego obszaru wzór G r e e n a - R i e m a n n a  i two­
rzymy sumy prawych i lewych stron tych wzorów. W  ten sposób otrzy­
mamy po lewej stronie jedną całkę podwójną, braną po cał^m danym 
obszarze, a po prawej, sumę całek krzy wolinjowych. Otóż te części całek 
krzywolinjowych. które są brane po linjach, rozcinających dany obszar 
(jak np. po linji AB  na fig. 89), odpadną w sumie, ponieważ przebiegamy 
te linje dwukrotnie, raz w jednym kierunku, a drugi raz w przeciwnym. 
Wskutek tego otrzymamy ostatecznie po prawej stronie jedną całkę krzy- 
wolinjową, braną po linji L, zamykającej cały dany obszar.

pp  O
O funkcjach P [x , y), Q(aj, y), zakładaliśmy, że są ciągłe

Fig. 89

3 y '
w danym obszarze; założenia te są istotne.

§ 257. Zastosowanie twierdzenia Greena-Riemanna do badania 
całek krzywolinjowyeli i różniczek zupełnych.

Wiemy, że wartość całki krzywolinjowej J '(P (x ,y )d x - { -  Q(x,y)dy),

ab
branej pomiędzy dwoma punktami A, B% zależy w ogólności nietylko od 
spółrzędnych tych punktów, lecz także od drogi, łączącej te punkty, po 
której całkujemy. Nadzwyczaj ważne są w zastosowaniach te przypadki, 
w których wartość tej całki krzywolinjowej nie zależy od drogi-(a zależy 
tylko od punktów końcowych). Przy pomocy twierdzenia G r e e n a - R i e ­
ma n n a  znajdziemy warunek konieczny i dostateczny na to, aby wartość 
całki krzywolinjowej między stałemi punktami była niezależna od drogi.

dp  3Q
Niechaj funkcje P (x , y), Q{x, y\ -r- i będą ciągłe w jakimś obszarze W  
(fig. 90). 3y 3x
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Weźmy pod uwagę dowolne dwa punkty A, B z tego obszaru i dwie 
drogi ACB, AEB, łączące te punkty, a nie mające pozatem żadnych

punktów wspólnych i leżące całkowicie w obsza­
rze W. Żądamy, aby całki krzywolinjowe po 
ty eh drogach były sobie równe, t. j. aby się 
spełniała równość:

(R) J  (Pd x  +  Qdy) = j "  (P d x  +  Qdy)

Przenosimy drugą całkę na lewą stronę i otrzymujemy:

J  (P d x  +  Qdy) =  0

AEBCA

Nazwijmy literą L  iinję zamkniętą AEBCA , ograniczającą jakiś obszar D, 
to całka po tej li-nji ma postać:

(P d x  -f- Qdy) =  0  

Na podstawie twierdzenia G r e e n a - R i e m a n n a  jest także

Z / ® - ® * * -(O)

Koniecznym i dostatecznym warunkiem na to, aby ta całka miała war­
tość 0 dla każdego obszaru D , zawartego w W, jest, aby zachodziła 
równość:

(169)

dla wszystkich punktów obszaru W.
Istotnie, warunek ten jest dostateczny. Wtedy bowiem funkcja pod­

całkowa jest stale zerem, a stąd wynika na podstawie twierdzenia o war­
tości średniej, że i całka po każdym obszarze D , zawartym w W7, jest 
zerem.

Warunek ten jest także konieczny. Gdybyśmy bowiem mieli w ja­
kimś punkcie obszaru W

F{x ' y ) = d£ - dJ y = a = ł=°* np « > °

to wskutek ciągłości tej funkcji musiałby istnieć jakiś (niewielki cho­
ciażby) obszar Z),, otaczający ten punkt, w którym ta funkcja byłaby stale 
dodatnia. Wtedy zaś i całka po tym obszarze Dx byłaby różna od zera.

9Q _ 3 P  
3x ‘ 9y
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I. Warunek (169) jest więc warunkiem koniecznym i dostatecznym nu 
to, aby całka krzywolinjowa między dwoma dowolnemi 'punktami obszaru W 
była niezależna od drogi.

Czyniliśmy założenie, że drogi A LB  i AĆB nie mają żadnych 
punktów wspólnych prócz końców A, B. Założenie to jest nieistotne Gdyby 
bowiem te drogi miały jakieś punkty, a nawet jakieś luki wspólne, to 
obierając trzecią drogę A FB , nie mającą z niemi żadnych punktów wspól­
nych prócz końców, mielibyśmy:

j '  (P d x

afb

4 -Q d y )— j  {Pdx +  Qdy)

AEB

a stąd wynika równość (R).

i J (Pdx +  Qdy) — f\(P d x + Q d y )

AFB  ACB

Uwaga. Twierdzenie to jest prawdziwe nawet wtedy, gdy się nie uda znaleźć 
takiej drogi AFB.

Z warunkiem (169) spotkaliśmy się już w rachunku różniczkowym 
(por. tom I, str. 347), a mianowicie okazano tam, że jest to warunek 
konieczny na to, aby wyrażenie:

P (x , y) dx -f- Q(x, y) dy

było różniczką zupełną. Obecnie możemy okazać, że jest to także waru­
nek dostateczny, to znaczy, że jeżeli ten warunek jest spełniony, to istnieje

du
taka funkcja u(x,y ), dla której P  jest cząstkową pochodną a Q cząst­

kową pochodną

Otóż z równości:
du
9x P{oc, y )

otrzymujemy:
X

« ( » .  y )— f  P{<x ' y ] dx +

gdzie a jest dowolną stałą. Różniczkujemy obie strony według y (stosu­
jąc do pierwszej całki regułę L e i b n i z a ,  por. str. 203, wzór (150)) 

i  otrzymujemy:

du r  dP , . , . .
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u to ma bvó równe Q[x, y). Uwzględniając warunek (169), otrzymujemy 

zatem:

a więc: 

cayli:

Q(w, y) — <** 4- <p' (y) =  0(®> y) — 0(«. » ) 4- <p' (y)
a

<P'(y) =  Q(<*, y)

v (y )
= / w “ '

y) dy +  U

gdzie ó jest dowolną stalą. 
A więc:

(170)

Otrzymaliśmy więc całą gromadę funkcyj (różniących się od siebie tylko 
o dowolną 3 tałą liczbę), dla których P  dx +  Q dy — du jest różniczką 
zupełną

II. A  więc warunek (169) jest konieczny i dostateczny na to. aby 
wyrażenie:

Pdx-\-Qdy
by to różniczką zupełną.

Wzór (170) pozwala odrazu scałkować każdą różniczkę zupełną, t, j. 
znaleźć funkcję, jeżeli podana jest je j różniczka zupełna. Przykłady cał­
kowania różniczek zupełnych bez użycia tego wzoru ogólnego podano 
już w tomie I  (str. 347— 349, przykłady 2 i 3). Zastosujmy ogólny wzór 
do przerobionego tam przykładu:

(4y* — 2 ) dx -f- ( 1 2  xy% — 6  y)dy

Funkcja z{x,y\ której różniczką zupełną jest to wyrażenie, ma według 
wzoru (170) postać:

*  y

i(x ,y ) — J ( \ y a — 2 ) dx -j- J {\ 2 a y *  — 6 y) dy - f  C,

=  (4y 'X —  2x) | (4 ay8 —  3 y *) | - f  Cx —
a  b

=  4 y\x — 2x — 3 y* +  2a — 4aó* +  36* +  Cx 

Oznaczając wyrażenie 2 a — 4o6*-|-3ó*-(-Ct jedną literą O, otrzymujemy» 

z =  4 y s® — 2 x  —  3 y l -\- C

zgodnie z wynikiem, otrzymanym w tpmie I.
Z tego twierdzenia II i z I (o niezależności całki od drogi) wynika 

następujące twierdzenie.
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111. Warunkiem koniecznym i dostatecznym na to, aby całka krzywo- 
hnjowa:

i  (P d x  - f  Qdy,
AB

była niezależna od drogi całkowania, jest, aby wyrażenie pod całką było 
różniczką zupełną.

Przykłady, omówione w § 242 na str. 189— 190, potwierdzają ten 
wynik.

Tak np. wartość całki krzywolinjowej:

/ (3 ydx-\-2xdy)

zależy od drogi, ponieważ wyrażenie, stojące pod znakiem całki, nie jest 
różniczką zupełną. Istotnie:

3 (3 y) , 2(2®) 
9y ^dy -  9x ~~~y ~ 5y - r  3x

to zaś znaczy, że nie spełnia się waruuek (169). Natomiast w całce:

jest: / '(2 xy dx - f  ®* dy)

?<|3> =  2 . idy 3x

a zatem wartość tej całki nie zależy od drogi.
Czyniliśmy założenie, że funkcje P(x, y), Q(x, y) i ich cząstkowe 

pochodne są ciągłe w badanym obszarze. Jeżsli te fankoje są nieciągłe 
chociażby w jednym punkcie, leżącym między drogami całkowania, to 
całki krzywolinjowe po tych drogach mogą mieć różne wartości, chociaż 
funkcja podcałkowa jest różniczką zupełną. Tak np. obliozmy całkę krzy- 
wolinjową:

j _  C w dy —  ydx
J  ®* -j- y*

(Ł)

po kole o równaniu ® * -| -y * = l .  Łatwo zbadać, że wyrażenie, znajdu­
jące się pod całką, jest dla (®, y) ={= (0,0) różniczka zupełną funkcji

aretg Ł . Wartość tej całki otrzymamy, używając dla koła przedstawienia 
HO

parametrowego. x —  cos t, y =  sin t. Wtedy:
Zn _ 2  n

1
0

Zn Zn/cos*t sin*/ , C
1
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Ta całka po linji zamkniętej ma wartość różną od zera. Obliczając ją  
po drodze ADC  (fig. 91), t. j. po góruem półkolu, otrzymujemy:

a zatem otrzymujemy różne wartości po tych 
dwóch drogach. Pochodzi to stąd, że funkcje:

aą nieciągłe w punkcie 0 (0 , 0 ), zawartym między temi drogami całkowania.
Twierdzenia I —I I I  mają szczególnie wielkie znaczenie w fizyce 

matematycznej. I tak widzieliśmy (w § 244), że praca, wykonana po do­
wolnej drodze przez dowolną siłę, wyraża się całką krzywolinjową. Ogra­
niczając się narazie do jednej płaszczyzny, otrzymujemy na pracę wzór:

L==J '  № ’ y)dx +  y) dv)
AB

gdzie P , Q są składowemi siły w kierunkach osi spółrzędnych. Otóż war­
tość tej pracy nie zależy od drogi wtedy i tylko wtedy, gdy wyrażenie 
pod całką jest różniczką zupełną jakiejś funkcji u{x,y). Tę funkcję na­
zywamy ■potencjałem. Teorja potencjału jest bardzo ważnym działem fizyki.

Podobnie w termodynamice przyrost energji i entropja(\>or.str. 196—197) 
wyrażają się zapomocą całek krzywolinjowych z różniczek zupełnych; 
zatem zmiana energji i entropji nie zależą od drogi, po jakiej się odbywa 
proces termodynamiczny („drogą“ nazywamy tu wykres, podający zwią­
zek ciśnienia z objętością lub z temperaturą).

Podobne pojęcia stosuje się w hydrodynamice, aerodynamice i w nauce 
o elektryczności.

Omówimy tu jeszcze w krótkości zastosowanie twierdzenia G r e e n a -  
R i e m a n n a  w teorji funkcyj zmiennej zespolonej. Widzieliśmy już 
w § 245, że całka z funkcji f(z ) =  P (x , y) -f- i • Q{x, y) zmiennej zespo­
lonej z — x - \ - i y  składa się z dwóch całek krzywolinjowych, branych
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po jakiejś lióji na płaszczyźnie zmiennej zespolonej, a mianowicie (por. 
wzór (149) na str. 200):

ZB

"ScB

Załóżmy, że P, Q i ich pierwsze cząstkowe pochodne są funkcjami 
ciągłemi w jakimś obszarze, zawierającym drogi całkowania.

Całka ta nie zależy od drogi wtedy i tylko wtedy, gdy funkcje 
P{x^y) * <?(®, y) spełniają warunki:

(171)

9 P ____ 9Q
9y da 
9 Q _ 9 P  
9y 9a

wtedy bowiem całki po prawej stronie są niezależne od drogi. Te dwa 
warunki są równaniami różniczko wemi cząstkowemi pierwszego rzędu, 
zwanemi równaniami C au oh y ’ego i R i e ma n  na.

Załóżmy, że funkcje P i Q posiadają także drugie cząstkowe po­
chodne ciągłe. Różniczkując pierwsze z równań (171) według y, a drugie 
według a, otrzymujemy:

9*P _  9»Q
9y* 9x9y

*  stąd:

9*Q _  9*P 
9y9x ~9a*

Podobnie różniczkując pierwsze równanie według a a drugie według y, 
otrzymujemy:

^ - 4 . ^ - 0  
9xl 9y*

Widzimy więc, że zarówno funkcja P(x, y) jak i Q{x, y), w razie, gdy 
całka z f(z) nie zależy od drogi całkowania, branej z pewnego obszaru, speł­
niają w tym obszarze to samo równanie różniczkowe cząstkowe 2 -go rzędu:

(172)
3’ m __
9xŁ ' 9y*

zwane równaniem L a p 1 a o e’a.
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9 258. Wprowadzenie nowych zmiennych w całkę podwójną.
Widzieliśmy w §§ 207 i 219, jak ważne usługi oddaje przy obli­

czaniu całek pojedynczych całkowanie przez podstawienie, czyli wprowa­
dzenie nowej zmiennej x =  <jp(ł) zapomocą wzoru

t>
J  f(x ) dx =  J  /<?*<)) <p'(t) dt

Uogólnimy obecnie tę metodę na całki podwójne. Chcemy mianowicie 

wprowadzić w całkę:

i  =  / / /(®, y) dxdy
- U '

nowe zmienne w, v zapomocą związków funkcyjnych:

( a )  X  = >  g>(w, v ) ,  y  =  V (u ,  o )

Związki takie interpretujemy geometrycznie (por. tom I § 121) jako 
odwzorowanie płaszczyzny ( UV ) na płaszczyznę (X Y ) (fig. 92). Będziemy

brali pod uwagę tylko takie od­
wzorowania wzajemnie jedno­
znaczne, w których obszarowi 17 
na płaszczyźnie (U V ) odpowiada 
jako jego obraz również jakiś 
obszar D  na płaszczyźnie (X Y ) 
i to tak, że brzegowi L ' od­
powiada brzeg L , przebiegany 

w tym samym kierunku, co L\  Zbadajmy najpierw, na co zmieni się 
prostsza całka, a mianowicie:

(b) D —J '  J  dxdy
U>)

gdy wprowadzimy za x, y nowe zmienne zapomocą wzorów (a). Całka ta, 
ak wiadomo (por. wzór (161) str. 228), przedstawia pole obszaru D. Wynik 
uzyskamy najszybciej, przechodząc przez twierdzenie Greena-Riemanna,  
I tak, chcąc zastosować do tej całki podwójnej to twierdzenie w postaci

wzoru (166), kładziemy P = y ,  a więc ~  =  1 i otrzymujemy:

D = z j  J "  1 • dxdy — — J  y
(O) (Ł)

dx

Wprowadźmy nowe zmienne w tę całkę krzywolinjową. Gdy punkt 
o spółrzędnych (aj, y) przebiega na płaszczyźnie (X  Y ) linję (L ) o równania
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/'('0 ,y )  =  O, to punkt (u, v) przebiega na płaszczyźnie ( U V ) linję (L ' ) 
o równaniu v), » ) )  =  0 , a więc zmienne u i v są w tej całce
krzywolinjowej w ten sposób od siebie zależne. Otrzymamy więc:

D =  —J  ydx— — J  rp(u,v) d(<p(u,v)) =  —J i p { u , ° g^ duj
(i> </') m

czyli:

(Ł-)

Zastosujmy do tej całki krzywolinjowej znowu twierdzenie G r e e n a -  
R iema n  na (wzór 168), kładąc:

* ^  =  p (u,v),

a zatem:

Ale:

Q(u, v)

D -  - J J [Ł  (* tI ) -  f. * s )) *■*
ido

dtp 9q> 3 »y
3 « 3« 9v du

A więc:
3 «  3®

(D'l

Funkcja podcałkowa jest tu jakobjanem (por. tom I, str 362) fnnkcyj 
a=ę>(w , ®), y — ip{u,v) według zmiennych w,®. Oznaczając ten jakobjan 
krótko symbolem

j  _  y)
3(u, v)

otrzymujemy:

(o) n m(DO

3{x, y) 
v)

du dv

Zakładaliśmy, że przy odwzorowaniu brzeg L  obszaru D  był obiegany 
w tym samym kierunku, co brzeg L ' obszaru £/. Gdyby ten obieg był prze- 
eiwny, to całki krzywolinjowe po linji L!, występujące w powyższym dowo­
dzie, miałyby znaki przeciwne tak, że ostatecznie otrzymalibyśmy wzór:

(d) H i(D-|

3'®,y) 
9(u, v) du dv
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jeżeli uczynimy obecnie jeszcze dodatkowe założenie, że jakobjan nie zmie­
nia znaku w obszarze całkowania, to we wzorze (c) musi on być nieujemny 
(albowiem wartość całej całki musi być dodatnia, ponieważ jest równa 
dodatniej liczbie D ), a we wzorze (d) niedodatni. Wobec tego we wzorze (c)

możemy położyć 3{x,y)
d(u, v)

3(x, y)
9(u, v)

a we wzorze (d) —
S(x, y)
<? («, V)

Otrzymujemy zatem dla obydwu przypadków wspólny wzór :

9(<P>y)
?(«, »)

(173) D - i  f \ 3lx'y >J J 3(«, w)(O')
du dv

Uwaga. Założenie, że jakobjan nie zmienia znaku w obszarze D ' , jest w ścisłym 
związku z wzajemną jednoznacznością odwzorowania. Można mianowicie wykazać, że 
gdy jakobjan zmienia znak, to istnieją takie punkty w obszarze D  na płaszczyźnie (X T J , 
którym odpowiadają dwa różne punkty w obszarze D ’ . (Dowód znaleźć można w podrę­
czniku E. GrOursat’a p t. Cours d’ Analyse mathdrnatiąue, r. 1902, tom I. str. 299).

Otrzymaliśmy w ten sposób wzór na pole obszaru D, leżącego ua 
płaszczyźnie ( J F ) ,  wyrażony zapomocą spółrzędnych u, v.

Z wzorów (b) i (17j )  wynika w zór’

(O) (D'>

W  ten sposób wprowadza ęię nowe zmienne w całkę podwójną z bardzo 
prostej funkcji: f(x , y) =  1 ■ Opierając się na tym wzorze, wyprowadzimy 
już z łatwością ogólny wzór, dla dowolnej funkcji podcałkowej f(x , y).

Przedtem jednak zwrócimy jeszcze uwagę na to, jakie znaczenie 
ma jakobjan dla odwzorowania, określonego równaniami:

X —  <p{u, v) y — ip(u, v)

Zastosujmy do całki, występującej we wzorze (173), twierdzenie o wartości 
średniej (wzór 16Sa na str. 229), to:

(174) 

a stąd:

D .. № y )
13(u, v)

■D ' 

“- i

d(x y) I
d(u, aj I

Weźmy pod uwagę jakiś stały punkt u — u0, v —  v0 obszaru D'.
Gdy średnica ó obszaru D‘ dąży do zera, to także średnica obszaru D 

dąży do zera, a granicą ilorazu pól tych obszarów jest:
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(175) lim
d- * 0

/>
rr

1 3̂ °: V)
19(u, v)

U~Uij

t. j. bezwzględna wartość jakobjanu w punkcie u =  u0, v — v0. Granicę 
atosunku obrazu D  obszaru D ‘ do samego obszaru D' nazywamy stosun­
kiem zniekształcenia powierzchni przy odwzorowaniu

Widzimy stąd, że bezwzględna wartość jakobjanu w każdym punkcie 
jest równa stosunkowi zniekształcenia powierzchni przy odwzorowaniu. Sto­
sunek ten gra bardzo ważną rolę w geodezji i w kartografji matematycz­
nej. Odwzorowania, w których jakobjan ma stale wartość 1 , nazywamy 
wiemopowierzchniowetni.

Takiemi odwzorowaniami wiernopowierzchniowemi są oczywiście 
obroty i przesunięcia. Tak np. obrót osi spółrzędnycb o stały kąt a jest 
określony równaniami :

x  =  u cos a —  v sin a 
y =  u sin ct v cos a

Ponieważ x u —  cos a, x„ = — sino, y„ =  sina, y, =  eosa, przeto jakobjan 
tego przekształcenia ma wartość:

—  cos® a — (— sin* a) =  1
3(tt, t>)

Podobnie dla przesunięcia osi, określonego wzorami i

x  =  u -f- a 
y =  V +  b

otrzymuje się:

3(x,y) _  11 01 
d(u,v) I o 1  |

Istnieje jednak także bardzo wiele innych odwzorowań 
chniowych, nieraz bardzo skomplikowanej postaci.

Przejdźmy do wprowadzenia nowych zmiennych 
podwójną :

f f(D)
f(x ,y )dxdy

wiernopowierz 

w ogólną całkę

Obszar D' na płaszczyźnie (U V )  dzielimy na dowolne elementy <x,
Niechaj im odpowiadają w obszarze D na płaszczyźnie- (X  Y ) ele­

menty w,. Na podstawie wzoru (174) jest:

oj, =
3{x,y) 
9(u, v)

gdzie vt oznaczają spółrzędne odpowiednio dobranego punktu z obszaru o,.
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Niechaj f[x ,y ) =  f(x [u , v), y(u, » )) =  F{u, v). Tworzymy sumy postaci:

2 f(Xi'Vi) ta,=2  F{u>-Vt) | O,

Ciąg takich sum, gdy średnice wszystkich elementów w,, a. dążą do zera, 
ma jako granicę odpowiednią całkę podwójną (por. str. 230). Przechodząc 
więc do granicy, otrzymujemy:

(176)
f j
(O)

Cf(x,y)dxdy =  y V  
oo

r f ( x ( u ,  V ) ,  y(M, V ) )
2(x,y) 
3(u, v)

du do

Jest to wzór na wprowadzenie nowych zmiennych w całkę podwójną: 
trzeba wprowadzić te zmienne zapomocą wzorów x  =  q>(u, v), y =  xp[u,v) 
w fnnkcję podcałkową, pomnożyć ją  przez bezwzględną wartość jakobjano 
i zmienić obszar całkowania. W idzimy tu wyraźną analogję z odpowiednim 
wzorem dla całek pojedynczych.

Przykłady.
1 ) Obliczyć pole wycinka pierśeiema kołowego (fig. 93) przy pomoey 

całki podwójnej.
Użycie wzoru:

D = J  J  dx dy
(D)

byłoby ta bardzo niedogodne, ponieważ trzebaby 
rozkładać obszar całkowania na 3 części (linjami 
kreskowanemi na figurze). Natomiast przy użyciu 

spółrzędnych biegunowych rachunek przedstawi się bardzo prosto, albo­
wiem obszarem całkowania będzie na płaszczyźnie (B, O) prostokąt, określony 
nierównościami:

r , < r < r t , <p, <q><<pt
Do użycia wzoru (173) potrzebny jest jakobjan. Otóż:

X —  r  cos cp, y —  r  sin q>

zatem xr =  cos <p, yr —  sin (p, x <f— — r sin qp, yv =  r  cos <jp, a w ięc:

/ =
cos <p, — r  sin (p 

| sin (p, r  cos ę? r cos2 qp —j— sin2 <p =  r

Widzimy więc, że jakobjan przekształcenia spółrzędnych prostokątnych 
biegunowe jest równy promieniom r.

na



256

Wobeo tego wzór (173) przyjmuje postać:

*P* fSt V * rt

D̂= f  frdrdtp = j j  r dr dtp =  £ j  r’| dtp = £(»1 — >•?) (ęp, - ?,)
W ‘ T  r ,  ! ? x

Oznaczmy ^>8 — == a, szerokość pierścienia r, — r, =  s, a długości
łuków, ograniczających ten pierścień, =  r,ct, ł1 =  r,a. Zatem wzór na 
pole wycinka pierścienia kołowego przyjmuje posiać :

t> =  i  ('i 4- n) (rt — **i) « =  e (A - f  ¿s)«
znaną z matematyki elementarnej,

2) Obliczyć powierzchnię 4 okien V iv ia n i ego (por. str. 240) i obję­
tość, pozostającą z kuli po wydrążeniu dwóch walców, wycinających te 
okna (fig. 87 sir. 240), Otrzymaliśmy przy użyciu spółrzędnyoh prosto­
kątnych wzór:

8  a( f  f — * * *  J J \ a ' ~ x
Ifl)

dy
l _ y *

Wprowadźmy spółrzędne biegunowe, to x %~\-y%= r * ,  a za dxdy trzeba wpro­
wadzić rdrdtp, jak to widzieliśmy w poprzednim przykładzie. Wobeo tego:

• dr dtp

7 »./ / m№ 0  r

Jeżeli ustalimy tp, to r śmienia się od r =  0 do O A (na fig. 87), t.j. 
do r  =  a • cos tp. Kąt zaś tp zmienia się w stałych granicach od ę  =  0 
do tp =  %. Wobeo tego:

§ f| 0090)
■ ~ rdr

p  ~  u f f \ w = a  -  >af -  * * = *  [
T l n

1 =  8 a J {— a sin tp

c o s  q>

dtp

-f- a) d<p =* 8  a*(cos tp -|- tp) I —  8 a*(g  — I )
o

Interesującem jest, że wzór na pole powierzchni, pozostającej z kuli po 
wycięciu tych 4  okien, me zawiera liczby ra, albowiem:

4a ‘ ?r — P  —  4 a* ji — 4n, « - j - 8 a *  =  8 ai

Objętość v ćwiartki jednego walca, przedstawionego na fig. 87, oblicza 
się wzorem (164) z § 263 przy użyciu spółrzędnyoh prostokątnych. 
W  naszym przypadku otrzymujemy:

v J ' J/a1 — xi — y% dy dx
on

ponieważ równanie górnej półkuli ma postać z — \fal — x* — y*.
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Przy użyciu Bpółrzędnycb biegunowych otrzymujemy:

^  a  COB gp

v = J J \ a ' — r* rdrdcp =  y (- - - 2  j d (p =  — (a 8 sin3<p —  as)<łę>
0 0 0 0 0 

Całkę z sin* <p obliczamy, jak wiadomo (str. 56), podstawiając cos q> =  i 
i otrzymujemy:

31
a* 2 o®

V =  —  3 ( i  COS8 q> — cos ę> - f  <p) 3~(— §  +  j  **)

Wobec tego szukana objętość ma wartość:

P =  | a 3 7i —  8  u =
4 a 3?i 8 as , . , , .. .
- 5 --------- 5 - ( - ! - + - ł ^ ) = = V e« S

3) Wyprowadzić wzór na komplanację powierzchni, mając podane 
jej przedstawienie parametrowe (por. tom I, str. 378— 380):

x <P(u, »), y — V{u, v), z =  x(u,v)

Gdybyśmy wyrazili z dwóch początkowych równań u i v jako funkcje 
zmiennych x  i y i wstawili te wyrażenia w trzecie równanie, to otrzy­
malibyśmy z wyrażone w zależności od zmiennych x  i y. Możemy jednak 
bezpośrednio przekształcić wzór (165) na komplanację na nowe zmienne 
u, v, wprowadzając za x  funkcję cp(u, v), a za y funkcję tp(u,v).

Pochodne cząstkowe p i q, potrzebne do tego wzoru, obliczono już 
w tomie I, na Btr. 380, a mianowicie:

z u Va Xayu Xa Za X„yu\
x„y„

> 9 —  2> —
xv z. « . y* 1

Są to ilorazy jakobjanów:

_  y) j  _  9(x,z) _  9(x, y )
1 9 (u, v)' a 9 (u, o)’ 3(w,t>)

Te pochodne p, q wprowadzamy pod pierwiastek, a ponadto mnożymy 
funkcję podcałkową przez jakobjan J. Otrzymujemy zatem:

f,==/ / F 1 + (!5 )I+(7 )V i * *
(£>')

(przy zależeniu, że jakobjan J  nie zmienia znaku w obszarze całkowa­
nia). Stąd wynika:

P  =

U>')f f i J\  -)- J\  du dv
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czyli:

(177)

Wprowadźmy następujące skrócone oznaczenia, używane często w teorji 
powierzchni:

E  =  xt +  y l+ z l
(178) F  — xux , +  yay, -f- zazv

G =  x lĄ -y lĄ - z i

Po zastosowaniu dô  sumy kwadratów, znajdujących się pod pierwiastkiem 
we wzorze (177), identyczności L a g r a n g e ’a (por. tom I, str. 481), otrzy­
mamy następującą skróconą formę wzoru (177):

(179)

Tak np. mając podane równanie powierzchni w postaci:

z == F (r , q>)

gdzie r,<p są spółrzędnemi biegunowemi ca płaszczyźnie (X Y ),  związanemi 
z x ,y  zapomocą wzorów x  =  r cos <p, y —  r  sin <p, możemy otrzymać 
z wzoru (177) wzór, wynikający z niego przez wprowadzenie spółrzędnych 
biegunowych. I  tak wiemy już, że jakobjan:

J  =
I %r y

I * 9 VT

4  =

J , =

2r V r

Z y  y  tp

\xr Z r

1 Xf p  Z(p

=  r cos ę  z, — sin q> z

—  cos <p zr  -f- y sin <jp z.

Jakobjany «/, i mają postać:

z, sin q>
Zv r cos <p 

cos (p zr 

— rsin<p Zv
Stąd:

./ ?+  J i =  r»a j +  ^

* zatem wzór na komplanację przyjmuje postać:

,,8<)) F=J  f V ,' +r'(T,;)’+ (£ )’*• *
ID)

Rachanek róimcikowy i całkowy T. 2. 17
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4 ) Dana jes* powierzchnia śrubowa o równaniu:

(por. tom I, str. 64). Obliczyć pole tej części powierzchni śrubowej, którą' 
wycina z niej walec o równaniu:

a>* +  y* =  a*

a którą zakreśla prosta (oś x~ów) przez obrót o kąt a od położenia po»
czątkowego.

Używając spółrzędnych biegunowych, otrzymujemy;

a stąd: 

ezyli:

2 n z r sin a* 

2 m — <p -f- nn

’  =  2 i ‘r  +  '

Używając wzoru (180), otrzymujemy:

p=y J ]/ * + [£ $ » *
to-»

Obszar całkowania wyznaczamy z następujących warunków: <p zmienia 
się od 0  do a a r zmienia się od 0  do a, a więc granice całkowania są 
stałe. Zatem:

+ (A)’dr

Stosując do tej całki wzór (3&) ze str. 48, otrzymujemy ostatecznie:

P =  | [.(/«■ +  ( ¿ )  +  -’ "(a  +  (/«• +  ( ¿ ) ' ) j

6 ) Obliczyć pole powierzchni, wyciętej przez walec o rówoamu 
-}- y* =  o* z paraboloidy hiperbolicznej o równaniu:

a?* —  y *  —  2  m z

(por. tom I, str. 44— 45).
Wprowadzamy spółrzędne biegunowe w równanie powierzchni i otrzy­

mujemy:
_  r* cos* q> — r* sin* q> __ r*cos 2 ę>

2 m 2 ««
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Stąd:
9 3  r C08 2<p di
P r  m  ’  P«jp

Według wzoru (180) jest'

r1 sin 2  tp

w i ę c

i  [ \ /  r* C08*2® r481Dř2®

~ U  “
_ y  j y ^ + ^ d

KD)
_____ 2 î <j

P~J J  1 +  n̂>rdrd(p =J  J  ^  ^ w ’  +  r * d r  d(p
Podstawiając r* =  i, otrzymujemy z łatwością:

J L*mt+rtdr = (m2 +  r«)* I _  (wi8 -j- o«)''* - w»» 
3 m ! 3 m

Wobec tego
3»

- / *
(*n* -f- « ’ )''* — m* 2 n

---------dqp =  3^, ( ( ," + a ) m l

6 ) Obliczyć pole trójkąta sferycznego prostokątnego, znając jego 
boki i kąty, np. pole trójkąta 
ABC na fig 94. Równanie kuli 
o promienia R ma postać:

» »  - f  y* +  ** =

Po wprowadzenia spółrzędnych 
biegunowych aa płaszczyźnie 
(X Y ), otrzymamy dla górnej 
półkuli:

z =  -  r«
a stąd

Í L =  o, 3-ž -
9(p dr YR* _  r8

A więc

P=J J\- + grir,'^̂ =J
<0 -> IO')

Obszarem całkowania jest krzy wolinjowy trójkąt BCC  na płaszczyźnie ( X  Y) 
(fig. 94 i 95), przyczem BC jest łukiem koła, a BC  łukiem elipsy, powsta

17*
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jącej przez rzut koła wielkiego BE  oa płaszczyznę (X Y ). Połówkami osi 
tej elipsy są OB —  R  i OF =  R cos /3, albowiem /3 jest kątem nachylenia

płaszczyzny BEO do płaszczyzny (X Y). 
Równanie tej elipsy ma postać:

R * ^  R ' cos*/3

Wprowadzając tu ® =  rcosqp, y =  rsinę>, 
otrzymamy:

R cos /3
(I) r =

\\ — sin* /3 cos* (p
=  f(<P)

Według zmiennej r trzeba całkować od 
łuku elipsy do łuku koła, zatem od r po­
danego wzorem (I) do r =  R, a dla tp 

granice są stałe, od q> =  0 do q> — a. A więc:
« K

P— f dr dtp

J l ^
Całkowanie według r (przy użyciu podstawienia r * = < )  daje — R\R* — r* 
a po podstawieniu granic otrzymamy:

sin /3 sin <p
d<p

f/l — sin* /3 cos* <p

Używając tu podstawienia sin /3 cos <p =  z, otrzymamy:

< «
Pz=  —  R * arc sin z| =  —  R* arcsin(sin/3cosę>)j =  /?*[/3— aro sin (sin/3 cos a)]

Bardzo prosto wyraża się ten wzór przy pomocy kąta a. I tak z wzoru:

cos a =  sin /3 cos a

znanego z rozwiązania trójkąta sferycznego prostokątnego, otrzymujemy:

sin (^ n —  a) =  sin /3 cos a
a więc:

arc sin (sin /3 coś a) =  arc sin (sin (£ n — a)) =  \ n — a 

Wobec tego:
P  — R*(p — | n - f  a) — R i (a -f- /3 -f- £ n —  n)

Wyrażenie, zawarte w nawiasie, jest nadwyżką sumy kątów trójkąta sfe­
rycznego nad kąt półpełny i nazywa się ekscesem sferycznym e. A więc:

P = R * e
Doszliśmy w ten sposób do wzoru, który się wyprowadza w trygonometrji 
sferycznej wprost z rozważań geometrycznych i trygonometrycznych.
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§ 259. Całki podwójne niewłaściwe.

Dotychczas zajmowaliśmy się tylko takiemi całkami podwójnemi, 
w których funkcja podcałkowa była ograniczona, a obszar całkowania 
skończony. Rozszerzymy pojęcie całki także na przypadki, w których 
funkcja podcałkowa jest nieograniczona w otoczeniu pewnego punktu lub 
w otoczeniu pewnej linji i na takie przypadki, w których obszar całko­
wania rozciąga się do nieskończoności.

Omówmy najpierw pierwszy przypadek. Weźmy pod uwagę np. całkę:

dx dy

i / * » + VI I(O)

po kole, określonem nierównością as*-}- y* Sj 1. Funkcja podcałkowa jem 
ciągła w całym obszarze całkowania z wyjątkiem punktu 0  (0 , 0 ). Gdy

się zbliżamy do tego punktu, funkcja . * wzrasta nieograniczenie.

W  całce:
\x* - f  y*

//:
<D>

dx dy 
OD — y

branej po tern samem kole, występuje w funkcji podcałkowej linja nie­
ciągłości, a mianowicie prosta y — x.

Chcąc określić całkę podwójną w takich przypadkach, zamykamy 
te punkty i lioje, w których występuje nieciągłość, w niewielkie obszary, 
leżące całkowicie w obszarze całkowania. Tworzymy dowolny ciąg D„ 
takich wyłączonych obszarów, których pola zdążają do zera. Całka pod­
wójna istnieje dla każdego obszaru, otrzymanego z D przez wyłączenie D,\ 
oznaczmy taki pozostały obszar symbolem D — D„. Jeżeli istnieje granica:

lim //■(i-o .)
/(as, y) dx dy

wspólna dla dowolnego ciągu obszarów wyłączonych o polach, dążących 
do zera, to tę granicę nazywamy niewłaściwą całką podwójną z funkcji 
nieograniczonej /(as, y) po obszarze D  i oznaczamy ją  tym samym sym­
bolem, co całkę właściwą, a mianowicie:

/ /
(D)

/(as, y) dx dy

Przykład. Obliczyć całkę niewłaściwa:

das dy 

+  V*- J M< O) .
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po Kole x i +  y* ^  1- Wyłączamy z tego kola kółko spółśrodkowe o pro­
mieniu ó < ^ l. Obliczamy całkę właściwą po pozostałym pierścieniu koło­
wym, a następaie obliczamy jej granicę, gdy <5 dąży do zera. Najdogod­
niej jest w tym celu wprowadzić spółrzędne biegunowe. Otrzymamy:

Uwaga. Można też było obrać ciąg D„ kół o promieniach, dążących 
1

do zera, np, równych — i badać granicę całek po obszarach D —  /)„, 

gdy n —> oo.
Przejdźmy do drugiego przypadku, a mianowicie do całek podwój­

nych po nieskończonych obszarach. Przykładami takich nieskończonych 
obszarów są: cała płaszczyzna, ćwiartka płaszczyzny, część płaszczyzny, 
zawarta między dodatniemi częściami osi spółrzędnych a dodatnią gałęzią 
hiperboli równobocznej o równaniu xy =  a2, część płaszczyzny, ograni­
czona z jednej strony parabolą i t. p. Chcąc określić całkę podwójną po 
takim nieskończonym obszarze D, tworzymy ciąg D„ skończonych obsza­
rów, zawartych w D i dqżących do D  (mamy przez to na myśli, że biorąc 
dowolnie wielki stały obszar R, możemy dobrać tak ' wielkie n, że te 
części obszarów D i D„, które leżą w i?, będą się różnić od siebie do­
wolnie mało).

Dla każdego skończonego obszaru D„ istnieje całka właściwa:

Jeżeli istnieje granica:
U '

/(®, y )dx d y

f(x, y)dxdy

niezależna od tego, jaki ciąg obszarów D„, dążących do D, obierzemy, 
to tę granicę nazywamy niewłaściwą całką podwójną po nieskończo­
nym obszarze D i oznaczamy ją tym samym symbolem, co całkę właściwą, 
a mianowicie:

f(x,y)dxdy

Dowodzi się, że do całek podwójnych niewłaściwych można stosować 
szereg twierdzeń, któreśmy poznali przy badaniu całek właściwych (np 
twierdzenie o wprowadzeniu nowych zmiennych).



Przykłady.
1 ) Obliczyć całkę

1

® * ( 1  +  »*)
a»

dxdy

p o  nieskończonym obszarze D, zawarty ro między dodatnią gałęzią hyperboli

równobocznej o równaniu y =  —,
X

między osią X i prostą x  —  1
( f i g .  9 6 ) .

Aproksymujmy obszar D zapo- 
mocą ciągu obszarów D„, ograni­
czonych u dołu nie osią X , lecz 
prostemi równoległemi do niej w od­

stępach -  lo równaniach y — — j .
i

=.'i" I =.'r./ f&J =.lT. J - iiiT?) h® » ( i + y *
I Jt—I I

»=.-
>

1 =  lim f  —l — {— y +  l )dy  =  lim [ — | log ( 1  +  y*) +  arctgy] =  
m-too J  I  “ p  y  m-*oo

<*>•> 
I

n

—  li“  I — i l o g 2 + 4  l o g ( l - f - i )  - f  are tg 1  — arc tg i
«  —*oo ^ \ «  /  ̂ W

1 =  — i  log 2  +  ?

Łatwo stwierdzić, że tę samą wartość otrzymamy, aproksymując obszar D  
zapomocą obszarów D'„, ograniczonych hyperbolą, osią X , prostą x  =  1 
i prostemi ® = n >  1. Wtedy trzeba najpierw wykonać całkowanie według y

od y — 0 do y =  — a następnie według x  od *  =  1 do x  =  n. Można

też stwierdzić, że tę samą granicę otrzymamy dla dowolnych ciągów D„ 
obszarów, dążących do D.

2 ) Całkę pojedyńczą niewłaściwą (L a  p la c e ’s):

OO
0

obliczyliśmy już w § 224 (przykład 9) w dość skomplikowany sposób, 
Przy pomocy niewłaściwej całki podwójnej rachunki przedstawiają się 
nader prosto.
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I tok weźmy pod uwagę całkę:

A =  J  J  * da dy
(D )

przyczem obszarem całkowania D niechaj będzie cała pierwsza ćwiartka 
płaszczyzny. Aproksymujmy obszar D  zapomocą ćwiartek kół D1 o pro­
mieniach R a o środku w początku układu.

Wprowadzając spółrzędne biegunowe, otrzy­
mujemy:

J " J  e~*~y‘dxdy ■== J'e~*rdrdcp —
(DO

= J  i ( l — e^)dqp =  f ( l  — e***)

Gdy R dąży do oo, to wartość tej całki właściwej dąży do £.
Zatem całka niewłaściwa A ma wartość:

A — J  y V * * -y’ dady =  f
(O)

Można okazać, że ta graniczna wartość nie zależy od tego, jakiemi obsza­
rami aproksymujemy D. Chcąc przejść od tej całki do całki pojedyn­
czej, obliczmy całkę podwójną po obszarze D", który jest kwadratem 
o boku R. Otóż:

R R R KJ  J e - * - * d a d y  —  j  J ' dady —  J . J <r** d® j  dy =

0 0 0 0 
R R R

=J e~* d » • J e~* dy — e ~ *d x j

( D" )

Ponieważ obszar D’ zawiera się w D‘\ a D "  w Z), funkcja zaś podcałkowa 
jest dodatnia, przeto:

K
£ ( 1  — e- * )  <  | y V * !d®j <  J 

0
a stąd:

< .J e -* d a  <   ̂\n
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Gdy B dąży do oo, to pierwsze i ostatnie wyrażenie dążą do tej samej 

liczby i  Yn. Zatem i całka, zawarta między niemi, dąży do tej samej 
granicy, a to znaczy, że:

zgodnie z wynikiem, otrzymanym w § 224.
3) Całką E u l e r a  drugiego rodzaju nazwaliśmy (por. § 224, str. 111) 

funkcję:

n p )  = J  r ' z p'\)dz

przyczem p >  0 .
Zapomocą podstawienia z =  ®* przekształcamy tę całkę na.-

oo

r ( p )  — 2J  e -^ a f^ d a

Zbadajmy iloczyn dwóch takich całek, a mianowicie:

r { p ) - r ( q )  =  2 / e-*w>r~'ditJ  e~* mlp-'dx ■ 2 J ê y»-'dy

Iloczyn ten można przedstawić w postaci jednej całki podwójnej niewłaściwej:

f ( p ) ,i,<?)=4/ /
(D)

e~*~y‘ a?p~' y*~l dxdy

przyczem obszarem całkowania D  jest cała pierwsza ¿wiartka płaszczyzny. 
Obszar ten możemy aproksymowaó — podobnie jak przy badaniu całki 
L a p l a c e ’a — zapomocą ćwiartek kół o środku w początku układu 
a o promieniach wzrastających nieograniczenie.

Wprowadzając spółrzędne biegunowe, otrzymamy zatem:

7  OO

T (p )  • F ig ) =  ł j * ^ e r *  r lp~XJtti*~x cos5 * - 1 <p sin* “ 1 <p r dr d(p =
o o

OO Í

=  2  J '  ra p + dr • 2  Jc,oaip~ <p sin4<-1qp d(p

Pierwsza całka jest znowu funkcją J* dla argumentu p q, drugą zaś 
nazywamy całką E u 1 e ra  pierwszego rodzaju, lub funkcją B (czytaj „beta“ ) 
zmiennych p i q. A więc:

T (p )  • r ( q )  =  r ( p  - f  q) • B{p, q)
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Stąd wynika, że całka Eulera pierwszego rodzaje wyraża się w następujący 
sposób zapomocą całek drugiego rodzaju:

n , + j )(181)

przyczem:

(182)

Uwaga. Przez wprowadzenie nowej zmiennej 1 zapomocą podstawienia cos*«f> — t, 
można tę całkę pierwszego rodzaju sprowadzić do następującej postaci

i

(182 a) fl(P, ?) = J (1 — ty - 'd t

tj. do całki oznaczonej dwumiennej (por- uwagę na str. 46). Całki Eulera znalazły 
liczne zastosowania w rachunku prawdopodobieństwa i przy obliczaniu rozmaitych 
skomplikowanych całek oznaczonych.

§ 260. Przybliżone metody obliczania całek podwójnych.

W  praktyce zachodzi nieraz potrzeba obliczania całek podwójnych 
z funkcyj bardzo skomplikowanych (np. przy obliczaniu pojemności okrętów 
przy obliczaniu z planu warstwicowego objętości, wznoszącej się nad 
jakimś poziomem). Wystarcza przytem zwykle obliczyć przybliżoną war­
tość całki.

Najprostszą nasuwającą się tu myślą jest użycie jako przybliżonych 
wartości całki tych sum, których używaliśmy przy sumowej definicji 
całki podwójnej. Mając więc obliczyć całkę:

7 = J  f  fix.y)dx dy
(O)

dzielimy obszar całkowania zapomocą prostych równoległych do osi spół- 
rzędnych na drobniejsze elementy. Pole p,k każdego takiego elementu 
mnożymy przez wartość funkcji f(Ę„r]k), należącą do dowolnego punktu 
tego elementu i tworzymy sumę tych iloczynów:

(183) 1 — Jj? /■(£„ Tjk) pik
*-l ł-1

Granica ciągu takich sum, gdy liczba dodajników wzrasta nieograniczeDie, 
jest ściśle równa całce podwójnej; biorąc zaś jakąś jedną sumę, złożoną



a skończonej liczby dodajników, otrzymujemy przybliżoną wartość danej 
całki podwójnej. Jeżeli obszar D jest prostokątem i rozłożymy go na 
prostokąty równe o bokach h i k, a dla każdego z nich weźmiemy war­
tość fiinkcji w lewym dolnym wierzchołku, to otrzymamy:

/ =  h k (f(x lt y ,) -+- f { a yt) +  A * , ,  y ,) +  f (x „  y,) +  ... +  fix ,, yk) - f  ...)

Wzór ten, dający sumę objętości odpowiednich prostopadłościanów, wzno­
szących się nad obszarem całkowania, jest uogólnieniem poznanej dla 
całek pojedynczych metody prostokątów (por. § 226 A).

Nie mamy żadnej wskazówki, dotyczącej stopnia dokładności tego 
przybliżenia I. Wskazówkę taką otrzymamy, zamykając wartość całki 
pomiędzy dwie liczby ograniczające. Bierzemy w tym celu z siatki pro­
stokątów, otrzymanych na płaszczyźnie (X Y ),  najpierw tylko te, które 
leżą całkowicie wewnątrz obszaru D i pole każdego z nich mnożymy przez 
najmniejszą wartość, jaką w nim funkcja przyjmuje. Załóżmy, że funkcja 
Ąx, y) jest nieujemna w całym obszarze D.

Otrzymamy w ten sposób sumę:

(183 a) t, =  pn mn  -f- pu m12 +  ... - f  pu mu ^  1

gdzie m„ oznacza najmniejszą wartość funkcji w prostokącie p„.
Suma ta przedstawia sumę objętości prostopadłościanów minimalnych. 
Za górne ograniczenie całki I  bierzemy sumę iloczynów pól pro­

stokątów zarówno wewnętrznych, jak i tych, które zawierają tylko części 
obszaru, pomnożonych przez największe wartości funkcji w każdym z tych 
prostokątów. Otrzymamy w ten sposób sumę:

(183 b) 1 S i i, =  pn M xi -J- p12 M12 -j- •. ■ +  pnm Mn„

gdziG Mn oznacza największą wartość funkcji f (x ,y ) w prostokącie p„.
Suma ta przedstawia sumę objętości prostopadłościanów maksymal­

nych. A więc jest:
ą g / S ą

Średnia arytmetyczna:

(183c) r  =  ' - ^ r -

będzie więc w ogólności wartością bardziej przybliżoną, aniżeli i, lub i, 
Wzory te dają zwykle tylko dość grube przybliżenie; aby je zaostrzyć, 
trzebaby rozkładać obszar całkowania na bardzo wiele drobnych elemen­
tów. Lepsze przybliżenie otrzymamy, uogólniając metodę trapezów. WTeźuiy 
pod uwagę prostokątny obszar całkowania D, określony warunkami: 
8 , ó, SŚ y S  i podzielmy go na równe prostokąty o bokach
, *1 o   Si  . 6 , rj , ,
n — ------ - i k —  —— -— . ¿amiast prostopadłościanu, wznoszącego się
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nad każdym takim składowym prostokątem, weźmy prostopadłościan ścięty, 
którego dno górne (pochyłe w ogólności) jest styczne do powierzchni 
o równaniu z => f(x, y) w punkcie, leżącym nad środkiem dolnego dna 
prostokątnego. Jeżeli wierzchołki tego prostokąta mają spółrzędoe (aj,, y,), 
(® „y,), 4 0  środek jego ma spółrzędne £(a>, -f-®,), i(y , -j-y t).
Oznaczmy wartość z funkcji f(x, y), należącą do tego środkowego punktu, 
znakiem:

,/a>j + ą  yi +  y,\,̂‘1, 2 ’ 2 J
Widzieliśmy (w § 252 w przykładzie 2), że objętość takiego prostopa­
dłościanu ściętego ma wartość: h • k • zVłVi. Suma objętości takich prosto­
padłościanów ściętych:

f- 1  / - 1

/, =  hk ^  z, , /(

jest bardzo dogodną wartością przybliżoną całki podwójnej, dokładniejszą 
zazwyczaj, aniżeli wartość, otrzymana z wzorów (183a, b, c). Użycie tego 
wzoru można uważać za uogólnienie metody trapezów.

Inny wzór przybliżony otrzymujemy, biorąc w każdym prostokącie 
zamiast wartości należącej do środka prostokąta, średnią arytme­
tyczną czterech wartości, należących do czterech wierzchołków prosto­
kąta, np. w pierwszym prostokącie wartość:

¿ («u  4- «u  +  z,, zn )
t

Sumując te wyrażenia, otrzymamy następujący wzór (Bu g a j e  w a):

m n

(185) l% — hk ̂  4- zt+\.i 4* « i. i+i 4- 2 /+u+i)
i-i i-i

Biorąc średnią arytmetyczną czterech wartości z, należących do środków 
boków prostokąta^ to znaczy np. w pierwszym prostokącie:

(184)

lub krótko: 

(184a)

i ( 3i,'i, 4" z‘i„■ 4- 4* *i/w*l =

-  * ( / ( » „ ^ ) + /K 4 - ) + ' № * • » ) )
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otrzymujemy następujący wzór przybliżony (MaDsiona) :

(186)

/, -  M 2  j i ( / - ( . . i L t l t o )  +  , ( •  +  * * , » , )  +  
/ - 1  / - 1

Z kombinacji wzorów (184), (185) i (186) powstały najważniejsze i naj­
bardziej rozpowszechnione wzory W o o l e y ’a, a mianowicie:

(187) A  =  * ( « .  + A )
(188) l b= t ( 2 I t + I t )

Podstawiając w te wzory wartości z, otrzymamy np. dla pierwszego pro­
stokąta w wyrażenia I t :

(187 a) ł  hkfa_,,t -j- aVli, -f- ẑ _,h -+- 2 >/»» -j- 2  a,/łVl)

a w wyrażeniu /t :
( I 8 8 a) hlcISzi^ zlb -j- zia -j- -f- zM)

Z kombinacji tych wzorów Woo l e y ' a ,  biorąc:

(189) Jt = * ( / .  +  2/,)

otrzymujemy uogólnienie wzoru S i mps ona .  Dla pierwszego prostokąta 
otrzymujemy np.:

(189 a) hlc(z11 -(- 4 -  zu  -}- zu  -j* 4(^,iVł —|- -f- -f- z,/t_a) -f- 162 ,^,,,)

Można dowieść, że wzór ten jest uogólnieniem wzoru S i m p s o n a  w geo- 
metrycznem znaczeniu, polega bowiem na zastępowaniu ścianek danej 
powierzchni ściankami, wziętemi z odpowiedniej paraboloidy eliptycznej 
lub hiperbolicznej (o równaniu z =  a®* -j- b y%).

Ten uogólniony wzór S i m p s o n a  jest mniej dogodny aniżeli wzory 
W o o l e y ’a, ponieważ dla każdego prostokąta składowego trzeba obliczać 
przy użyciu wzoru (189) 9 wartości funkcji z — f(a>, y), podczas gdy 
w każdym z wzorów (187) i (188) potrzeba tylko 5 wartości z dla każ­
dego prostokąta składowego.

Wyprowadzono wzory na oszacowanie błędu, który popełniamy, używając zamiast 
» a

prawdziwej wartości całki / : f(x, y) dx dy .wzoru przybliżonego. Tak nn. dl*

wzoru (184) otrzymano przez rozwinięcie funkcji f(x,y) na wzór Tay l ora  w oto­
czenia punktu x =  £, y =  £ i przez całkowanie tego wzoru następujące oszacowanie 
błędu I - I , - .
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gdzie M, oznacza największą wartość pochodnej /*> a f i ,  pochodnej t>y w całym pro-
stokącie, wyznaczonym zapomocą warunków 0 x  o, 0 g  y  g  k, gdy bok o po­
dzielono na m a bok b na n równych części

Podobnie dla wzoru (187) W o o l e y  a otrzymano

1 1
IM, a*b M, o ' b‘ Ma ab*\
\ m‘  m’ nl n* /

dŁf
prżyczem fi, oznacza największą wartość pochodnej - — , Si, pochodnej

pochodnej
5 Y
3y*

d*J_
)x*dyt

Dalsze wskazówki, dotyczące przybliżonych metod obliczania caiek podwójnych, 
znajdzie czytelnik w artykule C. Runge'go i F. Wi l l e r s ' a  p. t. Numerische und. 
graphische Quadratur und Integration gewöhnlicher und partieller Dierentialgleichum- 
gen (Enzyklopädie der mathematischen Wissenschaften, tom U, 9, str. 136 i aast.).

U st ęp  IV

CAŁKI POTRÓJNE, WIELOKROTNE I POWIERZCHNIOWE.

§ 261. 0 całkach potrójnych i wielokrotnych.

Weźmy pod owagę funkcję u — f(x ,y ,z ) trzech zmieDoych, okreś­
loną w jakimś obszarze trójwymiarowym i spełniającą w nim podobne 
warunki ciągłości, jakie zakładaliśmy przy badaniu całek podwójnych 
dla funkcji z —  f(x ,y ) dwóch zmiennych

Niechaj obszarem tym będzie prostopadłościan P, złożony z punktów 
o spółrzędnych x, y, z, spełniających warunki:

(a) b, S  y ^  6 8, c, ^  z ^  c,

Wyrażenie, otrzymane przez trzykrotne całkowanie fnnkcji u — f(x ,y ,z ) 
kolejno według każdej zmiennej (przyczem pozostałe zmienne uważa się 
za parametry), nazywąmy całką potrójną z tej funkcji po prostopa­
dłościanie P  i oznaczamy ją symbolem

'H

(190) l = j  J  f  f(x, y, z) dx dy dz — J"^ ^  j 'f (x ,  y, z) dxjdy^dz
^  <1»

Gałkę tę można też pojmować jako granicę odpowiednio wybranych cią­
gów sum dolnych, górnych lub pośrednich

*,

y™<pi, 2 M<*' 2 j№ .> rtnQp<
f-i <=» i r- 1

otrzymanych przez rozkład prostopadłościanu P  na S, prostopadłością - 
nów p, zapomocą płaszczyzn równoległych do płaszczyzn spółrzędnych.
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Okazuje się, że do tych całek potrójnych stosuje się twierdzenie 
o wartości średniej, wyrażone wzorem:

/"(as, y, z)dxdydz =  H ‘ P091) / / / '
gdzie n oznacza odpowiednio dobraną wartość pomiędzy kresem górnym 
i dolnym funkcji f{x, y, z) w całym prostopadłościanie P

Aby określić całkę potrójną po dowolnym trójwymiarowym obsza­
rze K, postępujemy podobnie, jak dla całek podwójnych. Wprowadzamy 
mianowicie funkcję pomocniczą f,(x, y, z), równą funkcji f(x,y,z) w obsza­
rze V, a równą 0 w pozostałych punktach prostopadłościanu P, zawie­
rającego cały ten obszar V

Całką potrójną z funkcji /"(®, y, z ) po obszarze V nazywamy całkę 
potrójną z tej funkcji pomocniczej /, (x,y, z) po prostopadłościanie P, a więc:

j  J  y V(a>, y, z) dx dy dz ~ J J  J F*dx d* ̂

Sprowadziliśmy w ten sposób to nowe pojęcie do znanego pojęcia. Rozu­
mując podobnie jak dla całek podwójnych, branych po dowolnych obsza 
rach D, dochodzimy do wniosku, że całkę potrójną po dowolnym obszarze V 
można obliczyć zapomocą trzech kolej­
nych całkować podanej funkcji f{x,y,z)
(a nie funkcji pomocniczej f x(x, y, z)), 
przyczem granice tych całkować nie 
będą już wszystkie liczbami stałemi 
(jak w prostopadłościanie), lecz jedna 
para granic będzie zawierała dwie 
zmienne, druga jedną a dopiero trze­
cia para przedstawia liczby stałe. Gra­
nice te wyzoacza się z postaci po 
wierzchni, ograniczającej obszar F, 
w następujący sposób. Niechaj każda 
prosta prostopadła do płaszczyzny (.Y P )
przecina powierzchnię, ograniczającą obszar V, najwyżej w dwóch punk­
tach { 6 g 98). Rzutem obszaru trójwymiarowego V na płaszczyznę (X Y )  
jest dwuwymiarowy obszar D. Walec, rzucający V na płaszczyznę (X Y ), 
dzieli powierzchnię ograniczającą V na dwie części o równaniach: 

z =  zx(x,y) i z =  z,(x,y )

Niechaj rzutem obszaru D  na oś ®-ów będzie odcinek, którego końca 
mają odcięte Oj i o*. Punkty A i B, należące do tych odciętych, dzielą 
reeg obszaru D na dwie części o równaniach:

f  =  ( « ) '  * ? « = * ( • )

a.
X 

o. w
0

n i
8

Fig. 98
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Całkujmy f(x , y, z) najpierw według zmiennej z. W  tym celu trzeba ustalić 
wartości x, y, t. j. obrać jakiś stały punkt C(x,y) w obszarze D. W y­
kreślmy przez ten punkt prostopadłą do płaszczyzny trafi ona po­
wierzchnię obszaru V w dwóch punktach, do których należą wartości a, 
i a*. Całkowanie według a należy zatem wykonać w granicach od a, [x, y) 
do zt (x,y) i otrzymamy:

T
f(x , y, a) dz

Wartość tej całki jest jakąś funkcją F (x , y) dwóch zmiennych (parame­
trów) x  i y.

Teraz trzeba obliczyć całkę podwójną z tej funkcji po obszarze D, 
a mianowicie trzeba ją całkować według zmiennej y w granicach od 
y =  y, (x) do y — y% (x) a otrzymany wynik, który będzie już funkcją 
tylko jednej zmiennej x, należy całkować w stałych granicach od ® =  a, 
do x  =  as. Otrzymujemy w ten sposób:

“I AÍ*> 2,(1.

(192) J  J  J f(x, y, z) dx dy dz =  J | J  | J  f(x, y, a) dzjdyj da
<r> «, AU) «ilxjr)

Podobnie przedstawia się rachunek

Fig. 99.

od x. granice zaś dla

przy innych, zmienionych porządkach 
całkowania, tylko trzeba odpo­
wiednio zmienić granice.

Do wzoru (192) można dojść 
także w inny sposób, a mia­
nowicie sprowadzając całkę po­
trójną do całki pojedyóczej 
z całki podwójnej. Obierzmy 
w tym celu jakąś stałą wartość * ; 
otrzymamy przekrój D (x ) obsza­
ru V  płaszczyzną równoległą 
do płaszczyzny bocznej ( YZ). 
Obliczmy najpierw całkę po­
dwójną z funkcji f(x ,y ,z) według 
z i y po obszarze D(x). Gra­
nice całkowania dla z będą za­
leżne nietylko od y ale także

t»y nie będą stałe, lecz zależne od x . A więc:

AM AOMf inx- y, z) dz dy — J'I J"f(xt y, z) dzj dy
°**> aW iiUj)
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Następnie należy zmieniać x od as do a, i wykonać całkowanie według 
zmiennej x. Otrzymamy w ten sposób znowu wzór (192).

Twierdzeuie o wartości średniej stosuje się także do całek potrój­
nych po dowolnych obszarach i przyjmuje dla nich postać:

(193)

gdzie V oznacza nie tylko obszar całkowania, lecz zarazem jego objętość 
a ¡i oznacza odpowiednio dobraną liczbę pośrednią pomiędzy górnym 
a dolnym kresem wartości funkcji w obszarze V. Wartość fi, obliczoną 
z tego wzoru, nazywamy średnią wartością funkcji trzech zmiennych f(x , y, z) 
w obszarze V.

Jeżeli f(x ,y ,z ) ma stale wartość 1, to oczywiście średnia wartość n 
jest także równa 1 i otrzymujemy z wzoru (193) następujący wzór na 
objętość:

(194)

Twierdzenie o wprowadzeniu nowych zmiennych uogólnia się także na 
całki potrójne, a mianowicie całka:

f (x , y, z) dx dy dz

przechodzi po wprowadzeniu nowych zmiennych zapomocą wzorów: 

X  —  < p ( u ,  v y w j  y =  V»(w, a, w), z  —  *(»*, v , w )
na:

m, n, to\ tp(u, v, w), z (m, v, «>)) • |«/| du dv dto

gdzie J oznacza jakobjao funkcyj <p,if>,x 8  V  j esl zmienionym odpo­
wiednio obszarem całkowania.

Przykłady.
1 ) Obliczyć całkę:

/ =  f f I x y  z dxdy dz

po prostopadłościanie, określonym warunkami: a, ó, <  y <ę hv

/  =  J '  J  ’j x y  z dzdy dz =  J *  j*\  Jy z dy dz =
il c\ bx <j|

= j  a\)yzdy dz=z £(a| — u{) j  j y z  dy dz
C\

Rachunek różniczkowy i całkowy. T. S.

c , ł>,
18
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Widocznie więc:
I =  *(aS—  o?) • №  -  6?) • №  -  c?)

Można było zatem odrazu przedstawić tę całkę / jako iloczyn trzech 
całek pojedynczych. Ogólniej:

J  j* J f (x )g (y )h (z ).d x d y d z — jh { z )  dz -J g (y ) dy - j * fix ) dx

2) Obliczyć objętość ósemki kuli o promieniu a przy pomocy całki 
potrójnej (fig. 100). Równania powierzchni ograniczających są: z, =  0 

(płaszczyzna (X Y )) i z% =  J/as — x* — y* (kula). Rzu­
tem tej bryły na płaszczyznę (X Y )  jest ćwiartka 

koła, zatem y, = 0 ,  y, = | la* — ®\ Odoięta zaś x  
zmienia się od x — 0 do x  =  a. Zatem:

- 1 »

de —  / / /  dx dy dz

Fig. 100.
Całkę tę najdogodniej jest obliczyć przy pomocy 

spółrzędnych biegunowych w przestrzeni, t. j. przez wprowadzenie nowych 
zmiennych (por. tom I, str. 381):

x  —  r  sin a cos 
y =  r sin a sin /? 
z — r  cos a

Jakobjanem tych funkcyj jest, jak łatwo stwierdzić:
/ 1  ,

J  =  r* sin a

Aby wyczerpać cały obszar całkowania, trzeba zmieniać r,a ,fł w stałych 
granicach, a mianowicie r od 0  do a, a od 0  do f  i /J od 0  do f. 
Wobec tego:

71 J l  J l  7t

" , S r* sin a dr da d(i =  J i(3 • J "sin a da • r* dr

(por. końcowy wzór w przykładzie 1 ). Zatem:

J l

V =  f  • ( -  COS 05) 1 - i  r*| =  f  • 1 • ‘i  =  4 ¡¡= 
o o

3) Obliczyć całkę D ir  i ch i e f a :

I  = J  j ' af~ l y"~l dx dy dz
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po obszarze, ograniczonym powierzchnią o równaniu j -(- j =  1

(l,m ,n  są liczbami dodatniemi) i ćwiartkami płaszczyzn spółrzędnycb, 
zawartemi między dodatniemi częściami osi. Wprowadźmy nowe zmienne 
zapomocą wzorów:

(!)= “• (»)’=*• ( i ) - -
Nietrudno obliczyć, że jakobjan ma tu wartość:

, abc l - i  l - i  ! - i 
■J =  -—  u ‘ vm wn 

Imn
Wobec tego:

1 * abc i- i  I - i i —i
(au 'Y  \bvm)‘' \cwn)r w" dudvdu>

ożyli:
O")

,  a ' Ó V  [ C C  t - i  « - 1 - - i  , , ,

~  ¡mii I  I  j  U V” W" dudvaw
<n

Obszarem całkowania V  jest czworościan, ograniczony płaszczyzną:

u -f- v -f- w =  1

i częściami płaszczyzn spółrzędnych, zawartemi między dodatniemi częściami 
osi (fig. 101). Jeżeli całkujemy najpierw we­
dług w, to granicami całkowania są:

=  0  i W7t =  1  — u — *

Przy uastępnem całkowaniu, według u, należy 
obrać granice:

o, =  0 , t>, =  1  — u

a wreszcie dla u granice są stałe: u, = 0 ,  w, =  1. A więc:

a W c ' 
Imn

1  I—« 1 —■—r

f ( f ( fu’ *•* 4W£ ’d w jd cjd *
0 0 0

Po wykonaniu całkowania według u? otrzymamy:

I l-o
r apbqci' C l C i i - i  - \
l — ^ J U “ ‘ ( 1  — — > ■ * ) * <

18*
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Celem obliczenia wewnętrznej całki użyjmy podstawienia;

v =  t ( 1  —  w), a więc dv =  ( 1  — w) dt 

Granice będą stałe: / =  0 i t —  1 . Otrzymamy zatem:

o o

Występujące tu ca|ki są całkami E u l e r a  pierwszego rodzaju, czyli 
funkcjami B (por. § 259, str. 266, uwaga), a więc:

Używając wzoru (181) na str. 266 i wzoru (a) na str. 111, możemy wyra­
zić prawą stronę zapomocą całek E u l e r a  drugiego rodzaju, a mianowicie:

• , a'b'<f r C l ) r ( i ) r ( - m)

lmr> r t f + i  + i + l )

Wszystkie powyższe rozważania rozszerza się bez trudności na całki 
poczwórne i wogóle wielokrotne.

Całkę »-krotną:

J  J  . . J / ( x , , ®2... x„) dxi daJ,... d®„
oblicza się p rzez» kolejnych całkowań. Obszar całkowania ( P ) dla n > 5  
nie da się już przedstawić geometrycznie, lecz określa się go zapomocą 
pewnych warunków analitycznych. Pomimoto używa się także wtedy 
terminologji geometrycznej, mówiąc o utworach przestrzeni wielowymia­
rowej. Tak np. jeżeli bierzemy jako obszar całkowania zbiór tych war­
tości ® ,,® i...® „, które spełniają warunek:

+ + + S *8
to nazywamy go „kulą »-wymiarową“ Całkę »-krotną:

/ / /  /  eto, dxt ... dx„

po tej kuli »-wymiarowej nazywamy jej objętością.
Wprowadzając nowe zmienne (które są uogólnieniem spółrzędnych 

biegunowych przestrzennych):

®t =  r  cos rpt , ®j =  r sin (pl cos ępa, ® 8 == r sin (p1 sin <jp, cos ę>3,... ®„_, =
=  rsinępjsinęp,... sin(pn_2cósgj„_,, xn —  rsinęp, sing?,... sinqp„_,
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można okazać, że objętość takiej kuli wyraża się wzorem;

F „ =  n i
(5)!

dla n parzystego

_  ‘ (2n) 2 •  ̂ dla n nieparzystego
3 - 5 - 7 . .  n

Stąd np. dla n =  2 otrzymamy F, =  i?2 Ti, t. j. powierzchnię koła; dla

n —  3 jest Vt — R “i -  — =  ^  i?8 7t, t. j. objętość kuli 3-wymiarowej, 
O o

Okazuje się, że gdy liczba wymiarów n wzrasta nieograniczeńie, to obję­
tość kuli w-wymiarowej o promieniu R dąży do zera.

§ 262. Zastosowanie całek podwójnych i potrójnych do obliczania
mas i momentów.

I. Masa. Jeżeli ciało ma w każdym punkcie taką Bamą gęstość q, 
to nazywamy je jednorodnem, a masę jego M  obliczamy, mnożąc tę 
gęstość przez objętość;

M — qJ  J  j  dx dy dz =  q -V

Jeżeli jednak ciało nie jest jednorodne, to wzór na obliczenie masy nie 
jest już tak prosty. Aby otrzymać taki wzór, trzeba najpierw podać defi- 
nicję gęstości w każdym punkcie ciała. Otaczamy punkt A(x,y,z) dowolnym 
elementem o objętości A F i  tworzymy stosunek masy AM, znajdującej się 
w tym elemencie, do jego objętości A V. Granicę tego stosunku;

AM
llm T ~ = < > (® .y ,* )&v-*o A V

gdy element objętości dąży równocześnie we wszystkich kierunkach do 
zera, nazywamy gęstością ciała w tym punkcie A. Gęstość ta zależy od 
położenia punktu A, jest więc funkcją trzech zmiennych x, y, z.

Podzielmy ciało na elementy np. zapomocą płaszczyzn równoległych 
do płaszczyzn spółrzędnych. Objętość Ax, Ayk Az, każdego takiego elementu 
mnożymy przez gęstość p(£„ rjt , £,) w dowolnym jego punkcie i tworzymy 
sumę iloczynów:

e(£/> »?*. Q  Ax¡ ¿y* A

Granicę ciągu takich sum, gdy Ax„ Ayk i Az, dążą do zera, nazywamy 
masa ciała. Jeet ona zatem równa całce potrójnej;

(195)
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Podobnie dla mas, rozmieszczonych na płaszczyźnie w obszarze D, wpro­
wadzamy gęstość powierzchniową: p(®, y) a masę obliczamy przy pomocy 
całki podwójnej.

(196) M = J  J  q[x , y) dx dy
D)

Dla mas, rozmieszczonych linjowo, wzdłuż odcinka linji prostej, otrzy­
mujemy w podobny sposób:

(196a)

b

Do obliczenia mas, rozmieszczonych linjowo, wzdłuż łuków dowolnych 
linij płaskich lub przestrzennych od punktu A do B, używa się wzoru

(196b)

gdzie p(s) oznacza gęstość linjową jako funkcję długości łuku, liczonego 
od jakiegoś stale obranego punktu na danej linji.

Do obliczenia mas, rozmieszczonych powierzchniowo, po dowolnych 
powierzchniach krzywych (jak np. mas elektrycznych), trzeba używać 
t. zw. całek powierzchniowych, które wprowadzimy w następnym paragrafie.

II. Momenty. W § 233 określiliśmy momenty statyczne i bezwładności 
dla systemu punktów materjalnych. Dla punktu materjalnego A[x, y, z) 
o masie m otrzymujemy w ten sposób następujące momenty statyczne względem 
płaszczyzny (X  F), względem osi X  i względem punktu O

m • z

M, == m • r =  m\y*-\-zi 
M0 =  m ■ R — m\xi -\-y'-\-zt 

Momenty bezwiadności tego punktu względem pła­
szczyzny (X  F), osi X  i punktu 0  wyrażamy wzorami:

Bv =  mz*
Bt — mrl =  m{y2 +  z*)
B0 =  m R *=  m(a; 2 +  y* -f- z1)

Podobnie tworzy się momenty wyższych stopni.
Chcąc określić momenty mas, rozmieszczonych w przestrzeni trój­

wymiarowej w sposób ciągły w jakimś obszarze V, rozdzielamy ten obszar 
na elementy i mnożymy masę każdego elementu przez odpowiednią odległość 
lub kwadrat odległości. Te elementarne momenty sumujemy, przechodzimy
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do granicy i otrzymujemy w ten sposób odpowiednie całki potrójne. I tak 
momentem statycznym względem płaszczyzny ( XY)  masy o gęstości 
q ( x ,  y ,  z ) ,  rozmieszczonej w obszarze V, nazywamy całkę potrójną.

(197) ę ( x ,  y  z )  • z  d x  d y  d z

m

Podobne wzory stosują się do innych płaszczyzn, trzeba tylko zastąpić 
odległość z  punktu bieżącego od płaszczyzny ( I Y )  odpowiednio inną 
odległością.

Dla masy, rozmieszczonej jednorodnie, jest gęstość liczbą stałą, 
można zatem wyłączyć q przed znak .całki i otrzymamy:

z d x  d y  d z

oo

Moment statyczny tej samej masy względem osi X  określamy wzorem 

(198)

i analogicznie dla innych osL
Moment zaś statyczny względem punktu O określamy wzorem;

M, — ę • \xl -f- y2 -j- 2 * dxdy dz 
co

Podobnie momenty bezwładności ciał trójwymiarowych określamy wzorami:

<199a)

{ 199b) 

(199 c)

Dla mas, rozmieszczonych powierzchniowo na płaszczyźnie, określiliśmy 
już momenty statyczne i bezwładności w §§ 234, 238, 239 i w § 244 II I  
zapomocą całek pojedynczych i krzywolinjowych. Właściwszem jednak 
narzędziem matematycznem do przedstawienia takich momentów są całki 
podwójne. Tak np. moment statyczny względem osi x-6vr masy o gęstości 
ę{x.y )t rozmieszczonej w obszarze płaskim D, otrzymamy, mnożąc masę

Bxy =  J *  J  J  gz2dxdydz
( 10

Bx — j  f  J Q{y * +  ?*) dx dy dz
0 0

Bo = J  J  JQ{x* 4- y ' +  z2] dx dy dz
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każdego elementu \x • Ay przez odległość y dowolnego jego punktu od
osi a?-ów, sumując te iloczyny i przechodząc do 
granicy. Za definicję momentu tej masy przyj­
mujemy zatem całkę podwójną:

X
^  ( 2 0 0  a)

Fig. 103.

i analogicznie względem osi y-ów:

( 2 0 0  b) f  J ' (>(*, y)xdxdy
<D)

Moment statyczny względem punktu O określamy wzorem:

( 2 0 0 c) M, — f  f  y) V& +  yJ dxdy
(ß>

Podobnie momenty bezwładności względem obu osi i względem początku 
układu określamy wzorami:

( 2 0 1  a)

( 2 0 1  b)

( 2 0 1  c)

Widzimy, że te wzory (200) i (201) są symetryczne względem x  i y, 
a wskutek tego łatwiejsze do zapamiętania, aniżeli wzory, wyrażające te 
momenty zapomocą całek pojedyóczych.

III. Środek ciężkości. W  § 235 określiliśmy środek ciężkości 
pola lub łuku jako punkt, w którym umieszczona całkowita masa ma 
taki sam moment statyczny względem każdej osi jak masa, rozmieszczona 
w całem badanem ciele.

Podobnie określamy środek ciężkości mas, rozmieszczonych w prze­
strzeni trójwymiarowej: jest to taki punkt, w którym skupiona cała masa 
tego ciała ma ten sam moment statyczny względem każdej płaszczyzny, 
co całkowite ciało. Oznaczmy spółrzędne tego punktu S literami £, rj, 
W  myśl definicji muszą się spełniać warunki:

— ’ę • M, Ma =  rj> M, —  £ • M

B ,=* I  I Q[x,y)yldxdy 
ÍD)

B , =  f  J'Q(x, y )xi dx dy
(D)

Bo—̂f f  № y) +  y!)dx dy
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a więc:

(202)

Gdy masa jest rozmieszczona jednorodnie, to czynnik ę odpada i pozostaje: 

j  J’xdxdydz J J ydxdydz

( 2 0 2  a)

Sffzdxdydz

Można okazać, że ten punkt ma żądaną własność nietylko ze względu 
na trzy płaszczyzny spółrzędnych, lecz także ze względu na każdą inną 
płaszczyznę.

Podobnie możemy wyrazić spółrzędne środka ciężkości masy, roz­
mieszczonej powierzchniowo, w obszarze płaskim Z), zapomocą całek pod­
wójnych, a mianowicie, używając wzorów ( 2 0 0 a, b), otrzymamy dla ciał 
jednorodnych:

(203)

Zestawiając wzory (202a) i (203) z wzorami, wyrażającemi średnią war 
tośó funkcji dwóch lub trzech zmiennych, widzimy, że spółrzędna £ środka 
ciężkości bryły jednorodnej jest średnią wartością odciętej x  w obsza­
rze V\ podobnie t] jest średnią wartością rzędnej y, a f  średnią wartością 
zmiennej z.

Przykłady.
1 ) Obliczyć masę słupa postaci walca prostego o wysokości w, któ­

rego gęstość zmienia się z wysokością z według prawa Q =  f(z). Niechaj D  
oznacza obszar, zamknięty kierownicą na płaszczyźnie (J fY ).

Otóż:
W w

f  J J f { z)dxdydz-= j ¡ . J  J  f(z)dxdy j dz =  J " |/(z)• J J d x d y j d z
( O  0 (D) 0 (D)*  w

=  f  f{z) dz - J  J d x d y  = C f ( z )  dz ■ D
n (D) o
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Stosując do pozostałej całki twierdzenie o wartości średniej, otrzymujemy:

M — /(£) • w - D

Masa tego słupa równa się zatem masie, rozmieszczonej w sposób jedno­
rodny, o gęstości stałej, równej gęstości w wysokości średniej z =

2) Wyznaczyć środek ciężkości wycinka koła o promieniu R, o kącie 
środkowym 2y, jeżeli gęstość p jest stała. Umieśćmy ten wycinek tak, 

jak na fig. 104. Widocznem jest, że środek cięż­
kości leży na osi ar-ów, a więc t] —  0. Odciętą £ 
obliczymy z wzoru (203), a mianowicie:

ę j j  Xdxdy 
t __ (P>_________
* QD

Po wprowadzeniu spółrzędnych biegunowych na płaszczyźnie, t. j. x —  rcos«, 
y =  r  sin a, otrzymujemy:

+y K
: dr da

- r  o _  1 f R i ______ j ______ R  -  i * 7 . »  p s i n y

y

+y K
f  I  r* cos a

-v X 1 r 'R *  . R  . .b  . „ s u
-yr-------------=  yry- I —  cos a da =  •=- sm a | =  & R  —
R 'y  R*y J  3 3y L , 1  )

3) Wyznaczyć środek ciężkości masy, wypełniającej jednorodnie 
półkulę o promieniu 1. Przyjmijmy równanie kuli w formie:

X‘ +  y2 -f- z1 — 1

i weźmy pod uwagę górną półkulę.
Środek ciężkości leży oczywiście na osi z, a więc £ =  0 , r\ —  0 , 

a pozostaje do obliczenia Z wzorów (202a) otrzymujemy:

ę =
f f j z dx dy dz

f  - 1 3 7Z

Wprowadziwszy spółrzędne biegunowe przestrzenne, otrzymujemy:

2 ii 2  l 2 n

i  =  Y n  f  j ' J ' r c o & a r * s i n a d r d a d ( } =  r s d r - J ' sinac.osac/a • J d f i

0 0 0 0 0  o

3 I / cos2 a\ I ^ 3
•2 l , “ 4 '2 5  =  »

0 »

4) Obliczyć moment bezwładności kuli jednorodnej o promieniu R, 
o gęstości p, względem dowolnej średnicy.
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Obierzmy środek kuli za początek układu > obliczmy jej momenty 
bezwładności względem 3 osi spółrzędnych. Stosujemy wzór (199 b), a więc:

=  Q j  £  f +  3*) dx dy

■ f

B, =  ę f f J  (x ' - f  y ')  dx dy

B , =

B , =

dz

) dx dy dz

dz

Wskutek symetrji te 3 momenty są równe, możemy je więc ozuaezyć 
tą samą literą B. Suma:

B, +  B ,+  B' =  3B  =  ę f  J  f(2x*-\- 2y* - f  2z*)dxdydz

Do obliczenia tej całki dogodnie jest użyć spółrzędnych biegunowych 
przestrzennych. Wiemy już, że wtedy należy element objętości dx dy dz 
zastąpić przez ra sio a dr d[i da. Granice całkowania będą stałe, więc:

n 2n R R 2n n
B =  § q I i  i  r* - r* sin a dr dfi da =  § (> / r* dr • I dfi * / sin a da

0 0 0 0 0 0

=  § ę % .2 7 i.2  =  f t l l> n ę

§ 263. Potencjał'.
Weźmy pod uwagę dwa punkty materj&lne: stały punkt A(a,b,c) 

o masie m' i punkt bieżący B (x} y, z) o masie m. Takie dwa punkty 
przyciągają się z siłą:

, . mm’
f — k ——r*

gdzie k oznacza stałą grawitacyjną, a r odległość tych dwu punktów od 

siebie. Biorąc m’ — L  mamy:
K

j __m __
t* (x — a)* -f- (y — b)* -j- (z — c) 1

Składowe siły f  w kierunku osi spółrzędnych mają wartości:

/ , =  /•003 0 , f , — f '  cos/J, f, —  f '  cos y

gdzie a ,/7, y oznaczają kąty, zawarte między kierunkiem siły l osiami 
spółrzędnych.
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Weźmy teraz pod uwagę zamiast punktu materjalnego b  masę
0 gęstości ę(x,y,z\  wypełniającą jakąś część przestrzeni V i zbadajmy, 
jakie siły działają na stały punkt A(a, b, c), leżący zewnątrz tego ciała, 
w t. zw. polu grawitacyjnem. Rozkładamy w tym celu obszar V  na ele­
menty i sumujemy składowe sił przyciągania, wywieranych przez poszcze­
gólne elementy na punkt A w kierunku osi X, Y, Z. Po zsumowaniu
1 przejściu do granicy otrzymamy na całkowitą siłę składową w kierunku 

osi a?-ów wzór:
„  C C C  ę(x, y, z) coa a dx dy dz

<n
*)2 +  (y — b)ł +  — cY

t analogicznie na składowe w kierunku innych osi. Ponieważ:

x — a y — b
cos a —  — — . cos /? =  ■ ..... ., cos y :

Z  —  fc

przeto

'<>(», y, z)(y — b)dxdydz 
r»

<vóc)dxdydz
p j'J'J‘Q(xy,z){x — a)dxdydz '• - / / /

(V)

m

Te trzy siły składowe są pochodněmi jednej funkcji, a mianowicie funkcji:

( 20+ )

Zróżniczkujmy mianowicie tę funkcję według parametru a. Podobnie jak 
dla całek pojedyńczycb, można tu wykonać różniczkowanie pod znakiem 
oałki i otrzymamy:

Ponieważ:

przeto:

\r)  r * da
3_l V 
da

t* = (® — a)* +  (y —  bY +  [z —  c)f

drda
d /1

• 2(* — a) 
x — a

d _  / 1 \ ___ aj —  a

da \r / »-*
a zatem:
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Wobec tego pochodna:

3u t e  dy te  =  r,

du

da

F,

Podobnie:
____ p

db *’ d c '

Tę funkcję u(a, b, c), której pochodněmi cząstkowemi są składowe siły przy­
ciągania wzdłuż osi spóbzędnych, nazywamy p o te n c ja łe m  pola grawita­
cyjnego, wywołanym przez daną masę.

Funkcja ta odgrywa bardzo ważną rolę nietylko w badaniach pola 
grawitacyjnego, lecz także w badaniach pól innych sił, działających od­
wrotnie proporcjonalnie do kwadratu odległości, np. sił elektrycznych 
i magnetycznych.

Utwórzmy drugie pochodne potencjału ze względu na a, b, c Po 
wykonaniu rachunków otrzymamy:

i _ u 3 (iC -  « )* )- j ę dx dy dz

9*u
9b*

d*u
dc*'

= f f  ^-^)ę<łxdydz
m

(V)

‘Mz — c)!
q dx dy dz

Utworzywszy sumę tych całek, otrzymujemy: 

(206) 1

Dla każdego punktu, leżącego zewnątrz mas, potencjał spełnia zatem, przy 
dowolnym rozkładzie mas, równanie różniczkowe cząstkowe drugiego 
rzędu (205), zwane równaniem L a p la c e ’a.

Jeżelf punkt A(a, b, c) leży wewnątrz ciała, to całki, przedstawiające 
potencjał i siły składowe, są niewłaściwe, albowiem dla takiego punktu 
jest x  =  a, y =  b, z =  c, a więc r — 0 , a to r  występuje w mianowniku. 
Można jednak dowieść, że te całki są zbieżne. Okazuje się, że dla punk­
tów A, leżących wewnątrz ciała, potencjał spełnia następujące równanie róż­
niczkowe:

(206)

zwane równaniem P o is s o n ’a.
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Teorja potencjału jest jednym z najważniejszych i najszerzej opracowanych 
działów analizy wyższej. Spośród licznych podręczników, poświęconych temu przed­
miotowi, wymieniamy tu : A. W  a n g e r i n, Théorie des Połentials und der Kuyelfunk- 
tionen (2 tomy, Sammlung Schubert ,  1921 — 2) i W. Ste rnberg ,  Potentialtheorie
(2 tomy, Sammlung G ós c hen, rok 1926—6).

•

Przykład.
Obliczyć potencjał w dowolnym punkcie A przestrzeni, jeżeli w tej 

przestrzeni znajduje się kula o promieniu a, wypełniona w sposób jedno­
rodny masą o gęstości p = l .

Nazwijmy odległość punktu A o<J środka O 
kuli literą c (fig. 105). Za oś Z  obierzmy 
prostą, łączącą A z O, a początek układu 
przyjmijmy w środku kuli.

Punkt A ma wtedy spółrzędne 4(0,0, c) 
o dodatniem c. Odległość punktu A od do­
wolnego punktu B(x , y, z), leżącego wewnątrz 
lub na powierzchni kuii, wyrażamy wzorem:

? — \x8 -\-y% -\-{c — z)1 

a więc potencjał ma w punkcie A wartość: 

dx dy dz__ f  f  f  dx dy dz

+  y% +  (C — z)*

Celem obliczenia tej całki wprowadzamy spółrzędne biegunowe prze­
strzenne zapomocą wzorów.

X =  r  sin a cos (8, y —  r  sin a  sin /?, z =  r c o a a

Ponieważ jakobjan tych funkcyj ma wartość r* sin a, przeto:

r - a  a - / i  0 — 2 /1
r *  s m  n  r i t i  ii .f r . r i/ r

■ 2  n
da dr

a-n fl-2 . 1  a n
m __ C r  r  r* sin a dfi da dr 2n f f  r* 8*naJ  J  J  \rt sin8 a -)-(c — rcosa ) 2 J  J  \r* -f-c* — 2  er cos o

* * - 0  a - 0  0 - 0  0  0

Przy obliczaniu całki według zmiennej a uważamy r za parametr. Wpro­
wadźmy zamiast a zmienną r  zapomocą podstawienia:

r* =  r* c2 — 2cr cos a

Dla a — 0 jest f* =  (r — c)s, a więc f  =  \r — e|, ponieważ f  jest zawsze 
dodatnie, a dla a =  n  jest f  — \r -f- c| =  r -f- c.

Ponieważ 2 f  df =  -f- 2 cr sin a da, przeto:

r - sin a da P  er r  C r ,

F T , . - 2 , r « , . a ~ 7  — ------ «
i r - c l  \ r - C \

c\)
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Stąd otrzymujemy dla c> r

r  2  r*1 =  - (r +  c — c +  r) — —-

a dla c <  r :

l  z=z— ( r  C — r -|- c) =  2 r 
c

Jeżeli punkt A  leży zewnątrz kuli. ta Jest c  a, a zatem stale c  >  r - 

W tedy:

dr =  f
a 3  n

c

Potencjał ma zatem w punkcie zewnętrznym taką wartość, jak gdyby 

cała masa była skoncentrowana w środku kuli | j f = J o 8 7i • l, r==c, w =  -j.
Jeżeli punkt A  leży w e w n ą t r z  kuli, to trzebą rozdzielić przedział

•całkowania < 0 , o >  na dwie części, od 0  do c i od c  do a
2 r*

W  pierwszym z nich jest c >  r. a więc / =  — , w drugim zaś jest 

c  <  r, a więc I  =  2 r .  Otrzymujemy więc w tym przypadku
c a

i i  =  2 ji  I °  d r  -f- 2 TT J ' 2 r  d r  =  f  i i — -+- 2 n  (a* —  e*) =  2 n  ( a* — ^ j

0 e

Taką wartość ma potencjał w punkcie, leżącym w e w n ą t r z  kuli w odle­
głości c  od jej środka.

Dla punktu, ¡6 żąeego na powierzchni kuli, t j. dla e =  a, otrzy­
mujemy z obu wzorów tę samą wartość |as7z.

§ 264. Caikl powierzchniowe.

W ' 6 zyce matematycznej zachodzi często potrzeba badania mas 
(zwłaszcza elektrycznych), rozmieszczonych na powierzchniach krzywych, 
momentów takich mas i ich potencjałów. Aby stworzyć narzędzie mate­
matyczne, odpowiednie dla tych badań, wprowadzono jeszcze jedno roz­
szerzenie pojęcia całki, a mianowicie c a ł k i  p o w i e r z c h n i o w e .

Zanim to pojęcie wprowadzimy, podamy najpierw pewną modyfi­
kację pojęcia całki podwójnej po obszarze D. Przy definicji tej całki nie 
zwracaliśmy uwagi na to, w jakim kierunku obiegamy obszar D. Odróż­
nienie tych kierunków jest jednak w wielu przypadkach korzystne. Tak 
np. przy obieganiu brzegu obszaru D w kierunku dodatnim (przeciwnym 
do obrotu wskazówek zegara) otrzymujemy z wzoru:
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dodatnią liczbę na pole tego obszaru, przy obieganiu zaś ujemnem, liczbę 
ujemną. Możemy zatem wprowadzić oznaczenia:

z których pierwsze oznacza całkę podwójną o obiegu dodatnim, drogie 
zaś o ujemnym. Podobnie ogólnie kładziemy:

j  j  A®, y) dx dy =  j  J  f(x , y) dx dy
D +  (D )

f  j ' A®, y) dx dy = —УУ f{x, у) dx dy
D -  (D,

i nazywamy takie całki podwójne, z odróżnieniem kierunku obiegu, 
całkami zorjentowanemi.

Weźmy teraz pod uwagę powierzchnię S o równaniu:

г =  ę>(®, y)

wznoszącą się nad obszarem płaskim D i ustalmy dla niej jakiś kieru­
nek obiegania przez obranie kierunku obiegania brzegu.

Ten sam kierunek obiegu trzeba przypisać rzutowi D tej powierzchni 
na płaszczyznę (X Y ). Uważajmy dla każdej normalnej do powierzchni ten 
kierunek za dodatni, który wraz z kierunkiem obiegania brzegu po­
wierzchni wyznacza ruch śrubowy prawoskrętny. Kąt tej normalnej z do­
datnim kierunkiem osi Z  oznaczmy literą y.

Utwórzmy całkę podwójną zorjentowaną z dowolnej funkcji R(x, у, г) 
trzech zmiennych, przyczem te zmienne nie są od siebie niezależne, lecz 
spełniają równanie powierzchni г =  qp(®, y). Tworzymy więc całkę:

У J R{x,y,z)dxdy =  J У R (®,y, <p{x y)) dxdy lub i fR (x ,y }z)dxdy 
ZH 0 + D-

Eorjentowauą tak, jak dana powierzchnia, to znaczy, że obieg obszaru D 
jćst taki, jaki wynika z obiegu brzegu danej powierzchni. Każdą z tych 
całek nazywamy całką powierzchniową z funkcji R(x y,z), braną po 
powierzchni S z obranym kierunkiem obiegu i oznaczamy je obydwie 
wspólnym symbolem:

/ i  R (x ,y ,z )dxdy  
{s)J

lub //*<*•
(S)

y, z) cos у da
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przyczem należy jeszcze podać, w którym kierunku obiegamy daną po- 
wierzcbuię. Symbol da nazywamy elementem powierzchni; ma on wartość 
dxdy.cosy. Zamiast mówić o różnych, kierunkach obiegania powierzchni, 
możemy mówić, że bierzemy całkę powierzchniową po różnych stronach po­
wierzchni, zależnie od tego, po której stronie powierzchni leży dodatni 
promień normalnej; albowiem dodatni kierunek normalnej został ustalony 
na podstawie kierunku obiegu.

Widzimy stąd, że całkę powierzchniową, braną po dowolnej powierzchni, 
np. krzywej, można zawsze przedstawić jako całkę podwójną po obszarze 
płaskim, o obiegu dodatnim lub ujemnym, zakżnie od tego, po której stronie 
powierzchni bierzemy całkę powierzchniową.

A  więc:

j  j  ih z) dxdy — I  I R(x, y. <p(x, y j)dx dy 
■ l S )  D + J

J J R { x ,  y, <plx, yj) dx dy

lub:

czyli:

J  J y ,  z) dx dy =

J  J R (x ,y ,q > (x ,y j) dx dy, jeżeli obieg brzegu 
(D) powierzchni jest dodatni

—  I f  R(x,y,cp(x,y)) dxdy, jeżeli obieg brzegu 
(D) powierzchni jest ujemny.

Zakładaliśmy, że powierzchnia 5  da się przedstawić w postaci równania 
z =  g>(x, y). Jeżeli tak nie jest, lecz gdy powierzchnia da się rozłożyć na 
części, spełniające ten warunek, to za całkę powierzchniową po całej po­
wierzchni uważamy sumę całek powierzchniowych po tych częściach 
składowych. Jeżeli zaś jakaś część powierzchni jest prostopadła do płasz­
czyzny (X F )  (jest częścią powierzchni walcowej), to za całkę powierzch­
niową po tej części powierzchni uważamy zero.

Tak np. całka powierzchniowa po kuli jest sumą całek powierzch­
niowych po obu półkulach, na. które się rozpada kula przez poprowa­
dzenie koła wielkiego, równoległego do płaszczyzny (X Y ).

Podobnie określa się całki powierzchniowe:

J  J  P(x, y, z) dy dz i j' J Q(x, y, z) dx dz
<s) (S)

jeżeli równanie powierzchni da się przedstawić w postaci x = rp (y ,z ) 
lub y =  %(x,z) nad obszarami płaskiemi D' lub D".
Bachanek rótnicikowy i całkowy, T i. 19



Ogólną całką powierzchniową po powierzohni S jest suma:

j  j  (P (x, у у г) dy dz-\- Q (x ,y ,z )dxd 2 -\- R  (x , y, z) dx dy)
<S)

czyli;

, у, z) сов a -)- Q{x, y, z) cos +  R (a>, y, z) cos y) da
(S)'

Uwaga. Całkę powierzchniową̂  R(x. y, x\dx dy można też określić jako
(S)

granicę ciągu sum, otrzymanych w ten sposób, że dzieli się powierzchnię na elementy 
Ao„ Aot,... Ao„ i każdy z nich mnoży się przez wartość funkcji R(x, y, e) cos у w do­
wolnym punkcie każdego elementu a następnie dodaje się te iloczyny. Tworzy się 
ciąg sum postaci:

n

cos ytAo,

gdy średnice elementów Да/ do zera i okazuje eię, ze ta granica ma wartość:

J  j R(w, y, q>{x, y)) dx dy =  J J R{Xy y, z)dxdy —
IS)

—J J R(x,y, z) cos у do

(O)

<s>

9 265. Związek całki powierzchniowej z całką krzywolinjową
przestrzenną.

Widzieliśmy, że pomiędzy całką podwójną a całką krzywolinjową 
płaską zachodzi bardzo ważny i interesujący związek, wyrażony twier­
dzeniem Greena-Rietnanna (por. § 256). Okażemy, że podobny związek

zachodzi między całką powierzchniową a całką 
krzywolinjową przestrzenną.

Weźmy pod uwagę powierzchnię S(fig. 106) 
o równaniu z =  cp(x, y), wznoszącą się nad 
obszarem płaskim D. Brzegiem tej powierzchni

( X Y )  jest brzeg l obszaru D. Zajmijmy się 
całką krzywolinjową:

= J  P{x,y ,z )dx
(L )

braną po brzegu powierzchni, przyczem obiegajmy ten brzeg w takim
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kierunku, aby rzut jego l był obiegany w kierunku dodatnim. Ponieważ 
z =  <p(x, y), przeto:

l ~ f  P (x' V' V(®> V))dx = j  py (®* 9)
(i) (O

Zastosujmy do tej całki krzywolinjowe] po ' 1 nji płaskiej twierdzenie 
G r e e n a - R ieniań n a (str. 241. wzór (166)). Otrzymamy:

Ale:

a więo;

3Py _  5 P  9 P 9z 
9y 9y 9z 9y

Tu już występują całki powierzchniowe, ponieważ z — tp{x,y). Drugą 
z tych całek można napisać w postaci:

H f ~ i
(S)

PP 9 z
-  cos y da

9y

gdzie y jest kątem normalnej z osią Z. Wiadomo z geometrji różnicz­
kowej (por. tom I, str. 339), że:

_  3- l
• - 3ycos y = :, a cos /3 =

Km - p * + 9 » ’ “  Km - p * + 9 *

gdzie /3 jest kątem normalnej z osią Y. Stąd wynika, że:

9z
—  TT- cos y =  cos /3 

dy
a więc:

Zatem:

l' =  / / ¥ §'d° “  fjTz'*"dz
<S) (SI

I —J P(x,y,z) da> =  j J  —  5~~dxdy + J f 3£ dxdz
( i )  CSl IS) J

19*
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W  podobny sposób przekształcamy całki krzywolinjowe: 

J  Q{x,y,z)dy i J  R\x, y, z) dz
(i) (Ł)l

Dodajemy te trzy całki do siebie i otrzymujemy:

(207)
- s * * ;(5)

(Pd® +  Qdy -j- Rdz)

Jest to wzór S to k e s ’a, podający związek całki krzywolinjowej prze­
strzennej z całką powierzchniową. Jest on uogólnieniem twierdzenia 
G re e n  a-R i e m a n n a.

Z twierdzenia G re e n a -R ie m a n n a  wysnuliśmy wniosek, że całka 
krzywolinjową po krzywej zamkniętej jest równa zeru, gdy wyrażenie, 
znajdujące się pod całką, jest różniczką zupełną jakiejś funkcji dwóch 
zmiennych, a stąd wynikło, że całka krzywolinjową z różniczki zupełnej 
nie zależy od drogi całkowania. Taki sam wniosek wysnuwa się z twier­
dzenia S to k e s ’a dla różniczki zupełnej z funkcji trzech zmiennycb.

A  mianowicie, gdy wyrażenie:

P(®, y, z) dx -f- Q(x, y, z) dy - f  R{x, y, z) dz 

jest różniczką znpełną, to:

3Q _  3P 3 R _ 3 Q  3 P _ 3 R
3x 3y ’ 3y 3z ’ 3z 3x

a więc lewa strona wzoru S t o k e s’a jest zerem, a stąd wynika, że i prawa 
jest zerem. A  zatem całka po krzywej zamkniętej z różniczki zupełnej funkcji 
trzech zmiennych jest zerem, a stąd wynika, że całka krzywolinjową z róż­
niczki zupełnej funkcji trzech zmiennych nie zależy od drogi całkowania.

Twierdzenie S to k e s ’a ma liczne zastosowania w fizyce. Tak np. 
gdy P(x,y,z), Q(x,y,z), R (x ,y ,z) są składowemi siły F  w polu sił w kie­

runkach osi spółrzędnych, to całka krzywolinjowąJ ’(Pdx -J- Qdy -j- Rdz)

przedstawia pracę, wykonaną przez tę siłę wzdłuż drogi L. Jeżeli wyra­
żenie pod całką jest różniczką zupełną jakiejś funkcji U(x, y, z), to praca 
nie zależy od drogi, łączącej dwa dane punkty. Wtedy P , Q, R są po­
chodněmi cząstkowemi jednej funkcji U(x,y,z), a mianowicie:

W  0 _ 3 U  R _ 3 U  
3® ’ V 3 y ’ 3*

p =
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U(x, y, z) jest potencjałem tego pola sil. Jeżeli więc pole sil posiada po­
tencjał, to praca nie zależy od drogi. Wzór S to k e s ’a znajduje również 
ważne zastosowanie w hydrodynamice i w elektrodynamice

Ma on również bardzo interesującą.interpretację w teorji wektorów

§  266. Tw ierd zen ie  Gaussa i tw ierdzenie Greena dla przestrzeni
tró jw ym iarow ej.

W  poprzednim paragrafie poznaliśmy związek całki powierzchnio­
wej z całką krzywolinjową. Istnieje również związek całki powierzchnio­
wej z .całką potrójną, pozwalający sprowadzić obliczenie całki potrójnej 
do całki powierzchniowej. I tak wykonując całkowanie według z w całce 
potrójnej, dowodzi się, podobnie jak przy plaskiem twierdzeniu Greena-

R i e m a n n a ,  że z całki J  j' dx dy d z otrzymamy J j '  R dx dy,
( V )  (S)'

gdzie <$ jest powierzchnią, ograniczającą obszar trójwymiarowy V 

Podobnie:

f  J fji dX dy dZ =  f f Pdy dZ
OO (S)

f  f  / If dX Ay dZ==f  ÍQdX dZ
<10 ' ( S ) '

Sumując te trzy równania stronami, otrzymujemy w/;ór:

(208)

Wzór ten, zwany wzorem Gaussa,  znajduje liczne zastosowania w fizyce 
matematycznej. Posiada on także prostą interpretację w amalizie wektoralnej.

Z wzoru Ga us s a  wyprowadza się twierdzenie G r e e n a  dla prze­
strzeni, wyrażające się następującym wzorem:

(209)

, • . . .  „  f  , . , ATT 3*U , 2 'U  , 9l U
gdzie U i V są funkcjami trzech zmiennych ®,y, z, AU =  4- ------ 1-

oX ° z _
i podobnie A V, a ^-oznacza pochodną funkcji V w kierunku normalnej 
i ma wartość:

dV 9V SV . . .  9V . . dUdn ~ Sco ‘coaa 9y 'cos ̂ Jz ’C0B̂ 1 P°dobnie 5n
(o, /5, y są kątami normalnej z osiami spółrzędnych).
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Dowód tego wzoru przeprowadza się, stosując wzór G a u s s a  
do całki:

T C  C  f [ 3 U  d v  . 9U9V . 9 U  9 V \ ,  . ,J  J  V® 9x 9y 9y 9z 9z) x y z
<p>

Ponieważ:

przeto:
9x 9x 9x\ 9x I9V\ ,9 'V

Ja?

‘ - f fJ [U O + ry i)+
(?)

+i(û )]dxdl/dz~ f f f  UAVdxdydz
(V)

Stosując do pierwszej całki twierdzenie Gaussa,  otrzymujemy:

' “ / / «G S  dy dz -)- dxdz Ą- dx dyj—J' J' J  U A V dxdy dz
(S) <P)

Ale dy dz —  cos a da, dx dz =  cos /3 da, dx dy =  cos y do, a więc wyra­
żenie w nawiasie w pierwszej całce jest pochodną funkcji V w kierunku 
normalnej, pomnożoną przez da. Zatem:

I=JJ U~da - j j j  U A V dxdy dz
(S) (V)

Przekształcając tę samą całkę analogicznie przez użycie wzoru:

otrzymujemy:

9U 9V  9 9x 9x
r9U

9x \ 9x! ,9*U9x%
1= j j'v\Undo- J  JJvAUdxdydz

(S) J  (D J
Tworząc różnicę tych dwóch wyrażeń na I, otrzymujemy ostatecznie 
wzór G r e e n a.

Szczegółową dyskusję twierdzeń, podanych w §§ 264— 266 i liczne 
ich zastosowania znajdzie czytelnik np. w podręczniku R. Courant ’a p. t. 
Vorlesungen iiber Differential- und Integralrechnung (tom II, str. 259— 287, 
Berlin 1929) i w podręcznikach, poświęconych teorji wektorów; np. w pol­
skim języku istuieje z tej dziedziny podręcznik W. P o g o r z e l s k i e g o  
p t. Zarys teorji wektorów (Lw ów — Warszawa 1925 r.).
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Nota.

0  liczbach zespolonych.
Zarówno dla potrzeb matematyki czystej jak i stosowanej okazało 

się bardzo pożyteczne rozszerzenie zakresu liczb przez wprowadzenie 
obok liczb rzeczywistych także liczb zespolonych. Liczbami zespolonemi 
nazywamy pary liczb rzeczywistych (a, b), dla których ustalono następu­
jące cztery związki i reguły działań arytmetycznych.

I. Równośó:

(a, b) —  (c, d) wtedy i tylko wtedy, gdy a =  c, b — d 

IL  Reguła dodawania:

(a ,ó ) 4 - (e ,d ) =  (a +  c, 6  +  d)

U L  Reguła mnożenia:

(o, b) • (c, d) —  (ac — bd, bc -f- ad)

IV . Związek 3  liczbami rzeczywistemi :

(o, 0 ) =  a

Każdą taką parę uważamy za jedną całość, za jeden element i oznaczamy 
ją  często jedną literą, np. (a, b) =  z. Postępujemy tu więo podobnie jak 
przy ułamkach, które są także parami, a mianowicie parami liczb całko­

witych, np. §, ogólnie a mimoto uważamy każdy ułamek za jeden

element i piszemy np. j  =  u.

Uwaga. Takie ułamki można wprowadzać zapomocą łączenia liczb całkowitych 
«, t w pary. Łatwo stwierdzić, że związki I —IV  maj'' dla ułamków postać:

I', (o, b) =  (c, d) wtedy i tylko wtedy, gdy a ■ d =  b • c.
I I '.  (o, 6 ) - f  (c, d) =  (ad - f  bc, bd).

III', (o, b) • (c,d ) =  (ac, bd).
IV '. (a, 1) =  o.
Z tych czterech założeń można wyprowadzić wszystkie własności ułamków 

i wszystkie twierdzenia o rachowaniu ułamkami.

Założenia I —  IV  są tak dobrane, aby można było rachować licz­
bami zespolonemi tak, jak dwumianami a bx, c -f- da, z tern tylko 
uzupełnieniem, że zamiast ®s należy pqdstawić — 1 .
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Okażemy mianowicie, że każdą liczbę zespoloną, t. j. każdą parę 
(a,b), czyniącą zadość założeniom I —  IV , można przedstawić w postaci 
a b • i  gdzie i jest skróconem oznaczeniem pewnej specjalnej pary, 
a mianowicie pary (0 , 1 ), mającej tę własność, że (0 , 1 )* =  — 1 .

I tak każdą parę (a, ¿>) można napisać w postaci:

(a, 6 ) =  (a +  0 , 0 +  b)

Na podstawie reguły I I  jest więc:

(a, 6 ) =  (a, 0 ) +  (0 , 6 )

Stąd, na podstawie związku IV, otrzymujemy:

( ° 7  i>) =  a +  (0 , b)

Drugi składnik tej sumy można napisać w postaci:

(0 , 6 ) =  (6 , 0 ) • (0 , 1 )

albowiem z reguły I I I  wynika, że:

(6,0).(0, 1) =  (6-0 — 0-1, 6 .l-f-0 .O ) =  (O,6)

Wobec tego:
(a, 6 ) =  a -f- (6 , 0 ) • (0 , 1 )

Stąd zaś, na podstawie związku IV, otrzymujemy:

(a, 6 ) =  a +  6  • (0 , 1 )

Kwadrat liczby zespolonej (0, 1) ma wartość —  1; istotnie według re­
guły I I I  jest:

(0, 1)* =  (0,1) • (0,1) =  (0 • 0 — l • 1, 0 • 1 -f- 1 • 0) =  ( -  1, 0)

a więc według IV  jest:
(0 , 1 ) * = - 1

Tę specjalną parę (0, 1) naaywamy jednostką urojoną i oznaczamy ją 
symbolem i. Zatem:

(0 , 1 ) =  i

Liczba i  ma więc tę własność, że:

i* =  —  1

Używając tego spoBoba oznaczania, mamy więc:

(a, 6 ) =  a -(- 6  • i

Dowiedliśmy w ten sposób, że każdą liczbę zespoloną można przedstawić 
v> postaci sumy, której pierwszy składnik jest liczbą rzeczywistą a drugi 
iloczynem liczby rzeczywistej i jednostki urojonej.
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Ożywając tego sposobu przedstawienia liczb zespolonych, piszemy 
cztery zasadnicze prawa I — IV , charakteryzujące te liczby, w następu­
jącej postaci:

1 ) a -f- bi —  c -f- di wtedy i tylko wtedy, gdy spełniają się równo­
cześnie dwie równości: a =  c ,b  =  d; t

2 ) (a -j- bi) -|- (c +  di) =  (a -f- c) -(- (b -f- d) i;
3) (a -|- bi) • (c -f- di) —  (ac —  bd) +  (ad -f- be) i\
4) a -f- 0 i =  a.
Z własności 1 ) wynika, że każde równanie, zachodzące pomiędzy 

liczbami zespolonemi, jest równoważne z układem dwóch równań, zacho­
dzących pomiędzy odpowiedniemi liczbami rzeczywistemi.

Zwróćmy jeszcze uwagę na regułę mnożenia liczb zespolonych, 
która odróżnia mnożenie liczb zespolonych a -j- bi od mnożenia dwumia­
nów a -f- ba). I tak mnożąc przez siebie dwie liczby zespolone tak, jak 
zwyczajne dwumiany, otrzymujemy:

(a -f- bi)(c -f- di) — ac -f- bd i* -f- (ad -f- be) i

Różnica występuje dopiero w tem, że za i* należy podstawić —  1. Uczy­
niwszy to, otrzymujemy istotnie prawą stronę wzoru 3).

Z tych czterech praw I— IV  lub 1)— 4) wyprowadza się już całą 
arytmetykę liczb zespolonych. Okazuje się przytem, że wszystkie prawa 
arytmetyki liczb rzeczywistych zachowują swą ważność także w tej szer­
szej klasie liczb (jak np. prawa przemienności i łączności w dodawania 
i mnożeniu, prawo rozdzielności dodawania i mnożenia). Ponadto przy­
bywają jednak jeszcze nowe definicje i nowe wyniki.

I  tak liczbę zespoloną, której część rzeczywista jest zerem, nazy­
wamy liczbą urojoną lub czysto urojoną. Dwie liczby zespolone:

z =  a -f- bi, z =  a —  bi

mające tę samą część rzeczywistą, a różniące się tylko znakiem spÓł- 
ezynnika, stojącego przy jednostce urojonej, nazywamy liczbami zespo­
lonemi sprzężonemi. Zarówno suma jak i iloczyn dwóch liczb sprzężonych 
jest liczbą rzeczywistą, a mianowicie:

(u -j- bi) -j— (a — bi) =  2  a 
(a bi) • (a —  bi) — ai -+- 6 *

W idzimy więc, że działania, wykonywane na liczbach zespolonych, mogą 
prowadzić do wyników rzeczywistych.

Wyniki działań, wykonywanych na liczbach zespolonych, należy 
zawsze sprowadzać do postaci x  -j- iy, gdzie x, y są liczbami rzeczywi­
stemi. Dla dodawania i mnożenia uzyskuje się przedstawienie wyniku 
w takiej postaci odrazu z wzorów 2 ), 3 ).
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Przy dzieleniu można uzyskać takie przedstawienie w  następujący 

sposób. Mnożymy licznik i mianownik wyrażenia ^ ^  przez liczbę

sprzężoną z mianownikiem. Otrzymujemy w ten sposób:

a bi (a -f- bi)(c — d i)__ac-\- bd — adi —  bdi*

Zatem:
c +  di (c-\ -d i)(c  — di)

a +  b i__a c b d  (bc — ad)i
c +  di

c» — (d i )8

ac -j- bd bc
ci +  da c* +  d* r  c» +  d*

Szukane liczby rzeczywiste a, y mają tu zatem wartości:

ad . 
*

® =
ac-\-bd bc —  ad
c* +  d * ’ y ~  cl +  d8

Do tego samego wyniku można też dojść ogólniejszą metodą, a miano­
wicie kładąc:

a —|“ bi

Stąd:

«  +  iy

a -(- bi =  (x  —1— y*)(c -f- di) =  ca — dy-\- (da-\- cy)i

To równanie spełnia się (w myśl zasady I) wtedy i tylko wtedy, gdy 
spełniają się dwa równania:

ca — dy —  o 

da  +  cy =  b
Rozwiązaniem tego układu równań są, jak łatwo sprawdzić, otrzymane
powyżej wartości na a i y.

Przykład.

43 — 6 i _ (43 — 6 i)(4  — l i )  172 — 42 — 24* — 301 i  130 —  325* 
4 +  7* (4 7 i)(4  — 7 i) 16 +  49 —  65

a więc:
(43 — 6  i ) : (4 +  7 i) =  2 — 6 «

Przy potęgowaniu liczb zespolonych występują rozmaite potęgi jednostki 
urojonej i. Wszystkie te potęgi należy przedstawić w postaci a +  bi
(przyczem a lub b może być zerem). Otóż:

i1 — i, i* =  — I, i* = = * * . * = — *, i4 =  t * -** =  + 1
Wyższe zaś potęgi sprowadzają się do tych czterech i powtarzają się perjo- 
dycznie, albowiem:

i*n + * _  t4* . tk _  _|_ 1 . jk  =

przy całkowitych dodatnich w, k. Wobec tego także każdą potęgę (a-\-bi)m 
potrafimy przedstawić w postaei a +  iy: trzeba w tym celu podnieść
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ten dwumian do w-tej potęgi według wzoru N e w t o n a ,  a następnie za 
wszystkie potęgi i podstawić odpowiednio i, — 1 , — i lub -|- 1 >

Pierwiastkowanie liczb zespolonych wyjaśnimy zapomocą przykładu. 
Chcemy obliczyć drugi pierwiastek z liczby 5— 12 i, to znaczy znaleźć 
takie dwie liczby rzeczywiste x, y, aby liczba zespolona x-\- iy spełniała 
równanie:

(x -j- iy )1 =  5 —  1 2 i
czy li:

a* —  y* -f- 2 x y i —  5 —  12t

Równanie to spełnia się wtedy i tylko wtedy, gdy liczby rzeczywiste X, y 
spełniają następujący układ dwóch równań:

X1 — y2 —  5 

2xy =  —  12

Stąd otrzymujemy x — ----- a

Stąd:
y* =  4

36 , .następnie —  — y* —  o,

albo y1 =  — 9

36 —  y* —  5 y*.

T ę  drugą ewentualność: y* =  —  9 należy odrzucić, ponieważ y ma być 
liczbą rzeczywistą. Wobec tego yx =  -j- 2, yt —  —  2, a zatem x x =  —  3, 
x t =  -J- 3. Otóż drugi pierwiastek z liczby zespolonej 5 —  12 i ma dwie 
następujące wartości:

(|/5 — 12ś), =  — 3 +  2«, ( ^5— 1 2 ^  =  3 — 21

Niechaj czytelnik stwierdzi, że:

0 ^ X  = + i .  ( R T ) , — i, (Ki), =  -  (Ki), -  -

W idzim y stąd, że w zbiorze liczb zespolonych istnieje drugi pierwiastek 
i  każdej liczby, podczas gdy w zbiorze liczb rzeczywistych nie istnieją 
drugie pierwiastki z liczb ujemnych.

Z  tern wiąże się, że w zbiorze liczb zespolonych każde równanie 
drugiego stopnia posiada dwa rozwiązania, podczas gdy w zbiorze liczb 
rzeczywistych równania drugiego stopnia o wyróżniku ujemnym nie po­
siadają rozwiązań.

Przykład. Równanie:
X* —  4 ® -j-  13 =  0

Dosiada rozwiązania:

czyli:
=  2 - f  [ — 9, xt =  2 —  |CT9 

® ,= 2 -| -3 i ,  ®, =  2 — 3 i

Natomiast to równanie nie posiada rozwiązań rzeczywistych.
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Okazano ogólnie, że każde równanie algebraiczne n-tego stopnia 
posiada n pierwiastków, przyczem niektóre, a nawet wszystkie mogą być 
liczbami zespolonemi.

Jeżeli równanie algebraiczne o spółczynnikach rzeczywistych po­
siada pierwiastek zespolony ®, =  p qi, to także sprzężona z ®, liczba 
®g = p — qi jest pierwiastkiem tego równania

Dowód. Podstawiwszy w równanie algebraiczne:

eto "4" <*1 £ "I- at ® 2 -f- • ■ • “f - o.n ®” =  0

Z& w wartość £ \=p - \ - q i ,  wykońujemy zaznaczone działania i przedsta­
wiamy lewą stronę w postaci A -f- Bi. Jeżeli zaś podstawiamy za ® war- 
iość ®fc sprzężoną z ®„ to otrzymamy oczywiście wynik A —  Bi. Ponie- 
tważ oj, spełnia dane równanie, przeto A-\~Bi =  0 czyli A -{-B i — 0-\-0i 
a stąd wynika, że 4 = 0  i B =  0. Wobec tego także A — Bi — 0, a to 
znaczy, że liczba ® 2  =  p — qi spełnia także dane równanie, c. b. d. o.

Wiadomo, jak ważne usługi oddaje przy liczbach rzeczywistych 
ch geometryczne przedstawienie zapomocą punktów osi liczbowej. Do

przedstawienia geometrycz­
nego liczb zespolonych uży­
wa się całej płaszczyzny, 
zwanej płaszczyzną liczbową, 
wprowadzonej przez Gaussa. 
Obrazem geometrycznym licz­
by zespolonej z =  x-\- iy jest 
punkt o spółrzędnych ®, y. 
Tak np. punkt A na fig. 107 

X  przedstawia liczbę z— 2  —|— 3 ż. 
Obrazami liczb rzeczywistych 

Fig. 107. są punkty osi ®-ów, liczb czy­

sto urojonych punkty osiy-ów. 
Obrazem każdej liczby zespolonej jest zatem jakiś punkt płaszczyzny 
liczbowej i naodwrót, każdemu punktowi płaszczyzny liczbowej odpowiada 
jakaś liczba zespolona. Istnieje zatem odpowiedniość doskonała pomiędzy 
zbiorem wszystkich liczb zespolonych a zbiorem wszystkich punktów 
obranej płaszczyzny.

Odległość r punktu, przedstawiającego liczbę zespoloną z, od po­
czątku układu spółrzędnych nazywamy wartością bezwzględną tej liczby z 

i oznaczamy ją symbolem |z|. Widoczne jest, że a zatem:

N  =  +  =

Tak np. |2-ł-3i| =  |/4 +  9 =  y i3 , |3 +  4 t \ =  ^9 4- 16 =  5 . Definicja
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ta pozostaje w zgodzie z definicją bezwzględnej wartości liczby rzeczy­

wistej, np. | —  4| =  | — 4 —f- 0 i| =  |/4* -(- O2 = )4 .
Używając odległości r punktu A od jpoczątku układu ¡i kąta a, 

jaki tworzy protrień O A z osią «-ów, możemy przedstawić każdą liczbę 
zespoloną zapomocą spólrzędnych biegunowych.

I tak:
® =  r cos a, y — r  sin a

& zatem:
z — m -f- yi =  r  (cos a +  t sin a)

czyli:
z =  j z | (cos a -f- t sin o)

przyczem |z| =  \a* +  y* a tg a =  Każdą więc liczbę zespoloną można
w

przedstawić jako iloczyn z jej wartości bezwzględnej i |z liczby zespo­
lonej cos a -f- i sin a, której wartością bezwzględną jest 1. Istotnie:

| cosa -f- tsin a | =  ^cos* o +  sin*a =  1

Kąt a nazywamy argumentem liczby zespolonej.
Posługując się obrazami geometrycznemi liczb zespolonych, możemy 

w  bardzo prosty sposób wykonywać graficznie działania arytmetyczne

y

na tych liczbach. I tak jeżeli punkty 4, i At (fig. 108) są obrazami 
geometrycznemi liczb zespolonych:

z, =  « , 4- y, t , = Ą  +  y,i

to obrazem geometrycznym ich sumy:

z\ +  zt  — (®i +  ®i) +  (yi 4- y«) i
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jest punkt B, leżący na końcu przekątnej równolegloboku, utworzonego 
z boków 0At i 0AS. Widzimy stąd, że dodawanie liczb zespolonych 
można wykonywać na ich obrazach geometrycznych tak jak dodawanie 
wektorów.

Aby znaleźć sposób wykonywania mnożenia liczb zespolonych z, i 02 
na ich obrazach geometrycznych (fig. 109), dogodnie jest użyć ich przed­
stawienia zapomocą spółrzędnych biegunowych, a mianowicie: 

z, =  r ^  (cos ge, -j- i  sin os,), z2 =  ra(cosa2- f  isin a2)

Wobec tego:
Zj -z2 =  r, • ^(cośctj cosa2 — sin a, sina, -f- t(sin a, cosa2 -j- sin a2cosa,)) 

czyli:
z, . z2 =  r, • r2 (cos (at +  a2) +  * 8i“ (ai + “ 2))

Widzimy stąd, że iloczynem dwóch liczb zespolonych jest liczba zespo­
lona, której wartość bezwzględna jest iloczynem wartości bezwzględnych

danych liczb, a argument jest sumą argumentów tych liczb. Aby więe 
otrzymać obraz geometryczny liczby 0, • zv należy obrócić promień OAit  
należąey do liczby s^ o kąt a,, należący do liczby 0, i powiększyć ten 
obrócony promień r2 tyle razy, ile razy r, jest większe od jednostki. 
Najłatwiej jest uskutecznić tę konstrukcję przy pomocy trójkątów podob­
nych: OCAl ~ O A iB, przyczem 0 (7=1 .

Nietrudno jest znaleźć podobny wzór i podobną konstrukcję n& 
dzielenie liczb zespolonych.

Z wzoru na 0, • 02 wynika bardzo prosty wzór na potęgowanie liczby 
zespolonej 0 . Przedstawmy ją w postaci 0 =  r(cosa -j-isina) i zastosujmy 
»-krotnie wzór na 0 *0. Otrzymamy:

0* =  »^(cosw a  -j- i sin» a)
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Dla r —  1  otrzymujemy stąd następujący wzór M o i v r e ’a, bardzo ważny 
w algebrze i w teorji funkcji zmiennej zespolonej:

(cos a -f- i sin a)" —  cos n a -)- i sin n  a

Powrócimy do tego wzoru w tomie III.
Z* rozważań tych widzimy, że liczby zespolone Die są bynajmniej, 

jak dawniej sądzono, jakiemiś mistycznemi „urojonemi“ fikcjami mate- 
matycznemi, lecz są równie realne, jak ułamki lub inne liczby rzeczy­
wiste i posiadają zupełnie jasną, „rzeczywistą“ interpretację geometryczną. 
Znajdują one coraz szersze zastosowanie w technice, w fizyce i w innych 
naukach.

Uwaga. Geometryczne dodawanie liczb zespolonych mogłoby nasuwać przy­
puszczenie, że mamy tu do czynienia z wektorami, dobrze znanemi z rozmaitych 
działów fizyki (np. z mechaniki). Aby usunąć rozmaite, zdarzające się nieporozu­
mienia, przedstawimy tu jeszcze pokrótce stosunek teorji liczb zespolonych do teorji 
wektorów. Aby ten stosunek jasno wystąpił, zajmiemy się ogólniejBzemi liczbami „ze- 
spolonemi“ , złożonemi z czterech części, a mianowicie kwaternjonami. Kwaternjony są 
to czwórki liczb rzeczywistych: \a0, o,, o,, o3), które można określić zapomocą związ­
ków podobnych do związków I —IV, charakteryzujących liczby zespolone dwujedno- 
stkowe (t. j. złożone z jednostek rzeczywistych 1 i z jednostek urojonych łj. Prościej 
jest jednak wyjść odrazu z przedstawienia takiej czwórki a w postaci:

“  =  <*«• * +  «,•»' +  <*« '3 +  “a • k
1, », j ,  k nazywamy jednostkami kwaternjona. Mnożenie tych jednostek przez siebie 
określamy zapomocą następujących wzorów:

*’  =  — 1 i j  — k ik  =  — j
j i  =  — k j*  =  — 1 jk  =  t
ki = j  kj — — t i 1 =  — 1

Rezygnujemy tu zatem z prawa przemienności w mnożeniu»(albowiem np. y  4=j*)-
Kwaternjon składa się z części rzeczywistej: a0, zwanej skalarną częścią kwa­

ternjona i z części o, • i -|- a, • j  -j- a} • k, zwanej wektorjalną częścią kwaternjona. 
Część wektorjalną można przedstawić geometrycznie w układzie trzech osi spółrzęd- 
nych prostopadłych, uważając punkt A o spółrzędnych o,, o „  a 3 za obraz geome­
tryczny tej części wektorjalnej; odcinek OA, łączący ten punkt z początkiem układu, 
nazywamy wektorem.

Wykonując mnożenie wektorjalnych części a, fi dwóch kwaternjonów według 
zwykłych reguł mnożenia trójmianów i zastępując następnie iloczyny jednostek innemi 
jednostkami, według przyjętych powyżej reguł, otrzymujemy:

a ■ fi =  — (o, 6, +  o, 6, +  o3 63) - f  (o, ój — o3 ó,) » -f- (o3 fc, — o, b ,) j  - f  (o, ój — a, b,) k

Część skalarną tego iloczynu, wziętą ze znakiem przeciwnym, t. j.:

S(a ■ fi) =  at bt - j- o, b, +  a, b,

nazywamy iloczynem skalarnym dwóch wektorów, a część wektorjalną, t. j.:

K(a • fi) =  (a, b, -  o, b,) i  +  (a, bt — o, b3) j  +  (o, 6, — o, i,) k 

nazywamy wektorjalnym iloczynem dwóch wektorów.



304

Właściwiej byłoby jednak nie odróżniać dwóch, rodzajów mnożenia wektorów, 
tylko mówić o części skalarnej i wektorjalnej jednego iloczynu.

Okazuje się, że iloczyn wektorjalny przedstawia się w obrazie geometrycznym 
jako nowy wektor, prostopadły do płaszczyzny dwóch danych wektorów. Rozważania 
te tworzę arytmetyczny podstawę tsorji wektorów. Nie będziemy się tutaj zajmowali 
tę teorję, a wskażemy tylko na związek tych pojęć z pojęciem zwyczajnej liczby ze­
spolonej (dwujednostkowej). Otóż specjalnemi przypadkami kwaternjonów są:

1 * liczba rzeczywista a„, jeżeli o, =  o, =  oa == 0 ;
2 * wektor o, 1 4 - osj at k w przestrzeni trójwymiarowej, jeżeli o„ =  0 ;
3° wektor «jj-f-OjŻ! na płaszczyźnie, jeżeli os=  0, o, =  0 i podobnie a( t-|-o8 k,

4° liczba zespolona a„ -f- a , j e ż e l i  o8 =  o3 =  0 .
Widzimy stąd, że zupełnie co innego oznacza wektor na płaszczyźnie, a co 

innego liczba zespolona. Maję one wprawdzie te same prawa dodawania, lecz różne 
zupełnie prawa mnożenia. Iloczynem dwóch liczb zespolonych jest liczba, mająca swój 
obraz w tej samej płaszczyźnie, podczas gdy iloczyn dwóch wektorów, leżących na 
tej samej płaszczyźnie, składa się z części skalarnej i z części wektorjalnej, którą 
przedstawia wektor, prostopadły do danej płaszczyzny.
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