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%
n €ZESC IV.

ROZDZIAL XVII.
O catkach nieoznaczonych.

8 203. Definicja catki nieoznaczonej.

W rachunku rézniczkowym rozwigzuje sie nastepujgce zagadnienie.
Majac danag funkcje (pierwotna): "

Zarowno w matematyce czystej, jak i w jej zastosowaniach, mamy czesto
do czynienia z zagadnieniem odwrotnem, a mianowicie, majagc podan%

funkcje (pochodng):
/fix)

mchcemy wyznaczy¢ jej funkcje pierwotna:
F(x)
T
t. j. taka funkcje F(x\ ktérej pochodng jest dana funkcja f(x).
Tak np. majac podang funkcje:
f{x) = 8inX
stwierdzamy z tatwoscig, ze jej funkcjg pierwotng jest:
F{x)= — ad8X
albowiem F'(x)= — (— sinaj) = f{x).
Podobnie dla funkcji:
f{x) — x%
funkcja pierwotng jest:
F(x) — $xh

jak to latwo sprawdzi¢ przez rézniczkowanie.

Racjmnek rézniczkowy i catkowy, T. Z. 4



Przy rozwigzywaniu takich zagadnien nalezy szukaé¢ odpowiedzi na
trzy nastepujace pytania:

1) czy do kazdej danej funkcji f{x) nalezy jaka$ funkcja pierwotna,
czy tez /'(x) musi spetnia¢ jakie$ specjalne warunki?

2) czy do danej funkcji moze istnie¢ tylko jedna funkcja pierwotna,
czy tez moze by¢ ich wiecej?

3) wjaki sposéb wyznacza sie funkcje pierwotnag do danej funkcji f(x)?

Odpowiedz na pierwsze pytanie wymaga dos¢ subtelnych rozwazan.
W XVIIl rozdziale zajmiemy sie ta kwestjg nieco doktadniej i okazemy,
ze w kazdym'razie do kazdej funkcji ciggtej istnieje funkcja pierwotna
(zob. 8§ 215), a takze wiele (jakkolwiek nie wszystkie) funkcyj nieciag-
tych posiada funkcje pierwotne.

Bez trudnosci natomiast mozna rozstrzygna¢ nastepnie drugie py-
tanie. | tak latwo spostrzec, ze, jezeli istnieje jedna funkcja pierwotna
F{x) do danej funkcji f{x\ to istnieje ich nieskoriczenie wiele. Tak np.
dla funkcji f{x) = x* funkcja pierwotng jest nietylko F(x) =m~x*, lecz
takze up. Fj(x) = Ja:8-f 5 Ft(x)= %xi— 2, Fagx) — -f-1 i &t d,
ogllnie:

F{x)=$x» + C
przyczem C oznacza dowolna liczbe stalg. Istotnie pochodna kazdej takiej
funkcji jest /(x )= x i Ogoluie, jezeli F(x) jest funkcja pierwotng danej
funkcji f(X), to istnieje cata jednoparametrowa gromada funkcyj pier-
wotnych, a mianowicie: F(x) -f- C. W geometrycznej interpretacji obrazem
jednej funkcji pierwotnej jest jakas linja, a obrazy wszystkich innych-
funkcyj pierwotnych powstaja przez rownolegte przesuniecie tej linji
w kierunku osi y-6w. Ta gromada zawiera juz wszystkie funkcje pier-
wotne; wynika to z twierdzenia 2 z § 101 (tom 1, str. 318), a miano-
wicie: jezeli dwie funkcje majg pochodne réwne dla wszystkich wartosci
zmiennej niezaleznej, to te funkcje moga sie rozni¢ conajwyzej o statg liczbe.

Gromade funkcyj pierwotnych do danej funkcji f[x) nazywamy

catka nieoznaczong funkcji f(x) i oznaczamy ja symbolem:

Jf{x)dx

czytaj: ,catka z /\x)dxu. A wiec:
(0 /f{x)dx — F{x) C
Pochodzenie znakéw J i dx, wystepujacych w tym symbolu, wy-

jasnimy pézniej (por. § 212). Funkcje f[x) (pochodng) nazywamy tu
funkcjg podcatkowg a liczbe C stalg catkowania.



Pochodng prawej strony jest funkcja podcatkowa. A wiec wzor (1)
jest rownowazny z wzorem:

@ L (fe()+ ¢)-rte)

Obliczanie catki nieoznaczonej z danej funkcji f(x) nazywamy catkowa
mem, tej funkcji. Metody obliczania catek i badanie ich wlasnosci, sta-
nowig przedmiot rachunku catkowego.

Celem przekonania sie, czy catkowanie zostato poprawnie wyko-
nane, nalezy, w mysl wzoru (2), obliczy¢ pochodng znalezionej gromady
funkeyj F{x) -f- C lub, co na jedno wyjdzie, pochodng funkcji F(x). Cat-
kowanie mozna takze pojmowaé jako rozwigzywanie nastepujgcego pro-

stego rownania rézniczkowego (por. tom |, § 87, str. 278):
(3) y' = f(x)
Stad:

y = f(x) dx — F(x) + C

Zatem najogllniejszem rozwigzaniem rownania roézniczkowego (3) jest
cala gromada funkeyj, a mianowicie catka nieoznaczona z funkcji f{x). Te
calg gromade funkeyj nazywamy ogdlnem rozwigzaniem danego réwnania
ré6zniczkowego lub ogdlng catkg tego réwnania. Kazda za$ poszczeg6lna,
funkcje pierwotng, nalezacga do tej gromady, nazywamy rozwigzaniem
szczegotowem réwnania rézniczkowego (3) lub jego catka szczegdtowa.

Przystepujemy obecnie do trzeciej kwestji, wigzacej sie z naszem
zagadnieniem, a mianowicie do oméwienia sposobéw wyznaczania funkeyj
pierwotnych czyli do metod catkowania. Ot6z jaanem jest, ze kazdy, po-
znany w rachunku rézniczkowym wzor na obliczanie pochodnych, mozna za-
razem pojmowac jako wzor na obliczanie catki zjakiejs funkcji; jezeli bowiem

F (x) = f(x), to mozna to napisa¢ takze w postaci.J'f(x)dx = F(x) -f- C.

W ten spos6b otrzymamy z rozmaitych specjalnych i ogélnych wzoréw
rachunku roézniczkowego rozmaite specjalne i ogolne wzory rachunku
catkowego. Jednakze zaznaczamy juz teraz, ze obliczanie catek jest znacz-
nie trudniejsze od obliczania pochodnych. Do kazdej bowiem funkcji ele-
mentarnej (w tomie | na str. 96 podano, ktére funkcje uwazamy za ele-
mentarne) potrafimy z tatwoscig znalezé pochodng i ta pochodna jest-
znowu jakas$ funkcja elementarng. Natomiast okaze sie, ze catki wielu
funkeyj elementarnych sg bardzo skomplikowanemi, nieelementarnemi
funkcjami przestepnemi, ktorych nie mozna oczywiscie wyznaczy¢ droga
elementarng. Jakkolwiek wiec proces catkowania jest stosowalny do szer-
szej klasy funkeyj, anizeli proces rézniczkowania (albowiem istniejg catki
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dla wszystkich funkcyj ciggtych a nawet dla wielu funkcyj nieciggtych,
podczas gdy pochodne istniejg tylko dla funkcyj ciagtych i to nie dla
wszystkich), to jednak efektywne obliczenie catki jest zwykle o wiele trud-
niejsze, anizeli obliczenie pochodnej.

Zobaczymy w dalszym ciggu, ze bardzo wiele zagadnien z geometrji
i z fizyki sprowadza sie do obliczania funkcyj pierwotnych. Tutaj juz
jednak zwrécimy uwage na jedno odrazu sie nasuwajgce zagadnienie
,z dynamiki. WidzieliSmy mianowicie, ze majgc podang w ruchu prosto-
linjowym droge jako funkcje czasu: s = f(t), potrafimy wyznaczyé¢ pred-
kos¢: v(t) = f'(t) i przys$pieszenie g{t) — Vv’ (t). Stad wynika, ze majac po-
dane przyspieszenie jako /funkcje czasu, obliczamy predkos$¢é zapomoca

catki: v(t) = j'gifydt, majac za$ podang predkos$¢ jako funkcje czasu,

obliczamy droge zapomocg catki s= J v (i) dt
Tak np. wiedzac, ze przyspieszenie jest stale: g — a w ciggu catego

badanego czasu t, znajdujemy, ze predko$¢ v= J 'idt = at-j- C,. Stad za$

znajdujemy wz6r na droge: s—j(at -f Cf) dt= Aat*+ C,t-f Ct. State

A * A mozna czasem wyznaczy¢ z poczatkowych warunkéw zadania,
np. z zadania, zeby w poczgtkowej chwili, t.j. dla t— 0, bylos= 0i» = O;
wtedy wyniknie z tych wzoréw C, = 0 i C2= 0 i pozostanie s= "at\
v= at. Inne wartosci statych otrzymamy, zgdajgc, aby w chwili t= 0
predkos¢ miata warto$s¢ VO r6zng od zera» a droga wartos¢ sO. Pozostawia
sie czytelnikowi obliczenie staltych Cli Ct przy pomocy tych warunkoéw
poczatkowych.

§ 204. Odwroécenia specjalnych wzoréw rachunku rézniczkowego.

a) Jezeli funkcja podcatkowa jest stale zerem, to catka nieozna-
czona ma stalg wartos¢ C, albowiem z wzoru:

d(C)

dx

=0
wynika:

/0 dx=

Jesli wiec obrazem funkcji podcatkowej jest 0§ x-6w, o réwnaniu y = O,
to obrazem gromady funkcyj pierwotnych jest gromada wszystkich pro-
stych réwnolegltych do tej osi (wraz z nig sama).

b) PoznaliSmy w rachunku rézniczkowym wzo6r na pochodna potegi
a mianowicie:

d,
¢e(xn = nx"-



lub w formie rézniczki.
d(xf*) — nx"~" dx
Wobec tego.

Jvx"~'dx = x" - C

Tutaj funkcja podcatkowa nx”’~' jest dos¢ skomplikowana.
Prostszg funkcje podcatkowa otrzymamy, tworzac pochodng funkcji!

X" 4)
*y+1 !
a mianowicie:

XA+ \ _
x\” -f 1/
czyli.

d(VAT) = x"d*

Stad otrzymujemy bardzo wazny wzor

X"+
(4) / = 7+7 + ¢

Wzér ten jest prawdziwy dla wszystkich wyktadnikéw n z wyjat-

kiem n 1 Dla n= — 1 ma funkcja podcatkowa posta¢c — Otéz

wiadomo z rachunku roézniczkowego, ze funkcja - jest pochodng funkcji
X
log,». Tak wiec z wzoru:
d(log x) — - dx
X

wynika, ze:
fl dx — logx -f- C

Tego wzoru mozna uzywac¢ tylko dla dodatnich x. Dla ujemnych
bowiem x me jest okreslona funkcja log»; natomiast wtedy funkcja
log (— ») ma okreslone wartosci.

Poniewaz:
dlog (— X) = -——----- (— Ddx = - dx
— X X

przeto dla x < O jest:

L -dx = log(—»)-f C
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Obydwa te wzory mozna ujgé w jeden wzOr nastepujgcy*

(5) Jd X = log |®|—fC
Istotnie bowiem dla x > 0 otrzymujemy log |Ja|= loga, a dla x < O

logja?] = log(— ®).
Przy pomocy wzoréw (4) i (5) potrafimy wiec scatkowad kazdag po-

tege zmiennej niezaleznej.
Tak np.

r a0+l
/ 1edx= 1x9dx= Qg+ C= x-f-C

czyli

(4a) f dx =
Podobnie:
J~xdx = £®* C jx*dx—jx°-f C
®*+vj
y*vi<te==r+j/§ + C
c) Z wzorn.
de)= e da
otrzymujemy:
(6) /V da,= e -(-G

Dla ogélnej funkcji wyktadniczej dogodnie jest wyjS¢ z wzoru:

Stad wynika

D fa‘dx: ————— pC=.aloga&-j-C
( J

d) Pochodne (lub rézniczki) funkcyj trygonometrycznych prowadza
do nastepujgcych wzoréw:

(8) d (sin x) — cos x dx a wiec J cos xdx —  sinx -f- C
(9) d(—cosx) — sinxdx , |, sin xdx — — cos X -f- C
(10) X) dx
d(t = — — . - = -
(to coszx M of " he: HEx e
dx i dx
(U) d(—ctg®) = —+—— n T —ctgx -r- C

Hin* x J sin2®



e) Pochodne (lub rézniczki) funkcyj cyklometrycznycb prowadzg do
nastepujacych wzoréw;

dx
d(arcsin x) =

a wiec
dx ¢

d(— arccos te) = .

n X

f dx
(12 3 I /1A = arcsin x -f-C = — arccoBx -j- C*

Obydwa wyniki me sg zasadniczo rézne, poniewaz arcsin X rézni sie od
funkcji — arccos x tylko o staty dodajnik, jak to wynika z wzoru;

arcsin X -(- arccos X = £n

(por. tom I, str. 69) A wiec C = C-\-"n.
Podobnie dwa wzory:

dec . dec
d(arctg®)=— — i d(-arcctga;)=1

prowadza do wzoru:

03) ;= arctgx + C= — arcctg® G
1-r X

Obydwa wyniki satylko pozornie rozne; ktadac bowiem G = An -|- C,
widzimy, ze obydwa wyniki sg identyczne, jak to wynika z wzoru;
arc tg X -(- arcctg X — £n (por. tom |, str. 70).

Zwréémy uwage na ciekawy fakt, ze catki niektérych prostych
funkcyj sg dos¢ skomplikowanemi funkcjami.

Tak np. catka wymiernej funkcji (;:jest przestepna funkcja log]ajl;

catka dos¢ prostej wymiernej funkcji — - sjest przestepna funkcja arc tg ar,
catka algebraicznej niewymiernej funkcji = jest przestepna funkcja
arcsin X.

Wszystkie te wzory nalezy dokladnie zapamieta¢, sg one bowiem
rownie wazne i rownie czesto stosowane, jak odpowiednie wzory ra-
chunku rézniczkowego.

Nie znajdujemy wsrod tych wzoréow catek tak waznych elementar-

nych funkcyj, jak; tg X, log X, arc tg ®, it p



Istotnie, trudno jest odrazu odgadnaé, z jakiej funkcji nalezy utwd
rzy¢ pochodng, aby otrzymaé¢ np. log x lub arc tg x. Rozszerzymy znacz-
nie zakres funkcyj, ktore dadzg sie w elementarny sposéb scatkowac,
opierajagc sie na odwrdceniach niektérych ogélnych wzoréw rachunku
rézniczkowego.

8 205. Odwroécenia niektérych ogoélnych wzoréw rachunku
rézniczkowego.

a) Wylagczanie statego czynnika przed znak cakki.
Niechaj-il(#) bedzie funkcja pierwotng funkcji/(a;), to F'(x) — f(x) czyli:
) J'f{x)dx= F (x) -f C

Zastosujmy do iloczynu a-F(x), gdzie a oznacza dowolny staty, rézny od
zera czynnik, znany wzor rachunku roézniczkowego (por. tom I, § 75
str. 244):

d[ae<F (@) — a-d [F(x)) — a f{x) dx.
Stad wynika, ze:

J af(x) dx —a F(x) + C,

Poréwnajmy ten wzér z wzorem, otrzymanym z (l) przez pomno-
zenie obu stron przez a, t j. z wzorem:

a-J f{x)dx= a-F(x) + a-C

Widzimy, ze prawe strony obydwu wzoréw beda sobie rowne dla kazdej
wartosci C jezeli tylko obierzemy C, == aC. Prawe strony sg takze réwne
dla kazdej dowolnie obranej wartosci C,, jezeli tylko obierzemy C= Ct:a,
co sie da zawsze uczyni¢, poniewaz zatozyliSmy, ze a jest rézne od zera.
Mozna wiec zawsze dobra¢ stale catkowania tak, ze zachodzi réwnosc:

(14)

Wz6r ten wypowiadamy w nastepujacy sposob;
staty czynnik rézny od zera mozna wylgczy¢ przed znak calki.

Przyktady.

1) J 5x3dx—53 'd x = |x*-f-C

' .
2) J4cosx dx—4J cos X dXx — 4 sinx -j- C



3) y*|Jcte= 2y A = 2log]®] + C—log™ + C

4) Naczynie w formie walca kotowego wiruje okoto swej osi z stala,
predkoscia katowa, wykonujgc n obrotow na sekunde. Jakag posta¢ ma
swobodna powierzchnia cieczy, znajdujgcej sie w tem naczyniu? Na fig. |
przedstawiono przekréj tego naczynia za-
pomoca ptaszczyzny pionowej. O$ obrotu
obieramy za o$ y-6w a poczatek uktadu
w O. Na kazdy punkt A cieczy, majacy
mase m, dziatajg dwie sity: sita odsrodkowa
Pj =4 Ti* mx, prostopadle do osi obrotu,
gdzie x oznacza odlegtos¢ punktu A od
osi obrotu i sita ciezkosci Pt= mg, zwré-
coua pionowo w dét. Wiadomo, ze swobo-
dna powierzchnia cieczy musi by¢é w kaz-
dym punkcie prostopadta do wypadkowej
z wszystkich sit, dziatajgcych na ten punkt.
Oznaczmy kat, zawarty miedzy styczng do swobodnej powierzchni a osig
odcietych, literg a, to tga= PLPt

Fig. 1

czyli:
dy _ 4n*n*tnx 47*nl «
dx mg
Stad: -
/'4 tzs ms 4 71*n*X* 9] 2
y_|__f _____ X dx = _:n9+C:-~x*+C
\Y 9 9 c 9
Jest to parabola. Najnizszy punkt tej paraboli otrzymamy dla x — O;

rzedna tego punktu, oznaczmy jg a ma wartos¢ a— C.

Zatem swobodna powierzchnia cieczy wirujgcej ma posta¢ parabo-
loidy obrotowe;j.

b) Catkowanie przez rozkitad (catka sumy).
Z wzoru na rézniczke sutny dwoéch funkcyj:

d(F(x) -f- G(x)) = dF{x)A- dG (x) = {f{x) -f- g(*)) dx,
gdzie F'(x) — f(x), G'(x)— g{x), otrzymujemy:

J(f(x) -fg(z))dx— F(x) + G((x)-fC
Poniewaz za$: Jf{x) dx — F(x) 4 Cxt J'g{x)dx— G(x) -(- C3

przeto:J fiB)dx-(-Jg (X)dx= F{x)-\- G(x) + C, -f- C,

Wyznaczmy state catkowania tak, aby zachodzit zwigzek C = Cj -}- Ct.



Wtedy:

(15)

To znaczy: catka z sumy dwich funkcyj jest réwna sumie calek z tych
funkcyj. Twierdzenie to odnosi sie — jak to tatwo stwierdzi¢ — takze do
wiekszej liczby dodajnikow.

Przykiady.
1) Przy pomocy wzorow (4), (14) i (15) mozna scatkowac¢ kazdy
wielomian:
f{x) = a0-f-a,x + a¥* -f- a, a5+ ... + a,x"

| tak:
J f(x)dx —J &a0dx + J™a,xdx-\-J atx*dx+ jraixidx +....+ j~anafdx

— cioj'dx-\~axJ xdx-[-ald'xidx-\-aal 'x’dx-j-.N-j- and"x"dx

a wiec:
j f(x)dx = a,x -f- £a,x2+ i -fia3*4+ em+t N j «N"+]+ C

2) Niekiedy udaje sie roztozy¢ funkcje podcatkowg, ktorej catka
nie jest nam znana, na takie dodajniki, ktoérych catkowanie potrafimy
wykonac.

Tak np. postepujemy z catka:

J tg*a)dx

Korzystamy z wzoru: tg*® = sec*® — |
Oznaczmy krotko szukang catke literg / (jest to poczatkowa litera
stowa: Integral, oznaczajagcego w jezyku niemieckim i francuskim catke).
A wiec:

— | — \-———-- id* =
: Jf IIcos§® Ild/
~,/V0s*® + = tga? —Jdx = igx - x-\- C

Taki sposéb obliczania catki nazywamy metodg catkowania przez rozkiad.
3) W podobny sposob postepujemy z catka:

= ii
J ( SIN*® coS*®
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Zamiast 1 mozemy napisa¢ w liczniku sin'® + 008*0;, a wtedy.

dx 4- f-X dx

sin*® -f cos2® _ f )
/ siD2'® COS*® J C0S2® J sin*®

a wiec: Z= tg® — ctg® -]- C

8§ 206. Catkowanie ,przez czesci“ (per partes)

Bardzo wazng metode catkowania otrzymuje sie z wzoru na pochodng
iloczynu dwéch funkcyj u(x) i v(x). Zatézmy, ze te funkcje posiadaja
ciagle pochodne, to:

d(u(x) =v(9) _ ulx)v'(x) + v(x)u'{x)
dx
lub w formie rdézniczkowej:
@l rf(u(®) *»@®)1 = w(®) v'(x)dx -f v[x) su{x)dx
co mozna takze napisa¢ w postaci:

d(u(x) *»(®)) = u(®) «dv[x) + v(x) edu(x)

lub w skréceniu:
d(uv) = udv 4“ v(®u
Z wzoru (a) wynika, ze:
Ju(x) *»'(*) dx 43 "n{9y *u'(x) dx = u(x) +«(® 4- C
a stad:
Ju(x)- u(x) dx —u(x)-v(x) 4 C—3"v(x) aU(®) dx

Stala C mozemy potaczy¢ z stalg, zawartg w ostatniej catce nieoznaczonej,
w jedng nowa stalg, wobec czego mozna napisa¢ otrzymany wzor w postaci:

(16) J'u(x) v'(x) dx — u{x) v(x) j v(x)u'(x)dx
lub w skréconej postaci:
(16a) udv = uv—J"»du

Nalezy pamieta¢ o tern, Ze w pierwszej calce v nie jest zmienng, wedtug
ktorej catkujemy, lecz dv jest tylko skréceniem wyrazenia v'(Xx)dx
i podobuie du w drugiej caice.

Stosowanie tego wzoru nazywamy catkowaniem ,,przez czesci“ lub
»per partes“. Wzoru tego uzywa sie w nastepujacy sposob: rozkiadamy
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w calce\]f{x) dx funkcje f(x) na dwa czynniki: u(x) ev'(x) tak, aby

catka v(x) drugiego czynnika byta znana lub tatwa do obliczenia; nastepnie
stosujemy wzOr (16); ot6z czesto okazuje sie, ze catka, wystepujaca po
prawej stronie tego wzoru, jest tatwiejsza do obliczenia anizeli catka,
znajdujgca sie po lewej stronie. Zwykle postepuje sie tak, ze cate wyra-
zenie f(x)dx rozktada sie na czynniki u(x) i Vv/(x)dx = dv(x) czyli
krotko u i dv i uzywa sie wzoru (16 a).

Przyktady.

1) Chcemy obliczy¢

log x dx

Rozktadamy w tym celu wyrazenie pod calkg na dwa czynniki:
M= loga; i dv= dx
Wobec tego:

du—X—dx a v—Xx

Stosujgc wzor (16aj, otwujemy:

flogx dx = X log x —\]x- dx — x log X —Jdx — x logx — x 4- C
2) Obliczyé:
cos, dx
Ktadziemy:
u—xL dv ~ cosx dx
Stad: du — 2xdxy v= sin*.

Wedtug wzoru (16a) otrzymujemy;
(b> Jx* cosadx = x2sinx — 2J X sin x dx

Wprawdzie nie potrafimy odrazu znalezé ostatniej catki, lecz jest ona
w kazdym razie tatwiejsza od poprzedniej. Stosujemy do tej catki powtor-
nie te samg metode, a wiec kiadziemy x = u\, sinx dx — dv. a stad
dux— dx, tij = — cos X, wobec czego:

J X sinx dXx — —xcosx -j- f cosx dx = — xcosx -)- sin* -f- C
i odstawiamy ren wynik we wzo6r (b) i otrzymujemy ostatecznie:

1 ~ J X*008xdx ~ xX%SInx + 2Xcos® — 2sinx — 2C

czyll; /= sin — 2) -f 2x cosx -f C,.
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Widzimy, ze pierwsze zastosowauie wzoru (16a) nie doprowadzito
odrazu do obliczenia szukanej catki, lecz zredukowato jg tylko do prostszej
catki a dopiero drugi krok doprowadzit do pozadanego wyniku. Takie
redukowanie catki do kolejnych, corazto prostszych catek, jest charakte-
rystyczne dla metody catkowania ,przez czesci“.

Zobaczymy na nieco ogo6lniejszym przykiadzie, jak mozna takie
kolejne stosowanie wzoru (16) zastgpi¢ tak zwanym og6lnym wzorem
redukcyjnym.

3) Dla caiki:

x*e*dx

Wyprowadzi¢ wzér (redukcyjny), pozwalajacy wyrazi¢ te catke zapomocag
catki J,_ L, zawierajagcej zamiast potegi a? potege xn-1 o wyktadnika
o 1 nizszym.
Ktadziemy:
X"= u edx= dv
a wiec:
mdu — nxn-ldx, v— e

Z wzoru (16a) otrzymujemy:
(c) la= x"'e¢* —nJe*x" 'dXx — xnet— ninf

Jest to zgdany wzor redukcyjny..
Na podstawie tego wzoru mozemy catke o dowolnym wyktadniku
naturalnym n sprowadzaé¢ kolejno do calek coraz prostszych a ostatecznie

do znanej catki /,= jx°e*dx=Je* dx = el-f C. Gdy chcemy obli-

czy¢ In dla dowolnie wielkiego «, to oprocz tego ostatniego catkowania
nie trzeba juz wykonywac¢ zadnych innych catkowan. Tak np. chcemy

obliczy¢ 7/, = J 'x iefda;, Wedtug wzoru (c) jest:

Is=x»e' — 31t
li = x *ex— 21i
h = xex— 1«10= xex— e— C
Wobec tego:
h = x*e* — 3@?» e+ — 2(abe*— ex— C))
= ®3e*— 3x2e' + 6xez— 6ex-\-Ci ~
Is= e*(x* — 3x*+ 6 x-6)-j- C,

Sprawdzi¢ wynik przez rézniczkowanie!
4) Wyprowadzi¢ wzér redukcyjny dla caitki:

In = J log"Xx dx
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Catkujemy ,per partes”, podstawiajac:

u~\ogrx, dv= dx

Stad:
thx
du= nlog*~'Xe—, V—X
X
a wiec:
la— x\ogmx —J X <« log"“'* ~ = xlog"a; — n jlog'l Xdx
czyli: i

l,, — x lognxk — nl,,_t

5} Bardzo wazny jest wzor redukcyjny dla cafki:
S, = j 'sin "x dx

Otrzymujemy go takze przez catkowanie ,per partes”, | tak kltadziemy

M=sin',-1L;r, dv — ainxdx

Stad:
du= (W— 1)sinn' X ecosx dXx; VvV— — cosX
a wiec:
S,,— — cosX esinn~Ix + (« — !)J 'sin " *X mcos*# dx
czyli;
Sn— — cosx sinn"x+ (n — 1) f (sin"*2* — 8in\r)d.r
r*

PrzenieSmy na pierwszg strone (n — 1) | ein"#ci# czyli (w— IjS,

to otrzymamy:
neS,= — cosX sinn~Ix -]-(n — 1) <$,,

a wiec ostatecznie:

7))

Przy pomodéy tego wzoru mozemy obniza¢ wyktadnik wyrazenia sin'"a: o 2
Jezeli n jest liczbg naturalng, to stosujgc wzér (17) kilkakrotnie, otrzy-

mamy ostatecznie dla n nieparzystego <§ = f sinx dx = — cosXx 0]

a dla n parzystego SO—J"s\n°xdx—Jd x = x-\-C.

Jezeli n jest liczbg catkowitg ujemng, to nalezy z wzoru (17) wy
razi¢ odwrotnie Sn 2 zapomoeag S,,, a mianowicie.

Sn, + ~ Sm



Ktadagc n— 2= m = — p, otrzymujemy dla m< — 2:

(17a)

Wz6r ten pozwala sprowadzaé¢ obliczanie catki 8m— o_p= |81__X do
y n

catki o wyktadniku p mniejszym o 2
Dla p parzystego dochodzi sie ostatecznie przez Kkilkakrotne stoso-

/  dx
—j- — —ctg® -f- C
81D X
dx
Przy nieparzystem p dochodzi si¢ ostatecznie do catki S_x sin X
ktorej obliczeniem zajmiemy sie w nastepnym paragrafie.
Przyktad zastosowania wzoru (17):
. COS X sin &
sin Hdx = =
/ 6
- I ( coax s B (-5 —costsn® '—?S(h\\
cos® sin® 5co0s®sin® , 15/— cos® sin® , 1 \
6 24 + 24\ 2 ‘m2 5°)

cos X . . . 15 .
= - Zl)é- (8 sin 8® -j- 10sin W -(- 15sinXx) + 411-?)®+ Cj

Przyktad na zastosowanie wzoru (17a):

cos® sin-3® , — 2

.. _ ) )
Fhink = < = e R
CcoS X 2 Cgx 1 1

“ _rarb5 -5 *** 4+ ¢c= - \sim¥e + 3 + c-

8§ 207. Calkowanie przez podstawienie.

Obliczenie catki:
(a) Jf(x) dx = F(x) -f- £
upraszcza sie nieraz znacznie, gdy za zmienng ® wprowadzimy nowag

odpowiednio dobrang zmienng t, kiadac:

(8) x — @
Zatézmy, ze funkcja (p(t) posiada ciagta pochodna.



16

Z wzoru (a) wynika, ze:

dr N
—_— (o]
dx )
Jezeli za$ w funkcje F(x) wprowadzimy X — e>(f), stoBujac WzOr

na pochodng funkcji ztozonej, otrzymujemy:
= i 9 = i i N =
dttw (?'(p dif - ax atA) if.if m -rm
Stad wynika, ze:
F(<p{tj) + C—JIf(g>(t))-<p'(t)dt
cz*yli:

~®) + C= Jf(<p(t)) - e>'(fdf

Stad otrzymujemy ostatecznie na mocy wzoru (a):
{18)

Jest to wzér na catkowanie przez podstawienie; jest on bezposrednim
wnioskiem z wzoru na pochodnag funkcji ztozonej. Widzimy, ze funkcja
podcatkowa f{x) nie przechodzi na f[<p(t)), lecz otrzymuje jeszcze dodat-
kowy czynnik: <p'(fl. Wz6r ten najtatwiej jest zapamieta¢é w ten sposob,
ze wprowadza sie podstawienie X — <p(t) nietylko w funkcje f{x), lecz
takze w rézniczke dx, ktéra wobec tego przechodzi na:

dx = d(p(t) = (p{t) dt

Podstawienie x==g>(t) staramy sie zwykle tak dobraé¢, aby catka po pra-
wej stronie wzoru (18) byta tatwiejszg do obliczenia anizeli catka pier-
wotnie podana. Po wykonaniu catkowania wedtug zmiennej t otrzymamy
jakas funkcje (?{() tej pomocniczej zmiennej t. Chcac wréci¢ do zmien-
nej x, nalezy obliczyé¢ z wzoru (b) tjako funkcje zmiennej as np. t= ifi(x)
i wstawi¢ ip(x) w (7(f) za zmienng t. Aby sie to przeksztatcenie dato
uskuteczni¢ w spos6b jednoznaczny,, trzeba obra¢ funkcje x = <p(f) tak,
aby byta odwracalna w sposéb jednoznaczny. W tym celu wypadnie
czesto ograniczy¢ zakres zmiennosci zmiennej niezaleznej w tym zwigzku
funkcyjnym x = <p[t) (por. tom I, § 18).

Przy, stosowaniu tej metody catkowania (przez podstawienie) roz-
poczynamy zwykle rachunek od. tego, ze za jaka$ odpowiednio dobrang
funkcje rp(x) zmiennej * podstawiamy nowa zmienna:

f= ifi{x)
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a nastepnie obliczamy stad x = <p(t) i postepujemy dalej zgodnie z wzo-
rem (18). Funkcje ip(x) nalezy oczywiscie obraé tak, aby byta odwracalna
w Sposéb jednoznaczny i aby posiadata rézng od zera pochodna: albo-

wiem potrzebna we wzorze pochodna cp'[t) ma wartos$é $E5)r,jak wiadomo
z twierdzenia o pochodnej funkcji odwrotuej (por. tom I, § 79, wzdr 28).
Przykiady.
1 Obliczy¢:
/==/ ( dX= f b(2 ~ 3a>ré6dX
Na pierwszy rzut oka mogtoby sie zdawaé, ze ta catka ma wartosc:
52— : ) jako potega o wyktadniku ujemnym. Przez zrézniczkowanie

tej funkcji tatwo sie jednak mozna przekonaé¢, ze jest to wynik btedny.

Zastosujmy natomiast do catki podstawienie:

tp(x) = 2— 3x —t

Stad:
X= 11— = (p{t) a dx= — ~dt
Wobec tego jest:
Jb (2- 3»)"6dx= fb rbe- £di= ~ -t -fC= £+*+ C

Wyrazamy teraz t zapomoca zmiennej X i otrzymujemy:

/=4%+,2-3 »)-+ ¢c = — ljj + O

d
'f,ax ):‘ b

Chcac te catke sprowadzi¢ do znanej catki / — (por. wzdér 5), uzywamy

2. Obliczyé¢:

podstawienia:

ax-}-b=t
iStad:
6 t
X = - + -
a a
a wiec:
dx=-dt
Wobec tego:

i=/V “ilt=i18l+c

Rachunek rolniczkowy i catkowy. T. S
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Wracamy do zmiennej X i otrzymujemy

= 1llog|*r+ 6]+
/-ax b a gl | c
7
3. Obliczy¢:
r dx

/j—dx = arctg x C (por. wzor 13).

Staramy sie sprowadzi¢ szukang catke do tej postaci i w tym celu
wytgczamy w mianowniku a! przed nawias.
Stosujac wzér (14), otrzymujemy zatem:

/= \ f — —

aJ 1-i-e'
Teraz juz samo sie nasuwa podstawienie: —= t
Stad:
X — at, dx — adt
a wiec:
, 1 r adt a f dt 1
"“ajl1+ P* ajf+7- =i ar’tg'+ C

. . X . . .
Wracamy do zmiennej X, kladac t= - i otrzymujemy ostatecznie:

f _Idx.. L >é ”
J ¢ T+ii = +C
4. Wsrod catek, ktoresmy otrzymali bezposrednio przez odwroécenie

J,‘?‘f _

N i ®
(por. wzér 13 z § 204), natomiast nie byto tam bardzo podobnej catki:

f dx

J

By te catke obliczyé, roztézmy najpierw funkcje podcatkowg na dwa
prostsze dodajniki (t. zw. utamki czeSciowe, por. tom |, § 23, str. 91):
1 1 B

1— X2 (-f-ey( — ) = L0x v x
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Wyznaczamy stale A i B tak, aby ta réwnos$¢ zachodzita dla wszyst-
kich X (z wyjatkiem oczywiscie wartosci x — 1 i x = — 1, dla ktérych
funkcja podcatkowa nie jest okreslona). Uwalniajgc obie strony od mia-
nownikoéw, otrzymujemy:

1= A — AX -f- B-J-Bx = (i4 -(- B) -j- (B — A)X
SpoétczynDiki przy x° i X1 muszga by¢ po obu stronach réwne, a wiec:

A+B =1
A—B=0

Z tych dwéch réwnan otrzymujemy: A= £, B = \. Zatem funkcje pod-
catkowg mozemy przedstawi¢ w postaci:

1 _ j , i
1—x% 1+ X 1—x

Stosujac tu wzér (15) na catkowanie sumy i wzér (14), otrzymujemy:

i I I WX
/ r="1— WXF
Na podstawie wyniku, uzyskanego w przyktadzie 2, otrzymujemy stad:

ffir’\sz 41<g]l +® ] — 4log11— ®]+ C= ]log]j-i]] + C

czyli:

(19)

Ten wzér znajduje dos¢ czeste zastosowanie.

Podobnie postepujemy z catkag otrzymujemy, jak tatwo
sprawdzic:

(19 a) + c

5. Wynik, uzyskany w poprzednim przykiadzie, mozna zastosowac
do nastepujacego zagadnienia z dynamiki. Na ciatlo o masie m, spadajace
pod wptywem sity ciezkosci ziemi, dziata ponadto opér osrodka w kie-
runku przeciwnym do kierunku ruchu; opér ten jest w kazdym mo-
mencie ruchu proporcjonalny do kwadratu predkosci v ciata spadajgcego

2*
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a nie moze by¢ wiekszy od sity ciezkosci Znalez¢ wz6r na predkosc
tego ruchu i na droge.
Ot6z catkowita sita, dziatajgca na to ciatlo, ma wartosc:

dv

P— mg — kvl — my = mdi

gdzie g oznacza przysSpieszenie sity ciezkosci (przyjmujemy je tu za stale)
a y przyspieszenie w badanym ruebu. Predkos¢ v jest liczbg dodatnig

a ponadto musi by¢ kv% mg czyli
Stad.

Wobec tego:

ta -~

Wedtug wzoru (19 a) otrzymujemy Btad:

m |

k> °g \V2~*

Wyrazenie pod pierwiastkiem jest nieujemne, a wiec znak bezwzglednej
wartosci nie jest potrzebny. Gdy przyjmiemy, ze dla t= 0 ciatlo byto
w spoczyn-ku, t.j. v= 0, to otrzymamy stgd C=0. Z tego wzoru mozemy
obliczy¢ v jako funkoje t a mianowicie:

2tV* + »
e Y N-v
a stad:
-} K = ~ = V7 tgbyp Vi)
e ' -|-1
Z tego wzoru widaé, ze dla t—00 predkos$¢ v dazy do wartosci: ti, = |/5,

zwanej predkoscig ,krytyczng“.
Catkujac wz6r na w= it jeszoze raz, otrzymujemy na droge przy
J
tym ruchu wzbér:

I~ C M- Ir~ r sinhyp(t]/iQ dt

o rijf =" 7
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Ktadgc coshypii®) = m, otrzymujemy:

du = sin hyp (t\5) » dt

a wiec:
., J /S fi E = logH + C,= " log«o.h,p (i]?)+ C.
Jezeli dla t= O jest s— 0, to otrzymamy C, = 0 i pozostanie wzor:
6. Catke:
/ cos rx dx
oblicza sie przy pomocy podstawienia rx=t. Stad x = -, dx — -dt.
A wiec:
J'cosrxdx —J coste—dt— -J 'costdt — —sint-\- C
ceyli:

f cosrx dx = -sin rx -f-C

Przy pewnej wprawie wykonuje sie takie proste catkowania odrazu, bez
uzywania odpowiednich podstawien.
Tak np. odrazu jest widoczne, ze:

pxdx = — ~ cosp® -f- C

7. Z wzoru redukcyjnego (17) (str. 14) na catke z sin "X wyp
wadzi¢ wzoér redukcyjny na calke z cos IR.
Opieramy sie na tern. ze:

sinx = cos (] N — X)

i kladziemy: — X =» t. Wtedy dx— — dt, sinx — sin ($» — t) — cost.
Wobec tego wzor:

Assm*™X dx = — ~ cosx sina-'X -j- —J 'sin*-*®@d*

zmienia sie na:

(20)
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Kltadac n— 2= m = —p i wyliczajac z tego wzoru ostatnia catke,
otrzymamy wzor redukcyjny dla ujemnych poteg cosinusa:

_ . ) - dt
\(120a) Ka = J ot T =p 7+—rls|ntcos- +11 -)——:-pt_l'_r IIJ f os'o/

Jezeli p jest liczbg nieparzystg, to ten wzdér redukcyjny prowadzi osta-

dt 3 . .
/-— ktorag omowimy w przyktadzie 11.

8. Czesto sie zdarza, ze nie trzeba oblicza¢ wyraznie zmiennej

z podstawienia rp(x)=.t, lecz wystarczy utworzy¢é rozniczki obu stron
tej rownosci. Tak np. celem obliczenia c:

xdx
J\a*+ x'
uzywa sie podstawienia:
a2+ x*—t

Stad:
2x dx — dt
a wiec xdx = £dt, a to wiasnie jest potrzebne w liczniku.
Wobec tego:
a wiec:

9. Wyprowadzimy wzor redukcyjny dla cafki:
Tm=y t gnxdx

W tym celu oddzielamy w funkcji podcatkowej:

tg *X — sec *Xx — | =e — 1
cos2 X
Otrzymamy zatem:
Tm—JI\tg m-X «tg X dx — f tg m-X - 1jdx=
= ftgmix~ X-—- fqt X dx
J g cos Ix J gs

Drugg catke mozemy oznaczy¢ litera Tm 2, pierwsza za$ obliczymy przez

. dec
podstawienie: tg» = w, a wiec — K ~du. Wobec tego ta pierwsza catka
cos
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przyjmie postac:

/ o] ]

Stalg C, wystepujaca przy catkowaniu, wigczmy do Tm* to otrzymamy
nastepujacy wzor edukcyjny:

X
m— 1tg

10. Metody, podobnej jak w przyktadzie 8. uzywa sie, jezeli funkcje
podcatkowa jest ilorazem dwoch funkceyj, z ktérych dzielna jest pochodna
dzielnika, a wiec dla catek postaci:

T ) gy
-/ H{x)

Ktadac f(x) — t, otrzymujemy f‘(x)dx=?dt, a wiec:

i=/y = log]<]|+C

(21) f N dx = \og\f(x)\+ C

Ten wzdér mozna uwazac¢ za odwrécenie wzoru na pochodng logarytmiczng
(por. tom 1, § 85).
Tak ap.:

sin x dx sinx dx
cos X f cos X

a) /tgxdx

Tu licznik jest rézniczkg mianownika, zatem wedtug wzoru (21) otrzy-
mujemy ;

(22) J'tgx dx = — log Jcos *] + C

b) Obliczy¢:
mx -(- n

. dx
m/OXi+ bx-f-c

Tu licznik nie jest wprawdzie pochodng mianownika, ale mozna go tak
przeksztalci¢, ze bedzie suma tej pochodnej i liczby statej, a mianowicie,
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rylgczajac z licznika otrzymamy:
2ax + m 2ax -
- dx dx
: —g\,f ax' -f- bx -j- ¢ 2nJ ax'+ bx ¢
Te catke rozdzielamy na sume dwoch catek
m f 2axA-b , . m j2an \ C dx
= 2aj " 7b"~"Trdx I'= ¥a\-"~-bJ ax' -(-bx-f-c

Ot6z pierwsza z tych catek ma wiasnie posta¢ lewej strony wzoru (21),

a zatem:

A = log Jas* + bXx-j- cj

W drugiej catce nalezy sprowadzi¢ mianownik do fermy kanonicznej:

a |ar -f- ~N4 ) Nj- Kladace x -f- = k sprowadzamy te catke do

formy:/ * £ r. -- j ' zal®e,,ie od tego, czy wyréznik 4ac—

jest dodatni czy tez ujemny. Te za$ formy oméwiliSmy w przyktadzie 3 i 4.

dx . C dx
— i K— | - , potrzebne przy sto-
sin X J cosx J

sowaniuta\l/&z.oréw redukcyjnych (17 a) i (20 a).

dx
n i dx dx 1 2costja:

_ o
n\nx | . X X 7/ X
J J Qsin-cos- J tg-
Tu licznik jest rozniczkg mianownika, a zatem:
@3l

Celem obliczenia catki K, sprowadzimy jg do catki S, zauwazywszy, ze
«0s X = sin{%7i a;). Zatem:

K= f ~ :j dax:
J aBX sin | N -(-X)

Za Ati-\-x kladziemy t, to dx = dt i otrzymujemy catke typu (23).
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12. Celem obliczenia catki:
, =/ v - dx
dogodnie jest uzy¢ podstawienia wprost w postaci X = <pt), a n'e, .i“%
to dotychczas czyniliSmy, w postaci t= ty{x)- Podstawiamy mianowicie

X = sin(, biorac — %n ™ t< A-

Podstawieniem tern wyczerpujemy istotnie caty zaséb dopuszczalnych wartosci x,
albowiem, aby otrzymac rzeczywisty pierwiastek z 1— ar*, musi by¢ — 1Sia:fi -j- 1|

Wtedy dx = cos tdt, a zatem
| =J '~ — siullecostdt = J 'cos’ tdt

Te catke moglibySmy obliczy¢ odrazu przez zastosowanie wzoru rednk-
cyjnego (20). Dla ¢wiczenia obliczymy ja jednak w inny sposob, a mia-
nowicie oprzemy sie na znanym z trygonometrii wzorze:

1 -j- oos a
cos
Wobec tego:
/= J3J'1+ cos2]dt= £sin2i)+ C
Ale z wzoru X — sint wynika, ze t— arcsin X (przyczem — ~"7"N t< | n).

Ponadto sin21— 2sintcosi= 2x]/l — xs(znak pierwiastka jest dodatni,
poniewaz cosi ma wartosci nieujemne dla t, zawartych w przedziale
< — n, Wobec tego:

(25) /= I —x*dx= £(arcsinx x\\ — ®) -j- C
Pozostawiamy czytelnikowi do wyprowadzenia nieco ogélniejszy wzor:

(86 a)
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13. Czasem przy obliczaniu catki trzeba uzy¢ zaréwno catkowania

.per partes“ jak i metody podstawiania. Tak np. do obliczenia:
I = J arctgx dx

stosujemy najpierw catkowanie ,per partes“, kladac:

arctg X = U, dx = dv

dx
du X= Vv
1+ «*'e

/ﬂ Catke, ktéra tu wystepuje, obliczamy

zapomocg podstawienia 1- | —  Otrzymujemy 2xdx — dt, a wiec:
fr~ -h fj =Vs\t\+ c=V ~ + ™M)+ ¢

Wobec tego:
J arctgx — x arctgx — " log(l -}-®) —C

Niechaj czytelnik stwierdzi, ze w podobny spos6b otrzyma sie:
j arcsin® dx= xarcsinx -f-~"1 — X*+ C
14. Przy obliczaniu catki:
1=J e"sin bxdx

stosujemy dwukrotnie catkowanie ,per partes”, a mianowicie najpierw

ktadziemy:
= u, sinbxdx = dv

du= aéNdT, v— — Ecos bx (por. przykiad 6).

Wobec tego:
/= — ‘g e“ cos bx €“* cos 6® d®

Stosujemy do wystepujacej tu catki powtornie metode catkowania ,per

partes”, ktadac:
«" = u,, cosbxdx= dv,

du, — ae**dx, u = f)]-sin 6®
Zatem:

1——(i)—ﬁ“*®5i® mj |* € sinbx — &J'eU8n

1- ;2 N cos fo® -j- €“1a sin
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A stad:
/6% = eaqa sin bx — bcos bx) — n*l, (a*4 6% / = «* (a sin bx — bcos fa;)
a wiec: )
/e“ sin & da; = g——(a sin bx — bcosbx) 4 C
a* 4- b*

W podobny sposéb oblicza sie, ze:

/e cos bx dx = (acosbx4 bsinbx)4 C

a*4 - 6*

15. W jednym z dalszych rozdziatbw beda nam potrzebne catki:
/ sin na; sin rxdx, sin ng;cosra;da; i / cos na cos rx dx

Przy obliczania tych calek opieramy sie na znanych z trygonometrii
wzorach:
sinnxesin «x — \(cos(n — r)X — cosm -(-r) a)
sinnx‘cosrx = ~(sin(A4"r)a4 8° (n— r)»X
cosna;ecos rXx — £(cos(n4 r)* 4 cos (n— r)X)

Gdy nog r, to otrzymujemy stad:
J "sin nxsin rxdx — £J cos(A8 — r)xdx— \J cos(n4 r)ada =

/sin [n — r) X sin (n 4 r)#\

M q —T a4 r /
y ' sin Nx cos r/pda; = J sin(n 4 r) 4 i f sin(n—r)xdx —
(26)
,/cos(n4 f)i , cos(n — r) a\
— ~ M 44 4 4 N4 j

J ' cos na; cos ratda; = $J *cos(« 4 r)* 4 cos (n — r)xdx =

/sin (nd nNa; ™ sin(n— r) a;i
*Vo w4 * n—r /

Dla n= rjest cos(n —r)a= cos0=1, Bin(hn — r)a= sin0= 0,
a wiec powyzsze catki przechodza na.

[ m. .sin 27
| bid*sa>dx = JIx —{ —-"—

. Ccos 2 ng;
(26a) [ /sin na; cos nxdx~ — AL

sin.2 nx . ,
/cos* nxdx = N 2/ H
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16. Wyprowadzi¢ wzoér redukcyjny dla catki:

1 J(+@r

Podstawiamy: X = tgt, to dx = 14-®*=1+"~* _

cos*i’ cos* t
a wiec:

= J cos2fatdt=

Dla catki « m zbaray juz wzOr redukcyjny (por. wzor (20) na str. 21).

Stosujac go tulaj, otrzymamy:

IB— K*,- on *_ 2 sini CDSl,-8 t Z.T--_-i! K,_, —
tgi 2« — 3
2» — 2)sec,i&tL Sh — ol
czyli: ’ . 23
i " (2 —2)(1-jrartyF et 2w—2 *e

lub wyraznie:

C dx X 2a—3 C da

(27)
3 (T+re)"  2r—2)(1-f0%)-112n—2 3 (1+ »*)—*

Z tego wzoru bedziemy korzystali w nastepnym paragrafie.

Uwaga. Do tego wzoru redukcyjnego mozna tez doj$¢ bezposrednio, nie prze-
chodzac przez Wzér (20). W tym celu przedstawia si¢ funkcje podcatkowg w postaci:

1 1-f- x* —x1 1 aj*
d+ x*\- (X -f x*)* @L+*»)—1 Q1+ x)*
Catka |, zamieni sie wtedy na , y xdx
€ -h
Do pozostatej catki stosujemy catkowanie ,per partes”, ktadac u = x. de — (T>L(1’> X*_I"
- X

i U'd. Pozostawiamy czytelnikowi dalsze wykonanie raohunkéw-

17. Jezeli znamy catke jakiej$ funkcji y= f{x\ to potrafimy bez
trudnosci obliczy¢ takze catke funkcji odwrotnej: w— <p(y). Itak, cbcac
obliczy¢:

I —J V{y)dy

podstawiamy za <p(y) = X, stad y= f(x\ dy= f'(x)dx
a wiec:

1=j'x- f(x) dx
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Catkujemy ,per partes“, ktadac: x — u, f'(x)dx — <v Wtedy du= dx,
v="f(x) i otrzymujemy*

/= <pydy = xf(x) —J f (x) dx

Przyktady, a) Znamy dlay = sin x catke Js\nxdx = — cosa;-)- C

Wobec tego mozemy obliczy¢ przy pomocy poprzedDiego wzoru
eatke z X — arc siny, a mianowicie;

/ *" siDydy = a sina: —/ sina:da: = X sin X -j- cos X 4- C
Wracajgc do zmiennej y, otrzymujemy:
J'arc sinydy = arcsinyey \\—y24*C
(por. przykiad 13 oa str. 26).
h) Dla y = sia hyp X znamy calke:
/ "+ hypa?rfaj = coa hypa? 4- C= \\ -f- siD* hypx -f C

Stad mozemy obliczy¢ catke funkcji odwrotnej, ktoérg jest, jak wia-
domo (por. tom |, str. 290—291):

*= log(y+ ]/l 4-y8
Wobec tego:

f logly4*h 4-yhdy=

«= X sin hypa; —\] Binhypa&da:= ylog(y - f - 4-y*) — Kl 4- y*4- C*

c) Poniewaz dla y= €* jest:

Je? dx — e?4« C
przeto:
J\ogy dy =xe? —<¥4- C —logy-y —y4-C

(por. str. 12 przykiad 1)

§ 208. Catkowanie funkcyj wymiernycli. Rozkitad funkcji utam-
kowej na utamki proste.

Potrafimy scatkowac¢ kazda funkcje eatkountg wymierng ezyli kazdy
wielomian (str. 10, przykiad I).

Funkcja utamkowa wymierna jest ilorazem dwoch wielomianow.
F(x)
9&)

W @)
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Jezeli stopien licznika nie jest mniejszy od stopnia mianownika,
to wydzielamy z tej funkcji utamkowej czes¢ catkowita przy pomocy
znanego algorytmu dzielenia wielomianéw ' W ten sposéb otrzymujemy
rozktad danej funkcji W (®) na cze$¢ catkowita, np. h(x) i na funkcje

/()

utamkowa, np. ——, ktdrej licznik ma stopien nizszy anizeli mianownik,
awWec
f(OB)
fF(®) = h(x) +
® = ho)+ g

Tak np. dla funkcji:

wykonujemy dzielenie.

@®s+ 2X + 6):(®*— 4® + 3)= ® + 4
®3— 4x* + 3g
+

4-4@* — X  + 5
+ 40* — 16®+ 12

i + -
+ 15— 7
Zatem:
®3-]-2x + 5 15@ — 7
®+ 4+
® —4x + 3 ® — 4® + 3

Cze$¢ catkowita n (®) scatkujemy bez trudnosci. Pozostaje do cal-
kowania cze$¢ utamkowa, ktérej licznik ma stopien nizszy anizeli mia-
nownik. Do takiej funkcji zastosujemy catkowanie przez rozktad. W tym

celu postaramy sie rozitozy¢ takg funkcje f—(P) na prostsze dodajuiai.

W specjalnych przypadkach uzywalismy juz takiego rozkiadu (por.
str. 18, przykiad 4). Jezeliby spétczynnik najwyzszej potegi zmienoej ®
w wielomianie g(x) byt rézny od 1, to usuwamy go, dzielgc licznik i mia-
nownik tej funkcji utamkowej przez ten spotczynnik; mozemy sie zatem
ograniczy¢ w dalszym ciggu do badania tylko takich funkcyj utamko-
wych, w ktorych ten spétczynnik ma wartos¢ 1 Spoiczynniki innych
poteg X sg dowolnemi liczbami rzeczy wistemi. Algebra poucza (por. tom I,
§ 22), ze kazdy wielomian stopnia n mozna przedstawi¢ jako iloczyn n
czynnik6w stopnia pierwszego:

wi(x) — a, (® — ®,)(® — ®Y)...(® — ®J

przyczem liczby xu ®,,...®, sg pierwiastkami rownania wn(®) = 0. Nie-

1W podreczniku Ruziewieza i Zylinskiego p.t. Wstep do matematyki
czytelnik znajdzie w rozdz. V dokladne uzasadnienie tego algorytmu.
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ktére a nawet wszystkie czynniki moga sie powtarza¢ wielokrotnie (jezeli
rownanie posiada wielokrotne pierwiastki). Tak wiec mianownik funkcji
utamkowej, majgcy spoiczynnik 1 przy najwyzszej potedze X, mozna
przedstawi¢ w postaci:
g(X) —{x—a°’(x— Pf...(x —p) ==

jezeli ajest a-krotnym pierwiastkiem réwnania g{x) = 0,(3 6-krotnym i t. d.

Pierwiastki réwnania g(a))= 0 moga by¢ rzeczywiste i zespolonel
Wszystkie zespolone pierwiastki réwnania o spoétczynnikach rzeczywi-
stych rozpadajg sie na pary sprzezone z soba. Jezeli wiec:

H= p-\-qi

(P, g sa tu liczbami rzeezywistemi a q jest rozne od zera) jest pierwia-
stkiem réwnania g (X) = 0, to takze liczba:

p=p —di
jest pierwiastkiem tego réwnania. Co wiecej, jezeli p jest r-krotnym
pierwiastkiem tego rdéwnania, to takze sprzezona z p liczba p musi by¢
doktadnie r-krotnym pierwiastkiem tegoz réwnania. lloczyn kazdej pary
czynnikow (X — p) (Xx — p), odpowiadajgcych sprzezonym pierwiastkom,
jest wielomianem drugiego stopnia o spo6tczynnikach rzeczywistych a o wy-
rézniku ujemnym. | tak:

—P)-(x —p)= (x-p —qi)(x —p-t-qi) = (x — p)*-f-q* —
— X*—2px p*+ 9* . »
Wyréznik tego tréjmianu kwadratowego ma postac:
d— (2P —a(pr + @)= —aq
a wiec ma wartos¢ ujemna.

Wobec tego mozemy przedstawi¢ wielomian g (x) jako iloczyn sa-
mych rzeczywistych czynnikéw stopnia pierwszego lub drugiego w postaci:

28) g(xX)= (x- a@° (x - /3)*...(x*-]-0,* + <,)e(«* + a3X -f M eee

przyczem wystepujgce tu tréjmiany majag wyrozniki ujemne. Czynniki
pierwszego stopnia: X — a, X — /3,... odpowiadajg rzeczywistym pierwia-
stkom réwnania g(x) = 0, czynniki za$ drugiego stopnia: Xx* -}- X 6,.
X% + ® -j- ¢») »= odpowiadajg parom pierwiastkéw zespolonych, sprze-
zonych. Stopniem wielomianu g(x) jest widocznie liczba N= a-j- f-...
-j" 2r -}- 2s

Efektywne wykonanie takiego rozkitadu bywa nieraz bardzo trudne,
a mianowicie wtedy, gdy trudno jest rozwigza¢ réwnanie g(x)= 0
W praktyce mamy jednak najczesciej do czynienia badzto z tatwemi do

Zasadnicze wiadomosci o liczbach zespolonych sg podane w paragrafach kon-
cowych.
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rozwigzania réwnaniami g(x) = 0, badzto z gotowym juz rozktadem funkcji
g (X) na czynniki pierwiastkowe wedlug wzoru (28).

Kazda wiec funkcje wymierng utamkowg mozna przedstawi¢ w po-
staci:

f{x) _ £(®)
gXx) (®—d)a\x — Pf... (X2-j—a, &@-]-n,)"#2+ a, #-f- ;a)l...

przyczem tréjmiany, zawarte w mianowniku, maja wyrézniki ujemne.
Zatézmy, ze stopien licznika jest mniejszy anizeli stopien mianownika.
Prawag strone mozemy uwaza¢ za wynik dodawania prostszych utamkow,
o mianownikach: x — a, (X — a)2... {x — a)“, x —p, (X — /9%, — /3)*,...
X* -\- axx -\- bu (x* axx + M)2... @2+ a, x -j- 6,f,a*-f a, a -f-6,-—-

Okazemy, ze te ulamki mozna tak wyznaczyé, ze liczniki beda
badzto liczbami statemi, badzto funkcjami pierwszego stopnia, a miano-
wicie udowodnimy prawdziwo$¢ nastepujgcego wzoru:

f{x) /(¥
g{x) (x-a)°-{x — Ne... @2-fa, x+bj{xi+ awwux+ bj.
Aa
x—a (x—a)2t -~ * [x — a @
+ B
(29) A@"'[X—Pf" T Ix —Pf Y
Mt x + N, M, X+ .V, ANa-fAT,
'1~a:2-f-ala + "T(«*-]-01X -fA)* + "'+ (*e-f-0,* -f D +
P X+ <2 P,x+Q 2 PsX + ft
®* -f- 02a; + 6, @2-fa,a+ M2 (a ? 2-fa,a&-fn,) w
25N
luczby ii,, /1 It Ax Bx a,... 8, ... Nt, AT,,... A/,
Pn Pn Pa> v pR sg statemi liczbami rzeczywistemi.

laki rozkiad funkcji utamkowej na prostsze dodajniki nazywamy
rozktadem tej funkcji na utamki czesSciowe.
Dowdd. Rozpoczniemy od pierwszego wiersza w tym wzorze. Utworzmy
rézniee:
/(%) Aa
M @®- o (X- Pt...(*m+ «,»+* )" (*2+ o0,» + bty (x-a i~
_f(x) — Aa(x — P)b...(xt-\-al x + bx)'...
(X — a)*(x — P)b... (@*-f a, x + btf...

Chcemy te roznice tak uprosci¢, aby jej mianownik miat stopien o jeden
nizszy od stopnia pierwotnego mianownika. Zazgdajmy w tym celu, aby
moana byto licznik i mianownik uprosci¢ przez » — a. Jezeli licznik ma
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by¢ podzielny przez x — a, to liczba a musi by¢ pierwiastkiem licznika,
Azatem musi sie spetié réwnosé:

f(a) — Aa(a — /?)*...(a! -+-a, o + bYr(a*+ o,a 4- bt).. — 0O

To sie za$ speini, gdy nieznang dotychczas statg Aa obierzemy wedtug
wzoru:

f{a)
(1)) Aa (@a— /3)V..(08+ a,a+ o0,)r(“!'+ «i a-P0,)*...
Dajemy zatem liczbie Aa te wartos¢ i upraszczamy licznik i mianownik
drugiej 8trony wzoru (l) przez Xx — a Otrzymamy w ten sposob w licz-
niku jak%s$ funkcje fx{Xx) stopnia nizszego anizeli n — 1, a w mianowniku
odpadnie jeden czynnik x — a.

A wiec:
f{x) Aa 7, (X)
9 () (X (x—at 1Ux — /?2)*... (@8-\-axx-\-bxJ (xt-pa, x + b,)s...
Z prawag strong tego wzoru postepujemy znowu tak samo, a wiec
odejmujemy (x i"a’)a redukujemy i zadamy, aby licznik i mianownik

byly podzielne przez x — a; z tego warunku wyznaczy sie stalg
wzorem podobnym do (ll). Postepujac tak dalej, wyznaczymy wszystkie
state A, wszystkie state B i t d. w sposob jednoznaczny, az pozostang
same mianowniki postaci x* -p a, X -p b,, (&* -f- axx -p 6,)*,...

Po przeniesieniu wszystkich utamkéw, zawierajgcych w mianowni-
kach dwumiany x — a, X — (3,... i ich potegi, otrzymamy po redukcji
funkcje utamkowa:

R (x)
(jr*+ a,ic-P bl)r-Ixt-+-o, aA-hJ...

Licznik jest tu stopnia nizszego niz 2r-)-2s-p ...
Teraz przystagpimy do wyznaczania spotczynnikéw AL, Nr. W tym
celu przenosimy odpowiedni ulamek na pierwszg strone i otrzymujemy:

R(x) Mrx-\-Nr
(®3-p a, * -p bYr(x% atx -f- b?Y... ** -f-a, X -p bY
R (X) — {Mrx + Np{x24- a2x + bty...
(x* -f axx + b,)'(x* -f- a™x -f- B4, ..

(111)

Zadamy, aby licznik i mianownik daly sie uprosci¢ przez ic* -j- a, X -p bx
czyli przez (X — p -p gi) *(Xx — p — qi) (zatozyliSmy bowiem, ze tréjmiany,
wystepujagce w mianownikach, maja wyr6zniki ujemne, a zatem kazdy
z nich posiada pare pierwiastkow sprzezonych).

Licznik musi wiec takze posiada¢ pierwiastki & =p-pyii Xt=p —qL
Otrzymamy zatem dwa réwnania:
Rachunek rézniczkowy i catkowy. T 2 . 3
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(IV) #(»,) — (MrXi -f azxi + bt)*...
fi (*i) — {Mrx2+ Nr) e(@A-f- arxr 4- btf ...
wystarczajgce do wyznaczenia statych -Mr i Nr.
Przedstawmy liczbe zespolong R(x,): (¢ -f a, x| -(- 6,)*... w postaci
F(p,?) + *G(p,Q), to liczba R (alj): 0] a, » -f-6,)'..., jako sprzezona
z nig, ma postaé: F(p, 9 — i G(p,j)- Réwnania (I1V) przyjma wiec postac:

0]
O]

F{P.)+ *G{p,aq)= Mr(p + 2i) t-Nr
F(> &) — i G{p, @) = Mr(p ~ qi)-f Nr

Stad otrzymnjemy z tatwoscia:

Mr= | 9," «F (p, 0 - (P, 9)

n wiec liczby rzeczywiste.
Obrawszy takie Mr i Nr, mozemy uprosci¢ licznik i mianownik pra-
wej strony we wzorze (1) przez »®-j- g X -f- bx. Otrzymamy zatem:
fii (@)

(**-f «i ®-f biy~' * 4 Fy)ree e

Tu stopien licznika i?, (@) jest pizszy anizeli 2r — 1 {(-24...
Z tem wyrazeniem postepujemy dalej tak samo, a wiec odejmujemy

iij  .K4-Nr_, . . .
- 8 C——-j— redukujemy i upraszczamy, wyznaczywszy odpowie-
Ok -j- a, x-j- Oj)
dnio state Mr.y, . Postepujac tak kolejno r-krotnie z czynnikiem

H2-j- abrk-j- ¢», a nastepnie s-krotnie z czynnikiem »®-f- a, X-f- &2i t. d.,
otrzymamy wszystkie stale, wystepujace we wzorze (29). W ten sposéb
prawdziwo$¢ tego wzoru jest udowodniona.

Szczegodlnie tatwo przedstawia sie rozktad funkcji utamkowej na
utamki proste, gdy réwnanie y(pk) = O posiada tylko jednokrotne pier-
wiastki. Niechaj:

90K = (K— @) (k — /) (K — Y)... (K — V)

Zastosujmy do licznika /(k) wzoOr interpolacyjny Lagrange’a (tom 1

str. 605), przedstawiajgc wielomian /(>k) zapomoca jego wartosci:
f{a),fW)J(y),...f\v)

w punktach:

X —a, BY,...Vv

Otoz:
y)...{x — V)
a—i9@—y).. (a—v /"
@— O) bk — y)... (k— * 0 (P— 9)(g — jfo-—

(P— a)(p — Vy)...(P — v) (v—a) (v—P)...
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Podzielmy obie strony przez g (®), to otrzymamy:

fix) /(a) 1
g(x) (@a—Pa—y)..la—v) x—a’

Ne i f(Y) 1
(P—a)P—y)...(P —V) x—p (y—a)(y—P)..(y —Vv) x—y

+eooce

Oznaczmy staly spoétczynnik prz lit A — litergB it d.
y Yy Sp y pyx_alerq ,Erz"yX_Plera i ,

to z wzoru tego otrzymamy odrazu zadany rozkiad funkcji utamkowej
na ulamki proste:

fix) A , B C . i N
gx) x—a XxX—p x—y' T 'e®—v
Spotczynniki A,B,C,... oblicza sie mianowicie wedtug wzoréw:

m Q_ m 1]
(a—P)(a—y)...a—v) ~ (P—aiP—Y)--aP—r)
tatwo stwierdzi¢, ze mianownik wzoru na A ma warto$¢ g'(a), podobnie
w B wystepuje g'(P) i t d.; trzeba tylko utworzyé pochodnag iloczynu

A=

(& — a) (X — /?)... (® — v). A wiec wzorom na spoétczynniki A, B,... mozna
tez nadaé¢ postac:
/ («) _ f(P)
A— " 7 B = , ,
g'(a) ~  g'(P)-
Przyktad.
Roztozy¢ na utamki proste funkcje (por. str. 30):
If>a: — 7
®* — 4x -f- 3

Poniewaz réwnanie X1— 4a -3 = 0 posiada pierwiastki 1 i 3, przeto
g(X) — ®2— 4® f- 3= (X — 1) (® — 3). Rozktad ma zatem postac:

15® — 7 )
®—4®-f-3 x—1 x—3

Wedtug wzoréw na A i B otrzymujemy odrazu:

15-1 — 7 4, 15-3 19
1—3 3—1
A wiec:
15® - 7 — 4 19

®t 4®(3 x—1 ®
W ogo6lnym przypadku, gdy wystepujg pierwiastkj wielokrotne,
obliczanie spoétczynnikow tg droga, ktérag postepowaliSmy przy dowodzie
wzoru (29), jest bardzo mozolne.
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Zwykle szybciej dochodzi sie do celu innag, prostszg drogg. Uwal-
niamy mianowicie obie strony wzoru (29) od mianownikéw Po lewej
Stronie otrzymamy w ten sposéb f(x), a wiec wielomian stopnia co naj-
wyzej n — 1, po prawej za$ stronie wielomian stopnia doktadnie n — 1.
a wiec wielomian,-majgcy n spotczynnikéw. Obydwa te wielomiany maja
przybiera¢ te same wartosci dla nieskoniczenie wielu wartosci x, a wiec
musza by¢ identyczne, to znaczy, ze spoéiczynniki, wystepujgce po obu
stronach przy réwnych potegach zmiennej a, muszg by¢ sobie parami
réwne. W ten spos6b otrzymamy n réwnan pierwszego stopnia na wy-
znaczenie n statych: A3 A3... Aa B,, Bt,... BA... v/, Nu Mg

Mr, Nr, Pu Pt, <?j... Ps, ft,... Liczba tych roéwnan jest wiec wy-
starczajaca. Réwnania te nie moga byc¢ ze sobg sprzeczne, albowiem zgory
wiemy, ze istniejg ich rozwigzania: ™, Va, ..., wyznaczyliSmy je bowiem

w poprzednim dowodzie w inny sposéb. Ta metoda poréwnania spotczyn-
nikow prowadzi zwykle szybko do wyznaczenia potrzebnych statych.

Przyktady.
1) Roztozy¢ na utamki czesciowe funkcje:

bx* — 5x + 1
a5 — 3x* 3x5— x*

Najpierw trzeba znalez¢ pierwiastki mianownika, t. j. rozwigza¢ réwnanie:

— 3x4+ 3Xx3— x2

czyli:
X'(x3— 3®*-f3x — )= O
czyli:
x*(x — 1)3= 0
Pierwiastkami tego rownania sg: x, = x2= 0, X, = X, = X6= 1

Rozktad danej funkcji utamkowej ma wiec postac:
Bx* — 5x -f- 1_ A, A% __ B, By_, Pi
x* (x— 1)5 X x* x—1"(X—1)2 (x— 21~

Uwalniamy obie strony od mianownikéw i otrzymujemy:

bx* — 5x -f 1= d, x(x — )5+ A2(x — I)s X'(x — I+
Btx*(x — 1)+ B3x2
czyli:
5x4— 5x + 1= AL(X* — 3x>+3x* —x)+ A, (xs— 3x2-f-3x — 1) -f-
-f- B, (xX* — 2x3+ x*) -f- Bt (x* — xJ -f- B3x2

czyli:

bx* — 5x + 1= (At+ Bl)x‘+ (— 3At+ A, - 2B, + B2x«-f

-f (3, — 3.4,+ Bs— B3+ Bgx2+ (- At+ 34s)x - At
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Spotczynniki przy rownych potegach zmiennej X muszg by¢ parami
»obie réowne, a zatem otrzymujemy nastepujacy ukiad réwnan:
A, + Bx— 5
— 3A -fA, —2B,-fA = 0
3A1— 3A,+ B, - B,+ B,= 0
—4,4-32%4= —5
- M, =i
Z tych réwDan otrzymujemy kolejno, poczawszy od ostatniego.

A, = - i, = 5-f 3iji,= 5- 3=2, Bx= 5—4,=5- 2= 3,
Js= 3A, - ilf+ 2R, 6+ 1+ 6= 13
= -3A, + 3A, —Bx+ A= - 6—3—3+ 13=/

Wobec tego mozemy przedstawi¢ badang funkcje w nastepujacej postaci:

bx* - 5x+ 1 _ 2_ 1, , 3 T3_ I

Xs — 3X* -j- 3x3— x2 X X2 X — i (x— 1)2~"N(x— D*
2) Roztozy¢ na utamki czesciowe funkcje:

2X + 2

W= yxze 12

Mianownik ma juz tutaj posta¢ wzoru (28), albowiem czyDnik drugiego

stopnia: x2-f- 1 ma wyréznik ujemny: — 4 (pierwiastki sg urojone, sprze-
zone: -j-i, — i). Wobec tego rozklad na utamki czesciowe ma postac:
2x -f- 2 A M xx Nx M2x Nt
{x- pX2+ 1)2¢ i+ x*+ “_ + (a8-f DT

Celem wyznaczenia licznikéw uwalniamy obie strony od utamkéw
lotrzymujemy:
2x-f2= AX2-]-1)2+ (Mxx+ NX(x- I)(x!'+1)+ (M,x-f Nt)(x- 1)
czyli:
2x+2 = (A+ MXYx*+ (NX- MXx'+ {2A+ Mx- Nx+ Mt)x'-\-
+ (Nx- Mx+ Nt- Mt)x + (4 - Nx- AT.
Spotczynniki przy réwnych potegach zmiennej x musza byd sobie
réwne, zatem musi sie spetnia¢ nastepujacy ukiad rownan:
A-f Mx= 0
N, —M,=0
2A + Mx— Nx+ Mt =0
A, — My+ Nt— Mt= 2
A - Nx— Nt— 2
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Z tych réwnan otrzymujemy bez trudnosci: 4 = |,jV, = V,= — 1,
Si, — — 2, — 0, a zatem dang funkcje mozemy przedstawi¢ w postaci
2X+ 2 a1 2X

X —1)@r—F 1) x—1 x*-f-1 (B -f 1)

Po tych przygotowaniach catkowanie fupkcyj wymiernych nie sprawia
juz trudnodci. | tak chcac obliczy¢ catke:

F (x)
l— 3 My
=/ 0™

wydzielamy najpierw cze$¢ catkowitg i otrzymujemy:

I —Jh (x) dx 4*J %dx

gdzie h(x) jest wielomianem, a stopiern funkcji f{x) jest nizszy od stopnia
9 (XI- Wielomian h(x) catkujemy bez zadnej trudnosci. Nastepnie rozkta-

damy funkcje AR na utamki czesciowe wedlug wzoru (29), roztozywszy

poprzednio g (x) na czynniki wedtug wzoru (28), o ile juz zgéry funkcja
g(x) nie jest podana w formie takiego iloczynu. Po wykonaniu rozkiadu
mamy do czynienia z catkami nastepujacych typow

a) Yjdx— A log]x — al-j- C
<i f v 2 dx= AJ ix- ar'dz= A-ttr T T T + c =
1—n)[x—aj_’4_ C, gdy w> 1
" Mx4-N
c —dx, przyczem wyréznik a! — 46 < 0.
) JFX*% ax r o przy y

Catke te obliczamy metodg, podang w przyktadzie 10b na str. 28,
a mianowicie:

Mx 4- A Mfo+LZ-,_MJ_2x+°+M—a
J xX*+ax+b' 2J X5i- ax 4- 2 ax A- b
d
= flog@+ oxd- 4 (A—"9)j -, © ., .

Sprowadzamy tréjmian x| N~ax b do mykanonicznej: X* 4% 4- 6—
-= f“j4-~(46 — a8). Drugi dodajnik jest tu liczbg dodatnig, ponie-

waz a* — 4 b’< 0. Wytagczamy te liczbe przed nawias, to:
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xX* -)- ax -f- b— -J(46 — ad L*a-o.j +i

Uzywamy przedstawienia:

2x -f- a
\ab— 02
Stad:
dx = £\Ab — a2dt
& zatem:
dx r i M6 - a'dt
U -fax+b~J +(4b — ad (i2+ T )~
) ;arctgt -f- C= 2 ar cztx éf—-a rI c
\46—i Vib=ra' bHb-a*
A wiec
M X M , ¢N—aM tc+o
(30) ~Z - - <te = —log(@?*fa«+d) + V—---arctgy == + G
X-{-dx -]-b 2 fib —a r*6 —o*

Taka posta¢é ma catka, gdy wyréznik a®— 4b< 0.

d) Pozostaje jeszcze do omoéwienia catka z ultamka, ktérego mia-
nownik zawiera jaka$ wyzsza potege trojmianu ax -f- b o wyrézniku
ujemnym, a wiec catka»postaci:

Mx -f- N

R

Uzywamy tu tego samego przedstawienia, co w poprzednim przypadku
i otrzymamy po tatwych przerébkach:

\l b—a

= (L dt
\4b—a'} J @ -h
Oznaczmy krotko: ~™ _ p Mamy obliczy* catke:
N6 — a*
di
I+ <)

Pierwszg z tych catek obliczamy bez trudnosci, uzywajgc przedstawienia
1-]- t1— z Po wykonaniu prostych rachunkéw otrzymamy:
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Mt dt M
J<i4-<2) 23 - w(i + ry3t C
Druga za$ catke obliczamy wedtug wzoru redukcyjnego (27), wy-
prowadzonego w 8§ 207 w przyktadzie 16.

Zbierajac razem wyniki, do ktorych doszliSmy, catkujac funkcje
wymierne, widzimy, ze calka kazdej funkcji wymiernej da sie wyrazié¢
zapomoca samych funkcyj elementarnych, a mianowicie moga wystapi¢ wie-
lomiany (z catkowania czesci catkowitej h(x)), funkcje wymierne (z ca-
tek, oméwionych pod b), pod d) z wzoru (w) i z wzoru redukcyjnego), lo-
garytmy (z catek omowionych pod a) i pod c)) i funkcje arcus tangens

(z catek oméwionych pod c) i z wzoru redukcyjnego (27), gdy doj-
dziemy do n= 1)

(w)

Zasadniczg trudno$¢ moze tu sprawi¢ tylko roztozenie mianownika
g{x) na czynniki, t j. rozwigzanie réwnania <(®) = 0. Rozkiad za$ na
utamki czesciowe i catkowanie sg czasem zmudne, lecz nie sprawiajg
zadnych zasadniczych trudnosci.
Przykiady:
3) Obliczyé¢:
rx* A- 2x -\-b
f xX* —4x -1-3

Wydzielamy najpierw czes¢ catkowitg i otrzymujemy (por str. 30).

® -j-2x+ 5 15®
@ —ax4-3- 4T @ _4x4-3
Poniewaz zas:
15®@ — 7 19
X* — 4® -4 3 x —ht x 3

(por. str. 35), przeto:
/= 4® 4- 4® — 4 1log|® - 1]4- 19log|® 3]+ C

5x4-1

4) /= j@— 3R 4- 30j — @&

Na podstawie rozktadu, wykonanego w przykiadzie |) na str 36,
otrzymujemy:

Z - N i 4~ JA —,
Tl ont | 2 phter ™
= 2log |®]4” ~4"~3log |® L] - 2N -ir*+C

Jf 20+2

(*-!)(«» 4-0*
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Na podstawie rozktadu, wyKonanego w przyktadzie 2) na str. 37,
otrzymujemy-

fodx f*:r.ldx._rz
I x—A- 1x4 i (e
i dx X dx

-" -/ iH x14 1 4ij*
/= logl* — 11— i log(1 4 x') — arctgx + j-J-- + C
6) Obliczy¢ catke:

/=
I o+x 4 1

Nalezatoby rozwigza¢ réwnanie x* 4 1— 0 Mozna jednak unikng¢
tych rachunkéw, rozktadajac irl4 * na ~wa czynniki drugiego stopnia
zapomoca hastepujacego przeksztatcenia

Dodajmy i odejmijmy 2#*, to:

*e41=1*41 ¥y oxt—2x*=(x*+ DF—2xt —

-te'4i4 N -(il4d i- V2%

Rozktad na utamki czesciowe ma wiec postac:
1 _  Ax+ B ' Cx4 D
iid 1 _iid4d P*r4s 1 **—h~*4 1|

Metodg porownania spoétczynnikéw otrzymamy po wykonaniu pro
ttych rachunkoéw:

A=+[2,B=i, C= - £\2. )= |

A wiec: - 1 f

47 x'47~® 41 4y f - p i 4 i

Obydwie te oatki oblicza sie odrazu przy pomocy wzoru (30) i otrzy
moje sie:

L.i*~"~*+ J .+
4f/2 ce*»-f/2*4"i

+ Jarctg(1’2x 4 1) 4 arctg 2a?— 1)]4 C

7) Dwa ciala, znajdujace sie w roztworze w koncentracjach a i by
wytwarzajg wskutek reakcji chemicznej (dwumolekularnej) trzecie ciato.
Koncentracja tego nowego ciata w roztworze zmienia sie w czasie od 0O
do t od wartosci poczatkowej O do wartosci xmSzybkos¢ tej reakcji wy-



42

raza sie zapomoca pochodnej koncentracji X tego nowego ciata wzgle*
dem czasu t. Na te szybko$¢ wyprowadzono wzor:

dx

ot = k(a — x)(b — x)

przyczem Kk oznacza pewna liczbe stata. Chcemy wyznaczyé X jako funkcje
zmiennej . W tym celu wyznaczamy najpierw funkcje odwrotng, t j. t

jako funkcje zmiennej x. Poniewaz ~ -= ~

& CD CL CD

dt

, przeto:

dt 1

dx k(a — x)(b — x)
a stad:

t:erat:xxb——m

Rozktadamy funkcje podcatkowg na utamki czesciowe:

1 _ A B

(a—x)(b—x) a—x'b X

Stad 1= Ab — Ax-\- Ba — Bx.
A wiec: 46-j-fla=l, —A —B =0. Stad A= —B, —Bb-\-Ba= 1
a zatem:
g 1 1
T a—6 b— a

Wobec tego (zatozywszy, ze ® <a i X < b) mamy:

= N ~ +-Ox =
t %f a—(;!X + k jfb 7£_de
K — b) [log(a — x) — log(ft — *)) C
kt =

a—b bb—x

Dla t= 0 jest * = 0, zatem:

o-l’h1%i+'c

Stad:
-1
C= --B6 N
a wiec:
1 b e
—X
i L a

1
a—%‘ogé— X a a—BIOgt_®_
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Odwracamy te funkcje i otrzymujemy:

o x

a stad

_ ableabk - 1)
X~ afab~-b

8 209. Catkowanie niektorych funkcyj niewymiernych
algebraicznych

W poprzednim paragrafie dowiedliSmy, ze catka z kazdej wymier-
nej funkcji skltada sie z skonczonej liczby funkcyj elementarnych. Funkcje
niewymierne tylko w wyjatkowych wypadkach posiadajg catki ztozone
z skonczonej liczby funkcyj elementarnych. Odnosi sie to nietylko do
funkcyj niewymiernych, przestepnych, lecz takze do funkcyj algebraicz-
nych. Omowimy tu kilka takich specjalnych prostych przypadkéw, w kto-
rych catki funkcyj niewymiernych algebraicznych dadzg sie wyrazi¢ za-
pomoca funkcyj elementarnych.

A. Pierwszym takim typem jest catka z funkcji wymiernej zmien-

p
nych: ,xd,... X", ktére sg funkcjami uiewymiernemi Oznaczmy funkcje
wymierng ilukolwiek zmiennych literg R,
Chodzi wiec o obliczenie catki

(31)

Znajdujemy wspo6lny mianownik m utamkow i podstawiamy:
(31 a) Xm—t czyli x — tm

Jezeli = :_ l 5 |

to

xI — X« = Xd — Xm — tK" X» — tw'

Poniewaz ponadto:
dx — mtm 1dt
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Teraz juz funkcja podcatkowa jest funkcja wymierng jednej zmiennej i

(wszystkie uiewymiernosci, wynikajagce z utamkowych wyktadnikow,
zostaty usuniete).

Te funkcje wymierng catkujemy metodami, omoéwionemi w poprzed-
nim paragrafie.

Przyktad.
Obliczy¢ catke:

Wystepuja tu nastepujagce utamkowe wyktadniki: f, §,
Wspélnym mianownikiem jest 12, podstawiamy wiec:

x — tli, dx— 12fndt
i otrzymujemy:

Ptr — 7tr 4 120 fo— 7ix+ 127
|
i“(-n -1

Pod catkg mamy juz teraz funkcje wymierng. Wydzielamy czes¢ catko-
witg i otrzymujemy:

t*-u* + t°+ bt+ it

Pozostawiamy czytelnikowi wykonanie dalszych rachunkoéw.
Ostateczny wynik jest:

1= — 2\\x  4ra?+ 30i/ir + 12| -f- 2 log(]Z® -f-1) -j-
+ 3log]|lx— 1] + C

B. W podobny spos6b postepujemy z nastepujgca, ogélniejsza catka:

! * * 1 *
« -[*(<E)*e (sliM
Czynimy przytem zalozenie, ze nie zachodzi proporcja a:c= b:g.
| M?
caT”n-g)' " ~"*y

ja zamieni¢ na funkcje wymierng jednej zmiennej, sprowadzamy utamki
t)y f ;
) do wspdlnego mianownika m. Niecha] m= gep' = ser‘=

Uzywamy podstawienia:

(32 (s+iT="



Wtedy.
lax + b\?_ igX+ b-p_ ~
\cx-\-ff) \cx-\-g]

Podobnie:
[ax_xbY-_
\cx+g)-r
Potrzebne jest jeszcze:
dx = (@ — cT)mgtm 1 [glm— b) cmtn°r1dI - trtm 1 di
_crj* (@a—cr)s

Jezeli te wszystkie wielkosci wprowadzimy pod catke, to otrzymamy
funkcje wymierng jednej zmiennej t.
SprowadziliSmy wiec to zagadnienie do znanych catek.

Przyktady. 1) Obliczyé¢:
-jm
zaktadajac, ze ® > 3.
Podstawi 3—t Stad * =3 1+ t*
odstawiamy [/|+ 3 3 1+ 4

(1— <92i-}-U-+-222i 12*
@a- 2 @- Py

1= J’r (]-EZ* dt

Funkcja podcatkowa jest jnz wymierng funkcjg zmiennej t Rozktadamy
ja znang metodg na utamki czesSciowe i otrzymujemy:

dx— 3

Wobec tego:

12i* _
(i—M *— i 7" —ia i-H 1(i+i)"
S wiec.

/=3iog |+ i]-3iogli+ i] -rd-T- rqri+ C—
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Powréciwszy do zmiennej X, otrzymamy po uporzadkowaniu?

2) Obliczy¢ catke;

Podstawiamy: (X — 1)*= i, wiec ® = dx = 2tdt, zatem:

i i 24dt = 2J (<«-f 34+-f 3f2-f 1)dt
i = + t+ )+ C
= 2 S Ap+ 1[/(- 1p+ K@- N1+t JAT)+ C

Uwaga. Do tego typu nalezg niektéro z t. zw. catek dwumiennych, t. j. z calek
postaci:

a mianowicie wtedy, gdy albo w albo > jest liczbg catkowita (w tym drugim przy-
padku sprowadza sie te catke do typu B przez podstawienie o -f- bx = z). Takze gdy
suma u-\-w jest liczbg catkowitg, mozna te catke sprowadzi¢ do typu B, piszac ja
W postaci:

Udowodniono) jednakze, ze tylko w tych trzech przypadkach catka dwumienna
jest funkcja elementarng. We wszystkich pozostatych przypadkach (np. dla u= j,tr=J)
otrzymujemy z catek dwumiennych nowe przestepne funkcje, nie nalezace do funkcyj
elementarnych.

C. Bardzo czesto wystepujg w zastosowaniach catki postaci:
1
(@) R(x, y)dx = JR (x, \axi (<) dx

przyczem R(X,y) jest funkcja wymierng dwdéch zmiennych X i Y\ nato-
miast R(X,y), uwazana jako funkcja zlozona jednej zmiennej X, jest naj
czesciej funkcja niewymierng. Zaktadamy przytem, ze funkcja pod pier-
wiastkiem jest nieujemna, a wiec drugi pierwiastek z tej funkcji ma
wartosci rzeczywiste. Okazemy, ze catki tej postaci mozna zawsze przez
odpowiednio dobrane podstawienia sprowadzi¢ do catek z funkcyj wy-
miernych jednej zmiennej, a wiec sg one w kazdym przypadku funkcjami
elementarnemi. Rozréznimy tu 3 przypadki, zaleznie od znakéw spot-
czynnikéw a i ¢ tréjmianu ax2-f- bx -(- ¢, a mianowicie; 1°«> 0, 2° cStO,

I) Dowéd poda} Czebyszew w r 1855 w 18-ym tomie Journal de Liouville-
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3° a< Oi réwnoczesnie c<0, Przypadkiem a= 0 nie trzeba sie ta
zajmowac, wtedy bowiem mielibySmy do czynienia z calka:

B{x, \bx + c)dx

nalezacg do omowionego poprzednio typu B (zapomoca podstawienia
bas-A-c— t* sprowadzamy ja do catki z funkcji wymiernej). W calym
rachunku chcemy operowaé tylko liczbami rzeczywistemi.

1°. Jezeli a> 0, to uzywamy podstawienia:

(33) \axs-j- bx f-c= t-)-x Ya

Jest ono tak dobrane, ze po podniesieniu obu stron do kwadratu odpadna,
wyrazy, zawierajgce X1 i pozostanie roéwnanie pierwszego stopnia na
wyznaczenie % jako funkcji nowej zmiennej t | tak;

axl -j-jbx -j- c= i* -J- 2xt Ya -j- ax*

a wiec:
Nbx c— -]-2txY&
a stad:
n—cm
X = e
b— 2tYa
Wobec tego:
\ax'+ bx+ c=t-\-V*“  -— “77=
b— 21\a
2bt— 2<*Ma— 2c™a
dx = ot
(b — 2t\ a)*

Wprowadzajac te wyrazenia w catke (C), otrzymamy funkcje wwymierngr
zmiennej t.
Zamiast podstawienia (33) mozna takze uzy¢ podstawienia:

(33a) \axi -j-bx+ o= t— xVa
Przyktady.
Obliczy¢ catke: £

Aby wyrazenie pod pierwiastkiem byto dodatnie, musi by¢ €] < x\
w razie gdy K jest liczbg ujemng. Poniewaz a— 1> 0O, przeto mozemy
uzy¢ podstawienia (33 a) i otrzymamy:

\k -f-x*= }— X
K-j-x* —t* — 2tx + **
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a stad:
i* —
X= + * = -k = 4 - +
~27 Vk t 21 z ‘Zf
Zatem.
czyli:
(34)

Do tej catki sprowadzamy z tatwoscig catke:
7, =

Postugujemy sie w tym celu catkowaniem ,per partes”, kiadac:
<*

\k-\-x* = m, dx — dv

dut r-__ dx, v= X
VT+Xi
Zatem:
*
7, = x\k4-x*—] rx
\k -f X1

C.r
I, —x\k 4 X1—J \k 4~x*

/.= x)k4-x*— 7 + Klog |
2/,= * 7~ + x14" Alog \x+ K*+ x* ]+ C,

a wiec ostatecznie:

@5 7,=J \k4- dx— £(x\k xi4-klog |o4- 4"®* )+ C

(Poréwnaj ten wz6r z wzorem 25a na str. 25!).
Do obliczenia tej catlki moznaby oczywiscie dojs¢ takze, uzywajac

odrazu podstawienia \k Xl —t — x. tecz droga, ktérej tu uzyto, pro-
wadzi szybciej do celu.

Uwaga. Obierajgc we wzorze (34) 4=1, otrzymujemy:

(34 aj
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(znak bezwzglednej wartosci mozna opusci¢, poniewaz zawsze jest
*+ KT+i* > 0. Wiadomo (por. tom |, str. 290—291), ze funkcja

log{* -}- [ -j- »*) jest funkcja odwrotng wzgledem funkcji hiperbolicznej
®= sin hypy; oznaezamy jg symbolem y = arsin hyp X. Zatem:

(34 b) j ] = arsinbypx + C
fl +»
Piszac ten wzér w tej postaci, spostrzegamy ana.iogje z znanym wzorem (12):
dx
mrcsin X -f C
h Ki-

Podobnie ktadgc k— — 1, otrzymujemy wzory.

f = \0%\X-\-\x*— || -+-C=arcosbypx -j-C (dla «> 1)

(84¢c) J \xl—\
= arcoshyp(— x)-\-C (dlaa?<—1)

przyczem Yy — ar cos hyp &g jest funkcjg odwrotng wzgledem funkcji hiper-
bolicznej x — cos hyp .

2*. Jezeli 0, to uzywamy podstawienia:

(36) \ax% bx c= Y¢ tx

przez co osiggamy, ze po podniesieniu do kwadratu odpada wolny wyr";
po obu stronach. | tak:

axi -(-¢«-f-c = c-|-2toKé-| - <*4*

axl -f- bx = 2#x Yc + (***

ax -\-b — 2.t\c-\-ttx

21Kc - b
X — .
a— i*
\axi -f- bx+ c— J/c-]-te—-"' A
a— i!

Zatem zaréwno X, jak i \ ax -j- bx -f- ¢, wyrazajg sie wymierni: zspomoca
nowej zmiennej i, wobec czego i catka (C) zamieni sie na catke z f inkcii
wymierne;j.

Podstawienia tego uzywa sie zwlaszcza wtedy, gdy a jest liczba
ujemna.

Przykiad.
W teorji ruchu wahadtowego wystepuje catka:

Bachanek réimctkowy i catkowy. T, 3.
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Spotczynnik o0 ma tu wartos¢ — 1, a wiec nie mozna uzy¢ podstewie-
nia (33), o ile chcemy operowaé¢ tylko liczbami rzeczywistem!; natomiast
c= 0, a wiec moze by¢ uzyte podstawienie (36). Podstawiamy wiec.

\bx — x*= KO+ #x

iStad:
bx — aes= t*xl|
a wiec:
bt
x ~ fri"- - r+7x
Zatem:

dt
2h' g (14- )"~

Sprowadzilismy w ten sposéb*-badang catke do catki z funkcji wymiernej,
a mianowicie do catki, omoéwionej doktadnie juz w § 207 (przykiad 16),
ktérg sie oblicza przv pomocy wzoru redukcyjnego.

3° Jezeli a< 0 i c<i O a wyrazenie y — ax* bx c ma by¢
rzeczywiste, to réwnanie:
(r) ax; -f-bx-j-c= 0
musi posiada¢ pierwiastki rzeczywiste Albowiem:

= axi -f- bx + 4ac
yz el ET 678 («+ £)'+ tan

Pomewaz a< O, przeto i wyrazenie, w klamrze zawarte, musi mie¢
warto$¢ ujemng, a to moze zachodzi¢ tylko wtedy, gdy 4ac — b*<O0
czyli bl — 4cc>0; wiadomo zas, ze wtedy réwnanie (r) ma pierwiastki
rzeczywiste. Oznacz ly te pierwiastki literami u i fi. Tréjmfan aC3-j-¢w 4"c
mozna wiec przedstawi¢ w postaci a[x — a)(x — /2, a wiec;

y= \axt bx-f-c= \a(x — a)(x — fi)
Zatézmy, ze xf>a. Wytaczajgc przed pierwiastek X — a, otrzymujemy:

y= (X- a\/"L =h
\ x—a

a wiec catka (C) nalezy wtedy do typu B.
Przez podstawienie:

@0

sprowadzamy jg zatem do calki z funkcji wymiernej nowej zmiennej t,
jak to omoéwiono w przypadku B.
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Do tego samego wniosku dochodzimy, zakiadajgc x < a, poniewaz
wtedy:

®—_£)
a

Podstawienia (37) mozna uzy¢ zawsze, gdy rownanie (r) posiada pier-
wiastki rzeczywiste, a wiec takze wtedy, gdy c > 0 lub ¢> 0.
Przykiad.
Obliczy¢ catke:

j " I/—xl -\-bx — 6 dx
Z réwnania — ** + 5® — 6 — 0 otrzymujemy pierwiastki:
a—2, B= 3

a wiec:
—ar+ bx— 6= — (X— 2)(x — 3) — (x — 2)(3 — x)

Zatozmy, ze 2 e< @ <7 3, to iloczyn ten jest stale dodatni a zatem pier-
wiastek, wystepujacy pod calka, jest rzeczywisty. Wtedy:
Y~ X+ 50 — 6= —2)B—X)— (X —2)

Uzywamy podstawienia:

/3 - X _ ¢
Vx—2
Wtedy:
3—Xx _ 8 x — * 2i* rfx_ 2
X-r 2 -fi*’ dx- @ +<18
/3 + 2i* 0]
)<
| 1+ < / 1+ <
A wiec:

J X 2+ bx—6cda=J — ~

Sprowadzilismy wiec to zagadnienie do catkowania funkcji wymiernej.

Pozostawia sie czytelnikowi dalsze wykonanie rachunkéw (rozkiad na

utamki czesciowe, zastosowanie wzoru redukcyjnego 27 z § 207).
Wynik:

/ F a2—b5a— Qdx = @’@14;; ; 2*1 > X%\-bx—6+C

Podstawienia, zawarte we wzorach (33), (36) i (37), stuzace do
uwymiernienia funkcji podcatkowej w calce typu C, nazywamy podsta-
wieniami Eulera.

4*
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Czesto uzywa 3ie dla takich calek takze innych podstawien, a mia-
nowicie podstawien irygonoyietryeznych, ktére zamieniajg funkcje podcat-
kowa nie na funkcje wymierng lecz na funkcje przestepnag, jednakze
tatwa do catkowania. Zanim sie uzyje takiego podstawienia natezy spro-
wadzi¢ tréjmian, znajdujacy sie pod pierwiasttuem, do formy kanonicz-
nej, to znaczy przedstawi¢ go jako s»rae tub réznice dwédch kwadratéw,
~ouiewgz zakltadamy, ze pierwiastek z tego trojmianu jeat rzeczywisty,
przeto moga tu wystgpi¢ tylko trzy nastepujgce fcimy kanoniczne;

xi-f- ¢!, xI— k2 k2— x8

natomiast nie moze wystgpi¢ forma — x>— k*
Sprowadzamy wiec catke (C) do jednej z nastepujacych catek:

aJ ff, (x, Yk'—x23dx,  b)J Rx(x, \x% f k2 dx,

°> /@ Yx*— k¥ dx

a) W pierwszym przypadku uzywamy podstawienia:

(38) X — ksint

zaktadajac, ze K jest liczbg dodatnia.
Wtedy:

\k2— x2— \k3— k8sin H= k(1 — sin H— kcos t
dx— kcostdt
i otrzymujemy catke:

J '/?,(ksin i, k cos t) k cos t dt

Taka zas catke, zbudowana w sposéb wymierny z funkcyj trygonome-
trycznych, tatwo jest zwykle catkowaé, jak to zobaczymy' dokladnie
w nastepnym paragrafie. Mozna takze uzy¢ podstawienia: X — k cos k

b) Takze w drugim przypadku uzywamy takiego podstawienia, by
znikngt drugi pierwiastek. Tu juz podstawienie (38) nie prowadzi do cela,
natomiast nastepujgce podstawienie okazuje sie odpowiedniem:

(39) x — ktgt
Wtedy bowiem:

M T** = YKtgH+ k*= k~AT+tg»/ = kacetu —
cos t
kdt

cos H

Catka b) zamieni sie wiec na:
¢sini k \ Kk
/ cost' cost)'cos*i



a zatem jest znowu zbudowana w spoBOb wymierny z funkcyj trygono-
metrycznych sini, cost

c) Wreszcie w trzecim przypadku odpowiedniem podstawieniem jest:
(40) X = ksect
Istotnie wtedy:

\x2— k*— \k*sec H— k3— k(/sec*/ — 1= ktgt
ksint
= e

a wiec z calki c) otrzymujemy:

k ksin A ksint
_____ i ittt
cos t cos 11 cos 3

a zatem znowu funkoje, ztozong w sposoéb wymierny z funkcyj sin/i cos/.

8 210. Catkowanie funkcyj, ztozonych w sposéb wymierny z funkcyj
trygonometrycznych.

Zajmiemy sie tu catkowaniem takich funkcyj wymiernych dwoch
zmiennych: R(y,z), w ktérych y = sinX, z= cosX. Sa to wiec funkcje
ztozone jednej zmiennej X:

//(sin X, cos X)

Wykazemy, ze calke z kazdej takiej funkcji mozna przeksztatci¢ na
catke z funkcji wymiernej nowej zmiennej /, ze zatem kazda taka catka
jest funkcja elementarng. W tym celu uzywamy w calce:

podstawienia;
(41)

Wiadomo bowiem z trygonometrji, ze wszystkie funkcje trygonometryczne
sa wymiernemi funkcjami tej nowej zmiennej i, a mianowicie:

20 wo =7
SIin X = COS A = 1-f B

Potrzebne jest jeszcze dx. Otéz: t

X = 2arctgt

crx— 2 dt

a wobeG tego:
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Po wykonaniu tego podstawienia catka 1 przyjmuje postac*

7T— fp/ 2t 11—t 2
1+ pj 1-f tadt

a wiec funkcja podcatkowa nie zawiera zadnych pierwiastkéw ani funkcyj
przestepnych, lecz jest jakas wymierng funkcjg #,(*) jednej zmiennej :

dt

Mozemy zatem wykona¢ catkowanie metodami,

wytozonemi w § 208.
Jako wynik otrzymamy zawsze elementarng funkcje zmiennej t, a wiec

elementarng (zwykle ztozonag) funkcje zmiennej X.
Przykiady.
1) Obliczy¢ cailke:
j__r dx
J 5-(- 3cosx

Uzywamy podstawienia (41) i otrzymujemy:

/= /' ik L .~ 8f —ooeeeee

- dt 2T o f 9t
440 /B_LPic ]_3_3% J 8+ 2t*~J 4-T-ia

V' i+ (s

Ktadziemy ™ — u,dt— 2du i otrzymujemy:

du t
= } arctg« + 0=

4arcts? + C
czyli:

/= £Earctg (¢tg]) + C

2) Obliczy¢ catke:

j f cos X dx
J  sin *x

Podstawienie (41) prowadzi do nastepujgcej calki:

13 (s -~ L@ - */(S- *_H)di

ifzr2 2L IV + C
czyli*

y=li i uAta

L2tg=;-

-
111

+ C



5) Catke

= fsin iX cos ix dx

chcemy sprowadzi¢ do catki z funkcji wymiernej Uzywajgac podsta-
wienia (41), otrzymujemy:

M)

UzyskaliSmy wprawdzie wymierng funkcje podcatkowg, lecz dalszy ra-
chunek, prowadzacy do obliczenia tej catki, bytby bardzo uciazliwy Przy
rozktadzie na utamki czesciowe otrzymalibySmy bowiem 8 utamkoéw po-
staci:élt—jﬂ-— HI—, é?}—_J_ A—.... a wiec trzebaby rozwigzywa¢ 16 réwnan
celem wyznaczenia spétczynnikow A,, Zf,, A,

Zobaczymy jednak (Da str. 56), ze catke te mozna obliczy¢é w spo-
s6b o wiele prostszy, uzywajac innego podstawierna.

4) Sprowadzi¢ do catki z funkcji wymiernej catke:

dx

Przy pomocy podstawienia (41) uzyskujemy.

2 di
Iﬂi 02
((i-_H*!* + c(ix£)!
@ -f i®d<
b udflC+ 46/(1 —**)+ c(l - /)
Prostsza forme jednakze uzyskujemy, uzywajgc tu podstawienia:
tgz =t

Po podzieleniu licznika i mianownika przez cos tx otrzymujemy bowiem:

/ =

cC & . =
J atgilx-\-2b tgx-\-c¢ J at* -f- 2ht -j- c

a do tej catki mozna zastosowa¢ metode, podang w przykitadzie 10b na
str. 23.

Jakkolwiek wiec podstawienie t — tg prowadzi do celu zawsze, gdy

funkcja podcatkowa jest zbudowana w spos6b wymierny z funkeyj try-
gonometrycznych, to jednak w wielu wypadkach praktyczniejsze sg inne
podstawienia i inne metody catkowania. Tak sie ma rzecz np. przy obli-

czaniu catek postaci:
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(T) 1=J ‘X COS *X dXx

ktére wystepujg bardzo czesto w zastosowaniach. Wyktadniki s, k moga
tu by¢é dowolnemi liczbami catkowitemi (dodatniemi, ujemnemi lub ze
rami). Rozrézniamy tu kilka przypadkéw

a) Jezeli ktérys z wyktadnikéw jest réwny 0O, to otrzymujemy catke:

Nsi nXd(me(Ika a do tych catek stosujemy wzory redukcyjne,

omoOwione w 88 206 i 207 (wzory 17, 17a, 20 i 20a na str 14, 15,
21 i 22).

b) Jezeli s jest liczbg dodatnig, nieparzystg: s= 2w-)- 1, to przed-
stawiamy catke w postaci:

|: Jlsin Ros szin )((*: —J (1—cos !X)"cos kdcos )X

Widoczne jest, ze podstawienie.
cos X_t

sprowadza funkcje podcatkowa do funkcji wymiernej:

= Ja—a<d
Przyktad.
Zastosujmy to podstawienie do catki

i =J sin hcos *x(*

(omoéwionej na str. 55, przykt. 3). Otrzymamy:

/= —J "1—cos*x)!cos txd(cosx) = —f (1.— il)y*<dt=

= N\ —ot+ad
Zaten; —£tk-f IP—i,V c= —cos s-f- £cos h_izos B+ C

Widzimy, o ile szybciej prowadzi to podstawienie do celu anizeli og6lne
podstawienie g\—t
e) Jezeli kjest liczbg mmg,: 2n-(-1, to uzy-

wamy podstawienia:
sin X= t

Catke | mozemy bowiem wtedy przedstawi¢ w postaci:

I =J sin’x (1 — Sin ,xj'1 cos)(d(— I "sin *X (1 — sin iX)kC‘sin X)
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A wiec:
=Jf(\ —tardt
Przykiad.

J= jictghdx—f OB dx= f (b — sin-a) Chn)9
J sin kx J sin °X

Dla sin x = t otrzymujemy:

A wiec:
/= — Si?; 5a?+ 8-1,%—4- Iogjsm x|l4— C
d) Jezeli ktéras z liczb g k jest dodatnig parzysta, to sprowa-

dzamy catke do przypadku a), zastepujac dla s= 2m funkcje sinZ przez
1—cos*, a w przypadku k = 2n funkcje cos ~X przez 1 — sin s'.

Przyktad

1= ferada,= /e(l=m.

1 81n 5X 3 8in £x

J sin& J sin* J

Pierwsza z otrzymanych catek obliczamy przy pomocy wzoru reduk-
cyjnego (17 a):

S':f'd cos X sin X i fA = A + i Ca_dx
sin -2 V sin* 2sin & / sin X
A wiec:
1= - C(_)SX f A-4_ r8nxdx=
2ein »K J sinx —J

Cos X

= eme 1°8p2%21

dec
).
81M X
e) Jezeli obydwie liczby s i K sg ujemne, to albo s4~A= — 24,
albo s4~ "= —"2n— 1 Wtedy mnozymy licznik przez: 1'= (sin*®4*

4-coslal)’ i rozktadamy dang catke na sume kilku catek, nalezgacych do
poprzednich typéw.
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Przyktad.
Obliczy¢:

Tu3 k= —4—3— —7= —2-3 — 1 a wiec h— 3. Piszemy za-
tem w licznikj zamiast dx iloczyn (sin *X -(-.cos *»)* dX i otrzymujemy:

j__ Asm ** -(- cos a5 dx__
J sin *X cos *X
~J'Bn6dh it 38n*x A08IX + 3 sin *X cos *X -j- cos *X dx
sin *X cos ‘X
czyli:

Il = f+ * dx+ 3f-<PL+ i f e»* dx + dx
J cos’a J cos* J sin J sin *x

Z tych catek pierwsza nalezy do typu d) druga obliczamy postugujac sie
Wzorem 24 na str 25, a trzecia i czwarta naleza do typo c). Po wy-
konaniu prostych rachunkéw otrzymamy:

sin™* . .. I (n X ] o)
~ 2cos*<c+ * °g g("4+ 2 sin X 3 sin *X
Uwagi.
1) Jezeli *-(-k= —2n (przyczem jedna z tych liczb moze by¢ dodatnia), to

bardzo praktyczne jest podstawienie:

tgX =t
Przyktad. . f 'I: I
/ sin % cos 05 "X TX cos 6X
i/ Wi s> 7 %
/= 4-*y)* = - j-f2t+**e+<?
/ = — ctgz 4- 2 4- N tgrx 4- C
2) Jezeli sum» Wyktadnikéw jest liczbg ujemng nieparzysta: + + t = —2n — 1,

to korzystnie jest uzy¢ podstawienia:

tg ==

B2
jezeli w mianowniku jest tylko potega funkcji sina: (t- j. * <CQ i gi Ojak w przy-
ktadzie 2 na str. 54), a podstawienia:
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jezeli w mianowniku jest tylko potega funkcji cos x (t. j. jezeli k <0, s~O).

Przykiad.
Obliczy¢:
7= f~ * dx
J cos Ix
Ktadziemy tg £Jn —x)—t, to”™ — ~= arctgt, x — ti -2 arctgt,
— 2dt 2t 1—i*
dx~ r+17» sn({» — *) = = cosz, cos(;71l —1)= = sinx
Zatem:
i=-4(-4r*- 2ioglt + 41+ c=
8 tg2 — %) ilgjtgd(i —*)1—+ +(dn —®+ ¢
sin X
7cosl -+ HI°B|B4(in—®)]4- C

Stosujgc do catki (T) omoéwione tu podstawienia i przeksztatcenia,
zamiast jednolitej, ogdlnej metody, omowionej na str. 53, uzyskujemy to,
ze rozktad funkcji wymiernej, otrzymanej pod catka po tych przeksztat-
ceniach, otrzymuje sie odrazu, bez mozolnego nieraz obliczania spétczyn-
nikdw rozkitadu tej funkcji na utamki czesciowe.

Zaréwno wsrdd catek z funkcyj algebraicznych, jak i wsroéd catek
z funkcyj przestepnych, znajdujemy bardzo wiele calek, ktoére sie nie
dadzg sprowadzi¢ do funkcyj elementarnych a wiec nie dadzg sie catr
kowaé elementarnemi metodami. Do takich calek naleza, jak to juz wspom-
nieliSmy w § 209 B, niektdre catki dwumienne. Takiemi sg takze w o0gol-
nym przypadku catki, zawierajace drugi pierwiastek z wielomianu wyz-

szego stopnia anizeli 2, np.
bx'i -f- cx -f- d dx, + «2jrs-f-a, X1 at X -j- «s dx

Calki, w ktorych wystepuje tylko drugi pierwiastek z wielomianem 3-go
lub 4-go stopnia, nazywamy catkami elipiycznemi. Nazwa pochodzi stad,
ze takie catki wystepujg przy obliczaniu diugosci tuku elipsy (por. § 229);
wystepujg one takze w licznych zagadnieniach fizyki matematycznej
i techniki. Jezeli pod pierwiastkiem wystepuje wielomian jeszcze wyz-
szego stopnia, to catke nazywamy hypereliptyczna.
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Takze nastepujace calki z dos¢ prostych funkcyj przestepnych nie
dadza sie wyrazi¢ zapomocag funkcyj elementarnych:

Okazemy w dalszych rozdziatach, ze rozmaite takie catki mozna oblicza¢
i bada¢ przy pomocy nieskonczonych szeregéw. Kazda z nich okresla
jaka$s nowa funkcje przestepng, nie nalezaca do funkcyj .elementarnych.

W ten spos6b rachunek catkowy wprowadzit wydatne rozszerzenie
zakresu badan matsmatycznych.



ROZDZIAL XVIII.
O catkach oznaczonych.

8§ 211. Definicja pola Ogary ptaskiej.

Pojecie catki pozostaje w bardzo bliskim zwigzku z pewnem za-
gadnieniem geometrycznem a mianowicie z badaniem pdél rozmaitych po-
wierzchni ptaskich. W matematyce elementarnej poznaje sie metody, stu-
zgce do znalezienia liczby, ktéra jest miarg powierzchni dowolnego wie-
lokgta (ograniczonego odcinkami linij prostych); te liezbe nazywamy
polem tego wielokata W szczegdélnosci przyjmiemy tu jako znany wzor
na pole prostokata i opierajagc sie tylko na tym wzorze, podamy metode
obliczania po6l dowolnych powierzchni ptaskich, ograniczonych takze li-
njami krzywemi. Najpierw wezmiemy pod uwage powierzchnie, ograni-
czong tukiem jakiej$ linji o réwnaniu:

y = f{x)
rzednemi w punktach koncowych tego tuku i osig x-6w (jak na fig. 2).
Zatézmy, ze funkcja f(x) jest ciggla w badanym przedziale i nieujemna,
t. j. ze cala badana powierzchnia
lezy nad osig odcietych. Przy po-
mocy wiadomosci z matematyki
elementarnej nie potrafimy w ogol-
nym przypadku znalez¢ liczby, kto-
raby podawata w sposob zupetnie
Scisty miare takiej powierzchni a na-
wet nie posiadamy definicji takiej
liczby, ktéragby nalezato nazwac po-
lem tej figury: nie mamy bowiem
nawet zadnego S$cistego praktycz-
nego sposobu mierzenia takich po-
wierzchni. Ot6z pierwszem naszem zadaniem bedzie konstrukcja takiej
ogolnej definicji pola, ktéraby odpowiadata intuicyjnemu pojmowaniu pola.
Powierzchnia, o ktérg nam chodzi, jest z jednej strony ograniczona od-
cinkiem ab, lezacym na osi x6w. Dzielimy przedziatka, na do-
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wolng, skoriczong liczbe czesci, np. na n czesci niekoniecznie réwnych,
obierajac w tym przedziale w zupetnie dowolny sposéb kolejne punkty
0 odcietych: xt, X2 xa, .. Wtedy a <.X, < x2<ix3<... <®,_i <6.
Wykreslamy rzedne danej linji, calezace do tych punktéw. Rozkiadamy
w ten sposéb dang powierzchnie na skonczony szereg paskéw. W kazdym
z tych paskéw rzeune danej linji o réwnaniu y— f (X) osiagajg wartosci
najmniejsze i najwieksze, odpowiadajgce najmniejszej wartosci m( i naj-
wiekszej wartosé; M, funkcji ciaglej f(x) w kazdym z przedziatéw o sze-
rokosci X,— xl_1~ A xi. Przez najnizszy punkt iinji w kazdym pasku
wykreslamy' odcinek prostej réwnolegtej do osi odcietych az do prze-
ciecia oie z rzednem.. ograniczajgcemi dany pasek. W ten sposéb otrzy-
mujemy figure schodkowa, ztozong z skonczonego szeregu prostokatéw.
Nazwijmy te pcostokg minimalnemi. Suma pol tych prostokatow, zacie-
niowanycb na fig. 2, jeet réwna:

s= H® —a)+ rn,xt —a,J+ m,(x3—xt)-j-... + m,(6 —®,,1

czyli:

(42)

Przy kazdym j udziale przedz' tu <a, otrzymamy w ten sposob jakgs
wartos¢ s m « wue poél prostokgtow minimalnych. Zbiér tych wszystkich
liczb s jest ograniczony zgéry liczba M (b — a), gdzie M oznacza naj-
wieksza warto$¢ funkcji f(x) w catym przedziale <ja, liczba ta bo-
wiem jest polem prostokata ab BE, zawierajacego wszystkie szeregi pro-
stoKgtow minimalnych. Wobec tego zbior liczb s posiada kres gorny, t j.
istnieje najmniejsza z liczb, ograniczajagcych zbiér liczb s zgéry. Oznaczmy
n >
ten kres gorny symbolem KJ[s] lub wyrazniej: K \ > Ax, . Otd6z ten
/-i i
kres gorny poél szeregébw prostokgtdw minimalnych obieramy za miare
pola figury ab BA. Przyjmujemy wiec nastepujacg definicje pola takiej
figury: kres gorny pol wszystkich szeregdw prostokgtow minimalnych jest
miarg badanej powierzchni; nazywamy go polem tej powierzchni:
n
P= £a*]= K
i-1
Kroétko, lecz mniej doktadnie, mozna powiedzie¢: za miare takiej powierzchni
obieramy gérny kres pol wszystkich mozliwych figur schodkowych, wpi-
sanych w te powierzchnie.
Cate powyzsze rozumowanie odnosito sie do funkcyj nieujemnych
a wiec do powierzchni, lezgcych nad osig odcietych. Postepujac podobnie
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dla funkcyj niedodatnich w badanym przedziale (por fig. 3), stwierdzamy, ze
szereg prostokatow minimalnych zawiera catg badang powierzchnie. Liczby s.
okreslone zapomocag wzoru (42), sg w tym przypadku liczbami niedodatnierai,
albowiem wszystkie w, sa nie-

dodatnie. Wobec tego i kres

goérny i?[s] tych liczb « nie

moze by¢ liczbg dodatnig. Na-

tomiast liczba — iT[s] jest wte-

dy nieujemnag i te liczbe nie-

ujemng uwazamy za miare ta-

kiego pola, lezacego pod osig

odcietych. A wiec dla/"atj~O

jest: P — — K [g] =

= -K JEm,AX,

Uwaga. Do definicji pola takich powierzchni, lezacych pod osig £-6w, moznaby
uzy¢ prostokatéow maksymalnych, t. j. odpowiadajacych najwyzszym punktom w kaz-
dym pasku. Kres dolny odpowiednich sum, wziety ze znakiem przeciwnym, nale-
zaloby wtedy uwaza¢ za miare takiego pola. Okazemy poézniej, ze dla funkcyj ciag-
tych fix) obydwie te definicje daja te samag liczbe P jako miare pola tej powierzchni.
Definicje te, zar6wno jak i niektére twierdzenia z nich wynikajace, mozna stosowac
takze w przypadku, gdy funkcja f{x) jest nieciggta lecz ograniczona i posiada skon-
czona liczbe punktéw nieciggtosci. Istnieje bowiem wtedy zaréwno kres gorny jak
j kres dolny sum. wystepujacych w tych definicjach

W ten sposob marny juz okreslone pole kazdej powierzchni, ograni-
czonej lukiem linji o réwnaniu y= /'(x), gdzie f{x) jest funkcja ciagta, rzed-

Fig. 4a. Fig. tb ~» Fig. 4c.

oemi w punktach koncowych tego tuku i osig odcietych. Jezeli za$ po-
wierzchnia nie matej postaci, lecz jest geometryczng suma lub réznica takich
czesci, to za jej miare przyjmujemy sume lub réznice pol tych czesci.
Tak np. pole figury, ograniczonej krzywa zamknietag na fig. 4a, oblicza
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sie jako roéznice pol abBCA i abBDA, przyczem aA i bB sg skrajnemi
rzednemi.

Pole, zawarte miedzy byperbolg a promieniami OA i OB na fig. 4b,
wyznacza sie zapomocag wzoru 2 -(OCB—DCB), przyczem pola OCB i DCB
wyznacza sie zapomocg ogoélnej definicji (pole tréjkata OCB mozna obliczy¢
takze odrazu przy pomocy wzoru, znanego z elementarnej gecmetrji). Pole
odcinka paraboli na fig. 4c wyznacza sie zapomocg wzoru OCB -f- OAD —
£CB -\- DEA, przyczem kazde z pdl, wystepujacych w tym wzorze, mozna
wyznaczy¢ przy pomocy ogoélnej definicji

Korzystanie z tej ogo6lnej definicji jest narazie*trudne, poniewaz nie
znamy zadnego dogodnego algorytmu, prowadzgcego do efektywnego wy-
znaczenia goérnego kresu dla dowolnego zbioru liczb. Aby uzyskac¢ taka
dogodng metode rachunkowa, przydatng do naszego zagadnienia, nalezy
sie zaja¢ doktadnie sumami, wystepujacemi we wzorze (42), a w szcze-
golnosci gornym kresem takich sum. Uczynimy to w nastepnym para-
grafie, ujmujac cate zagadnienie w spos6b czysto arytmetyczny i znaj-
dziemy nieoczekiwane zwiazki tego zagadnienia z omawianem w po-
przednim rozdziale zagadnieniem szukania catki czyli funkcji pierwotnej
danej funkcji f{x).

8§ 212. Definicja catki oznaczonej.

Wezmy pod uwage dowolng funkcje y = /($), ciagla w przedziale
< o0, b> (dla ilustracji moga stuzy¢ figury 2, 3 lub 5), przyjmujacg w nim
dowolne wartosci (dodatnie lub nie-
dodatnie). Obierzmy w tym prze-
dziale dowolny skonczony, wzra-
stajacy zbiér liczb:
Gl> ®l ».mm L
Pomnézmy kazda z roznie:
Axt — — a,
Ad = *s Axn= b — x,_,
przez najmniejszg wartos¢ ms da-
nej funkcji w kazdym z tych prze-
dziatébw Axt i utwdrzmy sume tych
wszystkich iloczynéw, t. j.

(42)

ftazwijmy to wyrazenie dla skrdécenia sumag dolna. Jezeli bedziemy obie-
rali punkty podziatlu w rozmaitej ilosci i w rozmaite sposoby, to otrzy-
mamy jaki$ zbior tych liczb s. Ten zbiér jest ograniczony zgory liczba



np. M <(b— a), gdzie M oznacza najwieksza warto$¢ badanej funkcji f{x)
w caltym przedziale <a, Wynika to stad, ze kazde w, jest nie wiek-
sze od M, a wiec:

i-1 e

Istnieje zatem kres gérny tych wszystkich liczb s, odpowiadajacych
wszystkim mozliwym skonnczonym zbiorom liczb x,,X3,... xn, z prze-
dziatlu <ia,b)>. Do oznaczenia tego kresu gérnego uzywa sie takiego
symbolu, ktéry zawiera wyraZznie badang funkcje f(x) tudziez liczby ai b,
ograniczajgce badany przedziat. Uzywamy mianowicie zamiast /v[s) na-
stepujacego symbolu:

To wyrazenie nazywamy calka OoZneczong ZflJ'kQI f(x) oda dobi czy-

tamy: ,catka od ado bz f(x)d xu. Liczbe a nazywamy dolng granica cafki,
b gérna, a/ (*) funkcja podcatkowg. Znak N jest liter, 5 i ma

przypominaé, ze to jest kres goérny pewnych sum. Symbol za$ dx przy-
pomina, ze wartosci (najmniejsze) funkcji podcatkowej mnozyliSmy przez
réznice AXx,. DoszliSmy zatem do .nastepujacej definicji: warto$¢ calki
oznaczonej z funkcji f(x) od a do b jest to kres gérny sum, wyrazonych
wzorem (42), czyli:

6 m
(43) ff(x)dx = /f[s] == K ~ m tAx,
L] /_l

Z powyzszego rozumowania widzimy, ze kazda funkcja cigglta posiada
catka oznaczong czyli jest catkowalna, oczywiscie w kazdym takim prze-
dziale, w ktorym jest ciagta.

Symbol catki oznaczonej zdefiniowaliS$my na razie tylko dla a< i.

Jezeli a> b, to znane nam jest znaczenie symbolu”f(x) dx\ jest to
mianowicie kres gorny i£[s] liczb s, otrzymanych przy podziatach prze-
s

dzialu <6, a>. Otéz w tym przypadku dajemy symbolowiJ'f[x)d x

Rachunek rézniczkowy i catkowy. T. t. 5
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znaczenie — K\s\ czyli:
(44)

Ten wzér stuzy do uzupetnienia definicji catki oznaczonej w przypadku,

gdy a> b; jest on jednak prawdziwy takze w przypadku, gdy dolna

granica calki jest mniejsza od gornej, jak sie o tetn przekonujemy, mno-

zac obie strony wzoru (44) przez — |. Chcac wreszcie, aby symbol calki

oznaczat jakas liczbe 4 takze wtedy, gdy a= 6, kierujemy sie w dobo-

rze tej liczby A tem. aby sie spetniat wzér (44) takze dla tego przy-
r r

padku, t j. aby byto /f{x)dx = —J f(x)dx czyli A— — A a wiec
n i

24=0 astgd 4=0. Nalezy wiec obra¢ 4 =0 Przyjmujemy zatem

nastepujaca dodatkowa definicje.

(45)

Nalezy doktadnie odroéznia¢ catke oznaczona, od omoéwionej w poprzednim
rozdziale catki nieoznaczonej. Catka oznaczona jest bowiem zawsze jaka$
liczba, podczas gdy catka nieoznaczona przedstawia nieskoriczona gromade
funkcyj. Litera X, oznaczajgca zmienna niezalezng w symbolu catki ozna
czonej, nie figuruje zatem w koncowym wyniku, a wiec mozemy jg za-
stapi¢ dowolng inng literg Tak wiec symbole:
b . ft » 0
ff(x)dx, j fw,du, f f(t)dt, JIf(y)dy, JIf(z)dz
i t p. majg wszystkie te samg wartosc iC(s), sa wiec wszystkie sobie roéwne.
Uzywajac symbolu catki oznaczonej, mozemy napisa¢ omowione
w poprzednim paragrafie wzory na pole w nastepujacej postaci:

P=Jf[x)dx, jezeli f(x)~ O i b> a
(46) %0
P = — ff(x)dx " f(x) SO , b> a

Pole powierzchni, lezacej nad osig odcietych, ograniczone #tukiem hnji
o réwnaniu y = f(x), skrajnemi rzednemi i osig odcietych, réwna sie
zatem calce oznaczonej z tej funkcji od a do 6; pole za$ takiej powierz-
chni, lezacej pod osig odcietych, jest rowne wartosci takiej catki z prze-
ciwnym znakiem.
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SprowadziliSmy w ten sposéb zagadnienie obliczania p6l do zagad-
nienia czysto arytmetycznego, uzyskaliSmy ogélny wzér na obliczanie pdl,
z drugiej zas strony uzyskaliSmy dogodng interpretacje geometryczng catki
oznaczonej, w razie gdy funkcja podcatkowa nie zmiepia znaku w prze-
dziale catkowania.

8§213. Twierdzenie o wartosci Sredniej dla catki oznaczonej.

Wszystkie sumy s (por. wzor 42), ktorych uzywalismy przy defi-
nicji catki oznaczonej, sa ograniczone liczbami mb—a) i M(b — a),
gdzie m oznacza najmniejsza warto$¢ funkcji f(x) ciagtej w caltym prze-
dziale <a,b> a M najwiekszg. Zatem i kres gérny sum s jest zawarty
w przedziale <“m(b — a), M(b — a)j>, to znaczy, ze zawsze spetniaja sie
warunki:

(47) a)
a

Wobec tego catlka oznaczona jest réwna jakiej$ wartosci posredniej po
miedzy dwiema liczbami ograniczajgcemi. Dobierajgc wiec odpowiednie
liczbe p, posredniag miedzy m a M, otrzymujemy wzor:

Twierdzenie to nazywamy twierdzeniem o wartosci érechlej dla catki
oznaczonej.
Liczbe p, wyznaczong z tego wzoru, t j

nazywamy $rednig wartoscig funkcji f(x) w eprzedziale <fa,bj>. Takich
Srednich wartosci uzywa sie bardzo czesto, zwiaszcza w naukach tech-
nicznych: moéwi sie tam np. o Sredniej wysokosci jakiego$ profilu, o sred-
niem natezeniu pradu zmiennego, o Sredniej wydajnosci rozmaitych zré-
det pracy, a wszystkie te $rednie wyznacza sie wilasnie zapomoca tego
wzoru. Te Srednig warto$¢ mozna uwaza¢ — jak pézniej zobaczymy —
za uogodlnienie $Sredniej arytmetycznej skonczonej liczby rzednych. Proécz
tej Sredniej wartosci funkcji uzywa sie w wielu zagadnieniach takze
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t zw. Sredniej kwadratowej, okreslonej nastepujacym wzorem:
b

(50) = T jff*(x)dx

a
Stad o réwna sie drugiemu pierwiastkowi prawej strony.

Jezeli funkcja f(x) nie zmienia znaku w przedziale catkowania, np.
jest stale nieujemna, to mozemy interpretowac¢ twierdzenie o wartosci
Sredniej w bardzo dogodny sposob geometrycznie. | tak z fig. 6 jest wi-
docznem, ze mozna zawsze dobra¢ takg wysokos$¢ fi prostokata o pod-

stawie ab, ze jego pole réwna sie polu
badanej powierzchni ab BA, a wiec:

abBA — (b — a) *n

czyli:
b

/ f[x) dx — fi(b — a)

Te rzedna fi uwazamy witasnie za $red-
niag warto$¢ funkcji f(x) w przedziale

Jezeli funkcja podcatkowa f(x) jest w calym przedziale <a,
nieujemng, to i catka oznaczona z tej funkcji jest w tym przedziale nie-

ujemna. A wiec:

(51) if(x)dx”~0 dla fx)*zO0

Wynika to z wzoru (48), w ktorym jest s O i 6 — a>m 0. Poniewaz
funkcja podcatkowa jest ciggta w przedziale <o, bj>, przeto musi przyj-
mowaé kazdg warto$¢ posrednig fi miedzy m a M przynajmniej dla jed-
nej wartosci X, np. dla x = £= a-)-9(b — a). Wtedy wiec (i = f(£)

a wzor (48) przyjmuje postac:

(62)

8§ 214. Addytywnos$c¢ catki oznaczonej.

Calki oznaczone posiadaja pewnag zasadniczo wazng wiasnos¢, zwana
addytywnoscig. Wiasnos¢ te wyrazamy nastepujagcem twierdzeniem.
Jezeli przedziat <a, bj> jest suma dwoch przedziatéw <”a, c> i <c,
to catka oznaczona od a do b jest sumg calek od a do ci od c do b.
to jest:
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Dowodd. J'f{x) dx = K[s] = K, gdzie K oznacza kres gérny sum a, utworze*
a

nych wedtug wzoru (42) dla wszystkich mozliwych podziatéw odcinka ab. Podobnie
«

f f(&) dx = Ky|[«,] = A, jeBt kresem gérnym podobnych sum t dla odcinka ae.
0]
b

ij'f(&) dx = Kt\sJ = K, sum a, dla odcinka cb. Mamy wykaza¢, ze: K = A, -f-A,.
r

Otéz A' = A, -f- A, jest kresem gérnym zbioru wszystkich liczb a,
(por. tom 1, § 25, str 99), jako suma kreséw goérnych zbioréw liczb s, i as Kazda
liczba a'=a,-j-a2 jest réwna jakiej$ liczbie 8, odnoszacej sie do catego odcinka ab.
a wiec zbior liczb *' zawiera sie catkowicie w zbiorze liczb a Wobec tego kres gérny
A' nie moze by¢ wiekszy od K. Okazemy jednak takze, ze nie moze by¢ A" O A.
Gdyby bowiem tak bylo, to istniataby przynajmniej jedna liczba a, nazwijmy ja
a, wigksza od K' a zatem wigksza od wszystkich liczb a'. Ot6z tatwo stwierdzi¢, ze
aiema takiej liczby w zbiorze liczb s. Jezeli bowiem a nalezy do zbioru liczb s, to
odpowiada ona jakiej$ snmie:

a= »,(0; — 0) -f- M,{X, — X1) -j--=--—j- mato —*4-1) -f- ... -f- m,(b —**-1)

Jezeli wsérod punktéw podziatu znajduje sie punkt ¢, to ta suma jest'zarazem jakas
liczbg ze zbioru liczb a', np. liczbg a', a wiec wtedy a= a', nie jest wigksza od
wszystkich liczb a'. Jezeli za$ punkt ¢ nie znajduje sie wéréd punktéw podziatu, tojezy
on miedzy dwoma punktami podziatu, np. miedzy -1 a xk Utwoérzmy sume a', na-

lezacg do zbioru liczb a', dobierajgc ten punkt ¢ do punktéw x,,x,,... xk-i,xk... at«i.
Wtedy:
a = m,(a, —a)-f-mt(xt —a?)-j-... -fem'(e —#4-1)-j- m” (Xt — <:)+ee —at*_i)

Ot6z ta suma nie moze by¢ mniejsza od a, albowiem rézni sie od niej tylko tern, ze
zamiast dodajnika mkixi, — XK-\)= a wystepujg dwa dodajniki: mk(c — «x 4-1) +
-f ntk(h—Qg = B.

Ale W' i «1" nie moga by¢ mniejsze od m*, s to bowiem najmniejsze wartosci
funkcji f{x) w czesciowych przedziatach <e 4—,«)>i <”c,x4>, podczas gdy nm jest
najmniejsza wartoscig tej funkcji w catym przedziale Jest wiec B A
a wobec tego a' > a OkalaliSmy wiec, ze zadna liczba ze zbioru liczb * nie moze
by¢ wieksza od wszystkich liczb zbioru a', a wiec i od ich kresu gérnego K', a to
dowodzi, ze nie moze by¢ A' < K. Przedtem za$ dowiedliSmy, Zze nie moze byc¢
K']> K a wiec musi by¢ K'= K czyli Kt-f-A3= A, ¢ b. d o

Wzér (53) jest prawdziwy takze dla przypadku: a— b, wtedy bo-
wiem lewa jego strona jest zerem na podstawie wzoru (45) a prawa na

podstawie wzoru (44).
Punkt ¢ moze leze¢ takze poza przedziatem np. moze byd
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A b c. Stosujac bowiem wzér (53) do Liczb a...b...c, otrzymamy:

1ok 13exe ~ Nok—IMiek—IThick
T idoyide s ik

a wiec otrzymamy znowu wzOr (53). Trzeba przytem oczywiscie zatozy¢,
ze funkcja jest ciggla takze w tym szerszym przedziale </a,c™>.

Wzor (53) mozna uogélni¢ na dowolng skonczongliczbe dodajnikéw.
Tak np. dla r dodajnikéw otrzymujemy:

534 ayKﬁ)ﬁ d(—aj-“*f(>§d<+ay j °i{>9d<-1;j Bk . 1] "B K

Najprosciej dowodzi sie tego zapomoca indukcji zupetnej.
Zastosowania.
1) Na podstawie tego ostatniego wzoru mozemy podac¢ geometryczng
interpretacje catki oznaczonej takze w tym przypadku, gdy funkcja pod-
catkowa zmienia znak
w przedziale <a,
skonczong liczbe razy
Niechaj linja ACEB na
fig 7 bedzie obrazem
takiej funkcji. Caltke
oznaczong od a do b
z tej funkcji rozdzie-
lamy wedlug wzoru
(53a) na takie czesci,
aby w kazdej z nich funkcja podcatkowa nie zmieniata znaku. Otrzy-
mamy zatem :

J k-] Tiicke | Yok 3ok

Wedtug wzoréw (46) z § 212 pierwsza i trzecia z calek prawej strony

przedstawiaja ujemne wartosei pol P, i P3, druga zas i czwarta dodatnie
wartosci P8 i P4
Wobec tego:

b
jf{x)dx= - P, + P,- p,4-p4= (P, 4-P- (P, + p.)
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Zatem: catka oznaczona przedstawia sung pdl, lezacych nad osig od-
cietych, pomniejszong o sume pol, lezacych pod ta osia, czyli algebraiczng
sume pol, opatrzonych odpowiedDiemi znakami. Chcac za$ otrzymac
sume wszystkich pél bez zmiany znaku, nalezy obliczy¢ kazdg z tych
catek zosobna

Mozna jednak takze podaé¢ wzo6r, przedstawiajgcy sume tych wszyst-
kich pél zapomocg jednej catki. W tym celu nalezy utworzy¢ symetryczne
odbicia w osi *-6w powierzchni, lezacych pod osig odcietych. Wtedy
f(x) zamienia sie na |/@)] i otrzymujemy na catkowite pole wzén

(+*4) /r—dL I\ F, P, =1 \(X)|dx
2. Opierajgc sie na addytywnosci catki, mozemy zacie$ni¢ przedziat,

w ktéry zamkneliSmy catke oznaczong przy uzyciu wzoru (41) na
n

str. 67. Wiemy, ze catka jako kres goérny sum dolnych s—”"~ m , Ax,
i-1
nie jest mniejsza od zadnej z tych sum, t. j.:

n b

~“m, Ax <;J f(x)dx

Znajdziemy obecnie takze gérne ograniczenie dla tej catki. Podzielmy te
eatke na dodajniki, dzielac przedziat <u, b™> punktami x,,X2..m,,_, i do
kazdej catki skladowej zastosujmy wzoér (47).

Oznaczmy literami Mx M2 ... Mn najwieksze wartosci funkcji f(x)
w kazdym z czesciowych przedziatbw o szerokosciach AX,, AX..... Axm
Z wzoru (47) otrzymujemy:

mlAxi 573 f(x)dxIzkMiAXx, dla »=1,2,. ..».
1

Utworzmy sume tych wszystkich calek, to otrzymamy:

m b n

(55) ~"m,AxJf(x) dxgj \Al,Ax,

ZamkneliSmy w ten sposéb catke oznaczong pomiedzy dowolnga sumag
dolng i odpowiadajaca jej suma gorng. Te ograniczenia sg zwykle blizsze
catki anizeli liczby m{b — a) i M(b — a), wystepujace we wzorze (47)
a odpowiadajgce prostokgtom abCD i abBE na fig. 2 str. 61.

3. Opierajac sie na addytywnosci catki oznaczonej, mozemy wyjasnic
zwigzek Sredniej wartosci funkcji z Srednig arytmetyczng (por. § 213).
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Niechaj f(x) bedzie funkcja ciagta w przedziale -<a, b>. Podzielmy

ten przedziat na n réwnych czesci o dtugosci A= -—----—-- . Nazwijmy ko-
ft
lejne punkty podziatu literami: olto,,... am, i rozt6zmy catke wedtug
wzoru (53 a):
6 «, o* b

Jf(x)dx = If(x)dx-\-If{x)dx + ...-fI'f{x)dx

Do kazdej z tych catek zastosujmy twierdzenie o wartosci Sredniej, wy.
razone wzorem (62), to otrzymamy:

Ngb &— BA +.+/mE)bD

f(i)=

a stad:

n

Widzimy, ze $rednia warto$¢ funkcji f(x) w przedziale <a, A> jest
rowna Sredniej arytmetycznej wartosci tej funkcji, dobranych odpowiednio
w dowolnie wjelkiej ilosci przedziatow ezesciowych. Te czeSciowe prze-
dziaty mozna tez bra¢ nieréwne, np. o dlugosciach A,,A,...A,, ktorych
suma jest réwna b— a.

Wtedy otrzymamy:

Ne (b-a)= AFfIft)-fA/(,)+ .+ A/E)

A FUV(E) k- AN(L) 4 seemv - 21 ()
A.-fA + ...+ A

Prawa strone nazywamy S$rednig arytmetyczng wazong wartosci
/(Ei)>/(E*))*= =/ (I«) a spoéiczynniki A, A,,...A,, nazywamy wagami tych war-
tosci funkcji. Widzimy wiec, ze $rednig wartos¢ /(£) funkcji w przedziale
<u. mozemy takze uwaza¢ sa $rednig arytmetycznag wazong dowolnej
liczby rzednych, branych z tego przedziatu, z odpowiedoiemi wagami.

8§ 215. Calka oznaczona jako funkcja swej gornej granicy. Zwigzek
catki, oznaczonej z funkcji ciagltej z catka nieoznaczong

Jezeli funkcja f{x) jest ciagta w przedziale <a, to jest ciggta
takze w kazdym przedziale <(a, gdy a<Ct<CA a wiec istnieje takze
catka z tej funkcji dla kazdego takiego przedziatu t>. Do kazdej wiec

i
liczby t z przedziatlu <a, A)> istnieje odpowiadajaca jej liczba. | f(x)dx
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a wiec ta catka oznaczona od a do t jest funkcja swej gornej gra-
nicy t:
r

J f(x) dx = <p[t)

Okazemy, ze ta funkcja <p(t) jest ciggla.
W tym celu badamy przyrost:
1 +h t
plt+ A)— PN =] Flx) dx —J F(x) dx

(przyczem ograniczamy sie do takich h. aby punkt t h lezat takze
w przedziale O , 6 ».

Stosujgc do pierwszej catki twierdzenie o addytywnosci, czyli wzor

(53), otrzymujemy:
r t+h t r+A

e{ft+ hy—ot)=j /() dx+ j fix)dx—J f{x)d x =j f{x) dx

Z twierdzenia o wartosci Sredniej, wyrazonego wzorem (48) otrzymujemy:
<plt--h) — <pt) — n[t4-A —i)= fi‘h

gdzie fi oznacza jakg$ warto$¢ posrednig miedzy najmniejszg a najwieksza
wartoscig funkcji f(x) w przedziale <<, t -)- hj>. Stad tatwo wnioskujemy,
poniewaz fieh dazy do zera, gdy h dazy do zera, ze:

Jim <p(t-\- h) — opfy

To za$ znaczy, ze funkcja <p(t) jest funkcjg ciagta. DowiedliSmy wiec,
ze catka oznaczona jest ciggla funkcjg swej gornej granicy.

Poniewaz funkcja podcatkowa f(x) jest ciagta funkcjg w przedziale
<ia,b)>, to mozemy zastosowa twierdzenie o wartosci S$redniej, wyra-
zone wzorem (52) i otrzymujemy:

at+ h)-(p{t) = f(i)-h=hf(t-t-&h), gdzie 0 <$ <1
Stad:
h

Poniewaz f(x) jest funkcja ciagla, to istnieje granica prawej Birooy,
gdy h dazy do zera. a mianowicie: f(}). Istnieje wiec takze granica lewej
strony, czyli pochodna funkcji <p(t). Zatem:

»*W=%yo n
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czyli:

(56) jtif(x)d x = f(t)

Ten wzO6r ma nadzwyczaj donioste znaczenie dla rachunku catkowego.
Tre$6 jego wyraza sie nastepujacem twierdzeniem: pochodna z catki
oznaczonej z funkcji ciagtej wedlug jej gornej granicy catkowania (uwaza-
nej za zmienng) istnieje i jest rowna wartosci funkcji podcatkowej dla
tej gérnej granicy.

Poniewaz <p'(t) — f(t\ przeto qgu/) jest jedna z funkcyj pierwotnych
funkcji t czyli jedng z gromady funkcyj, zawartych w calce nieozna
czonej z tej funkcji /(/), t. j. jest jedng z funkcyj, zawartych we wzorze:

Ji(t)ydt = F(t) --C

Poniewaz za$ kazda funkcja ciaggta f{t) posiada catke oznaczona, jak tego
dowiedliSmy w § 212, przeto kazda funkcja ciggta posiada jakas$ funkcje
pierwotng, Wiemy za$, ze, jezeli istnieje jedna funkcja pierwotna, to musi
ich istnie¢ cala gromada (por. § 203), a zatem istnieje catka nieozna-
czona z f[t). W ten sposéb udowodniliSmy prawdziwo$¢ tego zasadni-
czego twierdzenia, ktére przyjeliSmy bez dowodn w poprzednim rozdziale,
a mianowicie: dla kazdej funkcji ciggtej istnieje catka nieoznaczona.
Jakkolwiek wiec przy pomocy metod, poznanych w poprzednim
rozdziale, nie zawsze potrafiliSmy znalez¢ catke nieoznaczong z funkgcji
ciggtej (por. zakonczenie § 210), to jednak teraz juz wiemy, ze te catki
nieoznaczone istniejg, przeprowadziliSmy bowiem dla nich dowdd istnienia
(przechodzgc w rozumowaniu przez definicje i wlkasnosci catki oznaczonej).

§216. Chliczanie catki azneczong) przy ponocy catki nieozneczong).
WykazaliSmy w poprzednim paragrafie, ze dla funkcji <p[t), okre
Slonej wzorem:

(w) / f(x) dx — <p(t)

jest (p'(t) =mf(tj o ile f(x) jest funkcjg ciagta. A wiec <p(t) jest jednag
z funkcyj pierwotnych, nalezacych do funkcji f(t) czyli jedng z gromady
funkcyj, zawartych we wzorze:

ff(t)dt = F(t)+ C
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Aby wybra¢ te funkcje, o ktéra nam chodzi, nalezy wyznaczy¢ w odpo-
wiedni sposob statg C. Otéz widocznem jest z wzoru (w), ze:

a

Jf(x)dx = @)= 0

Trzeba wiec tak obrac¢ statg C, aby sie spetniat warunek: ~(a)-(-C= 0
czyli C = — F(a).
A wiec:

<pM) = a)

F(t) - F(
IMX :F [t)— F(a)

Ktadac tu t— b, otrzymujemy ostatecznie:

czyli:

(57)

co mozna zapisa¢ takze w postaci:

b

(57 a) f fix) dx — fydxny N~ A f(x) dxj

Symbol (W(x))s=a oznacza tu, ze w wyrazeniu W(X), zawartem w nawia-
sie, pojmowanem jako funkcja zmiennej X, nalezy za X podstawi¢ a
Wystepujaca tu funkcja F(t) jest zupetnie dowolng funkcjg pierwotnag
funkcji f(t). Gdybysmy bowiem obrali dowolng inng funkcje pierwotng
(f) — ~~Ci to:
F>b)- F,@= Fb)+ C - F(a)- C,= F(b)- F(a)

a wiec warto$¢ prawej strony wzoru (57) pozostataby niezmieniona.
Trzeba jednak o tern pamieta¢, ze F(b) i F{a) sa warto$ciami tej samej
funkcji pierwotnej; nie mozna wiec braé¢ np. F{b) — Ft(a). Uzyskalismy
w ten spos6b Scisty zwigzek miedzy catka oznaczong a catka nieozna-
czong a mianowicie:

catka oznaczona z funkcji ciggtej jest réwna réznicy pomiedzy war-
toscig, ktora przyjmuje dowolna funkcja pierwotna tej funkcji dla gornej
granicy catkowania a wartoscig tej samej funkcji pierwotnej dla dolnej
granicy catkowania.

To twierdzenie sprowadza badanie catek oznaczonych, zdefinjowa-
nych bez uzycia rachunku rézniczkowego (jako kres gérny pewnych
sum), do catek nieoznaczonych, otrzymanych 2z zagadnienia odwrotnego
wzgledem roézniczkowania. Chcac mianowicie obliczy¢ wartos¢ catki ozna-
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czonej z jakiejkolwiek funkcji ciggtej w granicach od a do b, obliczamy
najpierw jej catke nieoznaczong i wybieramy z tej gromady fuokcyj
pierwotnych jedna dowolna, np. F(X) a nastepnie tworzymy réznice
F{b) — F(a), t. j. przyrost tej funkcji pierwotnej w przedziale <a, b>.
UzyskaliSmy w ten spos6b bardzo dogodng metode obliczania catek ozna-
czonych, mozemy bowiem teraz zuzytkowaé wszystkie metody, poznane

w poprzednim rozdziale. Tak np. chcac obliczyé:™ einxdx, wyznaczamy

e
najpierw catke nieoznaczona:

nx dx — — cos x-\- C

Wybierzmy np te funkcje pierwotna, dla ktérej C= 0, a wiec P[x)=
m= — cos*. Otdéz na podstawie wzoru (57) otrzymujemy:
il

/ sinxdx — —cosn— (—cos0)= — (— 1)— (— 1)= 2

Geometryczne znaczenie tego wyniku jest nastepujace: pole, zawarte
miedzy osig odcietych a potéwka fali sinusoidy, ma wartos¢ 2

Opierajgc sie na wzorze (57). okazemy, ze do definicji catki ozna
czonej (i pola) mozna zamiast sum dolnych, wyrazonych wzorem (42)
z § 211, uzy¢ takze suro gornych, Wyraionych-wzor%m:

(42 a) S= Mid®, + M3d®, + ... + A/,,d®, —
i-i
przyczem oznaczaja najwieksze wartosci danej funkcji f{x)
w odpowiednich przedziatach.
Dowod. Kres dokagy tych sum istnieje. Nazwijmy go catka gorng
z funkcji f(x) od « do b i oznaczmy ja symbolem:
b

a

(Catke oznaczong, pojmowang jako kres gorny sum dolnych, nazywaja
tez catkg dolng). Do tej catki gornej odnosza sie—jak tatwo spostrzec —
wszystkie, poznane poprzednio dla catki okreslonej twierdzenia, aw szczegol-
nosci wzory (44), (45), (52), (53), (56) i (57).

A wiec ta catka gorna jest takze réwna réznicy wartosci, ktore
przyjmuje dowolna funkcja pierwotna F{x) funkcji f(x) dIft gérnej i dolnej
granicy catkowania, t j.: b
(57 a) Jfix)dx= F(b)- F{a\,
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b *
J f(x)dx=J f xdx

A zatem dla ciggltych funkcyj f(x) catka gérna jest réwna catce ozna-
czonej Mozemy wiec pojmowac catke oznaczong z funkcji ciggtej takze
jako kres dolny sum goérnych. Stad wynika, ze pole figury, ograniczonej
osig odcietych, lukiem dowolnej linji ciagtej i rzednemi w koncowych
punktach tego tuku, mozemy pojmowac takze jako kres dolny sum pro-
stokatow maksymalnych (opisanych, gdy pole lezy nad osig odcietych
a wpisanych, gdy pole lezy pod osig), jak to juz zaznaczono w uwadze
w 8§ 211. Stad takze wynika, ze wielko$¢ takiego pola nie ulega zmianie
przez odbicie symetryczne danej powierzchni w osi odcietych, przez takie
bowiem odbicie wszystkie prostokaty maksymalne zamieniajg sie na mi-
nimalne i odwrotnie, a kres gorny zamienia sie na kres dolny, réwny
kresowi gérnemu ze znakiem przeciwnym i odwrotnie.

Opierajac sie na wzorze (57), wyprowadzimy z rozmaitych ogélnych
twierdzen o catkach nieoznaczonych odpowiednie twierdzenia o catkach
oznaczonych.

8§ 217. Wylaczanie stalego czynnika przed catke oznaczona.
Catka oznaczona z sumy.

A. PoznalisSmy nastepujgce twierdzenie, odnoszace sie do catek nie-
oznaczonych: jezeli h(x)= A-<f(x) przy A”=0, to: J'h{x)dx—AJ'f(x)d x
czyli:

J Af(X)dx = Aj 'f(x) dx
(por. § 205, wzér 14).

Jezeli H(x) jest jakakolwiek funkcjg pierwotng funkcji A{&), a F(m)

funkcji f(x), to mozemy napisa¢ powyzszy wzdér w postaci:
H(x)-\-C=A(F(tDy+C,)

Podstawmy tu za X najpierw h a potem a i odejmijmy od pierwszej
w ten sposéb otrzymanej réwnosci druga, to zostanie:

H(b) — B(a) = A(F(b) — F(a))
czyli w mysl wzoru (57):
b b
Jh(x)dx= AJ f(x)dx
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a to znaczy ze;

(58)

DowiedliS§my zatem, ze staly czynnik rozny od zera mozna wylgczy¢
z funkcji podcatkowej przed znak catki oznaczonej

Whniosek;
0 0

(58 a) J —f{x)dx= —Jf(x) dx

B Do calek nieoznaczonych odnosi sie nastepujgce twierdzenie
o catkowaniu sumy (t. zw. calkowanie przez rozkiad). Jezeli:

h{x) = f{x)-\- g(x)
to;

J'h(x)dx = j f(x)dx-\-J g{x)dx
(por. § 205, wzdér 15). Zatem;
J (/mp)+ g(*))dx=J f(x)dx + jg {x) dx

Nieehaj H(x). F(x), G(x) oznaczaja funkcje pierwotne funkcyj: h(x),
f(x), g(x). Powyzszy wzO6r mozemy zatem napisa¢ w postaci:

H(x)+ C= F{x)+ Cx+ G(x)+ Ct

Podstawmy tu za x najpierw b a potem a i odejmijmy od pierwszej
w ten spos6b otrzymanej réwnosci druga stronami, to otrzymamy:

H{b) — H(a) = F(b) — F(a) 'f G {b)- G{a)

czyli w mysl wzoru (57):
b h b
J h(x)dx= I1"f(x)dx-{- jg{x)dx

a to znaczy, ze:
(59)

DowiedliSmy zatem, ze catka oznaczona z suitt/ dwoich funkcyj jest réwna
sumie catek oznaczonych z tych funkcyj.
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Stad otrzymuje sie analogiczne twierdzenie o roéznicy fIx) — g(x),
przedstawiajac ja w postaci f{x) (— Yy(x)) i stosujac wzér (59) a nastep-

nie (58a). Zatem:
0 0

(59 a) J"(F(x) —g(x))dx = j f(x)ax - j g(x) <ix
Widzimy wiec, ze twierdzenia, poznane w tym paragrafie, sg zupetnie
analogiczne dla catek oznaczonych i nieoznaczonych.

Whioski.

I. Z tych twierdzen wyprowadzamy nastepujgce twierdzende, stuz
do poréwnywania wartosci dwéch calek oznaczonych jezeli 1695"@

w catym przedziale <a. n>, to takze

(60) 3 Of()ﬁd% ©q>§d(

Dowdd. Z zatozenia wynika, ze fix) —<7(;r)*0. Na podstawie wzoru
(51) z § 213 jest zatem:

J 3~k

Na podstawie wzoru (59 a) otrzymujemy stad:

y kI Rk o

a to znaczy, ze wz6r (60) jest prawdziwy

2. Rozszerzenie twierdzenia o wartosci Sredniej

Jezali funkcja podcatkowa jegt, iloczynem dwoch funkcyj ciagtych
-l()gi @, z ktorych jedna, np. @ zachowuje w przedziale <a, ¢>>
stale ten sam znak, to okazemy, ze mozna przed znak catki wytgczyc¢
druga funkcje, biorgc jej wartos¢ na odpowiednio dobranem miejscu

posredniem z danego przedziatu. Chcemy wiec okaza¢ prawdziwos¢ na-
stepujacego wzoru:

(61, i K)W(ﬁ(m M gdzie a<£<n
[e] [0}

Dowod. Niechaj bedzie np. g(x) 0 w <«, b—> Niechaj M oznacza,
najwieksza, a m najmniejsza wartos¢ funkcji f(x) w tym przedziale.
Wtedy M —f(x)™ 0 i fix) — w catym przedziale <ia,b'>

Wobec tego takze-'

J(M9@ok o i JX—ARkSD



80
a wiec:
a a a
Istnieje wiec taka liczba fi, posrednia miedzy m a M%ze:
j IPIck= gk
Poniewaz za$ ciggta funkcja @ przybiera przynajmniej raz kazdg war-

tos¢ posrednig pomiedzy m a M, np. w jakiem$ miejscu przeto ¢i= /(f),
a to dowodzi prawdziwosci badanego wzoru.

3) Nieréwno$¢ Schwarz
Poniewaz zawsze jest G()éi:—f- @ﬁ*/\ 0, przeto z wzoru (51)

a § 213 wynika, ze:
b .
J{RIL - YK

Stad otrzymujemy na podstawie wzoru (59):

J Aok j 2% ok +IGRAK o
" F s ORNIENY) Y kA IR ke

Wystepujace tu catki sag liczbami statemi. Oznaczmy je kolejno dla skro

czyli:

cenig literami A, B, C, %:
<4< -f- 2Bt f-C~ O .

Ten tréjmiaa zmiennej t jest stale nieujemny, a zatem jego wyroéznik:
B x— AC mast by¢ ajemny lub réwny zeru, jak to wiadomo z dyskusji
trojmiana kwadratowego. A wiec jest B*— ACS5S0 czyli: IP Si AC, ato

znaczy, ze:
& * »

(62) f(x) g{x) dx)j*~ jf*(x) dx .f,g"'(xj dx

. . c

Ten wzdér nazywamy nierownoscia Schwarza dla calek.
Uwaga. Analogiczng nieréownos¢ Schwarza dla skonczonych sum

udowadnia sie przez badanie wyrazenia:

(/m.e<+?D)* + (Mot +*)c+ ..o+ (Aet+*.), M0
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Tworzymy wyr6znik tego wyrazenia, po uporzagdkowaniu go weditug po
teg t Otrzymuje sie:

(¢ "« M M ii# )

f, i g, sa tu dowolnemi liczbami statemi.

8§ 218. Catkowanie przez czesci (per partes) catek oznaczonych.

Przy catkach nieoznaczonych uzywaliSmy czesto wzoru:
J 'u(x) v (x) dx — u[x) v(x) —Iv{x)u'{x) dx

wyprowadzonego przy zatozeniu, ze funkcje tt(x) i v(X) posiadaja ciagte
pochodne (por. § 206, wz6r 16). Niechaj F'(x) oznacza dowolng fuukcje
pierwotng funkcji u{X)v’[x) a G(x) funkcje pierwotng funkcji Vv(x) u'(x).
Wzor powyzszy mozemy zatem napisa¢ w postaci:

F(x) + C= u(xyv[x) — G(x)— C,

Podstawmy tu najpierw X — b a nastepnie X = a i odejmijmy stronami
drugg w ten spos6b otrzymang roéwnos¢ od pierwszej. Otrzymany:

F(b) — F(a) == u[b) v(b) — u(a)v(a) — (G(b) — G(a))
czyli:
o
(63) u(b)v(b) — u(a)v(a) —J v(x)u'(x)dx

Uzywajac skrocenia dv zamiast V'(x)dx, a du zamiast u'(x)dx, tudziez

/®)]* zamiast f{b) — f(a), mozemy ten wzér napisa¢ w skréconej postam:

(63 aj

Pamieta¢ jednak nalezy, ze zmienng catkowania jest tu X a nie u lub v.
Widzimy tu analogje z wzorem na catkowanie ,per partes* catki nieozna-
czonej; zamiast wyrazu U{x) v(x) wystepuje tu rdznica; u(b) v(b) —
— u(@) v(a).

Jiaebunek réznicikowy i catkowy. T. t. 6
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8§ 219. Catkowanie przez podstawienie w catkach oznaczonych.

Wprowadzajac w catke nieoznaczong zamiast zmiennej X nowa
zmienng t zapomoca wzoru X — <p(t), otrzymalismy w § 207 wz6r (18):

Jf(x)d x = Jf[<p(t)) <p'(t) dt

Zaktadalismy przytem, ze funkcja <p{t) nietylko posiada ciggta pochodna,
lecz ze jest ponadto odwracalna w spos6b jednoznaczny. Funkcje od-
wrotug do <p(t) nazwalismy: = t/j(x).

Zalézmy jeszcze, ze ta funkcja tp(x) jest okreslona w przedziale
<a, 6> Dla x = a przyjmuje ona jakag$ wartos¢ i,, adla x = » wartosc
f2, a wiec: — *>b) — t,.

Chcemy to samo przeksztatcenie zastosowaé¢ do catki oznaczonej.
Niechaj F[x) bedzie jakakolwiek funkcja pierwotna funkcji f(x), to

dx = F(x) -f C. Podobnie niechaj G(t) oznacza-dowolng funkcje

pierwotng funkcji /'(ip() to wtedy J r(<p(t)y<pryar — G(t) + C,

Wobec tego mozemy napisa¢ powyzszy wzOr w postaci:

F(x)+ C= G{t) + C, G(v(x)) + C,
Podstawiamy tu X — b a nastepnie X = a i od pierwszej otrzymanej
w ten spos6b rownosci odejmujemy stronami druga. Otrzymamy:

F(b) - F(a)= G(t) - G(tx= G(tp(b) - Gly>(a)

czyli na podstawie wzoru (57):

(64)

Wprowadzajac zatem zapomoca zwiazku X — <p{i) nowa zmienna t w catke
oznaczong, nhalezy ja przeksztatci¢c wedtug wzoru (64). Wprowadzamy
zatem a>(t) w f(x), zastepujemy dx rézniczkg <p'(hdt funkcji x = ot
a ponadto zmieniamy odpowiednio granice, biorac V»(@) zamiast a, a xp{b)
zamiast b, gdzie ip{x) jest funkcja odwrotng wzgledem <pft). Catkowanie
przez podstawienie jest dla catek oznaczonych nawet dogodniejsze ani
zeli dla catek nieoznaczonych, nie trzeba bowiem po obliczeniu cafkki
wraca¢ do dawnej zmiennej, lecz oblicza sie wartos¢ catki wprost, pod-
stawiajgc za te nowag zmienng t odpowiednie wartosci stale.
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8§ 220. Przykiady obliczania catek ozuaezonyck.

1) Jaka wartos¢ ma catka oznaczona'

I = J"x"dx
-i
gdy n jest liczbg naturalng?
/= fa? dx= 1 (—1
J n4—_!_1_* w =+ | »»4-1
Dla n parzystych jest (— 1y*1= — 1, zatem | = 42 - Dla n Bie-
na-i

parzystych jest /= 0.
2) Obliczy¢ wartosci catek:

24 2n 1«
f*in Nnx sinrajd®, / sinnx coBrxdx, / cosn® cosra;dx

dla »w3=r i dla w= .
ObliczyliSmy juz (w 8§ 207, w przyktadzie 15) catki nieoznaczone
z tych funkcyj (por. wzory 26 i 26a). Zatem dla « 4= r otrzymujemy:

o fSnw r Ne sinWa-navf _

sinnx sinrxdx
2\ w—r n4-r »1»

(0]

poniewaz zaréwno dla x = O jak i dla x=?n obydwa wyrazenia, m-
warte w nawiasie, sg zerami. Podobnie:

n
/ 1/sin(n 4- r)x , 8in(n — r)®\]
cosnxcosrxdx — N — --4 — — Jommmmommmm—- — 1 =0
21 »4-r n—r /I0
0]
Dla cafki:
. 1/cosfn 4- r)x cos(n — OaJllI*™ n
/ sinm® cosrxdx = — \ ——————— O Sl s ‘—}I = 0
J 2 « 4-r N—r

otrzymujemy réwniez warto$s¢ zero, poniewaz dla x = 0 i dla x = 2a
funkcja pierwotna przyjmuje te samag wartos¢: — NN fm e -],

Dla n= r otrzymujemy z wzoréw (26a) nastepujgce wartosci:

.2n

er’hfnx dx

/. 2n \ 2V

6*
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ar »
lcos2Te
rBT nx coamkdx = — - — ———- = * ]2 ), =0
2 2n - 23u- 2ar
J co&*nxdx = + %) =10+ 20— |0+ 0)=n
T 0

Z tych wzoréw skorzystamy w jednym z dalszych rozdziatow.

3) Obliczy¢ catke:
I \\dx

Poniewaz J@P]= x dla X 0, a M\= — x dla *§80, przeto najdogod-
niej jest roztozy¢ te catke na dwie czesci:

' “/\U/V dx -\-Jz\x\dx—jo— X dx +f2* dx =

13
2

Niechaj czytelnik wyprowadzi ogélny wzoér:
b
\] oA\dx — -\\— a-\a\)

rozr6zniajgc dla a i b wszystkie mozliwe przypadki, a wiec: a5:0
i a< 01 6==;0, a*<0 i 6< 0. Dla wyjasnienia dobrze jest po-
stuzy¢ sie odpowiedniemi figurami.
4) Wierzchotki trojkata majg spotrzedne:
0(0, 0), A(xt,y,), B(xt,0), przyczem xt> x, > 0,
y, >0, jak na fig. 8. Wykazaé, ze pole tego
trojkata, obliczone przy pomocy catki, ma taka
samg wartosé, jak w geometrji elementarnej,
Nt j. rowna sie %x2ey,.

nNo- tatwo stwierdzi¢, ze boki OA i AB maja
rébwnania: y= —X,y = -—-- . X j—XI1l—.
X, Xt —Xi Xt —xI

Pole trojkata ma zatem wartosc:

P=23dx 5T {s7B&r=-f xt—x]



Zatem:

P = ’\all - 4 {Z_(Xt/\_xt_)+ )_(t*_* )ZXX)! _Xiyl yi(a» + a t)
4ay,—i Y
Niechaj czytelnik wykaze to samo dla innych potozen tréjkata,
np. dla a, >»® > 0.y, > 0.
5) Obliczy¢ pole, ograniczone lukiem paraboli o réwnaniu t4 =
lezacym nad osig odcietych, od poczatku ukiadu do punktu o odcietej
X — @, rzedng koncowag y = 6 i osig odcietych (fig 9). Otrzymujemy:

Pole, zawarte miedzy osig rzednych, prosta rownolegta do osi odcie-
tych, a parabolg, ma zatem warto$¢ P,="ad, t j. jest réwne trzeciej
czesSci pola prostokata o podstawie a. a wysokosci h
Wz6r ten wyprowadza sie w geometrji
analitycznej takze inng droga, a mianowi-
cie zapomoca pewnego Szeregu geome-
trycznego. Przy pomocy tego wzoru tatwo
mozna obliczy¢ pole dowolnego odcinka
paraboli, jak np. na fig. 4c, str. 63.

6) Obliczy¢ catke od a;, do xt z ogol-
nej funkcji catkowitej wymiernej 3-go
stopnia:

y = a-f- bx -+ cx* -f- exs
i wyrazi¢ wartos¢ tej catki zapomocg rzednych vy,,y, i rzednej ys, na-
lezacej do S$rodkowego punktu xt = A(xt -f- @3 z przedziatu <™x,,x,~>

ir
a -f- bx + + exydx — ax + ~bxx-f £cx' + j-ex|

I = a(x3— *,.) -f %bXxl — xf) -f Ac(x* — a?) + +exl — aft)
7=5T >6a-f 36(a, + X,)-f 2cfarf+ xIxs+ tri)+ %e{aAt+a??a, + X\ + afi]
Poniewaz:

yj = a-f- bxx-f cx] + c¢x], yi— aJr bxa+ caA-f eah
przeto:

/ AR+ %_b@:; n;@ —a) + @- 2%4694

- AND- 3/11 4- af)]

2px,
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Rzedna y4 w punkcie srodkowym ma wartos¢:

y*= a+ hbX>+ &)+ ic®+ i + ®)+ + 3x]xs-f dx,irj+ @1)

a zatem wyrazenie, zawarte w nawiasie graniastym, ma wartos¢ vy, -j-
v, € 4y,. Otrzymujemy zatem ostatecznie wzor:

(65) /= L5(y, 4- 4y2+y.)

Jezeli y jest w calym przedziale <ar,,a;t> dodatnie, to ta catka daje

wielko$s¢ pola, ograniczonego tukiem AB (por. fig. 10) paraboli trzeciego
stopnia, rzednemi w punktach koncowych tego tuku i osig odcietych.
Ten sam wzOr utrzymuje sie
dla paraboli 2 go stopnia i dla pro-
stej: y— a-j- bx (t. j. dla para-
boli 1-go stopnia) jak to wynika
ze specjalizacji statych c,e w ogol-
nem réwnaniu. Wzo6r (65) znaj
duje czeste zastosowanie w przybli-
zonych metodach obliczania caftek,
0 czem bedzie mowa w osobnym
paragrafie. Jezeli bowiem tuk ja-
kiej$ linji mozna z dostateczng dla
zgdanych celéw doktadnosciag apro-
ksymowaé zapomoca paraboli stopnia nie wiekszego jak 3, to pole, lezgce
pod tym tukiem, mozna obliczy¢é w przyblizeniu wzorem (65), do czego
sg potrzebne tylko 3 rzedne i dtugosé przedziatu.

7) Obliezy¢ pole, ograniczone tukiem AB elipsy o dodatnich
rzednych, rzednemi w punktach kon-
cowych tego tuku i osig odcietych
(por. fig. 11). Rownanie tej elipsy ma

postac:
btx'i -f- aly’ = alf*
a wiec:
y —
Chodzi tu o obliczenie cafki:

S
P=y 2\a'-x* dx

Uzyjmy podstawuenia trygonometrycznego: X = acost, to\a* — X1= asinb
dx= — asintdt. Trzeba jeszcze zmieri¢ granice catkowania, postugujac
sie wzorem X — acost. Stad f= arcco i a wiec zamiast granic xt i xt



trzeba wstawié: /, — arccos-”, i, = arccos”. Otrzymujemy zatem:
't
asint-(— asint)dt= — abJ siuil dt

Poniewaz za$ sin*i= —----h™— i przeto:

P= —ab®%t— £sin2t) |

i
Stad otrzymamy np. pole c¢wiartki elipsy, biorac <= ¢rc, t, = 0 (bo

= arccosgz arc coa0 = i2n, t.= arc cosgz arc cos 1= 0). Zatem:

P= —ab(0—0—1ti?r-j-0) = ta&Ji
Dla catej elipsy otrzymujemy stad znany wzor:
P= abn
Stad dla kota o promieniu r — a= b otrzymujemy:
P=rin
zgodnie z wynikiem, znanym z geometrji elementarne;j.
W tym przykiadzie widzieliSmy, ze przy ostatecznem obliczaniu
wartosci catki oznaczonej nie trzeba byto wraca¢ do pierwotnej zmien-
nej X, lecz mozna byto rachunek przeprowadzi¢ do konca przy pomocy

nowej, pomocniczej zmiennej t

8) Pole, ograniczone tukiem hiperboli réwnobocznej:

nalezagcym do dodatnich odcietych, rzednemi koncowemi i osig a:-6w, ma

wartos¢:
P = — 1°2® — log®, — log®, = log "
x. -
Jezeli za poczatek przedziatu obierzemy ®, = 1, a za koniec ®, = a,
to wprost:
a

Mamy w ten sposéb przedstawiony geometrycznie logarytm natu-
ralny z dowolnej liczby a, wiekszej od 1, zapomoca pola.
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Do tego przedstawienia moznaby nawigza¢ calg teorje logarytméw
Tak np. zasadnicze dla nauki o logarytmach twierdzenie:
log (aft)= log a4- log ft

mozna udowodni¢ w nastepujacy sposob, uzywajac catkowej definicji logarytmu:
av a a0

i0g«.0i dx

N , jak to wynika z podstawienia X —at. A wiec:
a 9
log (ab)= J'—Q@x~J *—dz= logo+ log6

Z tego za$ twierdzenia wyprowadza sie z tatwoscig inne wazne twierdzenia
0 logarytmach.

9) Obliczmy pole, zawarte miedzy Ilukiem ABC hiperboli réwno

bocznej o réwnaniu:
X8— y*— 1

1 promieniami, tgczacemi poczatek ukiadu z kobeami tego tuku (por.
fig. 12). Oznaczmy zadane pole OABC literg w
Widocznem jest, ze:

c/ $«= OBC— ODC— BDC=~ - BDC

Ot6z pole BDC = P obliczamy przy pomocy catki:

,Jydx=j\Nx*_ 1dx

(tu jest y>0i ®>1). Catke te obliczamy przy
pomocy wzoru (35) na str. 48, a mianowicie:

P="~{x \x%— 1— logix + \xf— 1)) 1

Dla dolnej granicy: X — 1 otrzymujemy warto$s¢ 0, a dla gornej:

P—i (® W2\~ 1— log ~ 1))
Lecz:
ws —1=W
a wiec:
P—\Xi Vi ~ +yt)
Wobec tego:
\u = \xxyx— £jr,y, + £log(*! + y,)= i log(x, + yO

a zatem cate pole OABC ma wartosé:

u= log@ + vy.)



Z tego wzoru mozemy wyprowadzi¢ bardzo interesujgce wniosku
| tak z wzoru tego wynika,' ze:

@) ® + y = ¢

Poniewaz pomiedzy Xi a yl zachodzi ponadto zwigzek x?— W — 1 czyli:

*. - vi) @ 4-yi) = i

wiec:
1_
(b) 1=y =
oy
Z réwnan (a) i (b) wynika:
® ==i (ea e g = coshypM

A= i€ — fi-') = ainbyp«

Widzimy stad, ze w hiperboli rownobocznej o polosi 1 rzedna dowolnego
punktu jeat sinusem hiperbolicznym a odcieta cosinusem hiperbolicznym,
jezeli je uwazamy za funkcje pola wycinka OABC. Podobne zwiazki zacho-
dzg miedzy rzedng i odcieta dowolnego punk-

tu kola o promieniu 1a sinusem i cosinu-

sem kata s$rodkowego. Mozemy jednakze

takze i trygonometryczne funkcje wyrazi¢

jako funkcje pola odpowiedniego wycinka

kola (por. fig. 13). | tak wiemy, ze:

Xt= cosa, yx= sina
Wycinek OABC ma pole:

u= ABC-\OB —2a-i —a
Mozemy wiec takze napisac:

Xi — COSm, vy, = Sinu

W ten spos6b mamy juz uwidoczniong $cistg analogje pomiedzy
funkcjami hiperbolicznemi a trygonometrycznemi (ktére mozna tez nazy-
wacé funkcjami kolowemi) i ta analogja tlémacza sie nazwy ,sinus“ i ,co-
sinus* dla funkcyj hiperbolicznych.

10) Obliczy¢ pole powierzchni, zawartej miedzy jedng arkadg cy-
kloidy a osig odcietych. Uzyjmy dla cykloidy przedstawienia parame-
trowego:

X — a(t —sin i)
y= a(l — cost)

Punkt przebiega jedng arkade cykloidy, gdy t zmienia sie od O
do 2jz, a zatem gdy X zmienia sie od 0 do 2an. Wobec tego:
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Uzycie zmiennej X bytoby tu niedogodne, trzebaby bowiem wyrazi¢ y jako
funkcje zmiennej X, co prowadzi do dos¢ zawitego wzoru. Jednakze przed'
stawienie parametrowe nasuwa uzycie nastepujacego podstawienia:

X — a(t — sint)

Wtedy oczywiscie y wyraza sie wzorem a (l— cost), a badana catka
ma postac:

P — Iro(l—cost)*a(l—cost)dt: ai |r(1 cos i)8 dt

czyli:
2n 11 0]
(I —2cost+ cosH)dt= a2J 11— 2cost -}---- ~°8—-j dt=

2ji
= W/ (k! - 2 cost-]-~cos2<)dt

P= a2(]t— 2sint-j- | sin 2t)\'zi «2n = 3a*n
Zatem to pole jest trzy razy wieksze od pola kola toczacego sie, ktd
rego punkt zakres$la cykloide.
Niechaj czytelnik wykaze w podobny sposéb, ze pole zamkniete
asteroidg (por. tom | str. 81), ma wartos¢: 8a*7i.
11) Rozktad natezenia Swiatta, wy*
chodzacego z pewnego zrodta Swiatta O
(fig. 14), przedstawiono zapomoea odcin-
koéw r, wychodzacych z tego punktu pod
rozmaitemi katami. Okazato sie, ze konce
tych odcinkéw tworza koto, potozone tak,
jak na fig. 14. Zbadaé $rednie natezenie N
Swiatta, uwzgledniajgc wszystkie mozliwe
katy.
Odcinek r jest fankcjg kata 9 a mia-
nowicie:
r= 2Rcos (p

A kat zmienia sie od — n do -J-ljt. Chodzi tu o obliczenie S$redniej
wartosci tej funkcji w przedziale < — ~n, Na podstawie wzoru
(49) na str. 67 otrzymujemy:

+ - + -

. 1r\ 2E .
N— —I 2i?cosmdm— ——sin® = --—-- (1—(—1)= —
nj tt | » n
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W podobny sposéb mozna zbadaé¢ $rednig odlegto$¢ d punktéw (obwodu)
elipsy o potosiach a i b od ogniska, uzywajac biegunowego réwnania
elipsy;

i \%

1— £COS<P

przyczem biegun lezy w Oﬁsku, a osig jest 0o$ wielka elipsy; p oznacza
tu parametr i ma wartosé e jest to mimosrdéd liczbowy;

Dla gornej potowy elipsy otrzymujemy z wzoru (49) na str. 67:

n jf T— ecostpdqO

Przy obliczaniu tej catki dogodnem jest uzycie podstawienia tg”=w

(por. & 210). Pozostawiamy czytelnikowi do stwierdzenia, ze d—h Wy-
nik ten znajduje zastosowanie w astronomiji, przy badaniu S$rednich od-
legtosci planet od stonca.
12) Prad elektryczny zmienny zmienia sie perjodycznie wedtug
prawa sinusowego, a mianowicie;
i= jOsinai
Tutaj i0 oznacza najwieksze natezenie pradu. Okresem zmiany jest czas

jT = — , gdy bowiem t zmienia sie od O do t0 at zmienia sie od O

do 2n. Zbada¢ Srednig kwadratowa a, czyli tak zwany ,prad skuteczny*.
Uzyjemy do tego Celu wzoru (50) na str. 68 dla przedziatu <CO 7'>.
Zatem:

o C\ — cos 2at

at — Tpf  *Osiu* <tdt — | dt
a wiec;
, iz (t sin2an| a Im sin2a T\
© =22*%r - Ta~0)r*T\ -------
Ale 2a7'= 2T

2a- — = 4n, awiecsin2aT— sin4n — 0 i otrzymujemy:
a
°t= il

Stad: 0— n
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Jezel' natezenie pradu zmiennego wyraza sie wzorem:

i = i, At -)-iz anZ: ..F i,,Shnat

-|-yj cos at -f-y, cos 2at -+ me-(-Yy,, cos nat

odpowiadajagcym Kilku drganiom, to okazuje sie w podobny sposob, jak
poprzednio (uzywajac przytem wzoréow z przyktadu 2 na str. 83), ze prad
skuteczny ma wartosc:

a=p +- +j1 + i+ eeetj

Wykonanie rachunkéw pozostawiamy czytelnikowi dla éwiczenia.

§ 221. wzory Wallisa 1 Stiriinga.
Wyprowadzilismy dla catkiJ™siu"xdx wzér redukcyjny:
vJ sin "X dx — —I» cosg sin  xj -{- -----~ 8ID" dat

nzywajac catkowania ,per partes“ (por. § 206 str. 14, wzor 17).

Zastosujmy ten wzor do obliczenia calki oznaczonej:
n

A gio"x dx
Opierajac sie na wzorze (63), otrzymujemy:
l. = ——- cos X sin* X
n

Wyrazenie po znaku -rownosci jest rowne zeru dla Jzt, poniewaz cos = e
i dla O, poniewaz sin*-0==0. Pozostaje zatem dla badanej catki naste-
pujacy prosty wzoér ‘redukcyjny:

Z, = ?2L—! dla « N 2
5 5 5
(2]
Dla n= 0 otrzymujemy wprost /0= J 'sin °xdx=J"'l«d®= @] = =
0 o) 0
a *

adla n— 1ljest /,=J sinxdx — — cosa;|= —0-j- 1= L



93

Na podstawie tego otrzymujemy dla parzystego n= 2p kolejno:

Ogolnie:
T 1*3...2p— 1) n
p 2*4... 2p 2

jak tatwo stwierdzi¢ przez indukcje zupelng. Natomiast dla nieparzystych
n= 2p | otrzymujemy kolejno:

ogolnie:

Poniewaz sino; jest w badanym przedziale <CO, £47> nieujemne i nie
wieksze od 1, przeto:

sinip~'Xx  sin Mx sin 2r+1x
Stad wynika (na podstawie 8§ 217, wniosek 1), ze:

i.P-1= 7P= Jip-H

czyli:

2e46...(2p — 2)™ 1»35...2p— 1) a~2-4.6.,.2p — 2).2p
3e5¢7.. 2p— 1)= 2e4<6.— 2p “ ‘2= 3.5.7...2p - D.2p+ 1)
a stad:

2.2-4-4-6-6.,.(2p — 2)(2p — 2)m2p
1*3°3-6%6'7...(2p — 3)(2p — 1) 2p— 1) =

AN N2.2-4-4-6-6...(2p — 2) (2p — 2) 2p-2p

2= 1e3¢3e5e5¢7...(2p— 3) (2p — L~(2p— 1M2p+ I

Nazwijmy lewg strone literg Ap Po podzieleniu przez Ap otrzymamy:

1
2P+ 1- 1+,

1
Gdy p — oo, to—r—j}— > 1, a zatem takze cigg t A : A, dazy do 1,

P
czyli:
. 202¢4¢446¢6...(2p—2)(2p—2)2
13<3m557...2p— 3)(2p— H(2p — 1)
Mamy wiec przedstawiong liczbe przy pomocy iloczynu nieskon-

czonego. lloczyn ten mozemy takze napisa¢ w dogodniejszej postaci w na-
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stepujacy sposob:

p-1
Mozna takze, uzupetniajagc we wzorze (66) licznik i mianownik przez

wprowadzenie dodatkowych czynnikéw 2 e2e4 4. . 2pe2p «2p, przedstaw -
wi¢ go w zwieztej postaci:

I
(66 b) lim P82

P00 {2 p)\\T p

Wzér (66), zwany wzorem W allisa, nie nadaje sie wprawdzie
dobrze do obliczenia liczby n, jest bowiem bardzo wolno zbiezny. Ma
on jednak bardzo donioste znaczenie z tego wzgledu, ze mozna z niego
nietrudno otrzymac¢ dogodne przyblizenie na obliczanie wartosci wyra-
zenia p!, co przy wielkich liczbach p sprawia wielkie trudnoéci, a jest
potrzebne w rozmaitych zastosowaniach, np. w rachunku prawdopodo-
bienstwa.

Wzér, dajacy takie przyblizenie, ma postac:
(67)

i nazywa sie wzorem Stirlinga.

Dowod wzoru  Stirlinga.

Dzielimy* obie strony wzoru (66 b) przez i upraszczamy licz-
nik i mianownik prawej strony przez p\. Otrzymamy w ten sposéb.

pl 2*p-'h
iim ) ) =1
(p-i- t(p -f-2)...(2p — 1jp'F k2n
2\ / =¥
Uzupetnijmy utamek ’2‘— —- tak, aby miat forme ---—--- ji czyli
p
1 =PVt
(-j-————— -j , ktéra dazy do e gdy p-*oo. W tym celu trzeba
A
pomnozy¢ licznik i mianownik przez » n

Otrzymamy w ten sposoéb:

+ D(P+ 2)..e(2V- 2Ki*



95

. . (2p - ) :
Postepujac tak samo z utamkiem _A2_F_) ————— 5 i z dalszemi ulamkami.
otrzymamy:

p! 1
' AN
w ("+27 1)
| 1 / 1 \P+k / 168k

c(m+ipi) <mQ+p+t) <('+?) ="
Chodzi jeszcze tylko o okazanie, ze iloczyn wystepujacych tu poteg
postaci 114 —] o dodatniem X mozna zastapi¢ przez iloczyn eee...e= tf

Oznaczmy dla krétkosci cale wyrazenie, ktérego granice utworzyliSmy,
literg Wp. Zamkniemy ten cigg Wp pomiedzy dwa ciagi, opierajac sie
na tern, ze:

(a) <( Hp<.«*(+ly

Dowodd nieréwnosci (a).

Tei nierbwnosci wynikajg ze znanego rozwinigecia logarytmu (por- tom I, § 139.
wzér 138)

1 1
I'g@+*) = log*+ 2 jt 3(2*4 1)s"5(2*41)»
czyli:
log(* + ) 2*4 1f1™3(2*41)*m*'6(2*41)" f ]
a wiec*.
/ 1y<m/e 1 1
log(t+*7/ = 1” 3(2*4 1)*+ 6(2*-j-1)' + "
Stad wynika, ze:
f ANV / t 1 .\

1<log(,+*) < '+ *\(2*4 1), + (2z41),+ ™)
zastgpiliSmy bowiem w mianownikach liczby 3, 5, 7,... wszedzie liczbg 3. W nawiasie

mamy szereg geometryczny o ilorazie A zatem jego wartoscig jest:

(2+41p 1 (! (2*4D7) |
czyli:
I i/1 L_\
2*(2*49 *\* *4 U

Wobec tego :
kiob(h-j) <I+A(i-pr)

a wiec:
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Stosujemy te nieréwnosci do wszystkich poteg, wystepujacych
«w ciggu Wp i otrzymujemy:

< w. .<—p+\7e"+ Tt~ ~ i > TS ~p+* *My —)
P*-*Y2h PHVA\2n
czyli
1< W, Z—£V£e-= < «-*L*
ppt+'l)/2n

Poniewaz obydwa wyrazenia ograniczajace daza do 1, przeto takze:

lim W,
p-t-co ppt>\2n e~
Poniewaz za$ dzielna Wp dazy do 1, przeto i dzielnik musi dazy¢ do 1,
a to wiasnie jest trescig wzoru Stirlinga
Poniewaz iloraz ciggéw p! i pI le~p\2n ==sp dazy do 1, przeto
moéwimy, ze ciag S przedstawia asymptotycznie warto$¢ ciggu p\ Dla
wielkich p mozna wiec bra¢ zamiast p! warto$¢ sp, te zas wartos¢
oblicza sie dogodnie przy uzyciu logarytméw. Popetnia sie przytem

_9 I*
wprawdzie wielki btad bezwzgledny, lecz btad wzgledny, t.j. —_55_: ——
sp

dazy do zera. Tak np. juz dla p=10 jest pl= 3628800 a spk 3598700.

Btad bezwzgledny wynosi tu wprawdzie okoto 30100, ale btad wzgledny
nie osigga wartosci 0'009.
Uzywajac ciggu bp=p l:sp, mozna uzyska¢ wzdr, przedstawiajacy
jeszcze dokiadniej pi. Utworzmy mianowicie iloraz:
1\P +lla
Pl (P + D! o + ip>
>+i ppHl \27ie-p' (p+ 1Y**\2n ep-1 «

Postugujac sie nieréwnosciami (a)j otrzymujemy stad:
1<, A_ <
bp+
a wiec: bp> bp+,, zatem cigg bp maleje monotonicznie. Kazdy wiec jego
1 1
wyraz jest wiekszy od granicy 1 Natomiast bpe np 1S,PH),
_ i
a wiec ciag b,e U rosnie monotonicznie i ma réwniez granice 1, zatem
wszystkie jego wyrazy sg mniejsze od 1. A wiec:
br> 1> b pe m*

Stad za$ wynika, ze:

bpe i": 4 gdzie 0< #< 1
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czyli:
C_-—,eKp—1
P+/\2 n e~p
czyli:
(68) p\ — pptl)f2ne p+P O< ~"< 1

Uzywajgc tego wzoru na obliczenie 10!, otrzymujemy, biorgc za O gérne
ograniczenie |1, liczbe: 3628930, a wiec zaréwno bitad bezwzgledny jak
i wzgledny sg tu znacznie mniejsze anizeli przy uzyciu wzoru (67) (btad
bezwzgledny wynosi 130 a btad wzgledny okoto 0-00004).

Uzycie wzoru (68) ma te zalete, ze znajdujemy z niego dwie liczby,
ograniczajace jo! zdotu (ktadac O = 0) i zgoéry (0=1).

Uwaga. Jeszcze doktadniejsze przedstawienie wyrazenia p\ uzyskuje sie, biorgc

w wyktadniku liczby e dowolng ilos¢ wyrazéw t. zwanego szeregu Stirlinga (Zob.
Se rret. Lehrbuch der Differential-und Integralrechnung, 3 wyd-, tom II, str. 248 i nast.).

§ 222. O ciggach, dazacych do catki oznaczone.

Na podstawie wynikow, uzyskanych w poprzednich paragrafach,
potrafimy obliczy¢ wartos¢ catki oznaczonej tylko wtedy, gdy potrafimy
znalez¢ catke nieoznaczong badanej funkcji. W innych przypadkach
trzeba sie uciec do definicji i stara¢ sie wyznaczy¢ w jakis sposéb kres
gérny sum:

s= mt(xl —a) j, —a?)-]-...+ myb —ar,_,)

Okazemy, ze z zbioru tych liczb s mozna wybra¢ w rozmaite, bardzo
dogodne sposoby, ciag: gu st,...sp,..., dazacy do kresu gérnego K. Trzeba
mianowicie dobiera¢ kolejne podzialy przedziatu <a, bj> tak, aby wszystkie
czesciowe przedziaty Ax, dazyly do zera; do tego za$ wystarcza, aby ciag
utworzony z najwiekszych przedziatéw kazdego podziatu dazyt do zera.
Tak np. mozna dzieli¢ przedziat <a, kolejno na 2,3, 4,... p-f-1
rownych czesci i otrzyma¢ w ten sposob cigg sum:

s, = «{"@&@2—a)-\-Tn\b— *)")
§ = w+fefl— a)-f- »4*)(@42— ®)J) + mN(h — @) ..«

ogolnie:
ptl
sp= MIpA\>—a) -J- —x[p) +... + mfh(b—3#)=  mE)A<y
/-i
Tu wszystkie czesciowe przedzialy daza do zera, albowiem Ax\p) :lb_ a
P+ 1

a wiec lim AX\p= 0.

Bachanek rézniczkowy i ca/kowy. T. 2. 7



Mozna jednak takze inaczej dzieli¢ przedziat <a, np. kolejno
..na 2, 4, 8,...2P,... réownych czesci. Wtedy takze wszystkie przedziaty
Czesciowe daza do zera i to nawet szybciej, anizeli w poprzednim przy-
padku. Mozife takze dzieli¢ przedziat <a, na nieréwne czesci, wsta-
wiajac np. pomiedzy ai b liczby wedtug postepu geometrycznego o ilorazie

= q; wtedy x[p— ag, x™ = ag\...x$)= a<f, a<f+*= ~ — 6

Wogdle istnieje nieskoriczenie wiele rozmaitych ciggéw podziatow,
przy ktorych diugos¢ najwiekszego czesciowego przedziatu dazy do zera.
Niechaj ogélnym wyrazem ciggu sum dolnych, odpowiadajgcych takiemu
ciggowi podziatéw, bedzie:

n,
Sp=
i-i

Okazemy, ze ,Kki ci*g d,z, d. eldki < ~».j:
gdy p wzrasta nieograniczenie.

Dow6d. Wedtug wzoru 65 z § 214 jest ta eatka zawarta pomiedzy dowolng
sumg dolng sp a odpowiadajaca jej sumg gérna Sp. A wiec:

Stad wynika:

(N ONK-Sp~rSp — - m«)ArP

Chcemy okaza¢, ze limsp— K, to zniczy, ze do kazdej dodatniej liczby e
P -+ 00

mozna dobra¢ takie N, ze dla wszystkich p~>N jest prawa strona niniejsza od e.
Oprzemy sie na tem, ze funkcja f{x) jest ciggla w przedziale zamknietym <"a, ft)>,
a wiec jest w nim jednostajnie ciagta (por. tom 1, § 59). To znaczy, ze do kazdej
dodatniej liczby e’ mozna dobra¢ takie dodatnie § ze dla wszystkich x i x0 z prze-
dziatu <«, 6>, spetniajgcych warunek |x —xO0]< 4§ jest \f{x) —/(*,)] < *+ Obierzmy

* — 1 wyznaczmy odpowiednie d. Do tego i dobierzmy takie JV, aby dla p~> N
byto \Axm#\<~61 w myg] zatozenia da sie to uskuteczni¢, bo ditugosci wszystkich,

czesciowycb przedziatébw dazg do zera. Oznaczajac w kazdym z tych przedziatéw lite-
jatni X i & punkty, w ktérych funkcja przybiera najwieksza i najmniejsza wartosc,
&j. MW i mW , widzimy, ze \x — x,,\< §a zatem |Mjp — <e'= 6-—a.2nak
bezwzglednej wartosci nie jest tu potrzebny, poniewaz Mw :> mw Wobec tego z nie-



réwoosai (I) otrzymujemy
oS K— aa,- w =tir.2 **=V- (‘- e»='

Spetnia sie wiec dla wszystkich p > N warunek

(||) 0" K—«,SS ,-«F< f
a wiec:

To znaczy, ze:

limip— K— f)/(*
(69) im ip SV () o
lub wyrazniej;
Hp b
(69 a) lim my)nxjpi = J'F\x)dx
/- .
(47~»->0)

DowiedliSmy wiec, ze dagy mim dolnych, odpowiadajacych takim po-
dziatom przedziatu, w ktérych dlugos¢ najwiekszego czesciowego przedziatu
dazy do zera, dazy do catki oznaczonej.

Zamiast sum dolnych: sp mozna uty¢ do wyznaczenia catki ozna

np
«zonej takze sum gornych: Sp= V . | tak z wzoru (I1) wynika
/-i
»draza, ze takze:
[5,r- p\< e
o-a p> N, a to znaczy, ie;

lim (Sf — 9= O

azyli:
lim Sp— lim p= K
A wiec:
np . i
(70) lim \ = lim Sp= K = f f(x)dx
P—0OAT p —¥00 J
(Axp>-+0)

To dowodzi, ze takze ciag takich sum gornych, v ktorych wszystkie prze-
dzialy daza do zera, difzy do cul/« oznaczonej.

Z tych dwéch twierdzen wynika, ze do wyznaczenia catki ozna-
ezonej mozna takze uzy6 cigga 6um ,posrednich“, utworzonych wedtug
wzoru:

7*
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gdzie £}p oznacza dowolng warto$¢ z przedziatu a wiec
dowolng warto$¢ posrednia, albo xf\ albo Xx}p. Poniewaz bowiem zawsze
zachodza nieréwnosci;

&)t Ne p)~ M Ip

przeto muszg zachodzi¢ takze nieréwnosci sp” o p” Sp. Ciag za$, ktdérego
wyrazy sa stale zawarte miedzy odpoéwiedniemi wyrazami dwoch ciggéw
zbieznych do wspdlnej granicy, jest takze zbiezny do tej samej granicy.
Zatem:
Ho
(71) lim b= 1im (e [p)AX. ) — ff
e /-l «

Catka oznaczona jest réwna granicy ciagu sum, w ktorych kazdy
dodajnik jest iloczynem z dtugosci przedziatu czeSciowego i z wartosci funkcji
w dowolnym punkcie tego przedziatu, jezeli tylko dlugo$¢ najwiekszego
czesciowego przedziatlu dazy do zera.

To twierdzenie zawiera poprzednie twierdzenia tego paragrafu jako
przypadki szczegétowe. Przy budowaniu ciggéw sum, zdgzajacych do
catki, mozemy zatem bra¢ z kazdego przedzialu czesciowego albo naj-
wiekszg warto$¢ (Mt) funkcji f(x) w tym przedziale, albo najmniejsza (m,)»
albo warto$¢ funkcji na poczatku przedziatu, t j. f(Xi._¥, albo warto$¢
/(»,) na koncu przedziatu, albo wreszcie zupetlnie dowolng wartos¢ f(£i)
z wnetrza kazdego przedziatu.

Wszystkie te sumy zdazaja do wspdlnej granicy, gdy dtugos$é naj-
wiekszego czesciowego przedziatu w kazdym podziale dazy do zera, a tg
wspolng granica jest catka oznaczona z f(x) od a do b Tych ciggédw sum
dolnych, gérnych lub dowolnych sum posrednich mozna, uzy¢é wprost do
definicji, catki oznaczonej. Istotnie tez w podrecznikach analizy najczesciej
ta wlasnie droga wprowadza sie pojecie catki oznaczonej.

Uwaga 1 WidzieliSmy w § 214, str. 72, ze Srednia arytmetyczna z n wartosci

funkcji f(x), dobranych odpowiednio w n przedziatach, otrzymanych przez podziat
b »

przedziatu <a, na n réwnych czesci, jest réwna L Ff(x) dx. Jezeli za$ hie-

m
rzemy te wartosci funkcji f(x) zupetnie dowolnie w tych n przedziatach, to ich $rednia
arytmetyczna

JoE)+ /o&)+ m+ /(&)

0]

43zy do N*f{x)d x, gdy n—yoo. Albowiem suma:
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<<)>—f(§) + /(1% ¢i* + .. =+ /mE) &—«)
a wiec:

m»~ 1+ N )+ —-x/i" = i;m~
n—00 W n—oc b

Unaga 2. Wszystkie te rozwazania dotyczyly tylko funkoyj ciaghych w <ja, 6j>.
Okazano, ze twierdzenia tego paragrafu odnosza sie takze do funkcyj nieciagtych, lecz
ograniczonych i posiadajgcych skonczong liczbe punktéw nieciagtosci w danym prze-
dziale, a nawet do niektérych funkoyj, posiadajacych nieskornczenie wiele punktow
nieciggtosci w skonczonym przedziale Przy tych rozwazaniach wprowadza sie odrazu
szersza definicje catki. W nastepnyni paragrafie zajmiemy sie niektéremi najprostszemi
uogolnieniami pojecia catki.

Przyktady.

1) Przy pomocy takich ciggébw mozna obliczy¢ wartos¢ catki ozna-
czonej, nie uzywajac do tego funkcji pierwotnej, a wiec catki nieozna-
czonej. Sprobujmy ta metoda obliczy¢ wartos¢ catki;

s

x*dx

Uzyjmy podziatu przedziatu catkowania <0, 5j> na réwne czesci. Wyraz
30 ciggu sum otrzymamy, dzielagc przedziat na n réwnych czesci, a wiec:

Ar,= n = o (dla z= 1,2,3,.

?
n
Dtugos¢ kazdego z tych przedziatbw mnozymy przez warto$s¢ najmniejsza,
t. j. w tym przypadku przez warto$¢ funkcji y — XX na poczatku kazdego
przedziatu czesSciowego, albowiem ta funkcja jest monotonicznie rosngca
w przedziale <0,5>. Temi wartosciami funkcji sg odpowiednio:

=om> (Tel)” (*el)” (34)!--[<7- v
=0~. ] +,- (D*-£t+ .(D*.t+ ...+ X)..(D *.]

n= (I)*[12+ 2% f-3* + ...+ («-]_)*I

Na sume kwadratéw wszystkich liczb naturalnych od 1 do « mamy wzo6t
(por. tom I, § 196, wz6r (207)) fn(ii + I-)(f»+ U a zatem na sume
kwadratéw liczb naturalnych od 1 do w— 1 otrzymujemy wyrazenie:
+(n — h)n(2n — 1). Wobec tego;
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Stad:
hms,= ifi 1 —012—0)= 7
A wiec:
dx = ifi
Z *
Préba. Przy pomocy catki nieoznaczonejJ xldx — -f- C znaj-
dujemy:

"*»dx = x>+ C|= Jft 4-c- O0- C=
/ 1
a zatem te samg wartos¢, ktérg otrzymaliSmy bezposrednio z ciggu odpo-
wiednich sum.
2) Obliczy¢ bez uzywania catki nieoznaczonej wartos¢ catki:

e
dx

m-Jt

Tutaj korzystniej jest podzieli¢ przedziat <2 ,6> na czesci nieréwne»
lecz wzrastajgce wedtug postepu geometrycznego o ilorazie:

*=h =13
Otrzymamy wtedy nastepujace punkty podziatu:

n n n n n
2\\ 2N 3*, N* = @6

Chcac otrzymac sumy dolne, nalezy braé¢ wartosci funkcji y = — na koncu
X

kazdego z przedziatow czesSciowych, funkcja ta bowiem maleje monoto
nicznie. Otrzymamy w ten spos6b na s, nastepujgce wyrazenie:

= 4 - (2h - + (273% - 2/Z)+ -+ -i~ (2 fe - *)/¥%)
2K3 21/3* 2

Diugosci wszystkich przedziatdéw dazg do zera, gdy n wzrasta nieogram-
ezenie, albowiem nawet najdtuzszy, ostatni przedziat, ma diugosc:

Wiadomo za$, ze "3 = 3'm->3°= 1 a wiec AXn->-6(1 — |])= O.
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Wykonujemy w s, zaznaczone dzialania i otrzymujemy;

S, =

lim sx = lim«(1 — 3.1/

n-¥00 H-£-00

Pierwszy czynnik dazy tu do oo a drugi do O Przy pomocy reguty
Hospitala otrzymujemy;

lim s, lim -——- = lim = i ~ =
N0 i. lim 3~1hlog, 3 log, 3

Zatem:

f

Proba Przy pomocy catki nieoznaczonej otrzymujemy
0 0
f ¢r= loxI*||==,0&6~ tog-2= log,5= log, 3
2 2
zgodnie z wynikiem,, otrzymanym zapomocg ciggu sum dolnych.

Z tych przyktadéw widzimy, Ze znajac catke nieoznaczong, docho-
dzi sie bez poréwnania szybciej do wyniku. Jednakze pomimo to ta nowa
metoda jest bardzo pozyteczna, poniewaz przy jej pomocy mozna takze
oblicza¢ catki oznaczone z takich funkcyj. dla ktérych nie znamy calek
nieoznaczonych. Ponadto przy pomoey ciggéw dazacych do calki ozna-
czonej, tatwo jest definjowac¢ i obliczaé rozmaite wielkosci geometryczne
i fizykalne, jak np. dtugosé¢ tuku, momenty statyczne i bezwitadnosci, jak
to zobaczymy w dalszym ciagu. Wreszcie na tej metodzie opierajg sie
rozmaite -przyblizone metody obliczania catek oznaczonych (i pél) w takich
przypadkach, w ktoérych zawodzi uzycie calki nieoznaczonej, np. gdy
funkcja podcatkowa jest podana tylko w sposob tabelaryczny lub gra-
ficzny. Temi przyblizonemi metodami zajmiemy sie w dalszym ciggu
w § 226.

8§ 223- Calki uogdlnione.

We wszystkich rozwazaniach tego rozdziatu czyniliSmy zatozenie,
ze funkcja podcatkowa f(x) jest ciepta w przedziale zamknietym <]o, n>.
Mozna jednak zdefinjowaé catke oznaczonag takze ogdlniej, biorgc pod uwage
funkcje nieciagta lecz ograniczong w przedziale <"a, dopuszczajac przy-
tem skorniczong liczbe punktéow nieciagtosci w przedziale n>, a nawet
w pewnych przypadkach nieskonczenie wiele takich punktéw. Do defi-
nicji uzywa sie kreséw gornych lub kreséw dolnych lub tez ciggéw od
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powiednich sum. W ten spos6b powstaly rozmaite uogdlnienia pojecia»
catki, odgrywajgce nadzwyczaj wazng fole w matematyce spotczesnej,
jak np. catki Riemanna i calki Lebesgue’a W zastosowaniach praktycz-
nych te pojecia nie znalazty dotychczas szerszego rozpowszechnienia i dla-
tego nie bedziemy sie tu niemi zajmowali J
Ograniczymy sie tylko do najprostszej klasy funkcyj, a mianowicie
do funkcyj f(x, posiadajacych w przedziale <a, 6> tylko skonczong
liczbe skoniczonych skokéw a pozatem ciggtych we wszystkich innych
punktach tego przedzialu. Wezmy pod

by 0 B uwage najpierw , takg funkcje f(x),
'C: ktora jest ciggta w catym przedziale
A | o» <ja, z wyjatkiem jednego punktu c,
131 lezacego wewnatrz przedziatu, w tym
;} '. > za$ punkcie posiada skonczony skok, jak
0 <. . . .
a ce ¢ c+e i na fig. 15. Obierzmy w przedziale <a, c>
Fig. 15. dowolny punkt c—e,a w przedziale <c,b >

punkt c-f- e'. Zaréwno catka oznaczona
od a do c—e, jak i catka od c-j-e' do 6 istnieje. Gdy e dazy do zera, to

catka J"f(x)dx dazy do skonczonej granicy, a mianowicie do caltki ozna-

a
ezonej od a do ¢ z funkcji /j(x), ktéra jest rowna f{x) w przedziale

c), otwartym z jednej strony, a dla X = ¢ przyjmuje te wartos¢, do
ktorej dazy f(x). gdy * dazy do c z lewej strony.
6
Podobnie istnieje granica drugiej catki:j'f{x) dx, gdy e' dazy do
GE
zera. Sume. tych dwoch granic nazywamy catka oznaczona z funkcji nie-
ciagtej f(X). A wiec:
« b =t b
"f{x)dx = lim J‘f(x) dx 4- hm J f(sc) dx

Jest to catka uogolniona. Jezeli funkcja f(x) jest meujemna w catym prze-

*dziale <"a, to wartos¢ catki uogdlnionej podaje pole figury, zam-
knietej linja ACDB, rzednemi aA i bB, tudziez odcinkiem CD na fig. 15
W zupetnie podobny sposéb okresla sie catke z funkcji, posiadajgcej
skoniczong liczbe skoriczonych 6kokoéw.

1 Czytelnika, ktory pragnatby gtebiej wnikng¢ w ogbélng teorje catek oznaczo-
nych, odsylamy do podrecznika S. Sak sa p. t. Zarys teorji catki (Warszawa 1930j
lub de la Vallée PouBSina p. t Cours d’'Analyse In/tnitesimale (Paryz, wyd. 6»

1926 ).
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Uwaga. Nietrudno jest dowie$¢, ze do tych catek wuwogdlnionych stosuja sie to
same twierdzenia: o addytywnosci, o catkowaniu sumy, o wartosci Sredpiej (wzoér 48),
o catkowaniu przez podstawienie, .per partes“, co do zwyczajnych catek oznaczo-
nych, nieuogdélnionych.

Jezeli w calce uogdlnionej wezmiemy zamiast 6tatej gornej granicy b, zmienna t,
I

to ta catka jest funkcjg <9(t) tej gornej granicy: dx — jp(f). Ot6z mozna udo-
it

wodnié¢, ze ta funkcja <f(0 jest funkcja ciagta zmiennej t, nawet w tych punktach,
w ktorych f(x) posiada punkty nieciggtosci. Odrazu to wida¢ z geometrycznej inter-
pretacji catki jako pola: gdy punkt c przesuwa sie o do$¢ maly odcinek, to wielko$¢
pola zmienia sie tak mato, jak tego zgéry zazadamy Jest to uogélnienie twierdzenia,
udowodnionego na poczatku § 215. Pochodng tej funkcji <p(t) wedtug zmiennej t jest
wewnatrz przedziatlu <a, c> funkcja f{t), a takze wewnatrz przedziatu <[c, na-
tomiast w samym punkcie ¢ funkcja g>(t) nie posiada pochodnej.

Przykiad.
Obliczyé¢:

I sign x dx

Funkcja sigo x (por. tom | § 1, str. 12, fig. 3) jest réwna -f- 1
dla x> 0, a —1dla x< 0, w punkcie zas x = 0 ua skok skonczony.
Rozktadamy zatem te catke na sume dwéch catek:

1
Jsign X dx = Iim\] sign x dx + Iim\] sign x dx = lim [— 1)dXA-

Z
_Kf‘i_gc%J/(-F 1) dx — lim (— X) + limx — — 3 2= _1

Niechaj czytelnik wyprowadzi ogélny wzor.
b

sign xdx = \o\ —
/n

uwzgledniajgc wszystkie mozliwe wypadki dla a i b, a wiec bpp. dla

a Chb, trzeba rozwazy¢é a”sO i b~r.0,a O0ii” 0,a< 0 ib<r0 Wy-

godnie jest postugiwac¢ sie przytem obrazem graficznym funkcji sign X
+ h

Niechaj czytelnik obliczy w podobny sposéb wartos¢ catkiy f (x)dx,

przyczem f(x) = X w przedziale <0, «), a f{x) —x — 2n w przedziale
O , 2n>. Wykres!
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§ 224. Cakki niewfascive.

Wszystkie catki oznaczone, o ktérych dotychczas byta mowa za-
rowno uogdlnione, jak i nieuogdlnione, nazywamy catkami oznaczonemi
Miasciwemi.

W przeciwienstwie do nich nazywamy catkami niewtasciwemi takie
nowe rodzaje catek, w ktérych albo funkcja podcatkowa jest nieograni-
czona w otoczeniu jakiego$ punktu przedziatu catkowania, albo przedziat
catkowania jest niewdasciwy, t. j. <”a, oo) albo (— oo, albo wreszcie
(— °°,+ 00). Takie catki niewtasciwe okreslamy zapomoca nastepuja-
cych definicyj.

Jezeli funkcja fix) jest ciagta w calym przedziale -<a, b), a dazy
-do nieskonczonosci, gdy x dazy z lewej strony do b, to istnieje catka
oznaczona wiasciwa z tej funkcji od a do kazdego punktu, lezacego dowol-

nie blisko przed punktem b, a wiec do b— e, gdziee>0. Istnieje zatem
8=

/ f(x)dx. Jezeli warto$¢ tej catki dazy do skonczonej granicy, gdy
dazy do zera, to te graniczng warto$¢ nazywamy catkg oznaczong nie-
whasciwg z funkcji f(x) od a do b Przyjmujemy wiec nastepujaca

definicje:

(72)

Jezeli F(x) oznacza funkcje pierwotng funkcji f (X) w przedziak

< ab-—t to mozemy ten wzOr napisa¢ takze w postaci:
b
(72a) f(x)d x lim /7’ (¢ —c) —Fia)
/ i—o

Podobnie definjujemy catke niewtasciwg w przypadku, gdy funkcja f(x)
jest ciggta w caltym przedziale <a, z wyjatkiem poczatkowego
punktu a, a przy X, dazacem z prawej strony do a, dazy do nieskoo.
CZODOSCi.

Wtedy mianowicie:

(73)

Jezeli F(x) oznacza funkcje pierwotng funkcji /(a?)w przedziale <;a+ £',&>»
to wzér (73) mozna napisaé w postaci:
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b
(73 @) ff(x)dx= F(b)— Iim F (a -f-t)
J t —o
Jezeli funkcja f(x) jest ciggta w calym przedziale <a, z wyjat-

kiem jednego punktu c, lezacego wewnatrz przedziatu, w ktérym dazy
do nieskonczonosci, to rozdzielamy catke na dwie czesci i uzywamy do
definicji catki od a do b wzoru:

b e R . b
Jf(x)d x —J~f(&) ¥ J f(x) dx

Obydwie za$ calki, znajdujgce sie po drugiej stronie zDaku roéwnosci, sg
zdefiniowane przy pomocy wzorow (72) i (73). Gdyby przedziat zawierat
wiecej punktow nieciggtosci, lecz skonczonag ich liczbe, to nalezatoby
roztozy¢ przedziat odpowiednio na wiekszag liczbe czesci

Drugi rodzaj catek niewtasciwych otrzymujemy, biorgc pod uwage
funkcje ciggte, lecz przedziat catkowania niewtasciwy.

I tak, jezeli funkcja f(x) jest ciagta dla wszystkich X”>a, to

dla kazdej liczby L wiekszej od a istnieje catka oznaczona witasciwa:
£

AM{x)dx. Jezeli ta catka witasciwa dazy do skornczonej granicy, gdy

a

L —y -f- 0o, to te graniczng wartos¢ nazywamy catka niewtasciwag od a dooo.
Przyjmujemy zatem nastepujacg definicje takiej catki w przedziale

<a, 00):

(74) ff(x) dx = lim _f f(x).dx

Jezeli F(x\ jest funkcja pierwotng fuokcji f{%\ to:
00

(74a) /() dx = lim F(£) — F(a)

Podobnie definjujemy catke w przedziale niewtasciwym (— oo, 6)>:
(75)
Jezeli F(x) jest funkcja pierwotna, to:

(75 a) S ) dx = F{b) — lim F{T)
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Wreszcie:
+ «

.0
(75b) j f0) dx— ] f00dx--j f(x) dx

przyczem mozna zamiast 0 obraé¢ takze dowolng inng skonczong liczbe c.

Z tych definicyj widzimy, ze catki niewtasciwe sa granicami, do
ktérych daza catki witasciwe. Zamiast mowi¢, ze catka niewtasciwa
istnieje, mowi sie tez, ze catka niewtasciwa jest zbiezna. Calki niewta-
sciwe wystepujg dos¢ czesto w zastosowaniach. W interpretacji geome-
trycznej mozemy je uwaza¢ za miary pewnych nieograniczonych pol
(z uwzglednieniem znaku).

Przykiady.

1) Obliczy¢ catke:
dx

/, XM

Tu dla gérnej granicy x = L funkcja podcatkowa posiada niecig-
gtos¢, a miatfowicie dazy do -j-oo, gdy X dazy do -f- 1z wnetrza prze-
dzialu <0,1>, t. j. z lewej strony. Do obliczenia wartosci tej catki na-
lezy zatem uzy¢ wzoru (72). Wobec tego:

! 1£
dx P dx . .
ryzrz— — = lim / — = = hlim arcsin (1 —e) — arcsin O

\1— Xi J \\— t-*»
= arcsin 1— arcsinO= \n

Jakkolwiek powierzchnia, ograniczona linja o réwnaniu y = --=1=:
yl — &
w przedziale <0, 1>, rozcigga sie w nieskonczonos$é, to jednak miara
tego pola jest skonczong liczbg \n Niechaj czytelnik sporzadzi wykres
tej funkcji!
2) Zbada¢, czy istnieje catka niewtasciwa:

dx
/ @ — 3)2

Poniewaz funkcja podcatkowa jest nieciggta, a mianowicie posiada skok
w punkcie o: =3, lezagcym wewnatrz przedzialu <1, 4>, przeto nalezy
rozdzieli¢ przedziat catkowania na dwie czesci: od 1 do 3 i od 3 do 4
Otoz:

/io “li:. :<,6:3:I|_:(|+§)u -
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/ o -J- oo
(ar— 0)2

3
A wiec nie istnieje takze catka od 1 do 4, jako suma tych catek.

Gdybysmy zas, rachujac nieostroznie, nie zauwazyli, ze funkcja
staje sie nieograniczong wewnatrz przedziatlu catkowania, to otrzymali-
bys§my— przez zastosowanie zwyktej reguty F'(b)— F(a)— wartos¢:

X —3

Moglibysmy wiec sadzi¢, ze (nieograniczona) powierzchnia, zamknieta
linja o réwnaniu y = (Y—3) w prze-
dziale <1, 4>, ma pole skonczone, tym-
czasem to pole ma wartos¢ (niewtasci-
wa) nieskoniczong, jak to wynika z po
przednich rozwazan.

Zobaczymy jednakze w nastep-
nym przyktadzie, ze przez odpowied-
nie zmniejszenie wyktadnika w mia-
nowniku funkcji podcatkowej uzyskamy
figure o polu skorniczonem.

3) Obliczy¢ wartos¢ calki niewtasciwej:

/

W mysl definicji stosujemy tu rozkiad:

dx C dx

h ~w .= f2~ w . + <. H +

+-lim3@— 3)'ixl= lim 3 e—3J—2+ 3 — lim3 = 0-f
80 | 60

I+¢
3 3

+ 3[~-f3-0 = 3(1+ V2

W geometrycznej interpretacji chodzi tu o obliczenie pola nieskonczonej
powierzchni, ktoérej czes¢ przedstawiono na fig. 16 (zacieniowana).
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4) Ogo6lnie mozna dowies¢, ze caltka:

:J(X(ibt() )’

ma tylko wtedy warto$¢ skonczong, gdy a< 1 Prosty dowdd pozosta-
wiamy czytelnikowi dla ¢wiczenia.

5) Obliczy¢:
J s ~dx
Tworzymy najpierw:
U Kk
J e*dx — — ¢+ |: —eLffo—1i

Stad:

ane~‘ dx — lim fwdszm1—64J|= 1

L-+o00 J

Niechaj czytelnik przedstawi geometryczng interpretacje tego wynika
6) Obliczy¢:
+00 0 +0

'-/nb*-/r?s+/i1Ti-

Stad:
i 0 L .
| = lim arctga? |+ arctga?] — O— (— ¢Ji) -f- — 0
K-+ —oo0 K+
Zatem
+m
. f dx
l= )r+p -7~

7) Dla jakich wyktadnikéw s catka niewtasciwa:
(€]
ndx
s %

ma wartos¢ skonczong?
Obliczamy najpierw dla s4=1 catke witasciwa:

X~1+1 |.Z‘I. L=+ > . -
et — -t *4-1  1-sU 51 j

Widocznem jest, ze przy L—o00 prawa strona tylko wtedy dazy do
skorniczonej granicy, gdy s> 1
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Dla s= 1 otrzymujemy:

t
rdx
J-~ —logL —log L= loglL
wiec: o
/f=-
8) Obliczyc¢:

r* dx

dla liczb n naturalnych.

Wyznaczmy najpierw zapomocag catkowania ,per partes“ catke

wiasciwa:
L L L L
Ax"erdx — — XTex]|-f-nJ'a?~le~dx = — L"e~L-]-nj xf~le~*dx

Gdy L —>o00, to L"e~L dazy, jak wiemy, do zera, albowiem / dazy
do oo szybciej, anizeli jakakolwiek potega Ln A wiec:

00 [ee]

J 'x?exdx — n jXx n-xe~ dx

czyli:
(») L —nl*-1
Przez kolejne stosowanie tego wzoru zwrotnego otrzymujemy:

/,= «(«— 1)/, 2 /,= nn—1)(n—2)

(00]

i t d, az dojdziemy ostatecznie do 70= J'e~xdx = 1 A wiec:

1H— n{n — 1)(n — 2)... 2* 1/, = n!

Uwaga. Udowodniono, ze ta catka istnieje takze dla niecatkowitych *, gdy
tylko » — 1 Dla ujemnych n ta catka jest W dwojaki sposob niewtasciwa: po
pierwsze funkcja podcatkowa jegt nieciggta w poczatkowym punkcie przedziatu catko-
wania a mianowicie dazy do gdy x dazy &zera z prawej strony; po drugie
przedziat catkowania jest niewtasciwy. Przy zmiennem n jest ta catka fur)k 3 zmien-
nej », nazywamy ja catka Eulera drugiego rodzaju lub funkCJa i (czytaj
gama z n-f- 1). Mozemy jg uwaza¢ za uogélnienie funkcji n!, okreslonej tylko dla
naturalnych n. szczeg6lnie wazng w zastosowaniach jest warto$¢ tej funkcji dla
n=-;> t.j.: (())

P(i) =

Wyznaczeniem tej calki zajmiemy sie w nastepnym przyktadzie»
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9) Obliczy¢ wartos¢ catki niewtasciwej:

@
Je xfdx
. . _— . du
Uwaga. Uzywajac podstawienia x* = u, otrzymujemy 2xdx=du, dx= Zﬁ_Y
u

a calka zamienia sie na ¢*/'(3). Ta catka, zwana catkg Laplace'a, ma wielkie zna-
czenie w rachunku prawdopodobienistwa i w teorji bledéw.

Nie potrafimy obliczy¢ catki nieoznaczonej Je ~ X dx elemeDtarnemi
metodami. Pomimoto znajdziemy warto$¢ powyzszej catki 0znaczonej,

opierajac sie na odpowiednio dobranych nieréwnosciach. 1 tak wiemy
(por. topa | 8 149, przykiad 2), ze zawsze jest:

1+ u e"

a wiec:

i—z<;e*ii-fz e
czyli:

—< - dla . j> — 1
Stad:

l-«S r'$sfl+ 2)-.
Wezmy:

z—y*%, tO 2> 0> — 1
i mamy:

1— y*» N1+ yT
A wigc dla naturalnych n zachodza nieréwnosci:
L —y*InS e™ AN (1 + y»)-’
¢icatkujemy te wyrazenia od O do 1 i od O do oo, to (na podst. § 217

wniosku 1) otrzymamy:
1 1 00 e

I (1~ yWdyrJe=*dy<j e dysf (\+y*r
0 0 0 0

Skrajne catki wyznacza sie nietrudno przy pomocy odpowiednich
wzorow redukcyjnych:

1 1
a) I,—/,1 —y%¥dy= y( —ig"l +Nyli} —y3"~'dy =
6

0 0
1 |
= y(l - y'f |+ 27/ No - 1)(| - y«r' + 0 - y*l’-‘]dy
0 0
/.= - 2nln+ 2n (2» + l)/,,: 2n
/ — _*w_/
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Poniewai A - j dy=y\ = 1 przeto /,::§,/,: $

0 0
D7=+¢-4a5 -
' ’ — + 2 ? 7 -
J(+ yY (@m 2)L+y*)— ~ n—2 =
2n-3T
2n~Z">"n'  *str 28, wzoér 27)
Poniewaz:
;s 0

fry* = 1" Przet0 A = 4e4«, A= | i 451

Otrzymujemy wiec:

—i:6" 2" < /Vv*rdv< |e3<5...(2n 3)
3.5-7 ..(2»-j-1)< I y= 2-4-6 ... (2n — 2)'"
Przez podstawienie ny2= a2 czyli y= —, rfy= ~ przeksztatcamy
\n \n
®
wewnetrzng catke na ~ I e~*dx, a wiec:
246 ... 2W|/» n - 1*3e5...(2w - 3)~"
< [/ e *dx = (—V(iT"— )
3-5-7 ... (2« 4- 1) —/e 2-4-6...(2» - 2

Przy pomocy wzoru Wallisa (str. 93, wzor 66) stwierdza sie bez trud-
nosci, ze obydwa skrajne ciggi w powyzszych nieréwnosciach daza do
wspolnej wartosci iJA*.

| tak z wzoru Wal lisa wynika, ze

2-4+6...(2n — 2)\2n
3-57...(2% — 1)

B. en *

a wiec:
2-4-6...(2n— 2)Yn

A, = . )
3e5.7...(2n— 1) 4\n a zatem i An + 4

Z drugiej zas strony:

1-3-5...(2« — 3)4»_ i 1-3-5...(2n — 3)2w — 1) n\2
2-4-6...(2» — 2 2¢ 46 ... (2m— 2)\2n (2w— 1)

Bachanek rézniczkowy i caZkowy. T. 2. 8
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Zatem catka, zawarta state miedzy wyrazami tych dwoch ciggéw, ma

warto$¢ ~\n. OtrzymaliSmy zatem ostatecznie:

(76) J e Ndx — i \n

(0]

§ 22&. catkowanie graflczne

Jezeli funkcja, ktérg mamy catkowaé, jest podana graficznie, zapo-
mocg wykresu, jak to czesto bywa w matematyce stosowanej, to mozemy
postepowac¢ dwojakg droga. Mozna mianowicie, uzywajgc rozmaitych me-
tod interpolacji (por. tom |, rozdziat XVI), znalez¢ wzér matematyczny,
przedstawiajagcy wartos¢ tej funkcji z dostatecznem przyblizeniem i do-
piero wtedy wykonywaé catkowanie przy pomocy odpowiednich wzoréw
rachunku catkowego. Prostszem bedzie jednak bezposrednie zastosowanie
odpowiednio dobranej graficznej metody catkowania; metode taka otrzy-
mujemy przez odwrécenie metody graficznego rézniczkowania, poznanej
w rachunku rézniczkowym .(por. tom |, § 66) Chcemy znalezé:

majac podany obraz L funkcji y= f(x) (fig. 17a). Ta catka Y jest

funkcja gornej granicy X, a mianowicie taka funkcja, ktdérej pochodna
jest réowna funkcji podcatkowej:

(w) y

Jest to wiec jedna z funkcyj pierwotnych funkcji f(x), a mianowicie ta
funkcja pierwotna, ktéra dla x — a przybiera wartos¢ Y — 0, albowiem
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a
/ f{x) dx — O. Szukana linja przechodzi zatem przez punkt B(a, 0). Obraz

graficzny kazdej funkcji pierwotnej nazywamy hnjg catkowg danej linji
dy
o réwnaniu y = f(x). Pochodna — przedstawia spadek stycznej do linji

catkowej. Oznaczmy literg j1 kat stycznej do tej linji catkowej. Z wzoru (w)
wynika, ze:

\%

t

Zwigzek ten prowadzi do nastepujacej konstrukcji linji* catkowej. Linja
ta przechodzi przez punkt B(a, 0). Od tego punktu odmierzamy na lewo
odcinek AB = 1 i tgczymy punkt P linji y= f(x) z punktem A. Po-
niewaz y :1==1tg/?, przeto bok AP tréjkata APB ma kierunek stycznej
do linji catkowej. Przez punkt. B wykreslamy prostg tjjAP\ ta prosta
jest styczng do linji catkowej w punkcie B. Przy pomocy takich stycz-
nych, wykreslonych dla rozmaitych odcietych, buduje sie linje catkowa
jako obwiednig tych stycznych. | tak obierzmy jaki$ drugi punkt P’

na danej linji L, nalezacy do odcietej x' — OB'. Zastgpmy tuk PP’
linji L cieciwg PP’ Jezeli cigciwa ta ma réwnanie y — rXx -f- w, to od-
powiadajaca jej linja catkowa ma réwnanie Y — x* -f- nx -f- p, jest za-
tem parabolg o osi réwnolegtej do osi rzednych Znamy jeden punkt tej
paraboli, a mianowicie B, chodzi za$ o znalezienie drugiego punktu P[,
nalezgcego do odcietej OB'. Styczna w tym nieznanym punkcie ma byc¢
rownolegta do prostej A'P'. ktorg otrzymujemy podobna konstrukcja, jak
prosta AP. Ot6z wiadomo z wihasnosci paraboli, ze styczne w punktach
o odcietych x i X' przecinajg sie w punkcie, ktérego odcieta jest $Srednig
arytmetyczng: ¢(ee -j- X'). Potowimy zatem odcinek BB' punktem D i wy-
kreSlamy przez ten punkt prostopadia do osi odcietych. Punkt Z)', w kté-
rym styczna t przecina te prostopadig, lezy zatem takze na stycznej t\
nalezacej do nieznanego punktu P[. Wykreslamy przez ten punkt D'
prostg t' JA'P' i otrzymujemy w ten spos6b drugi punkt linji catkowej»
a mianowicie punkt P[, nalezacy do odcietej x'=0O B'. Postepujac
w ten sposéb dalej, dla dalszych punktéw linji L, otrzymujemy szereg
punktéw linji catkowej; tgczymy je nastepnie (przy pomocy krzywki)
tak, aby otrzymana linja byla styczna kolejno do prostych t,

Chcgc uzyskac¢dobre przyblizenie, nalezy obrac dos¢ gesto punkty

P,P',P".... na linji rézniczkowej L. N
Wielokrotne odcinanie jednostki: AB, A'B\ A"B",... i linij AP,
A'P, A"P",... zaciera zwykle przejrzystos¢ rysunku. Z tego po-

wodu modyfikuje sie zwykle konstrukcje w ten sposéb, ze odcina sie
owg jednostke tylko raz, od poczatku ukiadu O do punktu M o spot-
8*
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rzednych (—1,0) (por. fig. 17b), Nastepnie rzucamy kazdy punkt Py
obrany na linji L, na o$ y-6w do punktu Q i tgczymy M z Q: prosta
MQ jest rownolegta do stycznej t. Wykonujemy zatem calg konstruk-
cje linji catkowej w nastepujacy sposéb. Obieramy na danej linji L

szereg punktéw PyPlyPi ... i rzucamy je na o$ at-6w i y-6w. Potowimy
odcinki BB1, BIBi ... na osi a?-6w i przez te punkty podziatlu wykres$
lamy pomocnicze linje prostopadte do osi o-ow. Rzuty Q, Qx, Q2,...
punktéw P, P15P, ... na o$ y-6w taczymy z punktem M o spétrzednych

(— 1,0). Przez punkt B wykreslamy prostg t\\MQ az do przeciecia sie
z najblizszg (pomocniczg) prostopadlta do osi at-6w. Z tego punktu prze-

ciecia wykreslamy prostg t' JMQX az do przeciecia sie z nastepng po-
mocniczg (kreskowang) prostopadlg i tak samo postepujemy dalej. Otrzy-
mamy w ten sposéb szereg punktéw B, P\, P j... linji catkowej i szereg
stycznych w tych punktach do linji catkowej. Przy pomocy krzywki wy
kreslamy catg linje catkowag |. Gdybysmy rozpoczeli konstrukcje nie od
punktu B, lecz od dowolnego innego punktu tej prostej BP, to otrzyma-
libySmy inng linje catkowa I\ jednakze przystajgcg do I, a mianowicie
przesunietg réwnolegle. W ten sposéb mozna otrzymaé¢ calg gromade
funkcyj pierwotnych, zawartych w catce nieoznaczonej, t. j. obok linji
o rzednych Y, gromade linij o rzednych F-]- C. Gdybysmy za$ zamiast
jednostki MO = 1 uzyli innej jednostki: MO = b, to zamiast linji cat-
kowej o rzednych F otrzymalibysmy linje o rzednych F = )F.

Omoéwiona tu konstrukcja jest przyblizong, albowiem polega osta-
tecznie na tem, ze tuki linji L zastgpiliSmy cieciwami.

Jezeli linja L jest zwrécona wypukitoscig ku gorze, to widocznem jest, ze wsku-
tek takiej aproksymacji otrzymujemy wartosci mniejsze od prawdziwych wartosci catki,
nie wyczerpujemy bowiem pola, zamknietego ta linja, rzednemi i osig odcietych.

Lepsze przyblizenie mozna uzyska¢, zastepujac tuki PP,, P-P,, =-mnie cieciwami,
lecz odcinkami prostych réwnolegtych do osi iC-6w; odcinki te trzeba dobiera¢ na oko w ta-
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kich wysokoSciach, aby przyczynia¢ zjednej strony takiego odcinka tyle pola, ile opusz-
czono z drugiej strony. Szczegdétowe opracowanie tej ulepszonej metody znajdzie czy-
telnik w podreczniku C. Runge’go p. t Graphische Methoden. (Lipsk 1915. roz-
dziat 111, str 96-112)

Opierajac sie na tej konstrukcji linij catkowych, zbudowano przy-
rzad, zwany intcgrafem, ktérym sie rysuje w sposéb mechaniczny linje
catkowg | do danej linji rézniczkowej L: jezeli jeden kolec mechanizmu,
ztozonego z odpowiednich pretow metalowych, wézkéw i kétek, posuwamy
po linji L, to drugi kolec, opatrzony otéwkiem Ilub grafjonem, rysuje od-
powiednig linje catkowag |. Opis tego przyrzadu, wynalezionego przez
Abakanowicza, bylego profesora Politechniki lwowskiej, znalez¢ mozna
np. w podreczniku A. G alle'go p, t Mathematische Instruments (Lipsk
1912, rozdziat IX, str. 154 i nast.) lub w dzietach zbiorowych Abaka-
nowicza, Por. tez St. Gotab, Wskazéwki do ¢wiczen z integrafem
Abakanowicza, Krakéw 1933.

8§ 226. Catkowanie przyblizone liczbowe (numeryczne).

Jezeli chodzi o obliczenie catki oznaczonej z takiej funkcji, dla kto-
rej nie potrafimy obliczy¢ catki nieoznaczonej, to bardzo czesto, zwtaszcza
w zastosowaniach praktycznych, poprzestajemy na obliczeniu przyblizonej
wartosci tej catki. Podobnie postepujemy, gdy funkcja podcatkowa jest
dana tylko tabelarycznie.

A. Metoda prostokgtow
Najprostszg droga, prowadzaca do tego celu, jest uzycie wyrazow
ciagéw, zdazajgcych do wartosci badanej catki oznaczonej, omoéwionyek
w 8222. Biorgc odpowiednio daleki
wyraz takiego ciggu, mozemy otrzy-
mac kazdg zgdry zadang doktadnosc.
Kazdy wyraz ciggu jest sumag pol
prostokatéw, majacych za podstawy
odcinki osi odcietych a za wysoko-
Sci rzedne w dowolnych punktach
tych odcinkéw. Najprosciej przed-
stawi sie rachunek, gdy przedziat

O . podzielimy na réwne czesci o diugosci: h— — iw kazdym

przedziale wezmiemy poczatkowg wartos¢ funkcji, jak na fig. 18
Przyblizong wartoscig catki
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jest zatem suma pdél tych prostokatow, t j.:

= h.m+ h' eoeo | hoy"
zyli:
n— h{yi + Vt+ eee+ Vn)
Uzywajgc »naku w jako znaku przyblizonej réwnosci, mozemy zatem
napisac:

(77)

Przyblizong metode obliczania catki oznaczonej przy pomocy tego wzoru
nazywamy metodg prostokatow. Widocznem jest zaréwno z geometrycz-
nego przedstawienia jak i z wlasnosci ciaggu a,, ze przez powiekszanie
liczby n mozemy uzyska¢ dowolny stopienn aproksymaciji.

Przyktady.

1) Zastosujmy powyzsza metode najpierw do znanej caiki:

/= p I* = log,® = log,2= 0-6931471806

Te samag catke obliczymy teraz metoda prostokgtéw, a nastepnie porow-
namy z sobg wyniki.
Podzielmy przedziat <jl,2> na 10 réwny.ch czesci o diugosciach
2 i

h - 10 = 01 Rzednemi w punktach x = 1, 11, 12, ... 19 sg
11 Wedtug wzoru (77) otrzymujemy zatem:
Vo111 12 19 '

I*0LfL  + 2+ n + <+ rs+ Fo

= 01 1

090909 O ..
0-83333 3 ..
0-76923 O ..
071428 5 ..
0-66666 6 ..
0625

058823 5 ...
055555 5 ...
0-52631 5 ...

. 7-18771 — N-718771

Btad wynosi: 0-718771 — 0693147 ... w 0-025624.



119

2) Znalez¢ wartos¢ przyblizong catki:
20
; ax
N
ktorej nie potrafimy obliczy¢ elementarnemi metodami catkowania. Po-
dzielmy przedziat catkowania na 10 rownych czesci o dhtugosciach
, 20— 10

10 = 1 Stosujac przyblizony wzér (77), otrzymujemy;

: log, 10 * log, 11 Y log, 12+ - + log, 19/
W tablicy logarytmoéw naturalnych znajdujemy wystepujgce tu logarytmy,
a dzielenia wykonywamy np. przy pomocy maszyny do rachowania i otrzy-
mujemy:
/ « 0-4342 9448

04170 3239

04024 2960

0-3898 7125

03789 2318

0-3692 6937

0-3606 7376

0-3529 5613

0-3459 7626

0-3396 2327

I x 37910

Przy uzywaniu przyblizonej metody obliczania catki oznaczonej waznag
jest rzecza oszacowanie btedu, ktory sie popetnia, biorgc zamiast praw-
dziwej wartosci catki wartos¢ przyblizona. Jezeli funkcja podcatkowa
posiada pochodng cigglta w przedziale <Ca, to nietrudno jest otrzy-
ma¢ dogodny wzdér na oszacowanie tego bledu. | tak wezmy pod
uwage jeden przedziat czesciowy o szerokosci A, np. <c, C-)- A>.
Obliczmy btad:

c+A

m r(h)y = Jf(x) dx — hf(c) == F(c -j- /) — F{c)— hf(c)
Widocznem jest, ze r(0) = 0. Pochodne obu stron wzoru (1) wzgledem A
sg réwne, a wiee:

r\h) - f(c + h)- f{c)
Do prawej strony stosujemy twierdzenie o wartosci Sredniej (Lagran-

ge'a) i otrzymujemy:
rN\h) = hf(c + f>h) 0<&<1
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Niechaj M' oznacza najwieksza wartosé¢ funkcji \P\x)\ w przedziale
to — hM'S r'(h)sS -f-hM* Scalkujmy te nieré6wno$¢ od O do h, to
otrzymamy;

a to znaczy, ze:
Taki wiec btad wynika z zastgpienia catlki w jednym przedziale czescio-

wym polem prostokata: h-f{c). Poniewaz za$§ mamy n takich przedzia-
téw, przeto na catkowity btad Rn otrzymujemy oszacowanie:

Ale:
h— b— a
a wiec:
(78) (6 — a)*M’
2n

Widzimy stad, ze btad dazy do zera, gdy n wzrasta nieograniczenie.
Tak np. w przyktadzie 1) otrzymujemy

I\ iS M
1> & 910 20
Poniewaz f(x) — « /'(*) = — o przeto M' = max |/ (*)] — -i*z:zl

Ostatecznie wiec:
Ifl.ol ~ ~ = 005

Btad faktyczny wynosi tylko 00256...
Pozostawiamy czytelnikowi do stwierdzenia, ze bezwzgledna war-

tos¢ bledu w drugim przyktadzie nie przekracza liczby: 21~T jg=
= ¢log?0e= 00943...

B. Metoda trapezéw.

Lepsza na og6t aproksymacje uzyskujemy, biorgc w kazdym pasku
na fig. 18 za wysokos¢ prostokata Srednig arytmetycznag obu rzednych,
ograniczajacych ten pasek, czyli zastepujgc kazdy pierwotny prostokat
trapezem, ktérego dwa wierzchotki lezg na danej linji o réwnania y= f(x).
Suma tych trapezéw daje zwykle lepszg aproksymacje anizeli suma pier-
wotnych prostokgtow (majgcych za wysokosci poczgtkowe rzedne). W ten
spos6b otrzymujemy zamiast ciggu an inny ciag:

, Vit y> yet o | ot Y-+ yeH)
o= 2 T 2 1 2 1 ’ 2

b= ARy, ty» ty. + - + y.+ |y»)
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Ten nowy widr na przyblizong warto$¢ catki nazywamy wzorem trape-
zowym. Zatem:
(79) 4-ys+ Y+ emwd-y. + ii/n+t)
Prawa strona tego wzoru rozni sie od wzoru (77) tylko tern, ze w nawia-
sie ubylo ¢y, n przybyto \yrn+x, a wiec:

= M+ i(y.+i —yi)

Rachunki sg tu wiec réwnie proste, jak przy metodzie prostokatéw, a do-

ktadnos¢ jest zwykle znacznie wigksza.
2

X
f,oméwionej w przyktadzie 1) na str. 118,

trzeba doda¢ do wyniku, otrzymanego metoda prostokatéw, t S )

= —  —= — 0025. Otrzymamy W ten sposoéb.
/»0-718771 — 0025 = 0-693771
Wynik ten jest o wiele doktadniejszy," albowiem blad wynosi tylko.
0-693 771 — 0-693147 = 0-000624
Stosujac metode trapezéw do drugiego przykiadu na str. 119, otrzymujemy:
/»3-7910 + ((0-33381 — 0-43429) = 3-7408

W podobny sposéb, jak dla metody prostokatéw, wyprowadza sie dla metody
trapez6w wzér na oszacowanie btedu, ktéry popetlniamy, biorac zamiast prawdziwej
wartosci catki warto$¢ przyblizong, otrzymang z wzoru (79). Trzeba mianowicie dwu-
krotnie zrézniczkowa¢ obie strony wzoru:

<

m +f(c+h)
rny -d f(x) dx —1

Otrzyma sie:

r(h) = - 2 f'\c+ h)

W spos6b podobny, jak przy metodzie prostokgtéw, otrzymuj© sie na btad
w jednym przedziale czesciowym wz0r:

\r(h)\~"M"

a dla n calek, t. j. dla catego przedzialu <a,b>, wzo6r:

gdzie M" oznacza najwigkszg wartos¢ funkcji \f'(X)\ w przedziale <o0,6>. Poniewaz
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* = --=--, przeto otrzymujemy ostatecznie:

C. Metoch tukow parabolicznych. Wedr Sinpsona. v

Wzér trapezowy mozemy interpretowa¢ geometrycznie w ten spo-
s6b, ze zastepujemy badana linje o réwnaniu y — f(x) w kazdym cze-
sciowym przedziale <®%*,a;*+1> o0 szerokosci A linja prostg, przechodzaca
przez dwa punkty (ar*, y*), (a;*”, y*+1) danej linji. Jasnem jest, ze lepsza
aproksymacje ozyskamy zwykle dla linji krzywej, zastepujac jg w kaz-
dym przedziale -<ixkja*+2l> o szerokosci 2h Jukiem paraboli drugiego
stopnia, przechodzacej przez trzy punkty (XKyR\ (@*+,,y*+l), (@+2,y*+2)
i obliczajgc pola powierzchni, ograniczonych temi Jukami parabolicznemi
i odpowiedniemi rzednemi. Poniewaz punkty na osi ar-6w obieramy
w rownych od siebie odstepach, przeto mozemy uzy¢ do obliczenia tych
pol wzoru (65) z przyktadu 6 na str. 86, a mianowicie:

(a) P= Xt+7Q Xi(y*+ 4y*i + y*+a)
Dzielimy przedziat <"a, 6>- na 2« roéwnych czesci o dlugosciach

h = i obliczamy rzedne: Y,,YQy, ... Y*_,,Y*, YAH® Powierzchnia

rozpadnie sie na n par przylegajacych do siebie paskéw. W kazdej parze
paskoéw zastepujemy tuk danej krzywej tukiem paraboli drugiego stopnia,
przechodzacej przez trzy punkty danej krzywej, nalezace do trzech sa-
siednich punktéw podzialu odcinka <a, Pole to obliczamy wedtug
wzoru (a). Poniewaz xt+i — xk= 2h, przeto otrzymamy w ten spos6b
nastepujgcy wzor na obliczenie przyblizonej wartosci catki:

1= t{x)dxxs(yi TAV2ANGt y + Ay, By Ry + L

4" + 4 yif,~\- yi*+\)
czyli:

(BL) i~ |(yi+ yzntl 4-2(y» A-y»4---e4~y*>-i)4-4(yt 4~ yr4* - 4-yh)

Ten wzor przyblizony, wynikajacy z uzycia paskoéw parabolicznych, na-
zywamy wzorem Simpsona.

Rozumowaniem podobném, jak dla metody prostokatéw i trapezéw, oblicza sie
btad, wynikajacy z =zastgpienia catki w jednej parze takicb paskéw wartoscig P
cth

7 wzoru (@), tj. rfh)= 1 f(x) dx—-j-(/(e —*) + 4f(e) +
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Przez trzykrotne rézniczkowanie otrzymuje sigj

() = - £ (/m"(«4-A)- f'\c - h\) = _ 4*y<uxi)
t Stan:
—PW<ai r"\h)4

Nastepnie przez trzykrotne catkowanie otrzymujemy:

4A5

. . b—a

Stad otrzymujemy dla « par paskéw, kladac h = 5
L nd

.b- Ot ..

82 i ( asi

(82) lifa ; "oggps M

Tutaj oznacza najwiekszg warto$¢ funkcji Jf(iHK\\ w przedziale < a, 6>

Przykiady.

1) Zastosujmy wzér Simpsotra do przykiadu 1 na str. 118, biorgc
2n = 10. Wtedy:

IFT 1+ \ + 2(A+ R+ FetFs)+ 4T+ F3+ FBAT7+¢))
= T f15+ '2’ 2-728173 + 4’ 3'459546) = N «20-794490

czyli 0 69314j97.
2

dx
;] — 7 0 6931471...,

widzimy, ze btad wystepuje tu dopiero na 6-em miejscu po kropce dzie-
sietnej. Przez zastosowanie wzoru (82) otrzymujemy:

| S m24* W » “ 0000013 -

Doktadnos¢ taka jest zwykle dla celéw praktycznych zupetnie wystar-
ezajgca.

2) Niechaj czytelnik obliczy na podstawie liczb, podanych w przy-
ktadzie 2 na str. 119 i liczby I° ’\20 = 0-33380820, nastepujaca przybli-
g((

ie 2 na str. 1li

zong wartos¢ catki:

/ I-—* « 37397
0g,
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Obliczy¢ te wartos¢ w przyblizeniu przy pomocy wzoru Simp-
dzielgc przedziat catkowania na 16 rownych czesci

I+ *8(30 4" W + 2(y3+ 23+ - + Jul + 4(y4 yA-f )
Dla:
x —+ 6L 7N-  >I8)eecdt-it
otrzymujemy.
Y—i1$> >stfi (2
Zatem:
yt — i
Y, = 099610 89494
y} = 098461 53846
y4 = 0-96603 77358
ys = 0-94117 64706
y6 = 0-91103 20285
y, = 0-87671 23288
£g -me 0-83934 42623
y9 =0-8
,yI0 = 0 75964 39169
yn = 0-71910 11236
y, = 067904 50928
y3= 0-64
, = 060235 29412
yI5 = 056637 16814 .
yiti = 0-53222 45322
y,: = 05
y+ yu= 1&
2y, + y. -f y7-j- ... + y,5 = 2-5-5279769890 = 11 0659539780
4(y, + y4+ y,;+ ... +-ylB = 46 2857894601 = 251431578404
/**>5 -37 6991118184
Stad:

47 * 37:6991118184 12 = 3 14159 265,15

Poniewaz zas:
41= Ti= 3 14159265,3589

przeto widzimy, ze blagd wystgpit tu dopiero na 9-tem miejscu po kropce
dziesietnej.

Wzér trapezowy i wzér Sinip bo na mozna dalej uogdélniaé w rozmaite sposoby
| tak wz6r trapezowy polega na zastgpieniu funkcji f(x) funkcjag y= a0 atx O- j-
badanej ligji linja prosta) w kazdym przedziale czeSciowym o szerokosci A; wzér za$
Simpsona polegat na zastgpieniu funkcji f(x) funkcja Y= «, (- -f- a%* (t j-
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badanej linji parabolg drugiego stopnia! w przedziatach o szerokosci 2h. Otéz wy-
prowadzono wzory, polegajgce na zastgpieniu f(x) funkcjg: y= 00-j-o0,a:-j-atx*-\-atx*
w kazdym przedziale czeSciowym o- szerokosci 3h i ogélnie funkcjg n-tego stopnia
w przedziatach o szerokosci nh. Wszystkie te wzory, ktérych specjalnemi przypadkami
sg wzory: trapezowy i Simp son a, nazywamy wzorami Newtona-Co tes'a

Dalsze udoskonalenie przyblizonych metod catkowania uzyskano, obierajgc na
osi tr-6w odBtepy nieréwne w odpowiedni spos6b. Na tej mysli przewodniej' opieraja
sie przyblizone metody catkowania Gaussa i Czebyszewa. Szczegétowe omoéwienie
tych wszystkich metod wraz z licznemi przyktadami znajdzie czytelnik w nastepuja-
cych podrecznikach: C. Rnnge und H. Kénig, Numerisches Reehnen (Berlin 1924,
str. 238—285), E. Whittaker und G- Robinson, The Calculus of Observations
(London 1926, str. 132, 163) i G- Kowalewski. Integration und genaherte Quadra-
lur (Leipzig 1932).

Cl



ROZDZIAL XIX

Zastosowania catek oznaczonych do geometrji i do
mechaniki.

§ 227. Pola wycinkoéw.

W poprzednim rozdziale omoéwiliSmy zastosowanie catek oznaczonych
do obliczania poél figur, ograniczonycli lukiem dowolnej linji o réwnaniu
y = f(x), rzednemi w koncowych punktach takiego tuku i osig odcie-
tych. Opierajagc sie na wynikach, uzyskanych w tych rozwazaniach,
a w szczegbélnosci na wzorach (46) z § 212, wyprowadzimy obecnie wzoér
na pole un/nnka, ograniczonego lukiem dowolnej linji i promieniami, tacza-
cemi konce tego tuku z poczatkiem ukitadu. Wezmy najpierw pod uwage

tylko takie luki, w ktorych do jednej odcietej
nalezy tylko jedna wartosci rzednej, a wiec kto-
rych réwnanie da sie ujac jedng (jednoznaczna)
funkcja y — j\X) (por. fig. 19). Oznaczmy
konnce tego tuku literami A i B w takim po-
rzadku, abysmy, przebiegajac pokolei punkty
0,A.li mieli'powierzchnie wycinka po lewej
rece czyli aby obrét, sprowadzajacy prostg
OA do nakrycia z prosta OB, miat kierunek
dodatni, to znaczy taki, jak obrét, sprowa-
dzajacy dodatnig cze$s¢ osi O0X do nakrycia
z dodatnig czescig osi O Y. Z figury tej odczytujemy, ze pole W wycinka
oAB jest rowne polu trojkgta OB B, pomniejszonemu o pole trojkata oA'A
i o pole krzywolinjowego czworokata A‘B'BA. Zatem:

*

@ W =fbf{b) - #af{a)-J ydx

Na tej figurze caty luk 3B lezy wewnatrz pierwszej ¢wiartki. Nietrudno
jednak stwierdzi¢, ze ten sam wzOr (a) utrzymuje sie og6lnie, przy do-
wolnych potozeniach punktow A i B, jezeli tylko przy posuwaniu sie p*



luku od A do B mamy po lewej rece pole wycinita. Tak tp. pole wy-
cinka OAB na fig. 20 oblicza sie w nastepujacy sposob:
W= OAB= OAC-f OCB =
= OAA'— AA'CA-BCB'+ OB'B
Pole trojkgta OAA' ma wartosc
— | a-f{a\ poniewaz rzedna f(a) ma tu
warto$¢ ujemna. Pole OB'B = %b «f(b)
a pozostate pola AA'C i BCB' oblicza
sig przy pomocy catek:
i *
—AA'C = Jf(x)dx
Cc

poniewaz funkcja f(x) jest ujemna w przedziale (c, a), a:

c

BCB' = J 'f(x)dx

et T o akHT() okt
et —eefg—)ck

zgodnie z wzorem (a).
Niechaj czytelnik stwierdzi prawdziwos¢ tego wzoru takze dla innycb

czyli: LR

\'

potozen tuku AB, np. gdy *tuk przebiega pierwszg, czwartg i trzecig
¢wiartke ptaszczyzny!

Sprowadzimy wz6r (a) do dogodniejszej, symetrycznej postaci.

I tak widocznem jest, ze-

o n n
bf{b) - af(a)= xf(xA= xy\= ] ixy\ dx
< n a
a wiec:
b
$bf(b) — jjaf(a)= v f {xyY dx
Wobec tego:

» b h
W £3 ' {x t/Ydx —f 91x—\.] (Xdy ydx — 2ydx)i



OtrzymaliSmy w ten sposéb wzor (Leibniza) na pole wycinka.

W ciggu catego rozumowania uwazaliSmy X za zmienng niezalezng
a y za (jednoznaczna) funkcje tej zmiennej. Wobec tego nalezy za dy
podstawi¢ we wzorze (83) warto$¢ y <dx i dopiero wtedy wykonaé cat-
kowanie wedtug zmiennej X w granicach od a do b. Gdyby za$ x byto
jednoznaczng funkcjag zmiennej y, to moznaby wyrazi¢ wszystko zapomoca
zmiennej y, a wiec za dx podBt&wi¢ x'dy i catkowaé¢ weditug zmiennej y
w odpowiednio zmienionych granicach, np od a do B (por. 6g. 19). Jezeli
za$ X i y sa podane jako funkcje zmiennej i, to znaczy w przedstawieniu
jMrametrowem, to wzér (83) ma, po wprowadzeniu nowej zmiennej t zapo-
moca podstawienia x = <p(t), postac:

(84)

Liczby tA i tB sg to wartosci parametru t, odpowiadajgce punktom ¢4 i B.

Bardzo prostag forme przyjmuje wzor na pole wycinka przy uzyciu
spo6trzednych biegunowych. | tak jezeli rownanie linji, ograniczajacej
wycinek, jest podane w formie biegunowej: r = r(<pj, to uzyskamy naste-
pujace przedstawienie parametrowe:

ir= rg>cos < y= r((p)sinp
Stad:
dx = (r‘cos g>— rsinip)dtp, dy= (r sm-j- r cos G dp
a wiec:
xdy—yd®= (rr'sin cos @-j- rtcosl p— rr'sin gpcosgp -j- r*sin*<p)d<p — rfdp

Wzor (83) przyjmuje zatem dla spotrzednych biegunowych postac:

Wzory (84) i (85) sa ogolniejsze od wzoru (83). ZaznaczyliSmy miaoo-
wicie wyraznie, ze wzoOr (83) odnosi sie tylko do takich wycinkéw, kt6-
rych tuk ma z kazda prostg réwnolegta do osi rzednych najwyzej jeden
punkt wspolny.
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Chcac za$ obliczy¢ pole takiego wycinka, jak np. wycinek OAB
na fig. 21, nalezatoby go roztozy¢ na dwie czesci: OAC i OCB, obliczy¢
warto$¢ odcietej ¢ punktu C i stosowa¢ dwukrotnie wzor (83). Raz nale-
zaloby podstawi¢ za y funkcje yx= f1(x), t j.
réwnanie dolnej czesci tuku, a drugi raz y2=/ Jg;)),

t. j. rownanie gornej czesci tuku. W ten sposob
otrzymuje sie na pole takiego wycinka dos¢ za-
wity wzor:

- b

W= i J C\xdy’\ — £_] (xd}A — y2dx)

Natomiast przy praedstawieniu parametrowem
bardzo czesto nie trzeba zmienia¢ funkcyj X(t)
i y(t\ albowiem przy zmianie parametru t od tA do t, moga war-
tosci tych samych funkcyj x() i y{t) przebiega¢ spoétrzedne catego
tuku ACS (np. w elipsie, w kole). Otrzym&my wiec w takim razie:

ic tB tfi

W= \J {xy'—x'y)dt+ | j Axy' — X'y) dt= — x'y)dt

W takich wiec przypadkach — najpospolitszych w praktyce — mozna
uzywaé¢ wzoru (84) bez zadnej zmiany, natomiast wzér (83) musi ulegaé
dos¢ znacznym modyfikacjom. To samo odnosi sie oczywiscie takze do
wzoru (85), ktory jest specjalnym przypadkiem wzoru (84).

Zdarza sig, ze przy zmianie parametru i od do # punkt (*,Yy)
przebiega jakas linje zamknieta. Wtedy wzér (84) lub (85) moze stuzyé
do obliczenia.nietylko wycinka, lecz catego pola, ograniczonego tg linjg
zamknieta, jezeli sie tylko ta linja zamknieta nie przecina sama z soba
(t. j. jezeli nie ma punktéw weztowych). Przy uzywaniu tych wszystkich
wzoréw na pole wycinka trzeba zawsze uwaza¢ na kierunek przebiegania
tuku. Przy zmianie kierunku nalezy pomienia¢ z sobg granice catkowa-
nia lub zmieni¢ znak funkcji podcatkowej: jezeli tego nie uczynimy, to
otrzymamy ujemng wartos¢ pola.

Przykiady.
1) Znalez¢ pole wycinka linji rozwijajgcej kota (por. tom I, § 169,
str. 513) od t— 0 do <= i, (por. fig. 22). Roéwnania tej linji maja

w formie parametrowej postac:

X j= i?(cosi -f- t sint)

y — R(sint — tcost)
Gdybysmy chcieli uzy¢ spétrzednych prostokatnych, to nalezatoby to pole
rozdzieli¢ na dwie czesci: OAC i OCB. przyczem punkt C trzebaby wy-

Rachunek rézniczkowy i catkowy. T. 2. 9
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znaczy¢ zapomoca extremum wzgledem osi y-6w. Pole wycinka jest sumg

tych pél. Przy uzyciu przedstawienia parametrowego ten rozklad nie jest
potrzebny, lecz mozna odrazu zastoso-
waé wzor (84). Poniewaz

X‘—R{— sint— tcost-f- sint)— Rtcost

B k y'= R(cost -}-<sin< —cos()= ft<g1u t
m E m

przeto:
W m C

Xy'— X'y = /?<sinicost
-f- tsin H — Sini COSI -j- | COS®<)=: ft*t*

Zatem: .
W RH*dt=%$R,i3 =
Fig. 22 2) Obliczy¢ pole wycinka spiral-

nej Archimedesa od = 0 do (p= Q.
Réwnanie tej spiralnej ma w formie biegunowej postac¢

r= ap
Przy uzyciu wzoru (85) otrzymujemy
9
W= £ agpdp= jtazqu = i a>A

Gdybysmy obrali <p,~>2n, to niektére czesci pola bytyby przytem po-
liczone dwukrotnie lub wiecej razy.
3) Obliczy¢ pole, zamkniete lemniskatg. Biegunowe réwnanie lem-
niskaty ma postac:
r* = a*cos 2@

Promien r zakres$la ¢wiartke catego pola

Cwiartki obliczymy z wzoru:

A 1
I i

I P= JJr'ldp= \l'a* cos 2 Ppdp

a* sin 2 pl
pP= 2- *

Zatem pole, zamkniete lemniskatg, jest réwne polu kwadratu o boku OA.
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8 228. Planimetr biegunony.

Obmyslono wiele przyrzgadow do wyznaczania wielkosci pola droga
mechaniczna. Przyrzady te nazywamy ‘planimetrami.
Opis i teorje rozmaitych planimetréw znalezé mozna w podreczniku
A. Galle’'go, p.t. Mathematische Instrumente (Lipsk 1912 r., str. 66— 131).
Najbardziej rozpowszechnionym jest planimetr biegunowy Amslera.
Skiada sie on z dwéch pretow AO i AB (fig. 24), ztgczonych w punkcie A
tak, ze moga sie obraca¢ koto tego punktu. Koniec O preta OA jest przy-
twierdzony do ptaszczyzny rysunku a koniec-B
preta AB przesuwamy po obwodzie powierzchni P
ktérej pole chcemy wjziiaczyé. Do preta AB jest
przytwierdzone kétko K, potaczone z mechaniz-
mem zegarowym, ktéry pozwala wyznaczy¢ do-
ktadnie liczbe obrotéw i czeSci obrotow kotka.
Oznaczmy odlegtos¢ punktu A od B literg R.
Okazuje sie, ze wielkos¢ pola P otrzymuje sie
z bardzo prostego wzoru:

(@) P= Rms

przyczem s oznacza droge, zakresSlong przez punkt na obwod/ie koétka K.
Jezeli wiec r oznacza promien tego kotka a n liczbe obrotow (wraz
z ulamkami obrotéw), to s= 2rnn, a zatem:

P= 2rn R en

Staty spoétczynnik 2rn R — C nazywamy stalg planimetru. Wzér na pole
przyjmuje zatem postac:

(b) P= Cen

Statej C nie trzeba wyznacza¢ zapomocg dos¢ zmudnych pomiaréw R i r,
lecz mozna ja otrzymac¢ droga empiryczng. Tak np. rysujemy koto o pro-
mieniu 10 cm i obwodzimy je planimetrem. Jezeli np. mechanizm zega-
rowy wskaze, ze koétko wykonato przytem 32*35 obrotéw, to poniewaz
pole wynosi 314159... cm2 przeto:

314159... = C-32-35

a stad otrzymujemy na stalg C wartos¢ 314159...: 32*35= 9 71...
Doktadna teorja tego przyrzadu jest dos¢ skomplikowana. Podamy tu
tylko pogladowy dowdd wzoru (a). Przy wszystkich ruchach planimetru
porusza sie punkt A (fig. 25) po obwodzie kota o promieniu OA a o $rodku O.
Gdy punkt B obiega obwéd danego pola, to pret AB zakresla jakg$ po-
wierzchnie P'. Oznaczmy literg / te cze$¢ powierzchni P\ ktéra nie nalezy
do P. Te cze$¢ przebiegamy dwukrotnie, przyczem dodajemy ja przy ruchu

preta w jedng strone a odejmujemy przy ruchu w strone przeciwna.
9*
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Wobec tego:

P=P-\f—f=p

Aby wiec otrzymac szukane pole P, badamy cale pole P, uwzgledniajac przy-
tem rozmaite znaki czesci sktadowych. Wezmy pod uwage powierzchnie,

zadnego obrotu.

zakreslong przez pret przy dos$¢ matej
zmianie potozenia, jak np. powierzchnie
A AiBIB na fig. 26. Pret przeszedt
z potozenia AB w potozenie 4i BI.
Zastgpmy ten ruch -preta dwoma ru-
chami: najpierw niechaj sie pret poru-
sza w kierunku prostopadtym do AB
tak daleko, az znajdzie sie na prostej,
na ktorej lezy 4,. Pret zakresli przy-
tem prostokat ABCD, a koétko, umiesz-
czone na nim, obréci sie o kat, odpo-
wiadajgcy diugosci tuku As. Nastepnie
posunmy pret po tej prostej w potoze-
nie A,C', przyczem ko6tko nie wykona
Wkoncu obréémy pret okoto punktu 4, tak, aby zajat

potozenie AtB,. Zakres$la on przytem wycinek kota AIC'BI, a kétko nie

€ »

wykona zadnego obrotu. Powierzchnia, zakreslona przy
tych dwoch ruchach, ma pole:

R «As -j- ~ AP

Podzielmy cate pole P' na takie elementy AAtBX8
i kazdy z nich zastgpmy w podobny spos6b prostokatem
i wycinkiem. Otrzymamy sume:

2 RAs<+

i-i
Gdy rozdrabniamy podziat coraz bardziej, tak ze wszyst-
kie Ast i A/ daza do zera, to granica, do ktérej daza

powyzsze sumy, daje wielko$¢ pola P\ zakres$lonego istotnie przez pret.
Granicg pierwszej sumy jest R es, przyczem s oznacza tuk, zakreslony
przez obrét kotka przy catkowitym obiegu badanego pola. Granicg dru-

giej sumy jest catka:

f.
/ £ Rtdcp — £ R¥<pt — <Pi)

przyczem ¢p, oznacza nachylenie preta do jakiej$ obranej osi na poczatku

ruchu a < na koncu. Poniewaz pret wraca po obiegu catego pola spo*
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wrotem do swego pierwotnego potozenia, przeto gt z=tpl, a wiec ta catka
ma wartos¢ O i zostaje:

P'— P= Rs
zgodnie z wzorem (a).

Scisty dow6d tego wzoru, polegajacy na wzorze (83) na pole wy-
cinkéw, znajdzie czytelnik w podreczniku R. Rothe’'go p. t Hbéhere Ma-
thematik, tom 11 (Lipsk 1929, str. 71 i nast). Takze w podrecznikach
geodezji podaje sie zwykle teorje rozmaitych planimetréw.

§ 229. Dhugo&t laku

. Drugiem nadzwyczaj waznem geometrycznem zastosowaniem pojecia
catki jest definicja i obliczanie dlugosci tukéw dowolnej linji.

Wezmy pod uwage tuk AB linji o réwnaniu y= f{x) (por. fig. 27).
Podzielmy ten tuk punktami Cj¥ C8i...CHtL, na nx dowolnych, nieko-
niecznie réwnych czesci i wpiszmy w ten tuk linje tamana, #gczac ko-
lejne punkty podziatlu A i ClIL, CY) i )... cieciwami lt, 4"\ .. &7
Diugos¢ t, tej linji tamanej jest rowna:

¢, = i+ <>+ eet+<*? =

Tworzymy cigg takich linij famanych, zwiekszajac nieograniczenie liczbe
cieciw, jednakze w taki sposob, aby cigg, utworzony z najwiekszych cie-
ciw kazdego podziatu, dazyt do zéra

(wtedy wszystkie ciggi cieciw, wy-

branych po jednej z kazdego podziatm

dazg do zera). Jezeli wszystkie takie

ciagi £,, £%...Ltp... dlugosci tych

linij tamanych posiadaja wspélng gra-

nice, to te granice nazywamy ditu-

goscig tuku od A do B i oznaczamy

ja zwykle literg s. Do istnienia skon-

czonej granicy nie wystarczy tu, aby Fig. 27.

f(x) byta funkcja ciagta w przedziale

<a, b>, albowiem linja, ktéra jest obrazem tej funkcji, moze posiada¢
tak geste i tak znaczne falowania, ze cigg dtugosci linij tamanych, wpi-
sanych w te linje, dgzy do nieskonczonosci. Okazemy natomiast, ze do-
statecznym warunkiem istnienia (skoriczonej) diugosci tuku jest, aby po-
chodna f'(x) byta funkcja ciagta w przedziale <a,b>.
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Dowdéd. Diugos$¢ kazdej cieciwy, Dp. ¢jz wyrazamy wzorem:
h\— Y3
q»— + = J/I + (M) ‘W

W " = f(tfn+ cap) — f(x”) = 7'(8p).

Ale:

przyczem 1)'* jest jaka$ wartoscig posredniag pomiedzy Xj¥ a ®jf) -f- Aaft'\
Zatem:

J*{» 7
a wiec:
N= kr+7i(In-dejr
Podobnie wyrazamy dtugosci innych cieciw i otrzymujemy na dtugosé
linji tamanej Lt wzor:

£» = + /. (f5iW )

Oznaczmy "1 -\-f"*(x)— <p{X) to:
s

Wedtug zatozenia jest /'(*) funkcja ciagta a wiec i <p{X) jest funkcja
ciggta. Wraz z cieciwami takze i przedziaty Ax, daza do zera. Ciag takich
sum ~iikn ... Lp... posiada zatem granice, a ta granica jest catka ozna-
czona z funkcji tp(x) w granicach od o do i (por. § 222). Zatem:

s= lim Ltp— lim JE<p(EPYAatft= jff> (x) dx

p-+00 p —co

czyli:

(86)

OtrzymaliSmy w ten sposdb wzor na ditugos$¢ tuku.

Jezeli pochodna f'(x) jest nieciagta w skoriczonej liczbie punktéw
przedziatu <a, b>, to dtugo$¢ tuku oblicza sie przy pomocy odpowiedniej
catki uogélnionej lub niewtasciwej, wyrazonej tym samym wzorem (86).

Z wzoru (86) otrzymujemy na ditugos¢ tuku wartos¢ dodatnia, gdy
a <CY a ujemna, gdy o >m 3 a wiec z wzrostem odcietej X wzrasta diu-
goscé tuku.
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Zatrzymajmy w calce, podajacej dtugos¢ tuku, dolng granice a
a zmieniajmy goérnag granice b; zastapmy litere b literg X. to:

a

Diugos¢ tuku jest zatem funkcjg gornej granicy X Pochodna tej
funkcji ma wartos¢:

(86 a)
a stad:
ds*= dx2(1 -(- y'H) = dx*+ (y' dx)1
czyli:
(87, ds* — dxi + rfy*

Ro6zniczke tuku nazywamy czesto elementem tuku\ wzér (87) podaje wiec
kwadrat elementu tuku
Jezeli réwnanie linji jest podane w formie parametrowej:

X=(p(t), y=Xp(t)

to wzér (86) przyjmie postac:

Wciagajac cp'(t) pod pierwiastek, mozemy otrzymaé przed pierwiastkiem
znak-f- lub—, zaleznie od znaku funkcji cp'(t). Jezeli obierzemy stale
ZDak -f-, to wzor na ditugos¢ tuku przyjmie postac:

(88)

Warto$¢ t— tx odpowiada warto$ci x = a a t— tt wartosci x — h
Z tego wzoru otrzymamy na dtugos¢ tuku wartos¢ dodatnig, gdy zato-
zymy, ze tuk wzrasta wraz z wzrastaniem parametru t (a wiec umowa
co do znaku jest przy uzyciu tego wzoru inna, anizeli przy uzyciu
wzoru (86)).

Uzycie spoétrzednych biegunowych sprowadza sie, jak wiadomo, do
specjalnej formy przedstawienia parametrowego, a mianowicie gdy row-
nanie linji jest podane w postaci:

r— r{(p)
to Xx=r {p)cos<p, y— r(<p)sing\ parametrem jest tu. kat
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Poniewaz:
* = r'cosgp— r SiN<, vy singp r cos P
przeto:
I/810p + y'8<p)=
—|/r'scosle)—:z rr' sinjpoosgai+ rasin,(pt+ >-2ain,gp+ 2 r r*sin gpoos(p+ 1, costp=
= V?* f-r*

Wobec tego wzér na ditugos¢ luku przyjmuje dla spoétrzednych bie-

gunowych postac:

(89)

Obliczanie ditugosci luku linji krzywej nazywamy rektytikacia (t.j. Wy-
prostowaniem) tej linji.

Zupetuie podobng drogg dochodzi sie do definicji i wzoru na diu-
gos¢ tuku linji przestrzennej, trOjwymiarowej.

Jezeli réwnania tej linji sg podane w postaci:

y = y{x), zZ = z(X)

to na dlugos¢ tuku otrzymuje sie wzor:

(90)

Jezeli za$ rownania linji sag podane w formie parametrowej:

X = <f{t), y = ip{t), z = x ()

to wzor na diugos¢ tuku przyjmuje postac:

(91)

Uwazajac we wzorze (90) gérna granice calki za zmienng: v — «.
otrzymujemy na diugos¢ tuku funkcje sx). Tworzymy pochodng tej
funkcji wedtug zmiennej x i podnosimy obie strony otrzymanego wzoru
do kwadratu. Po pomnozeniu obu stron przez dx 8 otrzymujemy nastepu-
jacy wzor na kwadrat elementu tuku krzywej przestrzennej:

(92) ds3= dxi+ dy* -f- dz*



Przyktady.
1) Obliczy¢ dtugos¢ tuku paraboli o réwnaniu
y= &
od wierzchotka do dowolnego punktu. Niechaj bedzie a>0.
Poniewaz y'=2ax, przeto wedtug wzoru (86) otrzymujemy:
S—J M+ 402x2dx —2adJ J/ ~ -(-a*dx
0

Catke te oblicza sie wedtug wzoru (35) (na str. 48), kladac * = —
4at
i otrzymuje sie.

e (@K Fi-+ K+ 42°°8(5+ (/5 + » )|
0

= f[/ 1 + 4« + log(* +j/ £+ *m)- = logd/Zz

czyli:

s= N +4a202+ ~log (2ax +("1 + 40*®%*)

Niechaj czytelnik wykaze dla ¢wiczenia, ze tuk linji tancuchowej

o réwnaniu y = ¢ -f- e 0j od wierzchotka do punktu o odcietej ® wy-

raza sie wzorem: s=-"|c“— j.

2) Obliczy¢ dtugosé tuku jednej

arkady cykloidy. Rownania cy-
kloidy maja w formie parametrowej postac:

i
X— a{t — sint)
y = a (1 — cost)
Uzywajgc wzoru (88), otrzymujemy:
S e-. a
A a2(1 — cos iP—f- 2eedrtdidt = aj \
czyli:

= alJ "fMsin2b i/t= 4a ~d o)

Diugos¢ tuku jednej arkady otrzymuje sie, zmieniajac t od O do 2 n.

W tym przedziale ma sin A wartos¢ dodatnia, a wiec J'Sin2€ = sin
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Wobec tego:
i
—Aa lgn2d(,) = 4a(—cos¢) = 8a

Godnem jest uwagi, ze w tym wzorze nie wystepuje liczba n.
3) Obliczy¢ dtugosé luku spiralnej logarytmicznej o réwnaniu:

r = aeff (przy a> 0)

od q¥ do dowolnego (p.

Przy pomocy wzoru (89) otrzymujemy:
ol P
s~ f \a* + a* b* dip = a\\ -f- b*f tf dp

h + 6k(ae*!l—

Oznaczmy promien, nalezacy do kata g® literg rO, to:
a= KMyl — rof

tuk spiralnej logarytmicznej zmienia sie wiec proporcjonalnie do pro-
mienia.

Niechaj czytelnik okaze, ze dtugos¢ luku spiralnej Archimedesa,
0 réwnaniu;

r= dp

od @— O do dowolnego (p, wyraza sie wzorem:

#= | >Km -<p!+ log (<p-fKi + ?>%)

4) Obliczy¢ dtugos¢ tuku linji Ssrubowej. Réwnania jej majg w fol
mie parametrowej postac:

aj=rcosi, #= rsiu, z—d

(por. tom |, str. 378 wzory (107)). Z wzoru (91) otrzymujemy:
s— j \r*sin*t-f-r2cos*t-(-ctkdt = J Yr*-)- cldt — I/ c*(t — i,)
Dtugos¢ linji Srubowej, odpowiadajgca jednemu krokowi Sruby, t j. od

t= 0 do t— 2n, wynosi:

8= \r! -f- c*2n
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Niechaj czytelnik wykaze, ze dtugo$¢ Iuku |ipji o réwnaniach:

liczcona od x = 0, wyraza sie wzorem S-x-\-z. Uzyé wzoru (90)!
Rektyfikacja linij krzywych prowadzi tylko w niewielu wypadkach
do calek, dajacych sie wyrazi¢ zapomoca funkcyj elementarnych. Zwykle
otrzymuje sie na ditugos¢ tuku skomplikowane funkcje przestepne, nie-
elementarne. Tak np. sprébujmy obliczy¢ diugosé tuku elipsy.

Uzyjmy formy parametrowej;

X — asint
y — bcos t

Na podstawie wzoru (88) otrzymujemy:
= J*\a* cos* t -f- b* sin* tdt — — (0* — b*) sini tdt

Oznaczmy literg K mimos$réd liczbowy, t.j. stosunek e:a czyli \a*— bt:a
(wobec czego * < 1), to:

k2sinli di

Catka ta nie da sie wyrazi¢ przy pomocy funkcyj elementarnych.

Oznaczmy:
t

(93) IJ\\ — Arsin*tdi— E(k,})
o
Funkcje te nazywamy catkg eliptyczng drugiego rodzaju. Istnieja
tablice, pozwalajgce obliczy¢ te catke dla rozmaitych wartosci K i t, np.
Jahnke, Funklionentafeln (Lipsk 1933, wyd. 2) lub Htlttte, Des In-
genieurs Taschenbuch (Berlin 1925, wyd. 25, str. 42). Uzywajac togo
oznaczenia, napiszemy wzér na ditugos¢ tuku elipsy w postaci:

s= a(E{k, tt) — E(k, t,))
Uwaga. Catke:
t .

(94) /h-i*8in*| = F(fc' ¥
nazywamy calka eliptyczng pierwszego rodzaju; jest ona takze nieelementama funkcjg

przestepng. Te caltki eliptyczne i funkcje odwrotne wzgledem nich, zwane funkcjami
eliptycznemi, maja bardzo rozlegte zastosowania w rozmaitych dziatach fizyki i tech-
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niki. Do tych catek sprowadza sie zapomoca. odpowiednich podstawier catki eliptyczne,
wspomniane na str. 59. Teorje funkcyj eliptycznych rozwinieto nadzwyczaj szczegoé-
towo, poswiecajac jej wiele prac specjalnych i podrecznikéw. Sposréd licznych pod-
recznikébw wymieniamy tu nastepujgce: L. Lévy, Précis élémentaire de la théorie des
fonctions elliptiques avec tables numériques et applications (Paris, 1898) i H. Burk-
hardt, Elliptische Funktionen (Lipsk, 1906, wyd. 2).

Wartosci catki E(k, t) mozna wyznaczy¢ dla szczegétowych wartosci t, k np.
przyblizonym wzorem Simpsona. Dla dokladniejszych obliczern postugujemy sie
ogélnem rozwinieciem funkcji podcatkowej na szereg. Metode te oméwimy w roz-
dziale, poswieconym teorji szeregéw nieskorczonych.

Obliczanie tuku hiperboli sprowadza sie takze do obliczania catek eliptycznych
pierwszego i drugiego rodzaju. Pozostawiamy czytelnikowi wyprowadzenie wzoru na
dtugos¢ tuku lemniskaty o réwnaniu:

N=2»"cos29P
Otrzymamy:
/ dtp

yi-2 s hPy
o

Po podstawieniu cos 2= cosll uzyskuje sie Stad catke eliptyczng pierw-
szego rodzaju, a mianowicie:

= f -
s aJ Kl-tsin«« |/
0

§ 230. Zastosowania wzorow ra diugosC tuku w georretrji  réz-
niczkongj plaskiey.
Z wzorow na diugos¢ i na element tuku wynika kilka wnioskéw
waznych dla geometrji rézniczkowej.
1) | tak z wzoru (86a) wynika:

d&«= \1+7*= h + tg = I"'80* = fcoTal

(95) dx = |Jcosa |ds

WidzieliSmy, ze wz6r (86) jest prawdziwy" pod wzgledem znaku
wtedy, gdy dlugos¢ tuku wzrasta z wzrostem odcietej. Jezeli w ostatnim
wzorze opuscimy symbol wartosci bezwglednej, piszac wprost:

(96) dx — cos ads

to zmienimy przez to tylko zatozenie, dotyczgce kierunku wzrastania tuku.
tatwo mianowicie okaza¢, iz zakladajac, ze tuk wzrasta w tym Kkie
runku, ktoéry obieramy za dodatni kierunek stycznej, mozemy uzyc¢
wzoru (96) zamiast wzoru (95). Tak up. ua fig. 28a tuk wzrasta w tym
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samym kierunku, co odcieta X, a wiec, gdy dx> 0O, to i ds> 0. Kat a
stycznej z osig X-6vr ma tu wartos¢ z pierwszej ¢wiartki, a wiec cosa >0,
wobec czego iloczyn cos aeds ma znak -f-, zgodny ze znakiem dx. Na

fig. 28b luk wzrasta w Kkierunku

przeciwnym anizeli *, a wiec, gdy

dx >0, to ds< 0. Kat a stycznej

ma tu wartos¢ z trzeciej c¢wiartki,

a wiec cosa < 0. Wobec tego

iloczyn cos ae~ds> 0, zgodnie ze

znakiem dx. Pozostawiamy czytel-

nikowi rozwazenie innych przy-

padkow (gdy kat a nalezy do

drugiej lub czwartej cEwiartki).
Z tych figur jest widoczne, ze element luku ds réwna sie odcinkowi AC
stycznej od punktu stycznosci do punktu, w ktérym przecina styczng rzedna,
nalezagca do odcietej x-\-dx. Istotnie AC — ——(—if—z ds

cosa
Odcinek ten nie jest z reguly réwny prawdziwemu przyrostowi
luku, t j. tukowi AB = ds.
Takze rézniczke dy mozna wyrazi¢ zapomoca elementu luku.

| tak:
dy =y ‘dx = tga edx= tga-cos a mds
szyli:
dy = sinads
Wzory:
dx = cos ads
(97)

dy — sin a ds

bywajg czesto stosowane w rozwazaniach geometrji rézniczkowej. Zamiast
kata a mozna wprowadzi¢ kat /2, jaki styczna tworzy z osig y-6w. Po-
niewaz a— 90° — /2 przeto sina= cos(t. Wprowadzajac te wartos¢
w drugi wzér, otrzymujemy bardziej jednolite wzory:

dx — cos ads

dy — cos Bds
a stad:

(98
Te cosinusy nazywamy cosinusami Kierunkowemi stycznej (por. t. I, sir. 522).

Oosinusy kierunkowe stycznej sg zatem pochodnémi odcietej i rzednej wzgle-
dem luku. Podobne rozwazania i wzory dotyczg krzywych przestrzennych.
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2) tuk linji krzywej jest zawsze wigekszy od cieciwy, tgczacej konce
tego tuku. Zbadajmy, do czego dazy stosunek luku do cieciwy, gdy dtu-
gos¢ cieciwy dazy do zera.

Diugos$é cieciwy, taczacej punkt A(X,y) z punktem B(x -j- A, y-f- Ay\
ma wartos¢ [Ma:2-j- dy2 a diugosc¢ tuku, tgczacego te punkty,, nazwijmy As.
Zatézmy, ze réwnanie linji jest podane w formie y= f{x\ .przyczena
f'(x) jest funkcja ciggta. Chodzi nam o zbadanie granicy:

. As . ds
lim — = lim [ —
c*o C c-*o \Axa-f- Aya

Zamiast ¢ —0 mozemy bra¢ Ax —0, albowiem obydwa te warunki sg
ze soba réwnowazne, poniewaz-y = f(x) jest funkcja ciggta. Niechaj be-
dzie Ax>« O. Otdz:

lim B imr : s'(s) <)
A0 \Axa+ Ay* Ki 4- y\x) *'(*)

DowiedliSmy wiec, ze:

(99) lim — ==
c-*0 C
t j., ze stosunek luku do cieciwy dazy do jednosci, gdy diugos¢ cieciwy
dazy do zera
3) Krzywizne linji w dowolnym jej punkcie okreslilismy (por. t I,
str. 552 i nast.) jako bezwzgledng wartos¢ granicy, do ktérej dazy sto-
sunek kata Aa, zawartego miedzy styczng w tym punkcie a styczng
w punkcie z jego otoczenia, do cieciwy c, laczacej te dwa punkty, gdy
dtugos¢ cieciwy dazy do zera. A wiec: fc= |lim— |, gdzie a jest katem
1->0 ¢ |
stycznej z osig odcietych. Okazemy, ze te definicje mozna zastgpi¢ nowa,
rbwnowazna z nig, a lepiej oddajgca intuicyjne pojmowanie stopnia za-
krzywienia. Bierzemy mianowicie pod uwage stosunek kata Aa do dtu-
gosci luku As, zawartego miedzy temi punktami i badamy granice bez-
wzglednej wartosci tego stosunku, gdy diugosé tuku dazy do zera, t j.:
Aa

- lim
9= 4»*oAS

A a ) .. Aa ¢ L. .
Zamiast - mozemy napisaé — ds Gdy ds— 0, to cieciwa c—>0 i od-

wrdtnie, a wiec:



Poniewaz za$ Iim T = 1 przeto:
e=*Qdi

a wiec g = k Zatem:

. dail
(100, k— lim
c’j->odS |

A wiec krzywizne mozna tez okresla¢ jako bezwzgledng warto$é granicy,
do ktérej dazy stosunek przyrostu kata a do przyrostu luku s

Wzor na krzywizne (znany z tomu 1) mozna otrzymac tatwo z de-
finicji, zawartej we wzorze (100). | tak niechaj roéwnanie linji bedzie po-
dane w formie y = f(x).

Poniewaz tga — Yy'(X), przeto a = arctgy' -)- nn, a zatem:

da= r+y*dx
Wiemy, ze:

ds — \\ -f- y'2dx
a wiec:

da _ y"

ds ~(1 + y™)*
Stad:

ly"\
a+ y*)*
zgodnie z wzorem (194) z tomu | (str. 553).

4) Dhlugos¢ luku ewoluty. Mechaniczna konstrukcja ewolwenty.

Linje H', ktéra jest miejscem geometrycznem $rodkéw krzywizny
danej linji nazywamy, jak wiadomo, ewolutg czyli rozwinietg linji 1,
(por. tom I, § 184, str. 555 i nast.), a sama linje Z nazywamy ewolwentg
czyli rozwijajaca linji Z,.

Niechaj X,y oznaczajg spotrzedne punktn biezgacego danej linji Z,
a E.r ewoluty Z. Réwnania ewoluty majg postac:

7= X—y'i+ y'l'
v

I+ y!

v= y-f yos

Jezeli a oznacza dtugosé¢ Iluku ewoluty, liczong ,od jakiego$ obranego

punktu, to:
da* = -f <fy?
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a wiec:
N\
dxl \dx) “ \dx)

Obliczmy pochodne: J\i t]'. Ot6z:

di i AyAodry )t (A~fyhy t—3yy™
o Tt LYY, Gy ) _y( yhy ., —3y'y
ly"=2y'y" @4y y"_  (i+ty™)y'"-3y'y"*
" u"* «"*
Wobec tego:

(£)Va P’i.«/{”(l +y%) - 3yy T

Zupeinie podobny wzdr otrzymamy na pochodng promienia krzywizny
danej linji It. | tak z wzoru:

A o B YA\ |
y"
otrzymujemy: ¥
fQ\a_ /iE-SIZ(I +y'*)*.2%y'—(l +y 'Di-y™\’
2 ) = " ) -

- (t JiP*>' -8 Mil+ y”
(t Is;iP*>" -8 "I y" ¥

A wiec:
(d&xX — Iy
\dx) \dx)
Stad:
lub
dx dx dx

Chcemy usuna¢ te watpliwos¢ co do znaku. Zatézmy w tym celu, ze
promien wzrasta w caltym badanym przedziale zmiennej X lub maleje
w catym przedziale, a wiec nie ma extremoéw. Obierzmy za dodatni kie-
runek wzrastania tuku ten Kkierunek, w ktérym e wzrasta, to:

do do . ,
(101, T °= e+t
—'4d

Jezeli a, oznacza tuk e”iluty a p, promien krzywizny danej linji, nale-
zace do tej samej wartosci xIt a oa,e? dla x2, to:

.tO= &+ C, ot= p,+ C
a stad wynika:

(102 0] 0j - Qj Qj
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Widzimy stad, ze ditugos¢ tuku, zawartego miedzy dwoma punktami ewo-

luty jakiejs$ linji mozna wyznaczy¢ bez catkowania, obliczajgc réznice od-

powiednich promieni krzywizny tej linji Z,. Wzdér (102) mozna wyrazi¢

w nastepujacy sposob: -przyrost diugosci tuku ewoluiy réwna sie przyrostowi

promienia krzywizny pierwotnej linji, wzietemu z odpowiednim znakiem.
Na tym zwigzku tuku ewoluty It z promieniem krzywizny linji

polega mechaniczna (nitkowa) konstrukcja

ewolwenty /, z danej ewoluty It. Niechaj a”B

oznacza dtugos¢ tuku ewoluty g od i do B

(fig. 29), ga, promien krzywizny ewolwenty Z,

nalezacy do punktu A', dla ktérego A jest

Srodkiem krzywizny, a podobnie eB dla pun-

ktow B' i B. Wiadomo (por. tom I, str. 555),

ze normalna ewolwenty Z,, na ktorej lezy Fig 2.

promienn krzywizny qa, = AA\ styka sie

z ewoluta w punkcie A (w $rodku krzywizny, nalezacym do A'). Niechaj

punkt P bedzie poczatkiem liczenia tuku ewoluty. Wedtug wzoru (102) jest:

0 AB °PB GpA QI Qa*

Gdyby punkt P lezat po drugiej stronie punktu B, jak np. punkt O, to
nalezatoby zmieni¢ znak prawej strony.

Przytwierdzmy nitke w dowolnym punkcie ewoluty, Dp. w punk-
cie O i nawinmy ja wzdtuz ewoluty do punktu A a pozostata wolng
czes¢ AA' wyprezmy tak, aby byta styczng do ewoluty. Rozwijajmy te
nitke stopniowo, wyprezajac ja zawsze w Kierunku stycznej. Przyrost
odcinka AA' bedzie zawsze réwny przyrostowi ditugosci tuku, czyli przy-
rostowi rozwijanej nitki. Koniec A! zakres$li zatem ewolwente IX. Stad
pochodzg nazwy: ,rozwijajgca“ czyli ewolwenta dla linji a ,rozwi-
nieta“ czyli ,ewoluta” dla linji Z (wtasciwie nalezatoby pomieni¢ te na-
zwy z soba, jednakze powszechnie utarty sie one w literaturze matema-
tycznej w sposéb podany powyzej).

5) Roéwnania eioolwenty.

Znalezienie réwnan ewoluty danej linji wymaga, jak widzieliSmy,
tylko rézniczkowania. Natomiast wyznaczenie réwnan ewolwenty do da-
nej ewoluty wymaga juz rachunku catkowego. Niechaj:

V= f(£)
przedstawia rownanie danej linji, ktérg uwazamy za ewolute szukanej
linji y— (p(X). Niechaj a, (fig. 30) oznacza kat stycznej do ewoluty w do-
wolnym jej punkcie B z osig odcietych. Poniewaz BB'= e, przeto:
X — £= gcos a,

V—V= Q

Haetaonok rézniczkowi i catkowy. T. i. 10



146

Z wzoru (101) wynika, ze p— a — ¢, a wiec

x= £-f- (@ —c)coso,
y= V+ (° —0Qsdna,

Ale tg a, rj' a zatem:
poniewaz a, jest katem rozwartym. Zatem:

(104)
Fig. 30.

Sa to réwnania ewolwenty w formie parametrowej, przyezem parametrem
jest 8§, a e statg dowolng Widzimy, ze w tych réwnaniach wystepuje
lok o danej linji 11 = /'£), trzeba zatem wykona¢ catkowanie:

U

Poniewaz w otrzymanych wzorach wystepuje dowolna stata c, przeto
otrzymujemy do jednej danej linji calg gromade jednoparametrowg ewol-
went. Jest to zgodne z tem, ze kazda ortogonalna trajektorja stycznych
do liuji rj— f(£) jest ewolwenta tej linji (por. tom I, str. 555). Wszystkie
linje tej gromady sa, jak tatwo zauwazy¢, linjami rownolegtemi do siebie.
Gdybysmy obrali na stycznej jako dodatni kierunek nie od B ku B\
lecz przeciwnie od B w druga strone, to przy wzrastaniu promienia
krzywizny malatby tuk, zatem nalezatoby podstawi¢ p— — (a c), ale
rownoczesnie kat a, nalezatby do czwartej éwiartki, a wiec we wzorach
na eosa, i sin o, nalezatloby zmieni¢ znaki. Wobec tego znaki we wzo-
rach (104) pozostatyby bez zmiany. Niechaj czytelnik rozwazy w podobny
sposob przypadek, gdy kat a, jest ostry.

Przyktad.

Wyznaczy¢ réwnanie ewolwenty kota (por, tom I, str. 513). Uzyjmy
parametrowej formy réwnania kota, t j.:

e —acost
— asint

Do obliczenia dtugosci tuku nie trzeba uzywaé catki, znany jest bowiem
dla dlugosc> tuku kola wzor:
0= at
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przyczem tuk liczy sie od punktu, dia ktérego i= 0, w kierunku wzra-
stajacych t. Kat a, utworzony przez dodatni kierunek stycznej z osig
odcietych, ma wartos¢ a, = */,n -]-t (por.

fig- 31). Rownania ewolwenty otrzymamy tu
najprosciej z wzoréw (103), a mianowicie:
X = acostA-{at — c)cos a,

y= asint— {at — ¢)sin a.

Poniewaz:

cosa, = cos(]Tr-(-i) = sint
a sina, = sin(Jn+ t)= —cost
przeto:

X — acost-j- (at — e)sint
y=—asint— {at— c)cost

Wybierzmy z tej gromady ewolwent te, dla ktérej ¢ — 0, to znaczy:

X — a(cos/-]-tsint)
(105)

y = a(sint— tcosi)
Przechodzi ona przez punkt D na obwodzie kola, poniewaz dla f= 0
otrzymujemy z wzoréw (105) x = a, Yy — 0, a wiec spotrzedne punktu D.
Inne ewolwenty sg krzywemi réttmoiegtemi do 4, (definicje krzywych
rownolegltych podano w tomie I, str. 526 i 584).

8§ 231. Obliczanie objetosci przy pomocy catki pojedynczej.

Okazemy, ze, jezeli znamy pola wszystkich przekrojow jakiej$ bryty,
rownolegte do jednej statej ptaszczyzny, to objeto$¢ jej mozemy wyrazic
zapomocg calki. Niechaj tg stalg ptaszczyzng bedzie ptaszczyzna boczna YZ
Na fig. 32 przedstawiono bryte, ktorej objetos¢ chcemy obliczyé, w rzucie
na ptaszczyzne pionowg ZX. Nazwijmy g>(x) pole przekroju, lezacego
w odlegtosci x od stalej ptaszczyzny YZ. Pole to jest oczywiscie jakas
funkcjg zmiennej x. Zaktadamy, ze znamy wartos¢ tej funkcji dla kaz-
dego X. Podzielmy bryte zapomocg systemu ptaszczyzn réwnolegtych do
YZ na warstwy i kazda taka warstwe zastgpmy walcem o wysokosci,
rownej szerokosci tej warstwy a o podstawie réownej temu przekrojowi
tej warstwy, ktory ma péle najmniejsze: mt. Objetos¢ walca o podsta-
wie m, a wysokosci AX, jest réwna miAXi. Otrzymamy system walcow
o tgcznej objetosci:

(@) mlAxt + w, AxX™... + m, AX,,
10~



148

przyczem m, oznacza nhajmniejsza warto$¢ funkcji cp(x) w przedziale da?.

Wykonujgc podzial na warstwy w rozmaite Bposoby, otrzymujemy roz-

maite sumy (s). Kres gorny tych sum nazywamy objetoscia danej bryty.
Ten kres gérny jest catkg oznaczong funk-
cji cp(x), a zatem objetos¢ wyraza sie
wzorem:

(106)

przyczem (p(X) oznacza pole przekroju pro-
stopadtego do osi & w zaleznosci od od-
legtosci tego przekroju od statej ptaszczyzny
(bocznej).

W specjalnym przypadku, gdy bryta jest obrotowa, t. j. powstaje
przez obrét linji (potudnikowej) o réwnaniu y =f[x) w przedziale <a, 6>
okoto osi &, to kazdy jej przekroj plaszczyzna prostopadlg do osi X jest
kotem o promieniu y. Pole tego przekroju ma zatem warto$¢ g>(X) —

== y*n = f*(x)n, a wiec objetos¢ takiej bryly obrotowej wyrazamy
wzorem:
4 6
(107)
a a

Z wzoru (106) wynika nastepujace twierdzenie C avalieri’ego: jezeli
przekroje dwoch bryt zapomocg ptaszczyzn réwnolegtych do jednej statej
ptaszczyzny maja parami réwne pola, to objetosci tych bryt sa réwne.

Wtedy bowiem g>(x) jest ta sama funkcja dla obu bryt, a wiec na

objetos¢ obu bryt otrzymujemy te sama warto$¢ na podstawie wzoru (106).
%

Przykiady.

1) Dla stwierdzenia, czy przy pomocy nowej de6 nicji objetosci
mamy na objetos¢ znanych bryt te same war-
tosci, ktore znamy z matematyki elementarnej,
obliczmy objetos¢ stozka o dowolnej podstawie
(niekoniecznie kotowej), majacej pole 4, ao wy-
sokosci w. Umiesémy ten stozek tak, aby ptasz-
czyzna podstawy byta prostopadta do osi X
a wierzchotek lezat w poczatku uktadu (fig. 33).
Jezeli <p(@?) oznacza pole przekroju w odlegtosci*

od wierzchotka, to wiadomo, ze:

<p(x): D — x* :w*

otrzy
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a wiec:

2

Z wzoru (106) otrzymujemy:

V=fD*dx = m\ DbPwW3_ W
17w 3w' '3 A -

w

zgodnie z wzorem, znanym z geometrji elementarnej.
2) Obliczy¢ objetos¢ elipsoidy tréjosiowej, ktorej powierzchnia m
réwnanie:
X2 Vg z*

2 Bt

Przekro6j ptaszczyzng prostopadta do osi X w odstepie X od ptaszczyzny

Y Z jest elipsg o réwnaniu: 2
y* 2% a
b* +4” c* a*
czyli:
+
620 -S)

Pole tej elipsy jest rowne ABN, gdzie A
i B oznaczajg potoéwki osi tej elipsy. Zatem:

Wobec tego objetos¢ catej elipsoidy jest rowna:
H +a
V—J"ben™l — dx —hen[x — ~ j j = | aben

Niechaj czytelnik obliczy w podobny spos6b objetos¢, ograniczong para-
boloidg eliptyczng (tom |1, str. 43) o réwnaniu:

i ptaszcz)'zna réwnolegta do ptaszczyzny bocznej w odstepie x. (Wynik:
V — nab xt).

3) Bardzo prosty wzor otrzymuje sie na objetos¢ wszystkich bryt,
ktérych pole <p(x) przekroju jest funkcjg catkowita wymierna, nie prze-
kraczajgcg 3-go stopnia. Niechaj Du Dit D3 oznaczajg pola przekrojow
tej bryly w odstepach xIt £3 x3 od ptaszczyzny bocznej, przyczem x%
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jest Sreduig arytmetycznag odcietych a, i a3 t j. a, = £(ar,-f-®3j. Wy-
sokoscig tej bryly, nalezgcg do podstawy Z), lub Da jest w= xt— a
Wedtug zatozenia jest:

<p(X) = ax*-|- bxt-\-cx-\-d = y

przyczem niektére spoétczynniki moga byc
zerami. Objetos¢ takiej bryty wyrazamy

V —J (nan -f- bxi -f- cx -j- d) dx

WidzieliSmy (w § 220, przyktad 6, wzér (65)), ze ta catka ma wartosc:

*1A

g— 1(Vi + 4 <Pj +<Pt)

<

czyli:

(108)

Ten wzor, zwany wzorem Simpson a lub Oughtreda, jeat Scisty dla
wielu bryt graniastych i okragtych. Tak np. dla stozka (por. fig. 33)

D, — 0, D3:D — :x*— 1+, a wiec D2— "D, Ds= D, zatem:

w w
V=e(0 + 4-tDh + D)= D ~

egodme ze znanym wzorem.
Dla elipsoidy: Dx=0, Dt— bcn, z3 =0, zatem:

V= 2°(0+ 4bcn-f 0)= $abcn

zgodnie z wzorem, otrzymanym w przyktadzie 2). Niechaj czytelnik za-
stosuje ten wzor do obliczenia objetosci beczki obrotowej, powstalej przez
obrét luku elipsy o réwnaniu b*xt-f- a2y1= a26* okoto osi odcietych,
. w , W /T . Tr nw 2Si + s2
biorac fuk od a,= — — do xI=-\- 9- (Wynik: v = -g- «-—- g-——»
gdzie s oznacza S$rednice dna beczki a S $rednice przekroju Sredniego).
Sprawdzi¢ wynik przy pomocy wzoru (107)!

Wzoru (108) uzywa sie do przyblizonego obliczania objetosci takze
wtedy, gdy <p{X) nie jest wielomianem stopnia nie przekraczajacego 3.
Przyblizenie takie jest dogodne wtedy, gdy w rozwinieciu funkcji <p%)
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na wzér Maelaurina, reszta, nastepujgca po wyrazie trzeciego stopnia,
moze by¢ w rachunkach pominieta.

4) Obliczy¢ objetos¢ beczki o luku parabolicznym. Powstaje
przez obroét powierzchni, zamknietej lukiem paraboli o réwnaniu:

y= axl b
od x}— — \év bo x2= + \év,osiax i rzed-

nemi w punktach koncowych tego luku
(fig. 36), okoto osi ®-6w.
Dla x — 0 jest y= b= R,
t02
It » y=aTl + ii=r
*(r-R)

a stad:
tol

Stosujgc wzor (107), otrzymujemy:

» w

— n " (@ -j- b)ldx — nJ '(a*xe*-\-2abxi -\~bt)dx

Funkcja podcatkowa jest wielomianem 4-go stopnia, a zatem do oblicze-
nia tej catki nie mozna zastosowa¢ wzoru Simpsona.
Catkowanie prowadzi tu do wyniku:

12a*w' 4 abws f 2 blvw\
\5+32 | 3-8 | 1 )

Podstawiamy wartosci za ai b i otrzymujemy po wykonaniu prostych ra-
chunkow;

V=~ (88! 4/r-)-3rl)= yj(2£2-f Ss+ f )

gdzie S oznacza S$rednice Srodkowego przekroju beczki a s Srednice dna.
Zamiast tego wzoru uzywa sie dla beczek o tuku parabolicznym innego,
prostszego wzoru, jednak tylko przyblizonego. Zastepuje sie mianowicie
objetos¢ tej beczki objetoscia walca o tej samej wysokosci w, przyczem
za promien dna bierze sie Srednig wartos¢ r' promienia, obliczong zapo-
mocg catki (wedtug wzoru (49) na str. 67):

1. C, ., .., llaw , t »' ot r — Rw*
r=-J @+ K)rf«=-~T + |«t‘)]—»j)§-+ 6 A i) P

w

r+ 2R

one



Zatem:

Fdrinw—

Znacznie trudniejszy wzér otrzymuje sie na objeto$¢ beczki o luku koto-
wym, jezeli Srodek tego kota nie lezy na osi beczki, lecz np. w odlegtosci q
pod osig. Wtedy réwnanie tego kota ma posta¢ x%J-(y -)- gA= (g t~i?)*.

Zatem:

w
ul

V— nJ (/@ -I-By — x* — qY dx
-t
przyczem R oznacza promien srodkowego przekroju beczki. Pozostawiamy
czytelnikowi obliczenie tej catki; w wyniku wystgpi funkcja arcus sinus
i drugi pierwiastek z funkcji 2-go stopnia.

Uwaga. Obliczaniem objetosci beczek zajmowano sie wiele ze wzgledéw' prak-
tycznych (ctowych) jeszcze przed wykryciem rachunku catkowego. Szczegoélnie intere-
sujacem dzietem z tego zakresu jest praca Keplera (1571—1630), p. t. Nova ste-
reometria doliorum vinariorum, zawierajgca wiele mysli i metod, pokrewnych z rozwa-
zaniami rachunku catkowego. Rozmaite przepisy, dotyczace przyblizonego obliczania

beczek, znalez6 mozna w ksigzce Claude I'a, p. t. Introduction a la science de l'in-
génieur. T. |, str. 587 (wyd. 8, Paryz 1913).

§ 232. Polo powierzchni oorotone).

Przy pomocy catki mozna obliczy¢ pole powierzchni obrotowej.
Obierzmy o0$ obrotu za o$ odcietych, a rownanie linji obracajgcej sie nie-
chaj ma posta¢ y = f(x) w przedziale b">. Zatézmy, ze w tym prze-

dziale caty tuk AB lezy pojednej stro-
nie osi obrotu, a wiec np. ze f(x) 0.
Gdyby byto inaczej, trzebaby roztozyé¢
tuk na odpowiednie czesci. Za poczatek
tuku na linji y= f{x) uwazajmy do-
wolny punkt T i oznaczmy dtugos¢ tuku
TA literg saa tuku TB literg Catko-

wita dtugos¢ tuku AB ma zatem wartosc:

8= sb &
Podzielmy ten tuk na dowolng ilos¢
czesci (niekoniecznie réwnych), np. na n
czesci i zastapmy kazdy tuk czesciowy cieciwg. Wezmy pod uwage po-
wierzchnie obrotowa, powstalg przez obroét linji tamanej, ztozonej z tych
cieciw c,, G, c#...c«. Sklada sie ona z pobocznie stozkéw Scietych a ewen-
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tualnie takze z pobocznie walcéw. Potrafimy zatem obliczy¢ jej pole Pit
uzywajgc znanego z elementarnej geometrji wzoru 2 p?is na pobocznice
stozka S$cietego lub walca <2 oznacza promien srodkowego przekroju a s
dtugos¢ boku). Pobocznica stozka Scietego lub walca, zakreslonego obro-

tem cieciwy c;, ma zatem pole 2Y ~"-nc,, a cala powierzchnia:

n
(@) pi= *,2*IAJIM e

i-1

Utworzmy caly ciag podziatow tuku AB tak, aby cigg, utworzony z diu-
gosci najwiekszych tukéw skladowych z kazdego podziatu, dazyt do zera.
Otrzymamy w ten sposob ciag Pr... po6l powierzchni obro-
towych, ztozonych ze stozkéw Scietych lub walcow. O ile istnieje granica

tego ciggu {P 1}, niezalezna od tego, jaki cigg podziatbw tuku AB obie-
rzemy (byleby najwieksze tuki skiadowe dazyly do zera), to te granice
nazywamy polem danej powierzchni obrotowe;.

Zamiast ¢, mozemy napisa¢é we wzorze (@) wyrazenie s+ — a,—
— (s/+l — s, — €)), przyczem s, oznacza dtugos$¢ tuku, nalezacego do cie-
ciwy c,. Zatem:

/- /-1

Nazwijmy literg LXx pierwszg czes¢ prawej strony, a Kt drugg. Okazuje
sie, ze ciag, ztozony z Ku Kt, K, ..., dazy do zera.

Dowdd. Niechaj M oznacza najwieksza rzedng y z calego przedziatlu <o, 6>.
Poniewaz jest liczbg dodatnig (bo J */> c,j, przeto:

» n
0<K,K< 2 - d)= 2nM\a -
i-i i
Gdy rozdrabniamy podziat tuku AB tak, ze wszystkie Ast a zatem i G- daza do zera,
n

to sumy”” et dgzg do s na podstawie definicji dhtugosci tuku, a wied cate wyrazenie
/-
'w nawiasie dazy do zera. Ciag Kv 1T3..., odpowiadajacy tym kolejnym podzia-
tom, jest stale zawarty miedzy dwoma ciagami, dazacemi do zera, a wiec dazy takze
do zera.
Wobec tego cigg P”Pt,P ... dazy do tej samej granicy, co ciag

Lj, L, L3..., przyczem:

Z-
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Uwazajmy Yy za .funkcje zmiennej s. Mozemy to czyni¢, poniewaz s jest
funkcja notoniczng i ciagla zmiennej Xa igc ogretrie X eyt jakas
funkcja %zmiennej Sa wobec tego y — R)@z té@: War-
tos¢ Hy/ + y/+i), posredniag miedzy y, a y/H, przyjmuje funkcja ta na
jakiems$ miejscu a)y posredniem miedzy s, a s/+l. A wiec:

Gdy wszystkie ds, daza do zera, to cigg takich sum L , d g z vy
do catki oznaczonej 2?ry(s) ds. Poniewaz do tej samej granicy dazy ciag

a
P,, P2, Ps,..., przeto otrzymujemy nastepujacy wzor na pole P powierz-
chni obrotowej:

(109)

Wprowadzmy zamiast zmiennej S spowrotem zmienng X, to ds=

= \\ -f-y'2(x) dx, a wiec:
(HO)

Wz6r ten mozna z tatwoscig dostosowac¢ takze do parametrowego lub
biegunowego przedstawienia danej linji.

Przykitad.

Obliczy¢ powierzchnie elipsoidy obrotowej splaszczonej, t. j. po-
wstatej przez obrot elipsy okoto osi matej (taka posta¢ ma w przyblize-
niu powierzchnia ziemi).

Biorgc 0$ X Zza g$ obrotu, nalezy przyja¢ row-
nanie elipsy obracajgcej sie w postaci:

** 4 K| =

Stad otrzymujemy nastepujace roéwnanie goérnej
potowki elipsy:

Stad:
ax

Flg 38. o b\b* — xz



Obliczmy pole tej elipsoidy, zawarte miedzy kolami, nalezgeemi do od-
cietych Xj i xt.

Xg

ax*
Pz=2nJ iNe '— b* (02 — Xx* dx
A /5 _
P 2n a /7 | a-x* 27ia / /T «Fo— oy*
P ~N==-r [/ p
i -r
Oznaczajgc a*— 6*= e2 otrzymujemy:
2:r«e 15
r=2r f N2 fA-atete - + @ de
F <

Wartos¢ tej catki znamy (str. 48, wzér (35)), a mianowicie:

- PIFFN+EM -+ FA)]E

Dla caflej elipsoidy nalezy obra¢ granice: xt— — bx2— '{'b\ otrzymamy:
b+ V»+ T
e 2« e fb2-f |)
a stad po tatwych rachunkach:
« + e\
a — e)

W podobny sposéb otrzymamy dla elipsoidy obrotowej wydiuzonej, t j.
powstatej przez obrét koto osi wielkiej, wzor:

P = 2nbiyb -\- — arcsin —j

Niechaj czytelnik okaze, ze dla a— b dazacego do zera otrzymuje sie
z obydwu wzoréw wzér na powierzchnie kuli (wystgpig tu wyrazenia
nieoznaczone!).

Dla ¢éwiczenia poleca sie czytelnikowi wykazac¢, ze pole powierz-
chni obrotowej, zakreslonej przez obro6t linji o réwnaniu :

9yl — 38— x)2— 0 od *= 0 do x= 3

koto osi rc-6w, ma wartos¢ P~3n. Prostemi wzorami wyrazajg sie takze
pola powierzchni obrotowych, zakreslonych przez obrét okoto osi odcie-
tych linji tancuchowej, kardioidy, lemniskaty, przez obrét spiralnej Ar-
chi medesa okoto osi biegunowej.



§ 233. Monment statyczny laku

Wezmy pod uwage zbiér (A), ztozony z n dowolnych liczb:

i przyporzadkujmy im wartosci:

r3l...r.
jakiej$ zmiennej r.
Sume:

™iri -f-mtrt + eee + wy.r.
nazywamy momentem pierwszego stopnia zbioru (A), sume:

Wijrf4 w,r? 4 ...+ mnr*
momentem drugiego stopnia, a ogdlnie:

mxr* 4 mtr24 ...4 m,r\

momentem k-tego stopnia zbioru {A).

Momenty majg bardzo rozlegte zastosowania w rozmaityeh naukach,
np. w statystyce a szczegdélnie w mechanice, skad sie nawet nazwa wy-
wodzi (momentdm jest skrdoceniem stowa movimentum, co oznacza czyn-
nik, wptywaja,cy na ruch). W mechanice uzywa sie tylko momentéw i-go
i 2-go stopnia. | tak, jezeli liczby m, m2,... m, oznaczajg masy punktéw
materjalnych a rl,rt,..,ra ich odlegtosci od jakiej$ osi (linji prostej)
z uwzglednieniem znakéw, to moment pierwszego stopnia nazywamy mo-
mentem statycznym tego zbioru punktéw materjalnych ze wzgledu na te
0$, a moment drugiego stopnia momentem bezwtadnosci tego zbioru punktéow
ze wzgledu na te oS. W podobny sposob okreslamy moment statyczny
i moment bezwladnosci ze wzgledu na punkt i ze wzgledu na plaszczyzne,
obierajgc za r,,r2,... r, odlegtosci punktéw materjalnych od stale obra-
nego punktu lub od stale obranej ptaszczyzny.

Definicje te rozszerzymy na przypadki ogélniejsze, a mianowicie,
gdy masy sg rozmieszczone w sposob ciggly linjowo, powierzchniowo lub
objetosciowo.

Zajmiemy sie najpierw masami, rozmieszczonemi linjowo, wzdtuz
jakichs tukoéw. Rozmieszczenie takie jest w przyblizeniu zrealizowane
w drutach, w nitkach, w linach. Wezmy pod uwage *tuk linji ptaskiej
o réwnaniu y — f(x) lub w przedstawieniu parametrowem X = <p(s),

y = ip(s), przyczem dla dalszych rozwazan najdogodniej jest obraé za
parametr dtugosé tuku s, liczong od jakiego$ obranego punktu tej linji.
Wezmy pod uwage dla zmiennej X przedziat 6> lub odpowiadajacy

mu przedziat <Csa, dla zmiennej s
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Niechaj funkcja e(s) oznacza gesto$¢ linjowa masy tego tuku. Za-
tozmy, ze q(s) jest funkcja ciagla. Gestos¢ linjowa w kazdym punkcie
okres$la sie jako granice, do jakiej dazy
stosunek masy #tuku ds, zawierajacego
ten punkt, do dtugosci tego tuku, gdy ds
dazy do zera. Najpospolitszym w prak-
tyce jest przypadek, gdy masa jest roz-
mieszczonajednorodnie, t.j gdy gestos¢ Q
jest liczbg stalg dla kazdego punktu.

Podzielmy dany tuk AB na dowolng
ilos¢ czesci o dtugosciach d«i, ds,,...ds,,.
Masa tuku o diugosci ds, ma warto$¢ m, = p((X,)ds, gdzie e(@,) oznacza ge-
stos¢ w jakim$ posrednim, odpowiednio dobranym punkcie tej czastki tuku.

Utraga. Te $rednig warto$¢ gestosci mozna otrzymac przy pomocy caltki:
/H

Mase te mnozymy przez odlegto$¢ y dowolnego punktu luku ds- od
osi odcietych. Mozemy obra¢ ten punkt tuku, ktory nalezy do wartosci a,,
a wiec bra¢ zawsze y{of). Otrzymamy zatem e(0,)y(0,)ns, Tworzymy sume

tych elementow:
n

S, = JEVa,)y(ff/)dt,
i-t
i budujemy cigg St, St. Sa,... takich sum, dzielagc tuk AB w rozmaite

sposoby na czesci ale tak, aby najwieksze luki sktadowe dazyty do zera.
O ile istnieje granica ciagu tych sum, niezalezna od sposobu podziatu

tuku, to nazywamy ja momentem statycznym tuku AB wzgledem osi *-6w.
Ta granica jest rowna catce oznaczonej:

n

Wzor ten na moment statyczny tuku upraszcza sie, gdy gestosc jest stata,
wtedy bowiem mozna wyjgé e przed catke i otrzymujemy:

(Ula)
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Dla p= | otrzymuje sie wzér:

(112)

Podobnie na moment statyczny luku wzgledem osi y-0w otrzymuje sie
(przy g— 1) wzor:

(112a)

Wprowadzajgc za S pierwotng zmienng X, otrzymujemy;

b b
-j-y'tdx, My=J'x\\ + y'"*dx

Dla spotrzednych biegunowych wzory te przyjmuja (na podstawie wzoru (89)
oa 3tr. 136) postac:

v, \2

(114) —j'r sin P\r* r'ldp, My—J ¥t cos 9J/rl -\~r;>dp
v, f,

O ile e |, to nalezy wprowadzi¢ pod catke jeszcze czynnik q.

Przykiad.

Obliczy¢ moment statyczny preta z materjatu o gestosci statej p,
wygietego w potkole o promieniu ¢, wzgledem S$rednicy tego poétkola.

Obieramy prostg, na ktorej lezy ta S$rednica, za o$ aj-6w. Najdo-
godniej jest tu uzy¢ biegunowej formy roéwnania kola, a mianowicie
r— c. Z pierwszego z wzorow (114) otrzymujemy:

Al a n
K = o josio = *m/«» ¥ = - W «0.*] =
o] 0 0

= p(c* — (— c*¥) — 2pc2

Niechaj czytelnik stwierdzi, ze moment tego potkola ze wzgledu na o$
my-Ow ma wartos¢ 0, co zresztg wynika takze odrazu z tego, ze masy sa
rozmieszczone symetrycznie wzgledem tej osi (a wiec catka od 0 do ~
rébwna sie przeciwnej wartosci catki od § do n).

Poleca sie czytelnikowi dla ¢wiczenia okaza¢, ae moment statyczny
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linji tancuchowej o réwnaniu y — ~(" -(- "), dla statej-gestosci g= |,
wzgledem osi odcietych, wyraza sie wzorem:

M, = i(Je+ 2¢— 2 )l’:l

Pozostawiamy czytelnikowi stwierdzenie, ze dla krzywej przestrzennej
moment statyczny wzgledem osi np. *-6w wyraza sie wzorem:

*k

it/, = y pKy5 -j-~ai di
a
i analogicznie dla innych osi.
W podobny sposéb mozna okreslic moment statyczny tuku wagle-

dem punktu i wzgledem ptaszczyzny Tak np. moment luka wzgledem
poczatku uktadu wyraza sie wzorem:

M =] eK*1+ *e+ * *
S,

a wzgledem ptaszczyzny XY wzorem:

§ 234. Moment statyczny powierzchni ptaskiej

Wezmy pod uwage jakg$s powierzchnie ptaska, obtozong masa po-
wierzchniowa, t. j. posiadajaca w kazdym punkcie jaka$ gestos¢ powierz-
chniowa q(x,y). Takie rozmieszczenie masy mamy zrealizowane w przy-
blizeniu w blachach ptaskich a $cisle w tadun-
kach (czyli masach) elektrycznych. Zajmiemy
sie tu najprostszym a najwazniejszym w prak-
tyce przypadkiem, gdy masa jest rozmieszczona
jednorodnie, t j. gdy gestos¢ q jest liczbg stalg
Okreslimy uiypierw moment statyczny prosto-
kata o podstawie a a wysokosci w wzgledem
jego podstawy (fig. 40). Obierzmy za o$ odcie-
tych prostg, na ktérej lezy podstawa prostokata.

Podzielmy prostokat prostemi roéwnolegtemi do

podstawy na szereg paskéw. Masa paska o szerokosci Ayt ma wartos¢
Q'a-Ay,. Mnozymy ja przez odlegto$¢ dowolnego punktu tego paska od
osi odcietych, up. przez 8t i tworzymy sume tych iloczynéw:
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Mt = eaAy, ey, -f eaAy2-& -f ... i>aAy»' Wn

Dzielimy nastepnie ten prostokat w rozmaite inne sposoby na takie paski
i tworzymy caly ciag takich podziatéw tak, aby szerokosci wszystkich
paskéw dazyly do zera. Otrzymujemy w ten spos6b cigg sum:

M,Mt,Ms, ...

Granice ciggu tych sum nazywamy momentem statycznym prostokata
wzgledem osi ao-6w. Ta granica istnieje j rowna sie:
u

(115) M eaydy = %eau>*

Jezeli P oznacza pole tego prostokagta, réwne ae-w, to wzér przyjmuje
postac:

(115a) M — gP £

Moment statyczny prostokgta wzgledem jego podstawy jest réwny masie tego
prostokata, pomnozonej przez potowe wwysokosci.

Z tego wyniku skorzystamy przy wyzna-
czaniu momentu powierzchni ptaskiej, ograni-
czonej dowolng linjg. | tak wezmy pod uwage
powierzchnie, zamknietg tukiem linji o rownaniu
y — /(@j), rzednemi W punktach koncowych tego
tuku i osig odcietych. Zatézmy, ze /(aj) > O.
Podzielmy to pole zapomocag prostych réwnoleg-
tych do osi y-6w na paski. Kazdy taki pasek
zastgpmy prostokgtem o tej samej podstawie
a o wysokosci réwnej rzednej y, nalezgcej do
dowolnego punktu jego podstawy (fig. 41). Mo-

ment statyczny kazdego takiego prostokgta obliczamy przy pomocy
wzoru (115), a wiec np. dla prostokgta o podstawie Axt otrzymujemy:
“pdaj/ ey]. Tworzymy sume tych momentéw;

Nastepnie tworzymy caly cigg takieh podziatdw danego pola na paski
ale tak, aby szerokosci tych paskéw dazyly do zera i otrzymujemy odpo
wiedni cigg Mt, Mt, Ms,

Granice tego ciggu nazywamy momentem statycznym danej powierz-
chni wzgledem osi odcietych. Wartoscia tej granicy jest catka oznaczona:
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(116)

Chcac otrzymaé moment tego samego pola wzgledem osi rzednych na-
lezy mase eAXx,y, kazdego prostokata pomnozy¢ przez odlegto$¢ dowol-
nego punktu tego prostokata od osi y-O0w, np. przez odcietg nalezaca
do rzednej y,. Otrzymamy w ten sposéb eAxixiyl. Tworzymy ciag sum
postaci:

J £ gAxi£19,

a granice tego ciagu nazywamy momentem statycznym danej powierzchni
wzgledem osi y-6w. Ta granica ma warto$c:

(117)

Uwaga. Do tego wzoru mozna doj$¢ takie bez rozwazan granicznych, odejmu-
jac od momentu prostokata OFBD moment prostokgta OEAC i moment pola CABD,

obliczony zapomocag wzor\u J/ >bdy. Wzér ten otrzymuje sie z wzoru (116), zamienia-
li

jac z sobg role zmiennych x i y. Trzeba nastepnie wprowadzi¢ zmienng x zamiasty

ktadac dy = y' dx izastosowaé catkowanie »per partes“. Momenty statyczne powierzchni

ptaskiej, ograniczonej z wszystkich stron dotoolnemi linjami, oméwimy pdézniej, po wpro-

wadzeniu catek podwdéjnych.

Przykiady.
1) Obliczy¢ moment statyczny poétkola o promieniu r, obtozone
masa o statej gestosci g, wzgledem jego Srednicy. Obierzmy te Srednice
na osi x-6w (fig. 42). Z réwnania kota otrzy-
mujemy y2— r* — a wiec na podstawie
wzoru (116) otrzymamy:

— —
=p(rs— =
2) Dla dodatniej potéwki elipsy o réwnaniu — -}- |[*= | a g
stosci g= | otrzymujemy nastepujgcy moment statyczny wzgledem

Raehtinak rézniczkowy i catkowy. T. a
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0si »-Ow:
Hi +e

Mx— \ j bt[ai ~ X Hdx = ~-%aix ~\ x ) =|a6*

Dla potéwki elipsy, nalezacej do odcietych dodatnich, otrzymujemy mo-
ment wzgledem osi y-6w z wzoru (117):

*

)

- _1 * _—  ~ * ___ oj - ~ 'l = Aa*

M, 2Jf afmj/a x 1 dx 3 (a a;3+/,|| 55 (at)l,= $oa
o 0

Do tego samego wyniku doszlibySmy, uzywajac wzoru:
M,= h£*'dy
i wstawiajgc = a* |l —

§ 235. Srodek ciegzkosd czyli Srodek mesy.

W bezposrednim zwigzku z momentami statycznemi jest inne pojecie,
bardzo wazne w fizyce i w technice, a mianowicie $rodek ciezkosci czyli

irodek masy.
Srodkiem masy lub $rodkiem ciezkosci uktadu dwéch punktéw ma-
terjalnych A, i As o masach m, i mt enazywamy punkt, dzielgcy ten

odcinek w stosunku odwrotnym do mas (punkt ten lezy zatem blizej
masy wiekszej). A wiec A,S :SAt= ws:mx (fig. 43).
Utworzmy rzut odcinka A, Aj na o$ odcietych. Otrzymujemy:

(x — aj,): @ — X) — m%: w,
a stad:
_w,-f- xgq,

X
m, -f- w,

Jest to Srednia arytmetyczna wazona liczb
a, i a2 z wagami m, i mi.

Podobnie:
mly1-f- mtyt mizl -}- mtzt
ml -f mt mx-(- m,

Dobierzmy trzeci punkt A, o masie m3. Chcac znalez¢ Srodek ciezkosci
uktadu tych trzech punktéw, umieszczamy w punkcie S mase ml -f- w,
i znajdujemy wedtug poprzednich wzoréw $rodek ciezkosci dwoch mas:
jednej -f- mt, umieszczonej w S, a drugiej wi, umieszczonej w A4
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Dobierajgc kolejno coraz, wiecej punktéw materjalnycb o masach
m,, m,,...m, i o spélrzednycb (*,,vy,,*,), (®2,yt,2t),... (@?., Y., zH, otrzy-
mujemy na spoétrzedne Srodka ciezkosci nastepujace wzory:

»V0O, + m>g» ~h eee + _ m\y\ + mwy» + o Hhm-y-
5— W, (- m, -f eeet  >x ’ », 4- m, -f ... 4- w.

__mxzx+ mtzt + mmm-(- mnz,
W, 4 -w, + L - mil

Sg to $rednie arytmetyczne wazone spélrzednycb danych punktéw, przy-
czem wagami sg masy.

Widzimy, ze sumy, znajdujace sie w licznikach, sg momentami
statycznemi systemu punktéw materjalnych, a mianowniki catkowita masag
tego systemu. Uwaga ta prowadzi nas do rozszerzenia definicji $srodka
ciezkosci na masy, rozmieszczone w sposéb ciggty

Zajmiemy sie tu tylko masami, rozmieszczonemi na ptaszczyznie
linjowo (t. j. wzdtuz tukéw) lub powierzchniowo. Srodkiem ciezkosci ta-
kich mas nazywamy punkt o spotrzednych:

(118)

przyczem MXx, M, oznaczajg momenty statyczne wzgledem osi spotrzed-
nych a M catkowita mase. Piszac te wzory w postaci:

mozemy okresli¢ Srodek ciezkosci w nastepujacy sposéb: jest to punkt,
w ktéorym umieszczona catkowita masa M miatlaby taki sam moment sta-
tyczny wzgledem osi spétrzednych, jaki ma ta masa, rozmieszczona wzdtuz
danego tuku lub danego pola.

Srodek ciezkosci masy, rozmieszczonej linjowo wzdiuz luku, ma
zatem spotrzedne.

| = gyds

przyczem M oznacza catkowita mase danego tuku Jezeli gestos¢ e jest
stata, a catkowita ditugos¢ tuku wynosi 5, to:

(119)

11~
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Srodek masy, rozmieszczonej powierzchniowo, jednorodnie, na powierz-
chni ptaskiej o polu f, zamknietej lukiem linji o réwnaniu y= f(x) od
X = a do x = b, rzednemi w punktach koncowych i osig odcietych, <ma

spo6trzedne:

(120

Srodek ciezkosci, uwazany za punkt, w ktérym jest skupiona masa
ma ze wzgledu na kazdg prostg (a wiec nie tylko ze wzgledu na osie
spétrzednych) ten sam moment statyczny, co masa M\ rozmieszczona do-
wolnie linjowo lub powierzchniowo.

Okazemy to tylko dla masy, rozmieszczonej linjowo. (Dla mas, roz-
mieszczonych powierzchniowo, trzebaby najpierw okresli¢é moment pola,
zamknietego dowolng linja, wzgledem dowolnej osi a do tego nadaja sie
lepiej catki podwdjne).

Niechaj punkt C (6 g. 44) bedzie srodkiem ciezkosci tuku AB o cat-
kowitej masie M. Jezeli (£,17) sa spoOtrzednemi tego punktu, to

M.£= M M‘T= M,
Obliczmy moment punktu materjalnego C

o masie M wzgledem dowolnej prostej I,
0 réwnaniu (w postaci normalnej):

X cosa-f-Fsina —p= 0

a z drugiej strony moment catego tuku AB
wzgledem tej prostej.
Odlegto$¢ punktu C od prostej | wyraza sie wzorem:

d= £cos a-j- ?jsina—p

a wiec moment masy M, umieszczonej w tym punkcie, wzgledem pro-
stej | ma wartosé:

M/(C) — (Ecosa-f-t"sina — p) M = cos a -f- M\sina — Mp

czyli:

Mf(O = J QXdsecosg -f-J'Qy dsesina — pM
‘a >a

Natomiast moment tuku AB wzgledem osi | ma wartos$é:



przyczem $ oznacza odlegto$¢ punktu biezacego (X,Yy) tego tuku od osi .
Z wzoru na odlegto$¢ punktu od prostej otrzymujemy:

g= «cosa+ ysina—p
a wiec:
h »
M~AB) — f<Q(x cos a -]-y sin a — p)ds —J'exds ecosa -f*
a sa
‘b >
-f-J'Qy dsesin a— pJ'eds
"« o
b
PoniewazJ'eds = M, przeto widzimy, ze ten moment jest réwny mo-
sa
mentowi Mt(C) masy M, umieszczonej w $rodku ciezkosci, c. b. d. o.
Moment statyczny ze wzgledu na oS, przechodzaca przez $rodek ciez-
kosci, ma warto$¢ zero. Tak np. jezeli $rodek ciezkosci lezy na osi ®-6w,
to ) — 0, a wiec z wzoru (118) wynika, ze Mx= 0. Kazda za$ inng
prosta (08) mozemy sprowadzi¢ przez przesuniecie i obrot do nakrycia
Z osig a?-ow.

Przykiady.

1) Wyznaczy¢ spdirzedne $rodka ciezkosci tuku, tworzacego po
kole o promieniu c, jezeli masa jest rozmieszczona jednorodnie, t. j. ge-*
stos¢ e jest liczbg statg

ObliczyliSmy moment wzgledem osi odcietych (str. 158):

Mx= 2ec*
Moment wzgledem osi rzednych ma, jak tatwo stwierdzié, wartosc:
My= 0

co zresztag wynika odrazu z symetrycznego rozmieszczenia mas wzgledem
osi rzednych. Catkowita masa poétkola wynosi cnh e, a wiec:

Zatem S$rodek C ma spoétrzedne:

141

2) Srodek ciezko$ci masy, rozmieszczonej jednorodnie na polu pét
kola, obliczymy przy pomocy momentéw (por. str. 161):
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a mianowicie otrzymujemy:
b=or T pengT KU

A wiec: Widzimy stad, ze $rodek ciezkosci tuku lezy w innym

punkcie anizeli $rodek ciezkosci pola, ograniczonego tym tukiem i cie-
ciwg, tgczacag jego konce.
3) Obliczy¢ spotrzedne Srodka ciezkosci pola, ogra-
niczonego dodatnig gatezig paraboli o rownaniu y* = 2px
(fig. 45), osig odcietych i rzedng w punkcie x = a. Ge-
stos¢ e wezmy réwng 1. Nazwijmy dana rzedng i, a wiec

a a a

MX= $ J yidx = \J 2pxdx =~r] = hPa*
0 0 0

a a a rn a

My —Jxydx=jx\2pxdx —\2pj'x 3dx = J= 872pxxx

Pole tego odcinka ma wartos¢:

f— J ydx—j \Ypxi = iy—1I1=
Wobec tego:
e=2la*:%la = %
V— vPn%:\la =
Ale ‘¢pa — /% wiec y = astadr,= $1

Zatem: C(%a, $/).

8§ 236. Regutly Guldina.

Srodek ciezkosci tuku i pola majg bardzo interesujace zastosowanie
przy obliczaniu powierzchni i objetosci bryt obrotowych. Zwigzek ten
wykryjemy, zestawiajac wzory (109) i (107) na pole powierzchni obro-
towej i objetos¢ bryly obrotowej:

k%

b
= 2nJ"y ds, V= nJ y*dx

z wzorami (119) i (120) na rzedng Srodka ciezkosci tuku i $rodka ciez-
kosci pola, a mianowicie z wzorami:

* *

v=h fy®
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m
Poniewaz J'yds = g-S, przeto:

R

(121) P= 2ng-S

Wzér ten, zwany regutg Guldina na obliczanie pola powierzchni obro-
towej, wypowiada sie w nastepujgcej postaci: pole powierzchni obrotowej,
zakreslonej przez obrét luku o dlugosci S, réwna sie dhugosci drogi, zakre-
Slonej przez sSrodek ciezkosci tego luku okoto osi obrotu, pomnozonej przez
dhugos¢ obracajacego sie luku. Istotnie g jest odlegtoscia $rodka ciezkosci
od osi obrotu a 2 nr\ obwodem kota, zakreslonego przez $rodek ciezkosci
okoto osi obrotu.

Podobnie wnioskujemy z drugiej pary wypisanych wzoréw, ze

j "y*dx = 2g-f

a wiec:

(122) V— 2ngef

Wzér ten, zwany regula Guldina na obliczanie objetosci bryly obroto-
wej, wypowiada sie w nastepujacy sposob: objetos¢ bryly obrotowej, za-
kreslonej przez obrét powierzchni plaskiej o polu /, réwna sie diugosci
drogi, zakreslonej przez $rodek ciezkosci tego pola okoto osi obrotu, pomno-
zonej przez pole obracajgcej sie powierzchni. Przy pomocy regut Gul-
dina mozna obliczy¢ pole powierzchni obrotowej i objetos¢ bryty obro-
towej, jezeli znamy rzedng S$rodka ciezkosci, z drugiej za$ strony mozna
wyznaczy¢ rzedna Srodka ciezkosci, jezeli znamy pole odpowiedniej po-
wierzchni obrotowej lub objetos¢ odpowiedniej bryly obrotowe;j.

Tak np. wiemy, ze przez obrét potkola okoto Srednicy powstaje
powierzchnia kuli, ktérej pole znamy, a mianowicie P — Ar*Ti.

Stosujac za$ wzor (l21), otrzymujemy P — 2ngS\ poniewaz za$
S — rn jako dtugos¢ pétkola, przeto:

4r*Ti= 2ng ern
a stad:
2r

zgodnie z wynikiem, otrzymanym na str. 165.
Podobnie ze znanego wzoru na objeto$é kuli: V= $rd i z wzoru (122),
W ktérym f= ~ riIn, wnioskujemy, ze $rodek ciezkosci pola potkola ma

rzedng n — zgodnie z wynikiem, otrzymanym na str. 166
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Przykiady.

1) Obliczy¢ powierzchnie i objetos¢ bryty obrotowej, powstajacej przez
obrét kota o promieniu r (fig. 46) okoto osi, lezacej w ptaszczyznie tego kota
w odlegtosci R > r od s$Srodka tego kota; jest to obrecz kotowa czyli torus.

Poniewaz dtugoscig obracajgcego sie tuku jest
obwod kota o promieniu r, a $rodkiem ciezkosci
tego tuku jest oczywiscie srodek tego kota, przeto
S=2rn, rj= R, a wiec pole obreczy wynosi:

P— 2Rn «2r7i= 4Rrn*

Poniewaz pole kota obracajacego sie wynosi r*n,
a rj= R, przeto z wzoru (122) otrzymujemy:

V= 2Rner% = 2Rr*n2= ~rP

2) Obliczy¢ ciezar wienca kota rozpedowego, jezeli $redni promien
wienca wynosi 3 m, przekrdj wienca jest kwadratem o boku 026 m,
gestos¢ zas materjatu wynosi g= 7.

Z wzoru (122) otrzymujemy (wyrazajac objetos¢ w metrach sze-
Sciennych):

V— 2n «3+025a»1-178

Poniewaz ciezar 1 dm8 wynosi 7 kg, przeto catkowity ciezar wynosi:

©= V. 7000 kg x 8247 kg

Uwaga. W architekturze zachodzi czesto potrzeba wyznaczenia powierzchni lub
objetosci koputly, ktéra jest brylg obrotowa, powstajaca przez obrét pola, ograniczo-
nego z jednej strony linjg, nieraz bardzo skomplikowang. Do tych obliczen uzywa sie
reguty Guldina; potozenie Srodka cigzkosci wyznacza si¢ albo empirycznie albo tez
jakas$ przyblizong.metoda rachunkowg albo rysunkowg (chodzi tu o przyblizong war-
to$¢ odpowiedniej catki).

Se ' t
8 237. Moment beaadnosei tuku.

Juz w 8§ 233 okreslilismy moment bezwiadnosci systemu punktéw
materjalnych ze wzgledu na o0$. Rozszerzymy obecnie te definicje na
masy, rozmieszczone w sposéb ciggty. Ograniczmy sie do rozwazania mas
o stalej gestosci g. Wezmy najpierw pod uwage mase, rozmieszczong
linjowo, t. j. wzdtuz jakiego$ tuku AB {fig. 47). Uwazajmy spoétrzedne xfy
punktow tej linji za funkcje dtugosci tuku s; niechaj odcietej x=a odpo-
wiada diugos¢ tuku sa (liczona od jakiego$ punktu T, stale obranego na
linji 1), a odcietej x — b dtugo$¢ tuku sb. Podzielmy tulc AB na dowolng
liczbe czesci, np. na n czesci: ds,,¢ts2,. . . Na kazdym z tych tukow
czesciowych obierzmy dowolny punkt posredni, np. na tuku ds,= s/+l— s-



punkt a,, a wiec s,™ a,”™ s+ Rzedna, nalezaca do tego punktu, ma war-
tos¢ y(<J,). Pomnézmy mase pds, kazdego tuku czesSciowego przez kwadrat
odlegtosci dowolnego punktu tego #tuku od y

osi odcietych, a wiec przez yi{ai) i utwérzmy

sume:
a

B, = JEeyt(o,)Asl

Wykonujemy caty ciag takich podziatow tak,
aby wszystkie As, dgzyty do zera- Otrzymamy O
odpowiedni cigg sum:

Fig. 47.
Bj, B, Bt,...Bp...

Granice tego ciggu, gdy p — 00, nazywamy momentem bezwitadnosci ma-

terjalnego tuku AB wzgledem osi odcietych. Wartoscia tej granicy jest,,
jak wiadomo, catka oznaczona:

(123)

Okreslajac zupetnie podobnie moment bezwtadnosci By wzgledem osi rzed-
nych, otrzymujemy:

(124)

Sume tych dwoéch momentoéw, t. j.
0 -0

Bx-\- By=Je (xt y2ds=Jder?2ds

gdzie r oznacza odlegto$¢ biezgcego punktu linji | od poczatku uktadu,
nazywamy momentem bezwiadnosci danego tuku wzgledem poczatku ukiadu
i oznaczamy ja symbolem:

(125)

Ten moment B0 mozna tez okresli¢ bezposrednio, bez powotywania sie
na momenty Bx i By, zapomoca ciggu sum:

JEV*(a,)ds,
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Moment bezwladnosci wzgledem dowolnej osi mozna wyrazi¢ zapomoca
momentu bezwiadnosci wzgledem osi réwnolegtej do niej i przechodzacej
przez srodek ciezkosci. Tak np. moment bez-
whadnosci wzgledem osi OX, przechodzacej
przez $rodek ciezkosci C (fig. 48), ma wartosé:

Qy-ds
Fio. 48 Moment bezwiadnosci wzgledem osi 0'X\
g réwnolegtej do OX w odstepie 4, ma wartosc:
sb *H sb (.
Bx —J] Qylds—J e(y-\-rtjds — jeyds + tfpS
*a *« *«
czyli:
@) Bx = Bx+ r]t-M
=)

Catka”eyds ma bowiem warto$¢ zero, jako moment statyczny wzgle-

2]
dem osi, przechodzacej przez s$rodek ciezkosci.

A wiec moment bezwdadnosci wzgladem dowolnej osi jest réowny mo-
mentowi bezwdadnosci wzgladem osi réwnolegle do niej poprowadzonej przez
Srodek ciezkosci, powiekszonemu o moment bezieladnosci catkowitej masy M,
umieszczonej w Srodku ciezkosci, wzgledem danej osi. Prawo to odnosi sie—
jak mozna okaza¢ — nietylko do momentéw bezwiadnosci tukoéw, lecz
takze do momentéw bezwladnosci pal.

Przyktady.

1) Obliczy¢ moment bezwladnosci preta prostolinjowego 0 gestos
linjowej g wzgledem osi prostopadiej do niego, a przechodzacej przez
jego koniec. Obierzmy prostg, na ktorej lezy ten pret, za 0$ ®-6w. tuk s
liczony od poczatku preta, jest w tym wypadku réwny X. Zatem:

Bx= Jex*dx = ~

Jezeli 0§ przechodzi przez S$rodek preta, to z wzoru (a) "otrzymujemy,
uwazajac poprzednio obliczony moment za BX, wartos$é:

Bx=$Qa'— (!) «?»== Ago*
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2) Wyznaczy¢ moment bezwiadnosci tuku kota o promieniu c oc
&= < do (p— (pt wzgledem $rodka tego kota (fig. 49). Obierzmy gesto$é
0 = |. Poniewaz stale jest r ==c, przeto z wzoru (125) otrzymujemy:
oV,
= ctiys ~ <Pj)
s-aPl (I',

Moment bezwladnosci catego okregu kota
otrzymamy, biorgc ¢ od 0 do 2n, a wiec:

(126) BO= 2c*n

Oznaczajgc obwodd kota literg U, otrzymujemy:
(I126a) BO= U -c*

3) Wyznaczy¢ momenty bezwtadnosci catego okregu kota ze wzgledt
na obie osie spo6trzednych (przy gestosci statej e = 1). Wskutek symetrji
rozktadu masy widoczne jest, ze Bx— By. Poniewaz za$ Bx-\-By— BQ,
przeto 2BX=B 0 a wiec Bx= \BO i tak samo By. Opierajac sie na Wy-
niku poprzedniego przykiadu, otrzymujemy zatem:

(127) Bx= B y= o©»n

§ 238. Morenty bezwtadnosci plaskiej powierzchni wzgledem od.
Zajmiemy sie tylko przypadkiem jednorodnego rozmieszczenia masy
a wiec zatozymy, ze gesto$¢ powierzchniowa € jest stala. Wyznaczymy
tn najpierw (podobnie jak przy badaniu momentoéw statycznych) moment
bezwladnosci prostokata o podstawie a a wysokosci w wzgledem jego
podstawy (fig, 50). Podzielmy dany prostokat na paski prostokgtne zapo-
moca prostych réwnolegtych do osi odcietych. Pasek o szerokosci Ay, ma
mase pady,.
Pomnoézmy mase kazdego takiego paska
przez kwadrat odlegtosci dowolnego jego punktu
od osi odcietych, np. przez y, i utwérzmy
sume tych iloczynow:

Bt — JfeayjAy,

Dzielimy nastepnie dany prostokat w rozmaite inne sposoby na takie
paski i tworzymy caty cigg takich podziatéw tak, by szerokosci wszyst-
kich paskow dagzyly do zera. Otrzymujemy w ten sposéb cigg sum:

- BuBt) BS...BP,...
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Granice ciggu takich sum, gdy p — 00, nazywamy momentem bezwdad-
nosct danego prostokata wzgledem on odcietych. Wartoscig tej granicy jest*
jak wiadomo, catka oznaczona:

w H
(1 B @u~ O\ =ffif
Masa tego prostokata ma wartos¢ M =Q'P=Q >awy a wiec mozemy
napisa¢ wzér (128) w postaci:

(128 a)

Jezeli wiec obierzemy punkt materjalny o masie réwnej masie M catego

prostokata w odlegtosci d — od osi odcietych, to ten punkt ma ten
V/\

sam moment wzgledem tej osi, co caly prostokat, obtozony réwnomiernie
ta samg masa. Te odlegtos¢ d nazywamy ramieniem bezwtadnosci badanej
powierzchni wzgledem tej osi.

Nalezy zwroci¢é uwage na to, ze d jest rézne od £ a wiec nie mozna
umieszcza¢ catkowitej masy w Srodku ciezkosci.

Ogoélnie dla kazdego rozktadu masy M liczbe d, okreslong wzorem:

B= Md*

gdzie B oznacza moment bezwiadnosci tej masy, nazywamy ramieniem
bezwiadnosci tej masy wzgledem danej osi lub danego punktu.
Przykiad.
Przy pomocy wzoru (128) oblicza sie momenty bezwladnosci prze-
krojow rozmaitych belek, zwanych trawersami. Znajomo$¢ tych momen-

Fig. 5la Fig. 6Lb. Fig 6lc.

téw jest bardzo wazlja, od nich bowiem zalezy wytrzymatosé tych tra-
werséw na ziamanie.

Obliczmy np. moment przekroju belki o przekroju, uwidocznionym
na fig. 51 a, wzgledem osi az-6w. Zatozmy, ze gestos¢ e = |.

Stosujac wzor (128), otrzymujemy:
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Niechaj czytelnik wykona podobne obliczenie dla przekrojow postaci,
uwidocznionych na figurach 51 b i 51 c.

Opierajac sie na wzorze (128), wyprowadzimy wzory na momenty bez-
wladnosci powierzchni, zamknietej lukiem dowolnej linji, rzednemi w punk-
tach koncowych tego luku i osig odcietych (fig. 52). Postepujac tu po-
dobnie jak przy okreslaniu momentu statycznego (por. 8§ 234), tworzymy
momenty bezwtadnosci elementarnych pro- *y
stokagtow: np. dla prostokgta o szerokosci
AX, a wysokos$ci y, otrzymujemy (z wzoru
(128)):

teMy?

Tworzymy sume:

<4 Fig. 52

Granice ciggu takich sum 2Z?, Bt, nazywamy momentem bezwtad-
nosci powierzchni ABFE wzgledem osi odcietych. Wartoscig tej granicy
jest catka oznaczona:

(129)

Moment bezwtadnosci tej powierzchni wzgledem osi rzednych okreslamy,
mnozac mase kazdego z tych elementarnych prostokatow przez kwadrat
odlegtosci dowolnego punktu kazdego takiego prostokata od osi rzednych.
Obierzmy dla kazdego prostokata odcietg Xt, nalezaca do rzednej yt.
Otrzymamy w ten sposéb eAxtey, exf. Tworzymy ciag sura postaci:

Nefjy, nx/

Granice tego ciagu nazywamy momentem bezwtadnosci danej powierzchni
wzgledem osi rzednych. Wartos$cia tej granicy jest catka:

130)

Przyktady.

1) Obliczy¢ moment bezwtadnosci powierzchni tréjkata prostokatneg
0 podstawie a, a wysokosci w wzgledem podstawy (biorgc gestos¢ e = 1).

Obierzmy podstawe za o$ z-6w, a jeden jej wierzchotek za poczatek uktada
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(fig. 53). Rownanie prostej OA, przechodzgcej przez poczatek ukiadu
i przez punkt 4(a, w), ma postac:
w
y a
Z wzoru (129) otrzymujemy:
a [0}
w9 at | ,
0 0

Stad tatwo otrzymaé¢ moment bezwtadnosci powierzchni dowolnego tréjkata
wzgledem podstawy, np. trojkata OAC. Trzeba tylko doda¢ Na'tvs Ozna-
czajagc a-f- o' = b, otrzymujemy dla OAC:

B.= T2 bw*
Moment bezwiadnosci trojkata OAB wzgledem osi y-6w ma, w mysl
wzoru (130), wartosc:
| n -7 —
/* )/\ /\1 was
a 4 ~C

Niechaj czytelnik obliczy momenty bezwiadnosci tréojkata OAB wzgledem
osi, przechodzacej przez jego $rodek ciezkosci: £(-8 o, ~ w) a réwnolegtej
do osi spotrzednych (por. wzoér (a) na str. 170).

2) Obliczy¢ momenty bezwtadnosci elipsy wzgledem obu osi gtow
nych. Z réwnania elipsy i*§! a*y? = a*6é! otrzymujemy dla dodatniej
potéwki:

y_rv* X%

Moment bezwiadnosci catej elipsy wzgledem osi ®-6w rowna sie podwoj-
nemu momentowi potdéwki elipsy, zatem:

<ho -fo
B, —2.fy dx=\ dx
—a —o0

Catke te obliczymy przy pomocy podstawienia ® = osin<p Otrzymuiemy:

+H W]}
bs 5 9 2
B,= §— mB  do= ~ (08 *<pdg

Przy pomocy wzoru redukcyjnego (str. 21, wzor (20)) otrzymujemy

, sin ffi cos ., /sin wWcos w f \
ﬁos‘**g = — %4+ I (— 2- W+ tjd<p)
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a stad:

Wobec tego:

Jasnéna jest spowodu symetrji, ze na moment elipsy wzgledem osi y-6vr
otrzymamy:

* fy — i ba*n
Stad dla kota o promieniu a:

Bx= By— \a*n

§239. Monent bezawadnosci plaskiej pomerzchni wzgledem punktu.
Przy wyznaczaniu momentu bezwladnosci powierzchni wzgledem
punktu dogodpie jest odrazu uzy¢ spoétrzednych biegunowych i bada¢ pola
wycinkéw, ograniczonych Ilukiem jakiejs linji i promieniami, taczacemi
konce tego luku z punktem, ktéry obieramy za poczatek uktadu. Ogra-
niczymy sie do jednorodnego rozmieszcze-
nia masy, t.j. do stalej gestosci powierz-
chniowej Q
Rozpocznijmy od wycinka kota (fig. 64)
0 promieniu ¢, nalezacego do kata:
a= ¢—
Zapomoca kot spotsrodkowych dzielimy
ten wycinek na wycinki pierscieni kotowych ijeden wycinek kota przy O.
Masa takiego elementarnego wycinka pierscienia réwna sie jego
polu, pomnozonemu przez gesto$¢, a to pole, np. ply oblicza sie przy po-

mMOoCcy Wzoru:
Pt— + (¢4- L)-Ar,

czyli:
Pt—\{r,a -Kr, + 4r,))a)4r,= (r,-f\Ar,)aAr,— ?,adr,
Warto$¢:
W= wfh -\NAr,= "i4 -1 pe/H—rt)— i(r/4-ri+])
jest Srednig wartos$cig z przedziatu <>, Pomnézmy mase e-p, przez

kwadrat odlegtosci dowolnego jej punktu od punktu O, np. witasnie przez #f,
to otrzymamy elementarny moment bezwladnosci:

HPtf] — Ar,
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Tworzymy sume takich wyrazen dla catego wycinka kota, t. j.:
L}
B ,="eaffAr,
i-1
Tworzymy caty ciag rozmaitych takich podzialtbw wycinka w taki spo-
séb, by wszystkie dr, dazylty do zera i obliczamy odpowiednie sumy
Granice ciggu tych sum, gdy p -> oo, nazywamy mo
mentem bezwladnosci wycinka OAB wzgledem punktu O. Wartoscig tej
granicy jest catka oznaczona:

e c

(131) BO= jear*dr= ea~|=

Cate koto otrzymamy, kiadac a= 2 n, a wiec moment bezwladnosci po-
wierzchni catego kota wzgledem jego $rodka ma wartosé-

(132) BO= iQC*7I

Opierajgc sie na wzorze (131), okreslimy moment bezwladnosci wycinka,
ograniczonego tukiem dowolnej linji krzywej o réwnaniu r — r(gp) i pro-
mieniami w punktach koncowych tego tuku
(fig. 55). Podzielmy ten wycinek w dowolny
sposob na n czesci, wykres$lajac szereg pro-
mieni. Kazdy wycinek aproksymujemy wy-
cinkiem kota, biorgc za promien kota np.
promien poczatkowy kazdego wycinka. Obli-
czarny wedtug wzoru (131) moment bezwiad-
nosci kazdego takiego wycinka kotowego wzgledem punktu O, Np. dla
wycinka o promieniu rt a o kacie dgp,- otrzymamy:

bt= \N\A(pr Q
Tworzymy sume:

a nastepnie ciag BuBt,B%... takich sum, zageszczajgc podziat tak, aby
wszystkie dgp, dazylty do zera. Granice tego ciggu nazywamy momentem
bezwladnoSa catego wycinka wzgledem punktu O.

Wartosciag tej granicy jest calka:

nt g
<i33: BO=J \Qrldgp= J rxd(p
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§ 240. Moment beamadnodci powierzchni dorotowej 1 bryty dbro-
tong] wzgledem osi dorotu

Z wzoru (126) i (132) na moment bezwiadnosci okregu kota i pola
kota korzysta sie, aby okreslic moment bezwladnosci powierzchni i bryty
obrotowej wzgledem osi obrotu.

Dzielimy luk linji obracajgcej sie (fig. 56) na czesci 4s,,4s,, 4*,,...
i przyjmujemy mase kazdego takiego tuku skupiong w jednym dowolnym
jego punkcie. Niechaj gestos¢ linjowa tuku bedzie p = 1. Przez obrot tego
punktu materjalnego powstaje okrag kota o promieniu y,, o masie 2nY,Ast.
Moment bezwiadnosci tego kota ma wedtug
wzoru (126) wartosc:

b,= 2n$A8,

Sumujac te momenty i tworzac cigg takich
sum, otrzymamy po przejsciu do granicy:

(134)

Jest to wzdér na moment bezwdadnosci powierzchni obrotowej wzgledem jej
osi obrotu OX.

Celem okreslenia momentu bezwladnosci bryty obrotowej, bierzemy
zamiast kazdej ptytki, lezacej miedzy dwoma przekrojami proatopadtemi
do osi obrotu, walec o promieniu réownym rzednej Yy, w dowolnym punk-
cie posrednim odpowiedniego tuku As,. Kazdy taki walec zastepujemy
kotem o promieniu y, obtozonem masa o gestosci Ax,, réwnej wysokosci
tego walca. Moment bezwtadnosci powierzchni tego kota ma wedtug
wzoru (132) wartosc:

b,"y)nAx,

Stosujgc tu proces sumowania i przejscia do granicy, otrzymujemy;

(135)

Przykiady

1) Obliczy¢é moment bezwtadnosci walca kotowego o wysokosci
a o promieniu a wzgledem jego osi, przyjmujac stalg gestos¢ p=1. Dla

powierzchni walca otrzymujemy (fig. 57):

BM= 2nJasdx = 2na3w— P ea*

Rachunek rtonictkew” | catkowy. T 2 13
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< dla objetosci:

w

Bx— \nJa* dx natw Ve
V X

———— 2) Obliczy¢ moment bezwladnosci wience
Fig. 57. kota rozpedowego wzgledem jego osi.

Przekroj ptaszczyzna, przechodzgcg przez
o0$ tego kola,, przedstawiono na fig. 58. Trzeba od momentu bezwitadnosci
walca o promieniu rx odja¢ moment bezwtadnosci walca wewnetrznego
0 promienia r,. Stosujac tvzér, otrzymany w przykia-

dzie !, otrzymujemy:
Ht
t
Poniewaz objeto$¢ wienca tego kota ma wartosc:
n\nw — Anw
przeto:
Fig. 58. Bx=--4V (rl+r%

h'; OL.: r' ¢ or.rr.sai bezwladacsci objetosci kuli o promieniu R
wzgledem jo, $rednicy. Obierzmy te Srednice za o0$ obrotu. Poniewaz
x*-f. yt — prze o:

y-= (& —z2*— R*- 2 R*x*+ x*

a wiec:
B,= ~nJNiR* — 217*62-f- x*)dx — An(R*x —817'084- $x6) |

a stad:

8 241. Praca sity, dzialajacej w kierunku drogi.

Jezeli wzdtuz drogi o diugosci S dziata stata sita P w kierunku
tej drogi, to pracg tej sity wzdtuz tej drogi nazywamy iloczyn:
L-P-S
Jezeli jednak sita P, dziatajgca w kierunku drogi, jest zmienng, t. j. zalezy
od tego, w ktérym punkcie drogi dziala, a wiec jest funkcjg dtugosci prze-
bytej drogi s (tuku), to trzeba prace inaczej zdefinjowaé Podzielmy droge,
—zdtuz ktoérej dziata sita P(s),. na czesci ds,, ds, ds3 ... As,. Kazdag takag
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czes¢ drogi pomnézmy przez sile, dzialajacg w dowolnym jej punkcie, np.

w punkcie poczatkowym; otrzymamy w ten sposob dla kazdej czesci drogi

prace, ktorg wykonataby sita, gdyby byta stalg wzdiuz catej tej czesci.
Utwdérzmy sume tych iloczynoéw:

Lj = PO~ds, + P(s,)ds, H----yj- P(sKAsS,

Wykonajmy nastepnie caly cigg takich podziatébw drogi ale tak, aby
wszystkie Ast dazyty do zera. Utwdérzmy odpowiadajgcy tym podziatom
ciag sum: LuU ,Lt,...Lp... Granice tego ciagu nazywamy pracg sity
(zmiennej), dziatajacej w kierunku drogi, wzdtuz catej drogi S. Wartoscia
tej granicy jest, jak wiadomo, catka oznaczona:

(136)

Ta catka podaje wiec prace, wykonang przez site P(s), dziatajacg w Kie-
runku drogi, wzdtuz calej drogi o diugosci S.

Jezeli sita nie dziala w kierunku drogi, lecz jej kierunek tworzy
ze stycznemi w rozmaitych punktach drogi rozmaite katy, to tworzymy
w kazdym punkcie drogi rzut wektora, przedstawiajgcego site, dziatajgca
w tym punkcie, na kierunek stycznej. Niechaj P, oznacza wielkos¢
tego rzutu sity P na styczng, to prace okreslamy przy pomocy sum postaci:

L, = Pi(s,)4st -j- PA(sjjdsj j- ... -j- Pt{snAs,,

Na obliczenie tej pracy otrzymujemy wzoOr:

(136a) .

gdzie P,(s) oznacza wielko$¢ rzutu sity P na styczng w kazdym punkcie
drogi. Powrécimy do tych rozwazan w ustepie, poswieconym catkom
krzywolinjowym (por. § 244).

Przyktady.

1) Wydtuzamy sprezyne o dtugosé¢ S\ wiadomo, ze przy kazden
wydtuzeniu o odcinek s dziala sita sprezystosci, proporcjonalna do tego
wydtuzenia, a zatem do pokonania jej trzeba uzy¢ sity P = k' $ dziata-
jacej w kierunku przeciwnym do sity sprezystosci, a mianowicie w kie-
runku wydtuzenia. Praca, wykonana przy catkowitem wydtuzeniu 5, ma
zatem wartos¢:

15*
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t. j. ma takg wartos¢, jak gdyby dziatata stala sita P — réwna po-

towie sity kS, dziatajgcej w koncowym punkcie drogi.

2)' Obliczy¢ prace, wykonang przez ttok maszyDy cieplnej, posuwa-
jacy sie pod wptywem cisnienia P gazu. Cisnienie to zmienia sie w miare
rozprezania sie gazu. Jezeli pole przekroju ttoku wynosi F, droga prze-
byta przy jednym ruchu ma dtugos¢ S a p oznacza cisnienie gazu na
jednostke pola (preznos¢), to P — p -F a zatem praca ma warto$¢:

s
L J"p <Fds

Wprowadzmy zamiast zmiennej s zmienng F ‘ 8 oznaczajacg objetos¢ v
gazu, znajdujgcego sie w danym momencie ruchu pod ttokiem, to:
\Y; , dv
«“ F' d,=F
Niechaj p, oznacza objetos¢ poczatkowa, t. j. dla s= 0, a vt koncowa,
t. j. dla s= S. Otoéz:

:J ’pdv

Tak np. przy izotermicznej zmianie objetosci pod tlokiem zwigzek miedzy
objetoscia o preznosci wyraza sie wzorem:

pv <
a zatem:
*»

Las J 1dv= clog —

Przy adiabatycznej zmianie objetosci zachodzi miedzy p ap zwigzek:

p . ax ** c
a wiec:

8) Jaka prace cfdda masa | grama, spadajgca pod wptywem sity
ciezkosci ziemi z wysokosci 60 km na powierzchnie ziemi, na wyso-
kos¢ 0 km.

Przyjmijmy za jednostke sity ciezar 1 grama (przy powierzchni
z.omi). W odlegtosci s od Srodka ziemi dziata na mase | grama sita P(s)



odwrotnie proporcjonalna do kwadratu odlegtosci
oznacza promien ziemi, to:

a stad:

A wiec praca:

«

1 =/ *; *=«m / .-n
e-t-ao «+ «0
Poniewaz promien ziemi

L =
a za jednostke diugosci |

— 59 kgm (albowiem za jednostke masy obraliSmy
km =
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od $rodka ziemi. Jezeli R
P(s):1= R' S
1\ - 6012
=77 1<t (4.0 — . 460
ma dtugos¢ okoto R = 6370 km, przeto
1 g= 0001 kg

1000 ra).



ROZDZIAL XX.
Catki Z funkcyj dwodéch i wiecej zmiennych.

Ustep |I.
§ 242. Catki krzywolinjone.
W poprzednich rozdziatach zajmowaliSmy sie wytgcznie catkami
z funkcyj jednej zmiennej: funkcja podcatkowa y = f(x) byta dotad
zawsze funkcja jednej zmiennej X. Przystgpimy obecnie do badania calek
z funkcyj dwoéch zmiennych, a wiec funkcja podcatkowa:

2 =5 Plaiy)
bedzie funkcja dwéch zmiennych X,y.
Rozpoczniemy od przypadku najblizej zwigzanego z catkowaniem
funkcyj jednej zmiennej, a mianowicie od przypadku, gdy zmienne &y
nie sg od siebie niezalezne, lecz sg ze sobg zwigzane jakiems$ rOwnaniem;

@) F(x,y)—0

A wiec punkty o spoétrzednych (x,y), ktére bedziemy brali pod uwage,
nie bedg wypetniaty catej ptaszczyzny (X} Y) ani tez zadnych obszaréw
tej ptaszczyzny, lecz beda przebiegalty W ogdlnosci jakie$ linje. Rownanie
takiej linji (I) moze by¢ podane w formie uwiktanej, jak we wzorze (a),
albo w formie parametrowej:

(b) X — <p), y= ip(t)

albo tez w najprostszym przypadku w formie wyraznej

(e) V=70

Zacznijmy od tego ostatniego, najprostszego przypadku. Wezmy pod uwage

tuk AB linji o réwnaniu (c), przyczem punkt A nalezy do odcietej x = af

a B do x=b. Poniewaz y= f(x) jest jednoznaczng funkcja, przeto do kazdej

odcietej z tego przedziatu nalezy tylko jedna rzedna. Utworzmy catke:
b

() | Pexyax

przyczem y = f{x).
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Te catke z funkcji P(Xx, y) dwéch zmiennych zamieniamy na catke

z funkcji jednej zmiennej:
b b
J P(x, f(xj) dx — j"UX) dx

O funkcjach P(x,y) i f(x) wystarczy uczyni¢ zatozenia, ze P(x,y) jest ciagla
funkcja dwdch zmiennych w jakim$ obszarze, zawierajagcym luk AB. af{x) jest funkcjg
ciggta w przedziale O , i>>. Wtedy bowiem funkcja zlozona P(x,f(x)) = U(x) jest
cigglta w przedziale <a, by, a wiec jest catkowalna w tym przedziale. Mozna tez
dopuszcza¢ rozmaite nieciggtosci dla P(x, y) i f{x), byleby tylko istniata catka uogél-
niona lub niewtasciwa z U{x).

Taka catke (d) z funkcji dwoch zmiennych, w ktérej te dwie zmienne
sa zwigzane réwnaniem Yy = f(x), nazywamy catkg krzywolinjowa

z funkcji P{x,y), brang po tuku AB i oznaczamy jg symbolem:

(137) J  P(x,y)dx

Aby ten symbol miat okreslone znaczenie, musi by¢ podane ponadto

réwnanie linji, do ktérej nalezy tuk AB.

Jak widzimy, definicja ta nie wprowadza jeszcze niczego nowego,
albowiem ta catka krzywolinjowg réwna sie zwyktej calce oznaczonej
z funkcji ztozonej P (x,f{x)):

s IPXN FPY K

Jezeli zmienimy porzadek granic a, b tej catki, to w symbolu catki krzy-
wolinjowej zmienimy porzadek odpowiednich liter A, B. Wiadomo, ze
przez zmiane porzadku granic a, b catka zmieni znak, a wiec:

a
f P(x,y)dx— f F(x, f{a,) dx= - )

TA V
b C

— f P(x,f[co)) dz ——] Piz, y) Jx

Mowimy wtedy, ze przebiegamy tuk AB w Kkie- -
runku przeciwnym. A wiec: przy zmianie Kie-
runku przebiegania luku catka krzywolinjowag Fig. 59.
zmienia znak.

Wezmy teraz pod uwage taki tuk, w ktéorym do jednej odcietej

o ¢ ¢

naleze¢ moze wiecej rzednych, jak np. tuk AB na fig. 59.
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Uzywajgc formy wyraznej, musimy uzy¢ do analitycznego wyraze-
nia tego iuku trzech funkcyj:

y — (X) w przedziale <a, c>
y =/*(&) . <c, d>
y= /*0) . <4 &>
Dla kazdego z tukéw CD, DB tworzymy osobno catke krzywolinjowg

i obliczamy jg osobno w spos6b podany we wzorze (137 a).
Tworzymy nastepnie sume tych trzech catek krzywolinjewycb:

i P(x,y)dx+J P(x,y) dx

AC CcD

Te sume nazywamy catka krzywolinjowa z funkcji P(x,y) po calym

tuku AB i oznaczamy jg symbolem:
J P(«>”dx

Ogodlnie, jezeli luk AB skilada sie z czesci AAX At 0 réwna-
niach y= f1x), y= ft(x),... y— fn(*), ktére kazda prostopadta do osi
odcietych przecina tylko w jednym punkcie, to catka krzywolinjowa
z P(x,y) wedlug zmiennej X, po catym tuku AB, nazywamy sume calek
krzywolinjoicych po wszystkich tukach skladowych i oznaczamy ja sym-
bolem:

J P{x,y)dx

AB

Symbol taki ma zatem nastepujace znaczenie:

JP(x,y)dx=JP(x, A(»))dx-fIP{x,ft(x))dx + ...
ifi a °t
(138) b
eee+ JP{x,fn{x)) dx

gdzie a a,, at,... a,_,, b sg odcietemi punktéw A, A,, At,...A,_,, B.

RozszerzyliSmy w ten sposéb znaczenie symbolu (137), nie da sie
on bowiem w tym ogélnym przypadku wyrazi¢ zapomoca jednej catki
wedtug zmiennej X, lecz jest sumg kilku takich catek. Wprawdzie réw-
nanie takiego tuku AB mozna wyrazi¢c w formie uwiktanej zapomoca
jednego wzoru F(x,y) = 0 (np. przypadek, przedstawiony na fig. 59, od-
powiada réwnaniu (y — w)' — (X — n)= 0), ale przy obliczaniu wartosci
tego symbolu trzeba go rozitozy¢ na odpowiednig ilos¢ calek.



185

Ta ogllniejsza definicja catki krzywolinjowej dopuszcza tez catki,
brane po linjach zamknietych. Tak np. catce krzywolinjowej wedtug zmien-
nej X z jakiej$ funkcji P(x,y), branej po kole. K
(fig. 60), dajemy nastepujace znaczenie:

JP{X,y)dx —j 'P{x,y) dx-fJ P(X,y)dx

ABCDA ABC CDA

Jezeli to koto ma réwnanie X| -f- y3— al= 0, to

w pierwszej catce nalezy za y podstawi¢ Ya3— x8

a w drugiej — \al— X8 Otrzymamy w ten sposob:
_a +a
JNMP(X, Y)dx —J P(X, Ya2—x*®) dx -\-J"P(x, — [es— x® dx
ABDA +a

Obliczenie catki krzywolinjowej po linji zamknietej sprowadza sie wiec
w tym przypadku do obliczenia dwoéch zwykiych catek oznaczonych.

Spos6b pisania: j jest niedogodny, totez zmieniamy go, oznaczajac

ABCDA

cala linje kolowa jednag litera, np. K. i piszemy krétko: 7/ P(X,y)dx.

Ogolnie, oznaczajac jakas$ linje zamknieta literg /, oznaczamy catke krzy*
wolinjowg, brang po tej calej linji, symbolem:

fpick

W takim sposobie pisania tkwitaby jednak dwuznacznos$¢, gdybysSmy nie
ustalili raz na zawsze kierunku, w ktérym obiegamy linje. Ot6z ustalono,
ze symbol (139) oznacza, ze przebiegamy linje | w takim kierunku, aby
powierzchnia, zamknieta tg linja, pozostawata po lewej rece przy tym
obiegu, t. j. obieg ma by¢ przeciwny do ruchu wskazowek na zegarze.
Tak wiec np. na kole na fig. 60 przebiegaliSmy kolejno punkty A,B, C, D, A,
majac wnetrze kola po lewej rece; wobec tego te calke krzywolinjowa

nalezato oznaczy¢ symbolem | P(x, y) dx. Gdybysmy za$ przebiegali te
(>

punkty w przeciwnym porzadku: A, D, C,B, A, to odpowiedniag catke krzy-

wolinjowa nalezatoby oznaczy¢ symbolem:— / P(x,y)dx- Wynika to stad,

WO Y r

ze kazda z calek sktadowych zmienitaby wtedy znak: np. zamiast 7/

wystgpitaby catka J = —J°', Xoc
& ABC
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Obliczanie catki krzywolinjowej przy pomocy wzoru (138) jest
zwykle dos¢ niedogodne. Uzywajgc jednak zamiast wyraznej formy réwnan
linji, po ktorej catkujemy, formy parametrowej, sprowadzamy zwykle
obliczenie catki krzywolinjowej do jednej, zwyktej catki oznaczonej, wpro-
wadziwszy zamiast zmiennej X zmienng t, stuzaca do parametrowego
przedstawienia danej linji.

Wyjasnimy to najpierw na przykiadzie, a mianowicie na omowio-
nej poprzednio calce po kole. Uzyjmy parametrowego przedstawienia
kota K o réwnaniu x * y 2— a®= 0, a mianowicie:

X = acost, y==asint

Calki oznaczone, ktére stuzyty do obliczenia catki krzywolinjowej po kole,
przyjma po wprowadzeniu nowej zmiennej t postac:

/P(x, Ja*—x*)dx = — /P(acost,asint) asintdt
fa 10

I P(X, — Ya%— x*)dx= — | P(a cost, asint)asintdt

(Poniewaz sint ma w przedziale (jz, 2 n) warto$ci ujemne, przeto w dru-
giej calce trzeba bylo podstawi¢ asint za — |/a — xlI).
Sume tych dwu catek mozna przedstawi¢ jedng catka od Q do 2 n,
a wiec:
2n
P[x,y)dx = —J 'P{a cosi, asini)asinidi

Tak samo postepuje sie w ogoélnych przypadkach. To prowadzi nas do
wypowiedzenia definicji catki krzywolinjowej w nastepujacej postaci,
bardzo dogodnej przy obliczaniu wartosci takiej caiki.

Jezeli przy przebieganiu wartosci parametru t od tx do t2punkt o spot-
rzfdnych x = qp(t), y = tp(t) opisuje tuk AB dowolnej linji, to catkg krzy-
wolinjowag z dowolnej funkcji P(x, y) wedlug zmiennej x, brang po tym
tuku, jest catka oznaczona od i, do tt z funkcji P(cp(t), ip(t)) <p'(t) wwedtug
zmiennej t:

(140) P(<p{t),ip(t)) (p\t) dt

Prawag strone tego wzoru tatwo jest zapamieta¢, powstaje ona bowiem
przez wprowadzenie w catke z P(x,y)dx zmiennej f, zwigzanej z x za-
pomoca réwnania X = cp(t). Wtedy dx nalezy zastapi¢ przez g>'(t)dt.
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Wszystkie poprzednie rozwazania mozna zastosowaé takze do przy-
padku, gdy uwazamy Yy za zmienng niezalezng, a X = g{y) za zmienna
zalezng. Jezeli punkt A odpowiada rzednej y — a, a punkt B rzednej

y — /7 to catke krzywolinjowa po tuku AB wedtug zmiennej y z funkcji
QI[X, y) okreslamy wzorem:

Qix, y)dyt=j Q(gly). y) dy

w razie, gdy kazda prostopadta do osi y-6w przecina tuk AB najwyzej
w jednym punkcie. W ogolnym przypadku uzywa sie parametrowego

przedstawienia tuku AB, a ogélna catka krzywolinjowa wedtug zmien-
nej y jest okreslona zapomocag wzoru:

(HD)

Jezeli obydwie catki krzywoliojowe, okreslone zapomoca wzoréw (140)

i (141), sa brane po tym samym #tuku AB, to takze sume ich mozna
przedstawi¢ zapomoca jednej catki oznaczonej. Sume te oznaczamy sym-

bolem:J{Pdx -f- Qdy) a zatem:

AB

142) f o yiaxs aoiay = Fewmimen

+ Q(<p(D,V(H)V'(t)dt

W tej og6lnej postaci wystepujg catki krzywoli njowe najczesciej.

W zupelnie podobny sposéb okresla sie catki krzywolinjowe po lu-
kach linij w przestrzeni tréjwymiarowej. | tak mamy podang funkcje
trzech zmiennych: P(Xx,y,z), ktére sa jednak ze sobg zwigzane tak, ze

punkt o spétrzednych Xx,y,z przebiega tuk AB jakiej$ linji o réwnaniach:
y= fix\ z= g(x)
lub # formie parametrowej:
®= V(t y= tp(), z= Xx(t)

Niechaj punkt A odpowiada odcietej X = a lub wartosci parametru i=
a punkt B odcietej x — b lub wartosci t= tB. Chodzi o obliczenie catki:

b b
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Te catke nazywamy catka krzywolinjowg po tuku AB i oznaczamy ja

symbolem”~P(x,y,z)dx. Uzywajac formy parametrowej, mamy:

‘a

J PW,y,z)dx==J p(<p{t), rp{t\ %({1) (p'(H) dt

Podobnie ma sie rzecz dla catki z funkcji Q(X,y,z) wedtug zmiennej y
i z funkcji R(x,y,z) wedtug zmiennej z

Og6jDa postacig catki krzywolinjowej w przestrzeni tréjwymiaro-
wej jest suma trzech takich calek, branych po tym samym tuku. a wiec:

I —J (P(X,y, z)dx -f- Q{x. y. 2)dy -(- R(X, V, z) dz)

Najdogoduiej jest zwykle oblicza¢ te catke zapomocg jednej zwyktej catki
oznaczonej, wynikajgcej z uzycia parametrowego przedstawienia linji, po
ktérej catkujemy. Wtedy otrzymujemy:

1= XPEO), ~0, 2y ot ) XE)MD)

+ R(<p(t), ip[t), x(t))x'(1)))dt

Warto$¢ kazdej catki krzywolinjowej zalezy tylko od linji, po Kktérej
catkujemy, a nie zalezy od jej analitycznego przedstawienia.

Przykiady.

1) Obliczy¢ catke krzywolinjowg z funkcji X ey wediug zmiennej x
po tuku paraboli y*= 2px o rzednych nieujemnych od .4(0,0) do B(a,b)
(por. fig. 61). Otrzymujemy

J xydx—J x\2px dx — YT X~

= NN a/j:8= fal Vfp«= 8§atb

tej prostej jest y — ~ X, a wiec:

. b 6 / J .
X-xdx= - 1Xldx= —- = j a6
J J a aj 3a Ar——-—-

Widzimy stad, ze catka krzywolinjowa z tej samej funkcji, miedzy temi
samemi punktami kodécowemi, ale brana po réznych lukach, moze mie¢
rézne warloici.
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Obliczmy jeszcze catke z tej samej funkcji po drodze tamanej AEB.

Réwnania catej tej linji nie mozna przedstawi¢ w formie wyrazne;j.
Natomiast nie trudno uzyskujemy parametrowe przedstawienie tej linji
tamane;j.

Trzeba potozyc:

x = 1,y —20 dla OSisa

X_O,y= t — a » a ~ a b

Uzywajgc wzoru (140), otrzymujemy:
a at6

fx ydx <l y{t) ex'(H)di := teleldt j a(t— a)e0 «dt— 0
Zpk
Obliczmy jeszcze catke z tej samej funkcji po konturze zamknietym
| — ACBEA. Poniewaz obiegajac kontur w tym porzadku, mamy pole,
zamkniete tym konturem, po prawej rece, przeto nalezy te catke ozna-
czy¢ symbolem:

() — f xy dx
i

Wartos¢ jej jest réwna sumie catek po tuku ACB i po linji famanej BEA,
a zatem jest réwna jta2&-f-0 = %a3hb

Catka (1) zaréwno jak i catka (l1) przedstawiajg, jak wiemy, mo-
ment statyczny wzgledem osi rzednych powierzchni,
ograniczonej konturem ACBEA.

2) Obliczy¢ catki krzywolinjowe (fig. 62):

J Bydx4-2xdy) i M"*(3 ydx-(-2*dy)
ACB AOB
Pierwsza catka jest brana po potkolu o promieniu 1
Uzywajgc parametrowego przedstawienia: ®=cos<, y = sint, otrzymu-
jemy dla calki po potkolu:
o
J (Bsint(— sint) -f- 2cos2)dt = J '(— 3sin21-j- 2cos?!) dt =

ACB

a a1
[3—300321—200521)dt= 3)J'dt — 5 cos*Edt= — 5 ef

W cafce po linji prostej AOB jest stale y — 0, a wiec:

NJ'($ydx -f- 2xdy) (3y dx + 2xy'dx) (3+0-f-2x«0)dx= 0
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a wiec otrzymalismy inng wartos¢ dla drogi ACB a inng dla drogi AOB,

taczacej te same punkty koncowe A i fi.
Niechaj czytelnik stwierdzi w podobny spos6b, ze catka krzywo-

linjowa:

(2 xy dx -f- x %dy)

ma te samag warto$s¢ po drodze .<4Cfi, co po drodze AOB, a mianowicie
wartos¢ 0. Mozna okaza¢, ze ta catka przyjmuje te sama warto$¢ po
kazdej drodze, tgczacej z soba punkty A i fi.

3) Obliczy¢ wartos¢ catki krzywolinjowej:

I =*J (zdx -j-x dy -(- y dz)

przyczem AB jest tukiem liuji Srubowej o réwnaniach (por. tom |, str. 378):
X = acost, y= asint, z— at

dla tuku, odpowiadajgcego jednemu krokowi S$ruby, t j. od t— 0 do
t— 2n czyli od A(a, 0,0) do fi(o, O, 2an).
Wyrazamy catke | zapomoca zwyktej catki oznaczonej, a mianowicie:

| = IY[at-. (— asin t) -f- acos t «acos t -J- asin fea)dt=

tsin <-f cos*t -f- sin t) dt —

an an a*
- —_ a*/\*s*ni N 2“8_‘/\ N
0 0 0

Po wykonaniu tych prostych catkowac¢ otrzymujemy;

| = 3a*n

§ 243. Calki krzawolinjone w zagadnieniach geometrycznych.
Przy obliczaniu zapomocg catek oznaczonych poél, zamknietych
linjami, natrafiamy na pewne niedogodnosci, gdy do jednej odcietej nalezy
wiecej anizeli jedna rzedna. Zobaczymy, ze unikniemy tych niedogod-
nosci, uzywajac catek krzywolinjowychb.
| tak pole, zamkniete tukiem AB linji o réwnaniu y = f{x) (dla
Yy > 0), rzednemi w punktach koricowych tego tuku i osig odcietych,
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wyraziliSmy wzorem:
h

-fly dx

przyczem a i b sg odcietemi punktéw koncowych danego luku.
Te catke mozemy pojmowacé jako catke krzywolinjowa z funkcji
P{X,¥) —Y po tuku AB, albowiem:
i
ydxz*J ydx — P

Aby obliczy¢ przy pomocy catek oznaczonych pole, zamkniete dowolna,
linja krzywa, np. linja ADBC czyli | na fig. 63, trzeba byto rozdzielié
te linje na tuki, w ktéorych do jednej odcietej

nalezy zawsze tylko jedna rzedna i obliczy¢ »

kilka catek. Tak np. do obliczenia pola, przed-

stawionego na fig. 63, trzeba uzy¢ dwoch catek:

* b

FVi {x)dx — f yl(x)dx
Fig. 63.

Otéz te dwie catki mozna uja¢ w jedna catke krzywolinjowa, a mianowicie:

P=j ydx —j ydx= fydx-\-j ydx—f ydx

ACB ACBDA

Obiegajac punkty konturu tej powierzchni w porzadku A, C, B, D, A,
mamy po prawej rece pole, ograniczone tym konturem, a wiec, uzywajac

symbolu J ', nalezy mu da¢ znak — . A zatem:

(143)

Widzimy stad, ze pole, zamkniete dowolng linjg ciagta, mozna wyrazié
zapomocg jednej catki krzywolinjowej.

Uwazajac X za funkcje zmiennej y, mozemy to samo pole wyrazic¢
takze zapomocg innej catki krzywolinjowej, a mianowicie:

p —J$%dy —3 'xdy = f xdy A-J3 'xdy —j xdy

oBe PAC DBC CAP DBCAD
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czyli:

(144)

Catka ma tu znak -"> albowiem przebiegajac punkty konturu w porzadku
D, B, C, A, Dy mamy pole, zamkniete tym konturem, po lewej rece.
Dodajgc stronami wzory (143) i (144), otrzymujemy:

a stad;

(145) (x By —Ydx)

Ten wzdér na pule wyprowadziliSmy juz witasciwie w poprzednim rozdziale,
uzywajgc przedstawienia parametrowego, a mianowicie wzor (84) na str. 128
jest rébwnowazny z wzorem (145).

Podobnie mozna przedstawi¢ zapomoca catki krzywolinjowej wzér
na objetos¢ bryty obrotowej, zakresSlonej obrotem powierzchni, np. ACBFE
na fig. 63, okoto osi odcietych, a mianowicie:

6

Jezeli chodzi o obliczenie objetosci bryty, zakreslonej obrotem powierzchni,
ograniczonej dowolng linjg zamknietg |, to postepujac podobnie, jak dla
pola, otrzymujemy wzor:

Takze wzér na pole powierzchni obrotowej, zakreslonej obrotem #tuku

dowolnej linji (np. ACB na fig. 63) okoto osi odcietych, mozna interpre-
towac¢ jako catke krzywolinjowa, a mianowicie catke z funkcji Q(s,y) =ay
Otoéz:

>
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8§ 244. Zastosowanie catek krzywolinjowych w fizyce

l. Praca jako calka kramolinjone.

Bardzo waznem zastosowaniem catek krzywolinjowych jest definicja
i obliczanie pracy, wykonanej po dowolnej drodze przez dowolng site,
dzialajgca niekoniecznie w kierunku drogi i zmieniajacg swa 'wielkosc¢
i kierunek zaleznie od potozenia punktu na drodze. W poprzednim roz-
dziale rozwazaliSmy tylko specjalny przypadek, a mianowicie, gdy sita
byta skierowana wzdtuz drogi. Obecnie zajmie-
my sie przypadkiem ogo6lnym. | tak okresimy
najpierw prace, wykonang wzdtuz odcinka AB (J ¢ - |
linji prostej przez site F stalg, lecz tworzacg
z tg prostg jakis kat a (fig. 64). Praca L jest
w tym wypadku réwna iloczynowi z rzutu
sity F na te prostg i z ditugosci tego odcinka,
a wiec:
(a) L= Fcosae*AB !V Fig. 64

Uwazajmy odcinek AB za wektor i zastgpmy go sktadowemi w Kkierun-
kach trzech osi spotrzednych. Te skitadowe majg wartosci x%— xt, y2— yu
2t — 2j. Roztozmy takze wektor F, reprezentujacy site, na skiadowe
w tych samych kierunkach i nazwijmy je: P, Q, U. Prace L mozemy
wyrazi¢ takze jako sume trzech prac, wykonanych wzdtuz tych drog
sktadowych przez sity skiadowe, a wiec:

© L=P-@ —x)+ Q*(,— V)t R*(z —2)

Dowoéd. Jezeli wektor F tworzy z osiami katy a,, fli, 7 a odcinek AB Kkaty
< 7> to P = i'coB«l, ¢ = FCOSA, R=Fcosyt, xt—x, = AB C0s a,,
—Vi — AB COS Zj—g, = AB cos7S, a wiec:

B{xt—aa)-t-e(y,— zx) = F - AB m(cosOjeos»£-(-cosi,cos -j-cosT,cosl,)

Wiadomo za$ z geometrji analitycznej, ze wyrazenie, zawarte w nawiasie, przedstawia
cos a, gdzie a jest katem, zawartym miedzy wektorami F i AB. A wigc istotnie prawe
strony wzoréw (a) i (b) maja te same wartosci.

Chodzi nam teraz o definicje pracy, wykonanej wzdtuz dowolnego

tuku AO (fig. 65), przez site F zmienng. Wartosci skiadowych tej sity
w kierunku osi spotrzednych zmieniajg sie, zaleznie od punktu, w Kkto-
rym dziala sita, sg wiec funkcjami spotrzednych punktu biezgcego na
krzywej; oznaczymy je zatem wyrazeniami P(Xx,y,z), Q(X,y,z), R(X,y,2).

Rozt6zmy tuk AD na dowolng liczbe czesci, np. na n czesci a kazdy
tuk czesciowy zastgpmy cieciwg, taczaca jego konce. Zmienng site, dzia-
tajaca wzdtuz kazdego tuku czesciowego, zastgpmy statg sitg, np. réwnag
Rachunek rézniczkowy i catkowy. T. t 13
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sile, dzialajacej w poczatkowym punkcie tego tuku. Praca wzdiuz cie-
ciwy AB ma zatem wediug wzoru (b) wartosc:

L’ = P(X,,y,,2,)(a3,—®,)+ Q{Xuynzf)/\ —yX)'f lytl*j)(*l —*Q)
Tworzymy sume tych prac dla
wszystkich cieciw, a mianowicie:

m
Si= v Bk — >7) 4
/-1
4- s Vi, HyYH+-— 4~
4- R (x, yi>Y)oHi — %)
Dzielimy nastepnie tuk ~¢> w roz-
maite sposoby na czesci tak, aby
dtugosci wszystkich tukéw czescio-
wych dazyty do zera; wtedy takze roznice spoéirzednych daza do zera.
Otrzymamy w ten spos6b ciag takich sum:

Su St, Si,--- Sp...

Granice ciggu tych sum nazywamy praca zmiennej sity wzdtui drogi AD.
Aby wyznaczy¢ te granice, wezmy najpierw pod uwage sume, zto-

zong z dodajnikéw P(Xt)ynz,)®+i — ®,). Jezeli linfja AD ma réwnania
y == f(x), z— g(x), to:
P(x,, y,, )= P(xf,f(x0, g(x,)) = U(x,)

jako funkcja ztozona zmiennej X,. Sumy postaci.

n m
JEP{x,, ﬁA)(®,+, — X,) T EU{X,)(xHTX)
el GJ

daza, jak wiemy, do catkir
b b
jrudx=d P(x,f(x),0{x)) dx—J P(x,y,z)dx
- « AD

Podobnie ma sie rzecz z dwiema pozostalemi czeSciami sumy Sx a wiec
ciag {Sp} tych sum dazy do catki krzywolinjowej:

L —f (A®»y>*)dx+ Q{x,y,2z) dy-f R{x,y, z)dz)
fo

Te catke krzywolinjowa moznaby uwazaé¢ wprost za definicje pracy.

Rozunowenie, oparte na rOwnaniach y — f{x), z — g{x), zaklada, ze do kazdej
branej pod unwege odcietej x nalezy jeden punkt drogi AD (i podobnie dla y i z
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przy funkcjach Q[x,y,z), R(x,y,t)). W przypadku ogdélnym nalezy przeprowadzi¢ cate
rozumowanie, opierajac sie na parametrowem przedstawieniu tuku AD. Wtedy, sto-
sujac twierdzenie o wartosci $redniej, otrzymujemy: xi+\ — xi = Xx(t/+i) — X{t,-) =
= *'(r/)(*/+1 —H) i dla tej Sredniej wartosci r/ trzeba braé¢ wartos¢ funkcji P, a zatem
W sumie S, wystgpig wtedy wyrazenia:

y(r,), *(r/)) —t,) =r v(r — t)

Dalsze rozumowanie przeprowadza sie tak, jak poprzednie

Przykiad.

Obliczyé prace, wykonang wzdtuz luku Aflt przez sile, zwréceaa
w kazdym punkcie drogi do statego punktu i zalezng tylko od odlegtosci r
od tego statego punktu. Obieramy ten staty punkt za poczatek ukiadu O.

Wyrazmy réwnanie linji AB w formie parametrowej, uzywajac jako pa-
rametru odlegtosci r; a wiec:
X= <plr), y= y(r), z— x(r)

Skiadowe sity F(r) w kierunku osi spot-
rzednycb majg wartosci:

P(x,¥,z) = F(r)cosa— F(r)

H{r)
i padobnie:
Q(x,y.,z)= K(r), RS, y,z)= Af(r)
a wiec zalezg takze tylko od r = Wobec tego praca wzdiuz

drogi AB ma wartos¢:

L=J3 (H(r)e<p'(r) -f K(r) exp\r) + M{r) «%'(r))dr m

AB
B

= f T(r)dr=J3T(r) dr
A~ AB rA

Jezeli U(r) jest funkcja pierwotng funkcji T{r), to:

L— U@rB— U(rA
Widzimy, ze w tym wypadku warto$¢ pracy, wykonanej po drodze AB,
zalezy tylko od odlegtosci punktéw koncowych tuku od statego punktu O,

a nie zalezy od ksztattu drogi AB.
Przypadek ten odgrywa w fizyce nadzwyczaj wazna role.
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Niechaj czytelnik wykona obliczenie pracy miedzy punktami A{a, b)
i B(X,y), lezacemi na ptaszczyznie (AT), w przypadku, gdy sita dziata

. m
wedtug prawa Newtona, t j. F = —
/ ) m W m m\
(Wynik: L — , —_——, -m = e
1 J \X'+ y* \a*+ b *e rAl

Cwiczenie. Dla sity o skladowych P = — vy, Q =x, Z= 0 obliczyé
prace od 4(0, 0, 0) do 4(1, 1, 0) po prostej AB i po po6tkolu o srednicy AB.
(Wynik L, = 0, La= ”~n, a wiec prace po tych drogach sg rézne).

l. Zastosowanie catek krzywolinjowych do proceséw termo-
dynamicznych.

W termodynamice charakteryzuje sie ,stan“ ciata jednorodnego
zapomoca jego objetosci v i ci$nienia p, jakiemu jest poddane to ciato.
Te zmienne Vv i p sa ze sobg zwigzane pewnem réwnaniem, np. dla gazéw
doskonatych: pv = RT.

Jezeli poczatkowemu stanowi ciata odpowiadajg wartosci Vil pu t. j.
ciatlo ma objetos¢ ig i poddane jest ciSnieniu pu a nastgpnie doprowa-
dzimy to ciato w jakikolwiek sposéb do stanu (2 PS)< to zmieni sie w ogél-

nosci ilos¢ ciepta, zawartego w tern ciele, o Q

kaloryj. Uzyjmy do przedstawienia zwigzku

miedzy zmiennemi Vv i p ukladu spoétrzed-

nych (fig. 67). Punkt A odpowiada stanowi

N (wuPi) a punkt B stanowi (2 p2. Od punktu

N J do fi mozna dojs¢ rozmaitemi drogami.

Tak np. tamana droga ACB oznacza, ze naj-

Pig 07 pierw zmieniamy ciSnienie z pt na p2 przy

statej objetosci vt a potem zmieniamy obje-

tos¢ do wartosci w2 Jezeli zmieniamy réwnoczesnie v i p wedtug wzoru
pv— RT przy statej temperaturze T, to punkt A porusza sie po tuku

ADB hiperboli rébwnobocznej (zmiana izotermiczna) a mozna sie tez po-
rusza¢ po rozmaitych innych drogach: AEB, AFB i t p. Bardzo wazng
kwestjg jest badanie, jak sie zmienia przy takich procesach ilos¢ ciepta,
zawartego w ciele i jego euergja wewnetrzna. Ot6z okazuje sie w ter-
modynamice, ze przyrost energji wewnetrznej u(v,p) ciala mozna wyra-
zi¢ zapomocg catki krzywolinjowej.

Tak np. dla drogi ADB otrzymujemy na ten przyrost energji wzor:

f (: (AT o)dT+(I-pldv)



gdzie O, oznacza ciepto witasciwe przy statej objetosci, a | ciepto utajone
(por. tom 1, str. 360). Dowodzi sie, ze ta catka ma taka sama wartosé
dla réznych droég, taczacych te same dwa punkty. Natomiast zmiane Q
ilosci ciepta mozna wyrazi¢ zapomocg catki krzywolinjowej z wyrazenia

N odv-f-~ dp -f- pdv czyli du(v,p) p edv, gdzie funkcja u{v,p) jest

energja wewnetrzng ciata. Otéz dla drogi np. ADB otrzymujemy:

+pdv)

Dla réznych drog otrzymuje sie naogét rézne ilosci ciepta.
Jezeli natomiast podzielimy wyrazenie, znajdujace sie pod zna-
kiem catki, przez temperature T, ktdora jest funkcja zmiennych v i p

Inp. dla gazéw doskonatych té otrzymamy catke krzywo-

linjowa:
du(v, p) A- pdv
-/ T(v, p)

Ot6z okazuje sie, ze wartos¢ tej catki krzywolinjowej nie zalezy od drogi
catkowania, a zalezy tylko od stanu poczatkowego 4 (0,,p,) i koncowego
B{v%p%, Wyrazenie S nazywamy entropjg ciata (por. tom |, str. 360).
Badanie tych dwdch catek krzywolinjowych odgrywa zasadniczo wazDa
role w termodynamice.

Catki krzywolinjowe znajduja tez zastosowania w innych dziatach
fizyki, np. w hydrodynamice i w elektrodynamice.

M. Zastosowanie calek krzwolinjowch do dbliczania no
Menton,

WyznaczaliSmy momenty statyczne powierzchni, ograniczonych zjed-
nej strony dowolnym #tukiem, ktéry proste rownolegte do osi y-6w prze-
cinajg tylko w jednym punkcie, a z innych stron rzednemi w punktach
koncowych *tuku i osig odcietych. Otrzymalismy przytem zupetnie inne
wzory na momenty statyczne wzgledem osi odcietych a inne wzgledem
osi rzednych. Uzywajgc catek krzywolinjowych, mozemy wyrazi¢ jednym
wzorem moment powierzchni, zamknietej dowolng linjg a ponadto otrzy-
mamy zupetnie analogicznie wzory dla obu osi.

Obierzmy gesto$¢ stata: Q= |. Wtedy moment statyczny powierzchni,
zamknietej linjg | (fig. 68), wzgledem osi odcietych, ma wartos$¢:
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jezeli y= yl1(x) oznacza réwnanie tufcu ACB a y — yt{x) luku ADB.
Obydwie te catki mozemy jednak uwaza¢ za catki krzywolinjowe, a mia-
nowicie:

Mx= +iJ'y*dx — Ny * dx = \J y %dx-\-1J 'y2dx

ACB
Stad:

(146) M, — y*dx — — y*dx

Znak — pochodzi stad, ze obiegajac linje | w porzadku A, C, B, D, A,
mamy powierzchnie, zamknietg tg linjg, po prawej rece.

Moment statyczny tej samej powierzchni wzgledem osi rzednych
ma wartos¢:

M, = dy — |y®jj dy=

a a
= ¢J'ifdy —+j' X | dy — \J'X1dy
DBC DAC DBCAD
a wiec:
(147) My= + fjx'dy

Otrzymalismy wiec dla obu momentéw wzory, réznigce sie tylko znakiem
i przemiang liter. Podobnie dla momentéw bezwladnosci powierzchni,
zamknietej dowolng linjg /, wzgledem obu osi, otrzymujemy przy uzyciu
catek krzywolinjowych dwa wzory:

(148) Bx=-~Jy ™ dx, B,= 1t j x»dy

w ktérych & tylko przemienione litery X, y a znaki zmienione.

§ 245. Zastosovenie calek krzywolinjonych w teorji funkeyj
zmienngj zespolongy

Zbior wszystkich liczb zespolonych przedstawiamy graficznie zapo-
moca punktéw plaszczyzny, zwanej ptaszczyzng liczbowg (Gaussa).
Kazdej liczbie zespolonej:

2 = X-(-1ly

1 Zasadnicze wiadomos$ci o zmiennej zespolonej sa podane w rozdziale kon-

cowym.



przyporzadkowujemy punkt o spoéirzednych X,y i odwrotnie kazdemu
punktowi tej ptaszczyzny o spoéirzednych X, Y przyporzadkowujemy liczbe
zespolong z— X-\-iy. Wezmy pod uwage jaki$ obszar (D) tej ptasz-
czyzny (fig. 69). Jezeli kazdej liczbie z= X -f- 1y z tego obszaru przy-
porzadkujemy jaka$ ljczbe zespolong u—

— to z nazywamy zmienna nieza-

lezng a u zmienna zalezna, czyli funkcjg

tej zmiennej Z i piszemy:

u= f(z)

Nie mozna poda¢ obrazu graficznego tej

funkcji nawet przy uzyciu trzech osi spo6t-

rzednych, albowiem do przedstawienia war-

tosci u— P iQ trzebaby uzy¢ jeszcze dwéch osi (dwie sg potrzebna
dla z=x-\-iy\ a wiec mielibySmy do czynienia z przestrzenig cztero-
wymiarowg, niewyobrazalna.

Natomiast mozna interpretowaé graficznie zwigzek u= f{z) miedzy
zmiennemi zespolonemi u, z w inny sposéb, a mianowicie zapomocag od-
wzorowania ptaszczyzny (X Y) na inna ptaszczyzne (P Q) (por. tom I,
§ 121, str. 364 i nast.).

Kazdemu punktowi z z obszaru (D), czyli kazdej parze liczb rze-
czywistych X, y, ktore sg spoétrzednemi punktu tego obszaru, odpowiada
jakie$s rzeczywiste P i jakie$ rzeczywiste Q. A zatem P i Q sg funkcjami
rzeczywistemi dwéch zmiennych rzeczywistych X,y. A wiec:

M= f(z) = P(x,y)+ iQ(x,y)
Zajmiemy sie tu zdefinjowaniem catki oznaczonej z funkcji f(z) zmiennej
zespolonej, branej po réznych drogach w granicach od z— zA do z= zB,
odpowiadajacych punktom A i B obszaru (D). Poltgczmy w tym celu

punkt A z B dowolnym tukiem ACB, lezagcym w obszarze (D) i obierzmy
na tym tuku dawolng ljczbe punktéw zA— zx zt,2g,...za zkix= zB, o sp6t-
rzednych 0 )d, yxy fy *+ie Utwérzmy sume:

fi - - -
— A {2 Rizk+l— zK) = HF{M"‘QW‘HM
4-1 4-1

to znaczy sume wyrazen postaci:

P(xk, — XK — Q[xt,yR(ykH — yK +
+ *[P{xk yK(ykti — yK + Q(xk, yk}{xkti — ®¥)]
Utwdrzmy nastepnie cigg Sx, St,...S,,,... takich sum, obierajac przedziaty

czesciowe zmiennych x i y tak, aby wszystkie dazyty do zera. Granice
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ciagu tycb sum nazywamy catka oznaczona funkcji f(z) zmiennej zespo-

lonej od z— zA do z= zB po drodze ACB. Ta granica skiada sie z dwéch
catek krzywolinjowych, a mianowicie:

(149)J f{z)dz—J (P(x,y) dx — Q[x,y) dy) -f iJd (P{x,y)dy+Q{x,y)dx)
ACB ACB

Wartos¢ takiej catki zalezy w og6lnosci nietylko od granic catkowania
ZA,zg, lecz takze od drogi, po ktérej catkujemy. Szczegélnie wazne sg
takie specjalne funkcje zmiennej zespolonej, ktérych catki oznaczone nie
zalezg od drogi catkowania w pewnym obszarze.

Ustep Il

ROZNICZKOWANIE | CALKOWANIE CALEK WEDLUG PARAMETRU.
§246. Calki pojedyncze z funkcyj dandch zmiennych niezaleznych.
RozwazaliSmy dotychczas catki z funkcyj dwoch zmiennych X,y
w przypadku, gdy te zmienne byly od siebie zalezne, co prowadzito do

catek krzywolinjowych. Obecnie omoéwimy przypadek, gdy * i y sg zmien-
nemi niezaleznemi. Funkcije:

z= f{x,y)

mozna wtedy catkowaé wedtug jednej zmiennej, uwazajagc druga za pa-
rametr.

Zatézmy, ze funkcja f(x,y) jest ciagta funkcjag dwéch zmiennych
w obszarze prostokgtnym, t j. dla X, zawartych w przedziale <o,, «,)>,
a y w przedziale <6éi,6gj>. Jezeli ustalimy warto$¢ y, to RX,y) bedzie
ciggta funkcjg jednej zmiennej X, a wiec istnieje catka:

w j/(>y)dx —g(y)

a
a warto$¢ jej zalezy od tego, jakg warto$¢ obraliSmy za y. Uwidoczni-
lismy to, kladac te catke réwna jakiej$ funkcji g(y) zmiennej y. Jezeli
wiec X uwazamy za zmienng catkowania, a y za parametr, to ta catka
jest fcnkejg parametru.

W interpretacji geometrycznej obrazem funkcji f(x,y) jest ptat
jakiej$ powierzchni nad prostokatem (fig. 70). Wartosci tej funkcji, odpo-
wiadajgce stale obranemu y, maja jako obraz linje AB, otrzymang przez
przekréj tej powierzchni zapomocg ptaszczyzny rownolegtej do plasz-
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ozyzny (XZ) w odstepie y Wartos¢ g{y) catki (a) jest réwna polu prze-
kroju ABCD. Gdy zmieniamy Yy, to pole zmienia Bie wedtug prawa g{y).
Zajmiemy sie wlasnosciami tej

catki. | tak udowodnimy przede-

wszy8tkiem, ze catka (a) jest nagtg

funkcjg parametru vy, gdy /(@i,Yy)

jest ciggla w prostokacie

Dowdd. Tworzymy réznice :
«
i{y+H)-9[y) —J U\X,y+h)~J(x,y))dx
Fig. 70

przyczem wartosci y i y-j-h sg wziete
z przedziatu Na mocy wzoru (60), str. 79, jest:

«l

If(y + *)—2y)l ;J ia*y+A)—f(xy)ldx

Poniewaz funkcja f(xty) jeBt ciggta w catym obszarze zamknietym (w prostokacie),

przeto jest w nim jednostajnie ciggta. Do kazdej dodatniej liczby e mozna zatem dobra¢

takie 6 zalezne tylko od e a niezalezne od X,Yy, ze dla wszystkich |A|]<d jest:
If(x,y + hy—f(x,y)l <r

Wobec tego:

(b) \g(y + h)~9(y)[<|| edx = elat—o0,)= «,

Do kazdego r, mozna wiec dobra¢ takie 6, ze dla wszystkich |h] < &6 spetnia sie ta
nieréwnos¢, a to dowodzi, ze ff(y) jest ciaggta funkcjg parametru y w przedziale <6,,6t>.

Przyktad. Scatkujmy wedlug zmiennej a od ! do 2 funkcje
f(x, y) — X’- Jest ona ciagta np. w prostokacie, okreslonym warunkami:

1N a<;2, -2~y S + 2

Otoz:
X 2yH —1
/ xydx — y da y g=— |
y + lIt y+ 1
3
log x *= log? y= - 1

MoglibySmy mie¢ watpliwos$é, czy funkcja g(y), okreslona temi dwoma
wzorami, jest ciggta dla y= — |I. Otéz ta ciggtos¢ wynika z dowiedzionego
twierdzenia. Mozemy to zresztg sprawdzi¢ takze bezposrednio, obliczajgc
przy pomocy regulty Hospitala:

T R T |
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A wiec funkcja g(y) dazy do log 2 przy y-> — 1 i osigga te wartos¢
dla y— — !, a zatem jest ciggta w punkcie y — — |.
Zbadajmy teraz;

gdy /(j,y) jest w danym prostokacie nieciggta lecz ograniczona i posiada

skonczong liczbe linij nieciggtosci, dajgcych sie zamkngé w obszar o do-

wolnie maiera polu, wzdtuz ktérych posiada funkcja skonczone skoki.
Wyjasnimy ten przypadek pogladowo. Niechaj np. powierzchnia

o réwnaniu z= f(x,y) posiada jedna linje przerwy, jak na fig. 71.
Oto6z funkcja:

(a) y(y) *=J f(x,y) dx
d

przedstawia dla kazdego y pole przekroju bryty, uwidocznionej na ry-
sunku, ptaszczyzng réwnolegta do (ZK), w odstepie y od tej ptaszczyzny.
.Na 6gurze zacieniowano jedeD taki przekroj, nalezacy do y = yt. Jak-

kolwiek linja GFED, ograniczajaca ten przekroj z jednej, strony, nie jest
ciggta w punkcie E, to jednak jego pole ma skonczong, oznaczong war-
tos¢, wyrazong zapomocag catki uogolnionej (a).

Gdy zmieniamy y, to przechodzimy do coraz dalszych przekrojow.
Zmiana wielkosci pola odbywa sie przytem w sposéb ciagly, a wiec g(y)
jest ciagta funkcja zmiennej vy.

Jezeli linja przerwy przebiega réwnolegle do ptaszczyzny (ZX), jak
na fig. 72, to przekr6j zmienia sie w sposob ciggly tak diugo, az doj-
dziemy do linji przerwy. W tern miejscu nastepuje skornczony przyrost
przekroju o AA'B'Bt a wiec skoniczony skok funkcji g{y).
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8 247. Razniczkonanie catek wascivwych wedtug parametru

Udowodnimy prawdziwos¢ nastepujgcego twierdzenia o roézniczko*
w&Ilnoséci funkcji g{y). Jezeli funkcja f(x,y) jest ciggta w prostokacie,
mokreslonym warunkami a, S i S o, b < vy 6, i posiada czastkowa po-
chodng fr[x, y) ciggta w tym prostokgcie, to catka (a) posiada pochodng
wedtug parametru y, a oblicza sie te pochodnag, rozniczkujac wedtug tego
parametru funkcje podcatkowa.

Twierdzimy wiec, ze przy tych zatozeniach zachodzi wzo6r:

(150)

Ten wzér na rézniczkowanie catki wedlug parametru nazywamy regutg
Leibniza.

Dowéd. Chodzi nam o pochodng funkcji g(y), okreslonej wzorem (a) na str. 200.
Coraz réznicowy ma wartos$c:

sy = 90+ F)=gy) =3 fxy r h)-fGy)

Chodzi o obliczenie granicy wyrazenia 4 (A), gdy
StOBujac do funkcji podcatkowej twierdzenie o wartosci $redniej, otrzymujemy:

m = A * |y-j-&h)dx
Przedstawiamy te catke w postaci:

fy{x-y) dx + i(fy(x,y+ dh) — fy(x,y)) dx

Z jednostajnej ciggtosci czastkowej pochodnej fy(x, y) wynika, ze:

IfA*>y + #h) —fAXx,y)\<e dla |Aj<d

awiec:
A - (fyixy)dx'< fedx —io, —aj= &
« «d

Do kazdego a mozna wiec dobra¢ takie i, ze dla |A]<<5 spetnia si¢ ta nieréwnosc.
To za$ znaczy, ze:
lim 4(A)= 7 fy(X, y)dx
K-+t J
. «i
czyli:
(y)=J fy{x,y)dx c. b. d o

«
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Przyktad. Nietrudno jest obliczy¢ warto$é¢ catki:

X

fdx_ przy a> 0n

Stosujgc mianowicie podstawienie t— , sprowadzamy ja do calkki

i otrzymujemy:

dx 1 X
(A)
~ Fo arC8 pa

Parametrem jest w tej calce a (trzeba wiec we wzorze (150) zastgpi¢ y
literg a). Funkcja podcatkowa jest ciagta funkcjg dwoéch zmien-

nych & a w kazdym prostokgcie o dodatnich a, a takze jej czgstkowe
pochodne wszystkich rzedéw wedtug tej zmiennej a sg ciggte w kazdym
takim prostokacie. Mozemy wiec do tej catki zastosowac regute Leibniza
rézniczkowania wedtug parametru. Otrzymujemy w ten sposob:

X

dx dl !
/i @+ o da\ arct&yl)

X
dx

(1IC'+0)" 'da{‘(\kan\/a)

ogolnie:
(B) -D-0-w f(Mr=fM raac f]j

W ten spos6b ze znanej catki (A) otrzymujemy szereg trudniejszych,
bardziej skomplikowanych catek, nie wykonujac zadnego catkowania,
tylko rézniczkowanie. Otrzymany wzor (B) jest zwieztem ujeciem wyniku

catkowania funkcji _J_ay, ktéry to wynik otrzymaliSmy na str. 28

w bardzo zawitej postaci, opierajac sie na wzorze redukcyjnym. Niechaj
czytelnik wyprowadzi w podobny sposéb z prostej catki:

fafdx= N oprzy a> 0
wzor; |
/ x*(\ogxydx==

podajacy wartos¢ dos¢ skomplikowanej cafki.



Regute Leibniza rozszerzymy takze na przypadek, gdy granice
catki sg zalezne od parametru, t. j. na catki postaci:

I H{x,y)dx = y(y)
agy)

Zatézmy, jak poprzednio, ze f(x, y) jest ciagta i ma ciagla pochodng fy
w prostokacie a, 6,S y~ 6, a ponadto, ze n, a, ty)
«, So,(y) a, i ze pochodne al(y), a2y) sa ciagte w przedziale <6j,

Przypadek ten sprowadzimy do poprzedniego, wprowadzajac za X
nowa zmienng i, zwigzang z X,y wzorem: X = a,(y) -f- (os(y) — o, (y)) t.
Dla * = a, (y) jest <= 0 a dla x — a2{y) jest i=1. Otrzymujemy wiec
catke o statych granicach, niezaleznych od parametru Yy:

!

oy) = 7/ H{x{ty\y)~
Do tej catki stosujemy regute Leibniza z wzoru (150) i otrzymujemy:

%/>J fe + Siap) '@'-It"A ' dtdy o«

"df 3x C[3f3x 30\ ,
3 3y Ct J (TI 3y + f 3idy) dt

i i %ok‘|' ) o gt

cayli:

(151)

Przykiady.
1) Obliczy¢ pochodng catki:

y(y)= sin(xy) dx

wedtug parametru y. Stosujgc wzér (151), otrzymujemy:
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2) Dana jest catka:
y

(M) ag(y) = K{y) =-J {y~.,a) A®) f®
0

przyczem zakitadamy, ze /(a) jest funkcja ciagta.
Obliczy¢ (n + !)-sza pochodna tej catki oznaczonej wedtug zmien-

nej y. Z wzoru (151) otrzymujemy:

A wiec:

Stad otrzymujemy kolejno:

g"(y) = Fn-t(y) "td
a ostatecznie:

gw{y) = FOly)=y f{x) da

Wreszcie:
9r{y) = fly)

Zatem funkcja y(y) ma te wihasnos¢, ze jej (n -)- lI)-sza pochodna ma
wartos¢ f(y). (Zaréwno sama funkcja g(y) jak i jej pochodne az do n-tej
wihacznie majg wartos¢ 0 dla y— 0, albowiem wtedy gdrna granica
catki jest rowna dolnej). A zatem jezeli scatkujemy dowolng funkcje
ciaglta f(y) (n -f- I)-krotnie, to otrzymany wynik mozna przedstawi¢
w postaci zwyktej, jednokrotnej calki, uzywajac wzoru (M).

§ 248. Calkownenie calek wasciwych wedhug paranetru.

WykazaliSmy juz (w 8§ 246), ze catka;

/f(X, y)dx = gly)

jest ciagta funkcjg parametru vy, jezeli funkcja f{x,y) jest ciagta w pro-
stokgcie. Wobec tego istnieje catka z tej funkcji wedlug zmiennej V.
Wykazemy, ze te catke mozna obliczy¢, wykonujac catkowanie wedtug y
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pod znakiem catki, odnoszacej sie do zmiennej X. Innemi stowami twier-
dzimy, ze prawdziwy jest nastepujacy wzor:

= J(E YR

Jezeli wigc mamy catkowac funkcje ciggla dwdéch zmiennych X,y w sta-
tych granicach, najpierw wedlug x a wynik wedlug y, to mozemy prze-
mieni¢ porzadek catkowania, t. j. catkowa¢ najpierw wedlug y a potem
wynik wedtug x.

Dowdd.

Wezmy zamiast statej gérnej granicy catkowania bt zmienng gra-
nice b i obliczmy pochodne obu stron wzoru (152) weditug b. Otéz dla:

b |
h(b)~J f ( x , y)dxjdy

pochodng jest, jak wiadomo, funkcja podcatkowa, w ktoérej zamiast y
wstawiono te goérng granice £ a wiec:

Dla drugiej strony wzoru (152), t. j. dla:
a, *

Hb) —J \ j 7fo y) dy) dx
8,

tworzymy pochodng wedtug reguty Leibniza, a wiec:
o* b a
' ~dj dezd X Mok
«i £ «
Poniewaz h'(b) — k'(b), przeto te dwie funkcje moga sie rézni¢ tylko
o stalg liczbe, a wiec h(b) = Kk(b) -j- C. Aby wyznaczy¢ te stalg, potézmy
b= bl. Wtedy h(b¥ =0 i fc(6,)= O i zostaje 0= 0-}- C, a wiec C= 0.
Zatem:
h(b) — k(b)

dla wszystkich b z przedziatu Podstawmy 6 = 6,, to otrzy-
mamy h(bt) = k(bt), a to jest wiasnie wzér (152), napisany w skréceniu.
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Przyktad.
Obliczy¢:

/=]'[J x>dx} dy> przyczem a> 0 i b> 0
a o0

Catkujgc najpierw wedtug X, a potem wedtug y, otrzymujemy.

f J xy+1| 1
0 Lrn

a wiec:
(6]

< =fvh dy=log (y+1) I=logE |

Ten sam wynik musimy otrzymaé¢, catkujagc w porzadku zmienionym,

a wiec:
1 b

I=J (jvdy) dx= log
0* a
Catka wewnetrzna ma wartosc¢:
b

J log® log®
a wiec:
r /V —®& , , b 1
J 10gX at 1

Otrzymalismy w ten sposob wartos¢ calki oznaczonej z takiej funkcji,
ktéra sie me da scatkowaé elementarnemu metodami, a mianowicie z funkcji:

xb — x*
log®

$ 249. Ro6zniczkowanie i catkowanie catek niewtasciwych wedtug
parametru.

Reguty roézniczkowania i catkowania catek oznaczonych wedtug
parametru wyprowadziliSmy tylko dla catek wilasciwych. Najwazniejsze
sg jednak wilasnie catki niewtasciwe, zalezne od parametru. Do takich
catek nie zawsze stosujg sie powyzsze reguty, jak to zobaczymy z naste-
pujacych przyktadéw.
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1) Okazemy (na str. 215), ze istnieje catka niewtasciwa:
00

#v Tsin yx ,

9iy) —J -~-d x = ~n day> 0.
0

Pochodna jej gf(y\ jako pochodna statej liczby | n, ma wartos¢ O.

Gdybysmy jednak probowali obliczy¢ te pochodna zapomoeg reguty

Leibniza, to otrzymalibysmy:

/¢ (n r)dt/\f*O" *

Aby wyznaczy¢ te catke niewlasciwg, obliczamy najpierw:

-
o

J c0s (yx) dx = sin (yx) | sin ya

Ta funkcja nie dazy do zadnej granicy przy a dazacem do oo, lecz
oscyluje pomiedzy — » i -f- A wiec nie otrzymaliSmy prawdziwej

wartosci g'{y), zatem regulty Leibniza nie mozna stosowa¢ w tym

przypadku.
2) Podobnie ma sie rzecz z catkowaniem catki oznaczonej wedtu

parametru. W catkach niewtasciwych nie zawsze mozna zmienia¢ po-
rzadek catkowania. Wezmy pod uwage catke:
i

WA= )= (47)*1=* n+ 7+

Funkcja podcatkowa jest tu nieciggta dla x — 0, y= 0, a wiec jest to

catka niewlasciwa.
Scatkujmy ja wedtug parametru y od O do !. Otrzymujemy:

- d>7g " TOrt*ey= k%Y

Zmieniwszy za$ porzadek catkowania, t j. catkujgc funkcje podcatkowa
najpierw wedtug parametru y, otrzymujemy:

ASOThS ’(h7 =-rpil—=

a wiec wynik fatszywy.
Aby zatem do catek niewlasciwych mozna stosowac takie reguty
rézniczkowania i catkowania wedtug parametru, jak dla catek wiasci-

i- 1= -

mRachunak rézniczkowy i catkowy. T. 1 14
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wych, nie wystarcza, aby te catki istniaty, czyli aby byty zbiezne. Oka-
zemy natomiast, ze wystarczy, jezeli te catki sg zbiezne w pewien szcze-
g6lny sposéb, a mianowicie, jezeli sg jednostajnie zbiezne.

Catke niewtasciwa:

/ /®,y) dw

nazywamy jednostajnie zbiezng w jakim$ przedziale zmiennej vy, jezeli
do kazdej dodatniej liczby e da sie dobra¢ taka liczba 1V, (e), zalezna
tylko od e, a niezalezna od vy, ze:

®

PH{a>, y)da>|<e

dla wszystkich N k>  (e).

Poniewaz:
00 AN (o)

j f{xyy)dx=J3f{x, y)dx-fJ f(x, y)dx

a a ff

przeto ten drugi dodajnik mozna uwaza¢ za rodzaj reszty RN, otrzyma-
nej z danej catki niewtasciwej w granicach od o do oo, gdy z niegj
opuscimy czes$¢, wzieta w granicach od o do IV, przy odpowiednio wiel-
kiem N. Ot6z zbieznos¢ jest wtedy jednostajna, gdy sie da dobrac¢ takie Nu
wspoélne dla wszystkich y, by owa reszta byta dowolnie mata, gdy JV> Jv.,.
Podobnie okreslamy jednostajng zbieznos¢ dla takich catek niewtasciwych,
w ktorych funkcja podcatkowa wzrasta nieograniczenie. Gdy np. takim
punktem nieciggtosci jest gorna granica a, catki:

»
Sf(x,y) dx

to catke nazywamy jednostajnie zbiezng, jezeli do kazdej dodatniej
liczby e da sie dobra¢ takie dodatnie d,(e), zalezne tylko od e, a nieza-
lezne od vy, ze:

11 f(x,y)dx < «

dla wszystkich d, spetniajacych warunki;
0 < d< d,(e)

Nietrudno okaza¢, ze jednostajnie zbiezna catka niewtasciwa z funkcji
ciggtej jest ciggta funkcja parametru.
Jednostajng zbieznos¢ catki niewtasciwej mozna czesto rozstrzygnaé



211

zapomoca nastepujacego kryterjum. Jezeli istnieje taka dodatnia funkcja
tp{x\ niezalezna od parametru Yy, ze:

(1)
dla wszystkich X > a, a i, ~ y5Sht i jezeli istnieje catka:
00
an Jg>{x)dx
0]

@
to catkaj ' f(x, y) dXx jest jednostajnie zbiezna.

a

Dowd6d. Wskutek zbieznosci catki (1) mozna dobra¢ do kazdej dodatniej liczby *
taka liczbe Nt, zalezng oczywiscie tylko od e, ze dla N >N, jest:

@
J 'f (x)dx < i

Wskutek nieréwnosci (1) jest jednak:
00 00

f(x,y)dx J <p(x)dx< e dla

a wiec spetnia sie warunek jednostajnej zbieznosci (albowiem #,(«) nie zalezy od vy).

Przykiady.

o cos (yx) dx

jest jednostajnie zbiezna, bo:

\e~ cos(yas)| ™ &+

00

a catka Je~* dx istnieje (jest réwna 1).

21A v dx jest jednostajnie zbiezna dla wszystkich y> | > 0.

Jezeli bowiem obierzemy dowolng liczbe stalg i bierzemy
pod uwage y > 1t to:

1/®, y)| = «>X < «rf = <p(X)

a ponadto istnieje catka:

A w ,«= /e N = "~ 1 = A (-A-(=1
. ® »O0

14



212

Jezeli catka niewdasciwa z funkcji cigglej f(x,y), zalezna od parametru,
jest jednostajnie zbiezna, to mozna zmienia¢ porzadek catkowania, t.j. mozna
catkowa¢ wedlug parametru pod znakiem catki i otrzymuje sie catke,
ktéra jest takze jednostajnie zbiezna.

Dowéd. W calce:
0]

/=) Otxyrdxjay
rozt6zmy wewnetrzng catke w nastepujgcy sposob:

® N

dx + jf{x, y)dx—If{x, y)dx+ rNy)

/ =J (af ray) By ";frAy) o

W pierwszej catce, ktora jest catkg wilasciwg, mozna zmieni¢ porzadek
catkowania, a wiec:

17 types P

Wskutek jednostajnej zbieznosci catki (c) jest |rA(y)] m< £ przy odpo-
wiednio wielkiem N, a wiec:

N

|1 =3 (JIf(x, y)dy)dxl< e6s — ¥

a b,

To dowodzi, ze dla N—o00 calka, wystepujaca w tym wzorze, dgzy do 7
(i to jednostajnie) a wiec:

00 £]
| —f—[_] f(<*>.y)dy dx

Widzimy wiec, ze te sarng wartos¢ catki / dostajemy, gdy zmienimy
porzadek catkowania.

Podobnie dowodzi sie tego twierdzenia dla takich catek niewtasci-
wych, w ktorych funkcja podcatkowa wzrasta uieograuiczenie dla skon-
czonych wartosci X

W podobny sposob rozszerzamy na catki niewtasciwe regute Leib-
niza, dotyczacg rézniczkowania catki wedtug parametru.
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Jezeli funkcja f(x, y) i czastkowa 'pochodna |_|;(yy) sq ciagle w prze-
dziale bx™ y bt, oraz dla xj> a i jezeli cakki:
9(y) 'f{x,y)dx i hiy)=Jf.{x,y)dx

sq jednostajnie zbiezne, to:

0o

g'(y) = Jiyfa>, y) dx

a

Dowod. Wediug twierdzenia o catkowaniu wedtug parametru mamy:
/ y 0o oo y
i hey)dy =/ (/ t[x, y) dxjdy = f.{x, y) dyjde
oo«

Catka wewnetrzna ma wartosc:

ftM ,Y)dy: /(*1 y)_ f{X,G,)
A wiec:

(0)] ()]
/\iy) dy = ffix, y)dx —yV(a>, 6,) f?= g(y) — g(bt

Poniewaz h(y) jest funkcja ciagta, wiec istnieje pochodna lewej strony
i otrzymujemy:

h(y) = g'iy)
czyli:

g'(y)=J f,(x,y)dx c. b d. e.

Podobnie dowodzi sie reguty Leibniza dla innych typéw calek nie-
wiasciwych.

Przyktady.

1) Catka niewtasciwa:

) /e'y*dx

jest jednostajnie zbiezna dla jak to mozna wykaza¢ w spos6b
podobny, jak w przykiadzie 2 na str. 21!, powotujac sie na to, ze:

00

Jdx=\\[n
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(por. str. 114, wz6r (76)). Uzywajac podstawienia yx* — obliczamy

wartos¢ catki (a), a mianowicie;

Rézniczkujemy te catke wedlug parametru y i otrzymujemy wartosé
bardziej skomplikowanej catki:
X%~y dx= i \n\y 4
/n

Rézniczkujac catke (a) n-krotnie, otrzymujemy ogélny wzor:

1¢3...2n— 1) 1
yllfy
Mozna dowies¢, ze wszystkie otrzymane catki sa jednostajnie zbiezne,

a wiec stosowanie reguty Leibniza bylo dozwolone.
2) Chcemy wyznaczy¢ wartos¢ catki niewtasciwej;

@]
Dojdziemy do niej, stosujgc szereg przeksztatcen do catki niewtasciwej:

00

f(T* cos (yx) dx

ktorej wartos¢ mozna wyznaczy¢ elementarnemi metodami catkowania,

znajdujgc catke nieoznaczong (por. str. 27, przykiad 14).

Otrzymuje sie:

J e~*cos (yx) dx m
I +»*

Scatkujmy obie strony od O do y wedtug parametru y. Poniewaz ta catka
na str. 211), przeto mozna wy-

jest jednostajnie zbiezna (por. przyktad |
kona¢ catkowanie pod znakiem catki. Otrzymamy w ten sposob nowag

jednostajnie zbiezna catke:

sin (yXx)
f 6~

dx — arctgy
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Stosujgc raz jeszcze catkowanie wedilug y od O do y, otrzymujemy po
wykonaniu prostych rachunkow:
®

-1 — coa{yx) . .
/ ————— dx="yarctg/— j log (! -f- yl)

0

WprowadZzmy nowg zmienng z — Xy, przyczem Yy >m 0, to otrzymamy:

—! — %% %= arctgy - log (! %_!YD

2% 20/

Dla y —»00 otrzymujemy stad:

@
— cos z
dz— \n
2*
Zastosujmy do tej catki catkowanie ,per partesu, kiadac ! cosz = u,
= dv, a wiec du— sinzdz. v= —
Otrzymamy:
(153)

Catki tej nie mozna wyzuaczy¢ elementarng droga zapomocg catki nie-
oznaczonej.

Interesujacy wynik otrzymuje sie, wprowadzajagc w te catke para-
metr a zapomoca podstawienia z— ax Otrzymuje sie rézne wartosci,
zaleznie od tego, czy ten parametr ma wartos¢ dodatnig, ujemng czy tez
zero. | tak dla a > 0 otrzymujemy:

o = @> 0
(@]
Dla a < 0 otrzymuje sie:
3
sin ax
— —dx—ijn
X
0
poniewaz przy z —»-f- oo mamy X -» — 00. Wprowadzajgc za X zmienng
— x, otrzymujemy:
«foo
sin ax

ix = —1!n (a< 0)
X
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Wreszcie dla a = O jest funkcja podcatkowa stale zerem, a wiec:

J dx= 0 (dla o= 0)
o)

Mamy tu interesujacy przykiad funkcji nieciggtej, podanej jednym wzorem .

po
rEﬂ sin ax j
A
ktéora dla a> O ma wartos¢ ~n, dla o= O warto§¢ O, a dla a< O
wartos¢ — M T, a wiec ma w punkcie a = O skonczony skok.
Ustep 1L

CALKI PODWOINE.

§ 250. Catka podwdjna po prostokacie.

Zajmowalismy sie juz w § 248 catkowaniem funkcji z = f(X.y)
dwoch zmiennych niezaleznych wedtug obu tych zmiennych. | tak cat-
kowalismy najpierw wedtug zmiennej X, uwazajgc Y za parametr, a otrzy-
many wynik g{y) catkowali§my nastepnie wedlug zmiennej Yy i otrzy-

malismy:
A

(a) 1= f{ff(x,y)dx}dy
DY

Dogodniej jest pisa¢ to wyrazenie bez klamer, a mianowicie w postaci:

At
O 1=j j f{x, y)dxdy

Zaktadalismy przytem, ze funkcja f(X,y) jest ciagta w prostokacie P,
okreslonym zapomocg warunkéw: a, S X~ a2 Ny N b

Catkowania te mozna wykonaé takze i wtedy, gdy funkcja f(X,Yy)
nie jest ciggta w catym prostokacie P, lecz jest w nim ograniczona i po-
siada skonczona liczbe linij nieciggtosci, dajacych sie zamkng¢ w obszar
o dowolnie matem polu. WidzieliSmy bowiem w 8§ 246, ze wtedy funkcja
o{y), otrzymana przez pierwsze catkowanie, a mianowicie wedtug zmien-
nej *, jest albo funkcjg ciggta zmiennej y, albo posiada skonczong liczbe
skonczonych skokow, a zatem jest w kazdym razie funkcjg catkowalng
wediug zmiennej y. A wiec catka /, wyrazona wzorem (a), istnieje takze
w tym ogolniejszym przypadku.
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Calke, otrzymanag przez divukrotne catkowanie funkcji dwoéch zmien-
nych, najpierw wedlug jednej od a, do a2 a nastepnie wedtlug drugiej
zmiennej od bx do bt> nazywamy catka podwojnag z tej funkcji po
prostokacie P, okreslonym warunkami o, < 7 < nt 1 b, y SS b9

Zobaczymy w dalszym ciggu (w § '251), ze warto$¢ catki podwoj-
nej nie zalezy od tego, w jakim porzadku wykonujemy catkowanie, gdy
tylko funkcja spetnia wyzej wymienione warunki ciggtosci. Dla funkcyj
f{x,y) ciagtych dowiedliSmy tego juz w § 248 (por. wz6r (152)). Dla-
tego to w definicji catki podwdjnej nie wspominaliSmy nic o porzgadku
catkowania. Krotko oznaczamy taka catke symbolem'

(c) JJf(x,y)dxdy lub J J f(x,y)dydx

Wykazemy, ze do catek podwojnych po prostokacie odnosi sie podobne
twierdzenie o wartosci Sredniej jak do catek pojedynczych. | tak niechaj m
oznacza kres dolny a M kres gérny wartosci funkcji f(x,y) w catym
prostokacie P. Z twierdzenia o wartosci Sredniej dla catki pojedynczej
(8 .213, wzor (47)) wynika:

m(* —«i)sS J f{x,y)dx 55 M(at — a,)
Scatkujmy te nieréwnos¢ wedtug zmiennej y w granicach od do 6,
to otrzymamy:
£ mi{at — axdy < ;o H{x,y) dx™dy %/ M[a' ~ a\)dy
a stad:
»(a* — ai)(6s - —J \ j y*iE&Jdy — ~ a*~ a,)' ~ by

Oznaczajac literg P pole danego prostokata, otrzymujemy stad:

(154) m-P'&s /@2, y) dy <; M P

i o
Dobierajac odpowiednio liczbe p, posrednia pomiedzy m a Af i uzywajac
skréconego oznaczenia (c), otrzymujemy stad wzor:

(155) I f f(x,y)dxdy = H-P
>r

Ten wz4or wyraza twierdzenie o wartosci Sredniej dla catki podwdjnej
o statych granicach catkowania czyli po prostokacie.
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Whniosek. Jezeli funkcja f(X, y) jest nieujemna w catym prostokacie,
to takze fi~ 0, a wiec wedtug wzoru (155) takze catka po prostokacie
z tej funkcji jest nieujemna. Stad wynika, ze jezeli w catym prostokaci
warunek f(X,y) 5S g{X,y) spetnia sie dla dwdch funkcyj f(x,y) i g(x,y),
to takze:

f f f(x,y)dxdy <~ f fg{x,y)dxdy
® P)
Jezeli f{x,y) jest funkcjg ciggta w danym prostokacie, to przyjmuje
te warto$¢ posrednig fi w jakim$ punkcie tego prostokata, np. w punkcie
o spoétrzednych (£,9). Wtedy wzér (155) przyjmuje postac:

Wartos$é fi, obliczong z wzoru (155), nazywamy S$rednig (catkowa) war-
toscig funkcji f(x, y) w prostokacie P.

tatwo jest dowies¢, ze jezeli podzielimy prostokat P prosta row-
nolegta do osi a>6w lub y-6w na dwa prostokaty P, i Pt, to catke po
calym prostokacie mozna przedstawi¢ jako sume catek po prostokgtach
sktadowych, a mianowicie:

(157) f ff(x,y)dxdy = i ff(x,y)dxdy -f f if(x,y)dxdy
%py >,r (o
Twierdzenie to odpowiada twierdzenia n addytywnosci catki pojedynczej,

poznanemu w § 214.

§ 251. Sunowa definiga catki podwgjngj o stakych granicach.
Opierajac sie na twierdzeniu o wartosci S$redniej, zbudujemy nowa
definicje catki podwdjnej, analogiczng do podanej w § 222 definicji catki
pojedynczej, a mianowicie okreslimy te calke jako granice ciggu pew-
nych sum.
Wezmy pod uwage catke:

. L y) dx dy
z funkcji z= f(X,y) ciagtej w prostokacie ABCD (fig. 73) o polu P.
Obrazem tej funkcji jest ptat powierzchni, w ogélnosci krzywej, wzno-
szgcej sie nad tym prostokatem. Podzielmy przedziat <Ccti,0*)> na do-
wolng liczbe czesci, np. na n, czesci, punktami a prze-
dziat <6uba> na mx czesci punktami y, vy, y3--,y* ,n
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Oznaczmy ponadto a, = x0, o, = a*, i, = = Jf,.

Przez punkty podziatu wykreslmy réwnolegte do osi X i Y, to
prostokat ABCD rozpadnie sie na kratke drobniejszych prostokacikow.
Oznaczmy przezp” pole prostokata,
zawartego miedzy prostemi: /Y
Xx = xh x= ®H,y—yt, y— yk#

Catke podwéjng po catym prosto-

kacie mozemy przedstawi¢ jako

sume catek po tych wszystkich X
prostokagtach skiadowych (w mysl

wzoru (167)). Zastosujmy do kazdej m 72

takiej catki sktadowej twierdzenie

o0 wartosci S$redniej.

Niechaj i M[i* oznaczaja Fig. 73.
najmniejsza i najwiekszg wartosc
funkcji f(x,y) w obrebie prostokata p”, to twierdzenie o wartosci $red-
niej dla catki po tym prostokgcie ma (wedtug wzoru (154)) postac:

#H O/
wiidNe SiJ  J /IRy)dxdy<L Mg pii*

'» “G

Utworzywszy te nierdwnosci dla wszystkich catek skiadowych, sumujemy
je stronami i otrzymujemy ostatecznie:

Hi—1 —1 b% Ca nii—1 H|—]
i) » = A®.y) dxdy-~~

4-0 i-0 Vv, a 4-0 i-0
ZamkneliSmy w ten sposéb catke podwdjng miedzy dwie sumy; nazwijmy sk
sumg dolng a <§ sumag gérng. Sumy te oznaczamy tez krdocej symbolami:

i
) P

Tworzymy nastepnie przez dalsze podziaty caly cigg {g9 takich sum
dolnych i cigg {Spf sum gornych w ten spos6b, aby przekatna najwiek-
szego z prostokgtow skitadowych w kazdym podziale dazyta do zera.
Okazemy, ze wtedy obydwa ciggi {sp i {Sp daza do wspdlnej granicy,
d mianowicie do catki podwdjnej po prostokacie ABCD.

Dowadd.
Zbadajmy réznice pomiedzy dowolng sunmg gorng Sp a dolmg t,,:
*>p»| -p,,-! rpn—l p«-J «p-l b
an =2 2 {MH- m" IpE

A-0 /-0 A-0 /-0 A-0 /-0
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Okazemy najpierw, Ze ta rdéznica dazy do zera, t. j. ze do kazdej dodatniej liczby rf ,
mozna dobra¢ takie Nt ze dla wszystkich p> N jest |Sp— @] — Sp Sp< I tak
dzielgc prostokat P na odpowiednie maie prostokaty (co uzyskamy, biorac p wieksze
od odpowiednio dobranego N), mozna uzyskac, ze r6znica miedzy najwieksza a naj-
mniejszg wartoscig funkcji ciagtej y) bedzie w kazdym prostokacie sktadowym

*
mniejsza od dowolnej zgoéry podanej liczby dodatniej, a wiec takze mniejsza od p.

Wynika to * jednostajnej ciagtosci tej funkcji w prostokacie P. A wiec:

Mjp — J da p> N

Wobeo tego:
m—+n—+

\sp-»p\<yj> JgW
/0

Ale suma podwdjna wszystkich prostokatow pjf daje caty prostokat P, a wiec:

Z wzoru (), g raczej z odpowiedniego wzoru, napisanego dla Spi Sp, wynika, ze:

%
Yy)dx-dy — «pi $ S < e

o qtec

lim s, —J J K X dx ~
a a
Podobnie:

-/ //(*,y)dxdy  wph— < e
T i
a wiec takze:

r ?

lim S. y) da: dy

:{_A«*I

Na podstawie dowiedzionego twierdzenia mozemy podac¢ takze naste-
pujaca definicje catki podwdjnej:

catka podwodjna o statych granicach catkowania jest to granica
ciggu takich sum dolnych lub gérnych, w ktérych przekatna najwiekszego
prostokata skladowego dazy do zera; sume dolng (gérna) tworzy sie, dzielgc
dany prostokat na dowolng liczbe prostokatéw zapomocg prostych row-
nolegtych do osi spotrzednych, mnozac pole kazdego skitadowego prosto-
kata przez najmniejsza (najwiekszg) wartos¢ funkcji w tym prostokacie
i dodajagc do siebie wszystkie otrzymane w ten sposob iloczyny.
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Zamiast najmniejszych lub najwiekszych wartosci funkcji mozna
uzy¢ do definicji catki takze wartosci funkcji w dowolnym innym punk-
cie (En>Vu) tego prostokata sktadowego. Albowiem:

«J1 l(& W) N Mt

a wiec i kazda suma, utworzona przy pomocy tych wartosci posrednich,
zawiera sie stale pomiedzy odpowiednia sumg dolng i gérna, a zatem
dazy do tej samej granicy. Stad wynika, ze takze cigg sum posrednich:

m —i a_-1

P P
5,- v
*-0 10
dazy do catki podwodjnej o stalyoh granicach catkowania.

UzywaliSmy w naszych rozwazaniach mpodwdjnych sum i podwéjnych
wskaznikéw i i k, aby uwydatni¢ ich zwigzek z catkg podwojng. Mozna
jednak takze ponumerowac¢ wszystkie prostokaciki sktadowe, uzywajgc
tylko jednego wskaznika, np. r, przebiegajgcego kolejne liczby szeregu
naturalnego od 1 do Np— m-n i przedstawi¢ sumy s Sp, Sp zapomoca
sum pojedynczych postaci np:

r- 1

Wszystkie wyniki, uzyskane w tym paragrafie, odnosza sie, jak to zaraz
zobaczymy, takze do funkeyj f(x, y) nieciagtych, lecz ograniczonych, po-
siadajgcych skonczona liczbe takich nieciagtosci, ktore sie dadzg zamknac
w obszar o dowolnie matem polu.

| tak dla funkeyj nieciagtych nie wszystkie réznice — mJ>, figurujace we
wzorze na sp — Sp, dadzg sie uczyni¢ dowolnie malemi. Jezeli bowiem prostoka-
ciki zawierajg czesci linij przerwy (jak na fig. 72, str. 2Q2), to rdéznice miedzy

najwiekszg a najmniejsza wartoscig funkcji f(x)y) w takich prostokaeikach nie beda
dowolnie mate, lecz beda réwne skokowi funkcji (np, odcinkowi CC na fig. 72 w oto-
czeniu punktu D). Podzieliwszy caly prostokat P na drobniejsze prostokaty, roztézmy
go na dwie czesci: na jedng P*p), w, ktérej prostokaty skladowe nie zawierajg zad-
nych punktéw nieciagtosci I na drugg P~\ w ktérej prostokaty skladowe zawierajg
punkty nieciggtosci. Réznica miedzy suma gérng a dolna, utworzona dla czesci P {\
da sie uczyni¢ dowolnie mata, np. mniejsza od f-e, poniewaz dla tej czesci rdznice

— mjr* daza do zera. W czesci zas P/> nie sg te roznice dowolnie mate. lecz
w kazdym razie sa mniejsze od M — m, przyezem M oznacza kres gérny, a m kres
dolny wartosci funkcji f(x, y) w catym prostokacie P. Cze$¢ sumy, okresSlonej wzo-
rem (Il), przypadajaca na P 2> bedzie zatem mniejsza od (M — m) < Pif). Otéz pole
P~> mozemy uczyni¢ dowolnie rtiatem, albowiem wedlug zatozenia mozna zamknaé
wszystkie linje nieciggtosci w obszar o dowolnie matem polu. Mozna np. uzyskaé, ze

8
P~ 1< ,awiec (M-m) - P<B< Razem wiec mozna takze dla niecigg-



tych funkcyj uzyskad, ze bedzie [Sp— —e> a to znaczy, ze takze
teraz jest: .

lim (Sp—9 =0

p-*co
Stad za$ wynikajg dalsze konsekwencje tak samo, jak dla ciagtych funkcyj f(x,y).

We wszystkich rozumowaniach tego paragrafu nie grat zadnej roli

porzadek, w jakim wystepuja zmienne & i y. A wiec takze calka:

a,
y) dy\ dx czyl'. //f(x, y) dy dx
a a

jest granicg tych samych ciggéw, ma zatem te samg wartos¢, co catka,
obliczana najpierw wedtug zmiennej X a potem wedlug y. Wzér (152)
na str. 207 stosuje sie zatem nietylko do funkcyj ciggtych, lecz takze
do takich funkcyj nieciggtych, ktore sg ograniczone i posiadajg najwy-
zej skonczong liczbe linij nieciggtosci.

Jezeli wiec obliczamy wartos¢ catki podwojnej po prostokacie za-
pomoca dwoéch kolejnych catkowaé, to mozemy zmienia¢ porzadek cal~
kowania.

Uwaga. Catke podwOjng oznaczong mozna tez zdefinjowac jako kres
gérny sum dolnych lub kres dolny sum gérnych, analogicznie jak to
czyniliSmy w nauce o pojedynczych catkach oznaczonych w § 212 i nast.

8§ 252. Zmigzek catki podwgingj z objetoseia,

Przy pomocy catki podwéjnej mozna zdefinjowac i oblicza¢ objetosci
rozmaitych bryt, ktéorych nie mozna bada¢ metodami matematyki ele-
mentarnej. Z drugiej strony uzyskamy w ten sposéb dogodng geome-
tryczng interpretacje catki podwdjnej. Istnieje tu podobny zwigzek miedzy
objetoscia a catka podwoéjng, jak miedzy polem a catkg pojedyncza.

Wezmy pod uwage bryte, zamknieta prostokatem, ptatem dowolnej
powierzchni o réwnaniu z — f(Xx, y), wznoszacym sie nad tym prostoka-
tem i ptaszczyznami, rzucajacemi ten ptat powierzchni na ptaszczyzne (XY),
np. bryte ABCDEFGH na fig. 73 (str. 219). Niechaj zaden punkt tej
powierzchni nie lezy pod ptaszczyzng (X Y), t.j. niechaj funkcja f(x, y)
bedzie nieujemnag dla wszystkich punktéw (®,y), zawartych w badanym
prostokacie. Utwoérzmy dla tej funkcji sume dolng nad prostokatem ABCD.
Kazdy jej dodajnik mapt jest rowny objetosci graniastostupa o podsta-
wie pit a o wysokosci m ~ réwnej kresowi dolnemu wartosci z na™ tym
prostokatem p'k Cala suma dolna jest réwna objetosci schodkowej bryty,
wpisanej w danag bryle. Tworzac cigg takich sum dolnych, w ktérych
przekatna najwiekszego sktadowego prostokata dazy do zera, otrzymu-
jemy cigg objetosci odpowiednich bryt schodkowych, aproksymujacych
coraz lagiej badang bryte. Granice tego cigga uwazamy za objetos¢ danej
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bryty. Wiemy za$ z poprzedniego paragrafu, ze granicg tego ciggu jest
catka podwdéjna z funkcji f(x,y) po prostokacie. Przyjmujemy zatem na-
stepujacg definicje objetosci.

Objetos¢ V bryty, zamknietej prostokatem, lezacym na ptaszczyznie [XY)
o bokach réwnolegtych do osi spétrzednych, powierzchnig o réwnaniu z—f{x vy),
wznoszacg sie nad tym prostokatem i plaszczyznami, rzucajgcemi ten piat
powierzchni na plaszczyzne (XY), jest to catka podwojna z funkcji f(x, y)
po tym prostokacie, a mianowicie:

0
oo Ad—T8ydoy

Dla powierzchni, lezacej pod prostokgtem, t. j. dla ujemnych z, ma ta
catka warto$¢ ujemna i podaje wartos¢ — F. Ogo6lnie catka podwdjna
po prostokacie z funkcji, przybierajgcej dodatnie i ujemne wartosci
w prostokacie P, przedstawia algebraiczng suine objetosci, lezacych nad
ptaszczyznag (.YY) i pod nia.

Przyktad 1) Obliczy¢ objeto$¢ bryty, wznoszacej sie nad prostoka-
tem, zawartym miedzy prostemi x = 0 i X = o, tudziez y—0 i y—b
na ptaszczyznie (XY) a zamknietej
u gory powierzchnig o réwuaniu:

pxy
(Jest to paraboloida hiperboliczna, por.
tom. I, str. 44).
Bryte te przedstawiono na fig. 74.
Oznaczmy literg c¢ wartos¢ funkcji z
w wierzchotku C prostokata,t.j. c=p-a*6.
Przekréj danej powierzchni ptaszczyznag
® =a, prostopadtag do (X Y), jest linjg
prosta o réwnaniach: X — a, z— pay, a podobnie przekr6j ptaszczyzng
y — b jest linja prosta o réwnaniach y= b, z= pbx. (Celem plastycz-
nego uwidocznienia zakrzywienia tej powierzchni narysowano siatke linij
prostych, lezacych na niej). Objetos¢ badanej brylty wyrazamy wzorem:
b a
V=1 J pxydxdy

Wykonujemy catkowanie najpierw wedtug X a nastepnie wedtug y i otrzy-
mujemy:
6 *-0 b =

t P Vidy —Jispa*ydy = \paty%]= $patb*
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Poniewaz pab «*=c, przeto:
V = \abc

Objetos¢ tej bryty jest wiec réwna czwartej czesci objetosci prostopa-

dioscianu o tej samej podstawie a o wysokosci .c. Widzimy stad analogje

z wzorem na pole, ograniczone tukiem paraboli o réwnaniu y*= 2pa?
osig rzednych i prostg prostopadia do tej
osi (por. 8 220, przykitad 5).

Przykiad 2) Obliczy¢ objeto$¢ prosto-
padtoscianu, Scietego dowolng ptaszczyzna
0 réwnaniu:

n 9= Ax+ By -j-C

znajac krawedzie a i b podstawy.
Umieszczamy ten prostopadtoscian
tak, aby krawedzie podstawy lezalty na
dodatnich kierunkach osi X i Y (fig. 75).
Objetos¢ bryty, wznoszacej sie nad pro-
stokatem P, a zamknietej u goéry ptaszczyzng o réwnaniu (l), wyraza sie
wzorem:

b a

V—J J (Ax -f By -f- C)dxdy

A wiege:
b m b

V—J ' Ax* -f Bxy 4- Cx)jdy = J (£zla* -+ Bay -f Ca) dy

V~~"Aa*yA-"Bay* + Cay)\O: %Aa*b + \ Bab*+ Cab
V= a(Ae-i-f BeE+ C)

Oznaczmy wysokos¢ z, nalezagcag do punktu Srodkowego prostokgta P
(wysokos¢ ta trafia w Srodek przekroju, ktéry jest oczywiscie rownolegto-
o6okiem), krotko znakiem Z't'T' to wzo6r przyjmie postac:

i

V= P ez

Objetos¢ prostopadtoscianu $cietego dowolng ptaszczyzng jest zatem réwua
objetosci zwyklego prostopadtoscianu o tej samej podstawie a o0 wvso
kosci rownej odlegtosci srodka przekroju od podstawy.

Wysokos$¢ ta jest Srednig arytmetyczng czterech krawedzi bocznyct
prostopadtoscianu S$cietego (wykazuje sie to, wstawiajac w réwnanie ptasz-
czyzny za (@, y) kolejno (0,0), (a,0), (0,6), (a,6) i biorac $rednig aryt-
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mityczng czterech otrzymanych na z wartosci). Mozna wiec wyrazié
otrzymany wzo6r takze tak: objetos¢ prostopadtoscianu Scietego jest réwna
podstawie, pomnozonej przez $rednig arytmetyczna czterech Kkrawedzi
bocznych.

§ 253. Calki podwgjre po donolnych obszarach (W zmiennych
granicach catkowania).

Omawialismy dotychczas tylko catki podwdjne nad obszarami pro-
tokagtnemi. Takie catki wystepuja nader rzadko w zastosowaniach. Naj-
czesciej mamy do czynienia z ogolniejszemi
obszarami; tak np. przy obliczaniu objetosci
6semKki elipsoidy natrafiamy na catke podwdjng
nad. obszarem OAB, zamknietym z jednej
strony elipsg (por. fig. 76). Bedziemy tu rozwa-
zali tylko obszary domkniete (por. tom |1, str.

17— 18), ktoérych brzeg skitada sie ze skon-

czonej liczby linij, dajacych sie przedstawic

w postaci y = o>(x) lub x — ip(y). Takie

obszary nazywamy obszarami regularnemil). Brzeg takiego obszaru regu
larnego da sie zamkna¢ w obszar o dowolnie matem polu.

Wezmy zatem pod uwage funkcje f(x,y), okreslonga w dowolnym
obszarze regularnym, jak na fig. 77.

Niechaj f{x.y) spetnia te same
warunki ciggtosci, co w 8§ 250. Defi-
nicje catki po takim obszarze D spro-
wadzamy do definicji catki po pro-
stokacie. Aby to uskuteczni¢, opisz-
my na obszarze D prostokat P
o0 bokach réwnolegtych doosi X i Y
dwa jego boki przechodzg zatem
przez te punkty obszaru D, ktére
maja najwiekszg i najmniejsza od-
cieta, a dwa inne przez te punkty,
ktore majg najwieksza i najmniej-
sza rzedna. Okreslmy funkcje pomocniczg ft(x,y) dla wszystkich punk-
tow prostokata P w nastepujacy sposob.

Niechaj /j@j, y) — f(x,y) dla wszystkich punktéw obszaru D,
% fl(x,y) = Q dla wszystkich pozostalych punktéw ptaszczyzny (XY).

Por podrecznik prof. S. Banacha p- t. Rachunek ro6zniczkowy i elkowy
Tom 11, str. 171.
Rachunek rotniezkowT i catfcow. T.-a. 15
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Calke epodwtjng z tej pomocniczej funkcji /,(#,y) po prostoka-
mCle P nazywamy catkg podwojng z'funkcji f[x, y) po obszarze D.

Catke podwdjng po obszarze i) oznaczamy symbolem: / / f(x,y)dxdy,
)
catke za$ podwdjng po prostokgcie P oznaczyliSmy (str. 217) symbolem

J ”J 't azatem mozemy naszg definicje napisa¢é w nastepujacy sposoéb:

W

fJIf(x,y)dxdy=J ffx(my)dxdy przyczem /, (X,y)= | NN
v>r Vr poza

Uwaga 1 Funkcja fx(x,y) jest zwykle nieciggta wzdtuz brzegu | obszaru D nawet
wtedy, gdy f(x, y) jest funkcja ciggta (brzeg | tylko wtedy nie bytby linjg nieciggtosci,
gdyby brzeg L danej powierzchni z — f(x,y) lezat na ptaszczyznie (XY')). Wiemy jed-
nak, ze catka nad prostokatem istnieje takze dla nieciggtaj funkcji 7/, (x, y), jezeli tylko
ta funkcja jest ograniczona a jej linje nieciggtosci dadzg sie zamkngé w obszar o do-
wolnie maiem polu- Tutaj za$ wlasnie mamy do czynienia z takim przypadkiem.

Uwaga 2. Catke po dowolnym obszarze mozna takze okresli¢ bezposrednio jako
granice ciggu odpowiednich sum dolnych (lub gérnych), otrzymanych przy pomocy
podziatlu obszaru na drobniejsze elementy zapomocg prostych, réwnolegtych do osi
X i y. Nie wszystkie jednak elementy beda prostokatami, albowiem przy brzegu
obszaru wystgpig elementy, w ktérych brzeg wchodzag tuki linji 1.

Uwaga 3. Jezeli obszar D roztozymy zapomocag dowolnej linji na dwie czesci
fi, i fia to mozna okazaé, ze:

1
f f rf-)dx dy = \] yf(x, y) dx dy-)-\] \] f[x, y) dx dy
W (Di) (Di)
Jut to uogdlnienie twierdzenia o addytywnosci catki pojedynczej (por. § 214).

Okazemy, ze obliczenie catki po dowolnym obszarze regularnym
sprowadza sie — podobnie jak
dla catki po prostokacie — do
obliczania catek pojedynczych,
w ktorych jednak nie wszystkie
granice sa liczbami statemi.
Wezmy pod uwage obszar re-
gularny D, zamkniety taka linja,
ktérg kazda prosta réwnolegta
do osi X przecina najwyzej
w dwoch punktach (jak na
fig. 78). Inne obszary, z ktéremi
bedziemy mieli do ccynienia,

mozna rozdzieli¢ na obszary tego rodzaju i zastosowaé nastepnie twier-
dzenie z uwagi 3.
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Wedtug przyjetej powyzej definicji catki po obszarze D mamy:

(b) fj f(x,y)dxdy= f\(®.V)dx\11V
ADY ix a
Obliczmy najpierw catke wewnetrznag:

g(y) = JfAX,y) dx
d
Obierzmy jakie$ state y z przedziatu <fbxb{f> i wykreslmy przez odpo-
wiedni punkt osi Y réwnolegta do osi X. Przetnie ona opisany prostokat
w punktach A, B, a brzeg obszaru D w punktach A\ B‘ o odcietych

“(y) " x¥y).
ZaznaczyliSmy wyraznie, ze te odciete sa funkcjami zmiennej vy,
albowiem do kazdego y z przedziatu nalezy jakas$ odcieta xt

na tuku KNM i jaka$ odcieta *, na tuku KLM. Roéwnania tukow, two-
rzacych brzeg obszaru, majg wiec postaé: X — xX(y), X — XRy).
Catke g(y) mozemy roztozy¢ na trzy catki:
a Hy)
g{y)— | fA(X,y)dx — | Z,(x,y)dx -(-j fi(x,y)dx-\-j ft(x,y) dX
al " *ity) “1(>)

Pierwsza i trzecia catka po prawej stronie majg wartos¢ 0, poniewaz
/,@ y)= 0 poza obszarem D. Natomiast w drugiej calce mozna zamiast
fi(x,y) napisac¢ f(x,y), poniewaz te funkcje majg w obszarze D te same
wartosci. Ostatecznie wiec:

gy) = f /(*.y) dx
w)

Wobec tego wzdér (b) przyjmuje postac:

*1(Si
(159) f fAR y)dxdy=y 'l jf{x,y) dx|dy
(o> m

przyczem X — X,(y) i X — X2(y) sa réwnaniami dwéch tukéw, tworza-
cych brzeg obszaru D, a 6, i bt sg wartosciami najmniejszej i najwiekszej
rzednej punktéow brzegu. Widzimy stad, ze obliczenie catki po takim
obszarze D sprowadza sie do kolejnego obliczenia dwoch catek pojedyn-
czych, przyczem granice pierwszego calkowania (wedtug X) sa zmienne
a drugiego (wediug y) state. Zwykle opuszczamy klamry i piszemy po-
wyzszy wzOr w postaci:
B Xy
(159a) J A®,y) dx dy = f(x, y) dx dy

16»
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Catkowanie mozna wykona¢ takze w innym porzadku, wtedy jednak
zmienig sie granice catkowania, jak to zaraz zobaczymy. Niechaj obszar D
ma te wlasnos¢, ze kazda prosta rownolegta do osi Y przecina jego brzeg
najwyzej w dwoch punktach. W calce, wystepujgcej po prawej stronie
wzoru (b), mozna zmieni¢ porzadek catkowania, jest to bowiem catka po
prostokacie. Otrzymamy w ten spos6b zamiast wzoru (b) nastepujacy wzor:

f f/(®,y) dxdy = ii i fi(®,y)dy\dx
(DV a, £

Celem obliczenia wewnetrznej catki:

h{x) = of y) dy

obierzmy dowolne X z przedziatlu O i> i wykreslmy przez odpo*
wiedni punkt osi X prostg réwnolegta do osi Y. Przetnie ona brzeg
obszaru w dwéch punktach o rzednych yx(x) i yt(x). Rozumujac tak, jak
w poprzednim przypadku, otrzymamy:
>4
h{x)= 7/f(x,y)dy

Mw
Zatem:

(160)

przyczem y = y+(X) i y — y2(*) sa réwnaniami tukéw, tworzacych brzeg
obszaru Z), a o, i a, wartosciami najmniejszej i najwiekszej odcietej
punktow brzegu. Ten drugi spos6b obliczania catki po obszarze D mo-
zemy uwidoczni¢ juz w jej symbolu, piszac dy dx zamiast dx dy.

Klamry opuszeza sie zwykle, podobnie jak we wzorze (159a).

Najprostszem zastosowaniem caitki podwdjnej po dowolnym obszarze
jest obliczenie pola tego obszaru. Wystarczy w tym celu obra¢ f[x,y) ~ 1
dla wszystkich punktéw obszaru.

Twierdzimy, ze:

(161)

Dowdd. Jezeli kazda prosta rownolegta do osi Y przecina jego brzeg
najwyzej w dwoch punktach, ta stosujgc wzér (160), otrzymujemy:

f f dxdy jdy dx — j dyjdx= J(tft(x) — y¥x)) dx
D U» a W) a
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Czyli:

J J dxdy=f wyt(x)dx—J yix)ax= D

(D) a, a,
(por. Btr. 191). Jezeli proste réwnolegle do osi spolrzednych przecinajg
brzeg obszaru w wiecej anizeli dwdéch punktach, to rozkiadajgc obszar
na takie obszary, ktore proste réwnolegte do osi przecinaja najwyzej
w dwéch punktachf stosujemy do kazdego skiadowego obszaru poprzedniag
metode i otrzymujemy takze w tym przypadku wzér (161).

Do catek po dowolnym obszarze odnosi sie twierdzenie o wartosci

Sredniej, podobne jak dla catek po prostokacie, a mianowicie:

(162)

Dowodd. Poniewaz m oznacza kres dolny wartosci funkcji f(x, y)
w caltym obszarze, zatem:
m ;8§ f(x,y)
Stad wynika, ze takze:

I f mdxdy<z | | f(x,y)dxdy
lor DO

czyli:

m jJ"dx dy Jf(x,y)dxdy

Stad otrzymujemy na podstawie wzoru (161):
m - D J f(x, y)dxdy
W podobny spos6b stwierdzamy druga nierownos¢, zawartg we wzorze (! 62).

Stad otrzymuje sie na S$rednig wartos¢ funkcji w obszarze D — podobnie
jak w 8§ 250 — wzbér:

(163)
Jezeli 1(x.y) jest ciggta w obszarze D, to istnieje taki punkt o spotrzed-
nycb y — w ktorym funkcja przyjmuje te warto$¢ Srednig i

i wtedy zachodzi wzér:

(163a)
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Opierajac sie na twierdzeniu o wartosci $redniej, wyrazonem wzorem (Iti2),
mozna okaza¢, ze catlka po dowolnym obszarze jest granica ciggu sum
dolnych (lub gornych), otrzymanych przy pomocy podziatlu obszaru na
drobniejsze elementy zapomocg dwéch systeméw
dowolnych linij, prostych lub krzywych (a wiec
niekoniecznie prostych rownolegtych do osi spét-
rzednych). Trzeba przytem obrac¢ taki cigg sum,
aby s$rednica najwiekszego elementu sktadowego
przy tym ciagu podziatéw dazyta do zera. (Sred-
nicg takiego elementu powierzchni nazywamy
kres gorny odlegtosci dwéch dowolnych jego
punktéw od siebie).
Tak np. przy uzyciu spo6trzednych bieguno-
wych r, (p dzielimy obszar D zapomoca peku
prostych, okresSlonych warunkiem <= ¢ i gromady kot spotsrodkowych,
odpowiadajgcych warunkowi r = cx, na elementy nieprostokatne 4gtt> jak
to uwidoczniono na fig. 79. Catke podwodjng po obszarze D mozna wtedy
uwaza¢ za granice ciggu sum postaci:

£ a*

(D)

Okreslilismy (w & 252) objetos¢, wznoszgcag sie nad prostokatem. Obecnie
mozemy uogdlni¢ te definicje na objetosci, wznoszace sie nad dowolnemi
obszarami. Definicja catki po dowolnym obszarze zapomocg sum doluych
(lub gérnych) naprowadza nas na przyjecie nastepujacej definicji obje-
tosci, wznoszacej sie nad dowolnym obszarem (jak- na fig. 77 lub 78).
ObjetosScia V bryty, zamknietej obszarem D, lezacym na ptaszczyznie {X Y\
powierzchnig o réwnaniu z — f(x, y), wznoszaca sie nad tym obszarem i po-
wierzchnig walcowa, rzucajacg ten ptat powierzchni na plaszczyzne (XY),
nazywamy catke podwojng z funkcji f(x,y) nad tym obszarem, a mianowicie:

(164) j'z dxdy= fif[x ,y)dxdy
S04 (D)

Dla powierzchni, lezacej pod obszarem D, t j. dla ujemnych z catka ta
ma wartos¢ ujemng i podaje wartos¢ — V, Ogdlnie catka podwdjna
z funkcji, przybierajacej dodatnie i ujemne wartosci w obszarze D, jest
réwna algebraicznej sumie objetosci nad ptaszczyzng (JtY) i pod nig
(przyczem pierwsze sa dodatnie a drugie ujemne).
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8§ 254. Przyktady catek podwéjnych po dowolnych obszarach.

1) Wyznaczy¢ granice catkowania dwoéch catek pojedynczych, do
ktérych sie sprowadza obliczanie catki:

1= f f f{x,y)dxdy

0)
jezeli obszar catkowania jest ograniczony parabolg o réwnaniu y = #¥*,
prosta y— 2 — X i osig Y (fig. 80). Punkt A ma spoéirzedne (0, 2)
a punkt B spotrzedne (1, !), jak to wynika z rozwigzania ukiadu réw-
nan y = i y— 2 — X. Wykonujac najpierw catkowanie wedtug vy,
trzeba ustali¢ x. Stalemu Xx odpowiada prosta rownolegta do osi Y.
Przecina ona obszar catkowania w dwéch
punktach o rzednych vy, i yt, przyczem v,
nalezy do +4{uku paraboli, a wiec vy, =
ay,= 2—X, jako rzedna prostej AB. Gra-
nice zan dla zmiennej X sa stale, a miano-
wicie catkujemy od najmniejszego X, t. j. od
X, = 0, do najwiekszego: x2= 1.

A wiec:

imi-*
| = \] f(x, y) dy dx
0 »

Jezeli chcemy zmieni¢ porzadek catkowania, pig go

to nalezy roztozy¢ dany obszar na dwie czesci:

OBC i ABC, albowiem w kazdym z tych obszar6w beda inne granice
(zmienne) dla x. Wobec tego nalezy takze catke 1 rozitozy¢ na dwa do-
dajniki, w mys$l uwagi 3 na str. 226. | tak w obszarze OBC, przy sta-
tem y, zmienia sie X od odcietej osi Y do odcietej paraboli, t.j. od xt= 0
do xt= V¥ Dla zmiennej y granice catkowania sg state: od y, =0

do y, = |. W obszarze za5 ABC zmienia sie Xx od xx= 0 do odcietej
prostej AB, t j. do xt= 2 — vy, a granice dla y sa-stale, a mianowicie
y, = l,y, = 2 Zatem przy tym porzadku catkowania jest:
A
/=jT jf(x, y)dxdy-{- y*j f(x,y)dxdy
00 10
2) Zbada¢d, jaka posta¢ ma obszar catkowania w cailce:
o XA2a

-/ 7/ f{x,y)dydx
0 Jy=—= <

Jak sie zmieni sposéb obliczania tej catki, gdy zmienimy porzadek cat-
kowania?
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Rzedna zmienia sie od y = Vaa— xi do y= x -f- 2a, t j. od laku
potkola o promieniu a, o Srodku w poczatku uktadu, do linji prostej,
przedstawionej na fig. 81. Odcieta zmienia sie od x = 0 do jc= (i,
t. j. od osi rzednych do prostej rownolegtej do tej osi w odstepie a
Obszar catkowania ma zatem posta¢ czworokata krzywolinjéwego ABEF.

GdybySmy zmienili porzadek catkowania, to

trzebaby roztozy¢ catke na 3 dodajniki, odpo-

wiadajace obszarom ABC, ACDF i DEF.
Otrzymamy w ten sposob:

a a (a a

—J J A®.y)dxdy +yyV (a, y)dxdy +

SR a
+ J J flx,y)dxdy

3) Wyznaczy¢ granice catkowania, jezeli obszar catkowania jes:
tréjkatem o wierzchotkach A(— 1, 0), J3(l, 2), C(4, — 1) (fig. 82). Przy
pomocy znanego z geometrji analitycznej
wzoru:
y-yi_ ®—@,
W\ — ® — 02

otrzymujemy réwnania bokéw tego trojkata:
AB...y = x -f 1
BC...y— — a -f- 3
<4C..5)/-f-x -f- 1 =0
Jezeli catkujemy najpierw wediug X, to trzeba wustalic y Widzimy, ze
wtedy otrzyma sie inne granice (zmienne) dla x w czesci AEB, a inne

w czesci AEC. Wobec tego trzeba roztozy¢ catke po catym tréjkacie ABC
na dwa dodajniki w nastepujacy sposob:

g 3y, 0 3y
—J 1 y)dxdy —] *Jv@, y)dxdy -fj Jf(x,y)dxdy

Przy zmienionym porzadku catkowania trzeba inaczej roztozy¢é obszar,
a mianowicie zapomocg prostej BF Wtedy:

ti *+l t %43

=3 T fe.y)dydx\~] J f(x, y)dydx

<>
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4) Obliczy¢ pole obszaru, zawartego miedzy parabolg o réwnaniu y = x
a elipsg o réwnaniu btxt -j- a*y® = a*6® (fig. 83). Wedtug wzoru (.161)
pole tego obszaru ma wartosé

D=J"j dxdy

w
Gdybysmy catkowali najpierw wedtug X, to trzebaby oblicza¢ osobno :
obszar, lezacy nad cieciwg AB a osobno
pod nig. Dogodniej jest jednak catkowac
najpierw wediug y Wtedy granice dla y
sg y, — X%, y, = - \a* — X1. Najmniejsza .
odcietg jest odcieta X — — m punktu A, -
w ktéorym parabola przecina elipse a naj-
wiekszg odcieta Xx — m punktu B. Odciete
te otrzymuje sie przez rozwigzanie ukiladu réwnan: paraboli elipsy.
Zatem:
~fm asl* n
D—J J dydx=J" — X2— a;2j dx
—m —m
Uzywajac dla pierwszej czesci tej catki wzoru (25a) na str 25, otrzy-
mujemy:
D - Im\al — m8-(- a 2aresin W) — | ws
5) Nad c¢wiartka D kota o réwnaniu x2-f-y2= r2 wznosi sie pc

wierzchnia krzywa, okreslona réwnaniem:
pXxy
(jest to paraboloida hiperboliczna; por. przykiad | na str. 223). Obliczyé

¢rednie wzniesieniem tej powierzchni nad poziom (X Y). Chodzi tu o obli-
czenie S$redniej wartosci y funkcji pxy nad obszarem D. Z wzoru (163)

otrzymujemy:
A e 715 pxy dx dy
D
Pole obszaru jest D = ~r® n. Jezeli catkujemy najpierw wedtug X, to
granicami catkowauia dla X sg: X, 0, \rl —y* adlay ody2*O de
y, — r. Zatem:
rf

*= r*Af,fP x* dxd*



6) Obliczy¢ objetos¢ czesci walca kotowego o promieniu a na fig. 84

wznoszacag sie nad trojkatem OAB, ktory jest potéwka kwadratu OCAB
o boku a Rownanie walca kotowego tak po-

tozonego, jak na fig. 84, ma postac:

X* -)-z* = al

Obszarem catkowaniajest trojkat OAB, ktorego
bok OA ma w uktadzie X, Y réwnanie y = X.
Funkcjg, ktéorg mamy catkowaé, jest z=

a* \a* - x*. Uzyjmy wzoru (164), a wiec:

_ x x*dxdy
Tfr

Wygodniej bedzie citkowaé najpierw wedlug y, a wiec do obliczenia
tej catki uzyjemy wzoru (160). Przetnijmy obszar catkowania dowolng
prostg rownolegta do osi Y, to y, jest stale réwne O, a y, = X, jako
rzedna punktu, lezacego na prostej OA. Granicami catkowania wedtug y
sag wiec y, =0 i yt=x. Najmniejsza odcietag dla tego obszaru jest x = 0,
a najwiekszg x = a, a wiec granicami catkowania dlaa:sg a,= 0,a,= a.
Wobec tego:

\% — X3y
0 0
Ostatnig catke obliczymy najtatwiej, uzywajgc podstawienia: a* — X*—t
a stad — 2x dx = dt, czyli xdx — — \dt. Dla * = 0 jest t= aJ a dla
m— ajest t= 0 A wiec:

a 0 0

(Niechaj czytelnik okaze, ze przy zmianie porzadku catkowania nalezy
obra¢ dla x granice x{= y, x2— a, a dla y granice y, = 0, y2= a).

Interesujgcem jest, ze wz6r na objetos¢ tej czesci walca.nie zawiera
liczby u. Objeto$¢ czesci tego walca, wznoszacej sie nad catym kwadra-
tem OCAB, me jest bynajmniej rowna podwdéjnej objetosci czesci, wznoszacej
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sie aad potobwka OAB tego kwadratu. Objetos¢ ta bowiem ma wartosé
\a*n, jako ¢wiartka walca réwnobocznego o promieniu a, a to jest rézne
od 2V=%a*. A wiec przez poprowadzenie przekroju OAF rozpada sie
¢wiartka walca na dwie nieréowne czesci:

r=£a55 i r,="ast— £al— a3% — M

Utcaga. Takie bryly spotykamy w architekturze, a mianowicie t.iw. sklepieni»

klasztorne sktada sie z 8 powierzchni postaci FAB,
zestawionych tak, jak to uwidoczniono na fig. 85a
w rzucie na ptaszczyzne poziomg (kreski na ry-
sunku biegng wzdtuz tworzacych walcéw). Nato-
miast sklepienie krzyiowe sklada sie z 8 czesci
powierzchni walcowej, majgcych posta¢é EAF na
fig. 84, zestawionych obok siebie tak, jak wska-
zuje fig. 86bh.

7) Przy pomocy catki podwodjnej mozemy obliczy¢ objetosé elipsoic
tréjosiowej o réwnaniu:

(ObliczaliSmy ja juz w inny sposob w § 231, przyktad 2). WeZmy pod
uwage 6semke tej elipsoidy (por. fig. 76, str. 225). Obszarem catkowa-
nia jest ¢wiartka elipsy OAB o réwnaniu:

J+ Qny:

Funkcja podcatkowa ma postac:

1/7 f
i-ii-fi

Catkujac najpierw wedtug X, mamy nastepujgce granice catkowania:

A= 0, xt— | \b'— y*

a dla y:

Zatem:

b i
Po wykonaniu rachunkéw otrzyma sie:

V= £abcT.
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8) Obliczy¢ objetos¢, zawartg miedzy powierzchnig elipsy o rownaoin;.

powierzchnig o réwnaniu:
z— AXi-f- Ry*

gdzie A i B sa liczbami dodatniemi (jest to paraboloida eliptyczna, por.
tom |, str. 43) i pomiedzy powierzchnig walca eliptycznego o tworzacych
prostopadtych do ptaszczyzny (Z7), majacego te elipse za kierownice.

Obliczmy c¢wiartke tej objetosci, a mianowicie objetos¢ nad ¢wiartkag
elipsy. Jezeli catkujemy najpierw wedtug X, to granice catkowania sg
takie same, jak w poprzednim przyktadzie; jezeli za$ catkujemy najpierw
wedtug y, to granicami catkowania dla y sa:

VK == () * Var— x|

granicami zas dlax sg & = 0, xt=a. Rozdzielmy odrazu catke z funkcji z
na sume dwoéch catek i wykonajmy w pierwszej z nich najpierw catko-
wanie wedtug y, a w drugiej najpierw wedtug X. A wiec:

b\ »
\V—] J Axtdydx-\-J ij By*dxdy —/, -f J*

0o o 0 0

Ot6z pierwsza catke obliczamy w nastepujacy sposoéb:

av~s
7, = "A xay |[dx — ~J "N X* — X1dx
0] 0 0]

Uzywajgc podstawienia X — asin t, otrzymujemy:

N n

/j = £Aba3*(sin 2ty dt = %Aba*J'(l — cos4t)dt =
0

Drugiej catki nie trzeba nawet oblicza¢, albowiem rézni sie ona od pierw-
szej tylko tem, ze zamiast A wystepuje B, a a i b nalezy pomieniaé¢ ze
soba. Wobec tego:
Bab*n
o 16
wiec:
V= \nab (A a'X3¥
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8 255. Pole powierzchni (Komplanacja powierzchni).

Obliczalismy dotad tylko pola powierzchni obrotowych, a uzywalismy
do tego celu catki pojedynczej (por. 8§ 232). Do definicji i obliczania
p6l dowolnych powierzchni, a wiec takze nieobrotowych, uzyjemy catki
podwajnej.

Wezmy pod uwage cze$¢ powierzchni o réwnaniu z= f{x,y\ wycietg
przez walec, ktérego podstawg jest dowolny obszar regularny D, a two-
rzace sa prostopadte do ptasz-
czyzny (X Y) (fig. 86). Zatézmy,
ze badana powierzchnia posiada
ptaszczyzne stycznag, nie pro-
stopadta do (XY), w kazdym
punkcie nad obszarem D. Za-
pomocg dwéch systeméw pro-
stych réwnolegtych do osiJCi Y
rozktadamy obszar D na ele-
menty P n P f -PN- Nad kazdym
z fiich budujemy stup prosty,
ograniczony z jednej strony
elementem danej powierzchni,
w og6lnosci krzywym. Kazdy Fig. 86.
taki element pr powierzchni za-
stepujemy $ciankg ptaskg sr styczng do niego w jakimkolwiek jego
punkcie A, o spoétrzednych f£r, rjn a ograniczong pobocznica odpowiedniego
stupa o podstawie p' Utwérzmy sume tych sScianek stycznych:

Tworzgc dalsze, coraz drobniejsze podziaty obszaru D. otrzymamy w ten
spos6b cigg St, Stl...Sp... takich sum.

Definicja. Polem P badanej czeéci powierzchni nazywamy granice
ciggu sum Sp Scianek stycznych, otrzymanych przez ciag kolejnych po-
dziatdbw obszaru D (i danej powierzchni), na elementy, ktérych Srednice
daza do zera (t. j. przez cigg tych podziatéw, przy ktorych najwieksze
Srednice dazg do zera).

Okazemy, ze ta granica istnieje, gdy funkcja f(x, y) jest ciagta

i posiada czgstkowe pochodne: p— ~ == [X,y) i q= — = fyx.y), ciagte
w obszarze D. | tak pr jest rzutem- ptaskiej Scianki stycznej s, na ptasz-

czyzne (XY), zatem:

»,.= s,cosy, czyli s,= —'—
cos yr
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gdzie yr oznacza kat ostry, zawarty miedzy ptaszczyzna styczna w punkcie
Ariir,Vr) a ptaszczyzng (AT). Cosinus tego kata wyrazamy wzorem (por.

tom |, str. 339):

!
cosy— m ==
h +/>* + ?e

ezyli:

!
°ct v \\+ W4—TfM

W cosy, nalezy bra¢ na (X,y) spétrzedne dowolnego punktu prosto-
kata p,, np. (£,,17,).

Mianownik jest funkcjg zmiennych ®,y; nazwijmy go krétko e(x,y\
A wiec:

d

s = pr-/l+ /2£., Tr)+ /2(£., iyr) *=<p(£r, Vr) «Pr

Sj= Vr)Pr

Funkcja <p(x, y) jest ciagta w obszarze Z7), a wiec granica ciggu takich
sum, gdy Srednice elementéw pr daza do zera, istnieje i w mys$l uwagi 2
na str. 226, jest réwna catce:

f f<p(tc,>)dx dy czyli 7/ /7 h -1 fl(x,y) + f\[x,y) dxdy

(fi) (DY
Zatem pole. P badanej czesci powierzchni jest rowne tej catce. Uzywajac
skrécenn p, g na czastkowe pochodne, otrzymujemy ostatecznie nastepu-
jacy wzér na pole powierzchni o réwnaniu z — f(x, y) nad obszarem D:

(16»)

Obliczanie pola powierzchni krzywej nazywamy komplanacjg tej po-
wierzchni; znajac bowiem liczbe P, mozemy z tatwoscia znalezé plaska
powierzchnie (np. prostokat lub koto), majgca pole réwne polu tej po-
wierzchni krzywej.

Wzér (165) mozemy takze pisa¢ w postaci:

(165a)
przyczem y jest katem, zawartym miedzy normalng do badanej powierzchni

a osig Z. Wyrazenie, znajdujace sie pod catka, nazywamy elementem po-
wierzchni i oznaczamy je krotko symbolem da.
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A wiec:

Uwaga Celem fatwiejszego zapamigtania tego wzoru zwr6émy uwage na to. ze
jest on analogiczny do wzoru na diugos$¢ luku:

b

Przyktady.

1) Jak wielkg powierzchnie wycina prostopadtoscian, ktérego wierz-
chotki podstawy majg spoétrzedne A (O, 0), £(3,0), C(0,6), 2(3,6) z po-
wierzchni o réwnaniu:

z — \2 xy
(Jest to stozek eliptyczny, ktorego wierzchotek lezy w poczatku ukiadu

a osie X i Y sg tworzacemi; o$ jego jest symetralng kata XO0Y).
Obszarem catkowania jest prostokat ABCD. Zatem:

e 3
Ale:
a wieo:
8 8
Stad:
6 8
P ~ /w » 1]
0

2) Obliczy¢ pole powierzchni, wycietej z kuli o réwnaniu:

) i®-fyci_ _ o*=*0
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przez dwa walce o réwnaniach:
(I X*-\-y'— ax — 0, (e ®+ y*+ aaj= O

Na fig. 87 przedstawiono ésemke kuli.
Kierownica pierwszego walca jest koto o réwnaniu (Il1) a tworzaca
sg rownolegte do osi Z.
Pochodne czastkowe p i q obli
czarny s uwiktanej formy (I):

Jezeli catkujemy najpierwwedtug X,

to zmienne granice dlay sg y1= 0,

yt — \ax — X2 a x zmienia sie od

X, — 0 do Xi — a. Catkowita po-

wierzchnia, wycieta z kuli przez

ten walec, skiada, sie z 4 takich

Fig. 87 czesci: dwie leza na goérnej pot-

kuli, dwie za$ na dolnej. Widocz-

nem jest, ze drugi walec wycina dwa okna o réwnej powierzchni. Zatem:

YRR Gy dw

czyli:

dy dx
X2—y*

Obliczenie tej catki jest dos¢ mozolne. Najpierw sprowadza sie wew-

netrzng catke zapomoca podstawienia t = do funkcji arcus sinus
\a* - x!

a nastepnie przy catkowaniu wedtug X uzywa sie catkowania ,per par-
tesu Dochodzi sie ostatecznie do wyniku:

PAga*s - O

Wynik ten uzyskamy w jednym z nastepnych paragrafow (8 258)
znacznie szybciej, wprowadzajac za X i Y nowe zmienne w catke podwdjna.

Powierzchnie, wyciete z kuli przez takie dwa walce, stykajgce sie
z sobg wzdtuz osi 2z nazywamy oknami Viviani’ego.
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8 256. AmMagzek catki podnwdjnej z catkg krzywolinjona. Twier-
dzenie Greena-Ricinanna.

Catka podwéjna po obszarze ma bardzo bliski zwigzek z catka krzy-
wolinjowa, brang po brzegu tego obszaru.

Wezmy po wage catke krzywolinjowg po linji zamknietej L z do-
wolnej funkcji 1:6(% ciagtej w obszarze
domknietym regularnym, zamknietym tg liuja:

1=J P”X) y}dx

Zatozmy o linji h/ze kazda prosta rowno-
legta do osi Y przecina jg najwyzej w dwoch
puuktach (jak na fig. 88) i ze w réwnaniach
y = yi{g>), y —yx) tukéw ABC i AEC, tworzacych te linje zamknieta,
yi(x) i yt{xX) sa funkcjami ciaggtemi. Okazemy, ze ta catka krzywolinjowg
jest rowna ujemnej wartosci catki podwojnej po obszarze D, zamknietym

ta linjg, z funkcji ---» Zakladamy przytem, ze ta czastkowa pochodna

jest ciggta w catym danym obszarze domknietym D. Twierdzimy wiec, ze:

(166)

Dowéd. Wykonajmy w tej catce podwdjnej najpierw catkowanie
wedtug y. Granicami catkowania dla y sa yt(x) i y2(x). Granicami za$
catkowania dla X sg skrajne odciete *, — a, X, — b. Zatem:

*M*
= - iig9 ivd*
J(D)I E dxdy alﬁ()l().ﬂ) iyd

3P
Catka z d();- wedtug y jest oczywiscie P(x,y), a zatem:

—jfly dxdy~—J\(P(x, y2x)) — P{x, yx() dx =

(D)
- x))dx+ IIP@t(&)) dx

Pierwsza z catek prawej strony jest catka krzywolinjowg z funkcji P(x, yi

po tuku CBA, druga zas$ po tuku AEC.

Bachanek rézniczkowy i caikowy. T. 2. \
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A wieo;

- m dxdy —j P(x,y)dx -f-J'P(w, y) dx

<Ol

COA AEC
vJ P(x, y)dx =y P(®, y)ﬂ?
Bred

Kierunek obiegu linji L, zaznaczony porzadkiem liter CBAEC, jest do-
datni, albowiem przy takim obiegu mamy powierzchnie D po lewej rece.
A wiec catka podwéjna po jakim$ obszarze da sie wyrazi¢ zapomoca
calki, branej tylko po brzegu tego obszaru. Zdawacby sie mogio, ze majac
wykona¢ catkowanie po obszarze, trzeba znaé¢ wartos¢ funkcji dla wszyst-
kich punktéow tego obszaru; tymczasem okazato sie, ze wystarczy znac
wartosci tylko na brzegu obszaru, ale wartosci innej funkcji, a miano-

9P
wicie nie funkcji podcatkowej -dS/, lecz funkcji pierwotnej (wzgledem y) P.

Z czem$ podobnem spotkaliSmy sie juz w catkach pojedynczych,
I tak:

dx = F(b) - F{a)

Przy tem catkowaniu w przedziale od a do b mogtoby sie zdawaé, te
trzeba znaé¢ wartosci rzednych dla kazdego pupktu tego przedziatu; tym-
czasem wystarczy znajomos¢ rzednych dla koncéw przedziatu, ale nie dla
funkcji F'(a?), tylko dla funkcji pierwotnej F(x).

Twierdzenie analogiczne do twierdzenia, wyrazonego wzorem (166),
otrzymujemy, wykonujgc najpierw catkowanie weditug zmiennej x. Otrzy-
mujemy mianowicie pomiedzy catkg krzywolinjowa po linji zamknietej L

z funkcji Q(X, y) wedtug y, a catka podwdjng z funkcji — po obszarze,

zamknietym tg linja L, nastepujacy zwigzek:

e JJ IRid~T@Yg

90
Zaktadamy przytem, ze Q(X,Yy) i )(;‘C sg ciaggte w obszarze D, a linja L

ma z kazda prostg réwnolegta do osi X najwyzej dwa punkty wspoélne.
Pozostawiamy czytelnikowi szczeg6towe przeprowadzenie dowodu.
Utworzywszy sumy catek po obu stronach wzoréw (166) i (167),
otrzymujemy nastepujacy wzér ogolny:
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(168)

Wzdér ten zawiera w sobie wzory (166) i (167) jako specjalne przypadki
(dla Q= 0 lub P — 0). Twierdzenie, wyrazone tym wzorem, nazywamy
twierdzeniem Greena-Rlemanna. DowiedliSmy prawdziwosci jego dla
obszarow Z), zamknietych takiemi linjami L,
ktoére kazda prosta réwnolegta do osi spot-
rzednych przecina najwyzej w dwoéch punk-
tach. Twierdzenie to jest jednak prawdziwe
takze dla ogo6lniejszych obszaréw, a miano-
wicie dla takich, ktore mozna rozitozy¢ na
skoniczong liczbe obszaréw powyzszego typu Fig. 89
(jak np. na fig. 89). Aby to okazaé¢, wypisu-
jemy dla kazdego czesciowego obszaru wzér Greena-Riemanna i two-
rzymy sumy prawych i lewych stron tych wzoréw. W ten sposob otrzy-
mamy po lewej stronie jedng catke podwdjng, brana po cat*m danym
obszarze, a po prawej, sume catek krzywolinjowych. Ot6z te czesci catek
krzywolinjowych. ktore sg brane po linjach, rozcinajacych dany obszar
(jak np. po linji AB na fig. 89), odpadna w sumie, poniewaz przebiegamy
te linje dwukrotnie, raz w jednym Kkierunku, a drugi raz w przeciwnym.
Wskutek tego otrzymamy ostatecznie po prawej stronie jedng catke krzy-
wolinjowg, brang po linji L, zamykajacej caty dany obszar.

O funkcjach P[x,y), Qa,Yy), Zp. © zaktadaliSmy, ze sa ciagte
w danym obszarze; zalozenia te sg ist)(l)tne.

8§ 257. Zastosowanie twierdzenia Greena-Riemanna do badania
calek krzywolinjowyeli i razniczek zupetnych.

Wiemy, ze warto$¢ catki krzywolinjowej J'(P(x,y)d x-{- Q(x,y)dy),
ab

branej pomiedzy dwoma punktami A, B%zalezy w ogé6lnosci nietylko od
spo6trzednych tych punktoéw, lecz takze od drogi, tgczacej te punkty, po
ktorej catkujemy. Nadzwyczaj wazne sg w zastosowaniach te przypadki,
w ktorych wartos¢ tej catki krzywolinjowej nie zalezy od drogi-(a zalezy
tylko od punktéw koricowych). Przy pomocy twierdzenia Greena-Rie-
manna znajdziemy warunek konieczny i dostateczny na to, aby wartosc¢

catki krzywolinjowej miedzy statemi punktami byla niezalezna od drogi.
dp  3Q

Niechaj funkcje P(x, y), Q{X,y\ -r- i bedg ciagte w jakim$ obszarze W

(fig. 90). 3y 3x
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Wezmy pod uwage dowolne dwa punkty A, B z tego obszaru i dwie
drogi ACB, AEB, taczace te punkty, a nie majace pozatem zadnych
punktéw wspélnych i lezgce catkowicie w obsza-
rze W. Zadamy, aby catki krzywolinjowe po
tyeh drogach byty sobie rowne, t j. aby sie
spetniata réwnosc:

(R) J Pdx + Qdy)=j"(Pdx + Qdy)

Przenosimy drugg catke na lewag strone i otrzymujemy:

J (Pdx + Qdy)= 0
AEBCA
Nazwijmy literg L iinje zamknietg AEBCA, ograniczajaca jaki$ obszar D,
to catka po tej li-nji ma postac:

(Pdx -f- Qdy) = 0

Na podstawie twierdzenia Greena-Riemanna jest takze

7/® -® **-
Koniecznym i dostatecznym warunkiem na to, aby ta catka miata war-

tos¢ O dla kazdego obszaru D, zawartego w W, jest, aby zachodzita
réwnosc:

9Q _3P
(169) 3x oy
dla wszystkich punktéow obszaru W.

Istotnie, warunek ten jest dostateczny. Wtedy bowiem funkcja pod-
catkowa jest stale zerem, a stad wynika na podstawie twierdzenia o war-
tosci Sredniej, ze i catka po kazdym obszarze D, zawartym w W, jest
zerem.

Warunek ten jest takze konieczny. Gdybysmy bowiem mieli w ja-
kim$ punkcie obszaru W

F{xy )=d -dy=a=+°"* np «>°

to wskutek ciggtosci tej funkcji musiatby istnie¢ jakis (niewielki cho-
ciazby) obszar Z),, otaczajacy ten punkt, w ktérym ta funkcja bytaby stale
dodatnia. Wtedy za$ i catka po tym obszarze Dx bytaby rézna od zera.
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I. Warunek (169) jest wiec warunkiem koniecznym i dostatecznym nu
to, aby catka krzywolinjowa miedzy dwoma dowolnemi '‘punktami obszaru W
byta niezalezna od drogi.

Czynilismy zatozenie, ze drogi ALB i ACB nie maja zadnych
punktow wspdlnych procz koncow A, B. Zatozenie to jest nieistotne Gdyby
bowiem te drogi miaty jakie$ punkty, a nawet jakie$ Iluki wspoélne, to
obierajgc trzecig droge AFB, nie majacg z niemi zadnych punktéow wspol-
nych procz koncow, mielibysmy:

j'(Pdx 4-Qdy)—j {Pdx+ Qdy) i vJ (Pdx + Qdy)—ﬂde+Qdy)

afb AEB AFB ACB

a stad wynika roéwnos¢ (R).

Uwaga. Twierdzenie to jest prawdziwe nawet wtedy, gdy sie nie uda znalez¢
takiej drogi AFB.

Z warunkiem (169) spotkalismy sie juz w rachunku rézniczkowym
(por. tom |1, str. 347), a mianowicie okazano tam, ze jest to warunek
konieczny na to, aby wyrazenie:

P(x,y) dx -f- Q(x, y) dy

byto rézniczkg zupelng. Obecnie mozemy okazaé, ze jest to takze waru-
nek dostateczny, to znaczy, ze jezeli ten warunek jest spetniony, to istnieje

du
taka funkcja u(x,y), dla ktérej P jest czastkowa pochodng a Q czast-

kowa pochodng

Otéz z réwnosci:
du
ox Fiecy)

otrzymujemy:

«(».y)—Ff P{x'y]dx+

gdzie a jest dowolng stata. R6zniczkujemy obie strony wedtug Y (stosu-
jac do pierwszej catki regute Leibniza, por. str. 203, wzér (150))
i otrzymujemy:

du rdpP , . ..
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u to ma bvé réwne Q[X, y). Uwzgledniajac warunek (169), otrzymujemy

zatem:
Qwy) — < 4- P(y) = 0@y) — O(c. ») 4- P(y)
a
a wiec:
<Py = A<SY)
cayli:
v(y) y)dy + U
=/ w"
gdzie 06 jest dowolng stala.
A wiec:
(170)

Otrzymalismy wiec calg gromade funkcyj (réznigcych sie od siebie tylko
o dowolng 3talg liczbe), dla ktérych P dx + Qdy — du jest rézniczka
zupetng

1. A wiec warunek (169) jest konieczny i dostateczny na to.

wyrazenie:
Pdx-\-Qdy
byto rézniczka zupetna.

Wzo6r (170) pozwala odrazu scatkowaé kazda rozniczke zupetna, t,j.
znalez¢ funkcje, jezeli podana jest jej rozniczka zupetna. Przykitady cat-
kowania rézniczek zupetnych bez uzycia tego wzoru ogélnego podano
juz w tomie | (str. 347— 349, przykiady 2 i 3). Zastosujmy ogolny wzér
do przerobionego tam przykiadu:

(4y* — 2)dx -f- (12 xy%— 6 y)dy
Funkcja z{x,y\ ktérej ré6zniczka zupelna jest to wyrazenie, ma wedtug
wzoru (170) postac:
* y
i(x,y)—J (\ya— 2)dx -j-J{\2ay* — 6 y)dy -f C,
= (4y'X— 2x)| (4ay8— 3y? |t-)f Cx—
= 4y\X — 2Xx — 3y*+ 2a — 4adé*+ 36*+ CX
Oznaczajac wyrazenie 2a— 406*-]-36*-(-Ct jedng litera O, otrzymujemy»
z= 4ys® — 2x — 3yl-\-C

zgodnie z wynikiem, otrzymanym w tpmie |I.
Z tego twierdzenia Il i z | (o niezaleznosci catki od drogi) wynika
nastepujace twierdzenie.

at
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111 Warunkiem koniecznym i dostatecznym na to, aby catka krzyw
hnjowa:
i (Pdx -f Qdy,
AB

byta niezalezna od drogi catkowania, jest, aby wyrazenie pod catka bylo
rézniczka zupetna.

Przyktady, oméwione w 8 242 na str. 189— 190, potwierdzajg ten
wynik.

Tak np. wartos¢ catki krzywolinjowej:

/ (3ydx-\-2xdy)

zalezy od drogi, poniewaz wyrazenie, stojgce pod znakiem catki, nie jest
rézniczka zupetna. Istotnie:

3(3y) , 2(2@)
dy - 9X ~~~y ~ 9y & 3x

to zas znaczy, ze nie spetnia sie waruuek (169). Natomiast w catce:

(2 xy dx -f ®* dy)
/
jest:

’?<0b3>— 2.1 ~
a zatem wartos¢ tej catki nie zalezy od drogi.

Czynilismy zatozenie, ze funkcje P(X,Yy), Q(X,y) i ich czastkowe
pochodne sag ciggte w badanym obszarze. Jezsli te fankoje sg nieciggte
chociazby w jednym punkcie, lezgcym miedzy drogami catkowania, to
catki krzywolinjowe po tych drogach moga mie¢ rézne wartosci, chociaz
funkcja podcatkowa jest rozniczkg zupetlng. Tak np. obliozmy catke krzy-
wolinjowa:

j _ Cwdy — ydx

J ®* -j-
o -y

po kole o réwnaniu ®*-|-y*=1. tatwo zbada¢, ze wyrazenie, znajdu-
jace sie pod catka, jest dla (®,y) ==(0,0) rbézniczka zupetng funkcji

aretg Jlflf) Wartos¢ tej catki otrzymamy, uzywajac dla kota przedstawienia

parametrowego. X — cost, y = sint Wtedy:
Zn Zm

os*t sin*/ , C
1 / 1
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Ta catka po linji zamknietej ma warto$¢ rézna od zera. Obliczajgc ja
po drodze ADC (fig. 91), t j. po géruem potkolu, otrzymujemy:

a zatem otrzymujemy rézne wartosci po tych
dwéch drogach. Pochodzi to stad, ze funkcje:

ag nieciagte w punkcie 0 (0, 0), zawartym miedzy temi drogami catkowania.

Twierdzenia | —I1l maja szczegdlnie wielkie znaczenie w fizyce
matematycznej. | tak widzieliSmy (w 8§ 244), ze praca, wykonana po do-
wolnej drodze przez dowolng site, wyraza sie catkg krzywolinjowg. Ogra-
niczajgc sie narazie do jednej ptaszczyzny, otrzymujemy na prace wzor:

L==J 'Ne ’y)dx+ y) V)

AB

gdzie P, Q sg sktadowemi sity w kierunkach osi spotrzednych. Otéz war-
tos¢ tej pracy nie zalezy od drogi wtedy i tylko wtedy, gdy wyrazenie
pod catka jest rdzniczka zupeing jakiej$ funkcji u{x,y). Te funkcje na-
zywamy mpotencjadem. Teorja potencjatu jest bardzo waznym dziatem fizyki.

Podobnie w termodynamice przyrost energji i entropja(\>or.str. 196—197)
wyrazajg sie zapomocg catek krzywolinjowych z rézniczek zupeinych;
zatem zmiana energji i entropji nie zaleza od drogi, po jakiej sie odbywa
proces termodynamiczny (,drogg“ nazywamy tu wykres, podajacy zwig-
zek cisnienia z objetoscig lub z temperaturag).

Podobne pojecia stosuje sie w hydrodynamice, aerodynamice i w nauce
o elektrycznosci.

Omowimy tu jeszcze w krotkosci zastosowanie twierdzenia Greena-
Riemanna w teorji funkcyj zmiennej zespolonej. WidzieliSmy juz
w § 245, ze catka z funkcji f(z) = P(x,y) -f-i *Q{X, y) zmiennej zespo-
lonej z— X-\-iy skilada sie z dwdch catek krzywolinjowych, branych
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po jakiej$s lidji na plaszczyznie zmiennej zespolonej, a mianowicie (por.
wzor (149) na str. 200):

B

"B

Zatozmy, ze P, Q i ich pierwsze czastkowe pochodne sg funkcjami
ciggtemi w jakims$ obszarze, zawierajgcym drogi catkowania.

Catka ta nie zalezy od drogi wtedy i tylko wtedy, gdy funkcje
P{x"y) * <?® y) spetniajg warunki:

O9P__ _ 9Q

9y da
(171) 9Q_9FP

9y 9a

wtedy bowiem calki po prawej stronie sa niezalezne od drogi. Te dwa
warunki sg réwnaniami rézniczkowemi czagstkowemi pierwszego rzedu,
zwanemi réwnaniami Cauohy’ego i Rieman na.

Zat6zmy, ze funkcje P i Q posiadajg takze drugie czastkowe po-
chodne ciggte. ROzniczkujac pierwsze z réwnan (171) wediug Yy, a drugie

wedtug a, otrzymujemy:

9*P _  ®Q
Oy* Ox9y
9*Q _ 9*P
9y9x  ~S&

* stad:

Podobnie rézniczkujac pierwsze rdéwnanie wediug a a drugie wedtug vy,
otrzymujemy:

N-4 N -0

oxlI Oy*
Widzimy wiec, ze zaréwno funkcja P(X,y) jak i Q{X,y), w razie, gdy
catka z f(z) nie zalezy od drogi catkowania, branej z pewnego obszaru, spet-
niajg w tym obszarze to samo réownanie rézniczkowe czastkowe 2-go rzedu:

3'm -

(172) Oxt ' 9y*

zwane rownaniem L aplaoea
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9 258. Wphronadzenie nowych zmiennych W catke  podwojre,

Widzielismy w 88 207 i 219, jak wazne ustugi oddaje przy obli-
czaniu catek pojedynczych catkowanie przez podstawienie, czyli wprowa-
dzenie nowej zmiennej X = Jp#) zapomoca wzoru

t
J f(x)dx=J /<?*<) <p|(t) dt

Uogdélnimy obecnie te metode na catki podwdjne. Chcemy mianowicie
wprowadzi¢ w catke:

i = [ | /(®,y)dxdy
- U '
nowe zmienne WV zapomocag zwigzkoéw funkcyjnych:

(a) X => g>w,v), y= V(u, o)

ZwiagzKki takie interpretujemy geometrycznie (por. tom | 8§ 121) jako
odwzorowanie ptaszczyzny (UV) na ptaszczyzne (XY) (fig. 92). Bedziemy
brali pod uwage tylko takie od-
wzorowania wzajemnie jedno-
znaczne, w ktérych obszarowi 17
na ptaszczyznie (UV) odpowiada
jako jego obraz roéwniez jakis
obszar D na ptaszczyznie (XY)
i to tak, ze brzegowi L' od-
powiada brzeg L, przebiegany
w tym samym kierunku, co L\ Zbadajmy najpierw, na co zmieni sie
prostsza catka, a mianowicie:

(b) D —J'J dxdy
v

gdy wprowadzimy za X,y nowe zmienne zapomoca wzorow (a). Catka ta,
ak wiadomo (por. wzér (161) str. 228), przedstawia pole obszaru D. Wynik
uzyskamy najszybciej, przechodzac przez twierdzenie Greena-Riemanna,
| tak, chcac zastosowa¢ do tej calki podwdjnej to twierdzenie w postaci

wzoru (166), kladziemy P=y, a wiec ~ = 1 i otrzymujemy:

D=zjJ" ledxdy — —J ydx
© ®

Wprowadzmy nowe zmienne w te catke krzywolinjowg. Gdy punkt
o spotrzednych (aj, y) przebiega na ptaszczyznie (X Y) linje (L) o rownania
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/(0,y) = O to punkt (u,Vv) przebiega na ptaszczyznie (UV) linje (L")
o0 roéwnaniu V), »)) = 0, a wiec zmienne Ui vV sg w tej catce
krzywolinjowej w ten sposéb od siebie zalezne. Otrzymamy wiec:

D= —J ydx— —J rp(uVv) d<pu,v)= —3 i p { u , ° g" duj

N <) m
czyli:

()
Zastosujmy do tej catki krzywolinjowej znowu twierdzenie Greena-
Rieman na (wzér 168), kiadac:

A= p(uy), Qu, v)
a zatem:
D- -JJ[t (*tl)- f. *s)) *m*
Ale: e
dtp 9 3»y
3« 3« 9v du
3« 3®
A wiec:

(3
Funkcja podcatkowa jest tu jakobjanem (por. tom |, str 362) fnnkcyj
a=e>(w, ®, y— ip{u,v) wedtug zmiennych w®. Oznaczajac ten jakobjan
krotko symbolem

otrzymujemy:
3Y) g av

(0) n (Eg] V)

Zaktadalismy, ze przy odwzorowaniu brzeg L obszaru D byt obiegany
w tym samym kierunku, co brzeg L' obszaru £/. Gdyby ten obieg byt prze-
eiwny, to catki krzywolinjowe po linji L!, wystepujgce w powyzszym dowo-
dzie, miatyby znaki przeciwne tak, ze ostatecznie otrzymalibySmy wzor:

3'®,y)

(d) H o 1 ouw v du dv
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jezeli uczynimy obecnie jeszcze dodatkowe zatozenie, ze jakobjan nie zmie-
nia znaku w obszarze catkowania, to we wzorze (c) musi on by¢ nieujemny
(albowiem wartos¢ catej catki musi by¢ dodatnia, poniewaz jest réwna
dodatniej liczbie D), a we wzorze (d) niedodatni. Wobec tego we wzorze (c)

3{x.y) 30 y) a we wzorze (d) — St y) AP>y)
d(u, v) 9(u, v) <20, V) ?(«, »)

Otrzymujemy zatem dla obydwu przypadkéw wspolny wzor :

(173) D -gé)\]f\ ?(ZW du dv

Uwaga. Zatozenie, ze jakobjan nie zmienia znaku w obszarze o -, jest w Scistym
zwigzku z wzajemng jednoznacznos$cig odwzorowania. Mozna mianowicie wykazac, Y. <]
gdy jakobjan zmienia znak, to istniejg takie punkty w obszarze D na ptaszczyznie (XTJ,
ktéorym odpowiadajg dwa rézne punkty w obszarze D’. (Dowd6d znalezé mozna w podre-
czniku E. GrOursat'a p t. Cours d’Analyse mathdrnatique, r. 1902, tom I. str. 299).

mozemy potozyc¢

OtrzymaliSmy w ten sposob wzdér na pole obszaru D, lezacego ua
ptaszczyznie (JF), wyrazony zapomocag spo6trzednych u, v.
Z wzoréw (b) i (17j) wynika wzor’

© D>
W ten sposob wprowadza eie nowe zmienne w catke podwojng z bardzo
prostej funkciji: f(x, y) = 1mOpierajac sie na tym wzorze, wyprowadzimy
juz z tatwoscig ogdlny wzér, dla dowolnej funkcji podcatkowej f(x, y).
Przedtem jednak zwrécimy jeszcze uwage na to, jakie znaczenie
ma jakobjan dla odwzorowania, okreslonego réwnaniami:

X — <y v) y — ip(u, v)

Zastosujmy do catki, wystepujacej we wzorze (173), twierdzenie o wartosci
Sredniej (wzér 16Sa na str. 229), to:

(174) D .Newy) gp
13(u, v)
“oi
a stad:
dix y) !
d(u, aj |

Wezmy pod uwage jakis staty punkt u— uO, v— vO obszaru D'.
Gdy S$rednica 6 obszaru D‘ dazy do zera, to takze Srednica obszaru D

dazy do zera, a granica ilorazu pdl tych obszaréw jest:
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Vg o.
(175) lim 131 V)
d*o rr 19(u, v)

t. j. bezwzgledna warto$¢ jakobjanu w punkcie u= u0, v— VvO. Granice
atosunku obrazu D obszaru D‘ do samego obszaru D' nazywamy stosun-
kiem znieksztatcenia powierzchni przy odwzorowaniu

Widzimy stad, ze bezwzgledna wartos¢ jakobjanu w kazdym punkcie
jest réwna stosunkowi znieksztatcenia powierzchni przy odwzorowaniu. Sto-
sunek ten gra bardzo wazna role w geodezji i w kartografji matematycz-
nej. Odwzorowania, w ktoérych jakobjan ma stale warto$¢ |, nazywamy
wiemopowierzchniowetni.

Takiemi odwzorowaniami wiernopowierzchniowemi sg oczywiscie
obroty i przesuniecia. Tak np. obrot osi spétrzednycb o staly kat a jest
okreslony réwnaniami :

X = ucosa— vsina
y= usinc Vvcosa

Poniewaz xu— cos a, X,,= — sino, y, = sina, y,= eosa, przeto jakobjan
tego przeksztatcenia ma wartosé:

— cos®a — (— sin*a) = |

3(tt, B
Podobnie dla przesuniecia osi, okreslonego wzorami i
Xx= u-f-a
y= V+ b

otrzymuje sie:
3(x,y) _ 1101
d(u,v) lo ! |
Istnieje jednak takze bardzo wiele innych odwzorowan wiernopowierz
chniowych, nieraz bardzo skomplikowanej postaci.
Przejdzmy do wprowadzenia nowych zmiennych w og6lng catke

-E}f f(x,y)dxdy
)

Obszar D' na ptaszczyznie (UV) dzielimy na dowolne elementy <
Niechaj im odpowiadajg w obszarze D na ptaszczyznie- (X Y) ele-
menty w,. Na podstawie wzoru (174) jest:

podwodjna :

3{x.y)
9(u, v)

gdzie vt oznaczajg spotrzedne odpowiednio dobranego punktu z obszaru o,.
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Niechaj f[x,y) = f(x[u, V), y(u,»)) = F{u,v). Tworzymy sumy postaci:

2 fdi'ta=2 R\ | °

Cigg takich sum, gdy S$rednice wszystkich elementéw w,, a. daza do zera,
ma jako granice odpowiednig catke podwdjng (por. str. 230). Przechodzgc
wiec do granicy, otrzymujemy:

2
(176) ) a(x,y)dxdy =YV rix(u, v), y(M, v)) 3((;(’)\2 du do

f(o)l 00 ’

Jest to WZOr na wprownadzenie nowych zmiennych w catke podwojna;
trzeba wprowadzi¢ te zmienne zapomoca wzoréw X = Oy, V), Y = Xxp[u,V)
w fnnkcje podcatkowag, pomnozy€jg przez bezwzgledna wartos¢ jakobjano
i zmieni¢ obszar catkowania. Widzimy tu wyrazng analogje z odpowiednim
wzorem dla catek pojedynczych.

Przyktady.
1) Obliczy¢ pole wycinka pierseiema kotowego (fig. 93) przy pomoey
catki podwodjnej.
Uzycie wzoru:

D=J J dxady
O
bytoby ta bardzo niedogodne, poniewaz trzebaby
rozktada¢ obszar catkowania na 3 czesci (linjami
kreskowanemi na figurze). Natomiast przy uzyciu
spétrzednych biegunowych rachunek przedstawi sie bardzo prosto, albo-
wiem obszarem catkowania bedzie na ptaszczyznie (B, O) prostokat, okreslony

nieréwnosciami:
r,<r<rt, <p,¢%ﬂi

Do uzycia wzoru (173) potrzebny jest jakobjan. Otoéz:
X—rcos@ VY—rsing
zatem Xr= cos Q9 yr— sin (p, Xx<f— — rsin g yv= r cos 1) a wiec:

cos 9—r sin (p .
/= 02— si =
Isin (p, r cos €? r P sintp= r
Widzimy wiec, ze jakobjan przeksztatcenia spdtrzednych prostokgtnych na
biegunowe jest réwny promieniom r.
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Wobeo tego wzo6r (173) przyjmuje postac:

- R fSt V* rt
D= fiddpe | -ddb- 5 r|d=g1—9@- 2)
T T, 17X
Oznaczmy ™8 — == a, szerokos¢ pierscienia r, —r, = s, a dtugosci
tukéw, ograniczajgcych ten pierscien, = r,ct, ¥1= r,a. Zatem wz6r na

pole wycinka pierscienia kotowego przyjmuje posiac :

t=i(i4-n) rt— M) «= e (A-f sk
znang z matematyki elementarnej,
2) Obliczy¢ powierzchnie 4 okien Viviani ego (por. str. 240) i obje-
tos¢, pozostajacg z kuli po wydrgzeniu dwéch walcéw, wycinajacych te
okna (fig. 87 sir. 240), OtrzymaliSmy przy uzyciu spéirzednyoh prosto-

katnych wzor:
BdJJ ***
~ I y*
4 \a'~x

WprowadzZzmy spétrzedne biegunowe, to X% \-y% r*, aza dxdy trzeba wpro-
wadzi¢ rdrdtp, jak to widzieliS§my w poprzednim przyktadzie. Wobeo tego:

«dr dtp

(O/rrn &

Jezeli ustalimy tp, to r $mienia sie od r= 0 do OA (na fig. 87), t.j.
do r = aecostp. Kat zas tp zmienia sie w statych granicach od e = 0
do tp= % Wobeo tego:

§ ]0090) coscp
m ~ rdr
dtp
p~ uffiw = a - >af - *r= * ]
TI n

1= 8 avJ {—asintp-f-a) dp=*8 a*(costp-|-tpP 1 — 8a*(g — 1)
o
Interesujgcem jest, ze wzér na pole powierzchni, pozostajacej z kuli po
wycieciu tych 4 okien, me zawiera liczby ra albowiem:

4a'r — P — 4a*ji — 4n,«-j-8a* = B ai

Objetosé v ¢wiartki jednego walca, przedstawionego na fig. 87, oblicza
sie wzorem (164) z § 263 przy uzyciu spoéirzednyoh prostokatnych.
W naszym przypadku otrzymujemy:

\Y J ' Jal— xi—y%dy dx
on
poniewaz réwnanie gornej potkuli ma posta¢ z — \fal — x* — y*.
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Przy uzyciu Bpétrzednycb biegunowych otrzymujemy:

~  acoBgp

v=JJ\a'—r*rdrdcp=y (---2 jd(p= — (a8 sin3gp— as)<ie>
00 0 0 0
Catke z sin* P obliczamy, jak wiadomo (str. 56), podstawiajac cos ¢p= i
i otrzymujemy:
3
§ ) 7 o® )

V= — (i cossgp— cos e -f < 3F(— 8+ j*

Wobec tego szukana objetos¢ ma wartosc:
4a3i 8 as, . N .
P= lal7i—8u= .5 . 5-(-1-+-#2)==Ve«S
3) Wyprowadzi¢ wzér na komplanacje powierzchni, majac podat

jej przedstawienie parametrowe (por. tom 1, str. 378— 380):
X Ay, »), y— V{u,v), z= x(u,v)

Gdybysmy wyrazili z dwéch poczatkowych rownan u i v jako funkcje
zmiennych x i y i wstawili te wyrazenia w trzecie réwnanie, to otrzy-
malibySmy z wyrazone w zaleznosci od zmiennych x i y. Mozemy jednak
bezposrednio przeksztatcic wzér (165) na komplanacje na nowe zmienne
u, v, wprowadzajac za x funkcje cp(u, v), a za y funkcje tp(u,v).
Pochodne czastkowe p i g, potrzebne do tego wzoru, obliczono juz

w tomie I, na Btr. 380, a mianowicie:
zu\Va Xayu Xa Za X, yu\
> 9— 2>—
X5, Y XVZ. «. y* 1
Sa to ilorazy jakobjanow:
. y) i _ 9(x,2) _ 9% y)
| 9(u, v)' a 9(u, o)’ 3(w,t>)

Te pochodne p,q wprowadzamy pod pierwiastek, a ponadto mnozymy
funkcje podcatkowa przez jakobjan J. Otrzymujemy zatem:

T/ F ot )+ Vi

(przy zalezeniu, ze jakobjan J nie zmienia znaku w obszarze catkowa-

nia). Stad wynika:
P = -Lf I J\ -)-J\ du dv
)
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czyli:

(177)

Wprowadzmy nastepujgce skrocone oznaczenia, uzywane czesto w teorji
powierzchni:

E=xt+ yl+zl
(178) F — Xux, + yay, -f- zazv

G= xlIA-ylA-zi

Po zastosowaniu do™sumy kwadratéw, znajdujacych sie pod pierwiastkiem
we wzorze (177), identycznosci Lagrange’a (por. tom I, str. 481), otrzy-
mamy nastepujaca skrocong forme wzoru (177):

(179)

Tak np. majgc podane réwnanie powierzchni w postaci:

z=F(r,p

gdzie r,<p sa spotrzednemi biegunowemi ca ptaszczyznie (XY), zwigzanemi
Z X,y zapomocg wzorébw X = rcos<g Y — r sin 9 mozemy otrzymac
z wzoru (177) wzér, wynikajacy z niego przez wprowadzenie spo6trzednych

biegunowych. | tak wiemy juz, ze jakobjan:
1%ry
kovr
Jakobjany «, i majg postac:
2r vr z, sincp
4 = = rcose z, — singpz
Zy yp ZV 1 cos P
\XT 2 cos (p zr
J,= . — cos Pzr -f- ysin gpz.
Ixip z(p — rsin<p 2v
Stad:
S22+ Ji= maj+ N

* zatem wzOr na komplanacje przyjmuje postac:

8) F=dp FV +P(T+ (£) 7

Rachanek réimcikowy i catkowy T. 2 17
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4) Dana jes* powierzchnia srubowa o réwnaniu:

(por. tom I, str. 64). Obliczy¢ pole tej czesci powierzchni Srubowej, ktora'
wycina z niej walec o réwnaniu:

o+ y* = a*
a ktoérg zakresla prosta (0§ x~6w) przez obrét o kat a od potozenia po»

czatkowego.
Uzywajac spoétrzednych biegunowych, otrzymujemy;

2nz r sin &

a stad:
2m
— Pp-f- nn

ezyli:

T= 20T+

Uzywajac wzoru (180), otrzymujemy:

p=yJ]/*+[E£$»*
to-»
Obszar catkowania wyznaczamy z nastepujacych warunkéw: < zmienia
sie od 0 do a a r zmienia sie od 0 do a, a wiec granice catkowania sa

state. Zatem:
)
| (A) dr

Stosujgc do tej catki wzér (3&) ze str. 48, otrzymujemy ostatecznie:

P=[(/«m+ (¢) + @t (Jee + ()]

6) Obliczy¢ pole powierzchni, wycietej przez walec o réwoamu
-}- y* = o* z paraboloidy hiperbolicznej o réwnaniu:

a”™ — y* — 2 mz
(por. tom |, str. 44— 45).
Wprowadzamy spétrzedne biegunowe w rownanie powierzchni i otrzy-
mujemy:
_ r*cos* ¢p— r*sin*p __ r*cos? ¢
2m 2 ««
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Stad:
93 rQBXp di risin 2 fp

Pr m ’ P«jp
Wedtug wzoru (180) jest'
i [\/ r* C08*2® r481br 2® (@
~ U

_y jy ~+~ d

P-J] 1hepa)) ...

Podstawiajac r* = i, otrzymujemy z tatwoscia:

\] L*rﬂ'ﬂ?r— (M2 + rQ*1_ (w8 - 0™ - w»
3m ! 3m

Wobec tego

wiec

Ly dp= 3°((" + a) ml

6) Obliczy¢ pole trojkata sferycznego prostokatnego, znajac jego
boki i katy, np. pole trojkata
ABC na fig 94. Réwnanie kuli
0 promienia R ma postac:

»y =f y* + ** =

Po wprowadzenia spoétrzednych
biegunowych aa ptaszczyznie
(XY), otrzymamy dla gornej

potkuli:
zZ= - r«
a stad
iL= o, 37-
Ap dr YR*_ r8
A wiec

P=J N\- g

Obszarem catkowania jest krzy wolinjowy tréjkat BCC na ptaszczyznie (X Y)
(fig. 94 i 95), przyczem BC jest tukiem kota, a BC tukiem elipsy, powsta

17
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jacej przez rzut kota wielkiego BE oa ptaszczyzne (XY). Potéwkami osi

tej elipsy s OB— R i OF = R cos 3 albowiem Ajest katem nachylenia
ptaszczyzny BEO do ptaszczyzny (XY).
Réwnanie tej elipsy ma postac:

R*” R'cos*/3
Wprowadzajgc tu ® = rcosgp, Yy = rsine>,
otrzymamy:
R cos B
) r= = f(<P)

\\ — sin* Bcos* (p

Wedtug zmiennej r trzeba catkowac¢ od

tuku elipsy do tuku kota, zatem od r po-

danego wzorem (lI) do r= R, a dla w
granice sg state, od = O do p— a. A wiec:

« K
P_f dr dtp
J |~
Catkowanie wedtug r (przy uzyciu podstawienia r*=<) daje — R\R* —r*

a po podstawieniu granic otrzymamy:

sin ABsin P
f/l — sin* Bcos* P
Uzywajac tu podstawienia sin /3cos P= 1z, otrzymamy:
< «

Pz= — R*arcsinz] = — R*arcsin(sin/3cose>)j = /?{/3— arosin (sin/Xosa)]
Bardzo prosto wyraza sie ten wzér przy pomocy kata a | tak z wzoru:
cosa = sin /3cos a
znanego z rozwigzania tréjkata sferycznego prostokatnego, otrzymujemy:

sin(®~n — a) = sin /Bcos a
a wiec:
arcsin(sin Bco$a) = arcsin(sin(En — a))= \n — a
Wobec tego:
P—R*p— | n-fa)— Ri(a-f- Bf-£n—n)

Wyrazenie, zawarte w nawiasie, jest nadwyzkg sumy katow trojkata sfe-
rycznego nad kat poitpeiny i nazywa sie ekscesem sferycznym e. A wiec:
P=R*e
DoszliSmy w ten spos6b do wzoru, ktory sie wyprowadza w trygonometrji

sferycznej wprost z rozwazan geometrycznych i trygonometrycznych.
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8§ 259. Caltki podwdjne niewtasciwe.

Dotychczas zajmowaliSmy sie tylko takiemi catkami podwéjnemi,
w ktorych funkcja podcatkowa byta ograniczona, a obszar catkowania
skonczony. Rozszerzymy pojecie catki takze na przypadki, w ktérych
funkcja podcatkowa jest nieograniczona w otoczeniu pewnego punktu lub
w otoczeniu pewnej linji i na takie przypadki, w ktérych obszar catko-
wania rozciaga sie do nieskonczonosci.

Omoéwmy najpierw pierwszy przypadek. Wezmy pod uwage np. catke:

dx dy
| | i/ *»+V
©

po kole, okreslonem nieréwnoscig as*-}- y* Sj 1. Funkcja podcatkowa jem
ciggla w catym obszarze catkowania z wyjatkiem punktu O (0,0). Gdy

sie zblizamy do tego punktu, funkcja . * wzrasta nieograniczenie.
\Xx* -f y*

gZGD—y

branej po tern samem kole, wystepuje w funkcji podcatkowej linja nie-
ciggtosci, a mianowicie prosta y — X.

Chcac okresli¢ catke podwdjng w takich przypadkach, zamykamy
te punkty i lioje, w ktorych wystepuje nieciggtos¢, w niewielkie obszary,
lezace catkowicie w obszarze catkowania. Tworzymy dowolny ciag D,,
takich wylgczonych obszaréw, ktérych pola zdgzajg do zera. Catka pod-
wojna istnieje dla kazdego obszaru, otrzymanego z D przez wytgczenie D,\
oznaczmy taki pozostaly obszar symbolem D — D,,. Jezeli istnieje granica:

W catce:

lim (as, y) dx dy
((({)l/
wspdélna dla dowolnego ciggu obszaréw wytgczonych o polach, dazacych
do zera, to te granice nazywamy niewtasciwg catkag podwdjna z funkcji

nieograniczonej /(as,y) po obszarze D i oznaczamy ja tym samym sym-
bolem, co catke wilasciwg, a mianowicie:

/(as, y) dx dy
1/

Przykitad. Obliczy¢ catke niewlasciwa:

desdy
= \%M + OV
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po Kole xi + y*~ 1- Wylgczamy z tego kola koétko spétsrodkowe o pro-
mieniu 6<”Il. Obliczamy catke wilasciwag po pozostatym pierscieniu koto-
wym, a nastepaie obliczamy jej granice, gdy <% dazy do zera. Najdogod-
niej jest w tym celu wprowadzi¢ spotrzedne biegunowe. Otrzymamy:

Uwaga. Mozna tez bylo obrac¢ ciag D,, két o promieniach, dazacych
!
do zera, np, rownych — i bada¢ granice calek po obszarach D — /),

gdy n— oo.

Przejdzmy do drugiego przypadku, a mianowicie do catek podwodj-
nych po nieskonczonych obszarach. Przyktadami takich nieskoriczonych
obszarow sa: cala plaszczyzna, ¢éwiartka ptaszczyzny, cze$¢ ptaszczyzny,
zawarta miedzy dodatniemi czesciami osi spoétrzednych a dodatnig gatezig
hiperboli réwnobocznej o réwnaniu Xy = a2 cze$¢ plaszczyzny, ograni-
czona z jednej strony parabolg i t. p. Chcac okresli¢ catke podwdjng po
takim nieskonnczonym obszarze D, tworzymy ciag D,, skoriczonych obsza-
réow, zawartych w D i dgzacych do D (mamy przez to na mysli, ze biorac
dowolnie wielki staty obszar R, mozemy dobra¢ tak'wielkie n, ze te
czesci obszarow D i D,,, ktére lezg w i?, beda sie rozni¢ od siebie do-
wolnie mato).

Dla kazdego skonczonego obszaru D,, istnieje catka witasciwa:

ARy)axdy

U

Jezeli istnieje granica:

f(x, y)dxdy

niezalezna od tego, jaki cigg obszaréw D,,, dazacych do D, obierzemy,
to te granice nazywamy niewtasciwg catlkg podwéjna po nieskonczo-
nym obszarze D i oznaczamy jg tym samym symbolem, co catke witasciwa,
a mianowicie:

f(x,y)dxdy

Dowodzi sie, ze do catek podwéjnych niewtasciwych mozna stosowacé
szereg twierdzen, ktéresSmy poznali przy badaniu catek witasciwych (np
twierdzenie o wprowadzeniu nowych zmiennych).



Przykiady.
1) Obliczy¢ catke
dxdy

Bx (1 + »*
a ( »*)

po nieskonczonym obszarze D, zawarty ro miedzy dodatnig gatezig hyperboli

réwnobocznej o réwnaniu y= X

miedzy osig X i prostg x — 1
(fig. 96)

Aproksymujmy obszar D zapo-
mocag ciggu obszaréow D,,, ograni-
czonych u dolu nie osig X, lecz

prostemi r()vlnoleg’femi do niej w od-

6wnaniach y — —J—

:"i"<!-> ®»(i+y* :.'r./IH | f&]:.r

stepach -

»=.-

| >
1= lim f 4 —{—y+ I)dy= lim[— ] log(l + y*) + arctgy] =
m-tooJ 1“py m-*00
n
— li“ I—ilog2+ 4 log(l-f-i) -f aretg! — arctgi
« —*00 N \ « / n w

1= —ilog?2 + ?

tatwo stwierdzi¢, ze te samg warto$¢ otrzymamy, aproksymujac obszar D
zapomocag obszaréw D',,, ograniczonych hyperbolg, osig X, prosta x = 1
i prostemi ® = n > 1 Wtedy trzeba najpierw wykona¢ catkowanie wedtug y

od y— 0 do y= —a nastepnie wedlug X od * = 1 do x = n. Mozna

tez stwierdzi¢, ze te sama granice otrzymamy dla dowolnych ciggéw D,,
obszaréw, dazacych do D.
2) Calke pojedyncza niewtasciwg (La place’s):

00

0

obliczyliSmy juz w 8§ 224 (przykiad 9) w dos¢ skomplikowany sposéb,
Przy pomocy niewlasciwej catki podwodjnej rachunki przedstawiajg sie
nader prosto.
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I tok wezmy pod uwage catke:

A=JJ  *dady

(D)

przyczem obszarem catkowania D niechaj bedzie cata pierwsza c¢wiartka
ptaszczyzny. Aproksymujmy obszar D zapomocg cwiartek két D1 o pro-
mieniach R a o srodku w poczatku uktadu.
Wprowadzajgc spotrzedne biegunowe, otrzy-
mujemy:

J"J e~*~ydxdyms= J'e~*rdrdcp —
(s8]

=J i(l—eMNdgp = f(l — e**¥

Gdy R dazy do oo, to wartos¢ tej catki wiasciwej dazy do £.
Zatem catka niewlasciwa A ma wartosc:

A —J yv**ydady = f
©)

Mozna okaza¢, ze ta graniczna warto$¢ nie zalezy od tego, jakiemi obsza-
rami aproksymujemy D. Chcac przejs¢ od tej catlki do caitki pojedyn-
czej, obliczmy catke podwdjng po obszarze D", ktory jest kwadratem
0o boku R. Otoz:

,J J e-*-*dady —j R\]R ' dady — JR K_\] <r**d®i dy =
(o) 0 0 0 0
R R R
:\]e—*d»J e~*dy —  e~*dxj

Poniewaz obszar D’ zawiera sie w D'\a D" w Z), funkcja za$ podcatkowa

jest dodatnia, przeto:
K

E(l —e-*) < |JyvV*d®j < J
0
a stad:

<.Je-*da < ~\n
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Gdy B dazy do oo, to pierwsze i ostatnie wyrazenie dazag do tej samej
liczby i Yn. Zatem i catka, zawarta miedzy niemi, dazy do tej samej
granicy, a to znaczy, ze:

zgodnie z wynikiem, otrzymanym w § 224.
3) Catka Eulera drugiego rodzaju nazwaliSmy (por. § 224, str. 111
funkcje:

np)=J r'zp\dz

przyczem p> 0.
Zapomocg podstawienia z = ®* przeksztatcamy te catke ma-

00

r(p) — 23 e-~afrda

Zbadajmy iloczyn dwéch takich calek, a mianowicie:

r{p)-r(q) = 2‘]/8%'@(&] e/\y»'ldy

lloczyn ten mozna przedstawi¢ w postaci jednej catki podwdéjnej niewtasciwej:

fp) ,i,<?): 4(D)/ e-*-yazp-y*~ldxdy

przyczem obszarem catkowania D jest cata pierwsza ¢wiartka ptaszczyzny.
Obszar ten mozemy aproksymowad — podobnie jak przy badaniu catki
Laplace’a — zapomoca c¢wiartek két o srodku w poczatku ukiladu
a o promieniach wzrastajacych nieograniczenie.

Wprowadzajac spotrzedne biegunowe, otrzymamy zatem:

T(p) *Fig) = tj*™ er* rlp~Xii*~xcosh* - | Psin* “ | prdrd(p =
0o
® i
= 2J'ra p + dre2Jc,0aip~ Psind<-1lpdp

Pierwsza catka jest znowu funkcjg J* dla argumentu p g, druga za$
nazywamy catkg E ulera pierwszego rodzaju, lub funkcja B (czytaj ,beta“)
zmiennych p i g A wiec:

T(p)er(a)= r(p -fag+B{p.q)
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Stad wynika, ze catka Eulera pierwszego rodzaje wyraza sie w nastepujacy
spos6b zapomocg calek drugiego rodzaju:

(181) n o+ )

przyczem:

(182)

Unaga. Przez wprowadzenie nowej zmiennej 1zapomoca podstawienia oosi>—t,
mozna te catke pierwszego rodzaju sprowadzi¢ do nastepujacej postaci
i

(1824a) fiP, )= J (1—ty-dt

tj. do catki oznaczonej dwumiennej (por- uwage na str. 46). Catki Eulera znalazly
liczne zastosowania w rachunku prawdopodobieristwa i przy obliczaniu rozmaitych
skomplikowanych catek oznaczonych.

8 260. Przyblizone metody obliczania catek podwodjnych.

W praktyce zachodzi nieraz potrzeba obliczania calek podwdjnych
z funkcyj bardzo skomplikowanych (np. przy obliczaniu pojemnosci okretow
przy obliczaniu z planu warstwicowego objetosci, wznoszacej sie nad
jakim$ poziomem). Wystarcza przytem zwykle obliczy¢ przyblizong war-
tos¢ caiki.

Najprostszg nasuwajacg sie tu mysla jest uzycie jako przyblizonych
wartosci catki tych sum, ktérych wuzywaliSmy przy sumowej definicji
catki podwdéjnej. Majac wiec obliczy¢ catke:

7=J f fix.y)dxdy
0)
dzielimy obszar catkowania zapomocg prostych réwnolegtych do osi sp6t-
rzednych na drobniejsze elementy. Pole p,k kazdego takiego elementu
mnozymy przez warto$¢ funkcji f(E,,r]H, nalezaca do dowolnego punktu
tego elementu i tworzymy sume tych iloczynéw:

(183) 1— J?me BK

*| 1
Granica ciggu takich sum, gdy liczba dodajnikéw wzrasta nieograniczeDie,
jest Scisle réwna catce podwdjnej; biorgc zas jakas$ jednag sume, ztozong



a skonczonej liczby dodajnikéw, otrzymujemy przyblizong warto$¢ danej
catki podwodjnej. Jezeli obszar D jest prostokgtem i roztozymy go na
prostokaty réwne o bokach h i k, a dla kazdego z nich weZmiemy war-
tos¢ fiinkcji w lewym dolnym wierzchotku, to otrzymamy:

/= hk(f(xlty,) +~f{a yt)+ A* y,)+ f(x,y,)+ ...+ fix,,yR -f ...)

Wzor ten, dajacy sume objetosci odpowiednich prostopadtoscianéw, wzno-
szacych sie nad obszarem catkowania, jest uogdlnieniem poznanej dla
catek pojedynczych metody prostokatow (por. § 226 A).

Nie mamy zadnej wskazéwki, dotyczacej stopnia dokiadnosci tego
przyblizenia 1. Wskazéwke takg otrzymamy, zamykajac wartos¢ calkki
pomiedzy dwie liczby ograniczajagce. Bierzemy w tym celu z siatki pro-
stokatéw, otrzymanych na ptaszczyznie (XY), najpierw tylko te, ktére
lezg catkowicie wewnatrz obszaru D i pole kazdego z nich mnozymy przez
najmniejsza wartos¢, jaka w nim funkcja przyjmuje. Zatézmy, ze funkcja
AX,y) jest nieujemna w calym obszarze D.

Otrzymamy w ten spos6b sume:

(183 a) t, = pnmn -f-pum2+ ...-fpumu” 1

gdzie m,, oznacza najmniejszg wartos¢ funkcji w prostokacie p,,.
Suma ta przedstawia sume objetosci prostopadtoscianéw minimalnych.
Za gorne ograniczenie catki | bierzemy sume iloczynéw p6l pro-
stokgtéw zaréwno wewnetrznych, jak i tych, ktore zawierajg tylko czesci
obszaru, pomnozonych przez najwieksze wartosci funkcji w kazdym z tych
prostokatéw. Otrzymamy w ten spos6b sume:

(183 b) 1Sii, = pn Mx -> p2MD2-j- « m+ prmMn,

gdziG Mn oznacza najwieksza warto$¢ funkcji f(X,y) w prostokacie p,,.
Suma ta przedstawia sume objetosci prostopadtoscianéw maksymal-
nych. A wiec jest:

a9/S a3
Srednia arytmetyczna:
(183c) r="-"r-
bedzie wiec w ogo6lnosci wartoscig bardziej przyblizona, anizeli i, lub i,

Wzory te dajg zwykle tylko dos¢ grube przyblizenie; aby je zaostrzyc,
trzebaby rozktada¢ obszar catkowania na bardzo wiele drobnych elemen-
tow. Lepsze przyblizenie otrzymamy, uogdlniajgc metode trapezow. Wilezuiy
pod uwage prostokatny obszar catkowania D, okreslony warunkami:
8, 6, SSy S i podzielmy go na réwne prostokaty o bokach

) *10 si. . 6, rj . . .
nN— ——-- i k— — —. g,lamlast prostopadto$cianu, wznoszgcego sie
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nad kazdym takim sktadowym prostokgtem, wezmy prostopadtoscian $ciety,
ktérego dno gdrne (pochyte w ogélnosci) jest styczne do powierzchni
o réwnaniu z =>f(x, y) w punkcie, lezacym nad $rodkiem dolnego dna
prostokatnego. Jezeli wierzchotki tego prostokata majg spo6trzedoe (aj,,v,),
(®,Y,), 40 $rodek jego ma spétrzedne £(@>, -f-®,), i(y, -j-yt).
Oznaczmy warto$¢ z funkcji f(x, y), nalezaca do tego $rodkowego punktu,
znakiem:

Sa>jtoa Y, y,h
N1 2772
Widzielismy (w 8§ 252 w przykiadzie 2), ze objetos¢ takiego prostopa-

dtoscianu $Scietego ma warto$é: h ek «z\MVi. Suma objetosci takich prosto-
padtoscianéw Scietych:

(184)

lub krétko:

(184a) /,= hk ~ z .4

jest bardzo dogodng wartoscig przyblizong catki podwdjnej, doktadniejszg
zazwyczaj, anizeli wartos¢, otrzymana z wzorow (183a, b, c). Uzycie tego
wzoru mozna uwaza¢ za uogoélnienie metody trapezow.

Inny wzér przyblizony otrzymujemy, biorgc w kazdym prostokacie
zamiast wartosci nalezacej do sSrodka prostokata, S$rednig arytme-
tyczng czterech wartosci, nalezagcych do czterech wierzchotkéw prosto-
kata, np. w pierwszym prostokacie wartos¢:

¢(«u 4-«u + z,, zn)
t
Sumujac te wyrazenia, otrzymamy nastepujacy wzo6r (Bugaje wa):

m n

(185) 1%— hk” 4- ZtA\i 4% i+ 4- 2/+u+i)
i-i i

Biorgc S$rednig arytmetyczng czterech wartosci z, nalezgcych do Srodkow
bokéw prostokgta™ to znaczy np. w pierwszym prostokacie:

(30 4" A ma- 4% A =

- (L (>, N )+ KA-)E e s
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otrzymujemy nastepujacy wzor przyblizony (MaDsiona):

/.- M2 ji(/-(..iLtlto)+ ,(= + **,»,) +

(186) /-]

Z kombinacji wzorow (184), (185) i (186) powstaty najwazniejsze i naj-
bardziej rozpowszechnione wzory Wooley’a a mianowicie:

(187) A= *(«. + A)
(188) Ib=t(2 1t + It)

Podstawiajagc w te wzory wartosci z, otrzymamy np. dla pierwszego pro-
stokata w wyrazenia |t:

(187 a) ¥ hkfa_t -j- aVli, -f- 2\ h =~ 25 -j- 2 a/M)

a w wyrazeniu /t:
(188 a) hlclSzi~r  zlb -j- zia -j- - zM)

Z kombinacji tych wzoréw Wooley'a, biorac:
(189) J=*x/.+ 2/)

otrzymujemy uogoélnienie wzoru Simpsona. Dla pierwszego prostokata
otrzymujemy np.:

(189 a) hlczIl-(-  4- zu -}-zu -j* 4(N\M— - -z ka)-f- 1627,)

Mozna dowies$¢, ze wzor ten jest uogdllnieniem wzoru Simpsona w geo-
metrycznem znaczeniu, polega bowiem na zastepowaniu $cianek danej
powierzchni $ciankami, wzietemi z odpowiedniej paraboloidy eliptycznej
lub hiperbolicznej (0o réwnaniu z= a®*-j- by%

Ten uogolniony wzér Simpsona jest mniej dogodny anizeli wzory
Wooley’a poniewaz dla kazdego prostokgta skitadowego trzeba obliczaé
przy uzyciu wzoru (189) 9 wartosci funkcji z— f(a>,y), podczas gdy
w kazdym z wzoréw (187) i (188) potrzeba tylko 5 wartosci z dla kaz-
dego prostokagta skiadowego.

Wyprowadzono wzory na oszacowanie btedu, ktéry popetniamy, uzywajac zamiast
» a

prawdziwej wartosci catki /: f(x, y) dx dy .wzoru przyblizonego. Tak nn. dI*

wzoru (184) otrzymano przez rozwiniecie funkcji f(x,y) na wzér Taylora w oto-
czenia punktu X = £, y= £ i przez calkowanie tego wzoru nastepujgce oszacowanie
btedu I-1,-.
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gdzie M, oznacza najwiekszg warto$¢ pochodnej /> a fi, pochodnej tby w catym pro-
stokacie, wyznaczonym zapomoca warunkéw 0 X o, 0g yg k gdy bok o po-
dzielono na m a bok b na n réwnych czesci

Podobnie dla wzoru (187) Wooley a otrzymano

IM, a*b M, o' b’ Maab*\
11 \ m m' nl n* 7/
. . - - Cdef . d*J
przyczem fi, oznacza najwiekszg wartos¢ pochodnej -— , Si, pochodnej Jx*d _t
x*ay

pochodnej 2Y

Dalsze wskazéwki, dotyczace przyblizonych metod obliczania caiek podwdjnych,
znajdzie czytelnik w artykule C. Runge'go i F. Willers'a p. t. Numerische und.
graphische Quadratur und Integration gewdhnlicher und partieller Dierentialgleichum-
gen (Enzyklopadie der mathematischen Wissenschaften, tom U, 9, str. 136 i aast.).

Ustep IV

CALKI POTROINE, WIELOKROTNE | POWIERZCHNIOWE.

8§ 261. O catkach potréjnych i wielokrotnych.

Wezmy pod owage funkcje u— f(x,y,z) trzech zmieDoych, okres$-
long w jakims$ obszarze tréjwymiarowym i spetniajgca w nim podobne
warunki ciggtosci, jakie zakladalismy przy badaniu catek podwéjnych
dla funkcji z — f(x,y) dwéch zmiennych

Niechaj obszarem tym bedzie prostopadtoscian P, ztozony z punktéw
0 spotrzednych X, Yy, z, spetniajgcych warunki:

(@) b,S y”~ 68 ¢ ™ z”" ¢

Wyrazenie, otrzymane przez trzykrotne catkowanie fnnkcji u—f(x,y,z)
kolejno wedtug kazdej zmiennej (przyczem pozostate zmienne uwaza sie
za parametry), nazywamy catkg potrojng z tej funkcji po prostopa-
dtoscianie P i oznaczamy ja symbolem
H

a90) I=j J ff(x,y,z)dxdydz —J3"*" j'f(x, Yy, z) dxjdy™dz

n <
Gatke te mozna tez pojmowac jako granice odpowiednio wybranych cia-
gébw sum dolnych, gérnych lub posrednich

*
)

y™<pi, 2 M<*'  2jNe .>nnQp<
f-i i Fl

otrzymanych przez rozklad prostopadtoscianu P na S, prostopadtoscig-
néw p, zapomocg ptaszczyzn réwnolegtych do plaszczyzn spoétrzednych.



271

Okazuje sie, ze do tych catek potrojnych stosuje sie twierdzenie
o wartosci $redniej, wyrazone wzorem:

091) / / / [y, z)dxdydz = H*P

gdzie n oznacza odpowiednio dobrang warto$¢ pomiedzy kresem gornym
i dolnym funkcji f{X, Yy, z) w calym prostopadtoscianie P

Aby okresli¢ catke potréjna po dowolnym tréjwymiarowym obsza-
rze K, postepujemy podobnie, jak dla calek podwojnych. Wprowadzamy
mianowicie funkcje pomocniczg f,(X, VY, z), réowna funkcji f(X,y,z) w obsza-
rze V, a rowng O w pozostatych punktach prostopadtoscianu P, zawie-
rajagcego caly ten obszar V

Calka potrojng z funkcji /'®, y,z) po obszarze V nazywamy catke
potréjna z tej funkcji pomocniczej /, (X,y, z) po prostopadtoscianie P, a wiec:

jJ yV(a>,y, z)dxdydz~ J J J F*dxd*’\

SprowadziliSmy w ten sposéb to nowe pojecie do znanego pojecia. Rozu-
mujac podobnie jak dla catek podwéjnych, branych po dowolnych obsza
rach D, dochodzimy do wniosku, ze catke potréjng po dowolnym obszarze V
mozna obliczy¢ zapomoca trzech kolej-

nych catkowaé podanej funkcji f{x,y,z)

(a nie funkcji pomocniczej fx(X, Yy, 2)),

przyczem granice tych catkowaé nie

bedg juz wszystkie liczbami statemi

(jak w prostopadtoscianie), lecz jedna

para granic bedzie zawierata dwie ) X
zmienne, druga jedng a dopiero trze- 0

cia para przedstawia liczby state. Gra-

nice te wyzoacza sie z postaci po

wierzchni, ograniczajgcej obszar F,

w nastepujagcy sposéb. Niechaj kazda Fig. 98
prosta prostopadta do ptaszczyzny (.Y P)

przecina powierzchnig, ograniczajaca obszar V, najwyzej w dwoéch punk-
tach {6g 98). Rzutem obszaru tréjwymiarowego V na ptaszczyzne (XY)
jest dwuwymiarowy obszar D. Walec, rzucajacy V na ptaszczyzne (XY),
dzieli powierzchnie ograniczajgcg V na dwie czesSci o réwnaniach:

z= zx(x,y) i z= z,(X,Y¥)
Niechaj rzutem obszaru D na o0$ ®-6w bedzie odcinek, ktérego konca

maja odciete Oj i o*. Punkty A i B, nalezace do tych odcietych, dzielg
reeg obszaru D na dwie czesci o réwnaniach:

f = ()" * 2«=%*(e)
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Catkujmy f(x, y, z) najpierw wedtug zmiennej z. W tym celu trzeba ustali¢
wartosci X,y, t j. obra¢ jaki$ staly punkt C(Xx,y) w obszarze D. Wy-
kresimy przez ten punkt prostopadig do ptaszczyzny trafi ona po-
wierzchnie obszaru V w dwdéch punktach, do ktorych nalezg wartosci a,
i a*. Catkowanie wedtug a nalezy zatem wykonaé¢ w granicach od a,[X, Y)
do zt(x,y) i otrzymamy:
T f(x,y,a)dz
Warto$¢ tej catki jest jaka$ funkcjg F(X,y) dwéch zmiennych (parame-
tréw) X i y.

Teraz trzeba obliczy¢ catke podwojng z tej funkcji po obszarze D,
a mianowicie trzeba jg catkowaé wediug zmiennej y w granicach od
y = vy,(X) do y— y4x) a otrzymany wynik, ktéry bedzie juz funkcja
tylko jednej zmiennej X, nalezy catkowa¢ w statych granicach od ® = a,
do x = as. Otrzymujemy w ten sposoéb:

‘1 AP> 2L
(192) J 11 fix, Yz dxay@®=1 P P fx, vy, a) Gcyj R
Pl «, AU) «lxr)

Podobnie przedstawia si¢ rachunek przy innych, zmienionych porzadkach
catkowania, tylko trzeba odpo-
wiednio zmieni¢ granice.

Do wzoru (192) mozna dojs¢
takze w inny sposéb, a mia-
nowicie sprowadzajgc catke po-
trojng do catki pojedyoczej
z catki podwdjnej. Obierzmy
w tym celu jaka$ stalg wartosc *;
otrzymamy przekréj D (x) obsza-
ru V plaszczyzng rownolegla
do ptaszczyzny bocznej (YZ).
Obliczmy najpierw catke po-
dwdjna z funkciji f(x,y,z) wedtug
Z iy po obszarze D(x). Gra-

Fig. 99. nice catkowania dla z bedg za-
lezne nietylko od y ale takze

od Xx. granice za$ dla y nie bedg state, lecz zalezne od x. A wiec: b

fl 0631 W 2)dzj dy

aW iilj)
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Nastepnie nalezy zmienia¢ X od as do a, i wykona¢ catkowanie wedtug
zmiennej X. Otrzymamy w ten sposéb znowu wzor (192).

Twierdzeuie o wartosci Sredniej stosuje sie takze do catek potroéj-
nych po dowolnych obszarach i przyjmuje dla nich postac:

(193)

gdzie V oznacza nie tylko obszar catkowania, lecz zarazem jego objetosc
a ji oznacza odpowiednio dobrang liczbe posrednia pomiedzy gérnym
a dolnym kresem wartosci funkcji w obszarze V. Warto$¢ fi, obliczong
z tego wzoru, nazywamy Srednig wartoscig funkcji trzech zmiennych f(x, vy, z)
w obszarze V.

Jezeli f(x,y,z) ma stale warto$¢ 1, to oczywiscie $rednia warto$¢ n
jest takze réwna | i otrzymujemy z wzoru (193) nastepujacy wzOr na
objetos¢:

(194)

Twierdzenie o wprowadzeniu nowych zmiennych wuogélnia sie takze na
calki potréjne, a mianowicie catka:

f(x,y, z) dx dy dz

przechodzi po wprowadzeniu nowych zmiennych zapomoca wzoréw:

o= <plu,vyw | Y= WW, W), - *Oo* v, w)
na:

m, n, o\ tp(u, v, W), z (m, v, &) * |«d| du dv dto

gdzie J oznacza jakobjao funkcyj <p,f>x 8 V jesl zmienionym odpo-
wiednio obszarem catkowania.

Przykiady.
1) Obliczy¢ catke:

/= f f Ixy zdxdy dz

po prostopadtoscianie, okreslonym warunkami: a, 06, < y<ehv

[=3'3 jxy zdzdydz=J3*j*\ Jzdydz =
il A\ bx <1

= j a\)lyzdy dz=z £(a] — uf)j jyz dydz
G c B,

Rachunek rézniczkowy i catkowy. T. S 18
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Widocznie wiec:
= *(@aS— 0?)*Ne - 6?)eNe - c?

Mozna bylo zatem odrazu przedstawi¢ te catke / jako iloczyn trzech
catek pojedynczych. Ogolniej:

J j*If(x)g(y)h(z).dxdydz—jh{z) dz-Jg(y) dy -j*fix) dx

2) Obliczy¢ objetos¢ ésemki kuli o promieniu a przy pomocy caiki
potréjnej (fig. 100). Roéwnania powierzchni ograniczajacych sa: z, = 0
(ptaszczyzna (XY)) i 2%= Jfas— X* — y* (kula). Rzu-
tem tej bryly na ptaszczyzne (XY) jest éwiartka
kota, zatem y, =0, y, =] la* — ®\ Odoieta za$ X

zmienia sie od X — 0 do X = a Zatem:

'1))
de—7 /7 / dxdydz

Fig. 100.
Catke te najdogodniej jest obliczy¢ przy pomocy

spotrzednych biegunowych w przestrzeni, t. j. przez wprowadzenie nowych
zmiennych (por. tom |1, str. 381):

X — r sin a cos
y = rsinasin /?
Z—rcosa
Jakobjanem tych funkcyj jest, jak tatwo stwierdzic:
’ ' J= r*sina
Aby wyczerpa¢ caly obszar catkowania, trzeba zmienia¢ r,a,ft w statych

granicach, a mianowicie r od 0 do a, a od 0 do f i Jod 0 do f.
Wobec tego:

n 31 Tt

Jl
" , STsinadrdad(iz \]i(30 "sinada-e r*dr

(por. koncowy wzér w przyktadzie ). Zatem:

M|

V= fe(- GB@LI = fe1ei= 4j=
o
3) Obliczy¢ catke Dirichiefa:

1=J jrad~1y"~I dx dydz
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po obszarze, ograniczonym powierzchnig o réwnaniu j (- j= 1

(I,m,n sa liczbami dodatniemi) i ¢wiartkami ptaszczyzn spétrzednycb,
zawartemi miedzy dodatniemi czesciami osi. Wprowadzmy nowe zmienne
zapomocag Wzoréw:

(=" ()= (1)--
Nietrudno obliczy¢, ze jakobjan ma tu wartosé:

-1 -1 1 -
W= _a_bcu[ Iv}nI wn :

Imn
Wobec tego:
1 * abc i-i I-i i—i
(au'Y \bvm" \cwn)r w" dudvdu>
0)
ozyli:
a'd Vv [C C t-i «-1 --i , s s
~ mii I I j U V' W dudvaw

<n
Obszarem catkowania V jest czworoscian, ograniczony ptaszczyzna:
u-f-v-f~-w= |

i czeSciami ptaszczyzn spo6trzednych, zawartemi miedzy dodatniemi czeSciami
osi (fig. 101). Jezeli catkujemy najpierw we-
dlug w, to granicami catkowania sa:

=0 i Wt= | —u—*

Przy uastepnem catkowaniu, wedtug u, nalezy
obra¢ granice:

a wreszcie dla u granice sgstate: u, =0, w,= 1 A wiec:
| l—=<!|-—mF
W F(FFU v ae i
Imn AV «* AWE 'dwjdcjd

Po wykonaniu catkowania weditug U? otrzymamy:
I 1l-0
r apbqgci'Cl C ii-i -\
l— ~ J U = (Il — — >m*)*<

18*
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Celem obliczenia wewnetrznej catki uzyjmy podstawienia;

v=t (Il —w), awie dv= (Il —w)dt
Granice bedag state: /= 0 i t— |. Otrzymamy zatem:
0 0

Wystepujgce tu calki sa catkami Eulera pierwszego rodzaju, czyli
funkcjami B (por. § 259, str. 266, uwaga), a wiec:

Uzywajgc wzoru (181) na str. 266 i wzoru (a) na str. 111, mozemy wyra-
zi¢ prawag strone zapomoca catek Eulera drugiego rodzaju, a mianowicie:

. , ab<frC l)r(i)r(-m
> rtf+i+i+1)
Wszystkie powyzsze rozwazania rozszerza sie bez trudnosci na catki

poczwoérne i wogoble wielokrotne.
Catke »-krotng:

33 L/ (x, ,@..x,,) dxi da\],... @

oblicza sie przez» kolejnych catkowan. Obszar catkowania (P) dla n>5
nie da sie juz przedstawi¢ geometrycznie, lecz okresla sie go zapomocg
pewnych warunkéw analitycznych. Pomimoto uzywa sie takze wtedy
terminologji geometrycznej, moéwigc o utworach przestrzeni wielowymia-
rowej. Tak np. jezeli bierzemy jako obszar catkowania zbioér tych war-
tosci ®,,®i...®,, ktore spetniajg warunek:

+ + + S*8

to nazywamy go ,kulg »-wymiarowg“ Catke »-krotna:
/ 7/ / / eto, dxt ... dx,,

po tej kuli »-wymiarowej nazywamy jej objetoscia.
Wprowadzajac nowe zmienne (ktore sg uogoélnieniem spétrzednych
biegunowych przestrzennych):

®t

rcosmx, ® = rsin(pl cosgm, § 8==rsin(plsingp coseB,... ®,_, =
rsinepjsinep,... sin(pn_2cdsgj,_,, XNn— rsinep, sing?,... singp,,_,
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mozna okaza¢, ze objetos¢ takiej kuli wyraza sie wzorem;

F,= ni dla n parzystego
)
_ ‘(2n) 2 e~ dla n nieparzystego
3-5-7.. n

Stad np. dla n= 2 otrzymamy F,= i?T, t j. powierzchnie kota; dla
n— 3 jest Vt — R 1‘0 —= 7N j?87t, t j. objetos¢ kuli 3-wymiarowej,
o

Okazuje sie, ze gdy liczba wymiaréw n wzrasta nieograniczenie, to obje-
tos¢ kuli w-wymiarowej o promieniu R dazy do zera.

8§ 262. Zastosowanie catek podwdjnych i potréjnych do obliczania
mas i momentow.

I. Masa. Jezeli ciato ma w kazdym punkcie takg Bamag gestos¢ q,
to nazywamy je jednorodnem, a mase jego M obliczamy, mnozac te
gestos¢ przez objetosc;

M—qJ Jj dxdydz= qg-V

Jezeli jednak ciato nie jest jednorodne, to wzér na obliczenie masy nie
jest juz tak prosty. Aby otrzymac taki wzér, trzeba najpierw podac defi-
nicje gestosci w kazdym punkcie ciata. Otaczamy punkt A(X,y,z) dowolnym
elementem o objeto$ci A Fi tworzymy stosunek masy AM, znajdujacej sie
w tym elemencie, do jego objetosci AV. Granice tego stosunku;

AM
PR <>(©9.7)

gdy element objetosci dazy réwnoczesnie we wszystkich kierunkach do
zera, nazywamy gestoscig ciata w tym punkcie A. Gesto$é ta zalezy od
potozenia punktu A, jest wiec funkcjg trzech zmiennych X, Y,z

Podzielmy ciato na elementy np. zapomoca ptaszczyzn réwnolegtych
do ptaszczyzn spéirzednych. Objetosé AX, AykAz, kazdego takiego elementu
mnozymy przez gesto$¢ p(£, rjt, £) w dowolnym jego punkcie i tworzymy
sume iloczynow:

eE/> 7. Q AXj¢y* A

Granice ciggu takich sum, gdy AX, AyKi Az daza do zera, nazywamy
masa ciata. Jeet ona zatem rowna catlce potréjnej;

(195)
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Podobnie dla mas, rozmieszczonych na ptaszczyznie w obszarze D, wpro-
wadzamy gesto$¢ powierzchniowa: p(®,y) a mase obliczamy przy pomocy
catki podwadjnej.

(196) M= J1J dx,y)dxdy
D

Dla mas, rozmieszczonych linjowo, wzdtuz odcinka linji prostej, otrzy-
mujemy w podobny sposob:

(196a)

Do obliczenia mas, rozmieszczonych linjowo, wzdtuz tukéw dowolnych
linij ptaskich lub przestrzennych od punktu A do B, uzywa sie wzoru

(196b)

gdzie p(s) oznacza gestos¢ linjowa jako funkcje diugosci tuku, liczonego
od jakiego$ stale obranego punktu na danej linji.

Do obliczenia mas, rozmieszczonych powierzchniowo, po dowolnych
powierzchniach krzywych (jak np. mas elektrycznych), trzeba uzywac
t. zw. catek powierzchniowych, ktére wprowadzimy w nastepnym paragrafie.

II. Momenty. W 8 233 okresliliSmy momenty statyczne i bezwtadnosci
dla systemu punktéw materjalnych. Dla punktu materjalnego A[X, Y, z)
0 masie motrzymujemy w ten sposob nastepujace momenty statyczne wzgledem
ptaszczyzny (X F), wzgledem osi X i wzgledem punktu O
m ez
M, ==mer = m\y*\-zi
MO= m mR — m\Xxi-\-y'-\-zt
Momenty bezwiadnosci tego punktu wzgledem pta-
szczyzny (X F), osi X i punktu O wyrazamy wzorami:

Bv = mz*

Bt — mrl = m{y2+ z¥)

BO= mR*= m(a?+ y*-f-z]
Podobnie tworzy sie momenty wyzszych stopni.

Chcac okreslic momenty mas, rozmieszczonych w przestrzeni tréj-
wymiarowej w sposob cigglty w jakims$ obszarze V, rozdzielamy ten obszar
na elementy i mnozymy mase kazdego elementu przez odpowiedniag odlegtosé
lub kwadrat odlegtosci. Te elementarne momenty sumujemy, przechodzimy
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do granicy i otrzymujemy w ten sposob odpowiednie catki potréjne. | tak
momentem statycznym wzgledem plaszczyzny (XY) masy o gestosci
q(x,y, z), rozmieszczonej w obszarze V, nazywamy catke potrojna.

(197) g(x,yz)ezdxdydz
m

Podobne wzory stosujg sie do innych ptaszczyzn, trzeba tylko zastgpic
odlegto$¢ : punktu biezacego od ptaszczyzny (1Y) odpowiednio inng
odlegtoscia.

Dla masy, rozmieszczonej jednorodnie, jest gesto$¢ liczbg stala,
mozna zatem wytgczy¢ q przed znak .catki i otrzymamy:

1dx dy dz
00

Moment statyczny tej samej masy wzgledem osi X okresSlamy wzorem

(198)

i analogicznie dla innych osL
Moment za$ statyczny wzgledem punktu O okreslamy wzorem;

M — e *\xl -f- y2-j- 2 *dxdy dz
co

Podobnie momenty bezwtadnosci ciat tréojwymiarowych okreslamy wzorami:

<199a) Bx=J*J J gz2dxdydz
(10
{199b) Bx—] TJ Qy*+ 2)dxdydz
00
(199 ¢) Bo=J J JQ{x*4-y'+ z3 dxdy cz

Dla mas, rozmieszczonych powierzchniowo na ptaszczyznie, okreslilismy
juz momenty statyczne i bezwladnosci w 88 234, 238, 239 i w § 244 Il
zapomocg catek pojedynczych i krzywolinjowych. Wiasciwszem jednak
narzedziem matematycznem do przedstawienia takich momentéw sa catki
podwéjne. Tak np. moment statyczny wzgledem osi X-6vr masy o gestosci
e{x.y)t rozmieszczonej w obszarze ptaskim D, otrzymamy, mnozac mase
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kazdego elementu \Xx <Ay przez odlegto$¢ y dowolnego jego punktu od
osi a?-6w, sumujgc te iloczyny i przechodzac do
granicy. Za definicie momentu tej masy przyj-
mujemy zatem catke podwdjna:

A (200 @)
Fig. 103.

i analogicznie wzgledem osi y-0w:

(200 b) f J '(>(*, y)xdxdy
D

Moment statyczny wzgledem punktu O okreslamy wzorem:

(200c) M —f f YV& + yJdxdy

(g
Podobnie momenty bezwladnosci wzgledem obu osi i wzgledem poczatku
uktadu okreslamy wzorami:

(201 &) B.,=* 1 1 Q[x,y)yldxdy

1D
(201 b) B,= f J'Q(x, y)xidxdy

BT Ny - Woy

Widzimy, ze te wzory (200) i (201) sa symetryczne wzgledem X i vy,
a wskutek tego tatwiejsze do zapamietania, anizeli wzory, wyrazajace te
momenty zapomocg catek pojedyoczych.

I1l. Srodek ciezkosci. W § 235 okreslilismy $rodek ciezkoSci
pola lub tuku jako punkt, w ktérym umieszczona catkowita masa ma
taki sam moment statyczny wzgledem kazdej osi jak masa, rozmieszczona
w catem badanem ciele.

Podobnie okreslamy $rodek ciezkosci mas, rozmieszczonych w prze-
strzeni tréojwymiarowej: jest to taki punkt, w ktorym skupiona cata masa
tego ciala ma ten sam moment statyczny wzgledem kazdej ptaszczyzny,
co catkowite cialo. Oznaczmy spéirzedne tego punktu S literami £ 1j,
W mysl definicji musza sie spetnia¢ warunki:

— &M, Ma= rj>M, — £M
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a wiec:

202

Gdy masa jest rozmieszczona jednorodnie, to czynnik e odpada i pozostaje:

j J,xdxdydz J J ydxdydz

(202 a)

S ffzdxdydz

Mozna okaza¢, ze ten punkt ma zadang wiasnos$¢ nietylko ze wzgledu
na trzy ptaszczyzny spotrzednych, lecz takze ze wzgledu na kazdag inng
ptaszczyzne.

Podobnie mozemy wyrazi¢ spoétrzedne Srodka ciezkosci masy, roz-
mieszczonej powierzchniowo, w obszarze ptaskim Z), zapomocg catek pod-
woéjnych, a mianowicie, uzywajac wzoréw (200 a, b), otrzymamy dla ciat
jednorodnych:

(203)

Zestawiajgc wzory (202a) i (203) z wzorami, wyrazajgcemi Srednig war
tos6 funkcji dwoéch lub trzech zmiennych, widzimy, ze spétrzedna £ Srodka
ciezkosci bryty jednorodnej jest Srednig wartoscia odcietej X w obsza-
rze W\ podobnie t] jest $rednia wartoscia rzednej y, a f $rednig wartosciag
zmiennej z

Przykiady.

1) Obliczy¢ mase stupa postaci walca prostego o wysokosci w, kto-
rego gesto$¢ zmienia sie z wysokoscig z wedtug prawa Q= f(z). Niechaj D
oznacza obszar, zamkniety kierownicg na ptaszczyznie (JfY).

Otéz:
w w
f JJf{zdxdydz-=jj.J J f(z)dxdyjdz= J"|/(2)aJJdxdyjdz

(o 0 (D) 0 (D)
= ff{z)dz-J Jdxdy =C f(z) dz mD
n (D) o
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Stosujac do pozostatej catki twierdzenie o wartosci Sredniej, otrzymujemy:
M — /(E) *w-D

Masa tego stupa réwna sie zatem masie, rozmieszczonej w sposob jedno-
rodny, o gestosci statej, rownej gestosci w wysokosci Sredniej z =
2) Wyznaczy¢ srodek ciezkosci wycinka kota o promieniu R, o kacie
Srodkowym 2y, jezeli gesto$¢ p jest stata. Umies¢my ten wycinek tak,
jak na fig. 104. Widocznem jest, ze Srodek ciez-
kosci lezy na osi ar-6w, a wiec t]— 0. Odcietg £
obliczymy z wzoru (203), a mianowicie:

e jj Xdxdy
t (P>
* QD
Po wprowadzeniu spoétrzednych biegunowych na ptaszczyznie, t. j. X — rcosg,
y = rsina, otrzymujemy:

+y K
f | r*cos a:drda
E "R i A, oS
V 3( -HT ------------ = y il- |f & Icmda-ro: sm 7_ R§ﬁy
vy J 3 L, | y
3) Wyznaczy¢ $rodek ciezkosci masy, wypetniajgcej jednorodnie

pétkule o promieniu 1 Przyjmijmy réwnanie kuli w formie:
X'+ y2-f-z1— 1

i wezmy pod uwage gorng potkule.
Srodek ciezkosci lezy oczywiscie na osi z, a wiec £= 0, A— 0,
a pozostaje do obliczenia Z wzorow (202a) otrzymujemy:

= zdx dydz
€= ff -3z

Wprowadziwszy spo6trzedne biegunowe przestrzenne, otrzymujemy:

2ii 21 n
i= Ynt ') 'rcokarfsinadrdad(}= rsd r-J 'sinac.osac/a < d fi
0 0 0 0 0 o
3 | / cos2a\l N3
*21,“ 4'25 = »
0 »
4) Obliczyé moment bezwiadnosci kuli jednorodnej o promieniu R

0 gestosci p, wzgledem dowolnej Srednicy.
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Obierzmy s$rodek kuli za poczatek ukiadu > obliczmy jej momenty
bezwladnosci wzgledem 3 osi spoétrzednych. Stosujemy wzor (199 b), a wiec:

Bi=Q £f + 3Ndxdy®

B,= uf ) dx dy dz
B,= e ffJ (x'-fy')dxdydz

Wskutek symetrji te 3 momenty sg réwne, mozemy je wiec ozuaezyc
ta samg litera B. Suma:

B,+ B,+ B'= 3B = ¢efJ f(2x*-\- 2y* -f 2z*)dxdydz

Do obliczenia tej catki dogodnie jest uzyé spoétrzednych biegunowych
przestrzennych. Wiemy juz, ze wtedy nalezy element objetosci dx dy dz
zastapi¢ przez rasio a dr d[i da. Granice catkowania beda state, wiec:

n 2nR R 2n n
B= 8gl i ir*-rrsinadrdfida= 8¢ /r*drel| dfi* /sinada
0 0 0 0 0 0

= 8e%.27i.2 = ftll>ne

§ 263. Potengal'.

Wezmy pod uwage dwa punkty materj&lne: staly punkt A(a,b,c)
0 masie m' i punkt biezacy B(x}y,z) o masie m. Takie dwa punkty
przyciggaja sie z sita:

)

mm

f— kM0
-

gdzie k oznacza statg grawitacyjna, a r odlegto$¢ tych dwu punktéw od
siebie. Biorgc m’ — k mamy:
j_m__
t* (X — @*-f- [y — b - 2 — o]
Sktadowe sity f w kierunku osi spétrzednych majg wartosci:
/ ,= /0030, f, —f'cos/J, f,— f' cosy

gdzie a,/7y oznaczaja katy, zawarte miedzy kierunkiem sity | osiami
spo6trzednych.
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WeZmy teraz pod uwage zamiast punktu materjalnego b mase
0 gestosci e(X,y,z\ wypetniajaca jaka$ cze$¢ przestrzeni V i zbadajmy,
jakie sity dziatajg na staly punkt A(a, b,c), lezacy zewnatrz tego ciata,
w t. zw. polu grawitacyjnem. Rozkladamy w tym celu obszar V na ele-
menty i sumujemy skiadowe sit przyciggania, wywieranych przez poszcze-
g6lne elementy na punkt A w kierunku osi X, Y,Z. Po zsumowaniu
1 przejsciu do granicy otrzymamy na catkowitg site sktadowg w kierunku
osi a?-6w wzor:

,, ccc e(x, y, z) coaa dx dy dz

@ 2+ (y — b+ —cY

t analogicznie na sktadowe w kierunku innych osi. Poniewaz:

X-a y-b S
cosa— —— . cos/’= ... Cosy :

przeto

1
p ' IQs2addd - -/ 7 7 <Yy todd
r»
W i I ! I
m o -
Te trzy silty skladowe sg Mdnej funkcji, a mianowicie funkcji:

(20+)

Zrozniczkujmy mianowicie te funkcje wedlug parametru a. Podobnie jak
dla catek pojedynczycb, mozna tu wykonaé¢ roézniczkowanie pod znakiem
oatki i otrzymamy:

31V
da \r) r* da
Poniewaz:
t— (®— 87‘+ (y —bY+ [z— C;f
przeto:
2—g
% X_ a
a zatem:
dd— aj — a

N/
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Wobec tego pochodna:

3u te dyte = T,
da

Podobnie:

Te funkcje u(a, b, c), ktérej pochodnémi czastkowemi sg sktadowe sity przy-
ciggania wzdtuz osi spobzednych, nazywamy potencjatem pola grawita-
cyjnego, wywoltanym przez dang mese.

Funkcja ta odgrywa bardzo wazng role nietylko w badaniach pola
grawitacyjnego, lecz takze w badaniach pél innych sit, dziatajgcych od-
wrotnie proporcjonalnie do kwadratu odlegtosci, np. sit elektrycznych
i magnetycznych.

Utwoérzmy drugie pochodne potencjatu ze wzgledu na a,b,c Po
wykonaniu rachunkéw otrzymamy:

i_u 3(C - «)*_% e dx dy dz
9*u
= N_N
9b* ff )e<ixdydz
d* Mz — c)!
d(:J*' z ©) qdx dy dz

Utworzywszy sume tych catek, otrzymujemy:

(206)

Dla kazdego punktu, lezgcego zewnatrz mas, potencjat spetnia zatem, przy
dowolnym rozkiadzie mas, réwnanie rozniczkowe czastkowe drugiego
rzedu (205), zwane réwnaniem Laplace’a

Jezelf punkt A(a, b, ¢) lezy wewnatrz ciata, to catki, przedstawiajace
potencjat i sity sktadowe, sg niewlasciwe, albowiem dla takiego punktu
jest x= a y= b z= ¢ a wiec r— 0, a to r wystepuje w mianowniku.
Mozna jednak dowie$¢, ze te calki sa zbiezne. Okazuje sie, ze dla punk-
tow A, lezacych wewnatrz ciata, potencjat spetnia nastepujace réwnanie roz-
niczkowe:

(206)

zwane réwnaniem Poisson’a
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Teorja potencjatu jest jednym z najwazniejszych i najszerzej opracowanych
dziatéw analizy wyzszej. Sposrod licznych podrecznikéw, poswieconych temu przed-
miotowi, wymieniamy tu: A. W angerin, Théorie des Potentials und der Kuyelfunk-
tionen (2 tomy, Sammlung Schubert, 1921—2) i W. Sternberg, Potentialtheorie

(2 tomy, Sammlung G 6s chen, rok 1926—6).

Przyktad.
Obliczy¢ potencjat w dowolnym punkcie A przestrzeni, jezeli w tej
przestrzeni znajduje sie kula o promieniu a, wypetniona w sposéb jedno-
rodny masg o gestosci p = 1.

Nazwijmy odlegtos¢ punktu A o<Jsrodka O
kuli literg c (fig. 105). Za o$ Z obierzmy
prosta, tgczaca A z O, a poczatek uktadu
przyjmijmy w Srodku kuli.

Punkt A ma wtedy spétrzedne 4(0,0, c)
0 dodatniem c. Odlegtos¢ punktu A od do-
wolnego punktu B(X,y, z), lezacego wewnatrz
lub na powierzchni kuii, wyrazamy wzorem:

? —\x8 -\-y%\-{c — 2)1
a wiec potencjat ma w punkcie A wartos¢:
dxdydz__ f f f dx dy dz
+ y%+ (C— 2)*

Celem obliczenia tej catki wprowadzamy spoétrzedne biegunowe prze-
strzenne zapomoca wzoréw.

X= rsinacos@ y —rsinasin/2 z= rcoaa
Poniewaz jakobjan tych funkcyj ma warto$¢ r* sin a, przeto:

r-a a-n §l-2.4 .I.H n
r F* &fh & dfi Ha dr -@H f r*8na dadr

m__ 2Coar
vJ vJ J \rtsin8a -)-(c — rcosa)? J vJ \r* -f-C* — 2 ercos o

**.0 a-0 0-0 o 0

Przy obliczaniu catki wedtug zmiennej a uwazamy r za parametr. Wpro-
wadzmy zamiast a zmienng r zapomocg podstawienia:

r~= r* cl — 2cr cosa

Dla a — 0 jest f*= (r — c)s a wiec f = \r— e], poniewaz f jest zawsze
dodatnie, a dla a= n jest f — \r-f-c|]= r-f-c
Poniewaz 2f df = -f- 2crsina da, przeto:

r-sin a da P er r C r

FT,.-2,r¢,.a~ 1 — -———- « c\)
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Stad otrzymujemy dla (>r

1= " (rt+ c—c+ r)—z—r-*
adlac< 1
| z=z—(r C—r-|-c= 2r
(o}
Jezeli punkt A lezy zewnatrz kuli. ta Jest ¢ a, a zatem stale ¢ > -
Wtedy:

Potencjat ma zatem w punkcie zewnetrznym taka wartos¢, jak gdyby
cata masa byta skoncentrowana w srodku kuli | jf=J o087 «l, r==c, w= 'J.

Jezeli punkt A lezy wewnatrz kuli, to trzeba rozdzieli¢ przedziat
ecatkowania < 0,0> na dwie czesci, od 0 do ci od ¢ do a

*

W pierwszym z nich jest ¢ > r. a wiegc /= — ,w drugim zas jest
¢ < r, awiec | = 2r. Otrzymujemy wiec w tym przypadku
c a
= 2jil° dr -f-2MTM3'2r dr = fii— -+ 2n (a* — e*)= 2n (a* — "j
0 e

Taka wartos¢ ma potencjat w punkcie, lezacym wewngtrz kuli w odle-
gtosci ¢ od jej Srodka.

Dla punktu, j6zgeego na powierzchni kuli, t j. dla e= a, otrzy-
mujemy z obu wzoréw te sama wartos¢ |asiz

8§ 264. Caikl powierzchniowe.

W' 6zyce matematycznej zachodzi czesto potrzeba badania mas
(zwhaszcza elektrycznych), rozmieszczonych na powierzchniach krzywych,
momentow takich mas i ich potencjatéw. Aby stworzy¢ narzedzie mate-
matyczne, odpowiednie dla tych badan, wprowadzono jeszcze jedno roz-
szerzenie pojecia catki, a mianowicie catki powierzchniowe.

Zanim to pojecie wprowadzimy, podamy najpierw pewna modyfi-
kacje pojecia catki podwdjnej po obszarze D. Przy definicji tej calki nie
zwracaliSmy uwagi na to, w jakim kierunku obiegamy obszar D. Odro6z-
nienie tych kierunkow jest jednak w wielu przypadkach korzystne. Tak
np. przy obieganiu brzegu obszaru D w kierunku dodatnim (przeciwnym
do obrotu wskazéwek zegara) otrzymujemy z wzoru:
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dodatnig liczbe na pole tego obszaru, przy obieganiu za$ ujemnem, liczbe
ujemng. Mozemy zatem wprowadzi¢ oznaczenia:

z ktorych pierwsze oznacza catke podwoOjng o obiegu dodatnim, drogie
za$ o ujemnym. Podobnie ogélnie kiadziemy:

j 1 A®y)dxdy=j J f(x,y)dxdy

D+

(D)
fJ 'A®, y) dx dy - —yyf{x ,»dx dy
(D,

D -
i nazywamy takie catki podwojne, z odréznieniem Kierunku obiegu,

catkami zorjentowanemi.
Wezmy teraz pod uwage powierzchnie S o réwnaniu:

r= e@®y)

wznoszaca sie nad obszarem plaskim D i ustalmy dla niej jaki$ Kkieru-
nek obiegania przez obranie kierunku obiegania brzegu.

Ten sam kierunek obiegu trzeba przypisac¢ rzutowi D tej powierzchni
na ptaszczyzne (XY). Uwazajmy dla kazdej normalnej do powierzchni ten
kierunek za dodatni, ktéry wraz z kierunkiem obiegania brzegu po-
wierzchni wyznacza ruch srubowy prawoskretny. Kat tej normalnej z do-
datnim Kkierunkiem osi Z oznaczmy literg V.

Utworzmy catke podwdjnag zorjentowang z dowolnej funkcji R(x,Yy,r)
trzech zmiennych, przyczem te zmienne nie sa od siebie niezalezne, lecz
spetniaja réwnanie powierzchni r = go@®,y). Tworzymy wiec catke:

va R{x,y,z)dxdy = J yR(®,y, <p{xy)) dxdy lub I fR(x,y}z)dxdy
ZH 0+ D-

Eorjentowaug tak, jak dana powierzchnia, to znaczy, ze obieg obszaru D
jést taki, jaki wynika z obiegu brzegu danej powierzchni. Kazdg z tych
calek nazywamy catka powierzchniowa z funkcji R(X y,z), brana po
powierzchni S z obranym kierunkiem obiegu i oznaczamy je obydwie
wspélnym symbolem:

/ i R(x,y,z)dxdy Ilub *<*.y, z) cos y da
oy 1/
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przyczem nalezy jeszcze podaé, w ktorym kierunku obiegamy dang po-
wierzcbuie. Symbol da nazywamy elementem powierzchni; ma on warto$é
dxdy.cosy. Zamiast moéwi¢ o réznych, kierunkach obiegania powierzchni,
mozemy moéwié, ze bierzemy catke powierzchniowa po réznych stronach po-
wierzchni, zaleznie od tego, po ktérej stronie powierzchni lezy dodatni
promien normalnej; albowiem dodatni kierunek normalnej zostat ustalony
na podstawie kierunku obiegu.

Widzimy stad, ze catke powierzchniowg, brang po dowolnej powierzchni,
np. krzywej, mozna zawsze przedstawi¢ jako catke podwdjng po obszarze
ptaskim, o obiegu dodatnim lub ujemnym, zakznie od tego, po ktérej stronie
powierzchni bierzemy catke powierzchniowa.

A wiec:

i ihz) dxdy — I | R(x, y. <p(x, yj)dx dy

m 1IS) D+

lub:

JJIR {x, vy, <plx yj) dx dy

czyli:

J JR(X,y,q>(X,yj) dx dy, jezeli obieg brzegu
O powierzchni jest dodatni

— |1 f R(x,y,cp(x,y)) dxdy, jezeli obieg brzegu
D powierzchni jest ujemny.

ZaktadaliSmy, ze powierzchnia 5 da sie przedstawi¢ w postaci réwnania
z= g>X Yy). Jezeli tak nie jest, lecz gdy powierzchnia da sie roztozy¢ na
czesci, spetniajgce ten warunek, to za catke powierzchniowag po catej po-
wierzchni uwazamy sume catek powierzchniowych po tych czesciach
sktadowych. Jezeli zas$ jaka$ czes¢ powierzchni jest prostopadta do ptasz-
czyzny (X F) (jest czescig powierzchni walcowej), to za catke powierzch-
niowg po tej czesci powierzchni uwazamy zero.

Tak np. catka powierzchniowa po kuli jest sumg calek powierzch-
niowych po obu potkulach, na. ktére sie rozpada kula przez poprowa-
dzenie kota wielkiego, réwnolegtego do ptaszczyzny (XY).

Podobnie okresla sie catki powierzchniowe:

P(X,y,z)dydz i - 'vJ Q(x,y, z) dx dz
JJ J
] ©)

jezeli réwnanie powierzchni da sie przedstawi¢ w postaci X=rp(y,z)
lub y = %(x,z) nad obszarami ptaskiemi D' lub D".
Bachanek rotnicikowy i catkowy, T i. 19



0Ogo6lng catka powierzchniowg po powierzohni S jest suma:

j ] (P(x,yyr) dy dz-\- Q(x,y,z)dxd2-\-R(x,y, z) dx dy)
<
czyli;
,Y,z)coBa -)- Q{xX,y,z)cos + R(@>Y,z) cos y) da
©

Unega. Caltke powierzchniong™ R(X. y, X\dxdy nozma tez okresli¢ jako
)
granice ciagu sum otrzymanych w ten sposdb, ze dzieli sie powierzchnie na elemrenty
Ao, Adt, ... Ao, i kazdy z nich nnozy sie przez wartos¢ funkgji R(x, v, €) cosy w do-
wolnym punkcie kazdego elementu a nastepnie dodaje sie te iloczyny. Tworzy sie
ciag sum postaci:

n

cos ytAo,
gdy Srednice elemrentow B/ do zera i okazuje eig, ze ta granica nma wartosc:

J J R(w, y, g>{x, y)) dx dy = J J R{Xyy, z)dxdy —
© )

IS
% \] R(X,y, z) cosy do
<

9 265. AMazek catki powierzchniong) z calkg krzaywolinjonwg
przestrzenna,

Widzielismy, ze pomiedzy catkg podwodjng a catka krzywolinjowg
ptaskg zachodzi bardzo wazny i interesujacy zwigzek, wyrazony twier-
dzeniem Greena-Rietnanna (por. § 256). Okazemy, ze podobny zwigzek

zachodzi miedzy catkg powierzchniowa a catkag
krzywolinjowag przestrzenna.

Wezmy pod uwage powierzchnie S(fig. 106)
o réwnaniu z= cp(X, y), wznoszaca sie nad
obszarem plaskim D. Brzegiem tej powierzchni

(XY) jest brzeg | obszaru D. Zajmijmy sie
catkg krzywolinjowa:

= J P{x,y,z)dx
(L)
brang po brzegu powierzchni, przyczem obiegajmy ten brzeg w takim
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kierunku, aby rzut jego | byt obiegany w kierunku dodatnim. Poniewaz
z= <p(X,y), przeto:

| ~ _f P(x'V\@))dx:j py®

0] ©
Zastosujmy do _tej, catki krzywolinjowe] po 'lnji ptaskiej twierdzenie
Greena-Rielldna (str. 241. wzér (166)). Otrzymamy:

Ale:
3Py _ 5P 9P 9z

9y 9y 9z 9y

a wieo;

Tu juz wystepuja catki powierzchniowe, poniewaz z — tp{x,y). Druga
z tych calek mozna napisa¢ w postaci:
PP 9z
] - cosy da
H f ~ i 9
S

gdzie y jest katem normalnej z osig Z. Wiadomo z geometrji rdéznicz-
kowej (por. tom I, str. 339), ze:

_al

- 3
cosy = ;, a cos/A3= Y
Km -p*+9»" *“ Km -p*+9*

gdzie ABjest katem normalnej z osig Y. Stad wynika, ze:

9z
— TI-cosy = cos /B
dy

I'=/ /7 ¥ 3 1jTz*ad
I % P(x)y,z) d>= JvJ — 5-~dxdy +J f 3 dxdz

15)J

a wiec:

Zatem:

19*
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W podobny sposob przeksztatcamy catki krzywolinjowe:

J Q{x,y,z)dy i J R\XY,z)dz
0) ®l

Dodajemy te trzy catki do siebie i otrzymujemy:

(200 ®

(Pd® + Qdy -j- Rdz)

Jest to wzor Stokes’a, podajacy zwigzek catki krzywolinjowej prze-
strzennej z catkg powierzchniowg. Jest on uogoélnieniem twierdzenia
Green a-Riemanna

Z twierdzenia Greena-Riemanna wysnuliSmy wniosek, ze catka
krzywolinjowg po krzywej zamknietej jest réwna zeru, gdy wyrazenie,
znajdujagce sie pod catka, jest rézniczka zupetng jakiejs funkcji dwoch
zmiennych, a stad wyniklto, ze catka krzywolinjowg z rézniczki zupeinej
nie zalezy od drogi catkowania. Taki sam wniosek wysnuwa sie z twier-
dzenia Stokes’a dla rézniczki zupetnej z funkcji trzech zmiennycb.

A mianowicie, gdy wyrazenie:

P@®,y, z)dx -f- Q(x,y, z) dy -f R{x, y, z) dz
jest rézniczka znpetna, to:

30_ 3P 3R_3Q 3P_3R
3x 3y’ 3y 3z 3z 3x

a wiec lewa strona wzoru Stokes'a jest zerem, a stad wynika, ze i prawa
jest zerem. A zatem catka po krzywej zamknietej z rézniczki zupetnej funkcji
trzech zmiennych jest zerem, a stad wynika, ze catka krzywolinjowag z roz-
niczki zupetnej funkcji trzech zmiennych nie zalezy od drogi catkowania.

Twierdzenie Stokes’a ma liczne zastosowania w fizyce. Tak np.
gdy P(x,y,z), Q(x,Y,z), R(X,y,z) sa sktadowemi sity F w polu sit w kie-

runkach osi spétrzednych, to catka krzywolinjowaJd ’(Pdx -J- Qdy -j- Rdz)

przedstawia prace, wykonang przez te site wzdtuz drogi L. Jezeli wyra-
zenie pod catka jest rézniczka zupelna jakiej$ funkcji U(X, y, z), to praca
nie zalezy od drogi, taczacej dwa dane punkty. Wtedy P, Q R sa po-
chodnémi czastkowemi jednej funkcji U(x,y,z), a mianowicie:

W 0_3U R_3U

P= 30 v 3y 3*
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U(X, Y, z) jest potencjatem tego pola sil. Jezeli wiec pole sil posiada po-
tencjatl, to praca nie zalezy od drogi. Wzér Stokes’a znajduje réwniez
wazne zastosowanie w hydrodynamice i w elektrodynamice

Ma on réwniez bardzo interesujgca.interpretacje w teorji wektorow

§ 266. Twierdzenie Gaussa i twierdzenie Greena dla przestrzeni
tréojwymiarowej.

W poprzednim paragrafie poznaliSmy zwigzek catki powierzchnio-
wej z catkag krzywolinjowg. Istnieje rowniez zwigzek catki powierzchnio-
wej z .catka potrojna, pozwalajacy sprowadzi¢ obliczenie catki potrojnej
do catki powierzchniowej. | tak wykonujac catkowanie wedtug z w catce
potréjnej, dowodzi sie, podobniq jak przy plaskiem twierdzijiu Greena-

j 'R dx dy,

(v) sy
gdzie < jest powierzchnig, ograniczajacg obszar tréjwymiarowy V

T F) i a6 TR
fﬂi: /1 d@d:f I'@KZ

Sumujac te trzy réwnania stronami, otrzymujemy w/;or:

Riemanna, ze z catki J dx dy dz otrzymamy

(208)

Wzor ten, zwany wzorem Gaussa, znajduje liczne zastosowania w fizyce
matematycznej. Posiada on takze prostg interpretacje w amalizie wektoralnej.

Z wzoru Gaussa wyprowadza sie twierdzenie Greena dla prze-
strzeni, wyrazajgce sie nastepujacym wzorem:

(209)

° *
gdzie U'i ¥V sg ¥unkcjami trzech zmiennych ®,y, z, ,@U: 3 U4-’ —————— T
oX °z_
i podobnie AV, a ~-oznacza pochodng funkcji V w kierunku normalnej
i ma wartos¢:

h-Sam ¥ T 1 5

(0, Ay sa katami normalnej z osiami spoéirzednych).
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i stosujac wzor Gaussa

Dowdéd tego wzoru przeprowadza sie,

do cab FIe8 87%// Qg% XYz

,9'V

Poniewaz:
9\
XX A A

-HfI[UO +ryi)+
+i(d\)]dd/ct~1(‘v)ffLAd<1d

Stosujgc do pierwszej catki twierdzenie Gaussa, otrzymujemy:

“s/Gs Ol OdA dei-JJ UAGdd
(w— cos@dd coslsca.d«y cosydo B\Z(/iekc_ WyLa-

zenie w nawiasie w pierwszej galce jest pochodnag funkcji
atem:

normalnej, pomnozong przez :
1=JJUch-j j j UWdda
\Y

Przeksztalcajac te samag catke analogicznie przez uzycie wzoru
’

I - - - 3%
15 | J aAsdd

Tworzac roznice tych dwéch wyrazen na |, otrzymujemy ostatecznie
wzor Greena

Szczegdtowg dyskusje twierdzen, podanych w 88 264— 266 i liczne

ich zastosowania znajdzie czytelnik np. w podreczniku R. Courant’a p.t.

Vorlesungen iiber Differential- und Integralrechnung (tom 11, str. 259— 287,

Berlin 1929) i w podrecznikach, poswieconych teorji wektorow; np. w pol-

istuieje z tej dziedziny podrecznik W. Pogorzelskiego

skim jezyku i
p t. Zarys teorji wektorow (Lwéw— Warszawa 1925 r.)



Nota.

o liczbach zespolonych

Zarowno dla potrzeb matematyki czystej jak i stosowanej okazato
sie bardzo pozyteczne rozszerzenie zakresu liczb przez wprowadzenie
obok liczb rzeczywistych takze liczb zespolonych. Liczbami zespolonemi
nazywamy pary liczb rzeczywistych (a, b), dla ktérych ustalono nastepu-
jace cztery zwiazki i reguly dziatan arytmetycznych.

I. RO6wWnNoso:
(@, b)— (c,d) wtedy i tylko wtedy, gdy a= ¢ b—d
IL Reguta dodawania:
(a,6)4 -(e,d)= (a+ ¢cb6 + d)
UL Reguta mnozenia:
(0, b)*(c, d) — (ac— bd, bc -f- ad)
IV. Zwigzek 3 liczbami rzeczywistemi:
(0,0)= a
Kazda taka pare uwazamy za jedng cato$¢, za jeden element i oznaczamy
ja czesto jedna literg, np. (a, b)= z Postepujemy tu wieo podobnie jak
przy utamkach, ktére sg takze parami, a mianowicie parami liczb catko-

witych, np. §, ogoblnie a mimoto uwazamy kazdy utlamek za jeden
element i piszemy np. j = u

Uwaga. Takie utamki mozna wprowadza¢ zapomoca #aczenia liczb catkowitych

«, t w pary. tatwo stwierdzi¢, ze zwigzki |—IV maj" dla utamkéw postac:
I, (0, b)= (c, d) wtedy i tylko wtedy, gdy a md= b «c

I". (0,6)-f (c,d)= (ad-f bc, bd).

II', (0, b) *(c,d) = (ac, bd).

IV'. (a,1) = o.

Z tych czterech zalozen mozna wyprowadzi¢ wszystkie wiasnosci utamkow
i wszystkie twierdzenia o rachowaniu utamkami.

Zatozenia | — IV sg tak dobrane, aby mozna byto rachowac licz-
bami zespolonemi tak, jak dwumianami a bx, c-f-da, z tern tylko
uzupetnieniem, ze zamiast ®s nalezy pqgdstawi¢ — |.
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Okazemy mianowicie, Ekatdaz liczbe zespolong, t j. kazdg pare
(a,b), czyniaca zado$¢ zatozeniom | — IV, mozna przedstawi¢ w postaci
a b ® gdzie i jest skréconem oznaczeniem pewnej specjalnej pary,
a mianowicie pary (0,!), majacej te wiasnos¢, ze (0,!)*= — [.

| tak kazda pare (a, ¢ mozna napisa¢ w postaci:

(@,6)= (a+ 0,0+ b)
Na podstawie reguty Il jest wiec:
(@ 6)= (@&?0)+ (0,6)
Stad, na podstawie zwigzku 1V, otrzymujemy:
(‘7= a+ (0,b)
Drugi skiadnik tej sumy mozna napisa¢ w postaci:
(0,6)= (6,0)<(0,1)
albowiem z reguty 11l wynika, ze:
(6,0).(0, )= (6-0 —0-1, 6.1-f-0.0) = (O,6)
Wobec tego:
(@, 6)= a-f-(6,0)(0,1)
Stad zas, na podstawie zwigzku IV, otrzymujemy:
(@6)= a+ 6+0,!)
Kwadrat liczby zespolonej (0, 1) ma wartos¢ — 1; istotnie wedtug re-
guty 111 jest:
O, )*= (0,1)«(0,1)= Os0— 11, 0«1-f-10)= (- 1,0
a wiec wedlug IV jest:
0,1)*=-1
Te specjalng pare (0, 1) naaywamy jednostkg urojong i oznaczamy ja
symbolem i. Zatem:
0,1)="i
Liczba i ma wiec te whasnos¢, ze:
i*= — 1
Uzywajgc tego spoBoba oznaczania, mamy wiec:
(@,6)= a-(-6 «i

DowiedliSmy w ten sposdb, ze kazdg liczbe zespolona mozna przedstawié
> postaci sumy, ktorej pierwszy skiladnik jest liczbg rzeczywistq a drugi
iloczynem liczby rzeczywistej i jednostki urojonej.
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Ozywajac tego sposobu przedstawienia liczb zespolonych, piszemy
cztery zasadnicze prawa |— 1V, charakteryzujgce te liczby, w nastepu-
jacej postaci:

1) a-f- bi— c-f- di wtedy i tylko wtedy, gdy spetniajg sie réwno-
czesnie dwie rownosci: a= c,b = d; t

2) (a-j- bi)-]- (c+ di)= (a-f-c)-(- (b -f- d)i;

3) (a -]- bi) «(c -f- di) — (ac — bd) + (ad -f- be)i\

4) a-f-0i= a

Z wihasnosci |) wynika, ze kazde réwnanie, zachodzace pomiedzy
liczcbami zespolonemi, jest rownowazne z ukladem dwdch réwnan, zacho-
dzacych pomiedzy odpowiedniemi liczbami rzeczywistemi.

Zwroémy jeszcze uwage na regute mnozenia liczb zespolonych,
ktéra odré6znia mnozenie liczb zespolonych a-j- bi od mnozenia dwumia-
néw a -f- ba). | tak mnozac przez siebie dwie liczby zespolone tak, jak
zwyczajne dwumiany, otrzymujemy:

(a -f- bi)(c -f- di) — ac -f- bdi* -f- (ad -f- be) i

Réznica wystepuje dopiero w tem, ze za i* nalezy podstawi¢ — 1. Uczy-
niwszy to, otrzymujemy istotnie prawag strone wzoru 3).

Z tych czterech praw |I— 1V Ilub 1)—4) wyprowadza sie juz cala
arytmetyke liczb zespolonych. Okazuje sie przytem, ze wszystkie prawa
arytmetyki liczb rzeczywistych zachowujga swa waznos$¢ takze w tej szer-
szej klasie liczb (jak np. prawa przemiennosci i tacznosci w dodawania
i mnozeniu, prawo rozdzielnosci dodawania i mnozenia). Ponadto przy-
bywajg jednak jeszcze nowe definicje i nowe wyniki.

| tak liczbe zespolong, ktdrej czesS¢ rzeczywista jest zerem, nazy-
wamy liczbg urojong lub czysto urojong. Dwie liczby zespolone:

z= a-f- hi, z= a— hi

majace te samag cze$¢ rzeczywistg, a roéznigce sie tylko znakiem spOi-
ezynnika, stojgcego przy jednostce urojonej, nazywamy liczbami zespo-
lonemi sprzezonemi. Zaréwno suma jak i iloczyn dwoéch liczb sprzezonych
jest liczba rzeczywistg, a mianowicie:

(u -j- bi) -jH{a — bi)= 2 a
(a bi) «(a — bi) — ai +6*

Widzimy wiec, ze dziatania, wykonywane na liczbach zespolonych, moga
prowadzi¢ do wynikéw rzeczywistych.

Wyniki dziatan, wykonywanych na liczbach zespolonych, nalezy
zawsze sprowadza¢ do postaci X -j- iy, gdzie X,y sa liczbami rzeczywi-
stemi. Dla dodawania i mnozenia uzyskuje sie przedstawienie wyniku
w takiej postaci odrazu z wzoréw 2), 3).
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Przy dzieleniu mozna uzyskaé¢ takie przedstawienie w nastepujacy
spos6b. Mnozymy licznik i mianownik wyrazenia » N przez liczbe

sprzezong z mianownikiem. Otrzymujemy w ten sposoéb:
a bi (a-f- bi)(c — di)__ac-\- bd — adi — bdi*
c+ di (c-\-di)(c — di) o — (di)8
Zatem:
a+ bi_achbd (bc — ad)i ac -j- bd bc ad
c+ di ci+ da ct+ d* r o+ d*

*

Szukane liczby rzeczywiste a,y majg tu zatem wartosci:

ac-\-bd bc— ad
c*+ d*’ y~ cl+ d8

Do tego samego wyniku mozna tez doj$¢ ogdélniejsza metodg, a miano-
wicie ktadac:

a—f bi

B « + iy

Stad:
a-(- bi= (x +y*(c -f- di) = ca— dy-\- (da-\- cy)i

To réwnanie spetnia sie (w mys$l zasady 1) wtedy i tylko wtedy, gdy
spetniajg sie dwa réwnania:

ca—dy— o

da+ cy= b
Rozwigzaniem tego ukiadu réwnan sa, jak tatwo sprawdzi¢, otrzymane
powyzej wartosci na a i Y.

Przyktad.
43 —6i _ (43— 6i)(4 — li) 172 — 42 — 24* — 301 130 — 325*
4+ T* 4 74 — 70 16 + 49 — 65
a wiec:

(43 —6i):(4+ 7i)= 2— 6«

Przy potegowaniu liczb zespolonych wystepuja rozmaite potegi jednostki

urojonej i. Wszystkie te potegi nalezy przedstawi¢ w postaci a+ bi
(przyczem a lub b moze byé zerem). Otéz:
i1—i, i*= — |, i*==** *=—* 4= t***= +1

Wyzsze za$ potegi sprowadzajg sie do tych czterech i powtarzajg sie perjo-
dycznie, albowiem:
in+* _ t4*  tk_ _|_1.jk=

przy catkowitych dodatnich w, k. Wobec tego takze kazda potege (a-\-bi)m
potrafimy przedstawi¢ w postaei a+ iy: trzeba w tym celu podniesé¢
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ten dwumian do w-tej potegi wedtug wzoru Newtona, a nastepnie za
wszystkie potegi i podstawi¢ odpowiednio i, — !, — i lub -]-1>

Pierwiastkowanie liczb zespolonych wyjasnimy zapomoca przykiadu.
Chcemy obliczy¢ drugi pierwiastek z liczby 5— 12i, to znaczy znalezé
takie dwie liczby rzeczywiste X, Yy, aby liczba zespolona Xx-\- iy spetniata
réwnanie:

(X-j-iy)l= 5 —12i
czyli:
a* — y*-f- 2xyi — 5 — 12t

Réwnanie to spetnia sie wtedy i tylko wtedy, gdy liczby rzeczywiste X, y
spetniajg nastepujacy ukiad dwoéch réwnan:

X1l—y2— 5
2xy = — 12
. . 36 * .
Stad otrzymujemy X — -—— a nastgpnie — — y*— 0, 36 — y*— 5y*
Stad:
y*= 4 albo yl= —9

Te druga ewentualno$é: y*= — 9 nalezy odrzuci¢, poniewaz y ma by¢
liczbg rzeczywista. Wobec tego yx= -j- 2, yt — — 2, a zatem xXXx= — 3,
Xt = -J- 3. Ot6z drugi pierwiastek z liczby zespolonej 5— 12i ma dwie

nastepujgce wartosci:
(p—128), = —3+ 2¢, ("5— 12~ = 3—21

Niechaj czytelnik stwierdzi, ze:
0ONMX =+1. (RT),— i, (Ki), = - (Ki), - -

Widzimy stad, ze w zbiorze liczb zespolonych istnieje drugi pierwiastek
i kazdej liczby, podczas gdy w zbiorze liczb rzeczywistych nie istniejg
drugie pierwiastki z liczb ujemnych.

Z tern wiaze sie, ze w zbiorze liczb zespolonych kazde réwnanie
drugiego stopnia posiada dwa rozwigzania, podczas gdy w zbiorze liczb
rzeczywistych réwnania drugiego stopnia o wyré6zniku ujemnym nie po-
siadajg rozwigzan.

Przykiad. Réwnanie:

X* — 4®-j- 13= O
Dosiada rozwigzania:

= 2-f[—9, xt 2— |CT9
czyli:

®,=2-]1-3i, ® = 2— 3ij

Natomiast to rOéwnanie nie posiada rozwigzan rzeczywistych.
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Okazano ogélnie, ze kazde rownanie algebraiczne n-tego stopnia
posiada n pierwiastkéw, przyczem niektére, a nawet wszystkie mogg by¢
liczbami zespolonemi.

Jezeli réwnanie algebraiczne o spoétczynnikach rzeczywistych po-
siada pierwiastek zespolony ®, = p gi, to takze sprzezona z ®, liczba
®y= p — Qi jest pierwiastkiem tego réwnania

Dowod. Podstawiwszy w réwnanie algebraiczne:

e "4 < £ "l- atl 2 -f- eme“f-anN®” = 0
Z& w warto$¢ £\=p-\-qi, wykonujemy zaznaczone dziatania i przedsta-
wiamy lewg strone w postaci A -f- Bi. Jezeli za$ podstawiamy za ® war-
io§¢ ®fc sprzezong z ®, to otrzymamy oczywiscie wynik A — Bi. Ponie-
twaz d, spetnia dane réwnanie, przeto A-\~Bi= 0 czyli A-{-Bi— 0-\-0i
a stad wynika, ze 4 =0 i B= 0. Wobec tego takze A — Bi— 0, ato
znaczy, ze liczba §2= p — qgi spetnia takze dane réwnanie, c. b. d. o.

Wiadomo, jak wazne ustugi oddaje przy liczbach rzeczywistych

ch geometryczne przedstawienie zapomoca punktéw osi liczbowej. Do

przedstawienia geometrycz-

nego liczb zespolonych uzy-

wa sie catej ptaszczyzny,

zwanej ptaszczyzng liczbowa,

wprowadzonej przez Gaussa.

Obrazem geometrycznym licz-

by zespolonej z= x-\- iy jest

punkt o spétrzednych ®,Y.

Tak np. punkt A na fig. 107

X przedstawia liczbe z— 2 3z

Obrazami liczb rzeczywistych

Fig. 107. sg punkty osi ®-6w, liczb czy-

sto urojonych punkty osiy-6w.

Obrazem kazdej liczby zespolonej jest zatem jaki$s punkt plaszczyzny

liczbowej i naodwrét, kazdemu punktowi ptaszczyzny liczbowej odpowiada

jakas liczba zespolona. Istnieje zatem odpowiednio$¢ doskonata pomiedzy

zbiorem wszystkich liczb zespolonych a zbiorem wszystkich punktow
obranej ptaszczyzny.

Odlegtos¢ r punktu, przedstawiajgcego liczbe zespolong 2z, od po-
czatku uktadu spétrzednych nazywamy wartoscig bezwzgledng tej liczby z

i oznaczamy ja symbolem |z]. Widoczne jest, ze a zatem:
N = + =

Tak np. |2-+-3i] = 4+ 9= yi3, |3+ 4t\= N9 4- 16= 5. Definicja
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ta pozostaje w zgodzie z definicja bezwzglednej wartosci liczby rzeczy-
wistej, np. |— 4]l = |— 4 F0i]l= |/4-(-O2=)4.

Uzywajac odlegtosci r punktu A od jpoczatku ukiadu i kata a,
jaki tworzy protrien OA z osig «-6w, mozemy przedstawi¢ kazdg liczbe
zespolong zapomoca spoélrzednych biegunowych.

I tak:

® = r cos a, y—rsina
& zatem:
z—m-f-yi= r(cosa+ tsina)
czyli:
z= jz](cos a -f- tsin o)

przyczem |z]= \a*+ y* a tga= w Kazdg wiec liczbe zespolong mozna

przedstawic¢ jako iloczyn z jej wartosci bezwzglednej i |z liczby zespo-
lonej cosa -f- i sin a, ktorej wartoscia bezwzgledng jest 1 Istotnie:

|cosa -f- tsina |= ~cos*o + sin*a= 1

Kat a nazywamy argumentem liczby zespolonej.
Postugujac sie obrazami geometrycznemi liczb zespolonych, mozemy
w bardzo prosty sposob wykonywac¢ graficznie dziatania arytmetyczne

y

na tych liczbach. 1 tak jezeli punkty 4, i At (fig. 108) s obrazami
geometrycznemi liczb zespolonych:

z, = «, 4-y, t,=A + vy,i
to obrazem geometrycznym ich sumy:

A+ zt — @®i + ®i)+ (yi 4-yq)i
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jest punkt B, lezacy na koricu przekatnej réwnolegloboku, utworzonego
z bokéw OAt i OAS. Widzimy stad, ze dodawanie liczb zespolonych
mozna wykonywa¢ na ich obrazach geometrycznych tak jak dodawanie
wektorow.

Aby znalez¢ sposéb wykonywania mnozenia liczb zespolonych z, i 02
na ich obrazach geometrycznych (fig. 109), dogodnie jest uzy¢ ich przed-
stawienia zapomocg spétrzednych biegunowych, a mianowicie:

z, = ~ (COSee, -j-iSINGS), z2= ra(cosa2-f isin a2
Wobec tego:
4 -z2= r, » ™(cosctj cosa2— sin a, sina, -f- t(sin a, cosa2-j- sina2cosa,))
czyli:
Z, .22= 1, *r2(cos(at+ a2 + *8“ (ai + “2)
Widzimy stad, ze iloczynem dwéch liczb zespolonych jest liczba zespo-
lona, ktorej warto$¢ bezwzgledna jest iloczynem wartosci bezwzglednych

danych liczb, a argument jest sumg argumentéw tych liczb. Aby wiee
otrzymacé obraz geometryczny liczby o, *zv nalezy obréci¢ promiert OAit
nalezgey do liczby s™ o kat a,, nalezacy do liczby o, i powiekszy¢ ten
obrocony promien r2 tyle razy, ile razy r, jest wieksze od jednostki.
Najtatwiej jest uskuteczni¢ te konstrukcje przy pomocy tréojkatow podob-
nych: OCAI ~OAiB, przyczem 0(7=1.

Nietrudno jest znalez¢ podobny wzér i podobng konstrukcje n&
dzielenie liczb zespolonych.

Z wzoru na 0, =02 wynika bardzo prosty wzor na potegowanie liczby
zespolonej 0. Przedstawmy jg w postaci 0 = r(cosa -j-isina) i zastosujmy
»-krotnie wzér na o *o. Otrzymamy:

0* = »Mcosw a -j- i sin» a)
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Dla r — | otrzymujemy stad nastepujgcy wz6r Moivre’a bardzo wazny
W algebrze i w teorji funkcji zmiennej zespolonej:

(cosa -f-isina)' — cosna-)-isin. a

Powrécimy do tego wzoru w tomie III.

Z* rozwazan tych widzimy, ze liczby zespolone Die sg bynajmniej,
jak dawniej sadzono, jakiemi$ mistycznemi ,urojonemi“ fikcjami mate-
matycznemi, lecz sg réwnie realne, jak utamki lub inne liczby rzeczy-
wiste i posiadajg zupelnie jasnag, ,rzeczywista” interpretacje geometryczna.
Znajdujg one coraz szersze zastosowanie w technice, w fizyce i w innych
naukach.

Uwaga. Geometryczne dodawanie liczb zespolonych mogtoby nasuwaé przy-
puszczenie, ze mamy tu do czynienia z wektorami, dobrze znanemi z rozmaitych
dziatéw fizyki (np. z mechaniki). Aby usung¢ rozmaite, zdarzajgce si¢ nieporozu-
mienia, przedstawimy tu jeszcze pokrotce stosunek teorji liczb zespolonych do teorji
wektoréw. Aby ten stosunek jasno wystapit, zajmiemy sie ogélniejBzemi liczbami ,ze-
spolonemi*, ztozonemi z czterech czesci, a mianowicie kwaternjonami. Kwaternjony sa
to czworki liczb rzeczywistych:\a0, o,, o,, 03, ktére mozna okres$li¢ zapomocg zwigz-
kéw podobnych do zwigzkéw | —IV, charakteryzujgcych liczby zespolone dwujedno-
stkowe (t. j. ztozone z jednostek rzeczywistych 1 i z jednostek urojonych {j. ProSciej
jest jednak wyj$¢ odrazu z przedstawienia takiej czwdérki a w postaci:

‘= <Ke*+ o'+ '3+ “ack

1, », j, k nazywamy jednostkami kwaternjona. Mnozenie tych jednostek przez siebie
okreslamy zapomoca nastepujgcych wzorow:

* = ij —k ik = —j
ji= —k * = —1 jk =t
Ki=j Ki ——t 1= —1

Rezygnujemy tu zatem z prawa przemiennosci w mnozeniu»(albowiem np. y 4=%)-

Kwaternjon sklada sie z czesci rzeczywistej: a0, zwanej skalarng czescia kwa-
ternjona i z czeSci o, <i-|-a, *j-j- a} °k, zwanej wektorjalng czesciga kwaternjona.
Czes¢ wektorjalng mozna przedstawi¢ geometrycznie w uktadzie trzech osi spoétrzed-
nych prostopadtych, uwazajgc punkt A o spoétrzednych o,, o, as za obraz geome-
tryczny tej czeSci wektorjalnej; odcinek OA, taczacy ten punkt z poczatkiem ukiadu,
nazywamy wektorem.

Wykonujac mnozenie wektorjalnych czesci a, fi dwéch kwaternjonéw wedtug
zwyktych regut mnozenia tréjmianéw i zastepujac nastepnie iloczyny jednostek innemi
jednostkami, wedtug przyjetych powyzej regui, otrzymujemy:

amfi= —(0,6+ 0,6+ 0sB3-f (0, ) —036,)» - (03 —0, b,)j -f (0,  —a, b,) k
Czes$¢ skalarng tego iloczynu, wzietg ze znakiem przeciwnym, t. j.:
S(a mfi)= atbt-j-o0,b,+ a,b,
nazywamy iloczynem skalarnym dwéch wektoréw, a cze$s¢ wektorjalng, t.j.:
Kaesf)= (@ hb- ob)i+ (a bt—0,b3j + (0, 6,—0,i,) k

nazywamy wektorjalnym iloczynem dwdch wektoréow.
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Wiasciwiej bytoby jednak nie odréznia¢ dwoch, rodzajéow mnozenia wektorow,
tylko moéwi¢ o czesci skalarnej i wektorjalnej jednego iloczynu.

Okazuje sie, ze iloczyn wektorjalny przedstawia si¢ w obrazie geometrycznym
jako nowy wektor, prostopadly do ptaszczyzny dwdch danych wektoréw. Rozwazania
te tworze arytmetyczny podstawe tsorji wektoréw. Nie bedziemy sie tutaj zajmowali
te teorje, a wskazemy tylko na zwigzek tych poje¢ z pojeciem zwyczajnej liczby ze-
spolonej (dwujednostkowej). Ot6z specjalnemi przypadkami kwaternjonéw sa:

1* liczba rzeczywista a,, jezeli o, = 0, = oa==o;

2* wektor 0,14 - 0§ at k w przestrzeni tréjwymiarowej, jezeli o,= o;

3° wektor «jj-f-OjZ! na plaszczyznie, jezeli os= 0, o,= O i podobnie a(t-]-osk,

4° liczba zespolona a,-f-a,jezeli o8 = 03= o.

Widzimy stad, ze zupelnie co innego oznacza wektor na plaszczyznie, a co
innego liczba zespolona. Maje one wprawdzie te same prawa dodawania, lecz rézne
zupetnie prawa mnozenia. lloczynem dwdch liczb zespolonych jest liczba, majaca swéj
obraz w tej samej ptaszczyznie, podczas gdy iloczyn dwéch wektoréw, lezacych na
tej samej ptaszczyznie, sktada sie z czesci skalarnej i z czesci wektorjalnej, ktorag
przedstawia wektor, prostopadty do danej ptaszczyzny.
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